WO2022162819A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2022162819A1
WO2022162819A1 PCT/JP2021/002974 JP2021002974W WO2022162819A1 WO 2022162819 A1 WO2022162819 A1 WO 2022162819A1 JP 2021002974 W JP2021002974 W JP 2021002974W WO 2022162819 A1 WO2022162819 A1 WO 2022162819A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
degree
refrigeration cycle
heat exchanger
Prior art date
Application number
PCT/JP2021/002974
Other languages
English (en)
French (fr)
Inventor
章太郎 山本
裕昭 金子
ミャオ ミャオ
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2021/002974 priority Critical patent/WO2022162819A1/ja
Priority to JP2021536705A priority patent/JPWO2022162819A1/ja
Publication of WO2022162819A1 publication Critical patent/WO2022162819A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】 暖房運転の立ち上がり時において、圧縮機の信頼性の向上と、暖房性能の改善とを両立した空気調和装置を提供すること。 【解決手段】 室内機200および室外機100から構成される冷凍サイクルであって、室外機100が膨張弁110、熱交換器114および圧縮機108を含む冷凍サイクルと、冷凍サイクルの動作を制御する制御装置102とを有し、室外機100は、熱交換器114と圧縮機108との間を流れる冷媒の圧力を測定する圧力センサ104と、冷媒の温度を測定する温度センサ106とを備え、冷凍サイクルが暖房運転を始動した場合に、制御装置102は、圧縮機108に吸入される冷媒の過熱度に基づいて、膨張弁110の開度を制御する。

Description

空気調和装置
 本発明は、冷凍サイクルを有する空気調和装置に関する。
 冷凍サイクルを有する空気調和装置が暖房運転を始動する場合、運転の停止中に室外熱交換器や液配管に滞留した液冷媒が圧縮機に吸入される可能性がある。このように、十分にガス化されていない冷媒が圧縮機に吸入されると、液圧縮により圧縮機にダメージを与える虞がある。
 そこで従来は、圧縮機へのダメージを抑制するために、暖房運転始動時の膨張弁開度を小さくし、冷媒の過熱度を大きくすることで、圧縮機への液冷媒の吸入を抑制していた。しかしながら、上述したようにして膨張弁開度を小さくすると、冷媒をガス化しやすくできる反面、冷媒の密度が低下するため、暖房性能が低下する。
 また、このような暖房性能の低下を抑制する方法として、膨張弁開度のフィードバック制御を行う方法が挙げられる。しかしながら、暖房運転始動時のような過渡時では、圧縮機の熱容量が大きく温度変化に追従しにくいため、適切にフィードバック制御できず、やはり暖房性能の低下の抑制には向かない。
 暖房運転におけるフィードバック制御を行う技術として、例えば特開2003-166762号公報(特許文献1)などが挙げられる。特許文献1によれば、過冷却度の推定精度を向上することで、適切なフィードバック制御を行うことができる。
 しかしながら特許文献1は、暖房運転始動時の制御を対象としたものではなく、上述した諸問題の観点からは不十分であった。そのため、暖房運転の立ち上がり時において、圧縮機の信頼性の向上し、かつ、暖房性能の改善するさらなる技術が求められていた。
特開2003-166762号公報
 本発明は、上記従来技術における課題に鑑みてなされたものであり、暖房運転の立ち上がり時において、圧縮機の信頼性の向上と、暖房性能の改善とを両立した空気調和装置を提供することを目的とする。
 すなわち、本発明によれば、
 室内機および室外機から構成される冷凍サイクルであって、前記室外機が膨張弁、熱交換器および圧縮機を含む冷凍サイクルと、前記冷凍サイクルの動作を制御する制御手段とを有し、
 前記室外機は、前記熱交換器と前記圧縮機との間を流れる冷媒の圧力を測定する圧力センサと、前記冷媒の温度を測定する温度センサとを備え、
 前記冷凍サイクルが暖房運転を始動した場合に、前記制御手段は、前記圧縮機に吸入される冷媒の過熱度に基づいて、前記膨張弁の開度を制御する、
 空気調和装置が提供される。
 本発明によれば、暖房運転の立ち上がり時において、圧縮機の信頼性の向上と、暖房性能の改善とを両立した空気調和装置が提供できる。
各実施形態における空気調和装置の概略構成を示す図。 各実施形態の室外機に含まれるハードウェア構成を示す図。 各実施形態の制御装置に含まれるソフトウェアブロック図。 第1の実施形態における空気調和装置の冷凍サイクル回路を示す図。 第2の実施形態における空気調和装置の冷凍サイクル回路を示す図。
 以下、本発明を、第1および第2の各実施形態をもって説明するが、本発明は後述する各実施形態に限定されるものではない。なお、以下に参照する各図においては、共通する要素について同じ符号を用い、適宜その説明を省略するものとする。また、以下では、暖房運転を行う空気調和装置を例にして実施形態を説明するが、実施形態に係る空気調和装置は、暖房運転のほか、冷房運転や除湿運転など、各種の空気調和運転が可能である。
 図1は、各実施形態における空気調和装置10の概略構成を示す図である。空気調和装置10は、冷凍サイクル(ヒートポンプサイクル)で冷媒を循環させることによって、空気調和を行う機器である。
 図1に示すように、空気調和装置10は、屋外に設置される室外機100と、室内に設置される室内機200とを備えている。また、空気調和装置10は、冷媒が流れる冷媒配管300を備えており、室外機100および室内機200は、冷媒配管300によって接続されている。なお、図1では、1台の室外機100と1台の室内機200から構成された空気調和装置10を例示しているが、特に実施形態を限定するものではない。したがって、空気調和装置10を構成する室外機100は複数台を連結したものであってもよく、また、室内機200は2台以上接続されてもよい。
 なお、図1では省略しているが、空気調和装置10は、リモコンなどの操作装置によって運転動作を制御できる。また、空気調和装置10を構成する室外機100および室内機200は、不図示の通信線を介して接続されている。
 図2は、各実施形態の室外機100に含まれるハードウェア構成を示す図である。図2に示すように各実施形態における室外機100は、制御装置102、圧力センサ104、温度センサ106、圧縮機108、室外膨張弁110、ファン112、室外熱交換器114を含んで構成される。このうち、圧縮機108、室外膨張弁110、ファン112、室外熱交換器114は、冷凍サイクルを構成する部品である。なお、図2に示したハードウェアは代表的なものの例示であり、室外機100には、これら以外のハードウェアが含まれ得る。なお、図2では、圧縮機108、室外膨張弁110、室外ファン112などの冷凍サイクルを構成する部品は、いずれも1つずつ搭載されているが、特に実施形態を限定するものではなく、複数が搭載されていてもよい。
 制御装置102は、室外機100の動作を制御するプログラムを実行し、所定の処理を行う装置である。制御装置102は、例えばCPUのような処理装置で構成され、室外機100を構成する他のハードウェアの動作を制御する。特に説明する実施形態においては、制御装置102は、各種センサから取得した測定値に基づいて、冷凍サイクルに係る部品の動作を制御することで、適切な空気調和を実行する。なお、制御装置102は、必ずしも室外機100に含まれていなくてもよく、例えば室内機200に含まれるCPUなどによって、室外機100のハードウェアの動作を制御する構成であってもよい。
 圧力センサ104は、室外機100内の配管を流れる冷媒の圧力を測定するセンサである。各実施形態において圧力センサ104は、複数個所に設けられてもよく、例えば圧縮機108の吸入側および吐出側に設けることができる。圧力センサ104が測定した冷媒の圧力は、制御装置102に出力される。
 温度センサ106は、室外機100内の配管を流れる冷媒の温度を測定するセンサである。各実施形態において温度センサ106は、室外熱交換器114と圧縮機108とを接続する配管に設けられる。特に、後述する第1の実施形態では、室外熱交換器114と圧縮機108とを接続する配管の、室外熱交換器114に近い側に温度センサ106が設けられる。また、第2の実施形態では、室外熱交換器114と圧縮機108とを接続する配管の、圧縮機108に近い側に温度センサ106が設けられる。温度センサ106が測定した冷媒の温度は、制御装置102に出力される。
 圧縮機108は、モータの駆動によって、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する装置である。圧縮機108の形態は特に限定されないが、例として、振動が小さいロータリ圧縮機やスクロール圧縮機などを用いることができる。室外膨張弁110は、冷媒を膨張させて冷媒の温度を下げる装置である。また、室外膨張弁110は、制御装置102によって開度を調整でき、冷媒の流量を制御することができる。
  ファン112は、複数の羽根と、複数の羽根を回転させる動力手段(モータ)とを含む。ファン112は、モータにより複数の羽根を回転させ、外気を吸い込み、室外熱交換器114で熱交換した空気を室外機100の外部へ向けて送風する。
  室外熱交換器114は、2つのヘッダと、2つのヘッダ間を繋ぐ複数の伝熱管と、伝熱管の外面に取り付けられる複数のフィンとを含む。冷媒は、一方のヘッダへ供給され、複数の伝熱管内を通り、他方のヘッダへと流れる。ファン112が吸い込んだ外気は、複数のフィンや伝熱管の外表面と接触し、伝熱管内を通って流れる冷媒と熱交換して、冷却され、または温められる。
 以上、各実施形態の室外機100に含まれるハードウェア構成について説明した。次に、各実施形態において制御装置102によって実行される機能手段について、図3を以て説明する。図3は、各実施形態の制御装置102に含まれるソフトウェアブロック図である。
 制御装置102は、圧力取得部151、温度取得部152、過熱度算出部153、冷凍サイクル制御部154の各モジュールを含んで構成される。以下に、各モジュールの詳細を説明する。
 圧力取得部151は、圧力センサ104が出力した、冷媒の圧力の測定値を取得する手段である。
 温度取得部152は、温度センサ106が出力した、冷媒の温度の測定値を取得する手段である。
 過熱度算出部153は、演算手段を構成し、圧力取得部151および温度取得部152が取得した各測定値に基づいて、圧縮機108に吸入される冷媒の過熱度を算出する。過熱度は、測定した圧力における飽和温度と、測定した温度との差分として定義され、例えば使用する冷媒のp-h線図(pressure-enthalpy線図。いわゆるモリエル線図)の飽和蒸気線を用いて求めることができる。本実施形態の過熱度算出部153は、圧力値と飽和温度とを対応付けたテーブルを参照することで、冷媒の過熱度を算出することができる。
 冷凍サイクル制御部154は、室外機100に含まれる冷凍サイクル部品の動作を制御する手段である。特に各実施形態における冷凍サイクル制御部154は、過熱度算出部153が算出した冷媒の過熱度が目標とする値になるように、室外膨張弁110の開度を制御する。したがって、各実施形態における冷凍サイクル制御部154は、例えば、算出された過熱度が目標値よりも大きい場合には、室外膨張弁110の開度を大きくし、算出された過熱度が目標値よりも小さい場合には、室外膨張弁110の開度を小さくする制御を行う。
 なお、上述したソフトウェアブロックは、制御装置102を構成するCPUなどが所定のプログラムを実行することで、各ハードウェアを機能させることにより、実現される機能手段に相当する。また、各実施形態に示した機能手段は、全部がソフトウェア的に実現されても良いし、その一部または全部を同等の機能を提供するハードウェアとして実装することもできる。
 ここまで、各実施形態に共通するハードウェア構成およびソフトウェアブロックを説明した。以下では、実施形態ごとの詳細な構成について図4および図5を以て説明する。
 まず、第1の実施形態について説明する。図4は、第1の実施形態における空気調和装置10の冷凍サイクル回路を示す図である。図4に示す冷凍サイクル回路は、暖房運転を行う空気調和装置10を示しており、1台の室外機100と、4台の室内機200a~200dから構成されている。なお、図中の矢印は、暖房運転時における冷媒の流れる方向を示している。四方弁116は、制御装置102によって入出力の接続関係が制御され、冷房運転時には、図4と異なる入出力接続となる。また、図4に示す室外機100には、圧縮機108に吸入される冷媒の圧力を測定する圧力センサ104、圧縮機108から吐出される冷媒の圧力を測定する圧力センサ120、室外熱交換器114と圧縮機108とを接続する配管を流れる冷媒の温度を測定する温度センサ106が設けられ、制御装置102と接続される。
 ここで、暖房運転を行う空気調和装置10の冷凍サイクルにおける冷媒の流れについて説明する。室内熱交換器202a~202dで室内空間の空気と熱交換されて液体となった冷媒は、室内膨張弁204a~204d、液冷媒配管304、液阻止弁308を通って、室外機100内に流入する。
 その後、冷媒は、室外膨張弁110でさらに膨張して、低温低圧の液冷媒として室外熱交換器114に供給される。暖房運転時において室外熱交換器114は、蒸発器として作用する。すなわち、低温低圧の液冷媒は、室外熱交換器114において外気と熱交換されて蒸発し、低温低圧のガス冷媒となる。
 室外熱交換器114によってガス化した後、冷媒は、圧縮機108に吸入される。そして、冷媒は圧縮機108によって圧縮され、低温低圧のガス冷媒から、高温高圧のガス冷媒となる。圧縮機108から吐出された高温高圧のガス冷媒は、四方弁116、ガス阻止弁306、ガス冷媒配管302を通って、室内機200a~200dに流入する。その後、上述した冷凍サイクルを繰り返すことで、空気調和装置10は暖房運転を行う。
 ところで、空気調和装置10の停止時には室外熱交換器114内に液冷媒が滞留している。そのため、停止状態から暖房運転が開始されると、室外熱交換器114内に滞留している、過熱度の取れていない冷媒が圧縮機108に吸入される(いわゆる「液戻り」が生じる)こととなる。液戻りが生じると圧縮機108にダメージを与える原因となることから、一般には、暖房始動時の室外膨張弁110の開度を小さくして、冷媒の吸入密度を低下させ、冷媒を蒸発させる制御が行われる。一方で、室外膨張弁110の開度を小さくすると冷媒循環量が小さくなり、暖房運転の立ち上がり時の暖房性能が低下する。
 そこで、第1の実施形態では、暖房運転始動時のような過渡的な状態において、圧縮機108に吸入される冷媒の過熱度が目標値となるように室外膨張弁110の開度を制御する。例えば、冷凍サイクル制御部154は、所定の過熱度を目標値として、算出された過熱度が目標値よりも大きい場合には、室外膨張弁110の開度を大きくし、算出された過熱度が目標値よりも小さい場合には、室外膨張弁110の開度を小さくする制御を行う。
 冷媒の過熱度は、圧力センサ104が測定した冷媒の吸入圧力および温度センサ106が測定した冷媒の温度に基づいて算出することができる。このように、圧縮機108の吸入側の冷媒の過熱度に基づいて、室外膨張弁110の開度をフィードバック制御することで、圧縮機108の吸入側の過熱度を確保できるため、暖房始動時における液戻りを抑制できる。また、過熱度に基づくフィードバック制御を行うことで、過熱度が過大となる状態、かつ、冷媒循環量が少ない状態を抑制できるため、暖房性能を向上できる。さらに、過熱度に基づいてフィードバック制御は、冷凍サイクルの変動に対する追従性が良好であることから、暖房運転始動時のような過渡時においても適切に制御することができる。したがって、第1の実施形態の空気調和装置10は、圧縮機108へのダメージの抑制と、立ち上がり時における暖房性能の改善とを両立することができる。
 特に、第1の実施形態においては、図4に示すように、室外熱交換器114と圧縮機108とを接続する配管の、室外熱交換器114に近い側に温度センサ106設けられる。より具体的には、温度センサ106は、室外熱交換器114の近傍に配置でき、例えば、室外熱交換器114のガス集合管に配置できる。このような位置に温度センサ106を配置することで、室外熱交換器ガス温度を測定することができる。温度センサ106を圧力センサ104の上流側に配置することで、圧力センサ104が測定する圧力は、温度センサ106の位置における圧力よりも低く測定されるため、算出される過熱度は、実際の値よりも大きくなる。これによって、室外膨張弁110の開度が大きくなるように制御でき、暖房の立ち上がり性能をより向上できる。
 なお、過熱度の目標値は必ずしも一定の値で設定されなくてもよく、例えば、圧縮機108に吸入される冷媒の吸入圧力に応じて目標値を変化させてもよい。これによって、暖房運転の始動状態に応じた目標値を設定できるため、適切に室外膨張弁110の開度を制御することができる。
 ここまでに説明した第1の実施形態によれば、空気調和装置10は、圧縮機108へのダメージの抑制と、立ち上がり時における暖房性能の改善とを両立できる。特に、第1の実施形態の場合には、空気調和装置10は、暖房の立ち上がり性能を大きく向上できる。
 次に、第2の実施形態について説明する。図5は、第2の実施形態における空気調和装置10の冷凍サイクル回路を示す図である。なお、以下の第2の実施形態の説明では、上述した第1の実施形態と共通する事項については、適宜省略するものとする。
 なお、暖房運転時の第2の実施形態における冷凍サイクルの動作や冷媒の流れは、図4に示した第1の実施形態のものと同様である。したがって、第2の実施形態においても第1の実施形態と同様に、過熱度に基づいて室外膨張弁110の開度を制御制御する。すなわち、冷凍サイクル制御部153は、暖房運転始動時のような過渡的な状態において、圧縮機108に吸入される冷媒の過熱度が目標値となるように室外膨張弁110の開度を制御する。これによって、第2の実施形態の空気調和装置10は、圧縮機108へのダメージの抑制と、立ち上がり時における暖房性能の改善とを両立することができる。
 第1の実施形態と、第2の実施形態との相違点は、温度センサ106が配置される位置である。すなわち、第1の実施形態において温度センサ106は圧力センサ104の上流側に配置されているのに対して、第2の実施形態における温度センサ106は、図5に示すように、圧力センサ104の下流側に配置されている。
 上述したように第2の実施形態においては、室外熱交換器114と圧縮機108とを接続する配管の、圧縮機108に近い側に温度センサ106設けられる。より具体的には、温度センサ106は、圧縮機108の近傍に配置でき、例えば、圧縮機吸入管に配置できる。このような位置に温度センサ106を配置することで、圧縮機吸入ガス温度を測定することができる。温度センサ106を圧力センサ104の下流側に配置することで、圧力センサ104が測定する圧力は、温度センサ106の位置における圧力よりも高く測定されるため、算出される過熱度は、実際の値よりも小さくなる。これによって、室外膨張弁110の開度が小さくなるように制御でき、圧縮機108への液戻りをより抑制できる。
 なお、第2の実施形態においても、上述した第1の実施形態と同様に、圧縮機108に吸入される冷媒の吸入圧力に応じて目標値を変化させてもよい。
 ここまでに説明した第2の実施形態によれば、空気調和装置10は、圧縮機108へのダメージの抑制と、立ち上がり時における暖房性能の改善とを両立できる。特に、第2の実施形態の場合には、空気調和装置10は、圧縮機108へのダメージを大きく抑制できる。
 以上、説明した本発明の各実施形態によれば、暖房運転の立ち上がり時において、圧縮機の信頼性の向上と、暖房性能の改善とを両立した空気調和装置を提供することができる。
 以上、本発明について実施形態をもって説明してきたが、本発明は上述した実施形態に限定されるものではなく、当業者が推考しうる実施態様の範囲内において、本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。
10…空気調和装置、
100…室外機、
102…制御装置、
104…圧力センサ、
106…温度センサ、
108…圧縮機、
110…室外膨張弁、
112…ファン、
114…室外熱交換器、
116…四方弁、
120…圧力センサ、
151…圧力取得部、
152…温度取得部、
153…過熱度算出部、
154…冷凍サイクル制御部、
200…室内機、
202…室内熱交換器、
204…室内膨張弁、
300…冷媒配管、
302…ガス冷媒配管、
304…液冷媒配管、
306…ガス阻止弁、
308…液阻止弁

Claims (5)

  1.  室内機および室外機から構成される冷凍サイクルであって、前記室外機が膨張弁、熱交換器および圧縮機を含む冷凍サイクルと、前記冷凍サイクルの動作を制御する制御手段とを有し、
     前記室外機は、前記熱交換器と前記圧縮機との間を流れる冷媒の圧力を測定する圧力センサと、前記冷媒の温度を測定する温度センサとを備え、
     前記冷凍サイクルが暖房運転を始動した場合に、前記制御手段は、前記圧縮機に吸入される冷媒の過熱度に基づいて、前記膨張弁の開度を制御する、
     空気調和装置。
  2.  前記制御手段は、前記圧力センサの測定値および前記温度センサの測定値に基づいて、前記過熱度を算出する、請求項1に記載の空気調和装置。
  3.  前記温度センサが、前記熱交換器と前記圧縮機とを接続する配管の、前記圧力センサよりも上流側に配置されることを特徴とする、請求項1または2に記載の空気調和装置。
  4.  前記温度センサが、前記熱交換器と前記圧縮機とを接続する配管の、前記圧力センサよりも下流側に配置されることを特徴とする、請求項1または2に記載の空気調和装置。
  5.  前記制御手段は、前記過熱度の目標値を、前記圧縮機に吸入される前記冷媒の吸入圧力に応じて変化させることを特徴とする、請求項1~4のいずれか1項に記載の空気調和装置。
PCT/JP2021/002974 2021-01-28 2021-01-28 空気調和装置 WO2022162819A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/002974 WO2022162819A1 (ja) 2021-01-28 2021-01-28 空気調和装置
JP2021536705A JPWO2022162819A1 (ja) 2021-01-28 2021-01-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002974 WO2022162819A1 (ja) 2021-01-28 2021-01-28 空気調和装置

Publications (1)

Publication Number Publication Date
WO2022162819A1 true WO2022162819A1 (ja) 2022-08-04

Family

ID=82653197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002974 WO2022162819A1 (ja) 2021-01-28 2021-01-28 空気調和装置

Country Status (2)

Country Link
JP (1) JPWO2022162819A1 (ja)
WO (1) WO2022162819A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111213A (ja) * 1998-10-06 2000-04-18 Daikin Ind Ltd 冷凍装置
JP2006220342A (ja) * 2005-02-09 2006-08-24 Samsung Electronics Co Ltd 空気調和装置
JP2008002790A (ja) * 2006-06-26 2008-01-10 Toshiba Kyaria Kk 空気調和機
KR20090067734A (ko) * 2007-12-21 2009-06-25 엘지전자 주식회사 공기조화기의 제어방법
JP2012220042A (ja) * 2011-04-04 2012-11-12 Mitsubishi Electric Corp 空気調和装置
WO2014136187A1 (ja) * 2013-03-04 2014-09-12 三菱電機株式会社 空気調和装置
JP2014190554A (ja) * 2013-03-26 2014-10-06 Fujitsu General Ltd 空気調和機
JP2017106677A (ja) * 2015-12-10 2017-06-15 東芝キヤリア株式会社 冷凍サイクル装置
JP2018071935A (ja) * 2016-11-02 2018-05-10 ダイキン工業株式会社 冷凍装置の熱源ユニット

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166762A (ja) * 2001-11-29 2003-06-13 Hitachi Ltd 空気調和装置
JP4619303B2 (ja) * 2006-02-27 2011-01-26 三菱電機株式会社 空気調和装置
JP4948374B2 (ja) * 2007-11-30 2012-06-06 三菱電機株式会社 冷凍サイクル装置
JP6321363B2 (ja) * 2013-12-06 2018-05-09 シャープ株式会社 空気調和機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111213A (ja) * 1998-10-06 2000-04-18 Daikin Ind Ltd 冷凍装置
JP2006220342A (ja) * 2005-02-09 2006-08-24 Samsung Electronics Co Ltd 空気調和装置
JP2008002790A (ja) * 2006-06-26 2008-01-10 Toshiba Kyaria Kk 空気調和機
KR20090067734A (ko) * 2007-12-21 2009-06-25 엘지전자 주식회사 공기조화기의 제어방법
JP2012220042A (ja) * 2011-04-04 2012-11-12 Mitsubishi Electric Corp 空気調和装置
WO2014136187A1 (ja) * 2013-03-04 2014-09-12 三菱電機株式会社 空気調和装置
JP2014190554A (ja) * 2013-03-26 2014-10-06 Fujitsu General Ltd 空気調和機
JP2017106677A (ja) * 2015-12-10 2017-06-15 東芝キヤリア株式会社 冷凍サイクル装置
JP2018071935A (ja) * 2016-11-02 2018-05-10 ダイキン工業株式会社 冷凍装置の熱源ユニット

Also Published As

Publication number Publication date
JPWO2022162819A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
EP2232169B1 (en) Vapor compression system
US6779356B2 (en) Apparatus and method for controlling operation of air conditioner
KR101471813B1 (ko) 열원 시스템
JP5554277B2 (ja) 熱媒流量推定装置、熱源機、及び熱媒流量推定方法
JP4779791B2 (ja) 空気調和装置
KR101513768B1 (ko) 공기 조화 장치
EP1586836A2 (en) Cooling cycle apparatus and method of controlling linear expansion valve of the same
JP2007333219A (ja) マルチ式空気調和システム
CN109237671B (zh) 利用蒸汽喷射循环的空调装置及其控制方法
US7380411B2 (en) Heat source unit with switching means between heating and cooling
WO2021218147A1 (zh) 一种司机室co 2冷媒变频空调
JP2011047552A (ja) 冷凍サイクル装置及び空気調和装置
JP2007225140A (ja) ターボ冷凍機およびその制御装置ならびにターボ冷凍機の制御方法
CN107848375A (zh) 车辆用空调装置的制冷循环及搭载其的车辆
KR20100128956A (ko) 공기조화기
WO2022162819A1 (ja) 空気調和装置
JP4963971B2 (ja) ヒートポンプ式設備機器
JP2017150689A (ja) 空気調和装置
JP2021021509A (ja) 空気調和装置
CN115200243A (zh) 一种磁悬浮冷却机组及控制方法
WO2009098900A1 (ja) 冷凍装置
JPWO2016002023A1 (ja) 熱源装置及びその熱源装置を備えた熱源システム
CN113883699A (zh) 用于降低空调系统的启动冷媒音的控制方法和空调系统
JP7216258B1 (ja) 空気調和機
US20230098410A1 (en) Refrigerant circuit apparatus evaluation system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021536705

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922838

Country of ref document: EP

Kind code of ref document: A1