WO2021218147A1 - 一种司机室co 2冷媒变频空调 - Google Patents

一种司机室co 2冷媒变频空调 Download PDF

Info

Publication number
WO2021218147A1
WO2021218147A1 PCT/CN2020/132791 CN2020132791W WO2021218147A1 WO 2021218147 A1 WO2021218147 A1 WO 2021218147A1 CN 2020132791 W CN2020132791 W CN 2020132791W WO 2021218147 A1 WO2021218147 A1 WO 2021218147A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
outlet
inlet
cavity
air conditioner
Prior art date
Application number
PCT/CN2020/132791
Other languages
English (en)
French (fr)
Inventor
程显耀
陈广泰
庞学博
魏子琪
多金鹏
曾磊
Original Assignee
中车大连机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连机车研究所有限公司 filed Critical 中车大连机车研究所有限公司
Publication of WO2021218147A1 publication Critical patent/WO2021218147A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2525Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Definitions

  • the invention relates to the field of air conditioners for rail vehicles, in particular to a CO 2 refrigerant frequency conversion air conditioner for a cab.
  • the invention provides a CO 2 refrigerant frequency conversion air conditioner for a cab, which still has a higher energy efficiency ratio at high temperatures.
  • a variable frequency air conditioner with CO refrigerant in a cab comprising a condensing cavity and an evaporating cavity.
  • the condensing cavity is provided with a compressor, a gas cooler and a condensing fan.
  • the evaporating cavity is provided with an evaporator and a first expansion valve, and further includes An economizer and a regenerator.
  • the economizer includes a first inlet, a second inlet, a first outlet, and a second outlet. The first inlet and the first outlet are in communication with each other, and the second inlet and the second outlet are mutually connected. Connected
  • the first inlet and the second inlet are both connected to the outlet of the gas cooler, and a first mass flow meter, a check valve and a second expansion valve are arranged between the first inlet and the gas cooler, so A second mass flow meter is provided between the second inlet and the gas cooler, the compressor is provided with an auxiliary air inlet, and the first outlet is connected to the auxiliary air inlet;
  • the regenerator includes a third inlet, a fourth inlet, a third outlet, and a fourth outlet, the third inlet and the third outlet are in communication with each other, and the fourth inlet and the fourth outlet are in communication with each other;
  • the second outlet is connected to the third inlet, the third outlet, the first expansion valve and the evaporator are connected in sequence, the evaporator outlet is connected with a gas-liquid separator, the gas-liquid separator is connected to the fourth The outlet is connected, and the fourth outlet is connected to the compressor.
  • the ratio of the mass flow of the refrigerant passing through the first mass flow meter and the second mass flow meter is 2:3.
  • the refrigerant is CO 2 .
  • outlet side of the gas cooler is provided with a first pressure sensor and a pressure relief valve.
  • a second pressure sensor and a first temperature sensor are provided on the suction side of the compressor.
  • the gas cooler includes two parts perpendicular to each other, and the two parts of the gas cooler are both arranged close to the side wall of the condensing cavity, and the side wall of the condensing cavity is provided with an air inlet.
  • the condensing fan is arranged in the area enclosed by the two parts of the gas cooler, and the cooling air enters the condensing cavity from the air inlet and leaves the condensing fan upward in the axial direction of the condensing fan. Cavity.
  • the economizer and the regenerator are both stainless steel plate heat exchangers.
  • the compressor is arranged on one side of the condensing fan, and the economizer and the regenerator are both arranged in the condensing cavity, and are respectively arranged on both sides of the compressor.
  • the air return opening also includes an electrical cavity, which is arranged above the air return opening.
  • the CO 2 refrigerant frequency conversion air conditioner for the cab disclosed by the present invention adds an economizer and a regenerator, cools the refrigerant multiple times, improves the energy efficiency ratio of the air conditioning unit, and through the setting of a pressure relief valve, a temperature sensor, and a pressure sensor, Realize the active protection of the system.
  • Figure 1 is a schematic diagram of a CO 2 refrigerant frequency conversion air conditioning system for a cab in an embodiment of the present invention
  • Figure 2 is a top view of the internal structure of the CO 2 refrigerant inverter air conditioner in the cab of the embodiment of the present invention
  • Figure 3 is a front view of the internal structure of the CO 2 refrigerant inverter air conditioner in the cab of the embodiment of the present invention
  • a CO 2 refrigerant frequency conversion air conditioner for a cab includes a condensing cavity and an evaporation cavity.
  • the condensing cavity includes a compressor 1, a gas cooler 2 and a condensing fan 7, and the evaporation cavity includes an evaporator 5 and
  • the expansion valve 4 also includes an economizer 17 and a regenerator 3.
  • the economizer 17 includes a first inlet 171, a second inlet 172, a first outlet 173, and a second outlet 174.
  • the first inlet 171 and the first outlet 173 are in communication with each other
  • the second inlet 172 and the second outlet 174 communicate with each other;
  • the first inlet 171 and the second inlet 172 are both connected to the outlet of the gas cooler 2.
  • a first mass flow meter 18, a check valve 15 and a second expansion valve 16 are provided between the first inlet 171 and the gas cooler 2.
  • a second mass flow meter 19 is provided between the second inlet 172 and the gas cooler 2, the compressor 1 is provided with an auxiliary air inlet, and the first outlet 173 is connected to the auxiliary air inlet;
  • the regenerator 3 includes a third inlet 31, The fourth inlet 32, the third outlet 33 and the fourth outlet 34, the third inlet 31 and the third outlet 33 are in communication with each other, and the fourth inlet 32 and the fourth outlet 34 are in communication with each other;
  • the second outlet 174 is connected to the third inlet 31.
  • the third outlet 33, the first expansion valve 4 and the evaporator 5 are connected in sequence.
  • the outlet of the evaporator 5 is connected with a gas-liquid separator 12, and the gas-liquid separator 12 is connected to the fourth outlet 34. Connected, the fourth outlet 34 is connected to the compressor 1.
  • Compressor 1 is a dual-rotor variable frequency compressor. Compressor 1 carries out two-stage compression. Compressor 1 includes a medium pressure cavity and a high pressure cavity. The auxiliary air inlet is connected to the medium pressure cavity. The exhaust gas is high temperature and high pressure supercritical CO 2 gas. .
  • the exhaust from the compressor 1 enters the gas cooler 2, which is a finned tube heat exchanger.
  • the condensing fan 7 introduces ambient air to the surface of the fins of the gas condenser 2 for forced convection heat exchange.
  • the high-temperature and high-pressure gas is cooled to a high-pressure supercritical CO 2 gas slightly higher than the ambient temperature.
  • the condensing fan 7 is an EC axial fan, an EC fan Speed-regulated operation can be realized and used with variable frequency compressors. When the refrigeration load is reduced, the reduced speed of the condensing fan 7 can significantly reduce energy consumption.
  • the volume and weight of the EC fan have obvious advantages over conventional fans.
  • the CO 2 refrigerant After the CO 2 refrigerant is discharged from the gas cooler 2, it is divided into two paths. Both paths have mass flow meters.
  • the first mass flow meter 18 and the second mass flow meter 19 feedback the mass flow information to the second expansion valve 16, and the first expansion
  • the valve 4 and the second expansion valve 16 are both electronic expansion valves.
  • the second expansion valve 16 adjusts the opening so that the mass flow ratio of the first mass flow meter 18 and the second mass flow meter 19 through the refrigerant is 2:3, Under this ratio, the CO 2 air conditioning system with jet enthalpy loop can operate more efficiently, and at the same time can ensure the safe and stable operation of the unit, especially in the occurrence of extreme high temperature weather, this operation strategy can significantly improve the energy efficiency ratio of the unit.
  • the mass flow meter can also reflect whether the inventory of refrigerant in the system meets the requirements in real time.
  • the feedback signal of the mass flow meter can be used to take necessary measures in time to prevent a large amount of CO 2 refrigerant from flowing into the driver’s cabin and causing damage to personnel. harm.
  • the check valve 15 is used to prevent the refrigerant in the intermediate pressure chamber of the compressor 1 from flowing back.
  • the refrigerant enters the second expansion valve 16 through the check valve 15.
  • the second expansion valve 16 adjusts the opening to stabilize the flow rate of the circuit at about 40% of the compressor displacement.
  • the intermediate pressure refrigerant is obtained, and the refrigerant temperature is reduced. .
  • the intermediate pressure refrigerant enters the low pressure side of the economizer 17 through the first inlet, cools the high pressure side refrigerant of the economizer 17, and enters the intermediate pressure cavity of the compressor 1.
  • the medium-pressure cavity of compressor 1 is supplemented by jet enthalpy, and the displacement of compressor 1 can be increased, which can effectively reduce the input power of compressor 1.
  • the temperature of the refrigerant is significantly reduced and increased. Increase the cooling capacity, thereby improving the energy efficiency ratio of the refrigeration system.
  • the economizer 17 is a stainless steel brazed plate heat exchanger, which has a more compact structure, a small footprint, and high heat exchange efficiency.
  • the high-pressure side CO 2 refrigerant of the economizer 17 enters the high-pressure side of the regenerator 3, and the low-pressure side of the regenerator 3 is the low-pressure and low-temperature refrigerant from the outlet of the gas-liquid separator 12. Was cooled.
  • a first pressure sensor 8 is provided at the outlet of the gas cooler 2.
  • a first pressure sensor 8, a pressure relief valve 9, and a second temperature sensor 10 are installed to measure the absolute pressure and temperature of CO 2 here.
  • the refrigerant temperature here is lower, which can make the service life of the sensor longer; the refrigerant will have a pressure drop when passing through the gas cooler 2, and the outlet pressure of the gas cooler 2 is the same as that of the compressor 1.
  • the exhaust pressure is different.
  • the control effect is better.
  • the pressure value and temperature value are transmitted to the actuator 11, and the actuator 11 is used to process the transmitted signal, and after calculation and analysis, it sends a command signal to the electronic expansion valve.
  • the high-pressure side refrigerant of the regenerator 3 After the high-pressure side refrigerant of the regenerator 3 is cooled, it enters the first expansion valve 4 for isentropic throttling to become a low-temperature and low-pressure gas-liquid mixed CO 2 refrigerant.
  • the operation signal of the first expansion valve 4 is provided by the actuator 11.
  • the actuator 11 reads the temperature and pressure of the refrigerant at the outlet of the gas cooler 2, calculates the optimal pressure of the energy efficiency ratio, and controls the opening of the first expansion valve 4 so that the pressure here approaches the optimal pressure.
  • the calculation method is in the prior art, I won't repeat them here.
  • the evaporating fan 6 introduces the air in the cab to exchange heat on the surface of the evaporator fins, and the refrigerant absorbs heat and evaporates into gaseous CO 2 .
  • the air on the side of the evaporator 5 undergoes forced convection heat exchange through the evaporator fan, and the dynamic adjustment of the temperature in the cab can be realized by adjusting the speed of the evaporator fan 6.
  • the evaporator 5 is a finned tube heat exchanger, and the surface of the fin is covered with a hydrophilic film to prevent condensation water from entering the cab.
  • the outlet refrigerant of the evaporator 5 is in a gas-liquid mixed state.
  • the gas-liquid separator 12 is used to separate gas-liquid two-phase CO 2 refrigerant.
  • the liquid refrigerant is stored in the cavity of the gas-liquid separator 12, and the storage capacity is in a dynamic equilibrium state. After the separated gas CO 2 refrigerant enters the low-pressure end of the regenerator 3, it absorbs the heat of the high-pressure side refrigerant of the regenerator 3 and becomes a superheated CO 2 refrigerant.
  • a second pressure sensor 13 and a first temperature sensor 14 are provided on the suction side of the compressor 1. It is used to monitor the pressure on the low pressure side and the suction temperature in real time. Through physical property calculations, the suction superheat of the compressor and the evaporation temperature of the refrigerant are obtained to prevent the compressor from sucking in the unsaturated refrigerant and the evaporator from frosting, thereby realizing the initiative to the air conditioning system Protection.
  • the housing 21 is provided with a condensing cavity 22 and an evaporation cavity 23.
  • the condensing cavity 22 is equipped with a compressor 1, a gas cooler 2, a regenerator 3, a condensing fan 7 and an economizer. 17.
  • An electronic expansion valve 4, an evaporator 5, an evaporation fan 6, a gas-liquid separator 12 and an electrical cavity 20 are installed in the evaporation cavity.
  • the gas cooler 2 includes a first part and a second part perpendicular to each other. The first part and the second part are both arranged close to the inner wall of the condensing cavity 22, and the inner wall of the condensing cavity 22 is provided with an air inlet.
  • the condensing fan 7 Under the action of the condensing fan 7, air is taken in from the adjacent two sides of the condensing cavity 22, heat exchanges with the gas cooler 2, and air is discharged from the cover door of the condensing cavity 22. Compared with the single-side air intake structure, the air intake on the adjacent two sides can make full use of the space of the unit shell. Under the condition that the area of the heat exchanger remains unchanged, the heat exchanger is designed to be L-shaped, which increases the windward area of the heat exchanger and reduces the number of heat exchanger tubes, thereby reducing the static pressure loss of the fan and achieving the effect of improving energy efficiency.
  • the unit adopts a mechatronics design.
  • the electrical cavity 20 includes an actuator 11, which is installed above the air return port.
  • the electrical cavity is a detachable box, which is convenient for overall maintenance and replacement.
  • the air conditioner is mainly divided into a condenser and an evaporation chamber.
  • the condensing cavity mainly exchanges energy with the external environment
  • the evaporation cavity mainly exchanges energy with the environment in the driver's cabin.
  • the main components of the condensing chamber are: compressor, gas cooler, condensing fan, regenerator, economizer, pressure sensor, temperature sensor, etc.
  • the condensing fan is located in the middle of the condensing chamber. It can be seen from Figure 3 that it is an upper exhaust arrangement.
  • the main purpose is that when the vehicle is running, the airflow direction of the fan does not oppose the airflow in the direction of the vehicle, and the ventilation volume will be increased. After the fan is started, the ambient air is sucked into the condensing chamber from the inlet positions on both sides and forced convective heat exchange with the gas cooler. Compared with the smaller inlet area, the enlarged air inlet area makes the pressure drop of the air flow smaller.
  • the design static pressure value of the fan can be reduced, thereby improving the energy efficiency ratio.
  • the compressor Because the compressor itself needs to dissipate heat, the compressor is located in the condensing chamber. After the airflow arranged on the upper exhaust air exchanges heat with the gas cooler, it can continue to cool the compressor without affecting the performance of the unit.
  • Compressor exhaust enters the gas cooler. After cooling, it is split through pipelines. A small part of the refrigerant enters the electronic expansion valve. After throttling, it becomes a medium-pressure and low-temperature refrigerant, and then enters the economizer. Another part of the high-pressure refrigerant directly enters the economizer. The low-temperature refrigerant after throttling performs secondary heat exchange. After the heat exchange is completed, the medium-pressure refrigerant enters the intermediate-pressure cavity of the compressor, and is discharged again into the high-temperature and high-pressure refrigerant through the secondary compression of the compressor, and participates in the cycle.
  • the high-pressure refrigerant discharged from the economizer enters the regenerator and exchanges heat with the low-temperature and low-pressure refrigerant at the outlet of the evaporator for the third time. After further reducing the temperature of the refrigerant, it passes through the pipeline through the middle of the condensing cavity and the evaporation cavity.
  • the partition enters the electronic expansion valve 4. Both the economizer and the regenerator are directly connected to the compressor through pipelines, so they are arranged close to each other. The existence of the economizer effectively reduces the discharge pressure of the compressor, thereby improving the overall energy efficiency ratio of the system.
  • the main components of the evaporation chamber include: evaporator, evaporation fan, electronic expansion valve, electrical chamber, gas-liquid separator, etc.
  • the return air outlet and the air supply outlet of the evaporation chamber are located at the bottom, and their position and size are arranged according to the condition of the vehicle.
  • the evaporator is located in the middle of the evaporation cavity, and the electrical cavity is located above the air return.
  • the electrical cavity is set here mainly because the temperature and humidity here are relatively stable, which is beneficial to the service life of the electrical components.
  • the evaporator fan is a centrifugal fan, which can provide greater static pressure and overcome the resistance of the air duct in the car.
  • the evaporator fan is arranged above the air supply port and is directly connected to the air supply port in a sealed manner. After the evaporator fan is started, the air in the driver's cabin enters the evaporator cavity through the return air port, performs forced convection heat exchange with the refrigerant on the surface of the evaporator, cools and dehumidifies, enters the evaporator fan after passing through the evaporator, and is sent into the driver's cabin.
  • the refrigerant passes through the electronic expansion valve 4 and is throttled to become a low-temperature and low-pressure liquid refrigerant (containing a small amount of flash steam).
  • the opening degree controls the flow rate to ensure that the refrigerant at the outlet of the evaporator is not overheated.
  • the latent heat of evaporation is the main method to improve the overall heat exchange efficiency of the evaporator.
  • the refrigerant discharged from the evaporator enters the gas-liquid separator.
  • the gas-liquid separator is located near the evaporator in the evaporation chamber. The main function of the gas-liquid separator is to separate the liquid refrigerant while stabilizing the low pressure.
  • the gas-liquid separator discharges the gaseous refrigerant, which passes through the intermediate partition between the condensing cavity and the evaporation cavity through the pipeline, and enters the low-pressure side of the regenerator 3, where it exchanges heat with the refrigerant on the high-pressure side, and the low-pressure side
  • the refrigerant absorbs heat and becomes superheated refrigerant, which is discharged from the regenerator and enters the suction side of the compressor.
  • All parts are connected using SU316L stainless steel pipe, which is characterized by good pressure resistance, corrosion resistance and easy welding. Compared with copper pipes, under the same design pressure, the thickness of stainless steel pipes can be smaller, making the overall air conditioner lighter.
  • the connection method of the pipeline and the components is welding, and the non-melting inert gas shielded arc welding is used for butt welding, the sealing and pressure resistance performance is better, and the welding traces are not obvious, and there is no welding meat prominent.

Abstract

一种司机室CO 2冷媒变频空调,包括冷凝腔和蒸发腔,冷凝腔内包括压缩机(1)、气体冷却器(2)和冷凝风机(7),蒸发腔内包括蒸发器(5)和第一膨胀阀(4),还包括经济器(17)和回热器(3)。空调机组采用CO 2作为冷媒,通过经济器(17)和回热器(3),对冷媒进行多次冷却,提升机组的能效比,并通过泄压阀(8)、温度传感器(10,14)、压力传感器(8,13)的设置,实现系统的主动保护。

Description

一种司机室CO 2冷媒变频空调 技术领域
本发明涉及轨道车辆用空调领域,尤其涉及一种司机室CO 2冷媒变频空调。
背景技术
目前,国内的机车司机室空调以HFC类冷媒为主,该类冷媒对臭氧层没有破坏作用,但温室效应潜能值仍非常高,随着地球变暖的日益加剧,世界各国都采取各种措施减少温室气体排放,保护地球环境刻不容缓。CO 2作为最具有潜力新式冷媒逐渐走入人们的视野,CO 2有诸多优点:1)自然工质,对环境无破坏作用,ODP=0、GWP=1;2)单位体积制冷量大,同样制冷量的设备,CO 2冷媒空调的充注量更少;3)粘度低,具有优良的流动性及传热性,管路压降低;4)成本低廉,容易获取。
但是,CO 2空调在高温时能效比会急剧下降,为保障空调机组能够应对极端天气,需要对其进行结构优化和循环方式的改进来提升CO 2空调系统的性能。
发明内容
本发明提供一种司机室CO 2冷媒变频空调,在高温时仍具有较高的能效比。
一种司机室CO冷媒变频空调,包括冷凝腔和蒸发腔,所述冷凝腔内设有压缩机、气体冷却器和冷凝风机,所述蒸发腔内设有蒸发器和第一膨胀阀,还包括经济器和回热器,所述经济器包括第一入口、第二入口、第一出口和第二出口,所述第一入口与第一出口互相连通,所述第二入口与第二出口互相连通;
所述第一入口和第二入口均与所述气体冷却器出口相连,所述第一入口与所述气体冷却器之间设有第一质量流量计、止回阀和第二膨胀阀,所述第二入口与所述气体冷却器之间设有第二质量流量计,所述压缩机设有辅助进 气口,所述第一出口与所述辅助进气口相连;
所述回热器包括第三入口、第四入口、第三出口和第四出口,所述第三入口与第三出口互相连通,所述第四入口与第四出口互相连通;
所述第二出口与第三入口相连,所述第三出口、第一膨胀阀和蒸发器依次连接,所述蒸发器出口连接有气液分离器,所述气液分离器与所述第四出口相连,所述第四出口与所述压缩机相连。
进一步地,所述第一质量流量计和第二质量流量计通过冷媒的质量流量之比为2:3。
进一步地,所述冷媒为CO 2
进一步地,所述气体冷却器出口侧设有第一压力传感器和泄压阀。
进一步地,所述压缩机吸气侧设有第二压力传感器和第一温度传感器。
进一步地,所述气体冷却器包括相互垂直的两部分,所述气体冷却器的两部分均设置在靠近所述冷凝腔侧壁处,所述冷凝腔侧壁上设有进风孔。
进一步地,所述冷凝风机设于所述气体冷却器的两部分围成的区域内,冷却风从所述进风孔进入所述冷凝腔并沿所述冷凝风机轴向方向向上离开所述冷凝腔。
进一步地,所述经济器和回热器均为不锈钢板式换热器。
进一步地,所述压缩机设于所述冷凝风机的一侧,所述经济器和回热器均设于所述冷凝腔内,且分别设于所述压缩机的两侧。
进一步地,还包括电气腔,所述电气腔设于回风口上方。
本发明公开的司机室CO 2冷媒变频空调,增加了经济器和回热器,对冷媒进行多次冷却,提高了空调机组的能效比,并通过泄压阀、温度传感器、压力传感器的设置,实现系统的主动保护。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中的司机室CO 2冷媒变频空调系统原理图;
图2为本发明实施例中的司机室CO 2冷媒变频空调内部结构俯视图;
图3为本发明实施例中的司机室CO 2冷媒变频空调内部结构主视图;
图中:1、压缩机;2、气体冷却器;3、回热器;31、第三入口;32、第四入口;33、第三出口;34、第四出口;4、第一膨胀阀;5、蒸发器6、蒸发风机;7、冷凝风机;8、第一压力传感器;9、泄压阀;10、第二温度传感器;11、执行器;12、气液分离器;13、第二压力传感器;14、第一温度传感器;15、止回阀;16、第二膨胀阀;17、经济器;171、第一入口;172、第二入口;173、第一出口;174、第二出口;18、第一质量流量计,19、第二质量流量计;20、电气腔;21、壳体;22、冷凝腔;23、蒸发腔。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种司机室CO 2冷媒变频空调,包括冷凝腔和蒸发腔,冷凝腔内包括压缩机1、气体冷却器2和冷凝风机7,蒸发腔内包括蒸发器5和第一膨胀阀4,还包括经济器17和回热器3,经济器17包括第一入口171、第二入口172、第一出口173和第二出口174,第一入口171与第一出口173互相连通,第二入口172与第二出口174互相连通;
第一入口171和第二入口172均与气体冷却器2出口相连,第一入口171与气体冷却器2之间设有第一质量流量计18、止回阀15和第二膨胀阀16,第二入口172与气体冷却器2之间设有第二质量流量计19,压缩机1设有辅助进气口,第一出口173与辅助进气口相连;回热器3包括第三入口31、第四入口32、第三出口33和第四出口34,第三入口31与第三出口33互相连通,第四入口32与第四出口34互相连通;
第二出口174与第三入口31相连,第三出口33、第一膨胀阀4和蒸发器5依次连接,蒸发器5出口连接有气液分离器12,气液分离器12与第四出口34相连,第四出口34与压缩机1相连。
压缩机1为双转子变频压缩机,压缩机1内部进行两级压缩,压缩机1包含中压腔和高压腔,辅助进气口与中压腔相连,排气为高温高压超临界CO 2气体。
压缩机1排气进入气体冷却器2,气体冷却器2为翅片管式换热器。冷凝风机7引入环境空气到气体冷凝器2翅片表面进行强制对流换热,高温高压气体被冷却为略高于环境温度的高压超临界CO 2气体,冷凝风机7为EC轴流风机,EC风机可实现调速运转,配合变频压缩机使用,当制冷负荷减小时,冷凝风机7降低转速可明显降低能耗,EC风机的体积和重量比常规风机有明显的优势。
CO 2冷媒从气体冷却器2排出后分成两路,两路均有质量流量计,第一质量流量计18和第二质量流量计19将质量流量信息反馈给第二膨胀阀16,第一膨胀阀4和第二膨胀阀16均为电子膨胀阀,第二膨胀阀16通过开度的调节,使得第一质量流量计18和第二质量流量计19通过冷媒的质量流量比为2:3,在该比例下,带喷气增焓回路的CO 2空调系统可以更加高效运行,同时能保障机组能安全稳定运转,尤其在极端高温天气出现时,该运行策略可以明显提升机组的能效比。
质量流量计也可以实时反映系统内冷媒的存量是否满足要求,当管路出现泄漏时,可通过质量流量计的反馈信号,及时采取必要的措施,防止大量CO 2冷媒流入司机室内,对人员造成伤害。
止回阀15用于防止压缩机1的中压腔内冷媒逆流。
冷媒通过止回阀15进入第二膨胀阀16,第二膨胀阀16通过开度的调节使该回路流量稳定在压缩机排气量的40%左右,节流后获得中压冷媒,冷媒温度降低。中压冷媒通过第一入口进入经济器17的低压侧,冷却经济器17高压侧冷媒,并进入压缩机1的中压腔。通过喷气增焓对压缩机1的中压腔进行补气,增加压缩机1的排气量,可有效降低压缩机1的输入功率,高压侧冷媒经过多次冷却后,冷媒温度明显降低,增加了制冷量,从而提升制冷系统的能效比。
CO 2冷媒从气体冷却器2排出后,约60%的冷媒进入经济器17的高压侧,进一步换热冷却。本实施例中,经济器17为不锈钢钎焊板式换热器,该换热器结构更加的紧凑,占用空间小,换热效率高。
经济器17高压侧CO 2冷媒进入回热器3高压侧,回热器3低压侧为气液分离器12出口的低压、低温冷媒,高压和低压两侧冷媒换热,高压侧冷媒第三次被冷却。
进一步地,气体冷却器2出口处设有第一压力传感器8。
在气体冷却器2的冷媒出口处,安装第一压力传感器8、泄压阀9和第二温度传感器10,用于测量此处CO 2的绝对压力值和温度。相比于压缩机排气温度100℃左右,此处的冷媒温度较低,可以使传感器的使用寿命更长;冷媒通过气体冷却器2会有压降,气体冷却器2出口压力与压缩机1排气压力不同,用气体冷却器2出口压力为计算参数控制电子膨胀阀,控制效果更佳。将压力值和温度值传输给执行器11,执行器11用于处理传输过来的信号,通过计算分析后,向电子膨胀阀发出指令信号。当其它压力保护失效时,管路内压力值达到泄压阀9的动作值时,CO 2冷媒通过泄压阀快速排放到大气中,当管路内压力恢复至安全压力以下,泄压阀9自动闭合。
回热器3高压侧冷媒被冷却后,进入第一膨胀阀4进行等熵节流,成为低温低压的气液混合态CO 2冷媒,第一膨胀阀4的动作信号由执行器11提供。执行器11读取气体冷却器2出口冷媒温度和压力,计算出能效比最佳压力,对第一膨胀阀4进行开度控制,使得此处压力趋近最佳压力,计算方法现有技术,此处不再赘述。
CO 2冷媒进入蒸发器5之后,蒸发风机6引入司机室内空气在蒸发器翅片表面换热,冷媒吸热蒸发成为气态CO 2。蒸发器5侧空气通过蒸发风机进行强制对流换热,通过对蒸发风机6转速的调节可实现对司机室内温度的动态调节。优选地,蒸发器5为翅片管式换热器,翅片表面覆亲水膜,防止凝结水进入司机室内。
蒸发器5出口冷媒为气液混合态,气液分离器12用于分离气液两相CO 2冷媒,液态冷媒储存于气液分离器12腔体内,储存量处于动态平衡状态。分离后的气体CO 2冷媒进入回热器3的低压端之后,吸收回热器3高压侧冷媒的热量,成为过热CO 2冷媒。
进一步地,压缩机1吸气侧设有第二压力传感器13和第一温度传感器14。用于实时监测低压侧压力和吸气温度,通过物性计算,得到压缩机的吸气过热度以及冷媒的蒸发温度,防止压缩机吸入不饱和态冷媒以及蒸发器结 霜,实现对空调系统的主动防护。
进一步地,如图2、图3所示,壳体21内设置冷凝腔22和蒸发腔23,冷凝腔22内装有压缩机1、气体冷却器2、回热器3、冷凝风机7和经济器17。蒸发腔内装有电子膨胀阀4、蒸发器5、蒸发风机6、气液分离器12和电气腔20。气体冷却器2包括相互垂直的第一部分和第二部分,第一部分和第二部分均设置在靠近冷凝腔22内壁处,冷凝腔22内壁上设有进风口。在冷凝风机7的作用下,从冷凝腔22的相邻两侧进风,与气体冷却器2进行热量交换,并从冷凝腔22的盖门出风。对比单侧进风结构,相邻两侧进风能够更加充分的利用机组壳体空间。在换热器面积不变情况下,换热器设计成L型,增大换热器的迎风面积,减少换热器管排数,从而减小风机的静压损失,达到提高能效的效果。
机组采用机电一体化设计,电气腔20内包括执行器11,安装于回风口的上方,电气腔为可拆卸式箱体,便于整体检修和更换。
空调主要分为冷凝器和蒸发腔。冷凝腔主要是与外界环境进行能量交换,蒸发腔主要是与司机室内环境进行能量交换。
冷凝腔主要部件有:压缩机、气体冷却器、冷凝风机、回热器、经济器、压力传感器、温度传感器等。冷凝风机位于冷凝腔中间位置,从图3中可看出为上排风布置,主要目的是当车辆运行时,风机气流方向不与车辆运行方向气流对冲,并且通风量会得到增益。风机启动后,由两侧进风位置将外界环境空气吸入冷凝腔并与气体冷却器强迫对流换热,扩大的进风面积相比于较小的进风面积,使得气流的压降更小,其风机的设计静压值可以降低,从而提高能效比。
因压缩机自身需要散热,所以压缩机位于冷凝腔内,上排风布置的气流与气体冷却器换热后,可继续为压缩机冷却,从而不对机组的性能产生影响。
压缩机排气进入气体冷却器,经过冷却后通过管路进行分流,小部分冷媒进入电子膨胀阀,经过节流成为中压低温冷媒后,进入经济器,另一部分高压冷媒直接进入经济器,与节流后的低温冷媒进行二次换热,换热完成后,中压冷媒进入压缩机的中压腔,经过压缩机的二级压缩再次排出成为高温高压冷媒,参与循环。从经济器排出的高压冷媒则进入回热器,与蒸发器出口的低温低压冷媒进行第三次换热,进一步降低冷媒温度后,通过管路,穿过 冷凝腔与蒸发腔的之间的中间隔板进入电子膨胀阀4。经济器和回热器都与压缩机通过管路直接连接,因此排布的位置较近。经济器的存在有效降低压缩机的排气压力,从而提升系统整体能效比。
蒸发腔主要部件有:蒸发器、蒸发风机、电子膨胀阀、电器腔、气液分离器等。蒸发腔的回风口和送风口位于底部,其位置尺寸根据车辆的情况进行布设。图2中蒸发器位于蒸发腔中间位置,电气腔位于回风口上方,电气腔在此设置主要是此处的温度和湿度相对稳定,有益于电器件的使用寿命。蒸发风机为离心风机,可提供较大的静压,克服车内风道的阻力,蒸发风机设置在送风口上方,直接与送风口密封连接。启动蒸发风机后,司机室内空气通过回风口进入蒸发腔,在蒸发器表面与冷媒进行强制对流换热,降温除湿,通过蒸发器后进入蒸发风机,送入司机室内。
冷媒经过电子膨胀阀4后节流,成为低温低压的液态冷媒(含少量闪发蒸汽),进入蒸发器进行蒸发吸热,使得经过翅片表面的空气降温并除湿,通过控制电子膨胀阀4的开度控制其流量,保障蒸发器出口冷媒不过热,以蒸发潜热为主,提高蒸发器的整体换热效率。蒸发器排出的冷媒,进入气液分离器,气液分离器位于蒸发腔蒸发器附近,主要作用是分离出液态冷媒,同时起到稳定低压的作用。气液分离器排出的是气态冷媒,通过管路穿过冷凝腔与蒸发腔的之间的中间隔板,进入回热器3的低压侧,在这里与高压侧的冷媒进行换热,低压侧冷媒吸热成为过热冷媒,排出回热器,进行压缩机吸气侧。
所有部件的连接均使用SU316L不锈钢管,其特点是耐压性能好,耐腐蚀、便于焊接。相比于铜管,在同样的设计压力下,不锈钢管厚度可以更小,使得空调整体更轻。管路与部件的连接方式均为焊接,使用非熔化极惰性气体保护电弧焊进行对接焊接,密封耐压性能更好,且焊接痕迹不明显,无焊肉突出。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种司机室CO 2冷媒变频空调,包括冷凝腔和蒸发腔,所述冷凝腔内设有压缩机(1)、气体冷却器(2)和冷凝风机(7),所述蒸发腔内设有蒸发器(5)和第一膨胀阀(4),其特征在于,
    还包括经济器(17)和回热器(3),所述经济器(17)包括第一入口(171)、第二入口(172)、第一出口(173)和第二出口(174),所述第一入口(171)与第一出口(173)互相连通,所述第二入口(172)与第二出口(174)互相连通;
    所述第一入口(171)和第二入口(172)均与所述气体冷却器(2)出口相连,所述第一入口(171)与所述气体冷却器(2)之间设有第一质量流量计(18)、止回阀(15)和第二膨胀阀(16),所述第二入口(172)与所述气体冷却器(2)之间设有第二质量流量计(19),所述压缩机(1)设有辅助进气口,所述第一出口(173)与所述辅助进气口相连;
    所述回热器(3)包括第三入口(31)、第四入口(32)、第三出口(33)和第四出口(34),所述第三入口(31)与第三出口(33)互相连通,所述第四入口(32)与第四出口(34)互相连通;
    所述第二出口(174)与第三入口(31)相连,所述第三出口(33)、第一膨胀阀(4)和蒸发器(5)依次连接,所述蒸发器(5)出口连接有气液分离器(12),所述气液分离器(12)与所述第四出口(34)相连,所述第四出口(34)与所述压缩机(1)相连。
  2. 根据权利要求1所述的一种司机室CO 2冷媒变频空调,其特征在于,所述第一质量流量计(18)和第二质量流量计(19)通过冷媒的质量流量之比为2:3。
  3. 根据权利要求2所述的一种司机室CO 2冷媒变频空调,其特征在于,所述冷媒为CO 2
  4. 根据权利要求1所述的一种司机室CO 2冷媒变频空调,其特征在于,所述气体冷却器(2)出口侧设有第一压力传感器(8)和泄压阀(9)。
  5. 根据权利要求1所述的一种司机室CO 2冷媒变频空调,其特征在于,所述压缩机吸气侧设有第二压力传感器(10)和第一温度传感器(14)。
  6. 根据权利要求1所述的一种司机室CO 2冷媒变频空调,其特征在于,所述气体冷却器(2)包括相互垂直的两部分,所述气体冷却器(2)的两部 分均设置在靠近所述冷凝腔(22)侧壁处,所述冷凝腔(22)侧壁上设有进风孔。
  7. 根据权利要求6所述的一种司机室CO 2冷媒变频空调,其特征在于,所述冷凝风机(7)设于所述气体冷却器(2)的两部分围成的区域内,冷却风从所述进风孔进入所述冷凝腔(22)并沿所述冷凝风机(7)轴向方向向上离开所述冷凝腔(22)。
  8. 根据权利要求1所述的一种司机室CO 2冷媒变频空调,其特征在于,所述经济器(17)和回热器(3)均为不锈钢板式换热器。
  9. 根据权利要求1所述的一种司机室CO 2冷媒变频空调,其特征在于,所述压缩机(1)设于所述冷凝风机(7)的一侧,所述经济器(17)和回热器(3)均设于所述冷凝腔内,且分别设于所述压缩机(1)的两侧。
  10. 根据权利要求1所述的一种司机室CO 2冷媒变频空调,其特征在于,还包括电气腔(20),所述电气腔(20)设于回风口上方。
PCT/CN2020/132791 2020-04-28 2020-11-30 一种司机室co 2冷媒变频空调 WO2021218147A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010352316.2 2020-04-28
CN202010352316.2A CN111412677A (zh) 2020-04-28 2020-04-28 一种司机室co2冷媒变频空调

Publications (1)

Publication Number Publication Date
WO2021218147A1 true WO2021218147A1 (zh) 2021-11-04

Family

ID=71490296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132791 WO2021218147A1 (zh) 2020-04-28 2020-11-30 一种司机室co 2冷媒变频空调

Country Status (2)

Country Link
CN (1) CN111412677A (zh)
WO (1) WO2021218147A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111110A (zh) * 2021-12-02 2022-03-01 广东日出东方空气能有限公司 一种带板换过冷的热泵系统
CN114234450A (zh) * 2021-12-24 2022-03-25 山东雅士股份有限公司 一种变频co2热水机机组及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412677A (zh) * 2020-04-28 2020-07-14 中车大连机车研究所有限公司 一种司机室co2冷媒变频空调
CN112325454A (zh) * 2020-10-12 2021-02-05 广州鼎汉轨道交通车辆装备有限公司 中高速轨道车辆用co2制冷剂空调机组及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201885295U (zh) * 2010-09-29 2011-06-29 北京建筑工程学院 一种压缩式热泵型换热装置
CN203857718U (zh) * 2014-05-23 2014-10-01 青岛海尔空调电子有限公司 一种空调系统
CN205843115U (zh) * 2016-07-27 2016-12-28 山东美琳达再生能源开发有限公司 一种具有采暖功能的二氧化碳热泵装置
CN207156890U (zh) * 2017-08-03 2018-03-30 南京协众汽车空调集团有限公司 使用co2制冷剂的热泵型电动汽车空调系统
KR20180138487A (ko) * 2017-06-21 2018-12-31 엘지전자 주식회사 이산화탄소 공기조화기
CN109323476A (zh) * 2018-09-11 2019-02-12 西安交通大学 一种跨临界co2热泵机组及其控制方法
CN109357403A (zh) * 2018-10-15 2019-02-19 四川长虹电器股份有限公司 二氧化碳空气源热水器
CN209230061U (zh) * 2018-12-06 2019-08-09 中车大连机车研究所有限公司 一种具有压力保护系统的二氧化碳空调
CN111412677A (zh) * 2020-04-28 2020-07-14 中车大连机车研究所有限公司 一种司机室co2冷媒变频空调
CN212299529U (zh) * 2020-04-28 2021-01-05 中车大连机车研究所有限公司 一种司机室co2冷媒变频空调

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201885295U (zh) * 2010-09-29 2011-06-29 北京建筑工程学院 一种压缩式热泵型换热装置
CN203857718U (zh) * 2014-05-23 2014-10-01 青岛海尔空调电子有限公司 一种空调系统
CN205843115U (zh) * 2016-07-27 2016-12-28 山东美琳达再生能源开发有限公司 一种具有采暖功能的二氧化碳热泵装置
KR20180138487A (ko) * 2017-06-21 2018-12-31 엘지전자 주식회사 이산화탄소 공기조화기
CN207156890U (zh) * 2017-08-03 2018-03-30 南京协众汽车空调集团有限公司 使用co2制冷剂的热泵型电动汽车空调系统
CN109323476A (zh) * 2018-09-11 2019-02-12 西安交通大学 一种跨临界co2热泵机组及其控制方法
CN109357403A (zh) * 2018-10-15 2019-02-19 四川长虹电器股份有限公司 二氧化碳空气源热水器
CN209230061U (zh) * 2018-12-06 2019-08-09 中车大连机车研究所有限公司 一种具有压力保护系统的二氧化碳空调
CN111412677A (zh) * 2020-04-28 2020-07-14 中车大连机车研究所有限公司 一种司机室co2冷媒变频空调
CN212299529U (zh) * 2020-04-28 2021-01-05 中车大连机车研究所有限公司 一种司机室co2冷媒变频空调

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111110A (zh) * 2021-12-02 2022-03-01 广东日出东方空气能有限公司 一种带板换过冷的热泵系统
CN114234450A (zh) * 2021-12-24 2022-03-25 山东雅士股份有限公司 一种变频co2热水机机组及其控制方法
CN114234450B (zh) * 2021-12-24 2023-09-08 山东雅士股份有限公司 一种变频co2热水机机组的控制方法

Also Published As

Publication number Publication date
CN111412677A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2021218147A1 (zh) 一种司机室co 2冷媒变频空调
WO2019091241A1 (zh) 空调制冷循环系统及空调器
CN103292523B (zh) 一种带有回热器的冷热双制空调系统
KR20090067167A (ko) 열교환 시스템
CN201964557U (zh) 整体式热管复合空调
CN102155769A (zh) 整体式热管复合空调
ITRM20070158A1 (it) Impianto frigorifero per un ciclo transcritico con economizzatore e accumulatore a bassa pressione
CN112050490A (zh) 一种蒸发冷离心式冷水机组
US11499756B2 (en) Modular waterside economizer for air-cooled chillers
JP4096984B2 (ja) 冷凍装置
CN1156662C (zh) 热泵系统
CN212299529U (zh) 一种司机室co2冷媒变频空调
CN105716334B (zh) 一种带排风过冷器的地铁列车空调机组
JP2007051788A (ja) 冷凍装置
CN215638160U (zh) 一种空调换热系统、空调器
CN213687346U (zh) 一种蒸发冷热泵机组
CN109703324B (zh) 采用二次回路的汽车空调系统
JP2008121995A (ja) 空気調和機
JP6613404B2 (ja) 冷凍システム
CN212657902U (zh) 一种蒸发冷离心式冷水机组
CN215637633U (zh) 空调室外机
CN219572324U (zh) 一种制冷系统
CN112146302B (zh) 一种蒸发冷热泵机组
CN212267184U (zh) 一种新能源汽车空调热泵系统
CN215121657U (zh) 一种水冷热管双模机房空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933244

Country of ref document: EP

Kind code of ref document: A1