WO2022056913A1 - 一种蔗糖-6-羧酸酯的制备方法 - Google Patents

一种蔗糖-6-羧酸酯的制备方法 Download PDF

Info

Publication number
WO2022056913A1
WO2022056913A1 PCT/CN2020/116529 CN2020116529W WO2022056913A1 WO 2022056913 A1 WO2022056913 A1 WO 2022056913A1 CN 2020116529 W CN2020116529 W CN 2020116529W WO 2022056913 A1 WO2022056913 A1 WO 2022056913A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid exchange
sucrose
reaction
liquid
Prior art date
Application number
PCT/CN2020/116529
Other languages
English (en)
French (fr)
Inventor
夏家信
姜维强
张正颂
陈朝晖
沈东东
Original Assignee
安徽金禾实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽金禾实业股份有限公司 filed Critical 安徽金禾实业股份有限公司
Priority to CN202080002566.1A priority Critical patent/CN112384522A/zh
Priority to PCT/CN2020/116529 priority patent/WO2022056913A1/zh
Publication of WO2022056913A1 publication Critical patent/WO2022056913A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/002Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/007Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • C07H13/06Fatty acids

Definitions

  • the invention belongs to the technical field of chemical manufacturing, and in particular relates to a preparation method of sucrose-6-carboxylate.
  • Sucrose-6-carboxylate is an important chemical product and intermediate (Zhang Zhaohui, Guangxi Nanning Cassava Technology Development Center, Chemical Derivatives of Sucrose [J]. Progress in Fine Petrochemicals, 2000, 1(6):8-13. ), widely used in industry, such as sucrose-6-fatty acid ester, which is a kind of polyol type nonionic surfactant with excellent emulsifying properties, widely used in food, medicine, cosmetics and other industries; such as sucrose rosin acid Esters are also an excellent emulsifier; sucrose-6-acetate is not only a raw material for the synthesis of sucrose-6-fatty acid esters and sucrose acetate isobutyrate, but also an important intermediate for the synthesis of sucralose (Wu Hongying, Zhejiang University) School of Chemical Engineering and Bioengineering, Wu Hongying, et al. The latest progress in the synthesis of sweetener sucralose [J]. Advances in Chemical Engineering, 2016, 35(1): 227-238.
  • the single-group protection method is usually used in the industry to synthesize sucrose-6-carboxylate.
  • the synthesis process is generally to dissolve an organotin compound and sucrose in a polar solvent, and azeotropic dehydration through a non-polar solvent (Chinese Patent CN1210286) Or direct distillation and dehydration of a single polar solvent (Chinese patent CN102639550) to form a sucrose organotin ester solution, followed by a highly selective reaction between the sucrose organotin ester solution and the acylating agent carboxylic anhydride to obtain sucrose-6-carboxylate.
  • the present application is made to provide a method for the preparation of sucrose-6-carboxylate which overcomes the above-mentioned problems or at least partially solves the above-mentioned problems.
  • a method for preparing sucrose-6-carboxylate is provided, the preparation method is performed using a gas-liquid exchange reactor, and the gas-liquid exchange reactor includes: a cavity, a gas disposed at one end of the cavity The outlet part and the liquid inlet part, the gas inlet part and the liquid outlet part arranged at the other end of the cavity, and the multi-layer gas-liquid exchange plates; the multi-layer gas-liquid exchange plates are arranged in parallel inside the cavity, and the adjacent multi-layer gas-liquid exchange plates The exchange plates are connected by overflow pipes, and each gas-liquid exchange plate is respectively provided with several bubble cap bubblers containing gas risers;
  • the preparation method comprises the following steps:
  • the preparation step of the mixed solution the sucrose and the organotin compound are heated and dissolved in the mixed solvent to obtain a reaction mixed solution; wherein, the mixed solvent is composed of a mixture of a polar aprotic solvent and a non-polar solvent;
  • Dehydration reaction step the reaction mixed solution is brought into the interior of the gas-liquid exchange reactor from the liquid inlet, and the dehydration medium entered from the gas inlet of the gas-liquid exchange reactor is bubbled on the bubble cap on the multi-layer gas-liquid exchange plate
  • the bubbling contact near the outer surface of the vessel makes the reaction mixture undergo dehydration reaction and conduct gas-liquid exchange with the dehydration medium, thereby obtaining the sucrose organotin ester solution and the dehydration medium gas with water vapor; the sucrose organotin ester solution is removed from the gas-liquid exchange reactor.
  • the liquid outlet part of the gas-liquid exchange reactor is discharged; the dehydration medium gas containing water vapor is discharged from the gas outlet part of the gas-liquid exchange reactor;
  • sucrose organotin ester solution is subjected to an acylation reaction with an organic acid anhydride to generate sucrose-6-carboxylate.
  • a gas-liquid exchange reactor for implementing the above-mentioned preparation method of sucrose-6-carboxylate
  • the gas-liquid exchange reactor comprises: a cavity, a gas outlet and a liquid inlet arranged at one end of the cavity, a gas inlet and a liquid outlet arranged at the other end of the cavity, and a multi-layer gas-liquid exchange plate;
  • the gas-liquid exchange plates are arranged in parallel inside the cavity, the adjacent multi-layer gas-liquid exchange plates are connected by overflow pipes, and several bubble cap bubblers containing gas risers are respectively arranged on each gas-liquid exchange plate;
  • a membrane separator is connected to the gas outlet of the exchange reactor.
  • the beneficial effects of the present application are: the method of the present application rapidly removes the moisture generated in the reaction system by using an anhydrous dehydration medium in the mixed solution comprising sucrose, a mixed solvent and an organotin compound through a gas-liquid exchange reactor, Efficient preparation of sucrose organotin ester intermediates.
  • the method can quickly complete the esterification and dehydration reaction in a very short time, has good selectivity and high yield of sucrose-6-carboxylate, few side reactions, simple reaction process and simple operation, and is especially suitable for large-scale industrial production. It can overcome the shortcomings of traditional sucrose-6-ester preparation reaction, such as long time, high energy consumption, many side reactions, complicated operation and low yield.
  • FIG. 1 shows a schematic structural diagram of a gas-liquid exchange reactor according to an embodiment of the present application.
  • the idea of the present application is that, by replacing the previous batch or semi-continuous reactor with a continuous gas-liquid exchange dehydration reactor, the formation reaction of sucrose organotin ester is improved, so that the dehydration process is fast and efficient, and the reaction is promoted to proceed quickly and forwardly. , reduce the decomposition and side reactions of sugar substances in the reaction system, improve the dehydration efficiency and reduce the content of unreacted sucrose, thereby improving the selectivity and yield of the reaction; and can greatly improve the production efficiency, increase the operability of the process, and achieve Higher automation reduces the complexity of manual operations, reduces energy consumption, reduces costs, and achieves the purpose of large-scale industrial production.
  • FIG. 1 shows a schematic structural diagram of a gas-liquid exchange reactor 10 according to an embodiment of the present application.
  • the gas-liquid exchange reactor 10 includes: a cavity 9, a gas outlet 2 and a liquid inlet 1 arranged at one end of the cavity, a gas inlet 4 and a liquid outlet 3 arranged at the other end of the cavity, and a multilayer gas-liquid Exchange plate 5; gas-liquid exchange plates are arranged in parallel inside the cavity, adjacent gas-liquid exchange plates are connected by overflow pipes 6, and several bubble caps containing gas risers 7 are respectively provided on the gas-liquid exchange plates 5 device 11.
  • the gas outlet portion 2 and the liquid inlet portion 1 are arranged at the top end of the cavity 9, and the gas inlet portion 4 and the liquid outlet portion 3 are arranged at the bottom end of the cavity 9.
  • the gas outlet Section 2, liquid inlet section 1, gas inlet section 4, and liquid outlet section 3 may each comprise multiple outlets or inlets.
  • a plurality of gas-liquid exchange plates 5 are arranged in parallel inside the cavity 9, it should be noted that. Parallel arrangement is an ideal state, and can be used as a preferred solution, and each of the multiple gas-liquid exchange plates 5 can also be arranged in non-contact according to a certain angle as required. Adjacent gas-liquid exchange plates 5 are connected through overflow pipes 6, and blister bubblers 11 containing gas risers 7 are respectively provided on each gas-liquid exchange plate 5, and the gas under the gas-liquid exchange plates 5 passes through the bubble cap drum.
  • the air riser 7-bubble 8-gap (not shown in the figure) of the bubbler 11 enters the upper layer, and is then broken down into many small strands (one for each slot) near the outer surface of the bubbler and the upper layer.
  • the liquid is fully bubbled and mixed, so there is sufficient gas-liquid contact area.
  • the number of bubble cap bubblers 11 on each layer of the gas-liquid exchange plate 5 can be set to be multiple. Under the condition that the total area has a certain relationship, a relatively ideal effect can be achieved.
  • the total area of the air riser in the blister total area of the air riser in a single blister ⁇ the number of blister
  • the total area of the bottom (or cross section) of the blister is 20% to 50% of the total area of the gas-liquid exchange plate.
  • the height of the gaps of the cover 8 is 0.1 to 10 cm, in some embodiments, 2 to 5 cm; the width of the gaps of the blister 8 is 0.01 to 5 cm, and in some embodiments, it is 0.1 to 2 cm; the teeth of the blister 8
  • the slit area is 1 to 3 times the total area of the air riser in the blister, and this arrangement can achieve the best gas-liquid exchange and energy-efficiency exchange effects.
  • the number of gas-liquid exchange plates 5 in the gas-liquid exchange reactor 10 is 3-200, in other embodiments 5-100, and in still other embodiments 10- 50.
  • the gas outlet at the top of the gas-liquid exchange reactor can also be connected to a vacuum pump to keep the pressure at the top of the gas-liquid exchange reactor at 0.01kPa ⁇ 50kPa, In other embodiments, it is 0.5 kPa to 20 kPa.
  • any one of the above-mentioned gas-liquid exchange reactors 10 is used to complete the generation of the sucrose organotin ester compound solution.
  • the general process of the reaction involved in the present invention is as follows: Dissolve a solvent containing sucrose, an organotin compound and a mixed reaction solvent. The resulting mixed solution is passed into the liquid inlet part 1 at the top of the gas-liquid exchange reactor 10, and the dehydration medium is passed into the gas inlet part 4 at the bottom of the gas-liquid exchange reactor 10, wherein the dehydration medium needs to be vaporized in advance and then pass into the gas. Inside the cavity 9 of the liquid exchange reactor 10 .
  • the mixed solution containing sucrose, organotin compound and mixed solvent flows down from above, and the steam of the dehydration medium moves from bottom to top through the blister bubbler 11, and contacts the mixed solution on each gas-liquid exchange plate 5, and the mixed solution undergoes esterification.
  • the dehydration reaction generates sucrose organotin ester compound solution and water vapor.
  • the sucrose organotin ester compound solution continues to move downwards and is discharged from the liquid outlet 3 at the bottom of the gas-liquid exchange reactor cavity 9, and continues to react with acid anhydride, while water vapor is mixed.
  • the gas continues to move upward, and is discharged from the gas outlet 2 at the top of the cavity 9 of the gas-liquid exchange reactor 10, and is recycled.
  • the gas-liquid exchange reactor 10 is designed with a multi-layer structure, the solutions of sucrose and organotin compounds flow down layer by layer along the gas-liquid exchange plate 5 and the overflow pipe 6 in the gas-liquid exchange reactor 10, which is quite After multiple contact reactions with the dehydration medium, continuous countercurrent contact is formed, so efficient and continuous dehydration can be achieved.
  • the gas-liquid exchange reactor 10 with the bubble cap bubbler 11 can better ensure the smooth completion of the esterification reaction.
  • the blister bubbler 11, that is, the gas riser 7 is covered with a blister 8, and many tooth gaps (not shown in the figure) can be opened on the periphery of the lower part of the blister 8.
  • the gas enters the upper layer through the gas riser 7 - the blister 8 - the tooth gap, and is then broken down into many small strands near the outer surface of the blister to be thoroughly bubbled and mixed with the upper layer of the liquid.
  • the gas Since the upper part of the bubble cap bubbler 11 is a cover, the gas will not go up directly, but will be discharged through the tooth gap, and because the tooth gap is narrow, it can only flow from the inside to the outside under the action of pressure, so the liquid on the gas-liquid exchange plate 5 Will not leak from it.
  • the reaction mixture solution on the gas-liquid exchange plate 5 is basically submerged in the tooth gap on the bubble cap bubbler 11 to form a liquid seal, and the rising dehydration medium gas is quickly dispersed into a fine air flow through the tooth gap
  • the strands enter the liquid layer to form a bubbling liquid layer or aerated foam, which provides a large amount of mass transfer interface for the gas-liquid two phases; the liquid flows down through the overflow pipe 6 and relies on the overflow weir of the overflow pipe 6 to ensure
  • gas-liquid exchange reactor provided by the application are that liquid leakage is not easy to occur, and it has good operation flexibility, that is, when the gas and liquid loads fluctuate greatly, it can still maintain an almost constant plate efficiency; gas-liquid exchange The blister gap on the plate is not easy to be blocked, and has strong adaptability to various materials, especially suitable for the high viscosity sugar- and organotin-containing solutions involved in the present invention and the unique dehydration reaction requirements.
  • the number of gas-liquid exchange plates in the gas-liquid exchange reactor is 3 to 200, in other embodiments, 5 to 100, and in still other embodiments, 10 to 50; It takes a certain amount of time to flow on the gas-liquid exchange plate. If the number of gas-liquid exchange plates is less than 3, the reaction mixed solution, that is, the mixed solution containing sucrose, organotin compound, and mixed solvent, is in contact with the dehydration medium for too short time. The reaction is not complete; if the number of gas-liquid exchange plates is more than 200, the esterification reaction time of the reaction mixture solution is too long, which will cause side reactions to intensify, which is not conducive to the generation of sucrose organotin ester solution.
  • the total area of the riser pipe in the bubble cap bubbler is less than 5% of the total area of the gas-liquid exchange plate, and the total area of the bottom (or cross section) of the bubble cap of the bubble cap bubbler is less than 20% of the total area of the gas-liquid exchange plate, the The total area of the trachea is too small, resulting in too little rising gas, and the water vapor generated by the dehydration reaction cannot be taken away effectively, and the ideal dehydration effect cannot be achieved; 20% of the total area of the plate, and the total area of the blister bottom of the blister bubbler is greater than 50% of the total area of the gas-liquid exchange plate, the dehydration medium will be excessive, resulting in unnecessary waste.
  • the specific size of the bubble cap bubbler also has a great influence on the dehydration esterification reaction.
  • the height of the tooth gap of the bubble cap of the bubble cap bubbler is preferably 0.1-10 cm. In some embodiments, it is 2 to 5 cm; the width of the tooth gap of the bubble cap of the blister bubbler is 0.01 to 5 cm, and in other embodiments, it is 0.1 to 2 cm; the tooth gap area of the blister bubbler is the The area of the riser pipe in the cover bubbler is 1 to 3 times.
  • the height of the tooth gap of the blister of the bubble cap bubbler is less than 0.1cm, the height of the tooth gap is too small, the air flow is too small, and the tower efficiency is low; if the height of the tooth gap of the bubble cap of the blister bubbler is greater than 10cm , then the height of the tooth gap is too high, the liquid level is too high, the pressure is too high, and the residence time is too long; if the width of the tooth gap of the blister of the blister bubbler is less than 0.01cm, the width of the tooth gap is too small, and the ventilation is narrow.
  • the gas-liquid contact is insufficient; if the area of the tooth gap of the blister bubbler is less than 1 times the area of the riser pipe in the blister bubbler, the ventilation area is too small, resulting in too fast gas flow rate, gas-liquid Insufficient contact; if the tooth gap area of the blister bubbler is greater than 3 times the area of the gas riser in the blister bubbler, the excessive ventilation area will cause the gas pressure to drop, the flow rate to slow down, and the gas is likely to form large bubbles, gas-liquid Insufficient contact.
  • the preparation method of sucrose-6-ester provided by the present application, the preparation method is carried out using any of the above-mentioned gas-liquid exchange reactors, and the preparation method comprises the following steps:
  • the preparation step of the mixed solution the sucrose and the organotin compound are heated and dissolved in the mixed solvent to obtain a reaction mixed solution; wherein, the mixed solvent is composed of a mixture of a polar aprotic solvent and a non-polar solvent;
  • Dehydration reaction step the reaction mixture solution enters the interior of the gas-liquid exchange reactor from the liquid inlet, and contacts the dehydration medium entered from the gas inlet of the gas-liquid exchange reactor on a plurality of gas-liquid exchange plates to mix the reactions.
  • the solution undergoes dehydration reaction and undergoes gas-liquid exchange with the dehydration medium to obtain a sucrose organotin ester solution and water vapor; the sucrose organotin ester solution is discharged from the liquid outlet of the gas-liquid exchange reactor; the water vapor is mixed into the dehydration medium, and the The dehydration medium is discharged from the gas outlet of the gas-liquid exchange reactor.
  • Acylation reaction step the obtained sucrose organotin ester solution is subjected to an acylation reaction with an organic acid anhydride to generate sucrose-6-ester.
  • a membrane separator is connected to the gas outlet of the gas-liquid exchange reactor; the preparation method further includes a step of recovering the dehydration medium: passing the gaseous dehydration medium containing water vapor discharged from the gas outlet of the reactor through
  • the membrane separator is used to separate out the moisture therein, and it can be directly recycled and applied when the moisture content is less than 0.1wt%, preferably less than 0.01wt%, more preferably less than 0.001wt%.
  • the type of organotin compound is not limited, and a single-tin organic compound can be used, or a double-tin organic compound can be used, and in some embodiments, it is 1,3-dihydrocarbyloxy-1,1,3 ,3-tetra-(hydrocarbyl)distannoxane, bis(hydrocarbyl)tin oxide, 1,3-diacyloxy-1,1,3,3-tetra-(hydrocarbyl)distannoxane, and 1-bis(hydrocarbyl)distannoxane Any one or more of acyloxy-1,1,3,3-tetra-(hydrocarbyl)distannoxanes, in other embodiments 1,3-diacyloxy-1,1, 3,3-tetra-(hydrocarbyl)distannoxane, in yet other embodiments 1,3-diacetoxy-1,1,3,3-tetrabutyldistannoxane; wherein the hydrocarbyl
  • the amount of organotin compounds is not limited.
  • the mass of sucrose is used as the benchmark, and the ratio of the mass of organotin compounds to the mass of sucrose is 0.3 to 3.0. In other embodiments is 0.5 to 2.0 in other embodiments, and 0.9 to 1.2 in further embodiments. If the amount of organotin compound is less than 30% of the mass amount of sucrose, then the amount is too small, then a large amount of sucrose remaining in the reactant cannot participate in the reaction, which is not conducive to the forward progress of the reaction; if the amount of organotin compound is more than If the amount of sucrose is 300% of the mass, if the amount is too much, diester or polyesterification will occur.
  • the mixed solvent is composed of a mixture of a polar aprotic solvent and a non-polar solvent.
  • the polar aprotic solvent mainly plays a role in dissolving, and the non-polar solvent is the most important for promoting the production of water and The effect of azeotrope with water; wherein, the application does not limit the type of polar aprotic solvent, in some embodiments, selected from acetonitrile, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone , nitromethane, nitroethane, cyclohexanone, dimethyl sulfite, N-methylpyrrolidone, N,N-dimethylacetamide, hexamethylphosphoramide and N,N-dimethylformamide Any one or more, in other embodiments, acetonitrile; in some embodiments, the non-polar solvent can be selected from oc
  • the mass content of the non-polar solvent in the mixed solvent is less than or equal to 30% of the mass content of the polar aprotic solvent, in other embodiments, less than or equal to 20%, and in still other embodiments, less than or equal to 15% .
  • the amount of mixed solvent there is no restriction on the amount of mixed solvent.
  • the ratio of the mass amount of the mixed solvent to the mass amount of sucrose is 2 to 20, in some embodiments, 3 to 10, and in others In the example, it is 4-8. If the mass amount of the mixed solvent is less than 200% of the mass amount of the sucrose, the amount is too small, and the sucrose cannot be completely dissolved, resulting in a waste of a part of the sucrose raw material, and because the sucrose exists in a solid form, it will affect the transfer in the subsequent reaction process.
  • the mass dosage of the mixed solvent is less than 2000% of the mass dosage of sucrose, the dosage will be too much, resulting in waste of raw materials, and at the same time, it will bring great trouble to the subsequent processing of the solvent, and even cause energy loss. Excessive consumption, increased production costs, reduced efficiency and environmental pollution.
  • the dissolving conditions of sucrose are not limited.
  • the sucrose and the organotin compound can be heated to 50-100°C, and in some embodiments, they are dissolved in the mixed solvent at 65-85°C to obtain reaction mixture.
  • the minimum temperature for sucrose dissolution is based on the fact that sucrose can be completely dissolved in a reasonable time, and the maximum temperature is based on the fact that sucrose does not carbonize.
  • the gasification conditions of the dehydration medium are not limited.
  • the dehydration medium can be heated to 65-150° C. and pressurized to 0.1-2.0 MPa. In some embodiments, the dehydration medium can be heated to 85-120° C. °C, pressurized to 0.15-0.5MPa, converted into a gaseous dehydration medium, and then introduced into the gas inlet at the bottom of the gas-liquid exchange reactor.
  • the gasification conditions of the dehydration medium can be selected according to the type of the dehydration medium, the boiling point of the dehydration medium, and the needs of the reaction.
  • the dehydration medium is the steam of a non-polar solvent, which is consistent with the non-polar solvent in the mixed solvent, which is convenient for separation and recycling, and is selected from octane, toluene, n-heptane, isooctane, benzene, chloroform, carbon tetrachloride , hexane, cyclohexane, ethyl acetate and methyl acetate, preferably octane, toluene and n-heptane, most preferably octane.
  • the dehydration medium needs to strictly control the moisture, and the moisture control is less than 0.1 wt %, in some embodiments, less than 0.01 wt %, and in other embodiments, less than 0.001 wt %.
  • the amount of dehydration medium is not limited. Under the condition of the same flow rate, the volume ratio of the amount of dehydration medium to the amount of the reaction mixed solution is preferably 50:1 to 3:1, and in some embodiments is 20:1 ⁇ 5:1. If the amount of dehydration medium is less than the minimum value of the above ratio, the amount is too low, so that the dehydration medium cannot completely take away the water vapor generated by the esterification reaction, and cannot effectively promote the forward progress of the reaction; If the dosage is less than the highest value of the above ratio, the dosage is too high, which will cause unnecessary waste when the water vapor can be completely taken away.
  • the reaction conditions of the dehydration medium are not limited.
  • the reaction temperature of the dehydration reaction is 60 to 120° C., and the reaction time is 1 min to 2 hours.
  • the dehydration The reaction temperature of the reaction is 70 ⁇ 100°C, and the reaction time is 1min ⁇ 0.5h. Since the blister type gas-liquid exchange reactor is used in this application, the gas-liquid exchange efficiency is greatly improved, the dehydration capacity of the medium is increased, and the reaction time of the esterification reaction is shortened.
  • the esterification and dehydration reaction is in It can be completed in 1min-2h, and in some embodiments, it can be completed in 1min-0.5h, which avoids the occurrence of side reactions such as sucrose decomposition to a great extent, and the reaction time is far shorter than the prior art.
  • the type of organic acid anhydride is not limited, and the organic acid anhydride can be selected from any one of acetic anhydride, butyric anhydride, benzoic anhydride, stearic anhydride, and lauric anhydride.
  • the sucrose organotin ester solution undergoes an acylation reaction with carboxylic acid anhydride after cooling to obtain sucrose-6-ester.
  • the obtained corresponding sucrose-6-carboxylate is sucrose-6-acetate.
  • sucrose-6-acetate and sucrose-6-benzoate obtained by the present invention can be used as raw materials for synthesizing other kinds of sucrose-6-carboxylate and intermediates for synthesizing the sweetener sucralose, while other Various types of sucrose-6-carboxylate can be used as food additives, chemical products and synthetic intermediates for other reactions.
  • the amount of the organic acid anhydride is not limited. Taking the mass amount of sucrose as the benchmark, the ratio of the mass amount of the organic acid anhydride to the mass amount of the sucrose is 0.6 to 3.0, and in some embodiments, 0.8 to 1.5. If the consumption of organic acid anhydride is less than the minimum value of the above ratio, then the consumption is too small, which will cause the sucrose organotin ester solution to not be completely converted into sucrose-6-carboxylate; if the consumption of organic acid anhydride is less than the minimum value of the above ratio, If the dosage is too large, other side reactions such as condensation may occur, resulting in complicated products and difficult purification.
  • reaction conditions of the acylation reaction are not limited.
  • the reaction temperature of the acylation reaction is 0-50°C, and in other embodiments, it is 5-20°C;
  • the reaction is from 10 minutes to 24 hours, in other embodiments from 30 minutes to 4 hours.
  • the gas-liquid exchange reactor used has a diameter of 1.2 meters, a bubble cap size of 100 ⁇ 3 mm (gap height 25mm, slot width 5mm, number of slots 30), 51 bubble caps per layer, 30 plates, and a total atmospheric pressure. Drop 2.5 meters of liquid column.
  • the reaction mixture solution prepared above was continuously fed to the liquid inlet part 1 at the top of the gas-liquid exchange reactor at a rate of 4 m 3 /h, the reactor was kept at a negative pressure of 0.5 kPa, and at the same time, the hexane vapor (100° C. , 4 atm) was fed to the gas inlet section 4 at the bottom of the gas-liquid exchange reactor at a rate of 0.5 m 3 /s.
  • reaction mixture solution and the toluene vapor are fully contacted and reacted through the bubble cap bubblers on the gas-liquid exchange plates of each layer, and the distillate from the gas outlet part 2 at the top of the gas-liquid exchange reactor contains the vapor of hexane, water and acetonitrile After condensation and collection, after drying and membrane reactor dehydration technology, it can be recycled.
  • reaction process was in a steady state and liquid samples were collected from the liquid outlet 3 at the bottom of the bubble column reactor, which could be formally collected after passing the inspection.
  • the resulting product was clear, light amber in color.
  • the residence time of the reaction liquid in the gas-liquid exchange reactor is about 15min.
  • the solution obtained from the liquid outlet 3 at the bottom of the gas-liquid exchange reactor is calculated to contain 10% sucrose, and acetic anhydride is added dropwise at a temperature of less than 10°C according to the ratio of the mass of sucrose to the mass of acetic anhydride of 1:1.1
  • the acylation reaction was carried out, and after continuing the reaction at a temperature of less than 10° C. for 2 hours, the quenching reaction was carried out with water in a volume ratio of 0.25:1 to the total volume of the reaction system.
  • the organotin compound was extracted with hexane in a volume ratio of 1:1 to the total volume of the reaction system, and the obtained sucrose-6-acetate solution was analyzed by high performance liquid chromatography, as described below and in the following examples.
  • the normalization of means that when the mixed substances of high performance liquid chromatography are used for separation and determination, the amount of all substances is artificially specified as 100%, and the percentage of each substance in all substances is determined according to the peak area, and the product distribution is as
  • sucrose organotin solution obtained after dehydration in Example 1 contains 10% sucrose, and add dropwise according to the ratio of the mass ratio of sucrose to the mass ratio of stearic anhydride 1:1.1 under the temperature condition of less than 10°C.
  • the stearic anhydride was acylated, and after continuing the reaction for 2 hours at a temperature of less than 10°C, the reaction was quenched with 0.25:1 water.
  • the organotin compound was extracted with 1:1 hexane, the obtained sucrose-6-acetate solution was dissolved in 5 times the volume of water, the solid was precipitated, and the mixed solvent of 2 times the volume of isobutanol: water 1:1 was used Carry out crystallization to obtain sucrose-6-stearate, and analyze and measure the content and purity of sucrose-6-benzoate by high performance liquid chromatography.
  • the calculated yield of sucrose-6-stearate is higher than 90%, the purity is higher than 95%.
  • sucrose organotin solution obtained after dehydration in Example 1 Take the sucrose organotin solution obtained after dehydration in Example 1, and after calculation to contain 10% sucrose, under the temperature condition of less than 10 ° C, benzene is added dropwise according to the ratio of the mass ratio of sucrose to the mass ratio of benzoic anhydride 1:1.1
  • Formic acid anhydride is used for acylation reaction, and after continuing the reaction at a temperature of less than 10° C. for 2 hours, the reaction is quenched with water in a volume ratio of 0.25:1 to the total volume of the reaction system.
  • the organotin compound was extracted with hexane with a volume ratio of 1:1 to the total volume of the reaction system to obtain a sucrose-6-benzoate solution, and sucrose-6-benzoic acid was analyzed and determined by high performance liquid chromatography Ester content and purity, the calculated yield of sucrose-6-stearate is higher than 93%, and the purity is higher than 94%.
  • the gas-liquid exchange reactor used has a diameter of 1.2 meters, a bubble cap size of 100 ⁇ 3 mm (gap height 25mm, slot width 5mm, number of slots 30), 51 bubble caps per layer, 5 plates, and a total atmospheric pressure. Drop 0.5 meters of liquid column.
  • the reaction mixture solution prepared above was continuously fed to the liquid inlet 1 at the top of the gas-liquid exchange reactor at a rate of 4 m 3 /h, the reactor was kept at a negative pressure of 0.5 kPa, and at the same time, the octane vapor (100° C. , 1 atm) was fed to the gas inlet section 4 at the bottom of the bubble column reactor at a rate of 0.5 m 3 /s.
  • reaction mixture solution is contacted and reacted with cyclohexane vapor on each gas-liquid exchange plate of the gas-liquid exchange reactor, and the distillate from the gas outlet part 2 at the top of the gas-liquid exchange reactor contains the vapor of octane, water and DMSO After condensation and collection, it can be recycled after being dried and anhydrous.
  • reaction process was in a steady state and liquid samples were collected from the liquid outlet 3 at the bottom of the bubble column reactor, which could be formally collected after passing the inspection.
  • the resulting product was clear, light amber in color.
  • the residence time of the reaction liquid in the gas-liquid exchange reactor is about 15min.
  • the solution obtained from the liquid outlet 3 at the bottom of the gas-liquid exchange reactor is calculated to contain 10% sucrose, and acetic anhydride is added dropwise at a temperature of less than 10°C according to the ratio of the mass of sucrose to the mass of acetic anhydride of 1:1.1
  • the acylation reaction was carried out, and after continuing the reaction at a temperature of less than 10° C. for 2 hours, the quenching reaction was carried out with water in a volume ratio of 0.25:1 to the total volume of the reaction system.
  • Organotin compound is extracted with the octane that the volume ratio with the total volume of the reaction system is 1:1, the obtained sucrose-6-acetate solution passes through, and is analyzed by high performance liquid chromatography, and the product distribution is as follows:
  • the small laboratory gas-liquid exchange reactor used has a diameter of 60 mm, a blister size of 40 ⁇ 20 mm (slot height 15 mm, slot width 1 mm, number of slots 30), 1 blister per layer, gas-liquid exchange plate The number can be temporarily assembled and adjusted.
  • the reaction mixture solution prepared above was continuously fed to the liquid inlet part 1 at the top of the gas-liquid exchange reactor at a rate of 400mL/h, the reactor was kept at a negative pressure of 0.9kPa, and at the same time, the heptane vapor (100 ° C, 2 atm) was fed to the gas inlet section 4 at the bottom of the bubble column reactor at a rate of 50 mL/s.
  • the reaction mixture solution and octane vapor contact and react on the gas-liquid exchange plate of the gas-liquid exchange reactor, and the distillate from the gas outlet part 2 at the top of the gas-liquid exchange reactor contains heptane, water and nitroethane.
  • the steam is condensed and collected, and can be recycled after being dried and anhydrous.
  • reaction process was in a steady state and liquid samples were collected from the liquid outlet 3 at the bottom of the bubble column reactor, which could be formally collected after passing the inspection.
  • the resulting product was clear, light amber in color.
  • the residence time of the reaction liquid in the gas-liquid exchange reactor is about 15min.
  • the solution obtained from the liquid outlet 3 at the bottom of the gas-liquid exchange reactor is calculated to contain 10% sucrose, and acetic anhydride is added dropwise at a temperature of less than 10°C according to the ratio of the mass of sucrose to the mass of acetic anhydride of 1:1.1
  • the acylation reaction was carried out, and after continuing the reaction at a temperature of less than 10° C. for 2 hours, the quenching reaction was carried out with water in a volume ratio of 0.25:1 to the total volume of the reaction system.
  • Organotin compound is extracted with the heptane that the volume ratio with the total volume of the reaction system is 1:1, and the obtained sucrose-6-acetate solution is analyzed by high performance liquid chromatography, and the product distribution is as follows:
  • the dehydration is carried out by the method of falling liquid of the packed tower.
  • the diameter of the packed tower is 40 mm, 3 ⁇ 8 glass spring packing, and the packing height is 1 meter, which is equivalent to a 10-level gas-liquid exchange plate.
  • reaction mixture solution prepared above was kept at the inlet of the top of the packed column, and the negative pressure was kept at 0.5 kPa, and at the same time, octane vapor (100° C., 1 atm) was fed to the gas inlet of the flask at the bottom of the packed column.
  • the reaction mixture solution is contacted and reacted with cyclohexane vapor in countercurrent, and the vapor containing heptane, water and nitroethane in the top distillate of the packed column is condensed and collected, and can be recycled after drying and anhydrous treatment.
  • a liquid sample was collected in the bottom flask of the packed column and the resulting product was clear, light amber in color.
  • the residence time of the reaction liquid in the gas-liquid exchange reactor is about 1 min.
  • the obtained solution is calculated to contain 10% sucrose, and acetic anhydride is added dropwise at a temperature of less than 10°C according to the ratio of the mass of sucrose and the mass ratio of acetic anhydride to 1:1 to carry out acylation reaction, at a temperature of less than 10°C
  • the reaction was quenched with water in a volume ratio of 0.25:1 to the total volume of the reaction system.
  • Organotin compound is extracted with the heptane that the volume ratio with the total volume of the reaction system is 1:1, and the obtained sucrose-6-acetate solution is analyzed by high performance liquid chromatography, and the product distribution is as follows:
  • sucrose-6-acetate yield some examples in this application can reach 10.30% (89.9% normalized), while the yield in sucrose-6-acetate in Comparative Example 1 is only 7.56% (72.05% normalized), that is to say, the output of sucrose-6-carboxylate in the present application is significantly higher than that in the prior art; for the same reason, it can be seen from the content of diacetate and sucrose in the reaction product that the present application The probability of side reactions is significantly reduced, and the conversion of sucrose is more complete.
  • the mixed liquid containing sucrose, mixed solvent and organotin compound is quickly removed from the water generated in the reaction system with an anhydrous dehydration medium through a gas-liquid exchange reactor, and the sucrose organotin compound is efficiently prepared.
  • the method can quickly complete the esterification and dehydration reaction in a very short time, has good selectivity and high yield of sucrose-6-carboxylate, few side reactions, simple reaction process and simple operation, and is especially suitable for large-scale industrial production. It can overcome the shortcomings of traditional sucrose-6-ester preparation reaction, such as long time, high energy consumption, many side reactions, complicated operation and low yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Saccharide Compounds (AREA)

Abstract

本申请提供了一种蔗糖-6-羧酸酯的制备方法,本申请的方法将包含蔗糖、混合溶剂和有机锡化合物的混合液通过气液交换反应器用无水的脱水介质快速移除反应体系内生成的水分,高效的制备出蔗糖有机锡酯中间体。该方法在极短时间内就能快速完成酯化脱水反应,蔗糖-6-羧酸酯的选择性好、产量高;副反应少;反应工艺简单,操作简单;特别适用于大规模工业化生产,克服了传统蔗糖-6-羧酸酯制备反应的时间长、高能耗、副反应多、操作复杂、收率低等缺点。

Description

一种蔗糖-6-羧酸酯的制备方法 技术领域
本发明属于化工制造技术领域,具体涉及一种蔗糖-6-羧酸酯的制备方法。
发明背景
蔗糖-6-羧酸酯是重要的化工产品和中间体(章朝晖,广西南宁木薯技术开发中心,蔗糖化学衍生物[J].精细石油化工进展,2000,1(6):8-13.),在工业上应用广泛,比如蔗糖-6-脂肪酸酯,是一类多元醇型非离子表面活性剂,具有优良的乳化性能,广泛用于食品、医药、化妆品等工业;比如蔗糖松香酸酯也是一种优良的乳化剂;蔗糖-6-乙酸酯不仅是合成蔗糖-6-脂肪酸酯和蔗糖乙酸异丁酸酯的原料,也是合成三氯蔗糖的重要中间体(吴红英,浙江大学化学工程与生物工程学院,吴红英,等.甜味剂三氯蔗糖合成法的最新进展[J].化工进展,2016,35(1):227-238.)。因此,蔗糖-6-羧酸酯的合成具有重要的现实价值。
目前工业上通常采用单基团保护法合成蔗糖-6-羧酸酯,其合成过程一般是将有机锡化合物与蔗糖溶解在极性溶剂中,通过非极性溶剂共沸脱水(中国专利CN1210286)或单一极性溶剂直接蒸馏脱水(中国专利CN102639550)后形成蔗糖有机锡酯溶液,随后蔗糖有机锡酯溶液与酰化剂羧酸酐发生高选择性的反应得到蔗糖-6-羧酸酯。
在当前的蔗糖有机锡酯溶液合成的脱水技术中,因为酯化反应动力学的因素和现有各种脱水技术本身的特点,脱水反应较慢,一般需要1个小时到几个小时,很少有在小于1小时内进行较为彻底的脱水酯化反应。酯化反应时间的延长会导致反应体系中糖类物质的分解和副反应的发生,产生严重的不良后果,比如使反应体系颜色成为深色、后续分液困难、工艺操作容易误差;妨碍后续的有机锡催化剂的萃取和回收;降低溶液中蔗糖有机锡酯的含量以及影响蔗糖-6-羧酸酯的收率;对于用作三氯蔗糖中间体的蔗糖-6-乙酸酯而言,会直接影响后续的氯化反应和三氯蔗糖生产过程中的反应控制、分离效果和收率等。
发明内容
鉴于上述问题,提出了本申请以便提供一种克服上述问题或者至少部分地解决 上述问题的一种蔗糖-6-羧酸酯的制备方法。
根据本申请的一方面,提供了一种蔗糖-6-羧酸酯的制备方法,该制备方法使用气液交换反应器进行,气液交换反应器包括:腔体、设置于腔体一端的气体出口部和液体入口部、设置于腔体另一端的气体入口部和液体出口部、以及多层气液交换板;多层气液交换板在腔体内部平行设置,相邻的多层气液交换板通过溢流管连接,在各气液交换板上分别设有若干个含有升气管的泡罩鼓泡器;
该制备方法包括如下步骤:
混合溶液制备步骤:将蔗糖和有机锡化物加热溶解于混合溶剂中,得到反应混合溶液;其中,混合溶剂由极性非质子溶剂和非极性溶剂混合组成;
脱水反应步骤:使反应混合溶液从气液交换反应器的液体入口部进入其内部,与从气液交换反应器的气体入口部进入的脱水介质在多层气液交换板上的泡罩鼓泡器外表面附近鼓泡接触,使反应混合溶液发生脱水反应并与脱水介质进行气液交换,从而得到蔗糖有机锡酯溶液和含水蒸气的脱水介质气体;蔗糖有机锡酯溶液从气液交换反应器的液体出口部排出;含水蒸气的脱水介质气体从气液交换反应器的气体出口部排出;
酰化反应步骤:将得到的蔗糖有机锡酯溶液与有机酸酐进行酰化反应,生成蔗糖-6-羧酸酯。
根据本申请的另一方面,提供了一种气液交换反应器,用于实施上述的蔗糖-6-羧酸酯的制备方法;
该气液交换反应器包括:腔体、设置于腔体一端的气体出口部和液体入口部、设置于腔体另一端的气体入口部和液体出口部、以及多层气液交换板;多层气液交换板在腔体内部平行设置,相邻的多层气液交换板通过溢流管连接,在各气液交换板上分别设有若干个含有升气管的泡罩鼓泡器;气液交换反应器的气体出口部连接有膜分离器。
综上所述,本申请的有益效果在于:本申请的方法将包含蔗糖、混合溶剂和有机锡化合物的混合液通过气液交换反应器用无水的脱水介质快速移除反应体系内生成的水分,高效的制备出蔗糖有机锡酯中间体。该方法在极短时间内就能快速完成酯化脱水反应,蔗糖-6-羧酸酯的选择性好、产量高;副反应少;反应工艺简单,操作简单;特别适用于大规模工业化生产。能够克服传统蔗糖-6-酯制备反应的时间长、高能耗、副反应多、操作复杂、收率低等缺点。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图简要说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了根据本申请一个实施例的气液交换反应器的结构示意图。
实施本发明的方式
下面将参照附图更详细地描述本申请的示例性实施例。虽然附图中显示了本申请的示例性实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整的传达给本领域的技术人员。
本申请的构思在于,通过采用连续的气液交换脱水反应器替换以前的间歇式或半连续式反应器,改进了蔗糖有机锡酯的生成反应,使得脱水过程快速高效,促进反应快速正向进行,减少反应体系内糖类物质的分解和副反应,提高脱水效率降低未反应蔗糖的含量,从而可以提高反应的选择性和收率;且可以大大提高生产效率,增加工艺的可操作性,实现更高的自动化,减少人工操作复杂性,降低能耗,降低成本,实现大规模的工业化生产的目的。
首先,本申请提供了一种气液交换反应器,如图1所示,图1示出了根据本申请一个实施例的气液交换反应器10的结构示意图。
气液交换反应器10包括:腔体9、设置于腔体一端的气体出口部2和液体入口部1、设置于腔体另一端的气体入口部4和液体出口部3、以及多层气液交换板5;气液交换板在腔体内部平行设置,相邻的气液交换板通过溢流管6连接,在气液交换板5上分别设有若干个含有升气管7的泡罩鼓泡器11。
在本申请的一个实施例中,气体出口部2和液体入口部1设置在腔体9的顶端,气体入口部4和液体出口部3设置在腔体9的底端,根据实际需要,气体出口部2、 液体入口部1、气体入口部4以及液体出口部3均可包含多个出口或入口。
在本申请的一些实施例中,多个气液交换板5在腔体9内部平行设置,需要说明的是。平行设置是一种较为理想的状态,可以作为一种优选方案,各多个气液交换板5之间也可以根据需要按照一定角度非接触设置。相邻的气液交换板5通过溢流管6连接,在各气液交换板5上分别设有含有升气管7的泡罩鼓泡器11,气液交换板5下方的气体通过泡罩鼓泡器11的升气管7-泡罩8-齿缝(图中未示出)进入上层,然后被分解成许多小股(每一齿缝对应一股)在鼓泡器外表面附近与上层的液体进行充分的鼓泡混合,因而有充足的气液接触面积。每层气液交换板5上泡罩鼓泡器11可以设置为多个,在本实施例中,针对蔗糖有机锡酯的生成反应特点,发现泡罩鼓泡器11的数量与气液交换板总面积存在一定关系的情况下,能够达到较为理想的效果,具体的,泡罩内升气管总面积(升气管总面积=单个泡罩内升气管总面积×泡罩数量)为气液交换板总面积的5%~20%,而泡罩底(或截)总面积(泡罩底总面积=单个泡罩底面积×泡罩数量)为气液交换板总面积的20%~50%泡罩8的齿缝高度0.1~10厘米,在一些实施例中为2~5厘米;泡罩8的齿缝宽度0.01~5厘米,在一些实施例中为0.1~2厘米;泡罩8的齿缝面积是泡罩内升气管总面积的1~3倍,这样的设置能够达到最好的气液交换和能效交换效果。
在本申请的一个实施例中,所述气液交换反应器10内气液交换板5的数量为3~200,在另一些实施例中为5~100,在又一些实施例中为10~50。
此外,为了是带有水蒸气的脱水介质进快脱离反应器,还可将气液交换反应器顶部的气体出口部连接真空泵,以使气液交换反应器顶部的压力保持在0.01kPa~50kPa,在另一些实施例中为0.5kPa~20kPa。
在本申请中,采用上述任一的气液交换反应器10完成蔗糖有机锡酯化合物溶液的生成,本发明所涉及反应的大致流程如下所述:将含有蔗糖、有机锡化合物、混合反应溶剂溶解后的混合溶液通入气液交换反应器10顶部的液体入口部1,而将脱水介质从气液交换反应器10底部的气体入口部4通入,其中,脱水介质需要提前汽化再通入气液交换反应器10的腔体9内。含有蔗糖、有机锡化合物、混合溶剂的混合溶液从上面流下,脱水介质蒸汽通过泡罩鼓泡器11从下往上运动,在各气液交换板5上与混合溶液接触,混合溶液发生酯化脱水反应,生成蔗糖有机锡酯化合物溶液和水蒸气,蔗糖有机锡酯化合物溶液继续向下运动从气液交换反应器腔体9底端的液体出口部3排出,继续与酸酐反应,而水蒸气混入的脱水介质中, 继续向上运动,从气液交换反应器10腔体9顶端的气体出口部2排出,被回收利用。
由于气液交换反应器10为多层结构的设计,蔗糖和有机锡化合物的溶液在气液交换反应器10内沿着气液交换板5和溢流管6一层一层向下流动,相当于多次与脱水介质接触反应,形成连续逆流接触,因而能够实现高效连续的脱水效果。
混合溶液和脱水介质通过气液交换反应器内每层气液交换板5时,在含有升气管7的泡罩鼓泡器11的泡罩8外表面附近发生鼓泡交换反应,将酯化反应产生的水分快速带走。
带有泡罩鼓泡器11的气液交换反应器10能够更好的保证酯化反应顺利完成的原理是:气液交换反应器10的每层气液交换板5上装有若干含有升气管7的泡罩鼓泡器11,即升气管7上覆以泡罩8,泡罩8下部周边可开有许多齿缝(图中未示出),作为上升气体通道,气液交换板5下方的气体通过升气管7-泡罩8-齿缝进入上层,然后被分解成许多小股在泡罩外表面附近与上层的液体进行充分的鼓泡混合。由于泡罩鼓泡器11上部为罩,气体不会直接向上,而是通过齿缝排出,并且由于齿缝狭窄,在压力作用下只能从内到外流动,故气液交换板5上液体不会从中漏下。在酯化反应进行时,气液交换板5上反应混合溶液基本上浸没泡罩鼓泡器11上的齿缝,形成液封,而上升的脱水介质气体快速通过齿缝被分散成细小的气流股进入液层,形成鼓泡液层或充气的泡沫体,为气-液两相提供了大量的传质界面;液体通过溢流管6流下,并依靠溢流管6的溢流堰以保证气液交换板5上存有一定厚度的液层,这样混合溶液与脱水介质的接触面积大,接触范围广,并且能够保证接触时间,因此可以达到很好的脱水效果和一定的反应停留时间。
本申请提供的气液交换反应器的优点是不易发生漏液现象,有较好的操作弹性,即当气、液负荷有较大的波动时,仍能维持几乎恒定的板效率;气液交换板上泡罩齿缝不易堵塞,对于各种物料的适应性强,尤其适用于本发明所涉及的高粘度的含糖和有机锡的溶液以及独特的脱水反应要求。
在本申请的一些实施例中,气液交换反应器内气液交换板的数量为3~200,在另一些实施例中为5~100,在又一些实施例中为10~50;液体在气液交换板上流动需要一定的时间,如果气液交换板数量少于3个,反应混合溶液,即含有蔗糖、有机锡化合物、以及混合溶剂的混合溶液,与脱水介质接触的时间过短,反应不完全;如果气液交换板数量多于200个,则反应混合溶液的酯化反应时间过长,会造成副 反应加剧,不利于蔗糖有机锡酯溶液的生成。
本申请发现气液交换板上泡罩鼓泡器的数量与交换板面积形成一定关系时,才能达到更为理想的气液交换效果以及能效交换效果,具体的,泡罩鼓泡器内升气管总面积为气液交换板总面积的5%~20%,泡罩鼓泡器的泡罩底(或截)总面积为气液交换板总面积的20%~50%。若泡罩鼓泡器内升气管总面积小于气液交换板总面积的5%,泡罩鼓泡器的泡罩底(或截)总面积小于气液交换板总面积的20%,则升气管总面积过小,导致上升的气体过少,不能有效的将脱水反应产生的水蒸气快速带走,达不到理想的脱水效果;若泡罩鼓泡器内升气管总面积大于气液交换板总面积的20%,泡罩鼓泡器的泡罩底总面积大于气液交换板总面积的50%,则脱水介质会过量,造成不必要的浪费。
在本申请的一些实施例中,泡罩鼓泡器具体尺寸对脱水酯化反应也有很大的影响,本申请中优选泡罩鼓泡器的泡罩的齿缝高度为0.1~10cm,在另一些实施例中为2~5厘米;所述泡罩鼓泡器的泡罩的齿缝宽度0.01~5cm,在另一些实施例中为0.1~2cm;泡罩鼓泡器的齿缝面积是泡罩鼓泡器内升气管面积的1~3倍。若泡罩鼓泡器的泡罩的齿缝高度小于0.1cm,则齿缝高度过小,则通气量过小,塔器效率小;若泡罩鼓泡器的泡罩的齿缝高度大于10cm,则齿缝高度过高,则液面过高,压力过高,停留时间过长;若泡罩鼓泡器的泡罩的齿缝宽度小于0.01cm,则齿缝宽度过小,则通气狭缝小会导致气体流速过快,气液接触不充分;若泡罩鼓泡器的泡罩的齿缝宽度大于5cm,则齿缝宽度过大,则通气狭缝大会导致气体不能很好的分散,容易形成大气泡,气液接触不充分;若泡罩鼓泡器的齿缝面积小于泡罩鼓泡器内升气管面积的1倍,则通气面积过小,导致气体流速过快,气液接触不充分;若泡罩鼓泡器的齿缝面积大于泡罩鼓泡器内升气管面积的3倍,则通气面积过大会导致气体压力下降,流速变慢,气体容易形成大气泡,气液接触不充分。
本申请提供的蔗糖-6-酯的制备方法,该制备方法使用上述任一的气液交换反应器进行,所述制备方法包括如下步骤:
混合溶液制备步骤:将蔗糖和有机锡化物加热溶解于混合溶剂中,得到反应混合溶液;其中,所述混合溶剂由极性非质子溶剂和非极性溶剂混合组成;
脱水反应步骤:使反应混合溶液从气液交换反应器的液体入口部进入其内部,与从气液交换反应器的气体入口部进入的脱水介质在多个气液交换板上接触,使反应混合溶液发生脱水反应并与脱水介质进行气液交换,得到蔗糖有机锡酯溶液和水 蒸气;蔗糖有机锡酯溶液从气液交换反应器的液体出口部排出;水蒸气混入所述脱水介质中,并随着脱水介质从所述气液交换反应器的气体出口部排出。
酰化反应步骤:将得到的蔗糖有机锡酯溶液与有机酸酐进行酰化反应,生成蔗糖-6-酯。
在本申请的一些实施例中,气液交换反应器的气体出口部连接有膜分离器;该制备方法还包括脱水介质回收步骤:将从反应器气体出口部排出的含水蒸气的气态脱水介质通过膜分离器,以分离出其中的水分,在水分含量小于0.1wt%,优选小于0.01wt%,更优选小于0.001wt%的情况下直接循环套用。
有机锡化合物的种类和用量
在本申请中,对有机锡化合物的种类不做限制,可采用单锡有机化合物,也可采用双锡有机化合物,在一些实施例中为1,3-二烃氧基-1,1,3,3-四-(烃基)二锡氧烷、氧化二(烃基)锡、1,3-二酰氧基-1,1,3,3-四-(烃基)二锡氧烷和1-二酰氧基-1,1,3,3-四-(烃基)二锡氧烷中的任一种或多种,在另一些实施例中为1,3-二酰氧基-1,1,3,3-四-(烃基)二锡氧烷,在又一些实施例中为1,3-二乙酰氧基-1,1,3,3-四丁基二锡氧烷;其中,烃氧基为烷氧基或苯氧基,在一些实施例中,烷氧基为甲氧基、乙氧基、正丙氧基、正丁氧基、正戊氧基或正己氧基,在另一些实施例中,甲氧基;在一些实施例中,烃基为烷基、环烷基、芳基或芳烷基,在另一些实施例中,为烷基,在又一些实施例中为正丁基。
在本申请中,对有机锡化合物的用量不做限制,在一些实施例中以蔗糖的质量为基准,有机锡化物的质量用量与蔗糖的质量用量之比为0.3~3.0,在另一些实施例中为0.5~2.0,在又一些实施例中为0.9~1.2。如果有机锡化物的用量少于蔗糖的质量用量的30%,则用量过少,则反应物中剩余大量的蔗糖不能参加反应,不利于反应的正向进行;如果有机锡化物的用量多于蔗糖的质量用量的300%,则用量过多,则会发生双酯或多酯化反应。
混合溶剂的种类、组成和用量
在本申请中,溶剂推荐采用混合溶剂,混合溶剂是由极性非质子溶剂和非极性溶剂混合组成的,极性非质子溶剂主要起溶解作用,非极性溶剂最要是促进水分的产生和共沸带水的作用;其中,本申请对极性非质子溶剂的种类不做限制,在一些实施例中,选自乙腈、1,4-二氧六环、甲乙酮、甲基异丁基酮、硝基甲烷、硝基乙烷、环己酮、二甲亚矾、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、六甲基磷酰胺和 N,N-二甲基甲酰胺中的任意一种或多种,在另一些实施例中为乙腈;在一些实施例中,非极性溶剂可选自辛烷、甲苯、正庚烷、异辛烷、苯、氯仿、四氯化碳、己烷、环己烷、乙酸乙酯和乙酸甲酯,优选辛烷、甲苯和正庚烷中的任意一种或多种,在另一些实施例中为辛烷。在一些实施例中,混合溶剂中非极性溶剂的质量含量小于等于极性非质子溶剂质量含量的30%,在另一些实施例中小于等于20%,在又一些实施例中小于等于15%。
在本申请中,对混合溶剂的用量不做限制,以蔗糖的质量为基准,混合溶剂的质量用量与蔗糖的质量用量比为2~20,在一些实施例中为3~10,在另一些实施例中为4~8。如果混合溶剂的质量用量少于蔗糖的质量用量的200%,则用量过少,不能完全溶解蔗糖,造成一部分蔗糖原料的浪费,且由于蔗糖以固体形式存在,会影响后续反应过程中的传热和传质;如果混合溶剂的质量用量少于蔗糖的质量用量的2000%,则用量过多,造成原料浪费的同时,对后续的溶剂的处理带来很大的麻烦,甚至会造成能耗过大、生产成本提高、效率降低和环境的污染。
蔗糖的溶解条件
在本申请中,对于混合溶液制备步骤中,蔗糖的溶解条件不做限制,蔗糖和有机锡化合物可加热至50~100℃,在一些实施例中为65~85℃溶解于混合溶剂中,得到反应混合溶液。蔗糖溶解的最低温度以蔗糖能够在合理的时间完全溶解为准,最高温度以蔗糖不发生碳化为准。
脱水介质的气化条件、种类和用量
在本申请中,对于脱水介质的气化条件不做限制,脱水介质可被升温至65~150℃、加压至0.1~2.0MPa,在一些实施例中,脱水介质可被升温至85~120℃,加压至0.15~0.5MPa,转化成气态脱水介质后,再从气液交换反应器底部的气体入口通入。脱水介质的气化条件可根据脱水介质的种类、脱水介质的沸点、反应的需要进行选择。
脱水介质为非极性溶剂的蒸汽,与混合溶剂中的非极性溶剂一致,便于分离和循环套用,选自辛烷、甲苯、正庚烷、异辛烷、苯、氯仿、四氯化碳、己烷、环己烷、乙酸乙酯和乙酸甲酯,优选辛烷、甲苯和正庚烷,最优选辛烷。脱水介质对于水分需要严格控制水分,水分控制小于0.1wt%,在一些实施例中小于0.01wt%,在另一些实施例中小于0.001wt%。
在本申请中,对于脱水介质的用量不做限制,在相同流速条件下,脱水介质的 用量优选与所述反应混合溶液用量的体积比为50:1~3:1,在一些实施例中为20:1~5:1。如果脱水介质的用量少于上述比例的最低值,则用量过低,导致脱水介质不能完全带走酯化反应生成的水蒸气,不能起到有效推动反应正向进行的效果;如果脱水介质的用量少于上述比例的最高值,则用量过高,在水蒸气可以被完全带走的情况下,造成不必要的浪费。
脱水反应的反应条件
在本申请中,对于脱水介质的反应条件不做限制,在一些实施例中,所述脱水反应的反应温度为60~120℃,反应时间为1min~2h,在另一些实施例中所述脱水反应的反应温度为70~100℃,反应时间为1min~0.5h。由于本申请中采用了泡罩式气液交换反应器,大幅度提高了气液交换效率,增加了媒介的脱水能力,缩短了酯化反应的反应时间,在本申请中,酯化脱水反应在1min~2h就能够进行完全,在一些实施例中,在1min~0.5h进行完毕,这极大程度上避免了蔗糖分解等副反应的发生,反应时间这远远短于现有技术。
有机酸酐的种类、用量以及酰化反应的反应条件
在本申请中,对有机酸酐的种类不做限制,有机酸酐可选自乙酸酐、丁酸酐、苯甲酸酐、硬脂酸酐、月桂酸酐中的任意一种。蔗糖有机锡酯溶液经过降温后与羧酸酐发生酰化反应后得到蔗糖-6-酯,根据上述有机酸酐的种类,得到的对应的蔗糖-6-羧酸酯分别为蔗糖-6-乙酸酯、蔗糖-6-丁酸酯、蔗糖-6-苯甲酸酯、蔗糖-6-脂肪酸酯、蔗糖-6-月桂酸酯。本发明所得到的蔗糖-6-乙酸酯和蔗糖-6-苯甲酸酯可以用作合成其他种类蔗糖-6-羧酸酯的原料和合成甜味剂三氯蔗糖的中间体,而其他的各类蔗糖-6-羧酸酯可以用作食品添加剂、化工产品以及其他反应的合成中间体。
在本申请中,对有机酸酐的用量不做限制,以蔗糖的质量用量为基准,有机酸酐的质量用量与蔗糖的质量用量比为0.6~3.0,在一些实施例中为0.8~1.5。有机酸酐的用量若少于上述比例的最低值,则用量过少,会导致蔗糖有机锡酯溶液不能完全转化为蔗糖-6-羧酸酯;有机酸酐的用量若少于上述比例的最低值,则用量过多,可能发生缩合等其他副反应,造成生成物复杂,提纯困难。
在本申请中,对酰化反应的反应条件不做限制,在一些实施例中,酰化反应的反应温度为0~50℃,在另一些实施例中为5~20℃;酰化反应的反应10分钟到24小时,在另一些实施例中为30分钟到4小时。
本申请中涉及的测试方法
本申请中各实施例和对比例中各物质的含量或纯度均采用高效液相色谱(High Performance Liquid Chromatography,HPLC)方法在下述条件下测得,在各个实施例中不再赘述。
高效液相色谱的分析测定条件:日本岛津高效液相色谱仪,配RID-10A示差折光检测,LC-10ADVP高压泵,CTO-10ASVP恒温箱;色谱柱:Agilent XDB C18柱(250mm×4.6mm,5μm);流动相:甲醇-0.125%磷酸氢二钾水溶液(4:6);柱温:30℃;流量:1.0mL/min。其中,需要甲醇(色谱纯)、磷酸氢二钾(分析纯)、超纯水、各物质标准(纯度99.9%),外标法测量含量。
实施例1
将蔗糖1000千克与1,3-二乙酰氧基-1,1,3,3-四-(丁基)二锡氧烷2000千克溶解于10立方乙腈和2立方己烷中,加热90℃溶解成形成了蔗糖和有机锡化合物反应混合溶液。
采用的气液交换反应器具有直径1.2米,泡罩尺寸100×3mm(齿缝高度25mm、齿缝宽度5mm、齿缝数30),每层泡罩51个,板数30,常压总压降2.5米液柱。
将上述制备的反应混合溶液在以4m 3/h的速率连续进料至气液交换反应器的顶部的液体入口部1,反应器保持负压在0.5kPa,同时,将己烷蒸气(100℃,4atm)以0.5m 3/s的速率进料至气液交换反应器底部的气体入口部4。反应混合溶液与甲苯蒸气在通过各层气液交换板上泡罩鼓泡器充分接触反应,自气液交换反应器的顶部的气体出口部2的馏出物含有己烷、水和乙腈的蒸气经冷凝并且收集,经过干燥、膜反应器脱水技术脱水,即可循环使用。
在将气液交换反应器操作20min之后,反应过程处于稳态并且开始从泡罩塔反应器底部的液体出口部3收集液体样品,经过检验合格后方可正式收集。所得产物为透明、浅琥珀色。反应液在气液交换反应器内停留时间约15min。
气液交换反应器底部的液体出口部3得到的溶液经计算含有10%的蔗糖,在小于10℃的温度条件下按照蔗糖的投放质量与乙酸酐的质量比1:1.1的比例滴加乙酸酐进行酰化反应,在小于10℃的温度下继续反应2小时之后,用与反应体系总体积的体积比为0.25:1的水进行淬灭反应。用与反应体系总体积的体积比为1:1的己烷萃取有机锡化合物,得到的蔗糖-6-乙酸酯溶液,并通过高效液相色谱法分析,下述的以及以下各实施例中的归一化,是指在采用高效液相色谱法的混合物质 进行分离测定时,人为规定所有物质的量为100%,按照谱峰面积确定各物质占所有物质的百分比,产物分布如下:
a.蔗糖-6-乙酸酯 10.30%(89.9%归一化);
b.二乙酸酯 0.98%(8.6%归一化);
c.蔗糖 0.03%(0.24%归一化)。
实施例2
取实施例1中脱水后得到的蔗糖有机锡溶液,经计算含有10%的蔗糖,在小于10℃的温度条件下按照蔗糖的投放质量与硬脂酸酸酐的质量比1:1.1的比例滴加硬脂酸酸酐进行酰化反应,在小于10℃的温度下继续反应2小时之后,用0.25:1的水进行淬灭反应。用1:1的己烷萃取有机锡化合物,得到的蔗糖-6-乙酸酯溶液,溶于5倍体积的水中,固体析出,用2倍体积的异丁醇:水1:1的混合溶剂进行结晶,得到蔗糖-6-硬脂酸酯,并通过高效液相色谱法分析和测定蔗糖-6-苯甲酸酯含量和纯度,经计算得蔗糖-6-硬脂酸酯收率高于90%,纯度高于95%。
实施例3
取实施例1中脱水后得到的蔗糖有机锡溶液,经计算含有10%的蔗糖,在小于10℃的温度条件下按照蔗糖的投放质量与苯甲酸酸酐的质量比1:1.1的比例滴加苯甲酸酸酐进行酰化反应,在小于10℃的温度下继续反应2小时之后,用与反应体系总体积的体积比为0.25:1的水进行淬灭反应。用与反应体系总体积的体积比为1:1的己烷萃取有机锡化合物,得到的蔗糖-6-苯甲酸酯溶液,并通过高效液相色谱法分析和测定蔗糖-6-苯甲酸酯含量和纯度,经计算得蔗糖-6-硬脂酸酯收率高于93%,纯度高于94%。
实施例4
将蔗糖1000千克与四丁基氧化锡1000千克溶解于10立方二甲基亚砜(DMSO)和2立方辛烷中,加热90℃溶解成形成了蔗糖和有机锡化合物反应混合溶液。
采用的气液交换反应器具有直径1.2米,泡罩尺寸100×3mm(齿缝高度25mm、齿缝宽度5mm、齿缝数30),每层泡罩51个,板数5,常压总压降0.5米液柱。
将上述制备的反应混合溶液在以4m 3/h的速率连续进料至气液交换反应器的顶部的液体入口部1,反应器保持负压在0.5kPa,同时,将辛烷蒸气(100℃,1atm)以0.5m 3/s的速率进料至泡罩塔反应器的底部的气体入口部4。反应混合溶液与环己烷蒸气在气液交换反应器的各个气液交换板上接触反应,自气液交换反应器的顶部的气体出口部2的馏出物含有辛烷、水和DMSO的蒸气经冷凝并且收集,经过干燥无水处理后方可循环使用。
在将气液交换反应器操作20min之后,反应过程处于稳态并且开始从泡罩塔反应器底部的液体出口部3收集液体样品,经过检验合格后方可正式收集。所得产物为透明、浅琥珀色。反应液在气液交换反应器内停留时间约15min。
气液交换反应器底部的液体出口部3得到的溶液经计算含有10%的蔗糖,在小于10℃的温度条件下按照蔗糖的投放质量与乙酸酐的质量比1:1.1的比例滴加乙酸酐进行酰化反应,在小于10℃的温度下继续反应2小时之后,用与反应体系总体积的体积比为0.25:1的水进行淬灭反应。用与反应体系总体积的体积比为1:1的辛烷萃取有机锡化合物,得到的蔗糖-6-乙酸酯溶液通过,并通过高效液相色谱法分析,产物分布如下:
a.蔗糖-6-乙酸酯 9.68%(87.84%归一化);
b.二乙酸酯 0.64%(5.86%归一化);
c.蔗糖 0.57%%(5.21%归一化)。
实施例5
将蔗糖1000克与1,3-二乙酰氧基-1,1,3,3-四-(丁基)二锡氧烷2000克溶解于20升硝基乙烷和2升庚烷中,加热90℃溶解成形成了蔗糖和有机锡化合物反应混合溶液。
采用的小型实验室气液交换反应器,具有直径60毫米,泡罩尺寸40×20mm(齿缝高度15mm、齿缝宽度1mm、齿缝数30),每层泡罩1个,气液交换板数可临时组装可调。
将上述制备的反应混合溶液在以400mL/h的速率连续进料至气液交换反应器的顶部的液体入口部1,反应器保持负压在0.9kPa,同时,将庚烷蒸气(100℃,2atm)以50mL/s的速率进料至泡罩塔反应器的底部的气体入口部4。反应混合溶液与辛烷蒸气在气液交换反应器的气液交换板上接触反应,自气液交换反应器的顶 部的气体出口部2的馏出物含有庚烷、水和硝基乙烷的蒸气经冷凝并且收集,经过干燥无水处理后方可循环使用。
在将气液交换反应器操作20min之后,反应过程处于稳态并且开始从泡罩塔反应器底部的液体出口部3收集液体样品,经过检验合格后方可正式收集。所得产物为透明、浅琥珀色。反应液在气液交换反应器内停留时间约15min。
气液交换反应器底部的液体出口部3得到的溶液经计算含有10%的蔗糖,在小于10℃的温度条件下按照蔗糖的投放质量与乙酸酐的质量比1:1.1的比例滴加乙酸酐进行酰化反应,在小于10℃的温度下继续反应2小时之后,用与反应体系总体积的体积比为0.25:1的水进行淬灭反应。用与反应体系总体积的体积比为1:1的庚烷萃取有机锡化合物,得到的蔗糖-6-乙酸酯溶液,并通过高效液相色谱法分析,产物分布如下:
表1实施例5中不同气液交换板数得到的分析结果
组分 板数一 板数三 板数十
蔗糖-6-乙酸酯 7.09%(67.56%) 9.68%(87.84%) 10.30%(89.9%)
蔗糖二乙酸酯 0.44%(4.21%) 0.64%(5.86%) 0.98%(8.6%)
蔗糖 0.58%(15.56%) 0.57%(5.21%) 0.03%(0.24%)
注:括号内为归一化结果
对比例1
将蔗糖1000克与1,3-二乙酰氧基-1,1,3,3-四-(丁基)二锡氧烷2000克溶解于20升硝基乙烷和2升庚烷中,加热90℃溶解成形成了蔗糖和有机锡化合物反应混合溶液。
采用填料塔降液的方式进行脱水,填料塔直径40毫米,3×8玻璃弹簧填料,填料高度1米,相当于10级气液交换板。
将上述制备的反应混合溶液在填料塔的顶部的入口,保持负压在0.5kPa,同时,将辛蒸气(100℃,1atm)进料至填料塔底部烧瓶气体入口。反应混合溶液与环己烷蒸气逆流接触反应,填料塔的顶部馏出物含有庚烷、水和硝基乙烷的蒸气经冷凝并且收集,经过干燥无水处理后方可循环使用。
填料塔底部烧瓶收集液体样品,所得产物为透明、浅琥珀色。反应液在气液交换反应器内停留时间约1min。
得到的溶液经计算含有10%的蔗糖,在小于10℃的温度条件下按照蔗糖的投放质量与乙酸酐的质量比1:1的比例滴加乙酸酐进行酰化反应,在小于10℃的温度下继续反应2小时之后,用与反应体系总体积的体积比为0.25:1的水进行淬灭反应。用与反应体系总体积的体积比为1:1的庚烷萃取有机锡化合物,得到的蔗糖-6-乙酸酯溶液,并通过高效液相色谱法分析,产物分布如下:
a.蔗糖-6-乙酸酯 7.56%(72.05%归一化);
b.二乙酸酯 0.46%(4.36%归一化);
c.蔗糖 2.39%(22.76%归一化)。
从实施例1~5和对比例1可以看出,采用本申请提供的蔗糖-6-羧酸酯的制备方法与对比例1采用填料降液生产方式相比,制备的蔗糖-6-羧酸酯的产量高、副反应发生概率低、蔗糖反应完全。以蔗糖-6-乙酸酯产量可以看出,本申请中一些实施例可达到10.30%(89.9%归一化),而对比例1中蔗糖-6-乙酸酯中的产量仅为7.56%(72.05%归一化),也就是说本申请蔗糖-6-羧酸酯的产量显著高于现有技术;同理,由反应产物中的二乙酸酯、蔗糖含量可以看出,本申请中副反应发生概率显著降低,蔗糖转化的更加彻底。
综上所述,本申请的方法将包含蔗糖、混合溶剂和有机锡化合物的混合液通过气液交换反应器用无水的脱水介质快速移除反应体系内生成的水分,高效的制备出蔗糖有机锡酯中间体。该方法在极短时间内就能快速完成酯化脱水反应,蔗糖-6-羧酸酯的选择性好、产量高;副反应少;反应工艺简单,操作简单;特别适用于大规模工业化生产。能够克服传统蔗糖-6-酯制备反应的时间长、高能耗、副反应多、操作复杂、收率低等缺点。
以上所述,仅为本申请的具体实施方式,在本申请的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本申请的目的,本申请的保护范围应以权利要求的保护范围为准。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。

Claims (12)

  1. 一种蔗糖-6-羧酸酯的制备方法,其特征在于,所述制备方法使用气液交换反应器进行,所述气液交换反应器包括:腔体、设置于腔体一端的气体出口部和液体入口部、设置于腔体另一端的气体入口部和液体出口部、以及多层气液交换板;所述多层气液交换板在所述腔体内部平行设置,相邻的所述多层气液交换板通过溢流管连接,在各所述气液交换板上分别设有若干个含有升气管的泡罩鼓泡器;
    所述制备方法包括如下步骤:
    混合溶液制备步骤:将蔗糖和有机锡化物加热溶解于混合溶剂中,得到反应混合溶液;其中,所述混合溶剂由极性非质子溶剂和非极性溶剂混合组成;
    脱水反应步骤:使所述反应混合溶液从所述气液交换反应器的液体入口部进入其内部,与从所述气液交换反应器的气体入口部进入的脱水介质在所述多层气液交换板上的泡罩鼓泡器外表面附近鼓泡接触,使所述反应混合溶液发生脱水反应并与所述脱水介质进行气液交换,从而得到蔗糖有机锡酯溶液和含水蒸气的脱水介质气体;所述蔗糖有机锡酯溶液从所述气液交换反应器的液体出口部排出;所述含水蒸气的脱水介质气体从所述气液交换反应器的气体出口部排出;
    酰化反应步骤:将得到的所述蔗糖有机锡酯溶液与有机酸酐进行酰化反应,生成所述蔗糖-6-羧酸酯。
  2. 根据权利要求1所述的制备方法,其特征在于,所述气液交换反应器的气体出口部连接有膜分离器;
    所述制备方法还包括:
    脱水介质回收步骤:将从所述反应器气体出口部排出的所述含水蒸气的脱水介质气体通过膜分离器,将脱水介质中水分脱除至水含量小于0.1wt%,优选小于0.01wt%,更优选小于0.001wt%,以使所述脱水介质能够循环套用。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述气液交换反应器内气液交换板的数量为3~200,优选5~100,更优选10~50;
    所述泡罩鼓泡器内升气管总面积为所述气液交换板总面积的5%~20%,
    所述泡罩鼓泡器的泡罩底总面积为所述气液交换板总面积的20%~50%;
    所述泡罩鼓泡器的泡罩的齿缝高度为0.1~10厘米,优选2~5厘米;
    所述泡罩鼓泡器的泡罩的齿缝宽度0.01~5厘米,优选0.1~2厘米;
    所述泡罩鼓泡器的齿缝面积是所述泡罩鼓泡器内升气管面积的1~3倍。
  4. 根据权利要求1或2所述的制备方法,其特征在于,所述有机锡化合物选自1,3-二烃氧基-1,1,3,3-四-(烃基)二锡氧烷、氧化二(烃基)锡、1,3-二酰氧基-1,1,3,3-四-(烃基)二锡氧烷和1-二酰氧基-1,1,3,3-四-(烃基)二锡氧烷中的任一种或多种,优选1,3-二酰氧基-1,1,3,3-四-(烃基)二锡氧烷,更优选1,3-二乙酰氧基-1,1,3,3-四丁基二锡氧烷;其中,所述烃氧基为烷氧基或苯氧基,烷氧基优选为甲氧基、乙氧基、正丙氧基、正丁氧基、正戊氧基或正己氧基中的任意一种,更优选甲氧基;所述烃基为烷基、环烷基、芳基或芳烷基,优选为烷基,更优选正丁基。
  5. 根据权利要求1或2所述的制备方法,其特征在于,所述极性非质子溶剂选自乙腈、1,4-二氧六环、甲乙酮、甲基异丁基酮、硝基甲烷、硝基乙烷、环己酮、二甲亚矾、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、六甲基磷酰胺和N,N-二甲基甲酰胺中的任意一种或多种,优选乙腈;
    所述非极性溶剂选自辛烷、甲苯、正庚烷、异辛烷、苯、氯仿、四氯化碳、己烷、环己烷、乙酸乙酯和乙酸甲酯中的任意一种或多种,优选辛烷、甲苯和正庚烷,最优选辛烷。
  6. 根据权利要求1或2所述的制备方法,其特征在于,以所述蔗糖的质量为基准,所述有机锡化物的质量用量与所述蔗糖的质量用量之比为0.3~3.0,优选0.5~2.0,更优选0.9~1.2;
    以所述蔗糖的质量为基准,所述混合溶剂的质量用量与所述蔗糖的质量用量比为2~20,优选3~10,更优选4~8;在所述混合溶剂中,所述非极性溶剂的质量含量小于等于所述极性非质子溶剂质量含量的30%,优选小于等于20%,最优选小于等于15%。
  7. 根据权利要求1或2所述的制备方法,其特征在于,所述脱水介质被升温至65~150℃,优选85~120℃、加压至0.1~2.0MPa,优选0.15~0.5MPa,转化成气态脱水介质后,再从所述气液交换反应器气体入口部通入;
    所述脱水介质选自辛烷、甲苯、正庚烷、异辛烷、苯、氯仿、四氯化碳、己烷、环己烷、乙酸乙酯和乙酸甲酯中的任意一种,优选辛烷、甲苯或正庚烷,更优选辛烷;
    所述脱水介质中的水分含量小于0.1wt%,优选小于0.01wt%,更优选小于0.001wt%;
    所述脱水介质的用量为:在相同流速条件下,脱水介质的用量与所述混合溶液用量的体积比为50:1~3:1,优选20:1~5:1。
  8. 根据权利要求1或2所述的制备方法,其特征在于,在所述混合溶液制备步骤中,所述蔗糖和所述有机锡化合物加热至50~100℃,优选65~85℃溶解于所述混合溶剂中,得到所述反应混合溶液;
    所述脱水反应步骤中,所述脱水反应温度为60~120℃,优选70~100℃,反应时间为1min~2h,优选1min~0.5h。
  9. 根据权利要求1或2所述的制备方法,其特征在于,将所述气液交换反应器的气体出口部连接真空泵,以使所述气液交换反应器内的压力保持在0.01kPa~50kPa,优选0.5kPa~20kPa。
  10. 根据权利要求1所述的制备方法,其特征在于,所述有机酸酐选自乙酸酐、丁酸酐、苯甲酸酐、硬脂酸酐、月桂酸酐中的任意一种;
    以蔗糖的质量为基准,所述有机酸酐的质量用量与所述蔗糖的质量用量比为0.6~3.0,优选0.8~1.5;
    所述酰化反应的反应温度为0~50℃,优选5~20℃;所述酰化反应的反应时间为10min到24h,优选30min到4h。
  11. 一种气液交换反应器,其特征在于,用于实施权利要求1-10中任一项所述的蔗糖-6-羧酸酯的制备方法;
    所述气液交换反应器包括:腔体、设置于腔体一端的气体出口部和液体入口部、设置于腔体另一端的气体入口部和液体出口部、以及多层气液交换板;所述多层气液交换板在所述腔体内部平行设置,相邻的所述多层气液交换板通过溢流管连接,在各所述气液交换板上分别设有若干个含有升气管的泡罩鼓泡器;所述气液交换反应器的气体出口部连接有真空泵;所述气液交换反应器的气体出口部连接有膜分离器。
  12. 根据权利要求11所述的气液交换反应器,其特征在于,所述气液交换反应器内气液交换板的数量为3~200,优选5~100,更优选10~50;
    所述泡罩鼓泡器内升气管总面积为所述气液交换板总面积的5%~20%,
    所述泡罩鼓泡器的泡罩底总面积为所述气液交换板总面积的20%~50%;
    所述泡罩鼓泡器的泡罩的齿缝高度为0.1~10厘米,优选2~5厘米;
    所述泡罩鼓泡器的泡罩的齿缝宽度0.01~5厘米,优选0.1~2厘米;
    所述泡罩鼓泡器的齿缝面积是所述泡罩鼓泡器内升气管面积的1~3倍。
PCT/CN2020/116529 2020-09-21 2020-09-21 一种蔗糖-6-羧酸酯的制备方法 WO2022056913A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080002566.1A CN112384522A (zh) 2020-09-21 2020-09-21 一种蔗糖-6-羧酸酯的制备方法
PCT/CN2020/116529 WO2022056913A1 (zh) 2020-09-21 2020-09-21 一种蔗糖-6-羧酸酯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116529 WO2022056913A1 (zh) 2020-09-21 2020-09-21 一种蔗糖-6-羧酸酯的制备方法

Publications (1)

Publication Number Publication Date
WO2022056913A1 true WO2022056913A1 (zh) 2022-03-24

Family

ID=74590194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116529 WO2022056913A1 (zh) 2020-09-21 2020-09-21 一种蔗糖-6-羧酸酯的制备方法

Country Status (2)

Country Link
CN (1) CN112384522A (zh)
WO (1) WO2022056913A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115041106A (zh) * 2022-06-21 2022-09-13 湖北新轩宏新材料有限公司 一种制备三氯甲苯的反应器及制备方法
CN116251540A (zh) * 2023-02-15 2023-06-13 常州瑞华化工工程技术股份有限公司 一种连续脱水酯化的鼓泡床反应器和方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433151B (zh) * 2018-12-20 2024-03-19 中冶焦耐(大连)工程技术有限公司 一种高效组合型填料塔盘
CN112933635B (zh) * 2021-03-04 2022-04-12 安徽金禾实业股份有限公司 一种环绕离心式蔗糖-6-酯连续生产设备及生产方法
CN113214330A (zh) * 2021-05-13 2021-08-06 安徽金禾化学材料研究所有限公司 一种蔗糖-6-乙酯的纯化及其氯化工艺
CN114939332A (zh) * 2022-06-15 2022-08-26 浙江工业大学 一种熔盐鼓泡喷淋除焦的方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334061A (en) * 1979-10-29 1982-06-08 Ethyl Corporation Process for recovery of polyol fatty acid polyesters
CN101028586A (zh) * 2007-01-29 2007-09-05 煤炭科学研究总院 鼓泡式多相反应器
CN101605804A (zh) * 2007-01-09 2009-12-16 塔特和莱利技术有限公司 用于合成蔗糖-6-酯的方法
CN101653711A (zh) * 2009-09-22 2010-02-24 天津大学 一种多级导流式鼓泡塔反应器及生产工艺
CN205235941U (zh) * 2015-12-09 2016-05-18 江苏新农化工有限公司 带流量调节的气液反应装置
CN108558962A (zh) * 2018-05-22 2018-09-21 山东新和成精化科技有限公司 一种用于合成蔗糖-6-酯的方法
CN209254709U (zh) * 2018-10-29 2019-08-16 中国石油化工股份有限公司 鼓泡式气液反应设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE9355T1 (de) * 1980-07-08 1984-09-15 Tate & Lyle Public Limited Company Verfahren zur herstellung von 4,1',6'-trichlor4,1',6'-trideoxygalactosucrose (tgs).
US20070134394A1 (en) * 2005-12-12 2007-06-14 Dippin' Dots, Inc. Method of manufacturing particulate ice cream for storage in conventional freezers
CN104098617A (zh) * 2013-04-08 2014-10-15 南京工业大学 一种蔗糖-6-乙酸酯的制备方法
CN104817597A (zh) * 2015-05-22 2015-08-05 盐城捷康三氯蔗糖制造有限公司 蔗糖-6-酯的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334061A (en) * 1979-10-29 1982-06-08 Ethyl Corporation Process for recovery of polyol fatty acid polyesters
CN101605804A (zh) * 2007-01-09 2009-12-16 塔特和莱利技术有限公司 用于合成蔗糖-6-酯的方法
CN101028586A (zh) * 2007-01-29 2007-09-05 煤炭科学研究总院 鼓泡式多相反应器
CN101653711A (zh) * 2009-09-22 2010-02-24 天津大学 一种多级导流式鼓泡塔反应器及生产工艺
CN205235941U (zh) * 2015-12-09 2016-05-18 江苏新农化工有限公司 带流量调节的气液反应装置
CN108558962A (zh) * 2018-05-22 2018-09-21 山东新和成精化科技有限公司 一种用于合成蔗糖-6-酯的方法
CN209254709U (zh) * 2018-10-29 2019-08-16 中国石油化工股份有限公司 鼓泡式气液反应设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115041106A (zh) * 2022-06-21 2022-09-13 湖北新轩宏新材料有限公司 一种制备三氯甲苯的反应器及制备方法
CN115041106B (zh) * 2022-06-21 2023-11-07 湖北新轩宏新材料有限公司 一种制备三氯甲苯的反应器及制备方法
CN116251540A (zh) * 2023-02-15 2023-06-13 常州瑞华化工工程技术股份有限公司 一种连续脱水酯化的鼓泡床反应器和方法

Also Published As

Publication number Publication date
CN112384522A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2022056913A1 (zh) 一种蔗糖-6-羧酸酯的制备方法
WO2022051988A1 (zh) 一种蔗糖-6-酯的制备方法
EP4049748A1 (en) Gas-liquid bubbling bed reactor, reaction system and method for synthesizing carbonate
CN106810450B (zh) 一种催化反应精馏制备邻苯二甲酸二丁酯的装置和方法
CN103007862B (zh) 一种乙炔羰基化法合成丙烯酸及酯的气液搅拌反应器
JP6207503B2 (ja) 酢酸の回収方法
US20120288908A1 (en) Method for producing carboxylic acids having 1-3 carbon atoms from renewable resources
MX2013013779A (es) Proceso para preparar acido metacrilico.
EP3218359B1 (en) Preparation of dialkyl esters of 2,5-furandicarboxylic acid
CA2896290A1 (en) Method for producing dimethyl oxalate
CN112717913A (zh) 催化剂及其制备方法和制备碳酸二烷基酯的方法
CN106397201B (zh) 以含甲醇的甲缩醛为原料制备甲氧基乙酸甲酯的方法
CN115466181A (zh) 一种使用长效催化剂的酯交换生产碳酸二甲酯的方法
US20080228011A1 (en) Methods for Producing Triol Ethers by Reactive Distillation
CN112969517A (zh) 蔗糖-6-酯的生产设备及生产方法
CN115650841B (zh) 一种甲醇低压羰基合成醋酸的方法
JP2016516832A (ja) コハク酸ジ−c1−3−アルキルを連続的に製造する方法
CN114805045B (zh) 一种连续制备β-异佛尔酮的方法
CN114149308B (zh) 一种制备β-萘甲醚的方法
US20230415126A1 (en) Supported catalyst and method for synthesizing sucrose-6-ester
CN112121453B (zh) 一种生产乙酰丙酸乙酯的塔内反应精馏与膜耦合工艺方法及装置
CN207446241U (zh) 一种生物柴油催化分离反应装置
CN110563580A (zh) 一种高纯度丙酸丙酯的合成方法
CN110668920A (zh) 一种利用反应精馏法制备乙醇并联产环己醇的方法
CN109704957B (zh) 醋酸烯丙酯产品气中二氧化碳的脱除方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953771

Country of ref document: EP

Kind code of ref document: A1