US20230399352A1 - Production apparatus and production method of sucrose-6-ester - Google Patents
Production apparatus and production method of sucrose-6-ester Download PDFInfo
- Publication number
- US20230399352A1 US20230399352A1 US18/002,467 US202118002467A US2023399352A1 US 20230399352 A1 US20230399352 A1 US 20230399352A1 US 202118002467 A US202118002467 A US 202118002467A US 2023399352 A1 US2023399352 A1 US 2023399352A1
- Authority
- US
- United States
- Prior art keywords
- reaction solution
- reaction
- sucrose
- turntable
- ester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 127
- 238000006243 chemical reaction Methods 0.000 claims abstract description 196
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 159
- 238000004821 distillation Methods 0.000 claims abstract description 63
- 238000009833 condensation Methods 0.000 claims abstract description 41
- 230000005494 condensation Effects 0.000 claims abstract description 41
- 238000010438 heat treatment Methods 0.000 claims abstract description 28
- 238000000926 separation method Methods 0.000 claims abstract description 25
- 238000005886 esterification reaction Methods 0.000 claims description 62
- 238000001704 evaporation Methods 0.000 claims description 51
- 230000008020 evaporation Effects 0.000 claims description 51
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 36
- 229930006000 Sucrose Natural products 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 36
- 239000005720 sucrose Substances 0.000 claims description 36
- 150000001733 carboxylic acid esters Chemical class 0.000 claims description 35
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 claims description 23
- 230000032050 esterification Effects 0.000 claims description 20
- 239000002798 polar solvent Substances 0.000 claims description 20
- 239000003054 catalyst Substances 0.000 claims description 19
- 239000000243 solution Substances 0.000 description 68
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 30
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000011541 reaction mixture Substances 0.000 description 10
- 238000004128 high performance liquid chromatography Methods 0.000 description 8
- 239000012530 fluid Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 5
- JLHADLTXDDGZFX-UHFFFAOYSA-L [[acetyloxy(dibutyl)stannyl]oxy-dibutylstannyl] acetate Chemical compound CCCC[Sn](CCCC)(OC(C)=O)O[Sn](CCCC)(CCCC)OC(C)=O JLHADLTXDDGZFX-UHFFFAOYSA-L 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000004376 Sucralose Substances 0.000 description 4
- 238000005917 acylation reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 4
- 235000019408 sucralose Nutrition 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- AFHCRQREQZIDSI-OVUASUNJSA-N [(2r,3s,4s,5r,6r)-6-[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl benzoate Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](COC(=O)C=2C=CC=CC=2)O1 AFHCRQREQZIDSI-OVUASUNJSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- -1 monotin organic compound Chemical class 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- AFHCRQREQZIDSI-UHFFFAOYSA-N sucrose-6-benzoate Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC(=O)C=2C=CC=CC=2)O1 AFHCRQREQZIDSI-UHFFFAOYSA-N 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- NOGFHTGYPKWWRX-UHFFFAOYSA-N 2,2,6,6-tetramethyloxan-4-one Chemical compound CC1(C)CC(=O)CC(C)(C)O1 NOGFHTGYPKWWRX-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- YHASWHZGWUONAO-UHFFFAOYSA-N butanoyl butanoate Chemical compound CCCC(=O)OC(=O)CCC YHASWHZGWUONAO-UHFFFAOYSA-N 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- NWADXBLMWHFGGU-UHFFFAOYSA-N dodecanoic anhydride Chemical compound CCCCCCCCCCCC(=O)OC(=O)CCCCCCCCCCC NWADXBLMWHFGGU-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000010812 external standard method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000001298 n-hexoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- WVJVHUWVQNLPCR-UHFFFAOYSA-N octadecanoyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC(=O)CCCCCCCCCCCCCCCCC WVJVHUWVQNLPCR-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000001448 refractive index detection Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H13/00—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
- C07H13/02—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
- C07H13/04—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/22—Evaporating by bringing a thin layer of the liquid into contact with a heated surface
- B01D1/222—In rotating vessels; vessels with movable parts
- B01D1/223—In rotating vessels; vessels with movable parts containing a rotor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/009—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/08—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/34—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0057—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
- B01D5/006—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
- B01J19/1887—Stationary reactors having moving elements inside forming a thin film
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/006—Processes utilising sub-atmospheric pressure; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H13/00—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
- C07H13/02—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
- C07H13/04—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
- C07H13/06—Fatty acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H13/00—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
- C07H13/02—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
- C07H13/08—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals directly attached to carbocyclic rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00761—Details of the reactor
Definitions
- the present disclosure belongs to the technical field of fine chemical industry, and in particular relates to a production apparatus and a production method of sucrose-6-ester.
- Sucralose is a new sweetener with advantages such as high sweetness, no calories, high stability, and high safety, and has very promising market prospects.
- Sucralose-6-ester is an important intermediate in the production of sucralose.
- a process for synthesizing sucrose-6-ester mainly includes: mixing sucrose, an aprotic polar solvent, and an organotin esterification catalyst to obtain a first reaction mixture; then bringing the first reaction mixture into contact with a gas or solvent vapor capable of removing water for a specified period of time at a specific temperature and pressure, such that the water in the first reaction mixture is removed to obtain a second reaction mixture; and then adding carboxylic anhydride to the second reaction mixture to obtain a third reaction mixture, and maintaining the third reaction mixture for a sufficient time to obtain the sucrose-6-ester.
- This process needs to use the gas or solvent vapor capable of removing water, which seriously affects the continuity of a production process of the sucrose-6-ester, prolongs the production cycle, and reduces the production efficiency.
- the consumption of a large amount of the gas or solvent capable of removing water greatly increases the production cost and energy consumption.
- a production apparatus and a production method of sucrose-6-ester is provided in the present disclosure to overcome the above problems or at least partially solve the problems.
- a production apparatus of sucrose-6-ester including a tank, a rotary distillation device, and a condensation device, where the tank includes a separation chamber and a reaction chamber that are arranged one above another and communicated with each other; the condensation device is sheathed inside the rotary distillation device, and the rotary distillation device is slidably connected in the separation chamber; a discharge port is formed at a lower end of the reaction chamber;
- a part of a side wall of the drum opposite to the turntable is arranged to be inclined in a direction opposite to an inclination direction of a side wall of the turntable.
- a second heating device is provided on an outer surface of the part of the side wall of the drum arranged to be inclined.
- the condensation device further includes an annular condensation wall arranged to be inclined; and the condensation wall is arranged on the water receiving plate and is located between the outer wall of the turntable and an outer edge of the water receiving plate, and an inclination direction of the condensation wall is consistent with an inclination direction of the part of the side wall of the drum arranged to be inclined.
- a middle part of a side wall of the rotary distillation device and a bottom of the side wall of the rotary distillation device each are provided with an annular sliding block, an outer edge of the annular sliding block is inserted into an outer slide way on an inner wall of the tank, and an inner edge of the annular sliding block is inserted into an inner slide way on the side wall of the drum.
- the condensate water box is annular and is arranged close to the outer edge of the water receiving plate.
- the rotary distillation device is further provided with an annular baffle plate, a diameter of the annular baffle plate is smaller than a diameter of the drum, and the annular baffle plate is arranged below an opening of the carboxylic ester feed pipe and is fixedly connected to the drum through a plurality of connecting rods; and
- the tank is further provided with a vacuum pipe, and the vacuum pipe is able to be connected to a vacuum pump.
- the reaction chamber is provided with a temperature control device.
- a production method of sucrose-6-ester is provided, where the production method is implemented by the production apparatus described above and includes:
- a reaction solution can form a very thin liquid film on the inner wall of the turntable with the rotation of the turntable; a water vapor is fully separated and collected into the condensate water box along the condensation device to cool a liquid evaporation residue to make the liquid evaporation residue quickly reach a temperature of the esterification reaction, and the evaporation residue is spun out from the edge of the turntable to the inner wall of the drum under an action of a centrifugal force, flows downward along the inner wall of the drum, is thoroughly mixed with a carboxylic ester on the inner wall of the drum, and then enters the reaction chamber to undergo a esterification reaction to produce the target product sucrose-6-ester.
- the production apparatus of the present disclosure achieves the integration of distillation, cooling, mixing, and reaction steps of the preparation process of sucrose-6-ester, such that raw materials can be continuously fed into the production apparatus.
- the reaction solution separation step and the esterification reaction step are performed without interruption, such that the sucrose-6-ester can be continuously produced, which greatly shortens the production cycle, improves the production efficiency of the sucrose-6-ester, avoids the use of a large amount of a gas or solvent vapor capable of removing water during water removal of a raw reaction solution in the prior art, and overcomes the defects in the prior art such as high time consumption caused by the fact that the second reaction mixture needs to be pressed into another space and then mixed with a carboxylic anhydride.
- the production apparatus has a simple structure, a small floor space, and a low cost.
- FIG. 1 is a side schematic diagram illustrating an overall external structure of a production apparatus of sucrose-6-ester according to an embodiment of the present disclosure
- FIG. 2 is a three-dimensional schematic diagram illustrating sectional internal and external structures of the production apparatus of sucrose-6-ester according to an embodiment of the present disclosure
- FIG. 3 is a schematic diagram illustrating sectional internal and external structures of a rotary distillation device of the production apparatus of sucrose-6-ester according to an embodiment of the present disclosure
- FIG. 4 is a schematic diagram illustrating cross-sectional structures of a condensation device of the production apparatus of sucrose-6-ester according to an embodiment of the present disclosure
- FIG. 5 is a schematic diagram illustrating material flow directions of the production apparatus of sucrose-6-ester according to an embodiment of the present disclosure.
- FIG. 6 is a schematic flow chart of a production method of sucrose-6-ester according to an embodiment of the present disclosure.
- a reaction solution for producing sucrose-6-ester needs to first undergo water removal with a vapor or solvent in a reactor, and then is pressed into another reactor to react with a carboxylic anhydride to produce the sucrose-6-ester.
- the water removal with the vapor or solvent requires a high energy consumption, bulky device, and a large floor space, and can only lead to insufficient water removal; after the water is removed, the reaction solution also needs to be pressed into another reactor to undergo an esterification reaction, which requires additional energy and time and reduces the production efficiency of the sucrose-6-ester; and the production mode in the prior art is discontinuous, and the next reaction can only be conducted after the previous reaction is completed, which also seriously affects the production efficiency of the sucrose-6-ester.
- FIG. 1 is a side schematic diagram illustrating an overall external structure of a production apparatus of sucrose-6-ester according to an embodiment of the present disclosure
- FIG. 2 is a three-dimensional schematic diagram illustrating sectional internal and external structures of the production apparatus of sucrose-6-ester according to an embodiment of the present disclosure
- FIG. 3 is a schematic diagram illustrating sectional internal and external structures of a rotary distillation device of the production apparatus of sucrose-6-ester according to an embodiment of the present disclosure
- FIG. 4 is a schematic diagram illustrating cross-sectional structures of a condensation device of the production apparatus of sucrose-6-ester according to an embodiment of the present disclosure.
- the production apparatus 100 of sucrose-6-ester including a tank 1 , a rotary distillation device 2 , and a condensation device 3 , where the tank includes a separation chamber 11 and a reaction chamber 12 that are arranged one above another and communicated with each other; the condensation device 3 is sheathed inside the rotary distillation device 2 , and the rotary distillation device 2 is slidably connected in the separation chamber 11 ; and a discharge port 121 is formed at a lower end of the reaction chamber 12 .
- the rotary distillation device 2 includes a drum 22 and a turntable 21 , the turntable 21 is fixed on a top surface of the drum through a plurality of connecting plates 25 , and a first heating device 211 is provided on an outer wall of the turntable 21 .
- the plurality of connecting plates 25 may be welded to top surfaces of the turntable 21 and the drum 22 .
- a maximum diameter of the turntable 21 is smaller than an inner diameter of the top surface of the drum 22 , which ensures that there is a gap between the turntable 21 and the drum to allow the reaction solution to flow out.
- a first heating device 211 is provided on an outer wall of the turntable 21 , and the first heating device 211 may heat a liquid film formed by the reaction solution in the turntable to increase an evaporation rate of water.
- the first heating device 211 may be, but is not limited to, a heating device consisting of an electric heating element and a water bath or oil bath heating element.
- a groove 212 may be formed at a bottom of aside wall of the turntable 21 .
- the reaction solution can be temporarily stored in the groove 212 .
- a part of a side wall of the drum 22 opposite to the turntable 21 may be arranged to be inclined in a direction opposite to an inclination direction of a side wall of the turntable 21 , which can be called a heating wall 222 herein; and a second heating device 221 is provided on an outer surface of the part of the side wall of the drum 22 arranged to be inclined.
- reaction solution moves upward along the side wall of the turntable from the groove 212 until it is spun out from the gaps between the plurality of connecting plates 25 at an edge of the turntable 21 to the side wall of the drum 22 , and is heated once again at the heating wall 222 of the drum 22 for further evaporation and purification.
- the condensation device 3 includes a condenser pipe 31 , a water receiving plate 32 , and a condensate water box 33 that are connected sequentially from top to bottom, the condensate water box 33 is provided with a condensate water outlet pipe 331 , and the condensate water outlet pipe 331 extends to a position outside the tank 1 .
- the condenser pipe 31 may be, but is not limited to, a hollow metal pipe, and a plurality of fine condenser tubes with water or air as a medium are wrapped around a side wall of the condenser pipe 31 , which may refer to other technical solutions in the prior art and is not limited in the present disclosure.
- the water receiving plate 32 is closely arranged below the condenser pipe to receive condensate water flowing downward along the condenser pipe and guide the condensate water into the condensate water box 33 .
- a plurality of guide slots may be formed on an upper surface of the water receiving plate 32 , and these guide slots may be connected to an inlet of the condensate water box 33 to guide the condensate water into the condensate water box 33 .
- the condensate water box 33 is arranged below and is connected to the water receiving plate to accommodate the condensate water, and the condensate water can cool the reaction solution with water removed by evaporation (namely, a fluid evaporation residue) that flows downward along the side wall of the drum 22 , such that the evaporation residue reaches an appropriate temperature for the esterification reaction as soon as possible.
- the condensation device 3 is sheathed inside the drum of the rotary distillation device in a non-contact manner, and the condenser pipe 31 is arranged to penetrate through the turntable 21 and contacts a top surface of the tank 1 .
- the condensation device 3 does not contact an inner wall of the drum 22 , and a specified space is left between the condensation device 3 and the inner wall of the drum 22 , such that the evaporation residue can flow downward through the space.
- the condenser pipe 31 penetrates through a bottom surface of the turntable 21 , and may be arranged without contact with the bottom surface of the turntable 21 , that is, a small gap is left between the condenser pipe 31 and the bottom surface of the turntable 21 for the condensate water to flow downward.
- the condenser pipe 31 may be arranged with a gap relative to an inner side wall on which the groove 212 is formed.
- the tank 1 is provided with a reaction solution feed pipe 13 and a carboxylic ester feed pipe 14 , the reaction solution feed pipe 13 penetrates through the top surface of the tank 1 and extends to the bottom of the turntable 21 , specifically may extend to the groove 212 at the bottom of the turntable 21 .
- the carboxylic ester feed pipe 14 penetrates through a side wall of the tank 1 and extends to a position below the condensate water box 33 .
- the rotary distillation device 2 can rotate along a central axis of the turntable 21 , such that a reaction solution entering the rotary distillation device through the reaction solution feed pipe 13 is evaporated and separated into a water vapor and a liquid evaporation residue in the inner wall of the turntable 21 and further on the heating wall of the drum 22 .
- the condensation device 3 further includes an annular condensation wall 34 arranged to be inclined; and the condensation wall 34 is arranged on the water receiving plate 32 and is located between the outer wall of the turntable 21 and an outer edge of the water receiving plate 32 , and an inclination direction of the condensation wall is consistent with an inclination direction of the part of the side wall of the drum 22 arranged to be inclined.
- a condensation wall 34 may be provided surrounding the outer wall of the turntable 21 and is inclined in a direction consistent with an inclination direction of the heating wall 222 .
- annular sliding block 23 is provided at each of a middle part and a bottom of the side wall of the rotary distillation device 2 , an outer edge of the annular sliding block 23 is inserted into an outer slide way 15 on an inner wall of the tank 1 , and an inner edge of the annular sliding block 23 is inserted in an inner slide way 223 on the side wall of the drum 22 .
- the annular sliding block is provided to stabilize and fix the drum, and can rotate relative to the drum. Therefore, the drum can rotate freely at a high speed in the annular sliding block under the drive of a power device (not shown in the figures).
- the condensate water box 33 is annular and is arranged close to the outer edge of the water receiving plate 32 .
- the above arrangement is provided to make the condensate water close to an inner side wall of the drum 22 to well cool the evaporation residue.
- a bottom surface of the condensate water box 33 may be inclined, specifically, a side wall of the condensate water box close to the inner side wall of the drum 22 is longer than a side wall of the condensate water box far away from the inner side wall of the drum 22 , which allows a better condensation effect.
- the rotary distillation device 2 is further provided with an annular baffle plate 26 , a diameter of the annular baffle plate 26 is smaller than a diameter of the drum 22 , and the annular baffle plate 26 is arranged below an opening of the carboxylic ester feed pipe 14 and is fixedly connected to the drum 22 through a plurality of connecting rods 27 ; and the carboxylic ester feed pipe 14 and the condensate water outlet pipe 331 are arranged to penetrate through a hollow portion of the annular baffle plate 26 .
- the annular baffle plate is provided to store a carboxylic anhydride entering the annular baffle plate through the carboxylic ester feed pipe 14 ; and the carboxylic anhydride is usually a powder, and thus is blown into the carboxylic ester feed pipe 14 through a pump and then sprayed from the opening of the carboxylic ester feed pipe 14 to the inner wall of the rotating drum 22 to be mixed with a fluid evaporation residue.
- the part of the powder may not be mixed with the fluid evaporation residue in time and falls to the annular baffle plate, and under an action of a centrifugal force, the part of the powder can still fly to the inner wall of the drum 22 to be mixed with the fluid evaporation residue.
- the tank body 1 is further provided with a vacuum pipe 16 , and the vacuum pipe 16 can be connected to a vacuum pump (not shown in the figures).
- the production device can also be depressurized. Specifically, the above purpose can be achieved via a vacuum pump connected to the vacuum pipe 16 .
- the reaction chamber 12 is provided with a temperature control device (not shown in the figures).
- the reaction chamber 12 may be provided with the temperature control device.
- the esterification reaction may be conducted in the reaction chamber 12 , or a separate esterification reactor may be connected to a discharge port 121 of the reaction chamber 12 , which is not limited in the present disclosure.
- FIG. 5 is a schematic diagram illustrating material flow directions of the production apparatus of sucrose-6-ester according to an embodiment of the present disclosure. Arrows in FIG. 5 indicate the material flow directions. It can be seen from FIG. 5 that a reaction solution enters the groove 212 of the turntable 21 through the reaction solution feed pipe 13 ; with rotation of the turntable 21 , the reaction solution undergoes evaporation while moving along the inner wall of the turntable 21 to the edge of the turntable 21 , and then is spun out from the edge of the turntable 21 to the heating wall 222 of the drum 22 , and then undergoes evaporation once again; resulting condensate water flows downward along the condenser pipe 31 and the condensation wall 34 to the water receiving plate 32 , and then flows into the condensate water box 33 ; and a fluid evaporation residue flows downward along the inner wall of the drum 22 and is mixed with a carboxylic ester sprayed through the carboxylic ester feed pipe 14 , and a resulting mixture flows into the reaction
- a reaction solution can form a very thin liquid film on the inner wall of the turntable with the rotation of the turntable; a water vapor is fully separated and collected into the condensate water box along the condensation device to cool a fluid evaporation residue to make the evaporation residue quickly reach a temperature of the esterification reaction, and the fluid evaporation residue is spun out from the edge of the turntable to the inner wall of the drum under an action of a centrifugal force, flows downward along the inner wall of the drum, is thoroughly mixed with a carboxylic ester on the inner wall of the drum, and then enters the reaction chamber to undergo a esterification reaction to produce the target product sucrose-6-ester.
- the production device of the present disclosure achieves the integration of distillation, cooling, mixing, and reaction steps of the preparation process of sucrose-6-ester, such that raw materials can be continuously fed into the production device.
- the reaction solution separation step and the esterification reaction step are performed without interruption, such that the sucrose-6-ester can be continuously produced, which greatly shortens the production cycle, improves the production efficiency of the sucrose-6-ester, avoids the use of a large amount of gas or solvent vapor capable of removing water during water removal of a raw reaction solution in the prior art, and overcomes the defects in the prior art such as high time consumption caused by the fact that the second reaction mixture needs to be pressed into another space and then mixed with a carboxylic anhydride.
- the production device has a simple structure, a small floor space, and a low cost.
- FIG. 6 is a schematic flow chart of a production method of sucrose-6-ester according to an embodiment of the present disclosure.
- the production method is implemented on the production apparatus described above, and at least includes the following steps S 610 and S 620 :
- the present disclosure has no limitation on a rotational speed of the rotary distillation device.
- the rotational speed of the rotary distillation device may be 40 rpm to 200 rpm. If the rotational speed of the rotary distillation device is less than 40 rpm, it may be impossible to spin a reaction solution out from the turntable; and if the rotational speed of the rotary distillation device is greater than 200 rpm, the production apparatus should meet high requirements, a reaction solution can only undergo evaporation for a short time, and it may be impossible to thoroughly evaporate the water in the reaction solution, which is not conducive to the rapid production of sucrose-6-ester.
- the raw materials and preset conditions for the esterification reaction in the above method are not limited, which can refer to the prior art and can also be adopted according to the following recommended technical solutions.
- the present disclosure has no limitation on a type of the organotin compound, and a monotin organic compound or a bitin organic compound can be adopted.
- the organotin compound is optionally any one or more selected from the group consisting of 1,3-dihydrocarbyloxy-1,1,3,3-tetra-(hydrocarbyl)distannoxane, tin di(hydrocarbyl)oxide, 1,3-diacyloxy-1,1,3,3-tetra-(hydrocarbyl)distannoxane, and 1-diacyloxy-1,1,3,3-tetra-(hydrocarbyl)distannoxane.
- the organotin compound is 1,3-diacyloxy-1,1,3,3-tetra-(hydrocarbyl)distannoxane; and in some other embodiments, the organotin compound is 1,3-diacetoxy-1,1,3,3-tetrabutyldistannoxane.
- the hydrocarbyloxy is optionally selected from the group consisting of alkoxy and phenoxy.
- the alkoxy is optionally selected from the group consisting of methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, and n-hexoxy; and in some other embodiments, the alkoxy is methoxy.
- the hydrocarbyl is optionally selected from the group consisting of alkyl, cycloalkyl, aryl, and aralkyl; in some other embodiments, the hydrocarbyl is alkyl; and in some other embodiments, the hydrocarbyl is normal-butyl.
- the present disclosure has no limitation on a type of the aprotic polar solvent.
- the aprotic polar solvent is any one or more selected from the group consisting of acetonitrile, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone, nitromethane, nitroethane, cyclohexanone, dimethyl sulfoxide, N-methylpyrrolidone, N,N-dimethylacetamide, hexamethylphosphoramide, and N,N-dimethylformamide; and in some other embodiments, the aprotic polar solvent is acetonitrile.
- a ratio of the mass of the solvent to the mass of sucrose is 2 to 20; in some other embodiments, the ratio of the mass of the solvent to the mass of sucrose is 3 to 10; and in some other embodiments, the ratio of the mass of the solvent to the mass of sucrose is 4 to 8.
- the present disclosure has no limitation on a heating temperature for the heating chamber.
- the heating temperature may be 65° C. to 150° C.; and in some other embodiments, the heating temperature may be 85° C. to 120° C.
- the present disclosure has no limitation on, when the vacuum pipe is connected to the vacuum pump, a negative pressure in the production apparatus.
- the negative pressure in the production apparatus may be maintained at 0.01 kPa to 50 kPa; and in some other embodiments, the negative pressure in the production apparatus may be maintained at 0.5 kPa to 20 kPa.
- the present disclosure has no limitation on a type of the carboxylic anhydride, and the carboxylic anhydride is any one selected from the group consisting of acetic anhydride, butyric anhydride, benzoic anhydride, stearic anhydride, and lauric anhydride and is preferably acetic anhydride.
- the above types of organic acid anhydrides lead to the corresponding sucrose-6-carboxylates sucrose-6-acetate, sucrose-6-butyrate, sucrose-6-benzoate, sucrose-6-fatty acid ester, and sucrose-6-laurate.
- sucrose-6-acetate and sucrose-6-benzoate can be used as raw materials for synthesizing other sucrose-6-carboxylates and can also be used as intermediates for synthesizing a sweetener sucralose; and the other types of sucrose-6-carboxylate can be used as food additives, chemical products, and synthetic intermediates for other reactions.
- the present disclosure has no limitation on an amount of the carboxylic anhydride.
- a ratio of the mass of the carboxylic anhydride to the mass of the sucrose is 0.6 to 3.0; and in some other embodiments, the ratio of the mass of the carboxylic anhydride to the mass of the sucrose is 0.8 to 1.
- the esterification reaction may be conducted at 0° C. to 50° C.; and in some other embodiments, the esterification reaction may be conducted at 1° C. to 20° C. In some embodiments, the esterification reaction may be conducted for 10 min to 24 h; and in some other embodiments, the esterification reaction may be conducted for 30 min to 4 h.
- reaction conditions may refer to the prior art.
- a moisture content is determined by the Karl Fischer method, which can refer to the prior art and will not be repeated in various examples.
- the chemical reagents involved in the present disclosure and the raw material for preparing sucrose-6-ester may be commercially available, which are not limited in the present disclosure.
- an organotin esterification catalyst (1,1,3-diacetoxy-1,1,3,3-tetrabutyldistannoxane), and an aprotic polar solvent (DMF) were taken in a mass ratio of 1:2:10 and prepared into 300 kg of a reaction solution.
- the production apparatus of sucrose-6-ester shown in FIG. 2 was used to produce sucrose-6-ester.
- the production apparatus was connected to the external vacuum pump.
- the rotary distillation device was turned on such that the rotary distillation device rotated at 100 rpm; the reaction solution prepared above was continuously fed into the production apparatus at a rate of 4 m 3 /h; the reaction device was maintained at a negative pressure of 1 kPa and the first heating device 211 , the second heating device 221 , the condensation device 3 , and the temperature control device of the reaction chamber were turned on.
- the acetic anhydride was blown into the production apparatus through the carboxylic ester feed pipe at a temperature lower than 20° C. to allow an acylation reaction; and a sucrose-6-ester-containing product flowing out of the reaction product discharge port was collected.
- a sample was taken from the evaporation residue before being mixed with the acetate and tested for a water content, and the water content in this example was lower than 500 ppm.
- an organotin esterification catalyst (1,1,3-diacetoxy-1,1,3,3-tetrabutyldistannoxane), and an aprotic polar solvent (DMF) were taken in a mass ratio of 1:2:10 and prepared into 500 kg of a reaction solution.
- the production apparatus of sucrose-6-ester shown in FIG. 2 was used to produce a sucrose-6-ester.
- the production device was connected to the external vacuum pump.
- the rotary distillation device was turned on such that the rotary distillation device rotated at 150 rpm; the reaction solution prepared above was continuously fed into the production apparatus at a rate of 6 m 3 /h; the reaction device was maintained at a negative pressure of 0.5 kPa and the first heating device 211 , the second heating device 221 , the condensation device 3 , and the temperature control device of the reaction chamber were turned on.
- the acetic anhydride was blown into the production apparatus through the carboxylic ester feed pipe at a temperature lower than 10° C. to allow an acylation reaction; and a sucrose-6-ester-containing product flowing out of the reaction product discharge port was collected.
- a sample was taken from the evaporation residue before being mixed with the acetate and tested for a water content, and the water content in this example was lower than 500 ppm.
- an organotin esterification catalyst (1,1,3-diacetoxy-1,1,3,3-tetrabutyldistannoxane), and an aprotic polar solvent (DMF) were taken in a mass ratio of 1:2:10 and prepared into 300 kg of a reaction solution.
- the production apparatus of sucrose-6-ester shown in FIG. 2 was used to produce a sucrose-6-ester.
- the production apparatus was connected to the external vacuum pump.
- the rotary distillation device was turned on such that the rotary distillation device rotated at 200 rpm; the reaction solution prepared above was continuously fed into the production apparatus at a rate of 8 m 3 /h; the reaction device was maintained at a negative pressure of 0.5 kPa and the first heating device 211 , the second heating device 221 , the condensation device 3 , and the temperature control device of the reaction chamber were turned on.
- the acetic anhydride was blown into the production apparatus through the carboxylic ester feed pipe at a temperature lower than 15° C. to allow an acylation reaction; and a sucrose-6-ester-containing product flowing out of the reaction product discharge port was collected.
- a sample was taken from the evaporation residue before being mixed with the acetate and tested for a water content, and the water content in this example was lower than 400 ppm.
- an organotin esterification catalyst (1,1,3-diacetoxy-1,1,3,3-tetrabutyldistannoxane), and an aprotic polar solvent (DMF) were taken in a mass ratio of 1:2:10 and prepared into 300 kg of a reaction solution, and the reaction solution was heated at 90° C. for dissolution to obtain a reaction mixed solution.
- an organotin esterification catalyst (1,1,3-diacetoxy-1,1,3,3-tetrabutyldistannoxane
- DMF aprotic polar solvent
- a packed tower was used for dehydration, and the packed tower had a diameter of 40 mm and was packed with a 3 ⁇ 8 glass spring packing at a packing height of 1 m, which was equivalent to 10-stage tower plates.
- the reaction mixed solution prepared above was fed from an inlet at a top of the packed tower, with a negative pressure of 0.5 kPa; and a cyclohexane vapor (100° C., 4 atm) was fed from a gas inlet at a bottom of the packed tower.
- the reaction mixed solution and the cyclohexane vapor were in countercurrent contact to allow a reaction.
- a distillate (a vapor including cyclohexane, water, and DMF) discharged from the top of the packed tower was condensed, collected, dried to remove water, and then recycled.
- a liquid sample was collected at the bottom of the packed tower, which was transparent and light-amber.
- a retention time of the reaction solution in a gas-liquid exchange reactor was about 1 min.
- a sucrose content of a resulting solution was calculated to be 10%.
- the resulting solution was pressed into another reactor, then acetic anhydride was added at a temperature lower than 10° C. with a mass ratio of sucrose to acetic anhydride being 1:1.1 to allow an acylation reaction at a temperature lower than 10° C. for 2 h, and then water was added with a mass ratio of the water to a reaction solution being 0.25:1 to perform a quenching reaction; and cyclohexane was added with a mass ratio of the cyclohexane to the reaction solution being 1:1 to extract the organotin compound, and a resulting sucrose-6-acetate solution was analyzed by the high-performance liquid chromatography. Analysis results of the products were as follows:
- sucrose-6-acetate yield can reach 90.45% (normalized) in some examples of the present disclosure, but is only 72.05% (normalized) in Comparative Example 1, that is, the sucrose-6-carboxylate yield in the present disclosure is significantly higher than that in the prior art.
- the side reaction occurrence probability of the present disclosure is significantly reduced, and the conversion of sucrose in the present disclosure is more thorough.
- a reaction solution can form a very thin liquid film on the inner wall of the turntable with the rotation of the turntable; a water vapor is fully separated and collected into the condensate water box along the condensation apparatus to cool a liquid evaporation residue to make the liquid evaporation residue quickly reach a temperature of the esterification reaction, and the liquid evaporation residue is spun out from the edge of the turntable to the inner wall of the drum under an action of a centrifugal force, flows downward along the inner wall of the drum, is thoroughly mixed with a carboxylic ester on the inner wall of the drum, and then enters the reaction chamber to undergo an esterification reaction to produce the target product sucrose-6-ester.
- the production device of the present disclosure achieves the integration of distillation, cooling, mixing, and reaction steps of the preparation process of sucrose-6-ester, such that raw materials can be continuously fed into the production apparatus.
- the reaction solution separation step and the esterification reaction step are performed without interruption, such that thesucrose-6-ester can be continuously produced, which greatly shortens the production cycle, improves the production efficiency of the sucrose-6-ester, avoids the use of a large amount of gas or solvent vapor capable of removing water during water removal of a raw reaction solution in the prior art, and overcomes the defects in the prior art such as high time consumption caused by the fact that the second reaction mixture needs to be pressed into another space and then mixed with a carboxylic anhydride.
- the production apparatus has a simple structure, a small floor space, and a low cost.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Saccharide Compounds (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/075813 WO2022165803A1 (zh) | 2021-02-07 | 2021-02-07 | 蔗糖-6-酯的生产设备及生产方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230399352A1 true US20230399352A1 (en) | 2023-12-14 |
Family
ID=76275625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/002,467 Pending US20230399352A1 (en) | 2021-02-07 | 2021-02-07 | Production apparatus and production method of sucrose-6-ester |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230399352A1 (zh) |
EP (1) | EP4147760A4 (zh) |
CN (1) | CN112969517B (zh) |
WO (1) | WO2022165803A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114768280B (zh) * | 2022-05-20 | 2023-08-15 | 广西桂平悦达香料有限公司 | 一种肉桂油用蒸馏分离装置 |
CN115364520B (zh) * | 2022-09-06 | 2023-06-02 | 新琪安科技股份有限公司 | 一种三氯蔗糖新型母液萃取工艺 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE755107A (fr) * | 1969-08-25 | 1971-02-22 | Ucb Sa | Evaporateur a couche mince |
GB1485577A (en) * | 1976-01-05 | 1977-09-14 | Slovenskej Vysokej Skoly | Distilling |
US6908533B2 (en) * | 2002-01-17 | 2005-06-21 | Ovation Products Corporation | Rotating heat exchanger |
CN1182148C (zh) * | 2003-01-08 | 2004-12-29 | 中国科学院新疆理化技术研究所 | 合成高酯化度蔗糖脂肪酸多酯的新工艺 |
AT412951B (de) * | 2003-10-02 | 2005-09-26 | Vtu Engineering Planungs Und B | Dünnschichtverdampfer |
US7875248B1 (en) * | 2007-12-07 | 2011-01-25 | Clarkson University | Thin film tube reactor with rotating reservoir |
US8003059B2 (en) * | 2009-05-18 | 2011-08-23 | R3 Fusion, Inc. | Continuous processing reactors and methods of using same |
GB2474310B (en) * | 2009-10-12 | 2012-02-29 | Tate & Lyle Technology Ltd | Process for the production of sucrose-6-ester |
CN104774226A (zh) * | 2015-04-08 | 2015-07-15 | 常州市牛塘化工厂有限公司 | 一种蔗糖-6-乙酯的制备方法 |
KR102512581B1 (ko) * | 2015-09-07 | 2023-03-23 | 간사이가가쿠기카이세이사쿠가부시키가이샤 | 증발 장치 |
CN108558962B (zh) * | 2018-05-22 | 2020-06-30 | 山东新和成精化科技有限公司 | 一种用于合成蔗糖-6-酯的方法 |
CN109575090A (zh) * | 2018-12-10 | 2019-04-05 | 安徽金禾实业股份有限公司 | 一种蔗糖-6-乙酸酯的制备方法 |
CN109603176A (zh) * | 2018-12-12 | 2019-04-12 | 安徽金禾实业股份有限公司 | 一种三氯蔗糖中和液的浓缩装置和浓缩方法 |
CN209317067U (zh) * | 2018-12-25 | 2019-08-30 | 江西天奕香料有限公司 | 一种乙酸异丁酸蔗糖酯生产用高精度减压蒸馏装置 |
CN111514601A (zh) * | 2020-05-07 | 2020-08-11 | 常熟市新世纪化工设备有限公司 | 分子蒸馏系统 |
CN111701259B (zh) * | 2020-06-04 | 2021-12-21 | 江西纵横特种设备有限公司 | 一种旋转式升膜蒸发器 |
CN112218874A (zh) * | 2020-09-10 | 2021-01-12 | 安徽金禾实业股份有限公司 | 一种蔗糖-6-酯的制备方法 |
CN112717452B (zh) * | 2021-01-04 | 2022-04-08 | 安徽金禾实业股份有限公司 | 蔗糖6酯加工设备及其方法 |
-
2021
- 2021-02-07 EP EP21923814.4A patent/EP4147760A4/en active Pending
- 2021-02-07 CN CN202180000712.1A patent/CN112969517B/zh active Active
- 2021-02-07 US US18/002,467 patent/US20230399352A1/en active Pending
- 2021-02-07 WO PCT/CN2021/075813 patent/WO2022165803A1/zh unknown
Also Published As
Publication number | Publication date |
---|---|
CN112969517A (zh) | 2021-06-15 |
EP4147760A4 (en) | 2023-09-13 |
WO2022165803A1 (zh) | 2022-08-11 |
EP4147760A1 (en) | 2023-03-15 |
CN112969517B (zh) | 2022-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230234980A1 (en) | Device and method for producing sucrose-6-ester | |
US20230399352A1 (en) | Production apparatus and production method of sucrose-6-ester | |
US20230295210A1 (en) | Method for preparing sucrose-6-ester | |
WO2022056913A1 (zh) | 一种蔗糖-6-羧酸酯的制备方法 | |
KR20020043598A (ko) | 수용액중 고체로부터의 휘발성 화합물의 회수 방법 | |
US20230322836A1 (en) | Device and method for preparing sucrose-6-ester | |
US20230294012A1 (en) | Production apparatus and production method of sucrose-6-ester | |
CN206715350U (zh) | 一种旋转薄膜蒸发器 | |
CN110433516A (zh) | 一种无水乙醇精制实验装置及工艺 | |
CN113646318A (zh) | 有机锡蔗糖配合物的制备方法 | |
CN101632877B (zh) | 一种低聚木糖各组分的分离纯化方法 | |
CN112912153A (zh) | 蔗糖-6-酯的生产设备及生产方法 | |
US20210198174A1 (en) | Process for making high purity salts | |
CN209188157U (zh) | 一种提纯机 | |
CN113731339A (zh) | 一种对二甲苯氧化结晶装置 | |
CN114225655B (zh) | 一种蔗糖酯化脱水冷凝装置及方法 | |
Jin et al. | Study on the temperature field in the fermentation-extraction-distillation coupling device for biobutanol production | |
CN221358540U (zh) | 一种化学试剂分离装置 | |
CN106883100B (zh) | 一种三十烷醇晶型ⅰ及其制备方法 | |
CN206505049U (zh) | 一种防止环境污染的循环高效液相色谱仪 | |
EP1149821B1 (en) | Process for drying an alkali metal aryloxide | |
CN117298792A (zh) | 一种用于提纯氢气的气液分离器及其方法 | |
CN111943940A (zh) | 一种罗丹明活化酯的制备方法 | |
CN111974369A (zh) | 一种柱层析硅胶及其制备方法和应用 | |
CA2717766A1 (en) | Stripping absorption module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ANHUI JINHE INDUSTRIAL CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, ZHENGSONG;LI, ZHENGHUA;ZHAO, JINGANG;AND OTHERS;REEL/FRAME:062184/0282 Effective date: 20221202 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |