WO2014136187A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2014136187A1
WO2014136187A1 PCT/JP2013/055864 JP2013055864W WO2014136187A1 WO 2014136187 A1 WO2014136187 A1 WO 2014136187A1 JP 2013055864 W JP2013055864 W JP 2013055864W WO 2014136187 A1 WO2014136187 A1 WO 2014136187A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
valve
refrigerant
flow rate
accumulator
Prior art date
Application number
PCT/JP2013/055864
Other languages
English (en)
French (fr)
Inventor
幸志 東
中尾 博人
敏彦 本田
彰良 白水
勝彦 林田
森本 修
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13877115.9A priority Critical patent/EP2966379B1/en
Priority to PCT/JP2013/055864 priority patent/WO2014136187A1/ja
Priority to JP2015504029A priority patent/JP5963941B2/ja
Publication of WO2014136187A1 publication Critical patent/WO2014136187A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/325Expansion valves having two or more valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner.
  • a compressor, a four-way switching valve, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger are sequentially connected, and the four-way switching valve is switched, so that heating operation and cooling are performed. There is something that is driven.
  • a conventional air conditioner for example, a plurality of indoor units provided with indoor heat exchangers are connected to an outdoor unit provided with outdoor heat exchangers, such as a multi air conditioner for buildings. There is something.
  • an accumulator is provided on the suction side of the compressor, and a bypass pipe branched from the pipe between the outdoor heat exchanger and the expansion device is connected to the upstream side of the accumulator, In the subcool heat exchanger between the outdoor heat exchanger and its branch point, the refrigerant flowing between the outdoor heat exchanger and its branch point exchanges heat with the decompressed refrigerant flowing in the bypass pipe.
  • JP 2010-164219 A (paragraph [0012] -paragraph [0054], FIGS. 1 and 2)
  • the refrigerant circulation amount is not controlled.
  • the heating operation is performed in a state where the liquid level of the accumulator is high, the accumulator A lot of liquid refrigerant may flow in and overflow.
  • the defrosting operation performed during the heating operation. If such a situation is repeated, the reliability of the air conditioner is impaired, for example, the liquid refrigerant is sucked into the compressor and the compressor is damaged.
  • the capacity of the accumulator is sufficiently large, overflow does not occur, but if the capacity of the accumulator is large, the apparatus becomes large and the cost is increased.
  • the capacity of the accumulators of all the outdoor units must be sufficiently large so that overflow does not occur in all the outdoor units. This further increases the cost.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an air conditioner that can adjust the amount of liquid refrigerant in an accumulator.
  • a compressor, an outdoor heat exchanger, a subcool heat exchanger, a throttle device, an indoor heat exchanger, and an accumulator are sequentially connected by piping, and the throttle device includes the outdoor heat exchanger.
  • An opening connected to a pipe communicating with the exchanger, an opening connected to a pipe communicating with the indoor heat exchanger, and a pipe communicating with the upstream side of the accumulator via the subcool heat exchanger are connected.
  • the expansion device includes an opening connected to a pipe communicating with the outdoor heat exchanger, an opening connected to a pipe communicating with the indoor heat exchanger, and a subcool heat exchanger.
  • a three-way valve with a flow rate adjusting function having an opening connected to a pipe communicating with the upstream side of the accumulator, and a three-way valve with a flow rate adjusting function and a subcool heat exchanger of the pipe communicating with the outdoor heat exchanger
  • the amount of liquid refrigerant in the accumulator can be adjusted by providing a valve between the three-way valve with flow rate adjustment function and the subcool heat exchanger in the pipe communicating with the upstream side of the accumulator. Since this is possible, the occurrence of overflow is suppressed and the reliability is improved.
  • the air conditioner according to the present invention circulates the refrigerant in the refrigerant circuit to form a refrigeration cycle (heat pump cycle), and performs a heating operation and at least one of a cooling operation and a defrosting operation.
  • a refrigeration cycle heat pump cycle
  • the levels of temperature, pressure, etc. described below are not determined in relation to absolute values, but are relatively determined according to the state, operation, etc. of the apparatus.
  • Embodiment 1 FIG. The air conditioning apparatus according to Embodiment 1 will be described. ⁇ Configuration of air conditioner> Below, the structure of the air conditioning apparatus which concerns on Embodiment 1 is demonstrated.
  • 1 is a diagram showing a configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the air conditioning apparatus 100 includes an outdoor unit 200 and an indoor unit 300.
  • the outdoor unit 200 includes a compressor 1, a check valve 2, a four-way switching valve 3 (four-way switching valves 3-1, 3-2), an outdoor heat exchanger 4, a blower fan 5, and storage adjusting means.
  • Outdoor heat exchanger capacity control solenoid valve 6 hereinafter referred to as capacity control solenoid valve 6
  • an accumulator 11, on-off valves 12 and 13, and a control device 21 are included.
  • the indoor unit 300 includes an indoor side heat exchanger 51 and an indoor side flow rate adjustment valve 52.
  • the outdoor unit 200 and the indoor unit 300 are connected by pipes 101 and 102 via on-off valves 12 and 13.
  • Compressor 1 check valve 2, four-way switching valve 3, outdoor heat exchanger 4, capacity control solenoid valve 6, three-way valve 7 with flow rate adjustment function, open / close valve 12, indoor side flow rate adjustment valve 52, indoor side heat exchange
  • the vessel 51, the on-off valve 13 and the accumulator 11 are devices provided in the main refrigerant circuit.
  • the compressor 1 has an inverter drive circuit, and can arbitrarily change its capacity (amount of refrigerant delivered per unit time) by arbitrarily changing the drive frequency.
  • the compressor 1 may not have an inverter drive circuit and may have a fixed drive frequency.
  • the check valve 2 is provided on the discharge side of the compressor 1.
  • the check valve 2 prevents the refrigerant from flowing backward.
  • the main refrigerant circuit branches into two systems on the downstream side of the check valve 2.
  • Four-way switching valves 3-1 and 3-2 are provided in each of the two systems.
  • the four-way switching valves 3-1 and 3-2 switch the refrigerant flow in response to a command from the control device 21.
  • the four-way switching valve 3-2 also serves as a storage adjusting means.
  • the outdoor heat exchanger 4 performs heat exchange between the refrigerant and air (outdoor air).
  • the outdoor heat exchanger 4 functions as an evaporator during the heating operation, performs heat exchange between the low-pressure refrigerant flowing from the three-way valve 7 with flow rate adjusting function and the air, and evaporates and vaporizes the refrigerant.
  • the outdoor heat exchanger 4 functions as a condenser during the cooling operation.
  • the outdoor heat exchanger 4 stores the refrigerant (liquid refrigerant) at the end of the cooling operation and the defrosting operation.
  • the outdoor heat exchanger 4 has two systems of inflow / outflow paths.
  • the outdoor heat exchanger 4 Since the outdoor heat exchanger 4 has two inflow / outflow paths, the timing at which the refrigerant stored during the transition to the heating operation is sent to the accumulator 11 is controlled.
  • a plurality of outdoor heat exchangers 4 may be connected in parallel to form two systems of inflow / outflow paths.
  • the blower fan 5 is provided to improve the efficiency of heat exchange between the refrigerant and the air in the outdoor heat exchanger 4.
  • the blower fan 5 has an inverter drive circuit like the compressor 1, and can change the rotational speed of a fan finely by changing the drive frequency of a fan motor arbitrarily.
  • the blower fan 5 may not have an inverter drive circuit and may have a fixed drive frequency.
  • the capacity control solenoid valve 6 is an on-off valve.
  • the capacity control electromagnetic valve 6 controls the timing at which the refrigerant is stored in the outdoor heat exchanger 4 and the timing at which the stored refrigerant is sent to the accumulator 11.
  • the capacity control electromagnetic valve 6 controls the flow of the refrigerant in one system of the outdoor heat exchanger 4 in cooperation with the four-way switching valve 3-2.
  • FIG. 2 is a diagram illustrating a configuration of a three-way valve with a flow rate adjusting function of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the three-way valve 7 with a flow rate adjusting function has openings 71 and 72 through which the refrigerant of the main refrigerant circuit flows in and out and an opening 73 that communicates with the bypass pipe 8.
  • cooling operation or defrosting operation is shown by the arrow.
  • a main valve body 74 is provided between the openings 71 and 72 through which the refrigerant of the main refrigerant circuit flows.
  • the main valve body 74 is urged by a first spring 76 in a direction away from the first valve seat 75 that is coaxial therewith.
  • An auxiliary valve body 77 is provided on the same axis as the main valve body 74.
  • the auxiliary valve body 77 is biased by the second spring 79 in a direction approaching the second valve seat 78 that is coaxial therewith.
  • a pressing member 80 is provided at the end of the main valve body 74, and the auxiliary valve body 77 is pressed in a direction away from the second valve seat 78 by the pressing member 80.
  • the main valve body 74 is driven in the axial direction by the electric actuator 81.
  • FIG. 3 is a view showing an open / close state of the three-way valve with a flow rate adjusting function in the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the flow of the refrigerant during the cooling operation or the defrosting operation is indicated by an arrow.
  • the stroke ratio of the electric actuator 81 (the effective stroke of the electric actuator 81 is 100% and the stop position of the electric actuator 81 is converted to the ratio) is 0%
  • the main valve body 74 is in a fully open state. Yes, the auxiliary valve body 77 is fully closed.
  • the stroke ratio of the electric actuator 81 is increased, the opening degree of the auxiliary valve body 77 is adjusted while the main valve body 74 is fully opened.
  • the main valve body 74 and the auxiliary valve body 77 are fully opened.
  • the opening degree of the main valve element 74 is adjusted while the auxiliary valve element 77 is fully opened.
  • the main valve body 74 is fully closed while the auxiliary valve body 77 is fully opened.
  • the three-way valve 7 with a flow rate adjusting function can adjust the opening degree of the main valve element 74 and the opening degree of the auxiliary valve element 77 independently by being configured in this way. That is, the three-way valve 7 with a flow rate adjusting function adjusts the flow rate of only the refrigerant flowing through the main refrigerant circuit when the opening degree of the main valve body 74 is adjusted. Further, the three-way valve 7 with a flow rate adjusting function adjusts the flow rate of only the refrigerant flowing through the bypass pipe 8 when the opening degree of the auxiliary valve body 77 is adjusted.
  • FIG. 4 is a diagram illustrating a configuration of a three-way valve with a flow rate adjustment function of the air-conditioning apparatus according to Embodiment 1 of the present invention. As shown in FIG. 4, a pressing member 80 and an electric actuator 81 may be provided on the auxiliary valve body 77 side.
  • the refrigerant flowing through the main refrigerant circuit and the refrigerant flowing through the bypass pipe 8 exchange heat.
  • a bypass flow rate control electromagnetic valve 10 is provided between the flow rate adjusting function three-way valve 7 and the subcool heat exchanger 9.
  • the bypass flow control solenoid valve 10 is an on-off valve.
  • the bypass flow rate control solenoid valve 10 may be a flow rate adjustment valve.
  • the bypass flow rate control solenoid valve 10 is opened, and the refrigerant flowing through the main refrigerant circuit is subcooled by the subcool heat exchanger 9 to the indoor unit 300. Supplied.
  • the refrigerant in the bypass pipe 8 returns to the upstream side of the accumulator 11.
  • the accumulator 11 is, for example, a device that stores liquid surplus refrigerant.
  • FIG. 5 is a diagram showing the relationship between the open / close states of the three-way valve with a flow rate adjusting function and the bypass flow rate control electromagnetic valve in the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the three-way valve 7 with a flow rate adjusting function adjusts the amount of refrigerant flowing through the main refrigerant circuit, for example, during heating operation.
  • the stroke ratio of the electric actuator 81 is set so that the opening degree of the main valve element 74 is adjusted or fully closed.
  • the auxiliary valve body 77 is fully opened, and the refrigerant flows into the bypass pipe 8. Therefore, as shown in FIG. 5, the bypass flow control solenoid valve 10 is controlled to be in a closed state when the opening degree of the main valve body 74 is in an adjusted state or a fully closed state, particularly during heating operation. .
  • the indoor heat exchanger 51 performs heat exchange between the refrigerant and air (indoor air).
  • the indoor heat exchanger 51 functions as a condenser during heating operation, performs heat exchange between the refrigerant flowing in from the pipe 102 and air, condenses the refrigerant, and liquefies (or gas-liquid two-phase). It flows out to the piping 101 side.
  • the indoor heat exchanger 51 functions as an evaporator during the cooling operation.
  • the indoor-side flow rate adjustment valve 52 adjusts the refrigerant pressure and the like in the indoor-side heat exchanger 51 by changing the opening degree.
  • the control device 21 includes, for example, a microcomputer.
  • the control device 21 includes a first pressure sensor 22, a second pressure sensor 23, a first temperature sensor 24, a second temperature sensor 25, a third temperature sensor 26, a fourth temperature sensor 27, and a fifth.
  • the temperature sensor 28 is connected.
  • the control device 21 acquires data such as the pressure and temperature of the refrigerant in the refrigerant circuit from each sensor, and each actuator (for example, the compressor 1, the four-way selector valves 3-1, 3-2, the blower fan 5, the electric motor) Actuator 81 etc.) is controlled.
  • each actuator for example, the compressor 1, the four-way selector valves 3-1, 3-2, the blower fan 5, the electric motor
  • the first pressure sensor 22 is provided between the compressor 1 and the four-way switching valve 3, and detects the pressure of the refrigerant discharged from the compressor 1 (high-pressure side pressure).
  • the second pressure sensor 23 is provided on the upstream side of the accumulator 11 and detects the pressure of the refrigerant (low pressure side pressure) sucked into the compressor 1.
  • the first temperature sensor 24 is provided between the compressor 1 and the four-way switching valve 3 and detects the temperature of the refrigerant discharged from the compressor 1.
  • the second temperature sensor 25 is provided between the accumulator 11 and the compressor 1 and detects the temperature of the refrigerant sucked into the compressor 1.
  • the third temperature sensor 26 is provided between the outdoor heat exchanger 4 and the subcool heat exchanger 9 and detects the temperature of the refrigerant flowing between the outdoor heat exchanger 4 and the subcool heat exchanger 9.
  • the fourth temperature sensor 27 is provided between the outdoor heat exchanger 4 and the accumulator 11 and detects the temperature of the refrigerant flowing between the outdoor heat exchanger 4 and the accumulator 11.
  • the fifth temperature sensor 28 detects the temperature around the outdoor unit 200.
  • the intermediate-pressure refrigerant flows into the outdoor unit 200 after passing through the pipe 101.
  • the intermediate-pressure refrigerant flowing into the outdoor unit 200 is in a low-pressure two-phase state because the refrigerant flow rate is appropriately adjusted by the three-way valve 7 with a flow rate adjusting function.
  • the refrigerant in the low-pressure two-phase state is evaporated and gasified in the outdoor heat exchanger 4, and then sucked into the compressor 1 again through the accumulator 11.
  • the refrigerant flows into the outdoor unit 200 through the indoor side flow rate adjustment valve 52, the indoor side heat exchanger 51, and the pipe 102.
  • the refrigerant passes through the four-way switching valve 3-1, flows into the accumulator 11, and is sucked into the compressor 1 again.
  • the three-way valve 7 with the flow rate adjusting function sets the opening 73 communicating with the bypass pipe 8 to a fully open state or an adjusted state, whereby the refrigerant is supplied to the bypass pipe 8.
  • the refrigerant flowing through the bypass pipe 8 is decompressed when passing through the three-way valve 7 with a flow rate adjusting function, and the subcool heat exchanger 9 supercools the refrigerant flowing through the main refrigerant circuit.
  • the three-way valve 7 with a flow rate adjusting function fully closes the opening 73 communicating with the bypass pipe 8, and the refrigerant flowing through the main refrigerant circuit is supercooled by the subcool heat exchanger 9. It does not have to be.
  • the control device 21 performs a process for reducing the amount of refrigerant in the accumulator 11 when performing the heating operation. That is, the refrigerant is stored in a portion other than the accumulator 11 in the refrigerant circuit, the refrigerant amount of the accumulator 11 is reduced, and the refrigerant is caused to flow into the accumulator 11 while controlling the refrigerant amount of the accumulator 11 in the heating operation. By doing so, the heating operation is quickly stabilized.
  • FIG. 6 is a diagram showing a control flow at the end of the cooling operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the control device 21 determines whether or not there has been a cooling operation stop command during the cooling operation.
  • the cooling operation stop command may be a heating operation start command. If there is an instruction to stop the cooling operation, the process proceeds to S102 and shifts to a cooling operation end preparation mode. Otherwise, the process proceeds to S101. Note that the process may proceed to S102 only when there is a heating operation start command simultaneously with the cooling operation stop command.
  • the control device 21 first calculates the refrigerant amount distribution (refrigerant distribution amount) of the air conditioner 100. For example, main locations where the refrigerant is distributed during the cooling operation are roughly classified into the accumulator 11, the outdoor heat exchanger 4, and the pipe 101. Therefore, the control device 21 calculates the refrigerant (liquid refrigerant) amount in the accumulator 11, the refrigerant (liquid refrigerant) amount in the outdoor heat exchanger 4, and the refrigerant (liquid refrigerant) amount in the pipe 101. .
  • the control device 21 calculates the suction superheat degree TsSH of the compressor 1 or the discharge superheat degree TdSH of the compressor 1 in order to calculate the amount of refrigerant (liquid refrigerant) in the accumulator 11.
  • the intake superheat degree TsSH (the detected temperature of the second temperature sensor 25) ⁇ (the saturation temperature converted from the detected pressure of the second pressure sensor 23).
  • the discharge superheat degree TdSH (detected temperature of the first temperature sensor 24) ⁇ (saturation temperature converted from the detected pressure of the first pressure sensor 22). Then, the refrigerant (liquid refrigerant) amount Va in the accumulator 11 is estimated based on the suction superheat degree TsSH or the discharge superheat degree TdSH of the compressor 1.
  • control device 21 calculates the density of the liquid refrigerant in the outdoor heat exchanger 4 from the detected temperature TH3 of the third temperature sensor 26 in order to calculate the amount of refrigerant (liquid refrigerant) in the outdoor heat exchanger 4.
  • the control device 21 calculates a volume margin VV with respect to the allowable amount Vmax in the accumulator 11 based on the calculated refrigerant distribution amount at each location.
  • the capacity margin VV includes the allowable amount Vmax of the accumulator 11, the refrigerant distribution amount at each location (the refrigerant (liquid refrigerant) amount Va in the accumulator 11, and the refrigerant (liquid refrigerant) in the outdoor heat exchanger 4).
  • the volume margin VV Vmax ⁇ Va ⁇ Vh ⁇ Vp is calculated using the amount Vh and the refrigerant (liquid refrigerant) amount Vp) in the pipe 101.
  • FIG. 7 is a diagram showing the relationship between the liquid level height in the accumulator and the ACC rank of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the control device 21 determines the calculated capacity margin VV in a plurality of ranks according to the liquid level height of the liquid refrigerant existing in the accumulator 11, for example, ACC rank a, ACC rank b, ACC rank c, ACC. Which rank, such as rank d, is determined.
  • the state in which the liquid level of the accumulator 11 is high and the volume margin VV is the lowest is ACC rank a, and becomes ACC rank b, ACC rank c, and ACC rank d.
  • the volume margin VV is high.
  • the control apparatus 21 performs the process and control according to the determined rank.
  • the control device 21 compares the capacity margin VV with the threshold values ACC level c, ACC level b, and ACC level a. First, the control device 21 compares the capacity margin VV and the ACC level c in S103. When the capacity margin VV is larger than the ACC level c, the control device 21 proceeds to S113 and shifts to the cooling operation end state. Otherwise, the process proceeds to S104.
  • the controller 21 compares the capacity margin VV with the ACC level b in S104. When the capacity margin VV is larger than the ACC level b, the control device 21 proceeds to S105. Otherwise, the process proceeds to S109.
  • FIG. 8 is a diagram showing the refrigerant flow when the capacity control electromagnetic valve is closed in the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the control device 21 closes the capacity control electromagnetic valve 6 for a preset first reference time T1.
  • the capacity control electromagnetic valve 6 is closed during the first reference time T ⁇ b> 1, whereby the refrigerant in the accumulator 11 moves into the outdoor heat exchanger 4, and the outdoor heat exchanger 4.
  • Liquid refrigerant is stored in a part of the inside.
  • the first reference time T1 may be set according to the internal volume of the outdoor heat exchanger 4.
  • the first reference time T1 may be changed according to the relationship between the internal volume of the outdoor heat exchanger 4 and the refrigerant (liquid refrigerant) amount Vh in the outdoor heat exchanger 4. Further, the amount of refrigerant (liquid refrigerant) in the outdoor heat exchanger 4 is estimated from the outside air temperature, the driving frequency of the compressor 1, the detected temperature of the fifth temperature sensor 28, etc., and the first reference is determined according to the estimation result. The time T1 may be changed.
  • the control device 21 proceeds to S106, and again compares the capacity margin VV with the ACC level c. When the capacity margin VV is larger than the ACC level c, the control device 21 proceeds to S113 and shifts to the cooling operation end state. Otherwise, the process proceeds to S107.
  • control device 21 closes the capacity control electromagnetic valve 6 for a preset second reference time T2. This is to maximize the liquid refrigerant stored in the outdoor heat exchanger 4.
  • control device 21 proceeds to S108 after the elapse of the second reference time T2, controls the opening degree of the main valve body 74 of the three-way valve 7 with a flow rate adjusting function, and the volume margin VV exceeds the ACC level c. Until this happens, the refrigerant is stored in the pipe 101.
  • the control device 21 calculates the refrigerant (liquid refrigerant) amount Vp in the pipe 101 in a state where the capacity margin VV exceeds the ACC level c.
  • the control device 21 calculates the capacity margin VV, the refrigerant (liquid refrigerant) amount Va in the accumulator 11, the refrigerant (liquid refrigerant) amount Vh in the outdoor heat exchanger 4, and the allowable amount Vmax of the accumulator 11.
  • VV Vmax ⁇ Va ⁇ Vh ⁇ Vp>
  • a refrigerant (liquid refrigerant) amount Vp in the pipe 101 that satisfies the ACC level c is calculated.
  • the opening degree of the main valve element 74 of the three-way valve 7 with the flow rate adjusting function is controlled to PL1 (TH3), and the process proceeds to S113, where the cooling operation is completed.
  • the controller 21 compares the capacity margin VV with the ACC level a in S109. When the capacity margin VV is larger than the ACC level a, the process proceeds to S110, and the capacity control electromagnetic valve 6 is closed during the first reference time T1 as in S105. Otherwise, the process proceeds to S111.
  • control device 21 After the elapse of the first reference time T1, the control device 21 proceeds to S108, and controls the opening degree of the main valve element 74 of the three-way valve 7 with a flow rate adjusting function to PL1 (TH3) in order to store the refrigerant in the pipe 101. And it progresses to S113 and transfers to a cooling operation end state.
  • the control device 21 determines that the volume margin VV is unlikely to increase compared to the ACC level c even if the refrigerant is stored in the outdoor heat exchanger 4, and stores the refrigerant in the pipe 101. Let That is, the control device 21 calculates the refrigerant (liquid refrigerant) amount Vp in the pipe 101, and the flow rate adjusting function of the three-way valve 7 with the flow rate adjusting function 7 is maintained so that the necessary refrigerant (liquid refrigerant) amount Vp in the pipe 101 is maintained.
  • the opening degree of the main valve element 74 is controlled to PL1 (TH3), and the process proceeds to S112.
  • control device 21 stores the refrigerant in the pipe 101 until the capacity margin VV becomes larger than the ACC level a, proceeds to S113, and shifts to the cooling operation end state.
  • FIG. 9 is a diagram showing a control flow at the end of the defrosting operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • S201 to 213 in FIG. 9 are the same as S101 to 113 in FIG.
  • FIG. 10 is a diagram showing a control flow at the start of heating operation of the air-conditioning apparatus according to Embodiment 1 of the present invention. As shown in FIG. 10, when the control device 21 shifts to the heating operation, the control device 21 drives the compressor 1 at the preset frequency F0 in S301, and proceeds to S302.
  • the control device 21 compares the capacity margin VV with the ACC level c in S302. If the capacity margin VV is larger than the ACC level c, the process proceeds to S303, and if not, the process proceeds to S305. In S303, the control device 21 opens the capacity control electromagnetic valve 6, and proceeds to S304. Here, if the capacity control solenoid valve 6 is already open, it is left open.
  • the control device 21 sets the opening degree of the main valve element 74 of the three-way valve 7 with a flow rate adjusting function to a preset reference opening degree PL0 at the start of heating operation (hereinafter referred to as a heating start reference opening degree PL0). ) And proceed to S308.
  • the heating start reference opening PL0 is PL0> PL1 (TH3). Further, the heating start reference opening PL0 is a preset fixed value regardless of the detected temperature.
  • the control device 21 closes the capacity control electromagnetic valve 6 in S305, and proceeds to S306.
  • S305 prevents the liquid refrigerant stored (condensed) in the outdoor heat exchanger 4 from circulating through the refrigerant circuit and flowing into the accumulator 11.
  • the control device 21 controls the opening degree of the main valve body 74 of the three-way valve 7 with a flow rate adjusting function to PL1 (TH3), and proceeds to S307.
  • the capacity control solenoid valve 6 is already closed, it is kept closed.
  • the opening degree of the main valve body 74 of the three-way valve 7 with the flow rate adjusting function is PL1 (TH3), it remains at PL1 (TH3).
  • the controller 21 determines the ACC rank of the liquid refrigerant existing in the accumulator 11 shown in FIG. 7 in S307.
  • the control device 21 drives the compressor 1 with the frequency F (ACC rank) corresponding to the ACC rank, and proceeds to S308.
  • the frequencies F (ACC ranks) corresponding to the ACC rank a, ACC rank b, ACC rank c, and ACC rank d are Fa, Fb, Fc, and Fd
  • the respective frequencies are F0> Fd> Fc> Fb. > Fa.
  • the frequency F ACC rank
  • the frequency F is set so that the higher the liquid level of the accumulator 11 (the closer the determined ACC rank is to ACC rank a), the slower the inflow rate of the refrigerant into the accumulator 11.
  • FIG. 11 is a diagram illustrating a state where the four-way switching valve is switched in the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the control device 21 when the capacity control electromagnetic valve 6 is closed by S305, the control device 21 is a refrigerant on the side where the capacity control electromagnetic valve 6 of the outdoor heat exchanger 4 is provided.
  • the four-way selector valve 3-2 communicating with the inlet is not switched.
  • the high-pressure gas refrigerant discharged from the compressor 1 is distributed to the four-way switching valve 3-1 and the four-way switching valve 3-2, and the high-pressure gas refrigerant flowing into the four-way switching valve 3-1 is It flows to the indoor unit 300 side via the gas-side refrigerant pipe 102 and forms a circulation path for heating operation.
  • the high-pressure gas refrigerant flowing into the four-way switching valve 3-2 is stored in a part of the outdoor heat exchanger 4 because the capacity control electromagnetic valve 6 is closed. At this time, since the pressure on the refrigerant inlet side of the outdoor heat exchanger 4 is higher than the pressure in the outdoor heat exchanger 4, the refrigerant stored in the outdoor heat exchanger 4 flows backward. do not do.
  • the controller 21 drives the blower fan 5 in S309, and proceeds to S310.
  • the control device 21 starts the heating operation and proceeds to S311.
  • the control device 21 compares the capacity margin VV with the ACC level c. When the volume margin VV becomes larger than the ACC level c, the control device 21 proceeds to S312.
  • the control device 21 opens the capacity control electromagnetic valve 6, switches the four-way switching valve 3-2, proceeds to S313, and continues the heating operation.
  • the capacity control solenoid valve 6 is already open, it is left in the open state.
  • the four-way switching valve 3-2 is not switched because it has already been switched.
  • the liquid refrigerant stored in the outdoor heat exchanger 4 flows into the accumulator 11 through the four-way switching valve 3-2, but the capacity margin VV> the refrigerant (liquid in the outdoor heat exchanger 4). Since the capacity margin VV of the accumulator 11 (allowable amount Vmax of the accumulator 11) is designed so as to be the refrigerant) amount Vh, the refrigerant does not overflow beyond the allowable amount Vmax of the accumulator 11.
  • FIG. 12 is a diagram showing a comparative example of the air-conditioning apparatus according to Embodiment 1 of the present invention. Further, the configuration of the comparative example shown in FIG. 12 can perform the same operation as that of the air conditioner 100, but the air conditioner 100 adopts the configuration as shown in FIG. Therefore, it has an operation as described below.
  • a capacity control solenoid valve 15 is provided in one of the two systems.
  • a branching portion to the bypass pipe 8 is provided between the flow rate adjustment valve 16 and the subcool heat exchanger 14 provided in the main refrigerant circuit, and the flow rate adjustment valve 17 is provided in the bypass pipe 8.
  • the two flow rate adjustment valves (flow rate adjustment valve 16, flow rate adjustment valve 17) of the comparative example are replaced with one flow rate adjustment valve (three-way valve 7 with a flow rate adjustment function).
  • Cost reduction is realized.
  • a three-way valve 7 with a flow rate adjusting function is used as a flow rate adjusting valve, for example, a distribution part is formed in the flow path between the main valve element 74 and the opening 72 of the three-way valve 7 with a flow rate adjusting function.
  • it may have a function as a distributor. In such a case, it is provided at the junction of two systems between the outdoor heat exchanger 4 and the subcool heat exchanger 14 in the comparative example.
  • a capacity control electromagnetic valve 15 provided between the outdoor heat exchanger 4 and the subcool heat exchanger 14 is a capacity control provided between the three-way valve 7 with a flow rate adjusting function and the subcool heat exchanger 9.
  • FIG. 13 is a diagram illustrating an operation of the air-conditioning apparatus according to Embodiment 1 of the present invention. Further, as shown in FIG. 13, the capacity control solenoid valve 6, the three-way valve 7 with a flow rate adjusting function, and the bypass flow control solenoid valve 10 may be unitized. Efficiency is improved.
  • FIG. 14 is a diagram illustrating the operation of the air-conditioning apparatus according to Embodiment 1 of the present invention. Further, as shown in FIG.
  • the capacity control solenoid valve 6, the three-way valve 7 with a flow rate adjusting function, the bypass flow rate control solenoid valve 10, and the subcool heat exchanger 9 may be unitized. Further, when the capacity control solenoid valve 6, the three-way valve with flow rate adjusting function 7, and the bypass flow control solenoid valve 10 are cartridge type, the workability such as maintenance work is further improved. Further, as shown in FIGS. 13 and 14, when unitized using a structure (block), the outdoor heat exchanger 4 and the subcool heat exchanger 14 in the comparative example are placed in the flow path in the structure. A distributor functioning in the same way as the distributor provided in the two system junctions between the two and the like may be formed. In such a case, the number of parts is reduced and the cost of the apparatus is reduced. Is done. 13 and 14, the capacity control electromagnetic valve 15 is not shown.
  • FIG. 15 is a diagram showing a configuration of an air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the air conditioner 100 includes an outdoor heat exchanger capacity control flow rate adjustment valve 18 (hereinafter referred to as a capacity control flow rate adjustment valve 18) serving as a storage adjustment unit, instead of the capacity control electromagnetic valve 6.
  • a capacity control flow rate adjustment valve 18 can linearly control the flow rate (linear control).
  • the capacity control flow rate adjustment valve 18 adjusts the opening degree according to a command from the control device 21.
  • FIG. 16 is a diagram illustrating a control flow of the air-conditioning apparatus according to Embodiment 2 of the present invention when the cooling operation ends and when the defrosting operation ends.
  • the control device 21 performs the control shown in FIG. 16 instead of S103 to S112 shown in FIG. 6 and S203 to S212 shown in FIG.
  • the control device 21 determines which rank of the n ranks the calculated capacity margin VV corresponds to, and performs processing and control according to the determined rank.
  • the control device 21 determines that the capacity margin VV and the threshold values ACC level L-1, ACC level L-2,..., ACC level L- (n-1) ) In order.
  • the ACC level L-1, the ACC level L-2,..., The ACC level L- (n-1) is a relation of ACC level L-1> ACC level L-2> ...> ACC level L- (n-1). It is in.
  • the control device 21 sets the opening degree of the capacity control flow rate adjusting valve 18 to PL-1, PL-2,..., PL- (n-1) in S402-1 to S402- (n-1).
  • PL-1, PL-2,..., PL (n-1) have a relationship of PL-1 ⁇ PL-2 ⁇ ... ⁇ PL- (n-1).
  • control device 21 determines which rank of the n ranks the calculated capacity margin VV corresponds to when the heating operation is shifted, similarly to the control shown in FIG.
  • the opening degree of the capacity control flow rate adjusting valve 18 is controlled according to the rank.
  • control apparatus 21 may cooperate the three-way valve 7 with a flow volume adjustment function like the control flow shown by FIG.6, FIG.9, FIG.10.
  • FIG. 17 is a diagram showing a configuration of an air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the air conditioning apparatus 100 has n systems of inflow and outflow paths to the outdoor heat exchanger 4. Branching into n systems on the discharge side of the compressor 1, each system is provided with four-way switching valves 3-1, 3-2,. Capacity control solenoid valves 6-1, 6-2,..., 6- (n-1) serving as storage adjustment means are provided in the (n-1) of the n systems.
  • FIG. 18 is a diagram illustrating a control flow of the air-conditioning apparatus according to Embodiment 3 of the present invention when the cooling operation ends and when the defrosting operation ends.
  • the control device 21 performs the control shown in FIG. 18 instead of S103 to S112 shown in FIG. 6 and S203 to S212 shown in FIG.
  • the control device 21 determines which rank of the n ranks the calculated capacity margin VV corresponds to, and performs processing and control according to the determined rank.
  • the control device 21 sets the capacity margin VV and the threshold values of ACC level L-1, ACC level L-2,..., ACC level L- (n-1). ) In order.
  • the ACC level L-1, the ACC level L-2,..., The ACC level L- (n-1) is a relation of ACC level L-1> ACC level L-2> ...> ACC level L- (n-1). It is in.
  • the control device 21 has one capacity control solenoid valve 6, two capacity control solenoid valves 6, ..., (n-1) capacity control solenoid valves 6. Open.
  • the capacity of each system is the same and the amount of liquid refrigerant stored in the outdoor heat exchanger 4 when each capacity control solenoid valve 6 is in the closed state, Linear control of the amount of liquid refrigerant stored in the outer heat exchanger 4 is realized.
  • control device 21 determines which rank of the n ranks the calculated capacity margin VV corresponds to when the heating operation is shifted, similarly to the control shown in FIG.
  • the number of capacity control solenoid valves 6 to be opened is controlled according to the rank.
  • control apparatus 21 may cooperate the three-way valve 7 with a flow volume adjustment function like the control flow shown by FIG.6, FIG.9, FIG.10.
  • a part or all of the capacity control electromagnetic valve 6 may be the capacity control flow rate adjustment valve 18, and the control device 21 may perform the control flow shown in FIG.
  • Embodiment 1 As mentioned above, although Embodiment 1, Embodiment 2, and Embodiment 3 were demonstrated, this invention is not limited to description of each embodiment. For example, it is also possible to combine each embodiment or each modification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 本発明に係る空気調和装置100は、圧縮機1と室外側熱交換器4とサブクール熱交換器9と絞り装置と室内側熱交換器51とアキュムレータ11とが、順次配管接続され、絞り装置は、室外側熱交換器4に連通する配管が接続された開口と、室内側熱交換器51に連通する配管が接続された開口と、サブクール熱交換器9を介してアキュムレータ11の上流側に連通する配管8が接続された開口と、を有する流量調整機能付三方弁7を含み、室外側熱交換器4に連通する配管を流れる冷媒と、アキュムレータ11の上流側に連通する配管8を流れる冷媒とは、サブクール熱交換器9で熱交換され、室外側熱交換器4に連通する配管の、流量調整機能付三方弁7とサブクール熱交換器9との間、及び、アキュムレータ11の上流側に連通する配管8の、流量調整機能付三方弁7とサブクール熱交換器9との間、にそれぞれ弁6、10が設けられたものである。

Description

空気調和装置
 本発明は、空気調和装置に関するものである。
 従来の空気調和装置として、例えば、圧縮機と四方切換弁と室外側熱交換器と絞り装置と室内側熱交換器とが順次接続され、その四方切換弁が切り換えられることで、暖房運転と冷房運転とが行われるものがある。また、従来の空気調和装置として、例えば、ビル用マルチエアコン等のように、室外側熱交換器が配設された室外機に、室内側熱交換器が配設された室内機が複数接続されるものがある。
 そして、そのような空気調和装置として、圧縮機の吸入側にアキュムレータが設けられ、室外側熱交換器と絞り装置との間の配管から分岐したバイパス配管が、そのアキュムレータの上流側に接続され、室外側熱交換器とその分岐点との間のサブクール熱交換器で、室外側熱交換器とその分岐点との間を流れる冷媒と、バイパス配管を流れる減圧された冷媒と、が熱交換するものがある(例えば、特許文献1参照)。
特開2010-164219号公報(段落[0012]-段落[0054]、図1、図2)
 このような空気調和装置では、暖房運転と冷房運転とが切り換わる際に、冷媒循環量の制御がなされておらず、例えば、アキュムレータの液面が高い状態で暖房運転が行われると、アキュムレータに多くの液冷媒が流入し、オーバーフローが生じる可能性がある。暖房運転時に行われる霜取り運転についても同様である。そして、そのような状況が繰り返されると、例えば、液冷媒が圧縮機に吸入されて、圧縮機が破損する等、空気調和装置の信頼性が損なわれてしまう。
 アキュムレータの容量が十分に大きければ、オーバーフローは生じないが、アキュムレータの容量が大きいと、装置が大型化され、高コスト化されてしまう。特に、室外機に複数の室内機が接続される場合には、全ての室外機でオーバーフローが生じないように、全ての室外機のアキュムレータの容量が十分に大きい必要があり、装置が更に大型化され、更に高コスト化されてしまう。
 本発明は、上記のような課題を解決するためになされたもので、アキュムレータの液冷媒量を調整することができる空気調和装置を得ることを目的とする。
 本発明に係る空気調和装置は、圧縮機と室外側熱交換器とサブクール熱交換器と絞り装置と室内側熱交換器とアキュムレータとが、順次配管接続され、前記絞り装置は、前記室外側熱交換器に連通する配管が接続された開口と、前記室内側熱交換器に連通する配管が接続された開口と、前記サブクール熱交換器を介して前記アキュムレータの上流側に連通する配管が接続された開口と、を有する流量調整機能付三方弁を含み、前記室外側熱交換器に連通する配管を流れる冷媒と、前記アキュムレータの上流側に連通する配管を流れる冷媒とは、前記サブクール熱交換器で熱交換され、前記室外側熱交換器に連通する配管の、前記流量調整機能付三方弁と前記サブクール熱交換器との間、及び、前記アキュムレータの上流側に連通する配管の、前記流量調整機能付三方弁と前記サブクール熱交換器との間、にそれぞれ弁が設けられたものである。
 本発明に係る空気調和装置は、絞り装置が、室外側熱交換器に連通する配管が接続された開口と、室内側熱交換器に連通する配管が接続された開口と、サブクール熱交換器を介してアキュムレータの上流側に連通する配管が接続された開口と、を有する流量調整機能付三方弁を含み、室外側熱交換器に連通する配管の、流量調整機能付三方弁とサブクール熱交換器との間、及び、アキュムレータの上流側に連通する配管の、流量調整機能付三方弁とサブクール熱交換器との間、にそれぞれ弁が設けられることで、アキュムレータの液冷媒量を調整することが可能であるため、オーバーフローを生じることが抑制されて、信頼性が向上される。
本発明の実施の形態1に係る空気調和装置の、構成を示す図である。 本発明の実施の形態1に係る空気調和装置の、流量調整機能付三方弁の構成を示す図である。 本発明の実施の形態1に係る空気調和装置の、流量調整機能付三方弁の開閉状態を示す図である。 本発明の実施の形態1に係る空気調和装置の、流量調整機能付三方弁の構成を示す図である。 本発明の実施の形態1に係る空気調和装置の、流量調整機能付三方弁とバイパス流量制御電磁弁との開閉状態の関係を示す図である。 本発明の実施の形態1に係る空気調和装置の、冷房運転終了時の制御フローを示す図である。 本発明の実施の形態1に係る空気調和装置の、アキュムレータ内の液面高さとACCランクとの関係を示す図である。 本発明の実施の形態1に係る空気調和装置の、容量制御電磁弁を閉じた時の冷媒の流れを示す図である。 本発明の実施の形態1に係る空気調和装置の、霜取り運転終了時における制御フローを示す図である。 本発明の実施の形態1に係る空気調和装置の、暖房運転開始時における制御フローを示す図である。 本発明の実施の形態1に係る空気調和装置の、四方切換弁が切り換えられた状態を示す図である。 本発明の実施の形態1に係る空気調和装置の、比較例を示す図である。 本発明の実施の形態1に係る空気調和装置の、作用を示す図である。 本発明の実施の形態1に係る空気調和装置の、作用を示す図である。 本発明の実施の形態2に係る空気調和装置の、構成を示す図である。 本発明の実施の形態2に係る空気調和装置の、冷房運転終了時及び霜取り運転終了時の制御フローを示す図である。 本発明の実施の形態3に係る空気調和装置の、構成を示す図である。 本発明の実施の形態3に係る空気調和装置の、冷房運転終了時及び霜取り運転終了時の制御フローを示す図である。
 以下、本発明に係る空気調和装置について、図面を用いて説明する。本発明に係る空気調和装置は、冷媒回路の冷媒を循環させて冷凍サイクル(ヒートポンプサイクル)を形成し、暖房運転と、冷房運転及び霜取り運転の少なくとも一方と、を行なうものである。なお、以下では、1つの室外機に1つの室内機が接続される場合を説明するが、1つの室外機に複数の室内機が接続されてもよい。また、以下で説明する温度、圧力等の高低は、絶対的な値との関係で定まるものではなく、装置の状態、動作等に応じて相対的に定まるものである。また、以下で説明する構成、動作等は、一例にすぎず、本発明に係る空気調和装置は、そのような構成、動作等に限定されない。また、各図において、同一又は類似する部材又は部分には、同一の符号を付している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
実施の形態1.
 実施の形態1に係る空気調和装置について説明する。
<空気調和装置の構成>
 以下に、実施の形態1に係る空気調和装置の構成について説明する。図1は、本発明の実施の形態1に係る空気調和装置の、構成を示す図である。図1に示すように、空気調和装置100は、室外機200と、室内機300と、を有する。
 室外機200は、圧縮機1と、逆止弁2と、四方切換弁3(四方切換弁3-1、3-2)と、室外側熱交換器4と、送風ファン5と、貯留調整手段となる室外側熱交換器容量制御電磁弁6(以降、容量制御電磁弁6とする)と、流量調整機能付三方弁7と、バイパス配管8と、サブクール熱交換器9と、バイパス流量制御電磁弁10と、アキュムレータ11と、開閉弁12、13と、制御装置21と、を有する。室内機300は、室内側熱交換器51と、室内側流量調整弁52と、を有する。
 室外機200と室内機300とは、開閉弁12、13を介して、配管101、102で接続される。圧縮機1、逆止弁2、四方切換弁3、室外側熱交換器4、容量制御電磁弁6、流量調整機能付三方弁7、開閉弁12、室内側流量調整弁52、室内側熱交換器51、開閉弁13及びアキュムレータ11は、主となる冷媒回路に設けられた機器である。
 圧縮機1は、インバータ駆動回路を有し、駆動周波数を任意に変化させることによって、その容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができる。なお、圧縮機1が、インバータ駆動回路を有さず、駆動周波数を固定していてもよい。
 逆止弁2は、圧縮機1の吐出側に設けられる。逆止弁2は、冷媒の逆流を防ぐ。主となる冷媒回路は、逆止弁2の下流側で2系統に分岐する。2系統のそれぞれに、四方切換弁3-1、3-2が設けられる。四方切換弁3-1、3-2は、制御装置21からの指令に応じて冷媒の流れを切り換える。ここで、四方切換弁3-2は、貯留調整手段にもなる。
 室外側熱交換器4は、冷媒と空気(室外の空気)との熱交換を行う。室外側熱交換器4は、暖房運転時に蒸発器として機能し、流量調整機能付三方弁7側から流入する低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させて気化させる。また、室外側熱交換器4は、冷房運転時に凝縮器として機能する。ここで、室外側熱交換器4は、冷房運転及び霜取り運転の終了時に、冷媒(液冷媒)を貯留する。また、室外側熱交換器4は、2系統の流入出経路を有している。室外側熱交換器4が2系統の流入出経路を有することで、暖房運転への移行時に貯留された冷媒がアキュムレータ11に送られるタイミング等が制御される。なお、複数台の室外側熱交換器4が並列に接続されて、2系統の流入出経路が形成されてもよい。
 送風ファン5は、室外側熱交換器4における冷媒と空気との熱交換を効率化させるために設けられる。送風ファン5は、圧縮機1と同様に、インバータ駆動回路を有し、ファンモータの駆動周波数を任意に変化させることによって、ファンの回転速度を細かく変化させることができる。なお、送風ファン5が、インバータ駆動回路を有さず、駆動周波数を固定していてもよい。
 容量制御電磁弁6は、開閉弁である。容量制御電磁弁6は、室外側熱交換器4における、上述の冷媒を貯留するタイミングと、上述の貯留された冷媒をアキュムレータ11に送るタイミングと、を制御する。容量制御電磁弁6は、室外側熱交換器4の1系統の流入出経路における冷媒の流れを、四方切換弁3-2と協働して制御する。
 流量調整機能付三方弁7は、上述の2系統の合流部と開閉弁12との間に設けられる。図2は、本発明の実施の形態1に係る空気調和装置の、流量調整機能付三方弁の構成を示す図である。図2に示されるように、流量調整機能付三方弁7は、主となる冷媒回路の冷媒が流入出する開口71、72と、バイパス配管8に連通する開口73と、を有する。なお、図2では、冷房運転又は霜取り運転時の冷媒の流れを矢印で示している。
 主となる冷媒回路の冷媒が流入出する開口71、72間には、主弁体74が設けられる。主弁体74は、それと同軸の第1弁座75から遠ざかる方向に、第1ばね76で付勢される。主弁体74の同軸上には、補助弁体77が設けられる。補助弁体77は、それと同軸の第2弁座78に近づく方向に、第2ばね79で付勢される。主弁体74の端部には押圧部材80が設けられ、補助弁体77は、押圧部材80によって第2弁座78から遠ざかる方向に押圧される。主弁体74は、電動アクチュエータ81によって軸方向に駆動される。
 図3は、本発明の実施の形態1に係る空気調和装置の、流量調整機能付三方弁の開閉状態を示す図である。なお、図3では、冷房運転又は霜取り運転時の冷媒の流れを矢印で示している。電動アクチュエータ81のストローク比率(電動アクチュエータ81の有効なストロークを100%とし、電動アクチュエータ81の停止位置をそれに対する比率に換算したもの)が0%である時は、主弁体74は全開状態であり、補助弁体77は全閉状態である。電動アクチュエータ81のストローク比率が上昇すると、主弁体74が全開状態のまま、補助弁体77の開度が調整状態となる。電動アクチュエータ81のストローク比率が更に上昇すると、主弁体74と補助弁体77とは全開状態となる。電動アクチュエータ81のストローク比率が更に上昇すると、補助弁体77が全開状態のまま、主弁体74の開度が調整状態となる。電動アクチュエータ81のストローク比率が更に上昇すると、補助弁体77が全開状態のまま、主弁体74が全閉状態となる。
 流量調整機能付三方弁7は、このように構成されることで、主弁体74の開度と補助弁体77の開度とを独立して調整することができる。つまり、流量調整機能付三方弁7は、主弁体74の開度の調整時に、主となる冷媒回路を流れる冷媒のみの流量を調整する。また、流量調整機能付三方弁7は、補助弁体77の開度の調整時に、バイパス配管8を流れる冷媒のみの流量を調整する。図4は、本発明の実施の形態1に係る空気調和装置の、流量調整機能付三方弁の構成を示す図である。なお、図4に示されるように、補助弁体77側に、押圧部材80と電動アクチュエータ81が設けられてもよい。
 サブクール熱交換器9において、主となる冷媒回路を流れる冷媒と、バイパス配管8を流れる冷媒とが、熱交換する。バイパス配管8の、流量調整機能付三方弁7とサブクール熱交換器9との間には、バイパス流量制御電磁弁10が設けられる。バイパス流量制御電磁弁10は、開閉弁である。バイパス流量制御電磁弁10は、流量調整弁であってもよい。特に、冷房運転時に冷媒を過冷却する必要がある場合に、バイパス流量制御電磁弁10が開状態となり、主となる冷媒回路を流れる冷媒がサブクール熱交換器9で過冷却されて室内機300に供給される。バイパス配管8の冷媒は、アキュムレータ11の上流側に戻る。アキュムレータ11は、例えば、液体の余剰冷媒を溜めておく機器である。
 図5は、本発明の実施の形態1に係る空気調和装置の、流量調整機能付三方弁とバイパス流量制御電磁弁との開閉状態の関係を示す図である。流量調整機能付三方弁7は、例えば、暖房運転時に、主となる冷媒回路を流れる冷媒の量を調整する。その際、電動アクチュエータ81のストローク比率は、主弁体74の開度が調整状態又は全閉状態となるように設定される。しかし、電動アクチュエータ81のストローク比率がそのように設定されると、補助弁体77が全開状態となり、バイパス配管8に冷媒が流入してしまう。そこで、図5に示されるように、バイパス流量制御電磁弁10は、特に、暖房運転時に、主弁体74の開度が調整状態又は全閉状態になると、閉状態になるように制御される。
 室内側熱交換器51は、冷媒と空気(室内の空気)との熱交換を行う。室内側熱交換器51は、暖房運転時において凝縮器として機能し、配管102から流入する冷媒と空気との熱交換を行い、冷媒を凝縮させて液化(または、気液二相化)させて配管101側に流出させる。また、室内側熱交換器51は、冷房運転時において蒸発器として機能する。室内側流量調整弁52は、開度を変化させて、室内側熱交換器51内における冷媒の圧力等を調整する。
 制御装置21は、例えば、マイクロコンピュータ等を有する。制御装置21には、第1圧力センサ22と、第2圧力センサ23と、第1温度センサ24と、第2温度センサ25と、第3温度センサ26と、第4温度センサ27と、第5温度センサ28と、が接続される。制御装置21は、各センサから冷媒回路内の冷媒の圧力、温度等のデータを取得して、各アクチュエータ(例えば、圧縮機1、四方切換弁3-1、3-2、送風ファン5、電動アクチュエータ81等)の駆動を制御する。
 図1に示されるように、第1圧力センサ22は、圧縮機1と四方切換弁3との間に設けられ、圧縮機1から吐出された冷媒の圧力(高圧側圧力)を検知する。第2圧力センサ23は、アキュムレータ11の上流側に設けられ、圧縮機1に吸入される冷媒の圧力(低圧側圧力)を検知する。第1温度センサ24は、圧縮機1と四方切換弁3との間に設けられ、圧縮機1から吐出された冷媒の温度を検知する。第2温度センサ25は、アキュムレータ11と圧縮機1との間に設けられ、圧縮機1に吸入される冷媒の温度を検知する。第3温度センサ26は、室外側熱交換器4とサブクール熱交換器9との間に設けられ、室外側熱交換器4とサブクール熱交換器9との間を流れる冷媒の温度を検知する。第4温度センサ27は、室外側熱交換器4とアキュムレータ11の間に設けられ、室外側熱交換器4とアキュムレータ11との間を流れる冷媒の温度を検知する。第5温度センサ28は、室外機200の周囲の温度を検知する。
<空気調和装置の動作>
 以下に、実施の形態1に係る空気調和装置の動作について説明する。
(暖房運転時の動作)
 空気調和装置100の暖房運転時の動作について説明する。なお、図1において、点線の矢印が、暖房運転時の冷媒の流れを示している。圧縮機1から吐出された高温高圧のガス冷媒は、四方切換弁3-1を通過して配管102に流入する。配管102を通って室内機300に供給された冷媒は、室内側熱交換器51で凝縮、液化された後、室内側流量調整弁52で減圧され、中間圧の液飽和状態に近い二相冷媒となる。この中間圧の冷媒は、配管101を通った後、室外機200に流入する。室外機200に流入した中間圧の冷媒は、流量調整機能付三方弁7で冷媒流量が適度に調節されているため、低圧の二相状態となる。低圧の二相状態となった冷媒は、室外側熱交換器4で蒸発してガス化した後、アキュムレータ11を通って、圧縮機1に再度吸入される。
(冷房運転時の動作と霜取り運転時の動作)
 空気調和装置100の冷房運転時の動作と霜取り運転時の動作について説明する。なお、図1において、実線の矢印が、冷房運転時及び霜取り運転時の冷媒の流れを示している。圧縮機1から吐出された高温高圧のガス冷媒は、四方切換弁3-1、3-2を通過して室外側熱交換器4に流入する。送風ファン5は、冷房運転時には駆動され、霜取り運転時には駆動されない。冷媒は、室外側熱交換器4において、凝縮、液化され、配管101を通過し、室内機300に流入する。冷媒は、室内側流量調整弁52と室内側熱交換器51と配管102を通って室外機200へ流入する。冷媒は、四方切換弁3-1を通過して、アキュムレータ11へ流入し、圧縮機1へ再度吸入される。
 冷房運転及び霜取り運転において、流量調整機能付三方弁7が、バイパス配管8に連通する開口73を全開状態又は調整状態とすることで、バイパス配管8に冷媒が供給される。バイパス配管8を流れる冷媒は、流量調整機能付三方弁7を経由する際に減圧され、サブクール熱交換器9で主となる冷媒回路を流れる冷媒を過冷却する。なお、冷房運転及び霜取り運転において、流量調整機能付三方弁7が、バイパス配管8に連通する開口73を全閉状態とし、主となる冷媒回路を流れる冷媒がサブクール熱交換器9で過冷却されなくてもよい。
(冷房運転終了時の動作)
 空気調和装置100の冷房運転終了時の動作について説明する。制御装置21は、冷房運転の終了時に、暖房運転を行う際のアキュムレータ11内の冷媒量を少なくしておくための処理を行う。つまり、冷媒回路内のアキュムレータ11以外の部分に冷媒を貯留して、アキュムレータ11の冷媒量を少なくしておき、暖房運転において、アキュムレータ11の冷媒量を制御しながらアキュムレータ11に冷媒を流入させるようにすることで、暖房運転が迅速に安定化される。
 図6は、本発明の実施の形態1に係る空気調和装置の、冷房運転終了時の制御フローを示す図である。図6に示されるように、S101において、制御装置21は、冷房運転中に冷房運転の停止指令があったか否かを判定する。なお、冷房運転の停止指令は、暖房運転の開始指令でもよい。冷房運転の停止指令がある場合は、S102に進み、冷房運転終了準備モードに移行する。そうでなければ、S101に進む。なお、冷房運転の停止指令と同時に暖房運転の開始指令がある時のみ、S102に進んでもよい。
 S102において、制御装置21は、まず、空気調和装置100の冷媒量の分布(冷媒分布量)を演算する。例えば、冷房運転中に冷媒が分布する主な箇所は、アキュムレータ11内、室外側熱交換器4内、及び配管101内に大別される。そのため、制御装置21は、アキュムレータ11内の冷媒(液冷媒)量と、室外側熱交換器4内の冷媒(液冷媒)量と、配管101内の冷媒(液冷媒)量と、を演算する。
 制御装置21は、アキュムレータ11内の冷媒(液冷媒)量を算出するために、圧縮機1の吸入過熱度TsSH又は圧縮機1の吐出過熱度TdSHを演算する。ここで、吸入過熱度TsSH=(第2温度センサ25の検知温度)-(第2圧力センサ23の検知圧力から換算される飽和温度)である。また、吐出過熱度TdSH=(第1温度センサ24の検知温度)-(第1圧力センサ22の検知圧力から換算される飽和温度)である。そして、圧縮機1の吸入過熱度TsSH又は吐出過熱度TdSHに基づいて、アキュムレータ11内の冷媒(液冷媒)量Vaを推定する。
 また、制御装置21は、室外側熱交換器4内の冷媒(液冷媒)量を算出するために、第3温度センサ26の検知温度TH3から、室外側熱交換器4内の液冷媒の密度ρ(TH3)を演算する。そして、予め設定された室外側熱交換器4の内容積Vhexを用いて、室外側熱交換器4内の冷媒(液冷媒)量Vhを、Vh=ρ(TH3)×Vhexとして推定する。
 また、制御装置21は、配管101内の冷媒(液冷媒)量について、第3温度センサ26の検知温度TH3から、配管101内の液冷媒の密度ρ(TH3)を演算する。そして、予め設定された配管101の内容積Vlpを用いて、配管101内の冷媒(液冷媒)量Vpを、Vp=ρ(TH3)×Vlpとして推定する。
 そして、制御装置21は、演算した各箇所の冷媒分布量に基づいて、アキュムレータ11内の許容量Vmaxに対する容積余裕度VVを演算する。ここで、容積余裕度VVは、アキュムレータ11の許容量Vmaxと、各箇所の冷媒分布量(アキュムレータ11内の冷媒(液冷媒)量Vaと、室外側熱交換器4内の冷媒(液冷媒)量Vhと、配管101内の冷媒(液冷媒)量Vp)と、を用いて、容積余裕度VV=Vmax-Va-Vh-Vpで演算される。制御装置21は、容積余裕度VVを演算した後、S103に進む。
 図7は、本発明の実施の形態1に係る空気調和装置の、アキュムレータ内の液面高さとACCランクとの関係を示す図である。制御装置21は、演算された容積余裕度VVを、アキュムレータ11内に存在する液冷媒の液面高さに応じた複数段階のランク、例えば、ACCランクa、ACCランクb、ACCランクc、ACCランクd等、のうちのどのランクに該当するかを判定する。ここで、図7に示されるように、アキュムレータ11の液面高さが高く、最も容積余裕度VVが低い状態がACCランクaであり、ACCランクb、ACCランクc、ACCランクdになるに従い、容積余裕度VVが高い状態である。そして、制御装置21は、判定されたランクに応じた処理、制御を行う。
 そのため、制御装置21は、容積余裕度VVを、閾値であるACCレベルc、ACCレベルb、ACCレベルaと比較する。まず、制御装置21は、S103において、容積余裕度VVとACCレベルcとを比較する。制御装置21は、容積余裕度VVがACCレベルcと比較して大きい場合は、S113に進み、冷房運転終了状態へ移行する。そうでなければ、S104に進む。
 制御装置21は、S104において、容積余裕度VVとACCレベルbとを比較する。制御装置21は、容積余裕度VVがACCレベルbと比較して大きい場合は、S105に進む。そうでなければ、S109に進む。
 図8は、本発明の実施の形態1に係る空気調和装置の、容量制御電磁弁を閉じた時の冷媒の流れを示す図である。制御装置21は、S105において、予め設定された第1基準時間T1の間、容量制御電磁弁6を閉じる。図8に示されるように、第1基準時間T1の間、容量制御電磁弁6が閉じられることで、アキュムレータ11内の冷媒が室外側熱交換器4内に移行し、室外側熱交換器4内の一部に液冷媒が貯留される。ここで、第1基準時間T1は、室外側熱交換器4の内容積に応じて設定されてもよい。また、室外側熱交換器4の内容積と室外側熱交換器4内の冷媒(液冷媒)量Vhとの関係に応じて、第1基準時間T1が変更されてもよい。また、外気温度、圧縮機1の駆動周波数、第5温度センサ28の検知温度等から室外側熱交換器4内の冷媒(液冷媒)量が推定され、その推定結果に応じて、第1基準時間T1が変更されてもよい。
 そして、制御装置21は、第1基準時間T1の経過後に、S106に進み、再度、容積余裕度VVとACCレベルcとを比較する。制御装置21は、容積余裕度VVがACCレベルcと比較して大きい場合は、S113に進み、冷房運転終了状態へ移行する。そうでなければ、S107に進む。
 制御装置21は、S107において、予め設定された第2基準時間T2の間、容量制御電磁弁6を閉じる。これは、室外側熱交換器4内に貯留される液冷媒を、最大にするためである。
 そして、制御装置21は、第2基準時間T2の経過後に、S108に進み、流量調整機能付三方弁7の主弁体74の開度を制御して、容積余裕度VVがACCレベルcを上回るようになるまで、配管101に冷媒を貯留させる。制御装置21は、容積余裕度VVがACCレベルcを上回る状態での配管101内の冷媒(液冷媒)量Vpを演算する。制御装置21は、容積余裕度VVと、アキュムレータ11内の冷媒(液冷媒)量Vaと、室外側熱交換器4内の冷媒(液冷媒)量Vhと、アキュムレータ11の許容量Vmaxと、から、VV=Vmax-Va-Vh-Vp>ACCレベルcを満たす配管101内の冷媒(液冷媒)量Vpを演算する。そして、制御装置21は、配管101内の冷媒(液冷媒)量Vp=ρ(TH3)×Vlpに基づいて、演算された配管101内の冷媒(液冷媒)量Vpが貯留されるように、流量調整機能付三方弁7の主弁体74の開度をPL1(TH3)に制御して、S113に進み、冷房運転終了状態へ移行する。
 制御装置21は、S109において、容積余裕度VVとACCレベルaとの比較を行う。容積余裕度VVがACCレベルaと比較して大きい場合は、S110に進み、S105と同様に、第1基準時間T1の間、容量制御電磁弁6を閉じる。そうでなければ、S111に進む。
 制御装置21は、第1基準時間T1の経過後に、S108に進み、配管101に冷媒を貯留させるために、流量調整機能付三方弁7の主弁体74の開度をPL1(TH3)に制御して、S113に進み、冷房運転終了状態へ移行する。
 制御装置21は、S111において、室外側熱交換器4内に冷媒を貯留しても容積余裕度VVがACCレベルcと比較して大きくなる見込みがないと判断し、配管101内に冷媒を貯留させる。つまり、制御装置21は、配管101内の冷媒(液冷媒)量Vpを演算し、必要な配管101内の冷媒(液冷媒)量Vpが保持されるように、流量調整機能付三方弁7の主弁体74の開度をPL1(TH3)に制御して、S112に進む。
 制御装置21は、S112において、容積余裕度VVがACCレベルaに対して大きくなるまで、配管101内に冷媒を貯留させて、S113に進み、冷房運転終了状態へ移行する。
(霜取り運転終了時の動作)
 空気調和装置100の霜取り運転終了時の動作について説明する。制御装置21は、霜取り運転の終了時に、冷房運転終了時と同様に、暖房運転を行う際のアキュムレータ11内の冷媒量を少なくしておくための処理を行う。図9は、本発明の実施の形態1に係る空気調和装置の、霜取り運転終了時における制御フローを示す図である。図9におけるS201~213は、図6におけるS101~113と同様であるため、説明を省略する。
(暖房運転開始時の動作)
 空気調和装置100の暖房運転開始時の動作について説明する。図10は、本発明の実施の形態1に係る空気調和装置の、暖房運転開始時における制御フローを示す図である。図10に示されるように、制御装置21は、暖房運転に移行する際、S301において、予め設定された周波数F0で圧縮機1を駆動させ、S302に進む。
 制御装置21は、S302において、容積余裕度VVとACCレベルcとを比較する。容積余裕度VVがACCレベルcと比較して大きい場合は、S303に進み、そうでなければ、S305に進む。制御装置21は、S303において、容量制御電磁弁6を開き、S304に進む。ここで、容量制御電磁弁6が既に開いているのであれば、開いた状態のままとする。
 制御装置21は、S304において、流量調整機能付三方弁7の主弁体74の開度を、予め設定された暖房運転開始時の基準開度PL0(以降、暖房開始時基準開度PL0とする)に制御し、S308に進む。暖房開始時基準開度PL0は、PL0>PL1(TH3)である。また、暖房起動時基準開度PL0は検知温度によらず、予め設定された固定値である。
 制御装置21は、S305において、容量制御電磁弁6を閉じ、S306に進む。S305によって、室外側熱交換器4に貯留(凝縮)された液冷媒が、冷媒回路を循環してアキュムレータ11へ流入することが防止される。制御装置21は、S306において、流量調整機能付三方弁7の主弁体74の開度を、PL1(TH3)に制御して、S307に進む。ここで、容量制御電磁弁6が既に閉じているのであれば、閉じた状態のままとする。また、流量調整機能付三方弁7の主弁体74の開度がPL1(TH3)である場合は、PL1(TH3)のままとする。
 制御装置21は、S307において、図7に示されるアキュムレータ11内に存在する液冷媒のACCランクを判定する。制御装置21は、ACCランクに応じた周波数F(ACCランク)で圧縮機1を駆動させ、S308に進む。ここで、ACCランクa、ACCランクb、ACCランクc、ACCランクdに対応する周波数F(ACCランク)を、Fa、Fb、Fc、Fdとすると、各周波数は、F0>Fd>Fc>Fb>Faの関係にある。例えば、アキュムレータ11の液面が高い状態で、圧縮機1が周波数F0で駆動されると、アキュムレータ11への冷媒の流入速度が速く、アキュムレータ11の液面が安定しないことがある。液面が安定しない場合には、圧縮機1の吸入側への液バック量が大幅に増加してしまう。よって、アキュムレータ11の液面が高いほど(判定されたACCランクがACCランクaに近いほど)、アキュムレータ11への冷媒の流入速度が遅くなるように、周波数F(ACCランク)は設定される。
 制御装置21は、S308において、冷房運転又は霜取り運転から暖房運転に移行するために、四方切換弁3-1及び四方切換弁3-2を切り換えて、冷媒回路の切り換えを行い、S309に進む。図11は、本発明の実施の形態1に係る空気調和装置の、四方切換弁が切り換えられた状態を示す図である。ここで、制御装置21は、図11に示されるように、S305によって容量制御電磁弁6が閉じられている場合は、室外側熱交換器4の容量制御電磁弁6が設けられた側の冷媒流入口に連通する四方切換弁3-2を切り換えない。このようにすることで、圧縮機1が吐出した高圧ガス冷媒は、四方切換弁3-1と四方切換弁3-2とに分配され、四方切換弁3-1に流入した高圧ガス冷媒は、ガス側冷媒配管102を介して室内機300側へ流れていき、暖房運転の循環経路を形成する。一方、四方切換弁3-2に流入した高圧ガス冷媒は、容量制御電磁弁6が閉じているため、室外側熱交換器4の一部に貯留される。この際、室外側熱交換器4の冷媒流入口側の圧力の方が、室外側熱交換器4内の圧力と比較して高いため、室外側熱交換器4に貯留された冷媒は、逆流しない。
 制御装置21は、S309において、送風ファン5を駆動させて、S310に進む。制御装置21は、S310において、暖房運転を開始して、S311に進む。制御装置21は、S311において、容積余裕度VVとACCレベルcとを比較し、容積余裕度VVがACCレベルcと比較して大きくなると、S312に進む。
 制御装置21は、S312において、容量制御電磁弁6を開き、四方切換弁3-2を切り換えて、S313に進み、暖房運転を継続する。ここで、容量制御電磁弁6が既に開いている場合は、開いた状態のままとする。また、そのような場合には、四方切換弁3-2は既に切り換えられているため、切り換えない。そして、この際、室外側熱交換器4に貯留された液冷媒が四方切換弁3-2を介してアキュムレータ11へ流入するが、容積余裕度VV>室外側熱交換器4内の冷媒(液冷媒)量Vhとなるように、アキュムレータ11の容積余裕度VV(アキュムレータ11の許容量Vmax)が設計されているため、冷媒がアキュムレータ11の許容量Vmaxを超えてオーバーフローすることはない。
<空気調和装置の作用>
 空気調和装置100の作用について説明する。空気調和装置100では、冷房運転及び霜取り運転から暖房運転へ移行する際に、冷媒がアキュムレータ11の許容量Vmaxを超えてオーバーフローすることがないため、空気調和装置100(特に、圧縮機1)の信頼性が確保される。
 図12は、本発明の実施の形態1に係る空気調和装置の、比較例を示す図である。また、図12に示される比較例の構成でも、空気調和装置100と同様の動作を行わせることが可能であるが、空気調和装置100では、図1に示されるような構成を採用しているため、以下に説明するような作用を有する。
 比較例では、圧縮機1の吐出側で分岐された2系統が室外側熱交換器4とサブクール熱交換器14との間で合流し、2系統の一方に容量制御電磁弁15が設けられる。比較例では、主となる冷媒回路に設けられた流量調整弁16とサブクール熱交換器14との間にバイパス配管8への分岐部が設けられ、バイパス配管8に流量調整弁17が設けられる。
 一方、空気調和装置100では、比較例の2つの流量調整弁(流量調整弁16、流量調整弁17)を、1つの流量調整弁(流量調整機能付三方弁7)で置き換えるため、装置の低コスト化が実現される。また、例えば、流量調整機能付三方弁7の、主弁体74と開口72との間の流路に、分配部が形成される等、流量調整機能付三方弁7が、流量調整弁としての機能に加えて、分配器としての機能を併せ持ってもよく、そのような場合には、比較例における、室外側熱交換器4とサブクール熱交換器14との間の2系統の合流部に設けられる分配器によって実現される機能が、部品点数を増加させることなく実現され、装置の低コスト化が実現される。また、室外側熱交換器4とサブクール熱交換器14との間に設けられた容量制御電磁弁15が、流量調整機能付三方弁7とサブクール熱交換器9との間に設けられた容量制御電磁弁6に置き換えられることで、冷房運転時及び霜取り運転時にサブクール熱交換器9で過冷却された冷媒を閉止すればよくなるため、CV値の小さい電磁弁を採用することが可能となり、装置の低コスト化が実現される。
 また、空気調和装置100では、比較例と異なり、容量制御電磁弁6と流量調整機能付三方弁7とバイパス流量制御電磁弁10とが、一箇所に集約されているため、保守作業等の作業性が優れる。図13は、本発明の実施の形態1に係る空気調和装置の、作用を示す図である。また、図13に示されるように、容量制御電磁弁6と流量調整機能付三方弁7とバイパス流量制御電磁弁10とがユニット化されてもよく、そのような場合には、組立作業等の効率化が図られる。図14は、本発明の実施の形態1に係る空気調和装置の、作用を示す図である。また、図14に示されるように、容量制御電磁弁6と流量調整機能付三方弁7とバイパス流量制御電磁弁10とサブクール熱交換器9とがユニット化されてもよい。また、容量制御電磁弁6と流量調整機能付三方弁7とバイパス流量制御電磁弁10とが、カートリッジ式である場合には、更に保守作業等の作業性が向上される。また、図13及び図14のように、構造物(ブロック)を用いてユニット化された際に、構造物内の流路に、比較例における、室外側熱交換器4とサブクール熱交換器14との間の2系統の合流部に設けられる分配器と、同様に機能する分配部が形成されてもよく、そのような場合には、部品点数が削減されて、装置の低コスト化が実現される。なお、図13及び図14において、容量制御電磁弁15の図示を省略している。
実施の形態2.
 実施の形態2に係る空気調和装置について説明する。なお、実施の形態1に係る空気調和装置と重複する説明は、適宜簡略化又は省略している。
<空気調和装置の構成>
 実施の形態2に係る空気調和装置の構成について説明する。図15は、本発明の実施の形態2に係る空気調和装置の、構成を示す図である。空気調和装置100は、容量制御電磁弁6に代えて、貯留調整手段となる室外側熱交換器容量制御流量調整弁18(以降、容量制御流量調整弁18とする)を有する。容量制御流量調整弁18は、例えば、流量をリニア制御(線形制御)することが可能である。容量制御流量調整弁18は、制御装置21からの指令に応じて開度を調整する。
<空気調和装置の動作>
 実施の形態2に係る空気調和装置の動作について説明する。図16は、本発明の実施の形態2に係る空気調和装置の、冷房運転終了時及び霜取り運転終了時の制御フローを示す図である。制御装置21は、図6に示されるS103~S112及び図9に示されるS203~S212に代えて、図16に示される制御を行う。制御装置21は、演算された容積余裕度VVが、n段階のランクのうちのどのランクに該当するかを判定し、判定されたランクに応じた処理、制御を行う。
 そのため、制御装置21は、S401-1~S401-(n-1)において、容積余裕度VVと閾値であるACCレベルL-1、ACCレベルL-2、…、ACCレベルL-(n-1)とを順次比較する。ACCレベルL-1、ACCレベルL-2、…、ACCレベルL-(n-1)は、ACCレベルL-1>ACCレベルL-2>…>ACCレベルL-(n-1)の関係にある。
 制御装置21は、S402-1~S402-(n-1)において、容量制御流量調整弁18の開度をPL-1、PL-2、…、PL-(n-1)に設定する。PL-1、PL-2、…、PL(n-1)は、PL-1<PL-2<…<PL-(n-1)の関係にある。
 また、制御装置21は、暖房運転移行時に、図16に示される制御と同様に、演算された容積余裕度VVが、n段階のランクのうちのどのランクに該当するかを判定し、判定されたランクに応じて容量制御流量調整弁18の開度を制御する。なお、制御装置21は、図6、図9、図10に示される制御フローのように、流量調整機能付三方弁7を協働させてもよい。
<空気調和装置の作用>
 実施の形態2に係る空気調和装置の作用について説明する。空気調和装置100では、容量制御流量調整弁18が設けられることで、冷房運転時及び霜取り運転時において、室外側熱交換器4に貯留する液冷媒量が細かく調整される。そのため、室外側熱交換器4に貯留される液冷媒量が最少量に抑制される。また、暖房運転に移行して室外側熱交換器4に貯留された液冷媒がアキュムレータ11へ流入する際に、圧力及び温度の変動によって冷媒回路の過渡的に不安定となることが抑制され、更に安定した空気調和装置が実現される。
実施の形態3.
 実施の形態3に係る空気調和装置について説明する。なお、実施の形態1及び実施の形態2に係る空気調和装置と重複する説明は、適宜簡略化又は省略している。
<空気調和装置の構成>
 実施の形態3に係る空気調和装置の構成について説明する。図17は、本発明の実施の形態3に係る空気調和装置の、構成を示す図である。図17に示されるように、空気調和装置100は、室外側熱交換器4への流入出経路をn系統有する。圧縮機1の吐出側でn系統に分岐し、各系統に四方切換弁3-1、3-2、…、3-nが設けられる。n系統のうちの(n-1)系統には、貯留調整手段となる容量制御電磁弁6-1、6-2、…、6-(n-1)がそれぞれ設けられる。
<空気調和装置の動作>
 実施の形態3に係る空気調和装置の動作について説明する。図18は、本発明の実施の形態3に係る空気調和装置の、冷房運転終了時及び霜取り運転終了時の制御フローを示す図である。制御装置21は、図6に示されるS103~S112及び図9に示されるS203~S212に代えて、図18に示される制御を行う。制御装置21は、演算された容積余裕度VVが、n段階のランクのうちのどのランクに該当するかを判定し、判定されたランクに応じた処理、制御を行う。
 そのため、制御装置21は、S501-1~S501-(n-1)において、容積余裕度VVと閾値であるACCレベルL-1、ACCレベルL-2、…、ACCレベルL-(n-1)とを順次比較する。ACCレベルL-1、ACCレベルL-2、…、ACCレベルL-(n-1)は、ACCレベルL-1>ACCレベルL-2>…>ACCレベルL-(n-1)の関係にある。
 制御装置21は、S502-1~S502-(n-1)において、1個の容量制御電磁弁6、2個の容量制御電磁弁6、…、(n-1)個の容量制御電磁弁6を開状態にする。ここで、例えば、各系統の容量が同一であり、各容量制御電磁弁6が閉状態となった時の室外側熱交換器4に貯留される液冷媒量が同一である場合には、室外側熱交換器4に貯留される液冷媒量の線形的な制御が実現される。
 また、制御装置21は、暖房運転移行時に、図18に示される制御と同様に、演算された容積余裕度VVが、n段階のランクのうちのどのランクに該当するかを判定し、判定されたランクに応じて開状態とする容量制御電磁弁6の個数を制御する。なお、制御装置21は、図6、図9、図10に示される制御フローのように、流量調整機能付三方弁7を協働させてもよい。また、容量制御電磁弁6の一部又は全てが、容量制御流量調整弁18であり、制御装置21が、図16に示される制御フローを併せて行ってもよい。
<空気調和装置の作用>
 実施の形態3に係る空気調和装置の作用について説明する。空気調和装置100では、容量制御電磁弁6が複数設けられることで、冷房運転時及び霜取り運転時において、室外側熱交換器4に貯留する液冷媒量が細かく調整される。そのため、室外側熱交換器4に貯留される液冷媒量が最少量に抑制される。また、暖房運転に移行して室外側熱交換器4に貯留された液冷媒がアキュムレータ11へ流入する際に、圧力及び温度の変動によって冷媒回路の過渡的に不安定となることが抑制され、更に安定した空気調和装置が実現される。
 以上、実施の形態1、実施の形態2及び実施の形態3について説明したが、本発明は各実施の形態の説明に限定されない。例えば、各実施の形態又は各変形例を組み合わせることも可能である。
 100 空気調和装置、101、102 配管、200 室外機、300 室内機、1 圧縮機、2 逆止弁、3 四方切換弁、4 室外側熱交換器、5 送風ファン、6、15 容量制御電磁弁、7 流量調整機能付三方弁、8 バイパス配管、9、14 サブクール熱交換器、10 バイパス流量制御電磁弁、11 アキュムレータ、12、13 開閉弁、16、17 流量調整弁、18 容量制御流量調整弁、21 制御装置、22 第1圧力センサ、23 第2圧力センサ、24 第1温度センサ、25 第2温度センサ、26 第3温度センサ、27 第4温度センサ、28 第5温度センサ、51 室内側熱交換器、52 室内側流量調整弁、71、72、73 開口、74 主弁体、75 第1弁座、76 第1ばね、77 補助弁体、78 第2弁座、79 第2ばね、80 押圧部材、81 電動アクチュエータ。

Claims (8)

  1.  圧縮機と室外側熱交換器とサブクール熱交換器と絞り装置と室内側熱交換器とアキュムレータとが、順次配管接続され、
     前記絞り装置は、前記室外側熱交換器に連通する配管が接続された開口と、前記室内側熱交換器に連通する配管が接続された開口と、前記サブクール熱交換器を介して前記アキュムレータの上流側に連通する配管が接続された開口と、を有する流量調整機能付三方弁を含み、
     前記室外側熱交換器に連通する配管を流れる冷媒と、前記アキュムレータの上流側に連通する配管を流れる冷媒とは、前記サブクール熱交換器で熱交換され、
     前記室外側熱交換器に連通する配管の、前記流量調整機能付三方弁と前記サブクール熱交換器との間、及び、前記アキュムレータの上流側に連通する配管の、前記流量調整機能付三方弁と前記サブクール熱交換器との間、にそれぞれ弁が設けられた、
    ことを特徴とする空気調和装置。
  2.  前記室外側熱交換器に連通する配管は、前記流量調整機能付三方弁と前記サブクール熱交換器との間で複数の配管に分岐して前記室外側熱交換器に連通し、
     前記室外側熱交換器に連通する配管に設けられた前記弁は、前記分岐した複数の配管のうちの一部の配管に設けられた、
    ことを特徴とする請求項1に記載の空気調和装置。
  3.  前記流量調整機能付三方弁は、前記室外側熱交換器に連通する配管が接続された開口と、前記室内側熱交換器に連通する配管が接続された開口と、の間の流路に設けられた主弁体と、該流路と、前記アキュムレータの上流側に連通する配管が接続された開口と、の間の流路に設けられた補助弁体と、を有し、
     前記主弁体は、前記補助弁体が全開の状態で、その開度が調整され、
     前記補助弁体は、前記主弁体が全開の状態で、その開度が調整され、
     前記アキュムレータの上流側に連通する配管に設けられた前記弁は、前記主弁体の開度が調整される際に閉状態にされ、前記補助弁体の開度が調整される際に開状態にされる、
    ことを特徴とする請求項1又は2に記載の空気調和装置。
  4.  前記室外側熱交換器に連通する配管に設けられた前記弁は、開閉弁である、
    ことを特徴とする請求項1~3のいずれか一項に記載の空気調和装置。
  5.  前記室外側熱交換器に連通する配管に設けられた前記弁は、流量調整弁である、
    ことを特徴とする請求項1~3のいずれか一項に記載の空気調和装置。
  6.  前記流量調整機能付三方弁と前記弁とは、ユニット化されている、
    ことを特徴とする請求項1~5のいずれか一項に記載の空気調和装置。
  7.  前記流量調整機能付三方弁と前記弁と前記サブクール熱交換器とは、ユニット化されている、
    ことを特徴とする請求項1~5のいずれか一項に記載の空気調和装置。
  8.  前記流量調整機能付三方弁と前記弁とは、カートリッジ式である、
    ことを特徴とする請求項1~7のいずれか一項に記載の空気調和装置。
PCT/JP2013/055864 2013-03-04 2013-03-04 空気調和装置 WO2014136187A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13877115.9A EP2966379B1 (en) 2013-03-04 2013-03-04 Air conditioner
PCT/JP2013/055864 WO2014136187A1 (ja) 2013-03-04 2013-03-04 空気調和装置
JP2015504029A JP5963941B2 (ja) 2013-03-04 2013-03-04 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055864 WO2014136187A1 (ja) 2013-03-04 2013-03-04 空気調和装置

Publications (1)

Publication Number Publication Date
WO2014136187A1 true WO2014136187A1 (ja) 2014-09-12

Family

ID=51490755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055864 WO2014136187A1 (ja) 2013-03-04 2013-03-04 空気調和装置

Country Status (3)

Country Link
EP (1) EP2966379B1 (ja)
JP (1) JP5963941B2 (ja)
WO (1) WO2014136187A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065242A1 (ja) * 2017-09-29 2019-04-04 三菱電機株式会社 液面検知装置、アキュムレータおよび空気調和機
KR20190068137A (ko) * 2017-12-08 2019-06-18 한국공항공사 탑승교 및 항공기용 냉난방 시스템
WO2022162819A1 (ja) * 2021-01-28 2022-08-04 日立ジョンソンコントロールズ空調株式会社 空気調和装置
US20220299247A1 (en) * 2019-11-12 2022-09-22 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP7507343B2 (ja) 2020-09-17 2024-06-28 パナソニックIpマネジメント株式会社 空気調和機の室外ユニット

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015114340B4 (de) * 2015-08-28 2019-01-17 Halla Visteon Climate Control Corporation Kombinationsmehrwegeventil
DE102022104545A1 (de) 2022-02-25 2023-08-31 Denso Automotive Deutschland Gmbh Kältemittelsammler-Modul für eine Wärmepumpenanordnung in einem Thermomanagementsystem für Fahrzeuge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526526A (ja) * 1991-07-17 1993-02-02 Sanyo Electric Co Ltd 二段圧縮式冷凍装置
JP2008224190A (ja) * 2007-03-15 2008-09-25 Aisin Seiki Co Ltd 冷凍サイクル装置
JP2008249236A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP2009300041A (ja) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp 冷凍サイクル装置及び冷凍サイクル装置の圧力損失抑制方法
JP2010164219A (ja) 2009-01-14 2010-07-29 Mitsubishi Electric Corp 空気調和装置
WO2011135616A1 (ja) * 2010-04-27 2011-11-03 三菱電機株式会社 冷凍サイクル装置
WO2012081110A1 (ja) * 2010-12-16 2012-06-21 株式会社 日立製作所 空気調和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2064496B1 (en) * 2006-09-18 2018-04-25 Carrier Corporation Refrigerant system with expansion device bypass
JP5120056B2 (ja) * 2008-05-02 2013-01-16 ダイキン工業株式会社 冷凍装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526526A (ja) * 1991-07-17 1993-02-02 Sanyo Electric Co Ltd 二段圧縮式冷凍装置
JP2008224190A (ja) * 2007-03-15 2008-09-25 Aisin Seiki Co Ltd 冷凍サイクル装置
JP2008249236A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP2009300041A (ja) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp 冷凍サイクル装置及び冷凍サイクル装置の圧力損失抑制方法
JP2010164219A (ja) 2009-01-14 2010-07-29 Mitsubishi Electric Corp 空気調和装置
WO2011135616A1 (ja) * 2010-04-27 2011-11-03 三菱電機株式会社 冷凍サイクル装置
WO2012081110A1 (ja) * 2010-12-16 2012-06-21 株式会社 日立製作所 空気調和装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065242A1 (ja) * 2017-09-29 2019-04-04 三菱電機株式会社 液面検知装置、アキュムレータおよび空気調和機
JPWO2019065242A1 (ja) * 2017-09-29 2020-04-09 三菱電機株式会社 液面検知装置、アキュムレータおよび空気調和機
US11175172B2 (en) 2017-09-29 2021-11-16 Mitsubishi Electric Corporation Liquid level detection device, accumulator, and air-conditioning apparatus
KR20190068137A (ko) * 2017-12-08 2019-06-18 한국공항공사 탑승교 및 항공기용 냉난방 시스템
KR101998980B1 (ko) * 2017-12-08 2019-07-10 한국공항공사 탑승교 및 항공기용 냉난방 시스템
US20220299247A1 (en) * 2019-11-12 2022-09-22 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP7507343B2 (ja) 2020-09-17 2024-06-28 パナソニックIpマネジメント株式会社 空気調和機の室外ユニット
WO2022162819A1 (ja) * 2021-01-28 2022-08-04 日立ジョンソンコントロールズ空調株式会社 空気調和装置
JPWO2022162819A1 (ja) * 2021-01-28 2022-08-04

Also Published As

Publication number Publication date
JP5963941B2 (ja) 2016-08-03
EP2966379B1 (en) 2018-05-16
JPWO2014136187A1 (ja) 2017-02-09
EP2966379A4 (en) 2016-11-16
EP2966379A1 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5963941B2 (ja) 空気調和装置
JP5855129B2 (ja) 室外機及び空気調和装置
US9683768B2 (en) Air-conditioning apparatus
JP4120682B2 (ja) 空気調和装置および熱源ユニット
US20180156505A1 (en) Methods and systems for controlling integrated air conditioning systems
JP6033297B2 (ja) 空気調和装置
JP5901107B2 (ja) マルチ型空気調和システム
US11226112B2 (en) Air-conditioning system
US20210207834A1 (en) Air-conditioning system
JP2007271094A (ja) 空気調和装置
JP5104002B2 (ja) 冷凍サイクル装置およびそれを備えた空気調和機
JP2009145032A (ja) 冷凍サイクル装置およびそれを備えた空気調和機
US20210048216A1 (en) Air-conditioning apparatus
JP6846915B2 (ja) 多室型空気調和機
US11408627B2 (en) Air-conditioning apparatus
JP2006090683A (ja) 多室型空気調和機
WO2014091612A1 (ja) 空気調和装置
WO2017199384A1 (ja) 空気調和装置
JP2019086252A (ja) マルチ型空気調和装置の制御装置、マルチ型空気調和装置、マルチ型空気調和装置の制御方法及びマルチ型空気調和装置の制御プログラム
JP5572579B2 (ja) 蓄熱式空気調和装置
JP2017181001A (ja) 空気調和装置
JP2006071271A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504029

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013877115

Country of ref document: EP