WO2022163056A1 - 温調装置 - Google Patents

温調装置 Download PDF

Info

Publication number
WO2022163056A1
WO2022163056A1 PCT/JP2021/040900 JP2021040900W WO2022163056A1 WO 2022163056 A1 WO2022163056 A1 WO 2022163056A1 JP 2021040900 W JP2021040900 W JP 2021040900W WO 2022163056 A1 WO2022163056 A1 WO 2022163056A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
path
temperature
cooling water
control device
Prior art date
Application number
PCT/JP2021/040900
Other languages
English (en)
French (fr)
Inventor
健志 南家
太郎 雨貝
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202180092042.0A priority Critical patent/CN116783376A/zh
Publication of WO2022163056A1 publication Critical patent/WO2022163056A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control

Definitions

  • the present invention relates to a temperature control device.
  • Patent Literature 1 discloses a vehicle air conditioner that utilizes waste heat recovered from a motor and an inverter to heat the interior of the vehicle. Further, Patent Document 2 describes a configuration in which oil is circulated in a case housing a motor, and a cooling water circuit cools the oil, thereby cooling the motor via the oil.
  • the temperature of a motor immediately after starting rises at a slower rate compared to other heat sources such as inverters. Therefore, if the motor and the inverter are arranged in series in the path of the cooling water circuit, the waste heat of the inverter immediately after startup is used to raise the temperature of the motor, which cannot be used efficiently in the air conditioner. there were.
  • An object of one aspect of the present invention is to provide a temperature control device that enables efficient use of waste heat.
  • One aspect of the temperature control device of the present invention includes a motor for driving a vehicle, an oil circuit through which oil flows, a cooling water circuit through which cooling water flows, and an air conditioning refrigerant circuit through which an air conditioning refrigerant warms the air in the vehicle interior. , an oil cooler that performs heat exchange between the oil and the cooling water, and a chiller that performs heat exchange between the cooling water and the air conditioning refrigerant.
  • the oil circuit includes a first path passing through the motor, a second path connected to both ends of the first path, passing through the oil cooler, and connected to both ends of the first path.
  • a temperature control device that enables efficient utilization of waste heat is provided.
  • FIG. 1 is a schematic diagram of a temperature control device of one embodiment.
  • FIG. 2 is a schematic cross-sectional view of the motor of one embodiment.
  • FIG. 3 is a flow chart of the control method of one embodiment.
  • FIG. 4 is a graph showing ratios of flow rates of oil flowing through the second path and the bypass path in the sixth step of the control method of one embodiment.
  • FIG. 5 is a flowchart of the control method of Modification 1.
  • FIG. FIG. 6 is a schematic diagram of a temperature control device of Modification 2.
  • FIG. 1 is a schematic diagram of a temperature control device of one embodiment.
  • FIG. 2 is a schematic cross-sectional view of the motor of one embodiment.
  • FIG. 3 is a flow chart of the control method of one embodiment.
  • FIG. 4 is a graph showing ratios of flow rates of oil flowing through the second path and the bypass path in the sixth step of the control method of one embodiment.
  • FIG. 5 is a flowchart of the control method of Modification 1.
  • a temperature control device according to an embodiment of the present invention will be described below with reference to the drawings. Note that, in the drawings below, in order to make each configuration easier to understand, the actual structure and the scale and number of each structure may be different.
  • FIG. 1 is a schematic diagram of a temperature control device 1 of one embodiment.
  • the temperature control device 1 is mounted in a vehicle 80 such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or the like, which uses a motor as a power source.
  • a vehicle 80 such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), or the like, which uses a motor as a power source.
  • EV electric vehicle
  • HEV hybrid vehicle
  • PGV plug-in hybrid vehicle
  • the temperature control device 1 includes a motor 2, a battery 6, a power control device 4, an inverter 3, an oil cooler 5, a chiller 7, an oil temperature sensor 8, a cooling water temperature sensor 9, and an oil circuit 90. , a cooling water circuit 10 , an air-conditioning refrigerant circuit 50 , and a control unit 60 . Oil flows through the oil circuit 90 . Cooling water flows through the cooling water circuit 10 . An air-conditioning refrigerant that warms the air in the interior space of the vehicle 80 flows through the air-conditioning refrigerant circuit 50 .
  • the motor 2 is a motor-generator that has both a function as an electric motor and a function as a generator.
  • the motor 2 is connected to wheels of the vehicle 80 via a speed reduction mechanism (not shown).
  • the motor 2 is driven by alternating current supplied from the inverter 3 to rotate the wheels.
  • the motor 2 thereby drives the vehicle 80 .
  • the motor 2 regenerates the rotation of the wheels to generate alternating current.
  • the generated electric power is stored in the battery 6 through the inverter 3 .
  • FIG. 2 is a schematic cross-sectional view of the motor 2.
  • the motor 2 of this embodiment is an inner rotor type motor.
  • Motor 2 is, for example, a three-phase AC motor.
  • the motor 2 has a rotor 71 , a stator 72 and a pair of bearings 73 .
  • the motor 2 is accommodated in the housing 74 .
  • the housing 74 accommodates the oil O circulating through the oil circuit 90 .
  • the rotor 71 has a shaft 71a and a rotor body 71b.
  • the rotor 71 is rotatable around the motor axis J. As shown in FIG.
  • the shaft 71 a is supported by a housing 74 via a pair of bearings 73 .
  • the shaft 71a is connected to wheels via a speed reduction mechanism (not shown).
  • the rotor main body 71b has a rotor core and rotor magnets.
  • the stator 72 faces the rotor 71 with a gap in the radial direction.
  • the stator 72 has a stator core 72a and a coil 72b attached to the stator core 72a.
  • the stator core 72a has a plurality of teeth protruding radially inward of the motor shaft J. As shown in FIG.
  • the coil 72b is wound around the teeth of the stator core 72a.
  • the stator 72 generates a magnetic field when a current is passed through it.
  • the rotor 71 is rotated by the magnetic field of the stator 72 . More specifically, alternating current is passed through the coils 72b of the stator 72 . As a result, the magnetic poles of the magnetic field generated in the stator 72 are switched, and rotational torque is generated in the rotor 71 by this action.
  • the stator 72 generates heat due to the electrical resistance of the coil 72b and the like when current is passed through it.
  • the heat of the stator 72 is transferred to the oil O stored inside the housing 74 .
  • the heat transferred to the oil O is transferred to the cooling water of the cooling water circuit 10 in the oil cooler 5 .
  • the heat generated by the stator 72 heats the oil O to reduce its viscosity. Thereby, the circulation efficiency of the oil O in the oil circuit 90 is enhanced.
  • the heat generated by the stator 72 is transferred to the cooling water of the cooling water circuit 10 via the oil cooler 5 and used as waste heat.
  • the inverter 3 converts the DC current of the battery 6 into AC current. Inverter 3 is electrically connected to motor 2 . The AC current converted by the inverter 3 is supplied to the motor 2 . That is, the inverter 3 converts the DC current supplied from the battery 6 into AC current and supplies the AC current to the motor 2 .
  • the power control device 4 is also called an IPS (Integrated Power System).
  • the power control device 4 has an AC/DC conversion circuit and a DC/DC conversion circuit.
  • the AC/DC conversion circuit converts an alternating current supplied from an external power source into a direct current and supplies the direct current to the battery 6 . That is, the power control device 4 converts alternating current supplied from the external power supply into direct current in the AC/DC conversion circuit and supplies the direct current to the battery 6 .
  • the DC/DC conversion circuit converts the DC current supplied from the battery 6 into DC currents of different voltages, and supplies the DC currents to the first pump 41 , the second pump 42 , the third pump 43 and the switching valve 30 .
  • the battery 6 supplies power to the motor 2 via the inverter 3 . Also, the battery 6 is charged with electric power generated by the motor 2 . Battery 6 may be charged by an external power source. Battery 6 is, for example, a lithium ion battery. The battery 6 may be of other forms as long as it is a secondary battery that can be repeatedly charged and discharged.
  • the oil cooler 5 is arranged in the path of the oil circuit 90 and the cooling water circuit 10 .
  • the oil cooler 5 is a heat exchanger that exchanges heat between the oil in the oil circuit 90 and the cooling water in the cooling water circuit 10 .
  • the chiller 7 is arranged in the path of the cooling water circuit 10 and the air conditioning refrigerant circuit 50 .
  • the chiller 7 is a heat exchanger that exchanges heat between the cooling water in the cooling water circuit 10 and the air conditioning refrigerant in the air conditioning refrigerant circuit 50 .
  • the oil circuit 90 has a first path 91 , a second path 92 , a bypass path 93 , a switching valve (mixing valve) 30 and a third pump 43 .
  • the first path 91, the second path 92, and the bypass path 93 are connected to each other to form a circulation path through which oil flows.
  • path means a path through which a fluid passes, and not only a “flow path” that forms a steady fluid flow in one direction, but also a fluid that temporarily stays.
  • the concept also includes pathways (eg oil puddles) and fluid dripping pathways.
  • the first path 91, the second path 92, and the bypass path 93 are paths through which oil flows.
  • one or the other end of the first path 91, the second path 92, and the bypass path 93 is defined as an upstream end or a downstream end with respect to the flow direction of the oil flowing through the path. called the end.
  • the upstream end of the first path 91 is connected to the second path 92 and the bypass path 93 .
  • a downstream end of the first path 91 is connected to the second path 92 and the bypass path 93 via the switching valve 30 .
  • a first path 91 passes through the third pump 43 and the motor 2 .
  • the third pump 43 pumps the oil from the upstream end toward the downstream end in the first path 91 .
  • the second path 92 is connected to both ends of the first path. More specifically, the upstream end of the second path 92 is connected to the downstream end of the first path 91 via the switching valve 30 . On the other hand, the downstream end of the second path 92 is connected to the upstream end of the first path 91 .
  • the second path 92 passes through the oil cooler 5 .
  • the bypass route 93 is connected to both ends of the first route in the same manner as the second route. Thereby, the bypass route 93 bypasses the second route 92 .
  • the upstream end of the bypass route 93 is connected to the downstream end of the first route 91 and the upstream end of the second route 92 via the switching valve 30 .
  • the downstream end of the bypass route 93 is connected to the upstream end of the first route 91 and the downstream end of the second route 92 .
  • first intersection 98 one of the intersections where the first route 91, the second route 92, and the bypass route 93 intersect each other is called a first intersection 98, and the other is called a second intersection 99.
  • the first intersection 98 is located at the upstream end of the bypass route 93 .
  • the second intersection 99 is located at the downstream end of the bypass route 93 .
  • the switching valve 30 is arranged at the first intersection 98 . Therefore, the switching valve 30 is connected to the first path 91 , the second path 92 and the bypass path 93 .
  • the switching valve 30 is connected to and controlled by the controller 60 via a signal line.
  • the switching valve 30 is a mixing valve.
  • the switching valve 30 always opens the downstream end of the first path 91 , and adjusts the opening ratio of the upstream ends of the second path 92 and the bypass path 93 . Thereby, the switching valve 30 can adjust the ratio of the flow rate of oil flowing from the first path 91 to the second path 92 and the bypass path 93 .
  • the switching valve 30 can also close one of the second path 92 and the bypass path 93 and allow the other to communicate with the first path 91 .
  • the switching valve 30 may be arranged at the second intersection 99 .
  • the switching valve 30 may be arranged at one of the two intersections where the first path 91, the second path 92, and the bypass path 93 intersect each other.
  • the switching valve may be a three-way valve that connects one of the second path 92 and the bypass path 93 to the first path 91 and closes the other.
  • the oil circuit 90 is provided across the inside and outside of the housing 74 .
  • the oil circuit 90 passes through the interior of the housing 74 on the first path 91 .
  • the oil O is supplied to the motor 2 from above the motor 2 in the gravitational direction.
  • the oil O supplied to the motor 2 takes heat from the stator 72 and the rotor 71 along the outer peripheral surfaces of the stator 72 and the rotor 71 and drips downward in the housing 74 in the direction of gravity.
  • An oil reservoir is thereby formed in the lower region of the housing 74 .
  • the third pump 43 pumps up the oil O accumulated in the oil reservoir to the upper side of the motor 2 in the gravitational direction.
  • the cooling water circuit 10 has a loop-shaped second circulation path 19 and a second pump 42 .
  • the second circulation path 19 is a cooling water path.
  • a second circulation path 19 passes through the power control device 4 , the inverter 3 , the oil cooler 5 , the chiller 7 and the battery 6 .
  • the second circulation path 19 may pass through a radiator (not shown).
  • the second pump 42 pumps the cooling water in the second circulation path 19 .
  • the cooling water in the cooling water circuit 10 circulates through the second circulation path 19 in the order of the second pump 42, the power control device 4, the inverter 3, the oil cooler 5, the chiller 7, and the battery 6, and returns to the second pump 42 again. come.
  • the cooling water in the cooling water circuit 10 receives heat from the oil in the oil circuit 90 when passing through the oil cooler 5 and cools the oil.
  • the cooling water of the cooling water circuit 10 takes heat from the power control device 4 and the inverter 3 when passing through them, and cools them.
  • the cooling water in the cooling water circuit 10 transfers waste heat received from the oil and waste heat received from the power control device 4 and the inverter 3 to the air conditioning refrigerant in the air conditioning refrigerant circuit 50 via the chiller 7.
  • the air-conditioning refrigerant circuit 50 is a circuit independent of the cooling water circuit 10, and a different refrigerant (air-conditioning refrigerant) from the cooling water circuit 10 flows.
  • the air-conditioning refrigerant circuit 50 has a loop-shaped first circulation path 59 and a first pump 41 .
  • the first circulation path 59 is a path for air conditioning refrigerant.
  • the first circulation path 59 passes through the chiller 7 and the air conditioner 51 .
  • the first pump 41 pressure-feeds the air-conditioning refrigerant in the first circulation path 59 .
  • the air-conditioning refrigerant in the air-conditioning refrigerant circuit 50 circulates through the first circulation path 59 in the order of the first pump 41, the air conditioner 51, and the chiller 7, and returns to the first pump 41 again.
  • the air-conditioning refrigerant circuit 50 transfers heat received from the cooling water of the cooling water circuit 10 through the chiller 7 to the air-conditioning equipment 51 through the air-conditioning refrigerant.
  • the air conditioner 51 adjusts the temperature of the living space of the vehicle 80 using the heat transferred to the air-conditioning refrigerant.
  • the temperature control device 1 transfers the waste heat of the motor 2 to the oil in the oil circuit 90 and the cooling water in the cooling water circuit 10 via the oil cooler 5 .
  • the temperature control device 1 transfers the waste heat transferred from the power control device 4 and the inverter 3 to the cooling water via the chiller 7 to the air-conditioning refrigerant circuit 50 . to be used for air conditioning equipment. Therefore, according to the present embodiment, waste heat from the motor 2 , the power control device 4 , and the inverter 3 can be used to heat the interior space of the vehicle 80 .
  • the motor 2, the power control device 4, and the inverter 3 generate heat when the motor 2 is operated to drive the vehicle, but the rate of temperature rise is different.
  • the temperatures of power control device 4 and inverter 3 rise rapidly immediately after motor 2 is started.
  • the temperature rise of the motor 2 immediately after starting is moderate compared to the power control device 4 and the inverter 3 .
  • the temperature of the oil heated by the motor 2 tends to be lower than the temperature of the cooling water heated by the power control device 4 and the inverter 3 for a certain period of time immediately after the motor 2 is started. This condition occurs remarkably in cold regions.
  • the oil cooler 5 exchanges heat in this state, heat is transferred from the cooling water to the oil in the oil cooler 5 to heat the oil. Therefore, the waste heat transferred from the power control device 4 and the inverter 3 to the cooling water of the air-conditioning refrigerant circuit 50 is transferred to the oil, so that the air-conditioning refrigerant circuit 50 cannot fully utilize the waste heat.
  • the oil circuit 90 has the second path 92 passing through the oil cooler 5 , the bypass path 93 bypassing the oil cooler 5 , and the switching valve 30 .
  • the switching valve 30 causes the oil to flow through the bypass passage 93 to close the first passage.
  • the switching valve 30 allows the oil to flow through the first path 91 to cool the oil when the temperature of the oil is sufficiently high and the oil needs to be cooled. As a result, the motor 2 can be cooled via the oil, and the reliability of the operation of the motor 2 can be improved.
  • the flow path through which the oil passes has an increased pipeline surface area relative to the cross-sectional area in order to achieve efficient heat exchange with the cooling water. Therefore, the pressure loss of oil passing through the oil cooler 5 increases. According to this embodiment, the pressure loss of the oil can be reduced by causing the oil to flow while bypassing the oil cooler 5 when cooling of the oil is unnecessary. As a result, the power consumption of the third pump 43 that pumps the oil can be reduced.
  • the oil temperature sensor 8 measures the temperature of the oil in the oil circuit 90 .
  • the oil temperature sensor 8 measures the temperature of the oil downstream of the motor 2 in the first path 91 of the oil circuit 90 . More specifically, the oil temperature sensor 8 measures the temperature of the oil after it takes heat from the motor 2 and before it is cooled by the oil cooler 5 .
  • the oil temperature sensor 8 of this embodiment is arranged inside the housing 74 and measures the temperature of the oil accumulated in the oil reservoir inside the housing 74 .
  • the oil temperature sensor 8 is connected to the controller 60 by a signal line.
  • the cooling water temperature sensor 9 measures the temperature of the cooling water in the cooling water circuit 10.
  • the cooling water temperature sensor 9 measures the temperature of the cooling water in the second circulation path 19 of the cooling water circuit, downstream of the second pump 42 and upstream of the power control device 4 .
  • the coolant temperature sensor 9 is connected to the controller 60 by a signal line.
  • the control unit 60 is connected to the switching valve 30, the oil temperature sensor 8, and the cooling water temperature sensor 9.
  • the control unit 60 controls the switching valve 30 based on the oil temperature measured by the oil temperature sensor 8 and the cooling water temperature measured by the cooling water temperature sensor 9 . Therefore, according to the present embodiment, the switching valve 30 can be controlled based on the temperature of the oil and the temperature of the cooling water, which change with time.
  • the control unit 60 has an estimation unit 61 .
  • the estimation unit 61 estimates the temperature of the oil that actually flows into the oil cooler 5 from the temperature of the oil measured by the oil temperature sensor 8 .
  • the estimation unit 61 also estimates the temperature of the cooling water actually flowing into the oil cooler 5 from the temperature of the cooling water measured by the cooling water temperature sensor 9 .
  • the temperature of the oil flowing into the oil cooler 5 is simply referred to as the inflow oil temperature T1.
  • the temperature of cooling water flowing into the oil cooler 5 is simply referred to as the inflow cooling water temperature T2.
  • the estimation unit 61 of the present embodiment can regard the oil temperature measured by the oil temperature sensor 8 as the inflow oil temperature T1. That is, the estimation unit 61 estimates the temperature of the oil measured by the oil temperature sensor 8 as the inflow oil temperature T1. Note that when a heat source or cooling element is arranged between the oil temperature sensor 8 and the oil cooler 5, the estimating unit 61 is based on the oil temperature measured by the oil temperature sensor 8 and the temperature of the heat source or cooling element. to estimate the inflow oil temperature T1.
  • the power control device 4 and the inverter 3 which serve as heat sources, are arranged between the cooling water temperature sensor 9 and the oil cooler 5, the power control device 4 and the inverter 3, which serve as heat sources, are arranged. Therefore, the cooling water whose temperature is measured by the cooling water temperature sensor 9 is heated by the power control device 4 and the inverter 3 before flowing into the oil cooler 5 .
  • the estimating unit 61 estimates the temperatures of the power control device 4 and the inverter 3 according to the drive status of the motor 2 . Furthermore, the estimation unit 61 calculates the amount of heat transferred from the power control device 4 and the inverter 3 to the cooling water based on the estimated temperatures of the power control device 4 and the inverter 3 . Next, the estimator 61 estimates the temperature T2 of inflow cooling water flowing into the oil cooler 5 based on the amount of heat transferred to the cooling water. Note that, for example, when the cooling water temperature sensor directly measures the temperature of the cooling water flowing between the inverter 3 and the oil cooler 5, the estimating unit 61 uses the measurement result of the cooling water temperature sensor as the inflow cooling water temperature T2. Consider.
  • FIG. 3 is a flow chart showing each step executed by the control unit 60.
  • the control unit 60 executes control along each step shown in FIG.
  • the control method of this embodiment comprises a first step S1, a second step S2, a third step S3, a fourth step S4, a fifth step S5, a sixth step S6, a seventh step S7, have
  • the order of the first step S1 and the second step S2 may be reversed.
  • the control unit 60 detects the inflow oil temperature T1 of the oil flowing into the oil cooler 5 in the first step S1. As described above, the inflow oil temperature T ⁇ b>1 detected by the control unit 60 is the oil temperature estimated by the estimation unit 61 .
  • the control unit 60 detects the inflow cooling water temperature T2 of the cooling water flowing into the oil cooler 5 in the second step S2. As described above, the inflow cooling water temperature T ⁇ b>2 detected by the control unit 60 is the cooling water temperature estimated by the estimation unit 61 .
  • the control unit 60 executes the third step S3 after executing the first step S1 and the second step S2.
  • the control unit 60 compares the values of the inflow oil temperature T1 and the inflow cooling water temperature T2.
  • the controller 60 executes the fourth step S4.
  • the control unit 60 executes the seventh step S7.
  • the control unit 60 compares the inflow oil temperature T1 with the threshold value Tma stored in the control unit 60 in advance.
  • Tma for example, a temperature is set by adding a safety factor to the temperature of the motor 2 that requires cooling at the maximum output.
  • the control unit 60 executes the fifth step S5.
  • the control unit 60 executes the sixth step S6.
  • the control unit 60 opens and closes the switching valve 30 in the fifth step S5.
  • the fifth step S5 is executed when the inflow oil temperature T1 exceeds the inflow cooling water temperature T2 and exceeds the threshold value Tma (T1>T2, T1>Tma).
  • the control unit 60 closes the bypass path 93 and connects the first path 91 and the second path 92 by controlling the switching valve 30 .
  • all the oil in the oil circuit 90 is cooled by passing through the oil cooler 5 without flowing through the bypass path 93 .
  • the control unit 60 determines that the maximum oil cooling is necessary, and cools the oil with the maximum capacity of the oil cooler 5 . to cool.
  • the motor 2 can be cooled via the oil, the temperature of the motor 2 can be prevented from rising excessively, and the reliability of the operation of the motor 2 can be improved.
  • the control unit 60 opens and closes the switching valve 30 in the sixth step S6.
  • a sixth step S6 is executed when the inflow oil temperature T1 exceeds the inflow cooling water temperature T2 and is equal to or less than the threshold value Tma (T2 ⁇ T1 ⁇ Tma).
  • the control unit 60 controls the switching valve 30 to change the flow ratio of the oil flowing through the second path 92 and the bypass path 93 based on the inflow oil temperature T1.
  • FIG. 4 is a graph showing the flow rate ratio of the oil flowing through the second path 92 and the bypass path 93 in the sixth step S6.
  • the horizontal axis is the inflow oil temperature T1, which is the basis for controlling the flow rate ratio.
  • the oil from the first path 91 branches and flows into the second path 92 and the bypass path 93.
  • the controller 60 adjusts the ratio between the opening amount of the upstream end of the second path 92 and the opening amount of the upstream end of the bypass path 93 to allow the flow to flow through the second path 92 and the bypass path 93 .
  • Oil flow ratio can be adjusted.
  • the ratio of the oil flow rate that flows through the second path 92 is called a second route flow rate rate Q2
  • the ratio of the oil flow rate that flows through the bypass path 93 is called a bypass flow rate rate Q3.
  • the sum of the second path flow rate ratio Q2 and the bypass flow rate ratio Q3 is 100%.
  • the control unit 60 in the sixth step S6 increases the flow rate Q2 of the oil flowing through the second path 92 and increases the flow rate Q3 of the oil flowing through the bypass path 93 as the inflow oil temperature T1 increases, as shown in FIG. make low.
  • the control unit 60 can reduce the power consumption of the third pump 43 by bypassing part of the oil from the oil cooler 5 while allowing the oil cooler 5 to sufficiently cool the oil.
  • control unit 60 in the sixth step S6 linearly changes the second path flow rate Q2 and the bypass flow rate Q3 with respect to the inflow oil temperature T1 has been described.
  • control unit 60 may stepwise control the second path flow rate Q2 and the bypass flow rate Q3 with respect to the inflow oil temperature T1.
  • the control unit 60 opens and closes the switching valve 30 in the seventh step S7.
  • the seventh step S7 is executed when the inflow oil temperature T1 is equal to or lower than the inflow cooling water temperature T2 (T1 ⁇ T2).
  • T1 ⁇ T2 the inflow cooling water temperature
  • the control unit 60 closes the second path 92 and connects the first path 91 and the bypass path 93 by controlling the switching valve 30 .
  • the oil in the oil circuit 90 bypasses the oil cooler 5 and flows.
  • the control unit 60 stops the supply of oil to the oil cooler 5 when the inflow oil temperature T1 is equal to or lower than the inflow cooling water temperature T2.
  • the waste heat transferred from the heat sources such as the power control device 4 and the inverter 3 to the cooling water can be suppressed from transferring to the oil.
  • control unit 60 executes the fifth step S5 or the sixth step S6 when the inflow oil temperature T1 exceeds the inflow cooling water temperature T2 (T1>T2). That is, the control unit 60 connects the first path 91 and the second path 92 by controlling the switching valve 30 when the inflow oil temperature T1 exceeds the inflow cooling water temperature T2. As a result, the control unit 60 causes at least part of the oil to flow through the oil cooler 5 for cooling, and further cools the motor 2 through the oil.
  • the amount of oil flowing into the oil cooler 5 can be adjusted when the inflow oil temperature T1 exceeds the inflow cooling water temperature T2. Therefore, the amount of heat taken from the oil can be adjusted according to necessity, and the thermal efficiency of the temperature control device 1 as a whole can be improved.
  • the switching valve 30 when a three-way valve is employed as the switching valve 30, the switching valve 30 always opens the first path 91 and switches the second path 92 depending on whether the inflow oil temperature T1 exceeds the inflow cooling water temperature T2. and switching between opening and closing of the bypass path 93 .
  • FIG. 5 is a flowchart showing steps executed by the control unit 60 in this modified example.
  • symbol is attached
  • control unit 60 executes control according to each step shown in FIG.
  • the control method of this modification has a first step S11, a second step S12, a third step S13, and a fourth step S14.
  • the control unit 60 detects the inflow oil temperature T1 of the oil flowing into the oil cooler 5 in the first step S11.
  • the control unit 60 compares the values of the inflow oil temperature T1 and the threshold value Tmb stored in the control unit 60 in advance. For example, the temperature of the motor 2 that needs to be cooled is set as the threshold Tmb.
  • the control unit 60 executes the third step S13. Further, when the inflow oil temperature T1 is equal to or lower than the threshold value Tmb (T1 ⁇ Tmb), the control unit 60 executes the fourth step S14.
  • the control unit 60 opens and closes the switching valve 30 in the third step S13.
  • the third step S13 is executed when the inflow oil temperature T1 exceeds the threshold Tmb (T1>Tmb).
  • the control unit 60 closes the bypass path 93 and connects the first path 91 and the second path 92 by controlling the switching valve 30 .
  • all the oil in the oil circuit 90 is cooled by passing through the oil cooler 5 without flowing through the bypass path 93 .
  • the control unit 60 opens and closes the switching valve 30 in the fourth step S14.
  • the control unit 60 closes the second path 92 and connects the first path 91 and the bypass path 93 by controlling the switching valve 30 .
  • the oil in the oil circuit 90 bypasses the oil cooler 5 and flows.
  • control unit 60 cools the oil and cools the motor 2 via the oil when the inflow oil temperature T1 exceeds the preset threshold value Tmb. As a result, it is possible to prevent the temperature of the motor 2 from becoming too high, and improve the reliability of the operation of the motor 2 .
  • the waste heat transferred from the heat source to the cooling water can be suppressed from transferring to the oil, and the waste heat can be efficiently transferred to the air conditioner 51. Available.
  • the control method of this modified example does not require the measurement result of the cooling water temperature. Therefore, when adopting the control method of this modified example, the cooling water temperature sensor 9 can be omitted from the temperature control device 1 . Furthermore, in the control method of this modification, since the flow rate ratio of the oil flowing through the second path 92 and the bypass path 93 is not adjusted, instead of mixing, the switching valve 30 is a three-way valve that switches only between closing and opening. can be adopted.
  • FIG. 6 is a schematic diagram of a modified temperature control device 101 that can be employed in the above embodiment.
  • symbol is attached
  • the temperature control device 101 of this modified example differs from the above-described embodiment mainly in the configuration of the switching valve 130 . Further, the temperature control device 101 of this modified example differs from the above-described embodiment in that it does not have the oil temperature sensor 8, the cooling water temperature sensor 9, and the controller 60.
  • FIG. 1 is a diagrammatic representation of the temperature control device 101 of this modified example.
  • the switching valve 130 of this modified example is a thermostat arranged at the intersection (first intersection 98 ) at the upstream end of the bypass passage 93 .
  • the switching valve (thermostat) 130 connects the first path 91 and the bypass path 93 to close the second path 92 when the temperature of the passing oil O is equal to or lower than the threshold value Tmb. Therefore, the waste heat transferred from the heat source to the cooling water can be suppressed from transferring to the oil, and the waste heat can be efficiently used by the air conditioner 51 .
  • the switching valve 130 of this modified example connects the first path 91 and the second path 92 and closes the bypass path 93 when the temperature of the passing oil O exceeds the Tmb threshold. Therefore, the oil is cooled and the motor 2 is cooled through the oil. As a result, it is possible to prevent the temperature of the motor 2 from becoming too high, and improve the reliability of the operation of the motor 2 .
  • the switching valve 130 which is a thermostat, autonomously switches paths independently of the control unit 60. Therefore, the wiring for connection to the control unit 60 and the A thermometer or the like that serves as a basis is not required. As a result, the number of parts of the temperature control device 101 as a whole can be reduced, and the temperature control device 101 can be configured at low cost.
  • the cooling water circuit 10 passes through the battery 6, the power controller 4, and the inverter 3 and receives waste heat from these heat sources.
  • the cooling water circuit may pass through at least one of the battery 6, the power control device 4, and the inverter 3. Furthermore, even if the cooling water circuit 10 does not pass through the battery 6, the power control device 4, and the inverter 3, it may pass through other heat sources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

廃熱の効率的な利用を可能とする温調装置を提供する。 本発明の温調装置(1)の一つの態様は、車両(80)を駆動するモータ(2)と、オイルが流れるオイル回路(90)と、冷却水が流れる冷却水回路(10)と、車内空間の空気を温める空調用冷媒が流れる空調用冷媒回路(50)と、オイルと冷却水との間の熱交換を行うオイルクーラと(5)、冷却水と空調用冷媒との間の熱交換を行うチラー(7)と、を備える。オイル回路は、モータを通過する第1経路(91)と、第1経路の両端部に接続され、オイルクーラを通過する第2経路(92)と、第1経路の両端部に接続され、第2経路を迂回するバイパス経路(93)と、第1経路、第2経路、およびバイパス経路が互いに交差する交差部に配置される切替バルブ(30)と、を有する。

Description

温調装置
 本発明は、温調装置に関する。
 電気自動車又はハイブリッド自動車には、モータおよびインバータ等を冷却する冷却水回路が搭載される。特許文献1には、モータおよびインバータから回収された廃熱を利用して車両内の暖房に利用する車両用空調装置が開示されている。また、特許文献2には、モータを収容するケース内にオイルを循環させ、冷却水回路がオイルを冷却することでオイルを介してモータを冷却する構成が記載されている。
特開2015-186989号公報 特開2020-61859号公報
 一般的に、起動直後のモータは、インバータ等の他の熱源と比較して、緩やかな速度で昇温する。このため、モータとインバータとを冷却水回路の経路中に直列に配置すると、起動直後のインバータの廃熱がモータの昇温に使用され、空調装置で効率的に利用することができないという問題があった。
 本発明の一つの態様は、廃熱の効率的な利用を可能とする温調装置の提供を目的の一つとする。
 本発明の温調装置の一つの態様は、車両を駆動するモータと、オイルが流れるオイル回路と、冷却水が流れる冷却水回路と、車内空間の空気を温める空調用冷媒が流れる空調用冷媒回路と、前記オイルと前記冷却水との間の熱交換を行うオイルクーラと、前記冷却水と前記空調用冷媒との間の熱交換を行うチラーと、を備える。前記オイル回路は、前記モータを通過する第1経路と、前記第1経路の両端部に接続され、前記オイルクーラを通過する第2経路と、前記第1経路の両端部に接続され、前記第2経路を迂回するバイパス経路と、前記第1経路、前記第2経路、および前記バイパス経路が互いに交差する交差部に配置される切替バルブと、を有する。
 本発明の一つの態様によれば、廃熱の効率的な利用を可能とする温調装置が提供される。
図1は、一実施形態の温調装置の概略図である。 図2は、一実施形態のモータの断面模式図である。 図3は、一実施形態の制御方法のフローチャートである。 図4は、一実施形態の制御方法の第6ステップにおける第2経路およびバイパス経路に流すオイルの流量の比率を表すグラフである。 図5は、変形例1の制御方法のフローチャートである。 図6は、変形例2の温調装置の概略図である。
 以下、図面を参照しながら、本発明の実施形態に係る温調装置について説明する。なお、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数などを異ならせる場合がある。
 図1は、一実施形態の温調装置1の概略図である。
 温調装置1は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、等、モータを動力源とする車両80に搭載される。
 温調装置1は、モータ2と、バッテリ6と、電力制御装置4と、インバータ3と、オイルクーラ5と、チラー7と、オイル温度センサ8と、冷却水温度センサ9と、オイル回路90と、冷却水回路10と、空調用冷媒回路50と、制御部60と、を備える。オイル回路90には、オイルが流れる。冷却水回路10には、冷却水が流れる。空調用冷媒回路50には、車両80の車内空間の空気を温める空調用冷媒が流れる。
 モータ2は、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機である。モータ2は、図示略の減速機構を介して、車両80の車輪に接続される。モータ2は、インバータ3から供給される交流電流により駆動し、車輪を回転させる。これにより、モータ2は、車両80を駆動する。また、モータ2は、車輪の回転を回生し交流電流を発電する。発電された電力は、インバータ3を通じてバッテリ6に蓄えられる。
 図2は、モータ2の断面模式図である。
 本実施形態のモータ2は、インナーロータ型のモータである。モータ2は、例えば、三相交流モータである。モータ2は、ロータ71と、ステータ72と、一対のベアリング73と、を有する。また、モータ2は、ハウジング74に収容される。ハウジング74内には、オイル回路90を循環するオイルOが収容される。
 ロータ71は、シャフト71aとロータ本体71bとを有する。ロータ71は、モータ軸Jを中心として回転可能である。シャフト71aは、一対のベアリング73を介してハウジング74に支持される。シャフト71aは、減速機構(図示略)を介して車輪に繋がる。ロータ本体71bは、ロータコアとロータマグネットとを有する。
 ステータ72は、径方向に隙間を介してロータ71と対向する。ステータ72は、ステータコア72aと、ステータコア72aに装着されるコイル72bと、を有する。ステータコア72aは、モータ軸Jの径方向内側に突出する複数のティースを有する。コイル72bは、ステータコア72aのティースに巻き付けられる。
 ステータ72は、電流が流されることで磁場を発生する。ロータ71は、ステータ72の磁場によって回転する。より具体的には、ステータ72のコイル72bには、交流電流が流される。これにより、ステータ72に発生する磁場の磁極が切り替わり、その作用によってロータ71に回転トルクが発生する。
 ステータ72は、電流が流されることで、コイル72bの電気抵抗などに起因して発熱する。ステータ72の熱は、ハウジング74内に貯留されるオイルOに移動する。さらにオイルOに移動した熱は、オイルクーラ5において冷却水回路10の冷却水に移動する。ステータ72が発する熱は、オイルOを加熱してオイルOの粘性を低下させる。これによって、オイル回路90内での、オイルOの循環効率が高められる。また、ステータ72が発する熱は、オイルクーラ5を介して冷却水回路10の冷却水に移動し、廃熱として利用される。
 図1を基に、温調装置1を構成する各部について説明する。
 インバータ3は、バッテリ6の直流電流を交流電流に変換する。インバータ3は、モータ2と電気的に接続される。インバータ3によって変換された交流電流は、モータ2に供給される。すなわち、インバータ3は、バッテリ6から供給される直流電流を交流電流に変換してモータ2に供給する。
 電力制御装置4は、IPS(Integrated Power System)とも呼ばれる。電力制御装置4は、AC/DC変換回路およびDC/DC変換回路を有する。AC/DC変換回路は、外部電源から供給される交流電流を直流電流に変換しバッテリ6に供給する。すなわち、電力制御装置4は、AC/DC変換回路において、外部電源から供給される交流電流を直流電流に変換しバッテリ6に供給する。DC/DC変換回路は、バッテリ6から供給される直流電流を電圧の異なる直流電流に変換し、第1ポンプ41、第2ポンプ42、第3ポンプ43、および切替バルブ30に供給する。
 バッテリ6は、インバータ3を介してモータ2に電力を供給する。また、バッテリ6は、モータ2によって発電された電力を充電する。バッテリ6は、外部電源によって充填されていてもよい。バッテリ6は、例えば、リチウムイオン電池である。バッテリ6は、繰り返し充電および放電が可能な二次電池であれば、他の形態であってもよい。
 オイルクーラ5は、オイル回路90および冷却水回路10の経路中に配置される。オイルクーラ5は、オイル回路90のオイルと冷却水回路10の冷却水との間で、熱交換を行う熱交換器である。
 チラー7は、冷却水回路10および空調用冷媒回路50の経路中に配置される。チラー7は、冷却水回路10の冷却水と空調用冷媒回路50の空調用冷媒との間で、熱交換を行う熱交換器である。
 オイル回路90は、第1経路91と、第2経路92と、バイパス経路93と、切替バルブ(ミキシングバルブ)30と、第3ポンプ43と、を有する。第1経路91と、第2経路92と、バイパス経路93は、互いに連結されてオイルを流す循環経路を構成する。
 なお、本明細書において、「経路」とは、流体が通過する道筋を意味し、一方向に向かう定常的な流体の流動を形成する「流路」のみならず、流体を一時的に滞留させる経路(例えばオイル溜り)および流体が滴り落ちる経路をも含む概念である。
 第1経路91、第2経路92、およびバイパス経路93は、オイルが流れる経路である。以下の説明において、第1経路91、第2経路92、およびバイパス経路93の一方又は他方の端部を、当該経路を流れるオイルの流動方向を基準として、それぞれ上流側の端部又は下流側の端部と呼ぶ。
 第1経路91の上流側の端部は、第2経路92およびバイパス経路93に接続される。第1経路91の下流側の端部は、切替バルブ30を介して第2経路92およびバイパス経路93に接続される。第1経路91は、第3ポンプ43とモータ2とを通過する。第3ポンプ43は、第1経路91において上流側の端部側から下流側の端部側に向かってオイルを圧送する。
 第2経路92は、第1経路の両端部に接続される。より具体的には、第2経路92の上流側の端部は、切替バルブ30を介して第1経路91の下流側の端部に接続される。一方で、第2経路92の下流側の端部は、第1経路91の上流側の端部に接続される。第2経路92は、オイルクーラ5を通過する。
 バイパス経路93は、第2経路と同様に、第1経路の両端部に接続される。これにより、バイパス経路93は、第2経路92を迂回する。バイパス経路93の上流側の端部は、切替バルブ30を介して第1経路91の下流側の端部および第2経路92の上流側の端部に接続される。一方で、バイパス経路93の下流側の端部は、第1経路91の上流側の端部および第2経路92の下流側の端部に接続される。
 ここで、第1経路91、第2経路92、およびバイパス経路93が互いに交差する交差部のうち、一方を第1交差部98と呼び、他方を第2交差部99と呼ぶ。第1交差部98は、バイパス経路93の上流側の端部に位置する。一方で、第2交差部99は、バイパス経路93の下流側の端部に位置する。
 切替バルブ30は、第1交差部98に配置される。したがって、切替バルブ30には、第1経路91、第2経路92、およびバイパス経路93が接続される。切替バルブ30は、信号線を介して制御部60に接続され制御される。
 本実施形態において、切替バルブ30は、ミキシングバルブである。切替バルブ30は、第1経路91の下流側の端部の開口を常に開放させつつ、第2経路92およびバイパス経路93の上流側の端部の開口の開放量の比率を調整する。これにより、切替バルブ30は、第1経路91から第2経路92およびバイパス経路93に流入するオイルの流量の比率を調整できる。また、切替バルブ30は、第2経路92およびバイパス経路93のうち、一方を閉塞し、他方と第1経路91とを互いに連通させることもできる。
 なお、切替バルブ30は、第2交差部99に配置されていてもよい。すなわち、切替バルブ30は、第1経路91、第2経路92、およびバイパス経路93が互いに交差する2つの交差部のうち何れかに配置されていればよい。また、切替バルブは、第2経路92、およびバイパス経路93のうち何れか一方を第1経路91に連通させ、他方を閉塞する三方弁であってもよい。
 図2に示すように、オイル回路90は、ハウジング74に内外に跨って設けられる。オイル回路90は、第1経路91においてハウジング74の内部を通過する。第1経路91において、オイルOはモータ2の重力方向上側からモータ2に供給される。モータ2に供給されたオイルOは、ステータ72およびロータ71の外周面を伝ってステータ72およびロータ71から熱を奪いハウジング74内の重力方向下側に滴り落ちる。これにより、ハウジング74の下部領域には、オイル溜りが形成される。第3ポンプ43は、オイル溜りに溜まったオイルOを、モータ2の重力方向上側までくみ上げる。
 図1に示すように、冷却水回路10は、ループ状の第2循環経路19と、第2ポンプ42と、を有する。第2循環経路19は、冷却水の経路である。第2循環経路19は、電力制御装置4、インバータ3、オイルクーラ5、チラー7、およびバッテリ6を通過する。さらに、第2循環経路19は、ラジエータ(図示略)を通過するものであってもよい。第2ポンプ42は、第2循環経路19内の冷却水を圧送する。
 冷却水回路10の冷却水は、第2ポンプ42、電力制御装置4、インバータ3、オイルクーラ5、チラー7、バッテリ6の順で第2循環経路19を循環し、再び第2ポンプ42に戻ってくる。
 冷却水回路10の冷却水は、オイルクーラ5を通過する際に、オイル回路90のオイルから熱を受け取り、オイルを冷却する。また、冷却水回路10の冷却水は、電力制御装置4、およびインバータ3を通過する際に、これらから熱を奪い、これらを冷却する。さらに、冷却水回路10の冷却水は、オイルから受け取った廃熱、並びに電力制御装置4、およびインバータ3から受け取った廃熱を、チラー7を介して空調用冷媒回路50の空調用冷媒に移動させる。
 空調用冷媒回路50は、冷却水回路10とは独立した回路であり、冷却水回路10とは異なる冷媒(空調用冷媒)が流れる。空調用冷媒回路50は、ループ状の第1循環経路59と、第1ポンプ41と、を有する。第1循環経路59は、空調用冷媒の経路である。第1循環経路59は、チラー7と空調機器51を通過する。第1ポンプ41は、第1循環経路59内の空調用冷媒を圧送する。
 空調用冷媒回路50の空調用冷媒は、第1ポンプ41、空調機器51、チラー7の順で第1循環経路59を循環し、再び第1ポンプ41に戻ってくる。空調用冷媒回路50は、チラー7を介して冷却水回路10の冷却水から受け取った熱を、空調用冷媒を介して空調機器51に移動する。空調機器51は、空調用冷媒に移動された熱を利用して車両80の居住空間の気温を調整する。
 ここで、本実施形態の温調装置1の作用効果について説明する。
 温調装置1は、モータ2の廃熱をオイル回路90のオイル、およびオイルクーラ5を介して冷却水回路10の冷却水に移動させる。また、温調装置1は、冷却水に移動したモータ2の廃熱に加えて、電力制御装置4、およびインバータ3から冷却水に移動した廃熱を、チラー7を介して空調用冷媒回路50に移動させ、空調機器に利用する。このため、本実施形態によれば、モータ2、電力制御装置4、およびインバータ3の廃熱を車両80の室内空間の暖房に利用できる。
 モータ2、電力制御装置4、およびインバータ3は、モータ2を動作させて車両を駆動する際に発熱するが、温度上昇の速度がそれぞれ異なる。電力制御装置4、およびインバータ3の温度は、モータ2の起動直後から急速に上昇する。これに対して、起動直後のモータ2の温度上昇は、電力制御装置4およびインバータ3と比較して緩やかである。
 このため、モータ2の起動した直後から一定時間において、モータ2で加熱されるオイルの温度は、電力制御装置4およびインバータ3によって加熱される冷却水の温度より低くなりやすい。この状態は、寒冷地において顕著に発生する。この状態で、オイルクーラ5が熱交換を行うと、オイルクーラ5において冷却水からオイルに熱が移動しオイルが加熱される。したがって、電力制御装置4およびインバータ3から空調用冷媒回路50の冷却水に移動した廃熱がオイルに移動してしまい、空調用冷媒回路50で廃熱を十分に利用することができない。
 本実施形態によれば、オイル回路90は、オイルクーラ5を通過する第2経路92と、オイルクーラ5を迂回するバイパス経路93と、切替バルブ30と、を有する。切替バルブ30は、オイルの温度が冷却水の温度より低い場合に、オイルをバイパス経路93に流し第1経路を閉塞する。これにより、オイルの温度が低い場合に、電力制御装置4、およびインバータ3などの熱源から冷却水に移動した廃熱が、オイルに移動することを抑制でき、空調機器51で効率的に利用できる。また、切替バルブ30は、オイルの温度が十分に高くオイルの冷却が必要な場合に、オイルを第1経路91に流し、オイルを冷却する。これにより、オイルを介してモータ2を冷却し、モータ2の動作の信頼性を高めることができる。
 一般的に、オイルクーラ5においてオイルが通過する流路は、冷却水との効率的な熱交換を実現するために断面積に対する管路表面積が高められている。したがって、オイルクーラ5を通過するオイルの圧力損失が大きくなる。本実施形態によれば、オイルの冷却が不必要な場合に、オイルクーラ5を迂回させてオイルを流動させることで、オイルの圧力損失を低減できる。結果的に、オイルを圧送する第3ポンプ43の消費電力を低減できる。
 オイル温度センサ8は、オイル回路90のオイルの温度を測定する。オイル温度センサ8は、オイル回路90の第1経路91中であってモータ2の下流側のオイルの温度を測定する。より具体的には、オイル温度センサ8は、モータ2から熱を奪った後でありオイルクーラ5によって冷却される前のオイルの温度を測定する。
 図2に示すように、本実施形態のオイル温度センサ8は、ハウジング74内に配置されハウジング74内のオイル溜りに溜まるオイルの温度を測定する。オイル温度センサ8は、信号線によって制御部60に接続される。
 図1に示すように、冷却水温度センサ9は、冷却水回路10の冷却水の温度を測定する。冷却水温度センサ9は、冷却水回路の第2循環経路19中の冷却水であって、第2ポンプ42の下流側かつ電力制御装置4の上流側の冷却水の温度を測定する。冷却水温度センサ9は、信号線によって制御部60に接続される。
 制御部60は、切替バルブ30、オイル温度センサ8、および冷却水温度センサ9に接続される。制御部60は、オイル温度センサ8で測定したオイルの測定温度、および冷却水温度センサ9で測定した冷却水の測定温度に基づき切替バルブ30を制御する。このため、本実施形態によれば、経時的に変化するオイルの温度および冷却水の温度を関して、これらの温度に基づいて、切替バルブ30の制御を行うことができる。
 制御部60は、推定部61を有する。推定部61は、オイル温度センサ8で測定したオイルの測定温度から、実際にオイルクーラ5に流入するオイル温度を推定する。また、推定部61は、冷却水温度センサ9で測定した冷却水の測定温度から、実際にオイルクーラ5に流入する冷却水温度を推定する。以下、オイルクーラ5に流入するオイル温度を、単に流入オイル温度T1と呼ぶ。同様に、オイルクーラ5に流入する冷却水温度を、単に流入冷却水温度T2と呼ぶ。
 本実施形態において、オイル温度センサ8とオイルクーラ5との間には、熱源又は冷却要素が配置されていない。したがって、本実施形態の推定部61は、オイル温度センサ8で測定されるオイル温度を、流入オイル温度T1とみなすことができる。すなわち、推定部61は、オイル温度センサ8で測定したオイルの温度を、流入オイル温度T1と推定する。
 なお、オイル温度センサ8とオイルクーラ5との間に、熱源又は冷却要素が配置される場合、推定部61は、オイル温度センサ8で測定されるオイル温度と熱源又は冷却要素の温度とを基に流入オイル温度T1を推定する。
 本実施形態において、冷却水温度センサ9とオイルクーラ5との間には、熱源となる電力制御装置4、およびインバータ3が配置される。このため、冷却水温度センサ9で温度測定された冷却水は、オイルクーラ5に流入する前に、電力制御装置4、およびインバータ3によって加熱される。
 推定部61は、モータ2の駆動状況に応じて、電力制御装置4、およびインバータ3の温度を推定する。さらに、推定部61は、電力制御装置4、およびインバータ3の推定温度を基に、電力制御装置4、およびインバータ3から冷却水に移動する熱量を算出する。次いで、推定部61は、冷却水に移動する熱量を基にオイルクーラ5に流入する流入冷却水温度T2を推定する。なお、例えば、冷却水温度センサがインバータ3とオイルクーラ5との間を流れる冷却水の温度を直接的に測定する場合、推定部61は、冷却水温度センサの測定結果を流入冷却水温度T2とみなす。
 図3は、制御部60が実行する各ステップを示すフローチャートである。
 制御部60は、図3に示す各ステップに沿った制御を実行する。本実施形態の制御方法は、第1ステップS1と、第2ステップS2と、第3ステップS3と、第4ステップS4と、第5ステップS5と、第6ステップS6と、第7ステップS7と、を有する。なお、図3において、第1ステップS1と第2ステップS2とは、順序が逆であってもよい。
 制御部60は、第1ステップS1において、オイルクーラ5に流入するオイルの流入オイル温度T1を検出する。上述したように、制御部60が検出する流入オイル温度T1は、推定部61で推定されたオイルの温度である。
 制御部60は、第2ステップS2において、オイルクーラ5に流入する冷却水の流入冷却水温度T2を検出する。上述したように、制御部60が検出する流入冷却水温度T2は、推定部61で推定された冷却水の温度である。
 制御部60は、第1ステップS1および第2ステップS2を実行した後に第3ステップS3を実行する。制御部60は、第3ステップS3において、流入オイル温度T1と流入冷却水温度T2との値の大きさを比較する。制御部60は、流入オイル温度T1が流入冷却水温度T2を超える場合(T1>T2)、第4ステップS4を実行する。また、制御部60は、流入オイル温度T1が流入冷却水温度T2以下である場合(T1≦T2)、第7ステップS7を実行する。
 制御部60は、第4ステップS4において、流入オイル温度T1と、予め制御部60に記憶された閾値Tmaと、の値の大きさを比較する。閾値Tmaには、例えば、最大出力での冷却が必要とされるモータ2の温度に対し安全率を加味した温度が設定される。制御部60は、流入オイル温度T1が閾値Tmaを超える場合(T1>Tma)、第5ステップS5を実行する。また、制御部60は、流入オイル温度T1が閾値Tma以下である場合(T1≦Tma)、第6ステップS6を実行する。
 制御部60は、第5ステップS5において、切替バルブ30の開閉を実行する。第5ステップS5は、流入オイル温度T1が、流入冷却水温度T2を超え、かつ閾値Tmaを超える場合(T1>T2,T1>Tma)に、実行される。第5ステップS5で制御部60は、切替バルブ30の制御により、バイパス経路93を閉塞し第1経路91と第2経路92とを繋ぐ。これによって、オイル回路90の全てのオイルは、バイパス経路93を流れることなく、オイルクーラ5を通過して冷却される。
 本実施形態によれば、制御部60は、オイルの温度が予め設定された閾値Tmaを超える場合に、最大限のオイルの冷却が必要であると判断しオイルクーラ5の最大限の能力でオイルを冷却させる。これによりオイルを介してモータ2を冷却し、モータ2の温度が高まり過ぎることを抑制し、モータ2の動作の信頼性を高めることができる。
 制御部60は、第6ステップS6において、切替バルブ30の開閉を実行する。第6ステップS6は、流入オイル温度T1が、流入冷却水温度T2を超え、かつ閾値Tma以下である場合(T2<T1≦Tma)に、実行される。第6ステップS6で制御部60は、切替バルブ30の制御により、流入オイル温度T1を基に第2経路92およびバイパス経路93に流すオイルの流量の比率を変化させる。
 図4は、第6ステップS6における第2経路92およびバイパス経路93に流すオイルの流量の比率を表すグラフである。図4において、横軸は、流量の比率の制御の基となる流入オイル温度T1である。
 第6ステップS6において、第2経路92とバイパス経路93とには、第1経路91からのオイルが分岐して流れる。制御部60は、第2経路92の上流側の端部の開口量とバイパス経路93の上流側の端部の開口量との比率を調整することで、第2経路92およびバイパス経路93に流すオイルの流量の比率を調整できる。ここで、第2経路92を流れるオイル流量の比率を第2経路流量比率Q2と呼び、バイパス経路93を流れるオイル流量の比率をバイパス流量比率Q3と呼ぶ。第2経路流量比率Q2とバイパス流量比率Q3とを足すと100%となる。
 第6ステップS6の制御部60は、図4に示すように流入オイル温度T1が高まるに従って、第2経路92を流れるオイルの流量比率Q2を高めるとともに、バイパス経路93を流れるオイルの流量比率Q3を低くする。これにより、制御部60は、オイルクーラ5によってオイルを必要十分に冷却しつつ、一部のオイルをオイルクーラ5から迂回させて、第3ポンプ43の消費電力を抑えることができる。
 なお、本実施形態において、第6ステップS6の制御部60が、第2経路流量比率Q2およびバイパス流量比率Q3を、流入オイル温度T1に対して線形に変化させる場合について説明した。しかしながら、制御部60は、流入オイル温度T1に対して第2経路流量比率Q2およびバイパス流量比率Q3を段階的に制御させるものであってもよい。
 制御部60は、第7ステップS7において、切替バルブ30の開閉を実行する。第7ステップS7は、流入オイル温度T1が流入冷却水温度T2以下である場合(T1≦T2)に、実行される。第7ステップS7で制御部60は、切替バルブ30の制御により、第2経路92を閉塞し第1経路91とバイパス経路93とを繋ぐ。これによって、オイル回路90のオイルは、オイルクーラ5を迂回して流れる。
 本実施形態によれば、流入オイル温度T1が流入冷却水温度T2以下である場合に、制御部60がオイルクーラ5へのオイルの供給を停止する。これにより、電力制御装置4、およびインバータ3などの熱源から冷却水に移動した廃熱が、オイルに移動することを抑制できる。
 本実施形態において、制御部60は、流入オイル温度T1が流入冷却水温度T2を超える場合(T1>T2)に、第5ステップS5又は第6ステップS6を実行する。すなわち、制御部60は、流入オイル温度T1が流入冷却水温度T2を超える場合に、切替バルブ30の制御により、第1経路91と第2経路92とを繋ぐ。これにより、制御部60は、少なくとも一部のオイルをオイルクーラ5に流して冷却し、さらにオイルを介してモータ2を冷却する。
 本実施形態では、切替バルブ30としてミキシングバルブが設けられるため、流入オイル温度T1が流入冷却水温度T2を超えた場合に、オイルクーラ5へのオイルの流入量を調整することができる。このため、必要性に応じてオイルから奪う熱量を調整することができ、温調装置1全体としての熱効率を高めることができる。
 なお、切替バルブ30として、三方弁を採用する場合、切替バルブ30は、第1経路91を常に開放しつつ、流入オイル温度T1が流入冷却水温度T2を超えるか否かで、第2経路92およびバイパス経路93の開放および閉塞を切り替える。
 <変形例1>
 次に、上述の実施形態に採用可能な、制御部60による変形例の制御方法について説明する。
 図5は、本変形例において制御部60が実行する各ステップを示すフローチャートである。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 本変形例において制御部60は、図5に示す各ステップに沿った制御を実行する。本変形例の制御方法は、第1ステップS11と、第2ステップS12と、第3ステップS13と、第4ステップS14と、を有する。
 制御部60は、第1ステップS11において、オイルクーラ5に流入するオイルの流入オイル温度T1を検出する。
 制御部60は、第2ステップS12において、流入オイル温度T1と、予め制御部60に記憶された閾値Tmbと、の値の大きさを比較する。閾値Tmbには、例えば、冷却が必要とされるモータ2の温度が設定される。制御部60は、流入オイル温度T1が閾値Tmbを超える場合(T1>Tmb)、第3ステップS13を実行する。また、制御部60は、流入オイル温度T1が閾値Tmb以下である場合(T1≦Tmb)、第4ステップS14を実行する。
 制御部60は、第3ステップS13において、切替バルブ30の開閉を実行する。第3ステップS13は、流入オイル温度T1が閾値Tmbを超える場合(T1>Tmb)に、実行される。第3ステップS13で制御部60は、切替バルブ30の制御により、バイパス経路93を閉塞し第1経路91と第2経路92とを繋ぐ。これによって、オイル回路90の全てのオイルは、バイパス経路93を流れることなく、オイルクーラ5を通過して冷却される。
 制御部60は、第4ステップS14において、切替バルブ30の開閉を実行する。第4ステップS14は、流入オイル温度T1が、閾値Tmb以下である場合(T1≦Tmb)に、実行される。第4ステップS14で制御部60は、切替バルブ30の制御により、第2経路92を閉塞し第1経路91とバイパス経路93とを繋ぐ。これによって、オイル回路90のオイルは、オイルクーラ5を迂回して流れる。
 本変形例によれば、制御部60は、流入オイル温度T1が予め設定された閾値Tmbを超える場合に、オイルを冷却しオイルを介してモータ2を冷却する。これにより、モータ2の温度が高まり過ぎることを抑制し、モータ2の動作の信頼性を高めることができる。
 本変形例によれば、流入オイル温度T1が閾値Tmb以下である場合に、熱源から冷却水に移動した廃熱が、オイルに移動することを抑制でき、廃熱を空調機器51で効率的に利用できる。
 また、本変形例の制御方法では、冷却水の温度の測定結果を必要としない。このため、本変形例の制御方法を採用する場合、温調装置1は、冷却水温度センサ9を省略できる。さらに、本変形例の制御方法では、第2経路92とバイパス経路93とに流すオイルの流量比率を調整することがないため、切替バルブ30としてミキシングに代えて、閉塞と開放のみを切り替える三方弁を採用可能である。
 <変形例2>
 図6は、上述の実施形態に採用可能な変形例の温調装置101の概略図である。なお、上述の実施形態又は変形例と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 本変形例の温調装置101は、上述の実施形態と比較して、切替バルブ130の構成が主に異なる。また、本変形例の温調装置101は、上述の実施形態と比較して、オイル温度センサ8、冷却水温度センサ9、および制御部60を有さない点が異なる。
 本変形例の切替バルブ130は、バイパス経路93の上流側の端部の交差部(第1交差部98)に配置されるサーモスタットである。切替バルブ(サーモスタット)130は、通過するオイルOの温度が閾値Tmb以下である場合に第1経路91とバイパス経路93とを繋ぎ第2経路92を閉塞する。このため、熱源から冷却水に移動した廃熱が、オイルに移動することを抑制でき、廃熱を空調機器51で効率的に利用できる。
 一方で、本変形例の切替バルブ130は、通過するオイルOの温度がTmb閾値を超える場合に第1経路91と第2経路92とを繋ぎバイパス経路93を閉塞する。このため、オイルを冷却しオイルを介してモータ2を冷却する。これにより、モータ2の温度が高まり過ぎることを抑制し、モータ2の動作の信頼性を高めることができる。
 本変形例によれば、サーモスタットである切替バルブ130は、制御部60から独立して自律的に経路の切り替えを行うため、制御部60に接続するための配線、制御部60において制御する際の根拠となる温度計などが不要となる。結果的に、温調装置101全体としての部品点数を削減でき、温調装置101を安価に構成できる。
 以上に、本発明の実施形態および変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせなどは一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。
 本実施形態において、冷却水回路10は、バッテリ6、電力制御装置4、およびインバータ3を通過し、これらの熱源から廃熱を受け取る。しかしながら、冷却水回路は、バッテリ6、電力制御装置4、およびインバータ3のうち、少なくとも1つを通過するものであればよい。さらに、冷却水回路10は、バッテリ6、電力制御装置4、およびインバータ3を通過しない場合であっても、他の熱源を通過するものであればよい。
1,101…温調装置、2…モータ、3…インバータ、4…電力制御装置、5…オイルクーラ、6…バッテリ、7…チラー、8…オイル温度センサ、9…冷却水温度センサ、10…冷却水回路、30…切替バルブ(ミキシングバルブ)、50…空調用冷媒回路、60…制御部、80…車両、90…オイル回路、91…第1経路、92…第2経路、93…バイパス経路、130…切替バルブ(サーモスタット)、O…オイル、Tma,Tmb…閾値
 

Claims (8)

  1.  車両を駆動するモータと、
     オイルが流れるオイル回路と、
     冷却水が流れる冷却水回路と、
     車内空間の空気を温める空調用冷媒が流れる空調用冷媒回路と、
     前記オイルと前記冷却水との間の熱交換を行うオイルクーラと、
     前記冷却水と前記空調用冷媒との間の熱交換を行うチラーと、を備え、
     前記オイル回路は、
      前記モータを通過する第1経路と、
      前記第1経路の両端部に接続され、前記オイルクーラを通過する第2経路と、
      前記第1経路の両端部に接続され、前記第2経路を迂回するバイパス経路と、
      前記第1経路、前記第2経路、および前記バイパス経路が互いに交差する交差部に配置される切替バルブと、を有する、
    温調装置。
  2.  前記切替バルブは、
      前記バイパス経路の上流側の端部の前記交差部に配置されるサーモスタットであり、
      通過する前記オイルの温度が閾値以下である場合に前記第1経路と前記バイパス経路とを繋ぎ、
      通過する前記オイルの温度が閾値を超える場合に前記第1経路と前記第2経路とを繋ぐ、
    請求項1に記載の温調装置。
  3.  前記オイルの温度を測定するオイル温度センサと、
     前記冷却水の温度を測定する冷却水温度センサと、
     前記切替バルブ、前記オイル温度センサおよび前記冷却水温度センサに接続される制御部と、を備え、
     前記制御部は、前記オイルおよび前記冷却水の測定温度に基づき前記切替バルブを制御する、
    請求項1に記載の温調装置。
  4.  前記制御部は、前記切替バルブの制御によって、
      前記オイルクーラに流入する前記オイルの温度が前記オイルクーラに流入する前記冷却水の温度以下である場合に、前記第2経路を閉塞し前記第1経路と前記バイパス経路とを繋ぎ、
      前記オイルクーラに流入する前記オイルの温度が前記オイルクーラに流入する前記冷却水の温度を超える場合に、前記第1経路と前記第2経路とを繋ぐ、
    請求項3に記載の温調装置。
  5.  前記切替バルブは、前記第2経路および前記バイパス経路に流す前記オイルの流量の比率を調整可能なミキシングバルブである、
    請求項3又は4に記載の温調装置。
  6.  前記制御部は、前記切替バルブの制御によって、
      前記オイルクーラに流入する前記オイルの温度が、前記オイルクーラに流入する前記冷却水の温度を超え閾値以下である場合に、前記オイルクーラに流入する前記オイルの温度を基に前記第2経路および前記バイパス経路に流す前記オイルの流量の比率を変化させ、
      前記オイルクーラに流入する前記オイルの温度が前記閾値を超える場合に、前記バイパス経路を閉塞し前記第1経路と前記第2経路とを繋ぐ、
    請求項5に記載の温調装置。
  7.  前記制御部は、前記切替バルブの制御によって、
      前記オイルクーラに流入する前記オイルの温度が閾値以下である場合に前記第1経路と前記バイパス経路とを繋ぎ、
      前記オイルクーラに流入する前記オイルの温度が閾値を超える場合に前記第1経路と前記第2経路とを繋ぐ、
    請求項3に記載の温調装置。
  8.  前記モータに電力を供給するバッテリと、
     外部電源から供給される交流電流を直流電流に変換し前記バッテリに供給する電力制御装置と、
     前記バッテリから供給される直流電流を交流電流に変換して前記モータに供給するインバータと、を備え、
     前記冷却水回路は、前記バッテリ、前記電力制御装置、および前記インバータのうち、少なくとも1つを通過する、
    請求項1~7の何れか一項に記載の温調装置。
     
     
     

     
PCT/JP2021/040900 2021-01-29 2021-11-06 温調装置 WO2022163056A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180092042.0A CN116783376A (zh) 2021-01-29 2021-11-06 调温装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021013126 2021-01-29
JP2021-013126 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163056A1 true WO2022163056A1 (ja) 2022-08-04

Family

ID=82653122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040900 WO2022163056A1 (ja) 2021-01-29 2021-11-06 温調装置

Country Status (2)

Country Link
CN (1) CN116783376A (ja)
WO (1) WO2022163056A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115596831A (zh) * 2022-11-30 2023-01-13 中国重汽集团济南动力有限公司(Cn) 一种电驱动齿轮箱热管理系统及方法
JP2023045307A (ja) * 2021-09-21 2023-04-03 本田技研工業株式会社 車両用温調システム
JP2023045309A (ja) * 2021-09-21 2023-04-03 本田技研工業株式会社 車両用温調システム
WO2024106247A1 (ja) * 2022-11-16 2024-05-23 株式会社アイシン 冷却システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094237A (ja) * 2013-11-08 2015-05-18 三菱自動車工業株式会社 バイパスバルブ
JP2015159679A (ja) * 2014-02-25 2015-09-03 マツダ株式会社 冷却システム
JP2019129632A (ja) * 2018-01-25 2019-08-01 トヨタ自動車株式会社 電動車両
WO2019197858A1 (ja) * 2018-04-10 2019-10-17 日産自動車株式会社 電動モータの冷却方法および冷却装置
JP2020026141A (ja) * 2018-08-09 2020-02-20 三菱自動車工業株式会社 ハイブリッド自動車
JP2020185829A (ja) * 2019-05-10 2020-11-19 トヨタ自動車株式会社 車載温調装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094237A (ja) * 2013-11-08 2015-05-18 三菱自動車工業株式会社 バイパスバルブ
JP2015159679A (ja) * 2014-02-25 2015-09-03 マツダ株式会社 冷却システム
JP2019129632A (ja) * 2018-01-25 2019-08-01 トヨタ自動車株式会社 電動車両
WO2019197858A1 (ja) * 2018-04-10 2019-10-17 日産自動車株式会社 電動モータの冷却方法および冷却装置
JP2020026141A (ja) * 2018-08-09 2020-02-20 三菱自動車工業株式会社 ハイブリッド自動車
JP2020185829A (ja) * 2019-05-10 2020-11-19 トヨタ自動車株式会社 車載温調装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023045307A (ja) * 2021-09-21 2023-04-03 本田技研工業株式会社 車両用温調システム
JP2023045309A (ja) * 2021-09-21 2023-04-03 本田技研工業株式会社 車両用温調システム
JP7314223B2 (ja) 2021-09-21 2023-07-25 本田技研工業株式会社 車両用温調システム
JP7314222B2 (ja) 2021-09-21 2023-07-25 本田技研工業株式会社 車両用温調システム
WO2024106247A1 (ja) * 2022-11-16 2024-05-23 株式会社アイシン 冷却システム
CN115596831A (zh) * 2022-11-30 2023-01-13 中国重汽集团济南动力有限公司(Cn) 一种电驱动齿轮箱热管理系统及方法
CN115596831B (zh) * 2022-11-30 2023-03-14 中国重汽集团济南动力有限公司 一种电驱动齿轮箱热管理系统及方法

Also Published As

Publication number Publication date
CN116783376A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2022163056A1 (ja) 温調装置
US11807068B2 (en) Vehicle and temperature control device thereof
JP2007202244A (ja) 冷却装置
JP6171655B2 (ja) 電動ポンプ制御装置
JP2019031200A (ja) 車両の冷却装置
CN111902303B (zh) 冷却装置
JP6997884B2 (ja) 車両
JP6037000B2 (ja) 冷却水制御装置
JP7038231B2 (ja) 車両
JP2015116872A (ja) ハイブリッド車両の暖機装置
WO2022107429A1 (ja) 温調装置
WO2022163055A1 (ja) 温調装置
JP2020133608A (ja) ハイブリッド車用の冷却システム
JP7431630B2 (ja) 電動機冷却制御装置
WO2021024947A1 (ja) モータユニット、温調システムおよび車両
WO2022107381A1 (ja) 温調装置
JP2020114137A (ja) 車両の暖機制御装置
WO2022107382A1 (ja) 温調装置
JP2012228999A (ja) 冷却制御システム
WO2022107383A1 (ja) 温調装置
JP2016220387A (ja) 回転電機の温度制御装置
WO2022107428A1 (ja) 温調装置
JP2016112933A (ja) 車両用バッテリの暖機装置
WO2022185561A1 (ja) 温調装置
JP2005335518A (ja) 車両の冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092042.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP