WO2014091612A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2014091612A1
WO2014091612A1 PCT/JP2012/082415 JP2012082415W WO2014091612A1 WO 2014091612 A1 WO2014091612 A1 WO 2014091612A1 JP 2012082415 W JP2012082415 W JP 2012082415W WO 2014091612 A1 WO2014091612 A1 WO 2014091612A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
source side
refrigerant
heat exchanger
heat
Prior art date
Application number
PCT/JP2012/082415
Other languages
English (en)
French (fr)
Inventor
侑哉 森下
外囿 圭介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014551812A priority Critical patent/JP6021943B2/ja
Priority to PCT/JP2012/082415 priority patent/WO2014091612A1/ja
Publication of WO2014091612A1 publication Critical patent/WO2014091612A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Definitions

  • the present invention relates to a heat pump type air conditioner.
  • the present invention relates to control related to a defrosting operation of an air conditioner configured by connecting a plurality of heat source side units in parallel.
  • an air conditioner having a plurality of heat source side heat exchangers supplies the high-pressure gas refrigerant of other outdoor units to the low-pressure side of the outdoor unit that is performing the defrosting operation (defrosting operation), and does not perform the defrosting operation.
  • Some have utilized the capacity of the compressor of the outdoor unit for defrosting operation for example, see Patent Document 1).
  • Defrosting is performed while continuing heating by performing sequentially (for example, refer patent document 2).
  • JP-A-7-332815 page 3-4, Fig. 1
  • Japanese Patent Application No. 2008-239040 page 1-3, FIG. 6
  • the amount of heat exchange in the heat source side heat exchanger related to defrosting can only be controlled by the amount of refrigerant sent by the compressor.
  • the amount of refrigerant from the compressor is excessively large, There is a risk of ascending. For this reason, the amount of refrigerant from the compressor is constant regardless of the state of the heat source side heat exchanger. Therefore, the defrosting time may be long, and there is a problem that the average heating capacity is lowered in some cases.
  • This invention was made in order to solve the above problems, and an object thereof is to obtain an air conditioner that can defrost the heat source side heat exchanger more efficiently.
  • the air conditioner according to the present invention includes a compressor, a four-way valve, a heat source side heat exchanger, a plurality of heat source side units having a heat source side expansion device, and a load side expansion device and a load side heat exchanger.
  • the heat source side A control device is provided that controls the degree of opening of the expansion device to control the condensation of the refrigerant in the heat source side heat exchanger.
  • the control device controls the opening of the heat source side expansion device during the defrosting operation so that the refrigerant can easily accumulate in the outdoor unit side heat exchanger.
  • the amount of heat exchange necessary for the removal can be secured, and the time for the defrosting operation can be shortened while suppressing the high pressure overheating, so that the decrease in the heating capacity can be reduced even during the heating operation.
  • FIG. 1 is a diagram showing a configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner of FIG. 1 includes heat source side units (outdoor units) A and B and load side units (indoor units) X and Y, which are connected by a gas pipe 40 and a liquid pipe 41 to constitute a refrigerant circuit. Then, the refrigerant is circulated to heat or cool the target space.
  • the constituent means of the heat source side units A and B and the load side units X and Y may be described by omitting the suffixes unless otherwise distinguished, for example, by explaining common matters.
  • the relationship of the size of each component may be different from the actual one.
  • the heat source side units A and B include the compressor 1, the four-way valve 2, the heat source side heat exchanger 3, the accumulator 4, and the expansion valve 7, and constitute a part of the refrigerant circuit.
  • the compressor 1 compresses the sucked refrigerant, and sends out (discharges) an arbitrary pressure based on the driving frequency.
  • the compressor 1 of the present embodiment includes a variable capacity inverter compressor including an inverter circuit that can change the capacity (amount of refrigerant sent out per unit time) by arbitrarily changing the driving frequency, for example. To do.
  • the four-way valve 2 switches the refrigerant flow between the cooling operation and the heating operation based on an instruction from the control device 100.
  • the heat source side heat exchanger 3 performs heat exchange between the refrigerant and air (outdoor air). For example, during the heating operation, it functions as an evaporator, performs heat exchange between the refrigerant flowing into the heat source unit and the air, and evaporates and vaporizes the refrigerant. Moreover, it functions as a condenser during the cooling operation, and performs heat exchange between the refrigerant and air compressed in the compressor 1 flowing in from the four-way valve 2 side, thereby condensing and liquefying the refrigerant.
  • the accumulator 4 is provided for storing, for example, liquid surplus refrigerant.
  • the expansion valve 7 serving as the heat source side throttle device performs refrigerant flow rate adjustment (pressure adjustment) based on an instruction from the control device 100 in particular.
  • the amount of heat exchange in the heat source side heat exchanger 3 is adjusted by adjusting the flow rate so as to adjust the time during which the refrigerant stays in the heat source side heat exchanger 3 during the defrosting operation. For this reason, here, it is assumed to be fully open in operations other than the defrosting operation.
  • the heat source side units A and B include a bypass channel (supercooling channel) composed of a supercooling expansion valve 5, a refrigerant heat exchanger 6 serving as a supercooler, an on-off valve 8, an on-off valve 9, and a bypass pipe 10. )have. Basically, it is used for supercooling the refrigerant flowing through the refrigerant circuit during the cooling operation, but in the present embodiment, it is described as being used during the defrosting operation.
  • the inter-refrigerant heat exchanger 6 exchanges heat between the refrigerant flowing through the refrigerant circuit and the refrigerant branched from the refrigerant circuit and adjusted in flow rate (pressure adjustment) by the supercooling expansion valve 5.
  • Which pipe is to be flown is determined by opening / closing the on-off valve 8 and on-off valve 9. Normally, the on-off valve 8 is opened, the on-off valve 9 is closed, and the refrigerant flows through the refrigerant inflow side pipe of the accumulator 4.
  • the open / close valve 8 is closed during the defrosting operation, the open / close valve 9 is opened, and the flow is passed through the pipe between the four-way valve 2 and the gas pipe 40 so as to pass through the four-way valve 2.
  • the load side units X and Y have a load side heat exchanger 11 and a load side expansion device (expansion valve) 12, and constitute a part of the refrigerant circuit.
  • the load side heat exchanger 11 performs heat exchange between the refrigerant and the air.
  • it functions as a condenser during heating operation, performs heat exchange between the refrigerant flowing in from the gas pipe 40 and air, condenses and liquefies the refrigerant (or gas-liquid two-phase), and moves to the liquid pipe 41 side. Spill.
  • the load side expansion device 12 such as a flow rate adjustment valve and an expansion valve adjusts the pressure of the refrigerant in the load side heat exchanger 11, for example, by changing the opening degree.
  • the control device 100 includes a processing unit including, for example, a microcomputer and controls each unit of the air conditioner.
  • a processing unit including, for example, a microcomputer and controls each unit of the air conditioner.
  • one control device 100 performs processing such as control related to the two heat source side units A and B.
  • the control device 100 is assigned to each heat source side unit. It may be provided that any one of the control devices 100 makes a determination related to the overall control. Further, when remote control or the like is possible, it may not be in the heat source side unit.
  • detection means for detecting various physical quantities is provided, and the detection means sends a signal related to detection to the control apparatus 100.
  • the heat source side temperature sensor 22 detects the temperature of the gas-liquid two-phase refrigerant or liquid refrigerant flowing into and out of the heat source side heat exchanger 3. In the present embodiment, the temperature of the refrigerant flowing out from the heat source side heat exchanger 3 in the defrosting operation is detected.
  • the outside air temperature sensor 23 detects the temperature of the outside air in the vicinity of the heat source side heat exchanger 3, for example.
  • the high pressure sensor 33 is provided between the compressor 1 and the four-way valve 2 and detects the discharge pressure of the compressor 1 (pressure on the high pressure side of the refrigerant circuit).
  • the control device 100 can obtain the condensation temperature based on the pressure detected by the high pressure sensor 33.
  • the low pressure sensor 34 detects the pressure on the low pressure side of the refrigerant circuit, for example, in the pipe between the four-way valve 2 and the accumulator 4.
  • the flow of the refrigerant is indicated by dotted arrows.
  • the compressor 1 is driven to start the heating operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows out from the heat source side unit via the four-way valve 2.
  • a part of the refrigerant that has passed through the gas pipe 40 flows into the load side unit, and the rest is the four sides of the other heat source side unit. It flows into the valve 2.
  • the refrigerant that flows to the load side unit side contributes to heating, and the refrigerant that flows to the other heat source side unit side contributes to the defrosting operation.
  • the gas refrigerant is condensed and liquefied while dissipating heat to the air to be heated, and becomes a low-temperature and high-pressure liquid refrigerant.
  • the air to be heated is heated and heated.
  • the condensed and liquefied liquid refrigerant is decompressed in the load side expansion device 12 and flows out of the load side unit in the state of liquid refrigerant or gas-liquid two-phase refrigerant. Then, it flows into the heat source side unit via the liquid pipe 41.
  • the refrigerant that has flowed into the heat source side unit exchanges heat with, for example, the outside air in the heat source side heat exchanger 3, thereby absorbing heat from the outside air and evaporating it into a gas refrigerant. Then, it is sucked into the compressor 1 again via the four-way valve 2 and the accumulator 4.
  • the air conditioner can operate the heat source side unit A and the heat source side unit B at the same time.
  • the heat source side unit A and the heat source side unit B of a plurality of systems at the same time, the flow rate of the refrigerant circulating in the refrigeration cycle can be increased, and the heating capacity can be improved accordingly.
  • the heat source side unit A may start the heating operation while the heat source side unit A is in the heating operation.
  • the refrigerant that has flowed out from each heat source side unit joins at the joining portion of the gas pipe 40 and flows into the load side unit.
  • the refrigerant that has flowed out of the load side unit branches at the branch portion of the liquid pipe 41 and flows into the heat source side unit A and the heat source side unit B, respectively.
  • movement of the air conditioning apparatus of this Embodiment is demonstrated.
  • the flow of the refrigerant in the heat source side unit is indicated by a solid arrow.
  • the heat source side heat exchanger 3 functions as an evaporator. For this reason, when the temperature of the air around the heat source side heat exchanger 3 decreases, moisture in the air may become frost and adhere to the heat source side heat exchanger 3. If the frost adhering to the heat source side heat exchanger 3 is left as it is, the amount of heat exchange in the heat source side heat exchanger 3 is reduced, and the air conditioning capability using the refrigeration cycle is reduced.
  • the heat source side heat exchanger 3 is efficiently defrosted.
  • a case where only the heat source unit A is defrosted will be described.
  • the four-way valve 2A is reversed (switched) from the connection state of the flow path in the heating operation, and the defrosting operation of the heat source side heat exchanger 3A is started.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1A flows into the heat source side heat exchanger 3A through the four-way valve 2A to melt frost, and part or all of the refrigerant is condensed and liquefied. To do. Then, it passes through the expansion valve 7A. Control of the expansion valve 7A will be described later.
  • the high-temperature and high-pressure gas refrigerant flows into the heat source side unit A performing the defrosting operation from the heat source side unit B performing the heating operation through the gas pipe 40.
  • the pressure difference between the high-pressure side and the low-pressure side becomes small, and the four-way valve 2A may be switched. Therefore, the supercooling expansion valve 5A is fully opened, the on-off valve 8 is closed, the on-off valve 9 is opened, and a part of the refrigerant that has passed through the expansion valve 7A is allowed to pass through the bypass flow path.
  • the gas refrigerant from the heat source side unit B is mixed through the bypass pipe 10 so that the decompressed refrigerant passes through the four-way valve 2A.
  • defrosting operation can be performed one by one, and defrosting can be performed without reducing the heating capacity to zero.
  • the defrosting operation is performed while adjusting the opening degree of the expansion valve 7 so as to ensure that the condensation capacity of the heat source side heat exchanger 3 is ensured and the high pressure is not excessively increased.
  • FIG. 2 is a diagram showing processing related to the defrosting operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the control device 100 When determining that the heat source side unit A performs the defrosting operation, the control device 100 reverses (switches) the four-way valve 2A from the connection state of the flow path in the heating operation (S1). Thereby, as described above, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1A is sent to the heat source side heat exchanger 3A via the four-way valve 2A. The sent refrigerant melts the frost. The gas refrigerant that has dissipated heat to the frost is liquefied by condensation.
  • the control device 100 determines the degree of opening of the expansion valve 7A by the difference between the temperature related to detection by the heat source side temperature sensor 22A and the condensation saturation temperature (condensation temperature) derived from the pressure related to detection by the high pressure sensor 33A (hereinafter referred to as SC). (S2) and control is performed based on the SC.
  • SC When SC ⁇ 0, since the inlet of the expansion valve 7A is in a gas-liquid two-phase or gas state, it can be said that heat exchange is possible. In addition, when SC> 0, the refrigerant flowing into the expansion valve 7A is in a liquid state, so it can be said that all the refrigerant has been liquefied.
  • SC if the SC is too large, the liquid is excessively stored in the heat source side heat exchanger 3A, and the refrigerant density in the heat source side heat exchanger 3A increases, which causes a high pressure overheating. Therefore, it is desirable that SC is within a certain positive value range.
  • Such an SC range is SC1 ⁇ SC ⁇ SC2.
  • SC1 0 is set, there is no margin, so SC1 is a positive value that takes into account sensor errors and the like.
  • the control device 100 determines whether SC ⁇ SC1 (S3). If it is determined that SC ⁇ SC1, the opening degree of the expansion valve 7A is reduced (S4). If it is determined that SC ⁇ SC1 is not satisfied, it is determined whether SC2 ⁇ SC (S5). If it is determined that SC2 ⁇ SC, the opening of the expansion valve 7A is increased (S6).
  • the heat source side unit A when only the heat source side unit A performs the defrosting operation, it has the expansion valve 7A on the outlet side of the heat source side heat exchanger 3A, and controls the opening degree of the expansion valve 7A.
  • the condensation capacity heat exchange amount
  • the efficiency of defrosting can be increased.
  • the refrigerant liquefied in the heat source side heat exchanger 3A is then mixed with the gas-liquid two-phase refrigerant that has passed through the load side heat exchanger 4 and the supercooling expansion valve 5 and flows into the heat source side unit B.
  • the heat source side heat exchanger 3B, the four-way valve 2B, and the accumulator 4B flow in this order and are sucked into the compressor 1B.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1B of the heat source side unit B is passed through the four-way valve 2B, one to the load side units X and Y, and the other to the four-way valve 2A of the heat source side unit A. Fork.
  • the heating capacity in the load side units X and Y may decrease.
  • the high-pressure refrigerant discharged from both the compressor 1A and the compressor 1B flows into the four-way valve 2A, a malfunction (unintentional switching) of the four-way valve 2A may occur.
  • the supercooling expansion valve 5A and the on-off valve 9A are opened (the on-off valve 8A is closed), and the low-pressure gas-liquid two-phase refrigerant or low-pressure liquid refrigerant that has passed through the inter-refrigerant heat exchanger 6A
  • the high-pressure gas refrigerant from the heat source side unit B is mixed and the low-pressure gas refrigerant is passed through the four-way valve 2A.
  • one side of the four-way valve 2A has a low pressure, it is possible to prevent malfunction of the four-way valve 2A.
  • the refrigerant flowing to the four-way valve 2A is separated into liquid refrigerant and gas refrigerant in the accumulator 4A, and the gas refrigerant is sucked into the compressor 1A.
  • the heat source side unit A realizes the defrosting operation
  • the heat source side unit B realizes the heating operation.
  • the controller 100 determines whether or not to end the defrosting operation (S7). If it is determined that the defrosting operation is not terminated, the process returns to S2 and continues. On the other hand, if it is determined that the defrosting operation is to be ended, the four-way valve 2A is reversed from the connected state of the flow path in the defrosting operation (S8), and the heating source unit A is started to perform the heating operation (S9).
  • the air-conditioning apparatus of Embodiment 1 when only one heat source side unit performs the defrosting operation, the refrigerant circuit that supplies high-pressure gas refrigerant to the heat source side unit A from the other heat source side unit.
  • the refrigerant can be supplied also from the inter-refrigerant heat exchanger 6A, the supply amount of the high pressure gas from the heat source side unit B is decreased, and the decrease in the amount of refrigerant flowing to the load side units X and Y is suppressed. It is possible to suppress a decrease in heating capacity.
  • the high-pressure gas refrigerant flowing from the heat source side unit B and the refrigerant that has passed through the bypass pipe 10A are supplied to the four-way valve 2 after the low-pressure refrigerant is supplied from the inter-refrigerant heat exchanger 6A and the pressure is lowered.
  • the four-way valve 2 since a pressure difference can be applied, the four-way valve 2 is not switched without permission, and malfunction can be prevented.
  • FIG. FIG. 3 is a diagram showing processing of the control device 100 in the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the air conditioning apparatus in the present embodiment is assumed to have the same configuration as that of the first embodiment. For this reason, also in this Embodiment, it demonstrates based on FIG. In the present embodiment, for example, when the defrosting operation is performed in one heat source side unit of the two heat source units, whether the defrosting operation is performed in the other heat source side unit or whether the heating operation is continued, for example. A procedure for determination will be described.
  • the control device 100 starts the defrosting operation when it is determined that the temperature related to detection by any one of the heat source side temperature sensors 22 is equal to or lower than a predetermined temperature.
  • the case where the detected temperature TH22A of the heat source side temperature sensor 22A of the heat source side unit A is equal to or lower than a predetermined temperature and the defrosting operation is started will be described.
  • the defrosting start set temperature TH22B1 and the defrosting start set temperature TH22B2 are set as criteria for determining whether or not the heat source side unit B performs the defrosting operation.
  • the control device 100 determines whether TH22B is equal to or lower than TH22B1 (S12). If it is determined that TH22B is equal to or less than TH22B1, the defrosting operation is performed because it is necessary to immediately perform the defrosting operation of the heat source unit B (S15). Therefore, both the heat source side units A and B perform the defrosting operation.
  • TH22B is not equal to or lower than TH22B1
  • TH22B2 it is determined whether TH22B is equal to or higher than TH22B2 (S13). If it is determined that TH22B is equal to or higher than TH22B2, it is determined that the heat source side unit B does not need the defrosting operation, and the process returns to S11 and the defrosting operation of only the heat source side unit A is continued.
  • the control device 100 may perform control such as increasing the drive frequency of the compressor 1B of the heat source side unit B.
  • the heating capacity (operating capacity) Qj required for all the load side units is calculated and compared with a predetermined value Qjh (S14).
  • the predetermined value Qjh is equal to or less than an operation capacity that can be supplied by heating operation of one heat source side unit.
  • the heating capacity of the full load side unit cannot be covered by one heat source side unit. Moreover, if heating operation is continued as it is, there is a high possibility of defrosting operation. Moreover, it can be expected to shorten the time required for defrosting by performing the defrosting operation at the stage of TH22B1 ⁇ TH22B, and the efficiency of ensuring the heating capacity can be improved. Therefore, if it is determined that Qj is greater than Qjh, the heat source side unit B is also defrosted (S15).
  • the heat source side unit B can cover the heating capacity of the full load side unit if the heat source side unit B continues the heating operation. Not performed. Therefore, only the heat source side unit A performs the defrosting operation.
  • the defrosting start set temperature TH22B2 is set, but the present invention is not limited to this.
  • the determination may be made based on the temperature of the outside air that is detected by the outside air temperature sensor. For example, when the temperature of the outside air is equal to or higher than a predetermined temperature, the defrosting operation is not performed in the heat source side unit B. When the temperature is lower than the predetermined temperature, a determination based on the operation capacity Qj of the full load side unit is performed. . Similarly, the determination may be made based on the refrigerant pressure on the low pressure side of the heat source side unit B.
  • the defrosting operation is not performed in the heat source side unit B, and when it is lower than the predetermined pressure, the full load side unit Judgment based on the operating capacity Qj of
  • the air conditioning apparatus of the second embodiment when one heat source side unit is in the defrosting operation among the heat source side units, the operation state and the load side unit of the remaining heat source side units.
  • the defrosting operation is performed with only one heat source side unit. Continuation between the defrosting operation and the heating operation can be realized.
  • the heating capacity on the load side is large or the remaining heat source side unit can continue the heating operation, for example, the heating is temporarily interrupted by defrosting the remaining heat source side unit.
  • heating capacity can be more efficiently ensured by increasing the number of heat source side units that perform heating operation early.
  • Embodiment 3 FIG.
  • the description has been made based on the configuration of the two heat source side units A and B, but the present invention is also applicable to the case where three or more heat source side units are connected in parallel. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 圧縮機1、四方弁2、熱源側熱交換器3及び膨張弁7を有する複数の熱源側ユニットA,Bと、負荷側絞り装置12及び負荷側熱交換器11を有する1又は複数の負荷側ユニットX,Yとを配管接続して冷媒を循環させる冷媒回路を構成する空気調和装置において、圧縮機1から熱源側熱交換器3に冷媒を流入させて霜取を行う霜取運転を行う際、膨張弁7の開度を制御して熱源側熱交換器3における冷媒の凝縮を制御する制御装置100を備えるものである。

Description

空気調和装置
 この発明は、ヒートポンプ式の空気調和装置に関わるものである。特に複数の熱源側ユニットを並列に接続して構成する空気調和装置の霜取運転に係る制御に関するものである。
 従来、熱源側熱交換器を複数有する空気調和装置は、霜取運転(除霜運転)している室外機の低圧側に他の室外機の高圧ガス冷媒を供給し、霜取運転していない室外機の圧縮機の能力を霜取運転に利用しているものがある(例えば、特許文献1参照)。
 また、各熱源側熱交換器に係る温度に基づいて除霜要否を判断し、さらに熱源側熱交換器に係る温度が低い又は前記圧縮機の運転時間が長い熱源側ユニットについて除霜運転を
順次行うことで暖房を継続しつつ、霜取を行う(例えば、特許文献2参照)。
特開平7-332815号公報(第3―4頁、第1図) 特願2008-239040号公報(第1―3頁、第6図)
 従来のような空気調和装置においては、霜取に係る熱源側熱交換器における熱交換量は、圧縮機が送り込む冷媒量により制御するしかないが圧縮機からの冷媒量を多くし過ぎると高圧過昇を招くおそれがある。このため、圧縮機からの冷媒量は熱源側熱交換器の状態に関係なく一定としている。したがって、霜取時間が長くなることがあり、場合によっては平均暖房能力が低下する等の問題があった。
 この発明は、上記のような課題を解決するためになされたもので、より効率的に熱源側熱交換器の霜取を行うことができる空気調和装置を得ることを目的とする。
 この発明に係る空気調和装置は、圧縮機、四方弁、熱源側熱交換器及び熱源側絞り装置を有する複数の熱源側ユニットと、負荷側絞り装置及び負荷側熱交換器を有する1又は複数の負荷側ユニットとを配管接続して冷媒を循環させる冷媒回路を構成する空気調和装置において、圧縮機から熱源側熱交換器に冷媒を流入させて霜取を行う霜取運転を行う際、熱源側絞り装置の開度を制御して熱源側熱交換器における冷媒の凝縮を制御する制御装置を備えるものである。
 この発明の空気調和装置は上記のように構成したので、制御装置が霜取運転中の熱源側絞り装置の開度を制御し、室外機側熱交換器に冷媒が溜まりやすくすることで、霜取に必要な熱交換量を確保でき、高圧過昇を抑えつつ、霜取運転の時間を短くすることができるので、暖房運転中にも、暖房能力の低下が小さくすることができる。
この発明の実施の形態1に係る空気調和装置の構成を示す図である。 この発明の実施の形態1に係る空気調和装置の霜取運転に係る処理を示す図である。 この発明の実施の形態2に係る空気調和装置における制御装置100の処理を示す図である。
実施の形態1.
 図1はこの発明の実施の形態1に係る空気調和装置の構成を示す図である。図1の空気調和装置は、熱源側ユニット(室外機)A、Bと負荷側ユニット(室内機)X、Yとを備え、これらをガス配管40及び液配管41で連結し、冷媒回路を構成して冷媒を循環させ、対象空間の暖房又は冷房を行うものである。以下、熱源側ユニットA、B、また負荷側ユニットX、Yの構成手段等に関しては、例えば共通事項を説明する等、特に区別する場合を除き、添字を省略して説明する場合がある。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものと異なる場合がある。
 本実施の形態では、熱源側ユニットA、Bは、圧縮機1、四方弁2、熱源側熱交換器3、アキュムレータ4及び膨張弁7を有し、冷媒回路の一部を構成する。圧縮機1は、吸入した冷媒を圧縮し、駆動周波数に基づいて任意の圧力を加えて送り出す(吐出する)。本実施の形態の圧縮機1は、例えば駆動周波数を任意に変化させることにより容量(単位時間あたりの冷媒を送り出す量)を変化させることができる、インバータ回路を備えた容量可変のインバータ圧縮機とする。
 四方弁2は、制御装置100からの指示に基づいて冷房運転時と暖房運転時とによって冷媒の流れを切り替える。熱源側熱交換器3は、冷媒と空気(室外の空気)との熱交換を行う。例えば、暖房運転時においては蒸発器として機能し、熱源側ユニットに流入した冷媒と空気との熱交換を行い、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、四方弁2側から流入した圧縮機1において圧縮された冷媒と空気との熱交換を行い、冷媒を凝縮して液化させる。また、アキュムレータ4は、例えば液体の余剰冷媒を貯めておくために設けている。
 熱源側絞り装置となる膨張弁7は、本実施の形態では特に制御装置100の指示に基づいて冷媒の流量調整(圧力調整)を行う。本実施の形態では、流量調整を行うことにより、霜取運転時に冷媒が熱源側熱交換器3内に留まる時間等を調整して熱源側熱交換器3における熱交換量を調整する。このため、ここでは霜取運転以外の運転では全開とする。
 また、熱源側ユニットA、Bは、過冷却膨張弁5、過冷却器となる冷媒間熱交換器6、開閉弁8、開閉弁9及びバイパス配管10により構成するバイパス流路(過冷却流路)を有している。基本的には冷房運転時に冷媒回路を流れる冷媒を過冷却するために利用するが、本実施の形態においては、霜取運転時に利用するものとして説明する。冷媒間熱交換器6は、冷媒回路を流れる冷媒と、冷媒回路から分岐して過冷却膨張弁5により流量調整(圧力調整)された冷媒との間で熱交換を行う。過冷却膨張弁5、冷媒間熱交換器6を流れる冷媒は、バイパス配管10を介して、アキュムレータ4の冷媒流入側の配管又は四方弁2とガス配管40との間の配管に流れる。どちらの配管に流すかについては、開閉弁8、開閉弁9の開閉により決定する。通常は、開閉弁8を開放し、開閉弁9を閉止してアキュムレータ4の冷媒流入側の配管に冷媒を流す。本実施の形態では、霜取運転時に開閉弁8を閉止し、開閉弁9を開放して四方弁2とガス配管40との間の配管に流し、四方弁2を通過するようにする。
 一方、負荷側ユニットX、Yは、負荷側熱交換器11、負荷側絞り装置(膨張弁)12を有し、冷媒回路の一部を構成する。負荷側熱交換器11は冷媒と空気との熱交換を行う。例えば、暖房運転時においては凝縮器として機能し、ガス配管40から流入した冷媒と空気との熱交換を行い、冷媒を凝縮させて液化(又は気液二相化)させ、液配管41側に流出させる。一方、冷房運転時においては蒸発器として機能し、冷媒と空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、ガス配管40側に流出させる。また、流量調整弁、膨張弁等の負荷側絞り装置12は、開度を変化させることで、例えば負荷側熱交換器11における冷媒の圧力調整等を行う。
 制御装置100は、例えばマイクロコンピュータ等からなる処理手段を有し、空気調和装置の各手段を制御する。ここで、本実施の形態では、1台の制御装置100が2台の熱源側ユニットA、Bに係る制御等の処理を行うものとするが、例えば、制御装置100を各熱源側ユニットにそれぞれ設け、いずれかの制御装置100が全体の制御に係る判断等を行うようにしてもよい。また、遠隔制御等ができる場合には、熱源側ユニット内になくてもよい。
 また、本実施の形態の空気調和装置においては、各種物理量を検出する検出手段(センサ)を設け、検出手段は検出に係る信号を制御装置100に送る。熱源側温度センサ22は、熱源側熱交換器3に流入出する気液二相冷媒又は液冷媒の温度を検出する。本実施の形態では、霜取運転において熱源側熱交換器3から流出する冷媒の温度を検出する。外気温度センサ23は、例えば熱源側熱交換器3の近傍において、外気の温度を検出する。また、高圧圧力センサ33は圧縮機1と四方弁2の間に設けられ、圧縮機1の吐出圧力(冷媒回路の高圧側の圧力)を検出する。制御装置100は高圧圧力センサ33が検出する圧力に基づいて凝縮温度を得ることができる。低圧圧力センサ34は、例えば四方弁2とアキュムレータ4との間の配管において、冷媒回路の低圧側の圧力を検出する。
 次に、図1に基づいて、本実施の形態の空気調和装置の暖房運転における動作等について説明する。冷媒の流れは点線矢印で示している。圧縮機1を駆動して暖房運転を開始する。圧縮機1が吐出した高温・高圧のガス冷媒は四方弁2を経由して熱源側ユニットから流出する。ここで、他方の熱源側ユニットが後述する霜取運転を行っている場合には、ガス配管40を通過した冷媒は、一部が負荷側ユニットに流入し、残りが他方の熱源側ユニットの四方弁2に流入する。負荷側ユニット側に流れた冷媒は暖房に寄与し、他方の熱源側ユニット側に流れた冷媒は霜取運転に寄与する。
 ガス配管40を通過して負荷側ユニットに流入した冷媒は負荷側熱交換器11に流入する。この負荷側熱交換器11では、ガス冷媒は、加熱対象となる空気等に放熱しながら凝縮液化して、低温、高圧の液冷媒となる。一方、加熱対象となる空気等は加熱され、暖房が行われる。
 凝縮液化した液冷媒は、負荷側絞り装置12において減圧され、液冷媒又は気液二相冷媒の状態で負荷側ユニットから流出する。そして液配管41を経由して熱源側ユニットに流入する。
 熱源側ユニットに流入した冷媒は熱源側熱交換器3で例えば外気と熱交換することによって、外気から吸熱し、蒸発ガス化してガス冷媒となる。そして、四方弁2、アキュムレータ4を経由して再度、圧縮機1に吸入される。
 例えば、空調負荷が大きく、暖房能力を必要とする場合、空気調和装置は、熱源側ユニットAと熱源側ユニットBとを同時に運転させることができる。複数系統の熱源側ユニットA及び熱源側ユニットBとを同時に運転させることによって冷凍サイクルを循環する冷媒流量を増加させることができ、それに伴って暖房能力を向上させることができる。熱源側ユニットAを暖房運転させた状態で、熱源側ユニットBを暖房運転を開始するようにしてもよい。
 熱源側ユニットAと熱源側ユニットBとの両方による暖房運転を行う場合、各熱源側ユニットからそれぞれ流出した冷媒は、ガス配管40の合流部部分において合流して負荷側ユニットに流入する。また、負荷側ユニットから流出した冷媒は液配管41の分岐部分において分岐し、熱源側ユニットAと熱源側ユニットBとにそれぞれ流入する。
 さらに図1に基づいて、本実施の形態の空気調和装置の霜取運転における動作等について説明する。熱源側ユニット内の冷媒の流れは実線矢印で示している。空気調和装置が暖房運転をしているとき、熱源側熱交換器3は蒸発器して機能する。このため、熱源側熱交換器3の周辺の空気の温度が低下すると空気中の水分が霜となって熱源側熱交換器3に付着することがある。熱源側熱交換器3に付着した霜をそのままにしておくと、熱源側熱交換器3における熱交換量が減少し、冷凍サイクルを利用した空気調和能力が低下してしまう。そこで、本実施の形態に係る空気調和装置では、効率良く熱源側熱交換器3の霜取を行うようにしたものである。ここでは、例として、熱源側ユニットAのみを霜取運転する場合について説明する。熱源側ユニットBを霜取運転する場合についても同様である。
 熱源側ユニットAにおける霜取運転を開始すると、四方弁2Aを暖房運転における流路の接続状態から反転し(切り替え)、熱源側熱交換器3Aの霜取運転を開始する。これにより、圧縮機1Aから吐出された高温・高圧のガス冷媒は四方弁2Aを介して熱源側熱交換器3Aに流入して霜を融解するとともに、一部又はすべての冷媒は凝縮して液化する。そして、膨張弁7Aを通過する。膨張弁7Aの制御については後述する。
 そして、膨張弁7Aを通過した冷媒は、一部が熱源側ユニットAから流出して液配管41においいて、暖房により負荷側ユニットから流出した液冷媒又は気液二相冷媒と合流する。そして、熱源側ユニットBの熱源側熱交換器3B、四方弁2B、アキュムレータ4Bの順に流れて圧縮機1Bに吸入される。
 ここで、前述したように、霜取運転を行っている熱源側ユニットAには、暖房運転を行っている熱源側ユニットBから高温・高圧のガス冷媒がガス配管40を介して流入する。このため、高圧側と低圧側との圧力差が小さくなり、四方弁2Aが切り替わってしまう可能性がある。そこで、過冷却膨張弁5Aを全開にし、開閉弁8を閉止して開閉弁9を開放して膨張弁7Aを通過した冷媒の一部をバイパス流路を通過させる。そして、バイパス配管10を介して熱源側ユニットBからのガス冷媒を混合させ、減圧した冷媒が四方弁2Aを通過するようにする。
 以上のように、熱源側ユニットが複数台の場合、1台ずつ霜取運転を行うことができ、暖房能力をゼロにすることなく、霜取することができる。ここで、本実施の形態では、霜取運転において、熱源側熱交換器3の凝縮能力を確保しつつ、高圧過昇しないように、膨張弁7の開度を調整しながら行うものとする。
 図2はこの発明の実施の形態1に係る空気調和装置の霜取運転に係る処理を示す図である。ここでは熱源側ユニットAのみが霜取運転を行い、熱源側ユニットBが暖房運転を行う場合について説明する。制御装置100は、熱源側ユニットAの霜取運転を行うものと判断すると、四方弁2Aを暖房運転における流路の接続状態から反転させる(切り替える)(S1)。これにより、前述したように、圧縮機1Aが吐出した高温・高圧のガス冷媒は四方弁2Aを介して熱源側熱交換器3Aに送られる。送られた冷媒は霜を融解させる。霜に放熱したガス冷媒は凝縮により液化することになる。
 ここで、膨張弁7Aの開度を小さくすると、熱源側熱交換器3A内に冷媒が長い時間留まるため、熱交換を促し、熱交換能力がより大きくなる。制御装置100は、膨張弁7Aの開度を、熱源側温度センサ22Aの検出に係る温度と高圧圧力センサ33Aの検出に係る圧力から導かれる凝縮飽和温度(凝縮温度)との差(以下、SCとする)を算出し(S2)、SCに基づいて制御を行う。
 SC<0の場合、膨張弁7Aの入口は気液二相又はガス状態であるため、さらに熱交換が可能な状態といえる。また、SC>0の場合、膨張弁7Aに流入する冷媒は液状態であるため、全ての冷媒が液化したといえる。ここで、SCが大きすぎると、熱源側熱交換器3Aに液が貯まり過ぎ、熱源側熱交換器3Aにおける冷媒密度が上昇するため、高圧過昇の原因となる。よって、SCはある一定の正の値の範囲内にあることが望ましい。このようなSCの範囲をSC1≦SC≦SC2とする。ここで、SC1=0に設定すると裕度がないため、SC1はセンサの誤差等を考慮した正の値とする。
 そして、制御装置100は、SC<SC1であるかどうかを判断する(S3)。SC<SC1であると判断すると、膨張弁7Aの開度を小さくする(S4)。また、SC<SC1でないと判断すると、SC2<SCであるかどうかを判断する(S5)。SC2<SCであると判断すると膨張弁7Aの開度を大きくする(S6)。
 このように、熱源側ユニットAのみが霜取運転を行うときに、熱源側熱交換器3Aの出口側に膨張弁7Aを有し、膨張弁7Aの開度を制御することで、高圧過昇を生じないようにしつつ、熱源側熱交換器3Aにおける熱交換を促すことで、凝縮能力(熱交換量)を大きくし、霜取の効率を上げることができる。
 ここで、熱源側熱交換器3A内で液化した冷媒は、その後、負荷側熱交換器4、過冷却膨張弁5を通過した気液二相冷媒と混合して熱源側ユニットBに流入し、熱源側熱交換器3B、四方弁2B、アキュムレータ4Bの順に流れて圧縮機1Bに吸入される。
 また、熱源側ユニットBの圧縮機1Bが吐出した高温・高圧のガス冷媒は四方弁2Bを介して、一方は負荷側ユニットX、Yの方に、他方は熱源側ユニットAの四方弁2Aの方に分岐する。ここで、負荷側ユニットX、Yに送られる冷媒量が減少するため、負荷側ユニットX、Yにおける暖房能力が減少する可能性がある。また、圧縮機1Aと圧縮機1Bの両方が吐出した高圧の冷媒が四方弁2Aに流入することになるため、四方弁2Aの誤動作(意図しない切替)が起こる可能性がある。
 そこで、本実施の形態では、過冷却膨張弁5Aと開閉弁9Aとを開き(開閉弁8Aは閉)、冷媒間熱交換器6Aを通過した低圧の気液二相冷媒又は低圧の液冷媒と熱源側ユニットBからの高圧のガス冷媒とを混合し、低圧にして四方弁2Aを通過させる。過冷却回路6Aから冷媒を供給することで、負荷側ユニットX、Yからの流入量を減少させることが可能となり、負荷側ユニット側の能力確保につなげることができる。また、四方弁2Aの片側は低圧となるため、四方弁2Aの誤動作を防止することも可能となる。ここで、他の方法として、四方弁2の手前に膨張弁又はキャピラリーチューブ等、圧力損失となる手段を設けることによっても、四方弁2Aの誤動作防止等をはかることができる。
 四方弁2Aに流れた冷媒は、アキュムレータ4Aにおいて、液冷媒とガス冷媒とに分離され、ガス冷媒が圧縮機1Aに吸入される。熱源側ユニットAは霜取運転を、熱源側ユニットBは暖房運転を実現する。
 制御装置100は、S5において、SC2<SCでないと判断すると、霜取運転を終了するかどうかを判断する(S7)。霜取運転を終了しないと判断すると、S2に戻って処理を続ける。一方、霜取運転を終了するものと判断すると、四方弁2Aを霜取運転における流路の接続状態から反転し(S8)、熱源側ユニットAに暖房運転を開始させる(S9)。
 以上のように、実施の形態1の空気調和装置によれば、一方の熱源側ユニットのみ霜取運転を行う場合、他方の熱源側ユニットから高圧のガス冷媒が熱源側ユニットAに供給する冷媒回路に対し、冷媒間熱交換器6Aからも冷媒を供給可能に構成したので、熱源側ユニットBからの高圧ガスの供給量を減少させ、負荷側ユニットX、Yに流れる冷媒量の減少を抑えることができ、暖房能力の低下を抑えることができる。また、熱源側ユニットBから流入する高圧のガス冷媒とバイパス配管10Aを通過した冷媒とを冷媒間熱交換器6Aから低圧の冷媒を供給し圧力を下げた後、四方弁2に送ること返すことで、圧力差をつけることができるので、四方弁2が勝手に切り替わる等することがなく、誤動作を防止することができる。
実施の形態2.
 図3はこの発明の実施の形態2に係る空気調和装置における制御装置100の処理を示す図である。本実施の形態における空気調和装置は、実施の形態1と同じ構成であるものとする。このため、本実施の形態においても、図1に基づいて説明する。本実施の形態では、例えば2台の熱源ユニットの一方の熱源側ユニットにおいて霜取運転を行っている際に、他方の熱源側ユニットにおいて霜取運転を行うか、例えば暖房運転を継続するかを決定する手順について説明する。
 制御装置100は、いずれかの熱源側温度センサ22の検出に係る温度が所定の温度以下であると判断すると霜取運転を開始する。ここでは、熱源側ユニットAの熱源側温度センサ22Aの検出温度TH22Aが所定の温度以下となり、霜取運転を開始している場合について説明する。
 また、本実施の形態では、熱源側ユニットBが霜取運転を行うかどうかの判断基準として、霜取開始設定温度TH22B1及び霜取開始設定温度TH22B2を設定する。ここで、TH22B2>TH22B1であるものとする。
 制御装置100は、熱源側ユニットAが霜取運転中であると判断すると(S11)、さらに、TH22BがTH22B1以下であるかどうかを判断する(S12)。TH22BがTH22B1以下であると判断すると、熱源側ユニットBの霜取運転をすぐに行う必要があるとして霜取運転を行う(S15)。したがって、熱源側ユニットA、Bは2台とも霜取運転を行うことになる。
 また、TH22BがTH22B1以下でないと判断すると、TH22BがTH22B2以上であるかどうかを判断する(S13)。TH22BがTH22B2以上であると判断すると、熱源側ユニットBには霜取運転の必要がないとして、S11に戻って熱源側ユニットAのみの霜取運転を継続する。ここで、負荷側ユニットにおける暖房能力をまかなうため、制御装置100は、熱源側ユニットBの圧縮機1Bの駆動周波数を上げる等の制御をしてもよい。
 一方、S13において、TH22BがTH22B2以上でない(TH22B1<TH22B<TH22B2となる)と判断すると、全負荷側ユニットが必要な暖房能力(運転容量)Qjを計算して所定値Qjhと比較する(S14)。ここで、所定値Qjhは、1台の熱源側ユニットの暖房運転により供給することができる運転容量以下であることが望ましい。
 例えば、全負荷側ユニットの運転容量Qjが所定値Qjhより多い場合、1台の熱源側ユニットで全負荷側ユニットにおける暖房能力をまかなうことができない。また、このまま暖房運転を継続すると霜取運転となる可能性が高い。また、TH22B1<TH22Bの段階で霜取運転を行うことで霜取にかかる時間を短くすることが期待でき、暖房能力確保の効率化をはかることができる。そこで、QjがQjhより多いと判断すると、熱源側ユニットBについても霜取運転を行うものとする(S15)。
 全負荷側ユニットの運転容量Qjが所定値Qjh以下の場合、熱源側ユニットBが暖房運転を継続すれば全負荷側ユニットの暖房能力をまかなうことができるので、熱源側ユニットBは霜取運転を行わない。よって、熱源側ユニットAのみ霜取運転を行う。
 ここでは、霜取開始設定温度TH22B2を設定するようにしたが、これに限定するものではない。例えば、外気を検出する外気温度センサを有している場合には、外気温度センサの検出に係る外気の温度に基づいて判断を行うようにしてもよい。例えば外気の温度が所定の温度以上の場合には、熱源側ユニットBにおいて霜取運転を行わないものとし、所定の温度より低い場合には、全負荷側ユニットの運転容量Qjに基づく判断を行う。同様に、熱源側ユニットBの低圧側における冷媒の圧力に基づいて判断を行うようにしてもよい。例えば熱源側ユニットBの低圧側における冷媒の圧力が所定の圧力以上の場合には、、熱源側ユニットBにおいて霜取運転を行わないものとし、所定の圧力より低い場合には、全負荷側ユニットの運転容量Qjに基づく判断を行う。
 以上のように、実施の形態2の空気調和装置によれば、熱源側ユニットのうち、1台の熱源側ユニットが霜取運転となった場合、残りの熱源側ユニットの運転状態と負荷側ユニットが必要とする暖房能力を確認し、残りの熱源側ユニットが暖房運転継続可能又は負荷側ユニットの暖房能力を確保可能なときには1台の熱源側ユニットのみで霜取運転を行うようにしたので、霜取運転と暖房運転との継続を実現することができる。一方、負荷側の暖房能力が大きい又は残りの熱源側ユニットが暖房運転継続が可能と言い難い状態であれば、例えば、残りの熱源側ユニットを霜取運転させることで、一時的に暖房を中断しつつ、早期に暖房運転を行う熱源側ユニットの台数を多くすることで、より効率的に暖房能力の確保を行うことができる。
 実施の形態3.
 前述した実施の形態1及び実施の形態2では、2台の熱源側ユニットA、Bの構成に基づいて説明したが、3台以上の熱源側ユニットを並列に配管接続した場合にも適用することができる。
 A,B 熱源側ユニット、X,Y 負荷側ユニット、1,1A,1B 圧縮機、2,2A,2B 四方弁、3,3A,3B 熱源側熱交換器、4,4A,4B アキュムレータ、5,5A,5B 過冷却膨張弁、6,6A,6B 冷媒間熱交換器、7,7A,7B 膨張弁、8,8A,8B,9,9A,9B 開閉弁、 10,10A,10B バイパス配管、11,11X,11Y 負荷側熱交換器、12,12X,12Y 負荷側絞り装置、22,22A,22B 熱源側温度センサ、23,23A,23B 外気温度センサ、33,33A,33B 高圧圧力センサ、34,34A,34B 低圧圧力センサ、40 ガス配管、41 液配管、100 制御装置。

Claims (5)

  1.  圧縮機、四方弁、熱源側熱交換器及び熱源側絞り装置を有する複数の熱源側ユニットと、負荷側絞り装置及び負荷側熱交換器を有する1又は複数の負荷側ユニットとを配管接続して冷媒を循環させる冷媒回路を構成する空気調和装置において、
     前記圧縮機から前記熱源側熱交換器に前記冷媒を流入させて前記熱源側熱交換器を霜取する霜取運転を行う際、霜取対象の前記熱源側熱交換器における前記冷媒の熱交換量の調整制御を、前記熱源側絞り装置の開度を制御して行う制御装置を備える空気調和装置。
  2.  前記霜取運転における前記熱源側熱交換器の冷媒流出側における温度を検出する熱源側温度センサをさらに備え、
     前記制御装置は、前記熱源側温度センサの検出に係る温度と、前記熱源側熱交換器における凝縮温度との差に基づいて、前記熱源側絞り装置の開度を制御する請求項1記載の空気調和装置。
  3.  前記熱源側絞り装置を通過した冷媒の一部を、暖房運転を行っている前記熱源側ユニットから流入する冷媒と混合させて、前記四方弁に送り込むバイパス配管をさらに有する請求項1又は2記載の空気調和装置。
  4.  前記制御装置は、前記複数の熱源側ユニットのうち、少なくとも1台が霜取運転を行っているときに、暖房運転を行っている前記熱源側ユニットの運転状態と前記負荷側ユニットの暖房能力とに基づいて、前記暖房運転を行っている熱源側ユニットに暖房運転を継続させるか霜取運転を開始させるかを決定する処理を行う請求項1~3のいずれか一項に記載の空気調和装置。
  5.  アキュムレータと、
     前記冷媒回路を流れる冷媒を過冷却する冷媒間熱交換器と、
     前記熱源側熱交換器と負荷側熱交換器を接続する配管の間から過冷却膨張弁を介して前記冷媒間熱交換器を通過させて前記アキュムレータの吸入側に至る配管を有する過冷却流路をさらに備え、
     前記バイパス配管と前記過冷却流路の前記配管とを一部共有する請求項3記載の空気調和装置。
PCT/JP2012/082415 2012-12-13 2012-12-13 空気調和装置 WO2014091612A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014551812A JP6021943B2 (ja) 2012-12-13 2012-12-13 空気調和装置
PCT/JP2012/082415 WO2014091612A1 (ja) 2012-12-13 2012-12-13 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082415 WO2014091612A1 (ja) 2012-12-13 2012-12-13 空気調和装置

Publications (1)

Publication Number Publication Date
WO2014091612A1 true WO2014091612A1 (ja) 2014-06-19

Family

ID=50933930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082415 WO2014091612A1 (ja) 2012-12-13 2012-12-13 空気調和装置

Country Status (2)

Country Link
JP (1) JP6021943B2 (ja)
WO (1) WO2014091612A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180372379A1 (en) * 2015-06-18 2018-12-27 Daikin Industries, Ltd. Air conditioner
CN109154463A (zh) * 2016-05-16 2019-01-04 三菱电机株式会社 空气调节装置
CN110701814A (zh) * 2019-10-12 2020-01-17 珠海格力电器股份有限公司 除霜期间稳定运行的制冷双系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119736A (ja) * 1995-10-24 1997-05-06 Sanyo Electric Co Ltd 多室型冷暖房装置及びその運転方法
JP2007218558A (ja) * 2006-02-20 2007-08-30 Daikin Ind Ltd 空気調和装置および熱源ユニット
JP2010101570A (ja) * 2008-10-24 2010-05-06 Panasonic Corp 空気調和機
JP2011202893A (ja) * 2010-03-26 2011-10-13 Fujitsu General Ltd 多室型空気調和装置
JP2011208928A (ja) * 2010-03-31 2011-10-20 Hitachi Appliances Inc 空気調和機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406133A (en) * 1980-02-21 1983-09-27 The Trane Company Control and method for defrosting a heat pump outdoor heat exchanger
JPH06273010A (ja) * 1993-03-17 1994-09-30 Toshiba Corp 空調制御装置
US5845502A (en) * 1996-07-22 1998-12-08 Lockheed Martin Energy Research Corporation Heat pump having improved defrost system
JPH1194330A (ja) * 1997-09-22 1999-04-09 Daikin Ind Ltd 空気調和機
JP2006170505A (ja) * 2004-12-15 2006-06-29 Matsushita Electric Ind Co Ltd 空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119736A (ja) * 1995-10-24 1997-05-06 Sanyo Electric Co Ltd 多室型冷暖房装置及びその運転方法
JP2007218558A (ja) * 2006-02-20 2007-08-30 Daikin Ind Ltd 空気調和装置および熱源ユニット
JP2010101570A (ja) * 2008-10-24 2010-05-06 Panasonic Corp 空気調和機
JP2011202893A (ja) * 2010-03-26 2011-10-13 Fujitsu General Ltd 多室型空気調和装置
JP2011208928A (ja) * 2010-03-31 2011-10-20 Hitachi Appliances Inc 空気調和機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180372379A1 (en) * 2015-06-18 2018-12-27 Daikin Industries, Ltd. Air conditioner
US11199342B2 (en) * 2015-06-18 2021-12-14 Daikin Industries, Ltd. Air conditioner
CN109154463A (zh) * 2016-05-16 2019-01-04 三菱电机株式会社 空气调节装置
CN110701814A (zh) * 2019-10-12 2020-01-17 珠海格力电器股份有限公司 除霜期间稳定运行的制冷双系统

Also Published As

Publication number Publication date
JP6021943B2 (ja) 2016-11-09
JPWO2014091612A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5855129B2 (ja) 室外機及び空気調和装置
US9683768B2 (en) Air-conditioning apparatus
JP5611353B2 (ja) ヒートポンプ
JP3775358B2 (ja) 冷凍装置
EP2090849A1 (en) Refrigeration device
JP6033297B2 (ja) 空気調和装置
US20110154847A1 (en) Air conditioner
JP6390688B2 (ja) 冷凍装置
JP2009264605A (ja) 冷凍装置
US11226112B2 (en) Air-conditioning system
JP2010139205A (ja) 空気調和装置
WO2017138108A1 (ja) 空気調和装置
WO2017130319A1 (ja) 冷凍サイクル装置
JP5334554B2 (ja) 空気調和装置
US20210207834A1 (en) Air-conditioning system
JP6448780B2 (ja) 空気調和装置
JP5872052B2 (ja) 空気調和装置
JP6021943B2 (ja) 空気調和装置
JP5601890B2 (ja) 空気調和装置
US20220412622A1 (en) Refrigeration cycle apparatus
JP6042037B2 (ja) 冷凍サイクル装置
JP2011127775A (ja) 空気調和装置
JP2009115336A (ja) 冷凍装置
WO2024134852A1 (ja) 空気調和装置
JP2018173194A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889767

Country of ref document: EP

Kind code of ref document: A1