WO2022174381A1 - 蔗糖-6-酯的生产设备及生产方法 - Google Patents

蔗糖-6-酯的生产设备及生产方法 Download PDF

Info

Publication number
WO2022174381A1
WO2022174381A1 PCT/CN2021/076810 CN2021076810W WO2022174381A1 WO 2022174381 A1 WO2022174381 A1 WO 2022174381A1 CN 2021076810 W CN2021076810 W CN 2021076810W WO 2022174381 A1 WO2022174381 A1 WO 2022174381A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
sucrose
heating roller
liquid
tank
Prior art date
Application number
PCT/CN2021/076810
Other languages
English (en)
French (fr)
Inventor
张正颂
李正华
杨志健
赵金刚
张从勇
郑学连
Original Assignee
安徽金禾实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽金禾实业股份有限公司 filed Critical 安徽金禾实业股份有限公司
Priority to EP21926102.1A priority Critical patent/EP4163000B1/en
Priority to US18/016,834 priority patent/US20230294012A1/en
Priority to CN202180000399.1A priority patent/CN113039001B/zh
Priority to PCT/CN2021/076810 priority patent/WO2022174381A1/zh
Publication of WO2022174381A1 publication Critical patent/WO2022174381A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • B01D1/222In rotating vessels; vessels with movable parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/04Evaporators with horizontal tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • B01D1/222In rotating vessels; vessels with movable parts
    • B01D1/223In rotating vessels; vessels with movable parts containing a rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0015Plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0018Dome shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • C07H13/06Fatty acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention belongs to the technical field of fine chemicals, and in particular relates to a production equipment and a production method of sucrose-6-ester.
  • Sucralose belongs to a new generation of sweeteners, which has the advantages of high sweetness, no calories, good stability and high safety, and has a very broad market prospect.
  • Sucralose-6-ester is an important intermediate in the production of sucralose.
  • the process flow of the method for synthesizing sucrose-6-ester mainly includes: mixing sucrose, aprotic polar solvent and organotin esterification accelerator into a first reaction mixture; then mixing the first reaction mixture in a specific Contact with a gas or solvent vapor capable of removing water under the temperature and pressure environment and keep a certain reaction time, remove moisture from it to obtain a second reaction mixture; then add carboxylic acid anhydride to the second reactant to obtain a third reaction mixture, and use The third reaction mixture is maintained for a time sufficient to prepare the sucrose-6-ester.
  • This method requires the use of gas or solvent vapor that can remove water. The existence of this link seriously affects the continuity of the production process of synthetic sucrose-6-ester, increases the production cycle, reduces the production efficiency, and consumes a lot of energy that can be removed.
  • the gas or solvent of water greatly increases the production cost and energy consumption.
  • the present application is made in order to provide a production apparatus and production method of sucrose-6-ester that overcome the above-mentioned problems or at least partially solve the above-mentioned problems.
  • a production equipment of sucrose-6-ester comprising a distillation separation tank, a reaction tank, and a condensed water collection tank, and the distillation separation tank is arranged above the reaction tank and the condensed water collection tank;
  • the distillation separation tank includes a shell, a hot roll distillation device, a feeding pipe, a U-shaped plate, a number of heat exchange pipes, a condensate water outlet pipe and a steam residue discharge pipe; wherein, the hot roll distillation device includes a plurality of heating rollers, and many The heating rollers are closely arranged vertically and horizontally between the front and rear side walls of the casing; both ends of the U-shaped plate are fixed on the front and rear side walls of the bottom of the casing, and the U-shaped plate is arranged in non-contact with the left and right side walls and the bottom surface of the casing.
  • a U-shaped cavity is formed; a number of heat exchange tubes are arranged in the inner cavity formed by the U-shaped plate and penetrate the front and rear side walls of the shell; a feeding pipe is arranged on the top of the shell, and a condensate water outlet pipe is arranged on the bottom surface of the shell , and connecting the U-shaped plate through the bottom surface of the shell is provided with a discharge pipe for the residual liquid;
  • the condensed water collection tank is connected to the condensed water outlet pipe;
  • the reaction tank is connected to the discharge pipe of the residual liquid.
  • the above-mentioned device further includes a plurality of condensing plates, and the plurality of condensing plates are disposed through the left and right side walls of the casing at positions corresponding to the plurality of heating rollers.
  • a material-liquid dispersion pipe is connected to one end of the feed pipe located in the shell.
  • the heating roller distillation device includes a power supply module, and the power supply module is electrically connected to each heating roller to provide electrical energy for the heat transfer medium of each heating roller;
  • the heating roller distillation device includes a driving module, the driving module includes a motor and a gear group, the motor is connected with the gear group, the gear group is respectively connected with each heating roller, and the motor drives each heating roller to rotate through the gear group.
  • the diameters and lengths of the plurality of heating rollers increase sequentially from top to bottom; two adjacent heating rollers are set to rotate in opposite directions.
  • the number of heating rollers is three, which are denoted as the first heating roller, the second heating roller and the third heating roller in order from top to bottom;
  • Both ends of the first heating roller are provided with a first circular baffle plate larger than its cross-sectional diameter
  • Both ends of the second heating roller are provided with first grooves, and the first circular baffles are embedded in the first grooves;
  • Both ends of the third heating roller are provided with second circular baffles larger than the cross-sectional diameter
  • the diameter of the third heating roller is smaller than the width of the inner cavity formed by the U-shaped plate.
  • the preset heating temperatures of the plurality of heating rollers decrease sequentially from top to bottom.
  • a scraper is provided at the top of one side wall of the U-shaped plate, the outer edge of the scraper is in contact with the heating roller closest to the scraper, and the scraper is close to the scraper.
  • the included angle of the tangent of the heating roller at the intersection is less than 90°.
  • the U-shaped cavity and the inner cavity of the U-shaped plate are respectively provided with a liquid level sensor and a temperature sensor.
  • each heat exchange tube includes an evaporation section and a condensation section, the evaporation section is located in the shell, and the condensation section is located outside the shell.
  • a first solenoid valve is provided on the steam residue discharge pipe, and a carboxylate feed pipe and a second vacuum pipe are provided on the top of the reaction tank, wherein the second vacuum pipe can be connected.
  • the vacuum pump is provided with a product discharge pipe at the bottom of the reaction tank, and a second solenoid valve is provided on the product discharge pipe.
  • a third solenoid valve is provided on the condensate water outlet pipe, and a third vacuum pipe is provided on the top of the condensate water collection tank, wherein the third vacuum pipe can be connected to a vacuum pump, and the condensate water collection tank is provided with a third solenoid valve.
  • a water outlet pipe is provided, and a fourth solenoid valve is arranged on the water outlet pipe.
  • the casing is provided with a first vacuum tube, and the first vacuum tube can be connected to a vacuum pump.
  • the cross section of the casing is a trapezoid-like shape.
  • sucrose-6-ester a method for producing sucrose-6-ester, the method being carried out using any of the above-mentioned equipment, comprising:
  • the reaction liquid separation step start the hot roller distillation device, set each heating roller to a preset temperature, and input the reaction liquid from the feed port of the distillation separation tank, so that the reaction liquid is separated on the outer wall of each heating roller into a residual liquid and water vapor, wherein the reaction liquid includes sucrose, aprotic polar solvent and organic tin ester accelerator; the residual liquid is collected into the U-shaped cavity and flows into the reaction tank through the residual liquid discharge pipe, and the water vapor is on the left and right sides of the shell. Liquid water condensed at the wall flows to the bottom of the shell from the condensate outlet pipe into the condensate collection tank; and
  • Esterification reaction step the residual liquid flowing into the reaction tank and the carboxylic acid anhydride entering from the carboxylate feed pipe undergo an esterification reaction under preset conditions to generate a solution containing sucrose-6-ester.
  • a production equipment with a hot roll distillation device is designed, and the reaction liquid is rolled to form a thin liquid film under the cooperative operation of multiple heating rolls, and then heated and distilled.
  • the distillation tank and the reaction tank are set up and down without additional power, and the residual liquid can be smoothly carried out in the reaction tank for esterification reaction, in order to produce the target product.
  • the equipment of the present application makes the preparation process of sucrose-6-ester integrated from distillation, cooling, mixing and reaction, the reaction raw materials can be continuously added to the production equipment, the reaction liquid separation step and the esterification reaction step are continuously performed,
  • the continuous production of sucrose-6-ester is realized, the production cycle is greatly shortened, the production efficiency of sucrose-6-ester is improved, and the overall equipment is small in size, occupies less land, simple in structure, and strong in economical practicability; on the one hand
  • the problem of using a large amount of gas or solvent vapor capable of removing water in the process of removing the original water in the prior art is avoided, and the production cost is greatly saved.
  • it overcomes the need for the second reaction mixture in the prior art. Being forced into another space to mix with the carboxylic anhydride requires energy-intensive and time-consuming defects.
  • FIG. 1 shows a schematic diagram of the external overall structure of a production equipment for sucrose-6-ester according to an embodiment of the present application
  • Fig. 2 shows the external overall structure schematic diagram of the production equipment of sucrose-6-ester according to another embodiment of the present application
  • Fig. 3 shows the structural schematic diagram of the distillation separation tank of the production equipment of sucrose-6-ester according to an embodiment of the present application, which is cut away from the front side wall of the shell (excluding the hot roll distillation device);
  • Fig. 4 shows the schematic diagram of the structure of the distillation separation tank of the production equipment of sucrose-6-ester according to an embodiment of the present application, which is cut in half along the radial cross-section of the middle position of the front side wall and the rear side wall of the shell;
  • Fig. 5 shows a schematic structural diagram of the distillation separation tank of the production equipment for sucrose-6-ester according to an embodiment of the present application, which is cut in half along the radial cross-section of the middle position of the left and right side walls of the shell ;
  • FIG. 6 shows a schematic flowchart of a production method of sucrose-6-ester according to an embodiment of the present application.
  • the concept of the present application is that, in the prior art, the reaction solution for the production of sucrose-6-ester needs to first remove moisture by using steam or solvent in one reactor, then press it into another reactor, and then react with carboxylic anhydride, Sucrose-6-ester is produced.
  • the step of removing water by steam or solvent consumes a lot of energy, and the equipment is large, covers a large area, and the degree of water removal is not thorough enough; after removing the water, the reaction hydraulic pressure needs to be put into another reactor , to carry out the esterification reaction, this process requires extra energy and time, which reduces the production efficiency of sucrose-6-ester; and this production mode of the prior art is discontinuous, and can only be carried out after each feeding reaction is completed. Another reaction also seriously affected the production efficiency of sucrose-6-ester.
  • Fig. 1 shows a schematic diagram of the external overall structure of a production equipment of sucrose-6-ester according to an embodiment of the present application
  • Fig. 2 shows an external overall structure of a production equipment of sucrose-6-ester according to another embodiment of the present application Schematic diagram of the structure
  • Figure 3 shows a schematic diagram of the structure of the distillation separation tank of the production equipment for sucrose-6-ester according to an embodiment of the present application cut from the front side wall of the shell (excluding the hot roll distillation device);
  • Figure 4 shows A schematic diagram of the structure of the distillation separation tank of the production equipment for sucrose-6-ester according to an embodiment of the present application, which is cut in half along the radial cross-section of the middle position of the front side wall and the rear side wall of the shell;
  • Fig. 5 shows A schematic cross-sectional structural diagram of a half-cut radial cross-section of the middle position of the left and right side walls of the distillation separation tank of the sucrose-6-ester production equipment according to an embodiment of the
  • the production equipment 100 of the sucrose-6-ester includes a distillation separation tank 1, a reaction tank 2, and a condensed water collection tank 3, and the distillation separation tank 1 is arranged in the reaction tank 2 and the condensed water collection tank. 3 above.
  • the distillation separation tank 1 includes a shell 1-1, a hot roll distillation device 1-2, a feed pipe 1-3, a U-shaped plate 1-4, a number of heat exchange pipes 1-5, a condensate water outlet pipe 1-6 and a steam boiler. Residual liquid discharge pipes 1-7, etc.
  • the distillation separation tank 1 may be made of but not limited to stainless steel.
  • the four sides of the shell 1-1 of the distillation separation tank 1 are respectively referred to as front side walls , a rear side wall, a left side wall, and a right side wall, wherein the cross section of the shell 1-1 of the distillation separation tank 1 may be but not limited to a trapezoid-like shape.
  • the hot roller distillation device 1-2 includes a plurality of heating rollers 1-2-1 (1-2-2, 1-2-3), and the plurality of heating rollers are closely arranged vertically and horizontally between the front and rear side walls of the casing 1-1 .
  • the number of heating rollers is 3-5, and the tightness of each heating roller can be adjusted according to specific production factors, such as feeding speed, viscosity of the reaction solution, etc.
  • the distance between the surfaces of the heating rollers is not more than 1 mm; in other embodiments, the gap between the heating rollers can be set to be adjustable, and can be adjusted according to specific production conditions during use.
  • the heating roller rotates, and the reaction liquid gradually flows down the surface of the heating roller, and is rolled to form a thin liquid film when passing between the two heating rollers.
  • the heating roller also heats the reaction liquid. Evaporation, so that the water in the reaction liquid is evaporated and turned into water vapor, so that the reaction liquid is separated into water vapor and residual liquid.
  • the reaction solution refers to the preparation of mixed solutions of sucrose-6-ester, including but not limited to sucrose, aprotic polar solvents and organotin ester accelerators.
  • the residual liquid reacts with carboxylic anhydride to generate the target product sucrose-6-ester.
  • Both ends of the U-shaped plate 1-4 are fixed on the front and rear side walls of the bottom of the casing 1-1, and the U-shaped plate 1-4 is arranged in non-contact with the left and right side walls and the bottom surface of the casing 1-1 to form a U-shaped cavity 1-9.
  • a U-shaped plate 1-4 is arranged under the lowermost heating roller 1-2-3. Both ends of the U-shaped plate 1-4 are fixed on the front and rear side walls of the bottom of the casing 1-1.
  • -4 is arranged in non-contact with the left and right side walls and bottom surface of the casing 1-1, that is to say, the U-shaped plate 1-4 divides the bottom of the casing 1-1 into two chambers, one is the U-shaped plate 1-
  • the inner space of 4 is called the inner cavity formed by the U-shaped plate 1-4, and the other is the cavity formed by the U-shaped plate 1-4 and the left and right side walls and bottom surface of the shell 1-1, which is called the U-shaped cavity 1 -9.
  • the function of these two chambers is to separate water vapor and residual liquid.
  • the water vapor can condense into liquid water on the left and right side walls of the casing 1-1, and then move along the left and right sides of the casing 1-1.
  • the walls flow down into U-shaped cavities 1-9.
  • the residual liquid flows down along the heating rollers 1-2-3, and finally drops into the inner cavity formed by the U-shaped plate 1-4, thereby realizing the separation of water vapor and residual liquid.
  • a number of heat exchange tubes 1-5 are arranged in the inner cavity 1-8 formed by the U-shaped plate 1-4, and these heat exchange tubes 1-5 penetrate the front and rear side walls of the casing 1-1; the function of the heat exchange tubes is to The residual liquid is cooled.
  • the reaction liquid will be distilled at a higher temperature to remove the water therein, while the reaction temperature of the esterification reaction is usually relatively low, and it can generally be carried out below room temperature. Therefore, In order to make the residual liquid reach the preset temperature of the esterification reaction as soon as possible, heat exchange pipes 1-5 are set up. The purpose of the residual liquid.
  • a feeding pipe 1-3 is arranged on the top of the shell 1-1, a condensate water outlet pipe 1-6 is arranged on the bottom surface of the shell 1-1, and the U-shaped plate 1-4 is connected through the bottom surface of the shell 1-1 There are steam residual liquid discharge pipes 1-7; condensed water collection tank 3 is connected with condensed water outlet pipes 1-6; reaction tank 2 is connected with distilled residual liquid discharge pipes 1-7.
  • the reaction liquid is pumped into the equipment from the feeding port 1-3, and is separated into steam and residual liquid at the heating roller.
  • the steam is condensed into liquid water at the left and right side walls of the shell 1-1, and flows into the equipment.
  • the condensed water outlet pipe 1-6 further enters the condensed water collection tank 3, and the residual liquid drips into the inner cavity formed by the U-shaped plate 1-4. After being cooled, it enters through the residual liquid discharge pipe 1-7.
  • the reaction tank 2 reacts with the carboxylic anhydride in the reaction tank 2 to generate the target product. Because the distance between the condensed water collection tank 3 and the reaction tank 2 is relatively short, the condensed water in the condensed water collection tank 3 can still cool the materials in the reaction tank 2 .
  • the device further includes a plurality of condensation plates 1-10, and the plurality of condensation plates pass through They are provided at positions corresponding to the plurality of heating rollers 1-2-1 (1-2-2, 1-2-3) on the left and right side walls of the casing 1-1.
  • the water vapor is condensed into liquid water on the condensing plate 1-10, and flows into the U-shaped cavity 1-9 under the drainage action of the condensing plate 1-10.
  • the intersection of 1-10 and shell 1-1 is sealed, such as by welding and other processes.
  • the casing 1-1 is provided with a first vacuum tube 1-12, and the first vacuum tube 1-12 can be connected to a vacuum pump (not shown in the figure).
  • the vacuum pump can provide negative pressure for the shell 1-1.
  • the moisture in the reaction liquid is more easily distilled into water vapor.
  • the water vapor can also be extracted from the shell 1-1, so as to achieve rapid removal The purpose of moisture in the reaction solution.
  • FIG. 4 shows that the distillation separation tank 1 is cut along the radial cross-section of its shell 1-1 along the middle position of the front side wall and the rear side wall without the distillation liquid discharge pipe 1- 7, therefore, residual liquid discharge pipes 1-7 are not shown in FIG. 4 .
  • the number of heating rollers is three, which are denoted as the first heating roller 1-2-1 and the second heating roller 1-2 from top to bottom. -2 and the third heating roller 1-2-3.
  • One end of the feed pipe 1-3 located in the shell 1-1 is connected with a material-liquid dispersion pipe 1-11.
  • the overall shape of the feed pipe 1-3 and the material liquid dispersion pipe 1-11 is like an inverted T shape, and the horizontal end, that is, the material liquid dispersion pipe 1-11 is located on the first heating roller 1-2-1
  • Fig. 5 shows that the distillation separation tank 1 is cut along the radial cross-section of the shell 1-1 along the middle position of the left side wall and the right side wall without the condensed water outlet pipe 1-6. Half, therefore, condensate outlet pipes 1-6 are not shown in FIG. 5 .
  • the above-mentioned hot roller distillation apparatus 1-2 includes a power supply module 1-2-4, and the power supply module 1-2-4 is electrically connected to each heating roller, and provides the power supply for each heating roller.
  • the heat transfer medium of the roll provides electrical energy.
  • the heat transfer medium in the heating roller is usually a metal thermal conductor, such as resistance wire, etc.
  • the power supply module 1-2-4 provides electrical energy for the heat transfer medium of the heating roller, and the heat transfer medium can convert the electrical energy into heat energy, so as to realize the Heating of the reaction solution.
  • the power supply module 1-2-4 may be arranged on any one of the front and rear side walls of the housing 1-1, and the present application does not make any arrangement on the location of the power supply module 1-2-4. Restriction, as long as the setting position is reasonable, it does not affect the rotation of the heating roller.
  • the hot roll distillation apparatus 1-2 further includes a drive module 1-2-5
  • the drive module 1-2-5 includes a motor and a gear set (not shown in the figure), the motor is connected to the gear set, and the gear set
  • the heating rollers are respectively connected, and the motor drives the heating rollers to rotate through the gear group.
  • the driving module 1-2-5 may be disposed on the front side wall or the rear side wall of the housing 1-1 where the power supply module 1-2-5 is not disposed.
  • the setting position of 1-2-5 is not limited, as long as the setting position is reasonable and does not affect the rotation of the heating roller. It should be noted that when each heating roller is driven to rotate by a gear set, the angular velocity of each heating roller is the same regardless of the size of the radius of each heating roller.
  • the purpose of this setting is that the reaction liquid is gradually dispersed on the surface of the first heating roller 1-2-1 after entering from the feeding pipe 1-3, and the most ideal state is with the rotation of the first heating roller 1-2-1. Enter into the tiny gap between the first heating roller 1-2-1 and the second heating roller 1-2-2, and then extend along the surface of the second heating roller 1-2-2 and enter the second heating roller 1 In the tiny gap between -2-2 and the third heating roller 1-2-3, the reaction liquid is repeatedly rolled and squeezed into a very thin liquid film, and in this process, the reaction liquid has been heated and gradually separated into Water vapor and residual liquid.
  • the diameter of the third heating roller 1-2-3 can be set smaller than the width of the inner cavity formed by the U-shaped plate 1-4, and the reaction solution dripped from the surface of the third heating roller 1-2-3 can be The inner cavity formed by the U-shaped plates 1-4 will not overflow.
  • the linear speed of the heating roller increases from top to bottom, which makes the liquid film formed during the friction process of the heating roller faster and has a larger area, effectively maintaining the distillation efficiency when the temperature decreases, and improving the product. yield.
  • the preset heating temperatures of the plurality of heating rollers may decrease sequentially from top to bottom.
  • a first circle larger than the cross-sectional diameter of the first heating roller 1-2-1 is provided at both ends of the first heating roller 1-2-1.
  • both ends of the third heating roller 1-2-3 are provided with a second circular baffle 1-2-3-1 larger than its cross-sectional diameter, so that the first circular baffle
  • the plate 1-2-1-1 blocks the overflow of the reaction liquid on the surface of the first heating roller 1-2-1, while the second circular baffle 1-2-3-1 can simultaneously block the second heating roller 1-2-2
  • the design of the circular baffle can effectively prevent the reaction liquid or the residual liquid from overflowing from both ends of the heating roller.
  • first grooves 1-2-2 may be provided at both ends of the second heating roller 1-2-2 -1, the first circular baffle 1-2-1-1 is embedded in the first groove 1-2-2-1.
  • the distilled reaction liquid on the third heating roller 1-2-3 that is, the distilled liquid, more thoroughly, It completely flows into the inner cavity formed by the U-shaped plate 1-4, and a scraper 1-4-1 can be provided at the top of one side wall of the U-shaped plate 1-4.
  • the outer edge of the scraper 1-4-1 It is in contact with the surface of the heating roller closest to the scraper, that is, the surface of the third heating roller 1-2-3.
  • the intersection point is called the intersection point
  • the angle between the tangent line between the scraper 1-4-1 and the third heating roller 1-2-3 at the intersection point is less than 90°, which ensures that the tilting direction of the scraper is towards the U-shaped plate 1-4 The orientation of the formed lumen.
  • the inner cavity formed by the U-shaped cavity 1-9 and the U-shaped plate 1-4 is respectively provided with a liquid level sensor (not shown in the figure) and a temperature sensor (not shown in the figure). This allows for easier control of reaction conditions and progress.
  • the heat exchange tube 1-5 provided in the inner cavity 1-8 formed by the U-shaped plate 1-4 includes an evaporation section 1-5-1 and a condensation section 1-5-2, and the evaporation section 1 -5-1 is located in the shell 1-1, and the evaporation section 1-5-1 conducts heat exchange with the residual liquid and the condensation section 1-5-2 respectively.
  • the evaporation section 1-5-1 absorbs the residual liquid The heat is transferred to the condensing section 1-5-2, and the condensing section 1-5-2 is located outside the shell 1-1, exchanges heat with the environment, and exchanges the received heat into the air to achieve the purpose of heat dissipation.
  • the specific structure of the heat exchange tubes 1-5 is not limited to the above-mentioned embodiments.
  • a plurality of heat conduction pipes penetrating the front and rear side walls of the casing 1-1 can also be arranged in the inner cavity 1-8 formed by the U-shaped plate 1-4.
  • the L-shaped heat exchange tube is inserted into the two ends of the heat-conducting tube, the evaporation section of the L-shaped heat-exchange tube is located in the heat-conducting tube, and the condensation section of the L-shaped heat-exchange tube is located outside the shell 1-1, and is provided with cooling fins.
  • the heat exchange principle thereof is the same as that of the above-mentioned embodiment, and will not be repeated here.
  • a first solenoid valve 1-7-1 is provided on the residual liquid discharge pipe 1-7, and a carboxylate feed is provided on the top of the reaction tank 2
  • the material pipe 2-3 is provided with a second solenoid valve 2-3-1.
  • the function of the solenoid valve is to decide whether to open the valve for related production according to the demand, which is more convenient to control the overall production process; the vacuum pump can provide a negative pressure environment for the reaction in the reaction tank, which is conducive to the positive progress of the esterification reaction.
  • a third solenoid valve 1-6-1 is provided on the condensate water outlet pipe 1-6, and a third vacuum pipe 3-1 is provided on the top of the condensate water collection tank 3, wherein the third vacuum pipe 3 -1 can be connected to a vacuum pump (not shown in the figure), a water outlet pipe 3-2 is arranged in the condensed water collection tank 3, and a fourth solenoid valve 3-2-1 is arranged on the water outlet pipe 3-2.
  • Fig. 6 shows a schematic flow diagram of a method for producing sucrose-6-ester according to an embodiment of the present application, and the method can be realized by using any of the above-mentioned equipment. It can be seen from Fig. 6 that the sucrose-6-ester of the present application
  • the production method includes at least the following steps S610 to S620:
  • the reaction liquid separation step S610 start the hot roller distillation device, set each heating roller to a preset temperature, and input the reaction liquid from the feed port of the distillation separation tank, so that the reaction liquid is separated on the outer wall of each heating roller into steam residues Liquid and water vapor, among which, the reaction liquid includes sucrose, aprotic polar solvent and organic tin ester accelerator; the residual liquid is collected into the U-shaped cavity and flows into the reaction tank through the residual liquid discharge pipe, and the water vapor is on the left and right sides of the shell.
  • the condensed liquid water at the side wall flows to the bottom of the shell and flows into the condensed water collection tank from the condensed water outlet pipe.
  • Step S620 of esterification reaction the residual liquid flowing into the reaction tank and the carboxylic acid anhydride entering from the carboxylate feed pipe undergo an esterification reaction under preset conditions to generate a solution containing sucrose-6-ester.
  • the specific flow of the above method can be described as follows: first, the reaction solution is prepared, and specifically, sucrose, aprotic polar solvent, and an organotin acylation accelerator are mixed into a reaction solution. liquid.
  • the fourth solenoid valve 3-2-1, the second solenoid valve 2-3-1, the third solenoid valve 1-6-1, and the first solenoid valve 1-7-1 are closed, and the carboxylate
  • the feeding pipe 2-1 is in a closed state, and the vacuum pump draws out the air in the distillation separation tank 1, the reaction tank 2 and the condensed water collection tank 3 through the first vacuum pipe 1-12, the second vacuum pipe 2-2 and the third vacuum pipe 3-1 , a negative pressure environment is formed in the distillation separation tank 1, the reaction tank 2 and the condensed water collection tank 3.
  • the reaction solution is continuously injected into the distillation separation tank 1 from the feed pipe 1-3, and the vacuum pump corresponding to the distillation separation tank 1 can be turned on at this time.
  • the drive module 1-2-5 passes through.
  • the gear set drives the first heating roller 1-2-1 to rotate clockwise, the second heating roller 1-2-2 to rotate counterclockwise, and the third heating roller 1-2-3 to rotate clockwise.
  • the reaction liquid is extruded to form a liquid film by flowing downward on the surfaces of the first heating roll 1-2-1, the second heating roll 1-2-2 and the third heating roll 1-2-3, and the water molecules in the reaction liquid It escapes from the surface of the liquid film, and is condensed by the condensing plate 1-10 to form liquid water that flows into the U-shaped cavity 1-9, thus avoiding the need to use a gas or solvent vapor process capable of removing water to remove water in this link. The economical cost and time cost of water removal are effectively saved.
  • the reaction liquid from which the water is removed that is, the residual liquid, flows into the inner cavity formed by the U-shaped plate 1-4 under the blocking of the scraper 1-4-1.
  • the liquid produces the effect of auxiliary cooling.
  • the third solenoid valve 1-6-1 is opened, and the condensed water enters the condensed water collection tank 3 .
  • the first solenoid valve 1-7-1 is opened, and after the residual liquid flows into the reaction tank 2 for a certain amount, the first solenoid valve 1-7-1 can be closed.
  • a solenoid valve 1-7-1 blows the carboxylic acid anhydride into the reaction tank 2, and the carboxylic acid anhydride and the residual liquid are mixed in the reaction tank 2 and undergo an esterification reaction to obtain the target product sucrose-6-ester.
  • the prepared sucrose-6-ester can be controlled by the second solenoid valve 2-3-1 and output through the product discharge pipe 2-3.
  • the vacuum pump then draws out the air in the reaction tank 2 through the second vacuum pipe 2-2, so that the production process of continuous preparation of sucrose-6-ester can be realized by such circulation.
  • the rotation speed of each heating roller is not limited in the present application, and in some embodiments of the present application, the angular velocity may be set to be 0.1 rad/s to 10 rad/s. If the rotation angular speed of the heating roller is less than 0.1rad/s, the rotation rate is too slow, the reaction liquid will easily drip from the surface of the heating roller, and a liquid film cannot be formed, thus affecting the evaporation effect; if the rotation angular speed of the heating roller is greater than 10rad/s , the rotation speed is too fast, the time for the reaction liquid to be evaporated is too short, and it is not conducive to the separation of water.
  • reaction raw materials and preset conditions of the esterification reaction are not limited, and the prior art can be referred to, and the following recommended technical solutions can also be adopted.
  • the type of organotin compound is not limited, and a single-tin organic compound can be used, or a double-tin organic compound can be used, and in some embodiments, it can be selected as 1,3-dihydrocarbyloxy-1,1 ,3,3-tetra-(hydrocarbyl)distannoxane, bis(hydrocarbyl)tin oxide, 1,3-diacyloxy-1,1,3,3-tetra-(hydrocarbyl)distannoxane, and 1 - any one or more of diacyloxy-1,1,3,3-tetra-(hydrocarbyl)distannoxane, in other embodiments, it can be optionally 1,3-diacyloxy- 1,1,3,3-tetra-(hydrocarbyl)distannoxane, optionally 1,3-diacetoxy-1,1,3,3-tetrabutyldistannox in further embodiments Alkyl; wherein, the alkoxy group
  • the application does not limit the type of polar aprotic solvent, in some embodiments, it can be selected from acetonitrile, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone, nitromethane, nitroethyl ketone Any one or more of alkane, cyclohexanone, dimethyl sulfoxide, N-methylpyrrolidone, N,N-dimethylacetamide, hexamethylphosphoramide and N,N-dimethylformamide , and in other embodiments, it can be selected as acetonitrile.
  • the application does not limit the amount of polar aprotic solvent.
  • the ratio of the mass amount of solvent to the mass amount of sucrose may be 2 to 20, and in other embodiments, it may be is 3-10, and may be 4-8 in further embodiments.
  • the heating temperature of the reaction solution is not limited, in some embodiments, it may be 65-150°C, and in other embodiments, it may be 85-120°C.
  • the negative pressure in the production equipment is not limited.
  • the negative pressure in the production equipment can be maintained at 0.01kPa ⁇ 50kPa, and in other embodiments , the negative pressure in the generating equipment can be maintained at 0.5kPa ⁇ 20kPa.
  • the types of carboxylic acid anhydrides are not limited, and can be selected from any one of acetic anhydride, butyric anhydride, benzoic anhydride, stearic anhydride, and lauric anhydride, preferably acetic anhydride, according to the types of the above-mentioned organic acid anhydrides , the obtained corresponding sucrose-6-carboxylate is sucrose-6-acetate, sucrose-6-butyrate, sucrose-6-benzoate, sucrose-6-fatty acid ester, or sucrose-6-butyrate, respectively. 6-laurate.
  • Sucrose-6-acetate and sucrose-6-benzoate can be used as raw materials for the synthesis of other types of sucrose-6-carboxylate and intermediates for the synthesis of the sweetener sucralose, while other types of sucrose- 6-Carboxylic acid esters can be used as synthetic intermediates for food additives, chemical products and other reactions.
  • the mass amount of carboxylic acid anhydride and the mass amount of sucrose may be 0.6 to 3.0 based on the quality of sucrose. In other embodiments Among them, 0.8-1 may be sufficient.
  • reaction conditions of the esterification reaction are not limited.
  • the reaction temperature of the esterification reaction can be 0-50°C, and in other embodiments, it can be 1-20°C;
  • the reaction time of the esterification reaction may be 10 min to 24 h, and in other embodiments, it may be 30 min to 4 h.
  • the chemical reagents involved in this application and the original preparation of sucrose-6-ester can be commercially available products, which are not limited in this application.
  • the adopted production equipment of sucrose-6-ester of the present application generates sucrose-6-ester, starts the hot roll distillation device, sets the temperature of each heating roll to 80°C, and the speed of the heating roll to 0.1 rad/s.
  • the prepared reaction solution was continuously fed into the above-mentioned production equipment at a rate of 4 m 3 /h, the reaction equipment was kept at a negative pressure of 0.5 kPa, and each valve was set to a corresponding state.
  • the first solenoid valve is opened to start the esterification reaction under preset conditions.
  • the water content is less than 500 ppm.
  • acetic anhydride was blown into the reaction tank to carry out the acylation reaction. From the beginning of mixing the two, the reaction product finally flows out from the outlet for about 1 hour.
  • the quenching reaction is carried out with water whose volume ratio to the total volume of the reaction solution is 0.25:1, and the organic tin ester accelerator is extracted with hexane whose volume ratio to the total volume of the reaction solution is 1:1, and the obtained Sucrose-6-ethyl ester solution, and analyze the content of each substance by high performance liquid chromatography
  • the following and the normalization in the following examples refer to the separation and determination of the mixed substances by high performance liquid chromatography.
  • the amount of all substances is artificially specified as 100%, and the percentage of each substance in all substances is determined according to the peak area, and the product distribution is as follows:
  • the adopted production equipment of sucrose-6-ester of the present application generates sucrose-6-ester, starts the hot roller distillation device, sets the temperature of the first heating roller to 80°C, the temperature of the second heating roller to 70°C, and the temperature of the first heating roller is set to 70°C.
  • the temperature of the three heating rollers was set to 60°C, and the speed of the heating rollers was set to 0.5 rad/s.
  • the reaction solution prepared above was continuously fed into the above-mentioned production equipment at a rate of 6 m 3 /h, and the reaction equipment kept the negative pressure at 0.8kPa, set each valve to the corresponding state.
  • the first solenoid valve is opened to start the esterification reaction under preset conditions.
  • the water content is less than 500 ppm.
  • acetic anhydride was blown into the reaction tank to carry out acylation reaction. From the beginning of mixing the two, the final flow out from the outlet of the reaction product was about 1.5h.
  • the quenching reaction is carried out with water whose volume ratio to the total volume of the reaction solution is 0.25:1, and the organic tin ester accelerator is extracted with hexane whose volume ratio to the total volume of the reaction solution is 1:1 to obtain sucrose-6-ethyl ester solution, and analyze each substance content by high performance liquid chromatography, and the product distribution is as follows:
  • the sucrose-6-ester production equipment of the present application is used to generate sucrose-6-ester, the hot roll distillation device is started, the temperature of the first heating roll is set to 90°C, the temperature of the second heating roll is set to 70°C, and the temperature of the first heating roll is set to 70°C.
  • the temperature of the three heating rollers was set to 60°C, and the speed of the heating rollers was set to 0.3 rad/s.
  • the reaction solution prepared above was continuously fed into the above-mentioned production equipment at a rate of 8 m 3 /h, and the reaction equipment kept the negative pressure at 1.0kPa, set each valve to the corresponding state.
  • the esterification reaction was carried out when the temperature of the inner cavity formed by the U-shaped plate reached 20°C.
  • the water content is less than 450 ppm.
  • acetic anhydride was blown into the reaction tank to carry out acylation reaction. From the beginning of mixing the two, the final flow out from the outlet of the reaction product was about 1.5h.
  • the quenching reaction is carried out with water whose volume ratio to the total volume of the reaction solution is 0.25:1, and the organic tin ester accelerator is extracted with hexane whose volume ratio to the total volume of the reaction solution is 1:1 to obtain sucrose-6-ethyl ester solution, and analyze each substance content by high performance liquid chromatography, and the product distribution is as follows:
  • the dehydration is carried out by the method of falling liquid in the packed tower.
  • the diameter of the packed tower is 40 mm, 3 ⁇ 8 glass spring packing, and the packing height is 1 meter, which is equivalent to a 10-stage tray.
  • reaction mixture solution prepared above was placed at the inlet of the top of the packed column, and the negative pressure was kept at 0.5 kPa, and at the same time, cyclohexane vapor (100° C., 4 atm) was fed to the gas inlet of the flask at the bottom of the packed column.
  • the reaction mixture solution is reacted with cyclohexane vapor in countercurrent contact, and the vapor containing cyclohexane, water and DMF in the top distillate of the packed column is condensed and collected, and can be recycled after being dried and anhydrous.
  • a liquid sample was collected in the bottom flask of the packed column and the resulting product was clear, light amber in color.
  • the residence time of the reaction liquid in the gas-liquid exchange reactor is about 1 min.
  • the obtained solution is calculated to contain 10% sucrose, and the obtained solution is pressed into another reaction kettle, and acetic anhydride is added dropwise at a temperature lower than 10 ° C according to the mass ratio of sucrose and acetic anhydride to be 1:1.1.
  • the acylation reaction was quenched with 0.25:1 water after continuing the reaction for 2 hours at a temperature below 10°C. Extract the organotin compound with 1:1 cyclohexane, the obtained sucrose-6-ethyl ester solution is analyzed by high performance liquid chromatography, and the product is as follows:
  • the production equipment provided by the present application is compared with the filler liquid drop production equipment in Comparative Example 1, the yield of the sucrose-6-carboxylate prepared by the present application is high, The probability of side reactions is low, and the sucrose reaction is complete. It can be seen from the yield of sucrose-6-acetate that some examples in the present application can reach 91.50% (normalized), while the yield of sucrose-6-acetate in Comparative Example 1 is only 72.05% (normalized). A), that is to say, the output of sucrose-6-carboxylate in the application is significantly higher than the prior art; Similarly, it can be seen from the content of diacetate and sucrose in the reaction product that side reactions occur in the application. The probability is significantly reduced and the sucrose is converted more completely.
  • a production equipment with a hot roll distillation device is designed, and the reaction liquid is rolled to form a thin liquid film under the cooperative operation of multiple heating rolls, and then heated and distilled.
  • the distillation tank and the reaction tank are set up and down without additional power, and the residual liquid can be smoothly carried out in the reaction tank for esterification reaction, in order to produce the target product.
  • the equipment of the present application makes the preparation process of sucrose-6-ester integrated from distillation, cooling, mixing and reaction, the reaction raw materials can be continuously added to the production equipment, the reaction liquid separation step and the esterification reaction step are continuously performed,
  • the continuous production of sucrose-6-ester is realized, the production cycle is greatly shortened, the production efficiency of sucrose-6-ester is improved, and the overall size of the equipment is small, the area is small, the structure is simple, and the economical and practical type is strong; on the one hand
  • the problem of using a large amount of gas or solvent vapor capable of removing water in the process of removing the original water in the prior art is avoided, and the production cost is greatly saved.
  • it overcomes the need for the second reaction mixture in the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

一种蔗糖-6-酯的生产设备,包括蒸馏分离罐、反应罐、冷凝水收集罐,蒸馏分离罐设置在反应罐和冷凝水收集罐上方;蒸馏分离罐包括壳体、热辊蒸馏装置;热辊蒸馏装置包括多个加热辊,多个加热辊上下水平紧密设置在壳体的前后侧壁间;U型板的两端固设在壳体底部的前后侧壁上;若干热交换管设置在U型板形成的内腔中并贯穿壳体的前后侧壁;在壳体的顶部设有进料管,在壳体的底面设有冷凝水出水管,贯穿壳体的底面连接U型板设有蒸余液出料管;冷凝水收集罐连接冷凝水出水管;反应罐连接蒸余液出料管。该生产设备实现了蔗糖-6-酯的连续生产,降低了生产设备体积、节省了占地面积,提高了蔗糖-6-酯的产率。

Description

蔗糖-6-酯的生产设备及生产方法 技术领域
本发明属于精细化工技术领域,具体涉及蔗糖-6-酯的生产设备及生产方法。
发明背景
三氯蔗糖属于新一代甜味剂,具有甜度高、无热量、稳定性好、安全性高等优点,市场前景非常广阔。三氯蔗糖-6-酯是生产三氯蔗糖的重要中间体。
现有技术中,合成蔗糖-6-酯的方法的工艺流程主要包括:将蔗糖、非质子极性溶剂和有机锡类酯化促进剂混合成第一反应混合物;接着将第一反应混合物在特定温度、压力环境下与能够去除水的气体或溶剂蒸汽接触并保持一定的反应时间,从中除去水分得到第二反应混合物;再向第二反应物中加入羧酸酐,得到第三反应混合物,并将第三反应混合物保持足以制备蔗糖-6-酯的时间。这一方法需要使用能够除去水的气体或溶剂蒸气,这一环节的存在严重影响了合成蔗糖-6-酯生产过程的连续性,增加了生产周期,降底了生产效率,且消耗大量能够去除水的气体或溶剂,极大地增加了生产成本和能耗。
需要说明的是,这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
发明内容
鉴于上述问题,提出了本申请以便提供一种克服上述问题或者至少部分地解决上述问题的蔗糖-6-酯的生产设备及生产方法。
依据本申请的一方面,提供了一种蔗糖-6-酯的生产设备,包括蒸馏分离罐、反应罐、冷凝水收集罐,蒸馏分离罐设置在反应罐和冷凝水收集罐上方;
蒸馏分离罐包括壳体、热辊蒸馏装置、进料管、U型板、若干热交换管、冷凝水出水管和蒸余液出料管;其中,热辊蒸馏装置包括多个加热辊,多个加热辊上下水平紧密设置在壳体的前后侧壁间;U型板的两端固设在壳体底部的前后侧壁上,U型板与壳体的左右侧壁及底面非接触设置并形成U型腔;若干热交换管设置在U型板形成的内腔中并贯穿壳体的前后侧壁;在壳体的顶部设有进料管,在壳体的底面设有冷凝水出水管,贯穿壳体的底面连接U型板设有蒸余液出料管;
冷凝水收集罐连接冷凝水出水管;
反应罐连接蒸余液出料管。
可选的,上述设备还包括多个冷凝板,多个冷凝板贯穿设置在壳体的左右侧壁与多个加热辊对应的位置上。
可选的,在上述的设备中,进料管位于壳体内的一端连接有料液分散管。
可选的,在上述的设备中,热辊蒸馏装置包括供电模块,供电模块分别电连接各加热辊,为各加热辊的传热介质提供电能;
热辊蒸馏装置包括驱动模块,驱动模块包括电机和齿轮组,电机连接齿轮组,齿轮组分别连接各加热辊,电机通过齿轮组驱动各加热辊转动。
可选的,在上述的设备中,多个加热辊的直径和长度由上到下依次递增;相邻的两个加热辊设置为转动方向相反。
可选的,在上述的设备中,加热辊的数量为三个,由上至下依次记为第一加热辊、第二加热辊和第三加热辊;
第一加热辊的两端设置有大于其截面直径的第一圆形挡板;
第二加热辊的两端设置有第一凹槽,第一圆形挡板嵌设在第一凹槽内;
第三加热辊的两端设置有大于其截面直径的第二圆形挡板;
第三加热辊的直径小于U型板形成的内腔的宽度。
可选的,在上述的设备中,多个加热辊的预设加热温度由上到下依次递减。
可选的,在上述的设备中,在U型板的一侧侧壁的顶端设有刮板,刮板的外缘与距离刮板最近的加热辊相抵,且刮板与距离刮板最近的加热辊在交点的切线的夹角小于90°。
可选的,在上述的设备中,U型腔和U型板的内腔分别设有液位传感器和温度传感器。
可选的,在上述的设备中,各热交换管包括蒸发段和冷凝段,蒸发段位于壳体内,冷凝段位于壳体外。
可选的,在上述的设备中,在蒸余液出料管上设有第一电磁阀,在反应罐的顶部设有羧酸酯进料管和第二真空管,其中,第二真空管可连接真空泵,在反应罐的底部设有产物出料管,在产物出料管上设有第二电磁阀。
可选的,在上述的设备中,在冷凝水出水管上设有第三电磁阀,在冷凝水收集罐的顶部设有第三真空管,其中,第三真空管可连接真空泵,在冷凝水收集罐设有 出水管,在出水管上设有第四电磁阀。
可选的,在上述的设备中,壳体设有第一真空管,第一真空管可连接真空泵。
可选的,在上述的设备中,壳体的横截面为类梯形。
根据本申请的另一方面,提供了一种蔗糖-6-酯的生产方法,该方法是采用上述任一的设备进行的,包括:
反应液分离步骤:启动热辊蒸馏装置,并将各加热辊设置到预设温度,从蒸馏分离罐的进料口输入反应液,以使反应液在各加热辊的外壁上分离为蒸余液和水蒸气,其中,反应液包括蔗糖、非质子极性溶剂和有机锡酯促进剂;蒸余液汇集至U型腔通过蒸余液出料管流入反应罐,水蒸气在壳体的左右侧壁处冷凝成液态水流至壳体底部从冷凝水出水管流入冷凝水收集罐;和
酯化反应步骤:流入反应罐的蒸余液与从羧酸酯进料管进入的羧酸酐在预设条件下进行酯化反应,生成含蔗糖-6-酯的溶液。
综上所述,本申请的有益效果在于:设计了具有热辊蒸馏装置的生产设备,反应液在多个加热辊相互配合作业下,被碾压形成很薄的液膜,并被加热蒸馏,达到高效去除制备蔗糖-6-酯反应液中水分的目的;另一方面,将蒸馏罐与反应罐上下设置,无需额外动力,蒸余液即可顺利进行反应罐进行酯化反应,以生产目标产物。本申请的设备使得蔗糖-6-酯的制备过程从蒸馏、冷却、混合、反应一体化,反应原料可以持续不断地被加入至生产设备中,反应液分离步骤和酯化反应步骤不间断进行,使得蔗糖-6-酯实现连续生产,极大程度上缩短了生产周期,提高了蔗糖-6-酯的生产效率,且设备整体体积小、占地少、构造简单、经济实用性强;一方面避免了现有技术在去除原来中的水分的过程中需要采用大量能够去除水的气体或溶剂蒸气的问题,大幅度节约了生产成本,另一方面,克服了现有技术中第二反应混合物需要被压入另一空间内与羧酸酐混合需要耗能高、耗时长的缺陷。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图简要说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是 对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的外部整体结构示意图;
图2示出了根据本申请另一个实施例的蔗糖-6-酯的生产设备的外部整体结构示意图;
图3示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的蒸馏分离罐从壳体前侧壁剖开的结构示意图(不包括热辊蒸馏装置);
图4示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的蒸馏分离罐的沿壳体前侧壁和后侧壁的中间位置的径向横截面剖开一半的结构示意图;
图5示出了根据本申请的一个实施例的蔗糖-6-酯的生产设备的蒸馏分离罐的沿壳体左侧壁和右侧壁的中间位置的径向横截面剖开一半的结构示意图;
图6示出了根据本申请一个实施例的蔗糖-6-酯的生产方法的流程示意图。
实施本发明的方式
下面将参照附图更详细地描述本申请的示例性实施例。虽然附图中显示了本申请的示例性实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整的传达给本领域的技术人员。
本申请的构思在于,现有技术中,对生产蔗糖-6-酯的反应液需要首先在一个反应釜中采用蒸汽或溶剂去除水分,然后压入另一个反应釜中,再与羧酸酐反应,生成蔗糖-6-酯。在这个过程中,采用蒸汽或溶剂去除水分的步骤消耗大量的能源,且设备大,占地面积大,去除水分程度也不够彻底;在去除水分后,还需将反应液压入另一个反应釜中,以进行酯化反应,这个过程需要额外的能源和时间,降低了蔗糖-6-酯的生产效率;且现有技术的这种生产方式是不连续的,每次加料反应结束后,才能进行另一次反应,也严重影响了蔗糖-6-酯的生产效率。
图1示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的外部整体结构示意图;图2示出了根据本申请另一个实施例的蔗糖-6-酯的生产设备的外部整体结构示意图;图3示出了根据本申请一个实施例的蔗糖-6-酯的生产设备的蒸馏分离罐从壳体前侧壁剖开的结构示意图(不包括热辊蒸馏装置);图4示出了根据本申 请一个实施例的蔗糖-6-酯的生产设备的蒸馏分离罐的沿壳体前侧壁和后侧壁的中间位置的径向横截面剖开一半的结构示意图;图5示出了根据本申请的一个实施例的蔗糖-6-酯的生产设备的蒸馏分离罐的左侧壁和右侧壁的中间位置的径向横截面剖开一半的剖面结构示意图。
请同时参考图1~5,该蔗糖-6-酯的生产设备100,包括蒸馏分离罐1、反应罐2、和冷凝水收集罐3,蒸馏分离罐1设置在反应罐2和冷凝水收集罐3上方。
蒸馏分离罐1包括壳体1-1、热辊蒸馏装置1-2、进料管1-3、U型板1-4、若干热交换管1-5、冷凝水出水管1-6和蒸余液出料管1-7等。
在本申请的一些实施例中,蒸馏分离罐1可以采用但不局限于不锈钢材料制成,在本申请中,将蒸馏分离罐1的壳体1-1的四个侧面分别称为前侧壁、后侧壁、左侧壁、右侧壁,其中,蒸馏分离罐1的壳体1-1的横截面可以为但不限于类梯形。
热辊蒸馏装置1-2包括多个加热辊1-2-1(1-2-2,1-2-3),多个加热辊上下水平紧密设置在壳体1-1的前后侧壁间。在本申请的一些实施例中,加热辊的数量为3-5个,各个加热辊之间的紧密程度可根据具体的生产因素调整,比如加料速度、反应液粘度等,在一些实施例中,各个加热辊的表面之间的距离不大于1毫米;在另一些实施例中,在各个加热辊之间的间隙可以设置为可调整的,在使用过程中,可以根据具体的生产条件进行调整。
在设备运行的过程中,加热辊转动,反应液逐渐沿着加热辊表面流下,在经过两个加热辊之间时被碾压形成很薄的液膜,同时,加热辊还对反应液进行加热蒸发,使得反应液中的水分被蒸出,变成水蒸气,从而反应液被分离为水蒸气和蒸余液。在本申请中,反应液指的是制备蔗糖-6-酯的混合溶液,包括但不限于蔗糖、非质子极性溶剂和有机锡酯促进剂,反应液在被蒸馏后得到蒸余液,蒸余液与羧酸酐反应生成目标产物蔗糖-6-酯。
U型板1-4的两端固设在壳体1-1底部的前后侧壁上,U型板1-4与壳体1-1的左右侧壁及底面非接触设置并形成U型腔1-9。
在最下面一个加热辊1-2-3的下面设置一个U型板1-4,U型板1-4的两端固设在壳体1-1底部的前后侧壁上,U型板1-4与壳体1-1的左右侧壁及底面非接触设置,也就是说,U型板1-4将壳体1-1的底部分割为两个腔室,一个为U型板1-4的内部空间,称为U型板1-4形成的内腔,另一个为U型板1-4与壳体1-1的左右侧壁及底面形成的腔室,称为U型腔1-9。这两个腔室的作用是用来分离水蒸气和 蒸余液。具体的,由于壳体1-1的左右侧壁与环境存在热交换,因此水蒸气能够在壳体1-1的左右侧壁上冷凝成液态水,然后沿着壳体1-1的左右侧壁向下流淌进入U型腔1-9中。而蒸余液沿着加热辊1-2-3流下,最终滴落在U型板1-4形成的内腔中,从而实现了水蒸气与蒸余液的分离。
在U型板1-4形成的内腔1-8中设置有若干热交换管1-5,这些热交换管1-5贯穿壳体1-1的前后侧壁;热交换管的作用是对蒸余液进行冷却,通常情况下,反应液会在一个较高的温度被蒸馏以去除其中的水分,而酯化反应的反应温度通常是比较低的,一般在室温以下即可进行,因此,为了使得蒸余液尽快达到酯化反应的预设温度,设置了热交换管1-5,热交换管1-5能够与环境进行热交换,快速带走蒸余液大量的热量,以达到冷却蒸余液的目的。
在壳体1-1的顶部设有进料管1-3,在壳体1-1的底面设有冷凝水出水管1-6,贯穿壳体1-1的底面连接U型板1-4设有蒸余液出料管1-7;冷凝水收集罐3连接冷凝水出水管1-6;反应罐2连接蒸余液出料管1-7。
反应液从进料口1-3被泵入设备内,在加热辊处被分离为水蒸气和蒸余液,水蒸气在壳体1-1的左右侧壁处被冷凝成液态水,并流入冷凝水出水管1-6,进一步地,进入冷凝水收集罐3,蒸余液滴入U型板1-4形成的内腔中,被冷却后,经由蒸余液出料管1-7进入反应罐2,与反应罐2中的羧酸酐反应生成目标产物。由于冷凝水收集罐3与反应罐2的距离较近,冷凝水收集罐3中的冷凝水对反应罐2中的物料仍然可以起到冷却作用。
为了使水蒸气达到更好的冷凝效果,还可以设置冷凝板,请参考图1~4,在本申请的一些实施例中,该设备还包括多个冷凝板1-10,多个冷凝板贯穿设置在壳体1-1的左右侧壁与多个加热辊1-2-1(1-2-2,1-2-3)对应的位置上。
水蒸气在冷凝板1-10被冷凝成液态水,并在冷凝板1-10的引流作用下流入U型腔1-9中,为了使得环境温度不会对加热辊的温度造成影响,冷凝板1-10与壳体1-1的相交处是密封的,如采用焊接等工艺实现。
请参考图1~4,在本申请的一些实施例中,壳体1-1设有第一真空管1-12,第一真空管1-12可连接真空泵(图中未示出)。真空泵可以为壳体1-1提供负压,一方面反应液中的水分更加容易被蒸馏成水蒸气,另一方面,也可以使水蒸气从壳体1-1被抽离,从而达到快速去除反应液中水分的目的。需要说明的是,图4显示的是蒸馏分离罐1沿其壳体1-1沿前侧壁和后侧壁的中间位置的径向横截面剖开的 不具有蒸余液出料管1-7的一半,因此,在图4中不显示蒸余液出料管1-7。
请同时参考图3~图5,在本申请的一些实施例中,加热辊的数量为三个,由上至下依次记为第一加热辊1-2-1、第二加热辊1-2-2和第三加热辊1-2-3。进料管1-3位于壳体1-1内的一端连接有料液分散管1-11。也就是说进料管1-3和料液分散管1-11整体来看形状像一个倒立的T型,其中水平一端,即有料液分散管1-11位于第一加热辊1-2-1上方,在料液分散管1-11内部设有引流槽(图中未示出)和多个出料口(图中未示出),以使将从进料管1-3进入的反应液可以更加均匀,面积更大地流向第一加热辊1-2-1。需要说明的是,图5显示的是蒸馏分离罐1沿其壳体1-1沿左侧壁和右侧壁的中间位置的径向横截面剖开的不具有冷凝水出水管1-6的一半,因此,在图5中不显示冷凝水出水管1-6。
如图2所示,在本申请的一些实施例中,上述的热辊蒸馏装置1-2包括供电模块1-2-4,供电模块1-2-4分别电连接各加热辊,为各加热辊的传热介质提供电能。加热辊中的传热介质通常为金属质地的导热体,如电阻丝等,供电模块1-2-4为加热辊的传热介质提供电能,传热介质能够将电能转化为热能,从而实现对反应液的加热。在本申请的一些实施例中,供电模块1-2-4可以设置在壳体1-1的前后侧壁中的任一之上,本申请对供电模块1-2-4的设置位置不做限制,只要设置位置合理,不影响加热辊的转动即可。
如图2所示,热辊蒸馏装置1-2还包括驱动模块1-2-5,驱动模块1-2-5包括电机和齿轮组(图中未示出),电机连接齿轮组,齿轮组分别连接各加热辊,电机通过齿轮组驱动各加热辊转动。在本申请的一些实施例中,驱动模块1-2-5可以设置在壳体1-1的没有设置供电模块1-2-5的前侧壁或后侧壁之上,本申请对驱动模块1-2-5的设置位置不做限制,只要设置位置合理,不影响加热辊的转动即可。需要说明的是,在通过齿轮组驱动各加热辊转动的情况下,无论各加热辊的半径的大小为多少,各加热辊旋转的角速度都是一致的。
请参考图4和图5,以加热辊的数量为三个为例,从图中可以看出,各加热辊的直径和长度由上到下依次递增,即第一加热辊1-2-1的直径小于第二加热辊1-2-2的直径,第二加热辊1-2-2的直径小于第三加热辊1-2-3的直径;第一加热辊1-2-1的长度小于第二加热辊1-2-2的长度,第二加热辊1-2-2的长度小于第三加热辊1-2-3的长度。且相邻的两个加热辊设置为转动方向相反,如第一加热辊1-2-1的转动方向设置为顺时针,则第二加热辊1-2-2的转动方向设置为逆时针,第三加热辊1-2-3 的转动发现设置为顺时针,以此类推。
这样设置的目的是由于反应液从进料管1-3进入后逐渐在第一加热辊1-2-1的表面分散,最理想的状态是随着第一加热辊1-2-1的转动进入第一加热辊1-2-1与第二加热辊1-2-2之间的微小缝隙内,然后在沿着第二加热辊1-2-2的表面延展,进入第二加热辊1-2-2与第三加热辊1-2-3之间的微小缝隙内,反应液反复被碾压挤压成很薄的液膜,且在这个过程中反应液一直被加热,逐渐分离成水蒸气和蒸余液。由于反应液的粘度、加热辊的转速等因素造成不能达到最理想的状态时,以反应液在第一加热辊1-2-1表面的运动情况为例,这时,会有一部分反应液在运行到水平位置时,如第一加热辊1-2-1的三点钟方向时,从第一加热辊1-2-1的表面滴落,在第二加热辊1-2-2的直径以及长度都大于第一加热辊1-2-1时,滴落的反应液就会落在第二加热辊1-2-2上,而不会从加热辊的表面滴在壳体1-1的底部,避免了反应液的浪费,也不会造成壳体1-1清洗困难的问题。同理,反应液在第二加热辊1-2-2和第三加热辊1-2-3的表面运动时,同样存在这样的问题,请参考图3和图4,在一些实施例中,可以将第三加热辊1-2-3的直径设置得小于U型板1-4形成的内腔的宽度,从第三加热辊1-2-3的表面滴落的反应液就可以落在U型板1-4形成的内腔中,而不会外溢。
同时由于各加热辊角速度一致,加热辊的线速度自上而下地增加,使得加热辊摩擦过程中形成液膜速度更快、面积更大,有效地保持了温度递减时的蒸馏效率,提升了产物收率。
在本申请的一些实施例中,在上述的设备中,多个加热辊的预设加热温度由上到下可依次递减。通过自上而下梯度降低加热辊的预设温度,不仅降低了待酯化反应的蒸余液的降温负荷,还减少了装置耗能。
请参考图4和图5,为了防止反应液从加热辊的两个端面外溢,在一些实施例中,在第一加热辊1-2-1的两端设置有大于其截面直径的第一圆形挡板1-2-1-1,第三加热辊1-2-3的两端设置有大于其截面直径的第二圆形挡板1-2-3-1,这样第一圆形挡板1-2-1-1阻挡第一加热辊1-2-1表面的反应液外溢,而第二圆形挡板1-2-3-1可以同时阻挡第二加热辊1-2-2和第三加热辊1-2-3表面的反应液的外溢,因此,通过圆形挡板的设计,可以有效避免反应液或者蒸余液从加热辊的两端溢出。
再请参考图4和图5,为了更加有效的固定圆形挡板,在一些实施例中,可以在第二加热辊1-2-2的两端设置有第一凹槽1-2-2-1,第一圆形挡板1-2-1-1嵌设在 第一凹槽1-2-2-1内。
请同时参考图3和图4,为了使最下方的加热辊,在本实施例中为第三加热辊1-2-3上的被蒸馏后的反应液,即蒸余液,更加彻底地、完全地流入U型板1-4形成的内腔中,可以在U型板1-4的一侧侧壁的顶端设有刮板1-4-1,刮板1-4-1的外缘与距离所述刮板最近的加热辊,即第三加热辊1-2-3的表面相抵,以刮板1-4-1与第三加热辊1-2-3的一个截面为例,相抵的点称为交点,刮板1-4-1与第三加热辊1-2-3在交点的切线的夹角小于90°,这样保障了刮板倾斜的方向是朝向U型板1-4形成的内腔的方向的。
在本申请的一些实施例中,U型腔1-9和U型板1-4形成的内腔分别设有液位传感器(图中未示出)和温度传感器(图中未示出)。这样可以更加方便地控制反应条件和进度。
在本申请的一些实施例中,U型板1-4形成的内腔1-8设置的热交换管1-5包括蒸发段1-5-1和冷凝段1-5-2,蒸发段1-5-1位于壳体1-1内,蒸发段1-5-1与蒸余液和冷凝段1-5-2分别进行热交换,具体的,蒸发段1-5-1吸收蒸余液的热量传递至冷凝段1-5-2,而冷凝段1-5-2位于壳体1-1外,与环境进行热交换,将接收到的热量交换至空气中,以达到散热的目的。
对于热交换管1-5的具体结构不局限于上述的实施例,比如还可以在U型板1-4形成的内腔1-8内设置若干贯穿壳体1-1的前后侧壁的导热管,在导热管的两头分别插入L型换热管,L型换热管的蒸发段位于导热管内,L型换热管的冷凝段位于壳体1-1外,且设置有散热翅片,其热交换原理同上述实施例,这里不再赘述。
请参考图1,在本申请的一些实施例中,在蒸余液出料管1-7上设有第一电磁阀1-7-1,在反应罐2的顶部设有羧酸酯进料管2-1和第二真空管2-2,其中,第二真空管2-2可连接真空泵(图中未示出),在反应罐2的底部设有产物出料管2-3,在产物出料管2-3上设有第二电磁阀2-3-1。
电磁阀的作用是能够按照需求决定是否打开阀门以进行相关生成,更加方便对整体生成过程的控制;真空泵可以为反应罐中进行的反应提供负压环境,有利于酯化反应的正向进行。
请再参考图1,在冷凝水出水管1-6上设有第三电磁阀1-6-1,在冷凝水收集罐3的顶部设有第三真空管3-1,其中,第三真空管3-1可连接真空泵(图中未示出),在冷凝水收集罐3设有出水管3-2,在出水管3-2上设有第四电磁阀3-2-1。
图6示出了根据本申请一个实施例的蔗糖-6-酯的生产方法的流程示意图,该方法可以采用上述任一的设备实现,从图6可以看出,本申请的蔗糖-6-酯的生产方法至少包括如下的步骤S610~步骤S620:
反应液分离步骤S610:启动热辊蒸馏装置,并将各加热辊设置到预设温度,从蒸馏分离罐的进料口输入反应液,以使反应液在各加热辊的外壁上分离为蒸余液和水蒸气,其中,反应液包括蔗糖、非质子极性溶剂和有机锡酯促进剂;蒸余液汇集至U型腔通过蒸余液出料管流入反应罐,水蒸气在壳体的左右侧壁处冷凝成液态水流至壳体底部从冷凝水出水管流入冷凝水收集罐。
酯化反应步骤S620:流入反应罐的蒸余液与从羧酸酯进料管进入的羧酸酐在预设条件下进行酯化反应,生成含蔗糖-6-酯的溶液。
以上述的蔗糖-6-酯生产设备为例,上述方法的具体流程可以描述为:首先,配制反应液,具体地,将蔗糖、非质子极性溶剂、有机锡类酰化促进剂混合成反应液。
生产的初始阶段第四电磁阀3-2-1、第二电磁阀2-3-1、第三电磁阀1-6-1、第一电磁阀1-7-1为关闭状态,羧酸酯进料管2-1为关闭状态,真空泵通过第一真空管1-12、第二真空管2-2和第三真空管3-1将蒸馏分离罐1、反应罐2和冷凝水收集罐3内空气抽出,蒸馏分离罐1、反应罐2和冷凝水收集罐3内形成负压环境。将反应液由进料管1-3持续注入蒸馏分离罐1内,此时可以将蒸馏分离罐1对应的真空泵打开,因蒸馏分离罐1内为真空低压环境,驱动模块1-2-5通过齿轮组驱动第一加热辊1-2-1顺时针旋转,第二加热辊1-2-2逆时针旋转,第三加热辊1-2-3顺时针旋转。反应液通过在第一加热辊1-2-1、第二加热辊1-2-2和第三加热辊1-2-3的表面向下流动挤压形成液态薄膜,反应液中的水分子由液膜表面逸出,经冷凝板1-10冷凝形成液态水流入U型腔1-9内,由此避免了在这一环节需要使用够除去水的气体或溶剂蒸气的工艺来除水,有效地节约了除水的经济成本和时间成本。除去水分的反应液,即蒸余液在刮板1-4-1的阻挡下,流入U型板1-4形成的内腔中。
设置在U型板1-4形成的内腔中的热交换管1-5与蒸余液发生热交换作用使其降温,同时储存在U型腔1-9内的冷凝水也可以对蒸余液产生辅助降温的作用。当U型腔1-9内的冷凝水达到设定液位时,打开第三电磁阀1-6-1,冷凝水进入冷凝水收集罐3内。当位于U型板1-4内的蒸余液的温度和液位达到预设值时,打开第一电磁阀1-7-1,蒸余液流入反应罐2内一定量后,可关闭第一电磁阀1-7-1,并向 反应罐2内吹送羧酸酐,羧酸酐与蒸余液在反应罐2内混合并进行酯化反应,得到目标产物蔗糖-6-酯。制备好的蔗糖-6-酯可以由第二电磁阀2-3-1控制经产物出料管2-3输出。真空泵再通过第二真空管2-2将反应罐2内空气抽出,如此循环就可以实现连续制备蔗糖-6-酯的生产过程。
在上述方法中,对各个加热辊的转动速度本申请不做限制,在本申请的一些实施例中,角速度可设置为0.1rad/s至10rad/s。若加热辊的转动角速度小于0.1rad/s,则转动速率过慢,反应液容易从加热辊的表面滴落,而不能形成液膜,从而影响蒸发效果;若加热辊的转动角速度大于10rad/s,则转速过快,反应液被蒸发的时间过短,也不利于水分的分离。
在上述方法中的对酯化反应的反应原料和预设条件不做限制,可参考现有技术,也可采用下述推荐的技术方案。
在本申请中,对有机锡化合物的种类不做限制,可采用单锡有机化合物,也可采用双锡有机化合物,在一些实施例中可选为1,3-二烃氧基-1,1,3,3-四-(烃基)二锡氧烷、氧化二(烃基)锡、1,3-二酰氧基-1,1,3,3-四-(烃基)二锡氧烷和1-二酰氧基-1,1,3,3-四-(烃基)二锡氧烷中的任一种或多种,在另一些实施例中可选为1,3-二酰氧基-1,1,3,3-四-(烃基)二锡氧烷,在又一些实施例中可选为1,3-二乙酰氧基-1,1,3,3-四丁基二锡氧烷;其中,烃氧基可选为烷氧基或苯氧基,在一些实施例中,烷氧基可选为甲氧基、乙氧基、正丙氧基、正丁氧基、正戊氧基或正己氧基,在另一些实施例中,可选为甲氧基;在一些实施例中,烃基可选为烷基、环烷基、芳基或芳烷基,在另一些实施例中,可选为烷基,在又一些实施例中可选为正丁基。
本申请对极性非质子溶剂的种类不做限制,在一些实施例中,可选自乙腈、1,4-二氧六环、甲乙酮、甲基异丁基酮、硝基甲烷、硝基乙烷、环己酮、二甲亚砜、N-甲基吡咯烷酮、N,N-二甲基乙酰胺、六甲基磷酰胺和N,N-二甲基甲酰胺中的任意一种或多种,在另一些实施例中可选为乙腈。
本申请对极性非质子溶剂的用量不做限制,在一些实施例中,以蔗糖的质量为基准,溶剂的质量用量与蔗糖的质量用量比可以为2~20,在另一些实施例中可以为3~10,在又一些实施例中可以为4~8。
在本申请中,对反应液的加热温度不做限制,在一些实施例中,可以为65~150℃,在另一些实施例中,可以为85~120℃。
在本申请中,在真空管连接真空泵的情况下,对生产设备内的负压大小不做限 制,在一些实施例中,生成设备内的负压可以保持在0.01kPa~50kPa,在另一些实施例中,生成设备内的负压可以保持在0.5kPa~20kPa。
在本申请中,对有羧酸酐的种类不做限制,可选自乙酸酐、丁酸酐、苯甲酸酐、硬脂酸酐、月桂酸酐中的任意一种,优选乙酸酐,根据上述有机酸酐的种类,得到的对应的蔗糖-6-羧酸酯分别为蔗糖-6-乙酸酯、蔗糖-6-丁酸酯、蔗糖-6-苯甲酸酯、蔗糖-6-脂肪酸酯、或蔗糖-6-月桂酸酯。蔗糖-6-乙酸酯和蔗糖-6-苯甲酸酯可以用作合成其他种类蔗糖-6-羧酸酯的原料和合成甜味剂三氯蔗糖的中间体,而其他的各类蔗糖-6-羧酸酯可以用作食品添加剂、化工产品以及其他反应的合成中间体。
在本申请中,对有羧酸酐的用量不做限制,在一些实施例中,以蔗糖的质量为基准,羧酸酐的质量用量与蔗糖的质量用量比可以为0.6~3.0,在另一些实施例中,可以为0.8~1。
在本申请中,对酯化反应的反应条件不做限制,在一些实施例中,酯化反应的反应温度可以为0~50℃,在另一些实施例中,可以为1~20℃;在一些实施例中,酯化反应的反应时间可以为10min到24h,在另一些实施例中,可以为30min到4h。
需要说明的是,上述未尽述的反应条件可参考现有技术。
本申请中涉及的测试手段以及药品来源
高效液相色谱(用于测试反应产物中蔗糖、蔗糖-6-酯等物质的含量)
日本岛津高效液相色谱仪,配RID-10A示差折光检测,LC-10ADVP高压泵,CTO-10ASVP恒温箱;色谱柱:Agilent XDB C18柱(250mm×4.6mm,5μm);流动相:甲醇-0.125%磷酸氢二钾水溶液(4:6);柱温:30℃;流量:1.0mL/min。其中,需要甲醇(色谱纯)、磷酸氢二钾(分析纯)、超纯水、三氯蔗糖标准(纯度99.9%),外标法测量含量。
水分的测试方法
水含量的测定使用卡尔费休法,请参考现有技术,在各个实施例中不再赘述。
药品来源
本申请中涉及的化学试剂以及制备蔗糖-6-酯的原来均可采用市售产品,本申请不做限制。
实施例1
按照蔗糖、有机锡酯促进剂(1,1,3-二乙酰氧基-1,1,3,3-四丁基二锡氧烷)、非 质子极性溶剂(DMF)的质量比例为1:2:10配置成300公斤反应液。
采用的本申请的蔗糖-6-酯的生产设备生成蔗糖-6-酯,启动热辊蒸馏装置,将各加热辊的温度均设置为80℃,加热辊的速率设置为0.1rad/s将上述制备的反应液在以4m 3/h的速率连续进料至上述的生产设备中,反应设备保持负压在0.5kPa,将各阀门设置到相应状态。
在U型板形成的内腔的温度达到15℃,且蒸余液的液位达到预设值时,打开第一电磁阀,在预设条件下开始进行酯化反应。
此时可以取样测试其中水含量,本实施例中水含量小于500ppm。
按照蔗糖的投放质量与乙酸酐的质量比1:1.1的比例向反应罐内吹送乙酸酐进行酰化反应,从二者混合的开始计,最终从反应产物出料口流出大概有1h,待酯化反应结束后,用与反应液总体积的体积比为0.25:1的水进行淬灭反应,并用与反应液总体积的体积比为1:1的己烷萃取有机锡酯促进剂,得到的蔗糖-6-乙酯溶液,并通过高效液相色谱法分析各物质含量,下述的以及以下各实施例中的归一化,是指在采用高效液相色谱法的混合物质进行分离测定时,人为规定所有物质的量为100%,按照谱峰面积确定各物质占所有物质的百分比,产物分布如下:
a.蔗糖-6-乙酸酯89.95%(归一化);
b.二乙酸酯7.05%(归一化);
c.蔗糖0.28%(归一化)。
实施例2
按照蔗糖、有机锡酯促进剂(1,1,3-二乙酰氧基-1,1,3,3-四丁基二锡氧烷)、非质子极性溶剂(DMF)的质量比例为1:2:10配置成500公斤反应液。
采用的本申请的蔗糖-6-酯的生产设备生成蔗糖-6-酯,启动热辊蒸馏装置,将第一加热辊的温度设置为80℃,第二加热辊的温度设置为70℃,第三加热辊的温度设置为60℃,加热辊的速率设置为0.5rad/s将上述制备的反应液在以6m 3/h的速率连续进料至上述的生产设备中,反应设备保持负压在0.8kPa,将各阀门设置到相应状态。
在U型板形成的内腔的温度达到10℃,且蒸余液的液位达到预设值时,打开第一电磁阀,在预设条件下开始进行酯化反应。
此时可以取样测试其中水含量,本实施例中水含量小于500ppm。
按照蔗糖的投放质量与乙酸酐的质量比1:1.1的比例向反应罐内吹送乙酸酐进行酰化反应,从二者混合的开始计,最终从反应产物出料口流出大概有1.5h,待酯化反应结束后,用与反应液总体积的体积比为0.25:1的水进行淬灭反应,并用与反应液总体积的体积比为1:1的己烷萃取有机锡酯促进剂,得到的蔗糖-6-乙酯溶液,并通过高效液相色谱法分析各物质含量,产物分布如下:
a.蔗糖-6-乙酸酯90.60%(归一化);
b.二乙酸酯7.00%(归一化);
c.蔗糖0.24%(归一化)。
实施例3
按照蔗糖、有机锡酯促进剂(1,1,3-二乙酰氧基-1,1,3,3-四丁基二锡氧烷)、非质子极性溶剂(DMF)的质量比例为1:2:10配置成800公斤反应液。
采用的本申请的蔗糖-6-酯的生产设备生成蔗糖-6-酯,启动热辊蒸馏装置,将第一加热辊的温度设置为90℃,第二加热辊的温度设置为70℃,第三加热辊的温度设置为60℃,加热辊的速率设置为0.3rad/s将上述制备的反应液在以8m 3/h的速率连续进料至上述的生产设备中,反应设备保持负压在1.0kPa,将各阀门设置到相应状态。
在U型板形成的内腔的温度达到20℃,进行酯化反应。
此时可以取样测试其中水含量,本实施例中水含量小于450ppm。
按照蔗糖的投放质量与乙酸酐的质量比1:1.1的比例向反应罐内吹送乙酸酐进行酰化反应,从二者混合的开始计,最终从反应产物出料口流出大概有1.5h,待酯化反应结束后,用与反应液总体积的体积比为0.25:1的水进行淬灭反应,并用与反应液总体积的体积比为1:1的己烷萃取有机锡酯促进剂,得到的蔗糖-6-乙酯溶液,并通过高效液相色谱法分析各物质含量,产物分布如下:
a.蔗糖-6-乙酸酯91.50%(归一化);
b.二乙酸酯6.90%(归一化);
c.蔗糖0.20%(归一化)。
对比例1
按照蔗糖、有机锡酯促进剂(1,1,3-二乙酰氧基-1,1,3,3-四丁基二锡氧烷)、非 质子极性溶剂(DMF)的质量比例为1:2:10配置成300公斤反应液,加热90℃溶解成反应混合溶液。
采用填料塔降液的方式进行脱水,填料塔直径40毫米,3×8玻璃弹簧填料,填料高度1米,相当于10级塔板。
将上述制备的反应混合溶液在填料塔的顶部的入口,保持负压在0.5kPa,同时,将环己烷蒸气(100℃,4atm)进料至填料塔底部烧瓶气体入口。反应混合溶液与环己烷蒸气逆流接触反应,填料塔的顶部馏出物含有环己烷、水和DMF的蒸气经冷凝并且收集,经过干燥无水处理后方可循环使用。
填料塔底部烧瓶收集液体样品,所得产物为透明、浅琥珀色。反应液在气液交换反应器内停留时间约1min。
得到的溶液经计算含有10%的蔗糖,将得到的溶液压到另一个反应釜,在低于10℃的温度条件下按照蔗糖与乙酸酐的质量比为1:1.1的比例滴加乙酸酐进行酰化反应,在低于10℃的温度下继续反应2小时之后,用0.25:1的水进行淬灭反应。用1:1的环己烷萃取有机锡化合物,得到的蔗糖-6-乙酯溶液通过高效液相色谱法分析,产物如下:
a.蔗糖-6-乙酸酯72.05%(归一化);
b.二乙酸酯4.36%(归一化);
c.蔗糖22.76%(归一化)。
从实施例1~3和对比例1中可以看出,采用本申请提供的生产设备与对比例1采用填料降液生产设备相比,本申请制备的蔗糖-6-羧酸酯的产量高、副反应发生概率低、蔗糖反应完全。以蔗糖-6-乙酸酯产量可以看出,本申请中一些实施例可达到91.50%(归一化),而对比例1中蔗糖-6-乙酸酯中的产量仅为72.05%(归一化),也就是说本申请蔗糖-6-羧酸酯的产量显著高于现有技术;同理,由反应产物中的二乙酸酯、蔗糖含量可以看出,本申请中副反应发生概率显著降低,蔗糖转化得更加彻底。
综上所述,本申请的有益效果在于:设计了具有热辊蒸馏装置的生产设备,反应液在多个加热辊相互配合作业下,被碾压形成很薄的液膜,并被加热蒸馏,达到高效去除制备蔗糖-6-酯反应液中水分的目的;另一方面,将蒸馏罐与反应罐上下设置,无需额外动力,蒸余液即可顺利进行反应罐进行酯化反应,以生产目标产物。 本申请的设备使得蔗糖-6-酯的制备过程从蒸馏、冷却、混合、反应一体化,反应原料可以持续不断地被加入至生产设备中,反应液分离步骤和酯化反应步骤不间断进行,使得蔗糖-6-酯实现连续生产,极大程度上缩短了生产周期,提高了蔗糖-6-酯的生产效率,且设备整体体积小、占地少、构造简单、经济实用型强;一方面避免了现有技术在去除原来中的水分的过程中需要采用大量能够去除水的气体或溶剂蒸气的问题,大幅度节约了生产成本,另一方面,克服了现有技术中第二反应混合物需要被压入另一空间内与羧酸酐混合需要耗能高、耗时长的缺陷。以上所述,仅为本申请的具体实施方式,在本申请的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本申请的目的,本申请的保护范围应以权利要求的保护范围为准。
以上所述,仅为本申请的具体实施方式,在本申请的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本申请的目的,本申请的保护范围应以权利要求的保护范围为准。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (15)

  1. 一种蔗糖-6-酯的生产设备,其特征在于,包括蒸馏分离罐、反应罐、冷凝水收集罐,所述蒸馏分离罐设置在所述反应罐和所述冷凝水收集罐上方;
    所述蒸馏分离罐包括壳体、热辊蒸馏装置、进料管、U型板、若干热交换管、冷凝水出水管和蒸余液出料管;其中,所述热辊蒸馏装置包括多个加热辊,所述多个加热辊上下水平紧密设置在所述壳体的前后侧壁间;所述U型板的两端固设在所述壳体底部的前后侧壁上,所述U型板与所述壳体的左右侧壁及底面非接触设置并形成U型腔;所述若干热交换管设置在所述U型板形成的内腔中并贯穿所述壳体的前后侧壁;在所述壳体的顶部设有进料管,在所述壳体的底面设有冷凝水出水管,贯穿所述壳体的底面连接所述U型板设有蒸余液出料管;
    所述冷凝水收集罐连接所述冷凝水出水管;
    所述反应罐连接所述蒸余液出料管。
  2. 根据权利要求1所述的设备,其特征在于,所述设备还包括多个冷凝板,所述多个冷凝板贯穿设置在所述壳体的左右侧壁与所述多个加热辊对应的位置上。
  3. 根据权利要求1所述的设备,其特征在于,所述进料管位于所述壳体内的一端连接有料液分散管。
  4. 根据权利要求1所述的设备,其特征在于,所述热辊蒸馏装置包括供电模块,所述供电模块分别电连接各所述加热辊,为各所述加热辊的传热介质提供电能;
    所述热辊蒸馏装置包括驱动模块,所述驱动模块包括电机和齿轮组,所述电机连接所述齿轮组,所述齿轮组分别连接各所述加热辊,所述电机通过所述齿轮组驱动各所述加热辊转动。
  5. 根据权利要求1所述的设备,其特征在于,所述多个加热辊的直径和长度由上到下依次递增;相邻的两个所述加热辊设置为转动方向相反。
  6. 根据权利要求5所述的设备,其特征在于,所述加热辊的数量为三个,由上至下依次记为第一加热辊、第二加热辊和第三加热辊;
    所述第一加热辊的两端设置有大于其截面直径的第一圆形挡板;
    所述第二加热辊的两端设置有第一凹槽,所述第一圆形挡板嵌设在所述第一凹槽内;
    所述第三加热辊的两端设置有大于其截面直径的第二圆形挡板;
    所述第三加热辊的直径小于所述U型板形成的内腔的宽度。
  7. 根据权利要求1所述的设备,其特征在于,在上述的设备中,所述多个加热辊的预设加热温度由上到下依次递减。
  8. 根据权利要求1所述的设备,其特征在于,在所述U型板的一侧侧壁的顶端设有刮板,所述刮板的外缘与距离所述刮板最近的加热辊相抵,且所述刮板与距离所述刮板最近的加热辊在交点的切线的夹角小于90°。
  9. 根据权利要求1所述的设备,其特征在于,所述U型腔和所述U型板的内腔分别设有液位传感器和温度传感器。
  10. 根据权利要求1所述的设备,其特征在于,各所述热交换管包括蒸发段和冷凝段,所述蒸发段位于所述壳体内,所述冷凝段位于所述壳体外。
  11. 根据权利要求1所述的设备,其特征在于,在所述蒸余液出料管上设有第一电磁阀,在所述反应罐的顶部设有羧酸酯进料管和第二真空管,其中,第二真空管可连接真空泵,在所述反应罐的底部设有产物出料管,在所述产物出料管上设有第二电磁阀。
  12. 根据权利要求1所述的设备,其特征在于,在所述冷凝水出水管上设有第三电磁阀,在所述冷凝水收集罐的顶部设有第三真空管,其中,第三真空管可连接真空泵,在所述冷凝水收集罐设有出水管,在所述出水管上设有第四电磁阀。
  13. 根据权利要求1~12中任一项所述的设备,其特征在于,所述壳体设有第一真空管,所述第一真空管可连接真空泵。
  14. 根据权利要求1~12中任一项所述的设备,其特征在于,所述壳体的横截面为类梯形。
  15. 一种蔗糖-6-酯的生产方法,其特征在于,所述方法是采用权利要求1~14中任一项所述的设备进行的,包括:
    反应液分离步骤:启动所述热辊蒸馏装置,并将各所述加热辊设置到预设温度,从所述蒸馏分离罐的进料口输入反应液,以使所述反应液在各所述加热辊的外壁上分离为蒸余液和水蒸气,其中,反应液包括蔗糖、非质子极性溶剂和有机锡酯促进剂;所述蒸余液汇集至所述U型腔通过所述蒸余液出料管流入所述反应罐,所述水蒸气在所述壳体的左右侧壁处冷凝成液态水流至壳体底部从所述冷凝水出水管流入所述冷凝水收集罐;和
    酯化反应步骤:流入所述反应罐的蒸余液与从羧酸酯进料管进入的羧酸酐在预设条件下进行酯化反应,生成含所述蔗糖-6-酯的溶液。
PCT/CN2021/076810 2021-02-19 2021-02-19 蔗糖-6-酯的生产设备及生产方法 WO2022174381A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21926102.1A EP4163000B1 (en) 2021-02-19 2021-02-19 Production apparatus and production method for sucrose-6-ester
US18/016,834 US20230294012A1 (en) 2021-02-19 2021-02-19 Production apparatus and production method of sucrose-6-ester
CN202180000399.1A CN113039001B (zh) 2021-02-19 2021-02-19 蔗糖-6-酯的生产设备及生产方法
PCT/CN2021/076810 WO2022174381A1 (zh) 2021-02-19 2021-02-19 蔗糖-6-酯的生产设备及生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076810 WO2022174381A1 (zh) 2021-02-19 2021-02-19 蔗糖-6-酯的生产设备及生产方法

Publications (1)

Publication Number Publication Date
WO2022174381A1 true WO2022174381A1 (zh) 2022-08-25

Family

ID=76455925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076810 WO2022174381A1 (zh) 2021-02-19 2021-02-19 蔗糖-6-酯的生产设备及生产方法

Country Status (4)

Country Link
US (1) US20230294012A1 (zh)
EP (1) EP4163000B1 (zh)
CN (1) CN113039001B (zh)
WO (1) WO2022174381A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117443001A (zh) * 2023-12-25 2024-01-26 台厝(福建)科技有限公司 一种笋竹培育过程中的施肥蒸馏炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776903B1 (en) * 1995-11-28 2003-01-29 McNEIL-PPC, INC. Process for the production of sucrose-6-ester.
CN1446223A (zh) * 2000-07-31 2003-10-01 塔特和莱利有限公司 用于合成蔗糖-6-酯类的改进方法
CN101605804A (zh) * 2007-01-09 2009-12-16 塔特和莱利技术有限公司 用于合成蔗糖-6-酯的方法
CN102639551A (zh) * 2009-10-12 2012-08-15 塔特和莱利技术有限公司 蔗糖-6-酯的生产方法
CN104817597A (zh) * 2015-05-22 2015-08-05 盐城捷康三氯蔗糖制造有限公司 蔗糖-6-酯的制备方法
CN212315609U (zh) * 2020-04-10 2021-01-08 辽宁宝来生物能源有限公司 一种高浓度废液的蒸馏装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094992A (ja) * 1983-10-28 1985-05-28 Sankyo Co Ltd グリゼオ−ル酸誘導体
IT1226351B (it) * 1988-07-13 1991-01-11 Nuovo Pignone Spa Procedimento per la realizzazione di cuscinetti a rulli di ridottissimo ingombro assiale e di elevata capacita' di carico, particolarmente adatti per le bielle ad eccentrico di ratiere rotative funzionanti ad altissime velocita', e cuscinetti cosi' ottenuti.
JP2571627B2 (ja) * 1989-10-27 1997-01-16 住友大阪セメント株式会社 転圧コンクリート用添加剤
EP0435364B1 (en) * 1989-12-21 1995-04-05 Unilever N.V. Process for refining organic-solvent containing crude polyol fatty-acid polyester products
FI91261C (fi) * 1991-03-22 1996-01-31 Xyrofin Oy Kiteinen, kidevedetön laktitoli ja menetelmä sen valmistamiseksi sekä sen käyttö
DE4222956A1 (de) * 1992-07-13 1994-01-20 Feustle Gerhard Dipl Ing Fh Güterwaggon in Tiefladebauweise
DE4443087A1 (de) * 1994-12-03 1996-06-05 Huels Chemische Werke Ag Verfahren zum destillativen Abtrennen von Fettalkoholen aus Alkylpolyglycosid-Lösungen
TR200001893T2 (tr) * 1998-01-09 2000-11-21 The Procter & Gamble Company Bir sıyırma karırşımından düşük alkil alkol elde edilmesi.
DE19841323C1 (de) * 1998-09-10 2000-02-24 Braunschweigische Masch Bau Verdampfungskristallisator
JP3519008B2 (ja) * 1999-02-05 2004-04-12 アルプス電気株式会社 回転コネクタ
JP4208517B2 (ja) * 2002-08-07 2009-01-14 富士フイルム株式会社 ポリマー溶液濃縮方法及び装置
CN100436467C (zh) * 2007-04-18 2008-11-26 江苏强盛化工有限公司 蔗糖-6-乙酸酯的制备方法
CN101121736B (zh) * 2007-09-05 2011-06-29 江苏天禾药物研究所有限公司 三氯蔗糖的制备方法
GB2474311B (en) * 2009-10-12 2012-10-17 Tate & Lyle Technology Ltd Low temperature, single solvent process for the production of sucrose-6-ester
CN101845617A (zh) * 2010-06-07 2010-09-29 崔铮 直线型金属镀膜蒸发源的连续输送镀膜料装置
CN102796145B (zh) * 2012-06-19 2015-04-15 天津北方食品有限公司 一种蔗糖-6-苯甲酸酯的制备方法
CN103864859B (zh) * 2012-12-15 2016-02-24 华中科技大学 一种三氯蔗糖的制备方法
CN104387427A (zh) * 2014-10-30 2015-03-04 安徽金禾实业股份有限公司 一种三氯蔗糖的生产方法
CN104610388B (zh) * 2015-02-09 2017-07-28 上海交通大学 乳糖‑多巴胺分子的合成及含糖聚多巴胺纳米粒子的制备
CN105251229B (zh) * 2015-10-31 2017-11-28 武汉纽威晨创科技发展股份有限公司 一种水射流粉碎和夹带式微波蒸馏提取中药有效成分的方法
CN106349300B (zh) * 2016-08-30 2019-02-26 安徽金禾实业股份有限公司 三氯蔗糖酯化单溶剂反应方法
CN109418422B (zh) * 2017-09-05 2022-07-12 南京农业大学 一种富含叶酸的豆乳及其生产方法
CN208553191U (zh) * 2018-04-27 2019-03-01 上海科德实业有限公司 一种蒸馏气体再冷凝收集机构、装置及系统
CN209317067U (zh) * 2018-12-25 2019-08-30 江西天奕香料有限公司 一种乙酸异丁酸蔗糖酯生产用高精度减压蒸馏装置
CN209443071U (zh) * 2019-01-23 2019-09-27 潞城市金力达金属材料有限公司 一种高纯钙真空蒸馏提纯装置
CN209575816U (zh) * 2019-01-28 2019-11-05 泰州衡川新能源材料科技有限公司 一种提高二氯甲烷回收效率的冷凝回收装置
US20230295210A1 (en) * 2020-09-10 2023-09-21 Anhui Jinhe Industrial Co., Ltd. Method for preparing sucrose-6-ester

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776903B1 (en) * 1995-11-28 2003-01-29 McNEIL-PPC, INC. Process for the production of sucrose-6-ester.
CN1446223A (zh) * 2000-07-31 2003-10-01 塔特和莱利有限公司 用于合成蔗糖-6-酯类的改进方法
CN101605804A (zh) * 2007-01-09 2009-12-16 塔特和莱利技术有限公司 用于合成蔗糖-6-酯的方法
CN102639551A (zh) * 2009-10-12 2012-08-15 塔特和莱利技术有限公司 蔗糖-6-酯的生产方法
CN104817597A (zh) * 2015-05-22 2015-08-05 盐城捷康三氯蔗糖制造有限公司 蔗糖-6-酯的制备方法
CN212315609U (zh) * 2020-04-10 2021-01-08 辽宁宝来生物能源有限公司 一种高浓度废液的蒸馏装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117443001A (zh) * 2023-12-25 2024-01-26 台厝(福建)科技有限公司 一种笋竹培育过程中的施肥蒸馏炉
CN117443001B (zh) * 2023-12-25 2024-03-05 台厝(福建)科技有限公司 一种笋竹培育过程中的施肥蒸馏炉

Also Published As

Publication number Publication date
EP4163000B1 (en) 2024-04-10
CN113039001A (zh) 2021-06-25
EP4163000A4 (en) 2023-08-09
CN113039001B (zh) 2022-10-18
EP4163000A1 (en) 2023-04-12
US20230294012A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2022155947A1 (zh) 蔗糖-6-酯的生产设备及生产方法
WO2022174381A1 (zh) 蔗糖-6-酯的生产设备及生产方法
WO2022165803A1 (zh) 蔗糖-6-酯的生产设备及生产方法
WO2022174382A1 (zh) 蔗糖-6-酯的生产设备及生产方法
WO2016076711A1 (en) Preparation of dialkyl esters of 2,5-furandicarboxylic acid
CN113526599A (zh) 一种高效太阳能垂直蒸馏装置
WO2022155909A1 (zh) 蔗糖-6-酯的生产设备及生产方法
CN102266677B (zh) 高真空蒸馏提纯装置
CN202155061U (zh) 高真空蒸馏提纯装置
CN103910608A (zh) 一种采用渗透汽化-结晶耦合的苯酚类结晶方法及装置
CN208356129U (zh) 一种微膜蒸发器及包含微膜蒸发器的精馏系统
WO2022266936A1 (zh) 一种均苯四甲酸二酐生产加工用热管换热器
CN112094183A (zh) 一种新型高效的二苯甲酰甲烷结晶方法
CN112933634A (zh) 一种环列式的蔗糖-6-酯连续生产设备及生产工艺流程
CN2715090Y (zh) 一种管束式换热器的换热结构
CN220736223U (zh) 一种羟基苯丙酸生产用蒸馏装置
CN220110428U (zh) 一种蒸馏效率高的费托蜡精制用分子蒸馏器
CN213994886U (zh) 一种箱式降膜结晶器
CN201032437Y (zh) 一种均苯四甲酸二酐生产用热管换热器
CN219400145U (zh) 一种蔗糖-6-酯真空制备用缓速冷却装置
CN108727163B (zh) 基于专用二氧化硫装置生产对甲基苯酚的方法
CN220676772U (zh) 一种蒸发结晶并重结晶的装置
CN212523072U (zh) 一种丙酮回收装置
CN219674847U (zh) 一种紧凑型换热装置
CN220193977U (zh) 一种高效蒸发器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021926102

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE