WO2022157990A1 - ネットワーク機器、及びネットワークシステム - Google Patents

ネットワーク機器、及びネットワークシステム Download PDF

Info

Publication number
WO2022157990A1
WO2022157990A1 PCT/JP2021/008555 JP2021008555W WO2022157990A1 WO 2022157990 A1 WO2022157990 A1 WO 2022157990A1 JP 2021008555 W JP2021008555 W JP 2021008555W WO 2022157990 A1 WO2022157990 A1 WO 2022157990A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
network
unit
slave
signal
Prior art date
Application number
PCT/JP2021/008555
Other languages
English (en)
French (fr)
Inventor
雄一郎 池上
孝史 武田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022157990A1 publication Critical patent/WO2022157990A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/36Handling requests for interconnection or transfer for access to common bus or bus system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]

Definitions

  • the present disclosure relates to network equipment and network systems using the same.
  • FA Factory Automation
  • a slave device is a device that controls equipment installed in a factory or collects data.
  • the master device is a device called (PLC: Programmable Logic Controller) that centrally manages these slave devices.
  • the present disclosure has been made in view of the above problems, and can prevent disruption of network communication when a slave device is removed from a network by disconnecting a communication cable while the network is in operation.
  • the purpose is to provide network devices and network systems.
  • the present disclosure adopts the following configuration in order to solve the above problems.
  • a network device is a network device which is a slave device used in a network system in which a master device and a plurality of slave devices controlled by the master device are connected, and which is an upstream device. and at least one second communication unit that communicates with other devices on the downstream side, and a control unit that controls each unit of the network device.
  • the second communication unit determines whether or not a signal from another device has arrived, furthermore, in a state where only a part of a plurality of signal lines for performing communication from the other device is connected, A communication state detection unit capable of detecting whether or not communication is being performed from the other device, and the control unit detects that the communication state detection unit has not received a signal from the other device, or , when it is detected that communication from the other device is being performed in a state where only some of the plurality of signal lines for communication from the other device are connected, the second communication It has a configuration for blocking communication by the unit.
  • a network device is a network device that is a slave device used in a network system in which a master device and a plurality of slave devices controlled by the master device are connected, a first communication unit that communicates with other devices on the downstream side; and a control unit that controls each unit of the network device; A plurality of communication units are provided, a plurality of the second communication units are connected to the first communication unit in a loop, and the second communication unit determines whether or not a signal from another device has arrived. Furthermore, a communication state detection unit capable of detecting whether or not communication from the other device is being performed in a state in which only some of the plurality of signal lines for performing communication from the other device are connected.
  • the control unit detects that the communication state detection unit detects that a signal from the other device has not arrived or that communication from the other device
  • the switching unit causes the other device to leave the network. It has configuration.
  • a network device and a network system capable of preventing interruption of network communication even when a slave device is removed from the network by disconnecting a communication cable while the network is in operation. can be done.
  • FIG. 1 is an explanatory diagram illustrating a configuration example of a network system according to Embodiment 1 of the present disclosure
  • FIG. 1 is a schematic configuration diagram showing a network device (slave device) according to Embodiment 1 of the present disclosure
  • FIG. FIG. 5 is a diagram for explaining the state of each part of the network device when the communication cable is pulled out on the slave device side while the network is in operation.
  • FIG. 10 is a diagram for explaining a problem when a communication cable is pulled out on the side of a slave device while a network is in operation in a comparative example
  • FIG. 10 is an explanatory diagram for explaining the state of each part when the problem occurs in the comparative example;
  • FIG. 10 is a diagram illustrating the state of each unit in the network device according to the second embodiment of the present disclosure when the communication cable is pulled out on the slave device side while the network is in operation;
  • FIG. 12 is an explanatory diagram illustrating a configuration example of a network system according to Embodiment 4 of the present disclosure;
  • FIG. 11 is a schematic configuration diagram showing a network device (slave device) according to Embodiment 4 of the present disclosure;
  • FIG. 11 is a schematic configuration diagram showing a network device (slave device) according to Embodiment 5 of the present disclosure;
  • FIG. 10 is a diagram for explaining an operation example when the communication cable is pulled out on the slave device side during network operation in the network device shown in FIG. 9;
  • FIG. 1 is an explanatory diagram illustrating a configuration example of a network system according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic configuration diagram showing a network device (slave device) according to an embodiment of the present disclosure.
  • the network system 100 of the present embodiment for example, four slave devices 2A, 2B, 2C, and 2D are connected as a plurality of slave devices. Further, when any one of the slave devices 2A to 2D constitutes the network device of this embodiment, it is also referred to as the network device 2N.
  • a network system 100 of this embodiment is a network system in which a master device 1 and a plurality of slave devices 2A to 2D controlled by the master device 1 are connected. Also, the network device 2N of this embodiment is connected to the network system 100 as one slave device.
  • this slave device 2A constitutes a branched slave device to which a plurality of, for example, three slave devices 2B, 2C, and 2D are connected.
  • the network device 2N of the present embodiment communicates between the first communication unit 21 that communicates with other devices on the upstream side in the network system 100 and other devices on the downstream side in the network system 100.
  • At least one second communication unit 22A, 22B, 22C that performs communication, a switching circuit 24 that switches connections between the plurality of second communication units 22A to 22C, and a control unit that controls each unit of the network device 2N. 25;
  • the second communication units 22A, 22B, 22C have communication state detection units 23A, 23B, 23C, respectively.
  • the communication state detectors 23A to 23C can detect whether or not signals from other devices have arrived. Further, the communication state detection units 23A to 23C can detect whether or not communication is being performed with the other device while the communication cable connector of the other device is in a state of one-sided contact.
  • the switching circuit 24 has a port P0 connected to the first communication unit 21 and ports P1, P2 and P3 connected to the second communication units 22A, 22B and 22C, respectively.
  • the control unit 25 changes the communication state (link) of the second communication units 22A to 22C by controlling the ports P1 to P3 of the switching circuit 24 based on the detection results of the communication state detection units 23A to 23C. . That is, the control unit 25 allows communication by the second communication units 22A to 22C by opening the ports P1 to P3. On the other hand, the control unit 25 cuts off communication by the second communication units 22A to 22C by closing the ports P1 to P3.
  • the communication state detection unit 23A detects a one-sided contact state, and in that case causes the slave device 2B to leave the network. Therefore, by pulling out the communication cable from the slave device 2A during network operation, the network device 2N and the network system 100 using the same can prevent the interruption of network communication even when the slave device 2B is removed. Can be configured.
  • the network system 100 of this embodiment comprises a master device 1 and a plurality of slave devices 2A to 2D connected to the master device 1.
  • the network system 100 of this embodiment comprises a master device 1 and a plurality of slave devices 2A to 2D connected to the master device 1.
  • a network system conforming to the Ether CAT (Ethernet for Control Automation Technology: registered trademark) standard is used.
  • the master device 1 and the slave devices 2A to 2D are connected using communication cables as illustrated in FIG. is to be performed.
  • the master device 1 includes, for example, a PLC (Programmable Logic Controller).
  • the master device 1 is configured to operate according to a predetermined program set by the information processing device 3, thereby controlling each of the plurality of slave devices 2A to 2D.
  • the network device 2N of this embodiment includes a first communication unit 21, three second communication units 22A, 22B, 22C, a switching circuit 24, and a control unit 25. Further, in the network device 2N of the present embodiment, communication state detection units 23A, 23B, and 23C are provided in the second communication units 22A, 22B, and 22C, respectively.
  • the network device 2N of the present embodiment constitutes the branch slave device, and the slave devices 2B, 2C, and 2D connected to the master device 1 are connected to the second communication units 22A, 22B, and 22C, respectively. are daisy chained.
  • the first communication unit 21 is a functional block that transmits and receives signals to and from the master device 1 by connecting the communication device 5 to the master device 1 via a communication cable.
  • the second communication units 22A, 22B, and 22C are connected to the slave devices 2B, 2C, and 2D by communication cables, respectively, thereby transmitting and receiving signals to and from the slave devices 2B, 2C, and 2D. is.
  • the communication state detection units 23A to 23C are functional blocks that detect the amplitude values of the signals received by the second communication units 22A to 22C, respectively.
  • the communication state detection units 23A to 23C detect that signals from the slave devices 2B to 2D are normally transmitted to the second communication units 22A to 22C, respectively.
  • the switching circuit 24 is interposed to notify the control unit 25 of a signal indicating that the communication by the second communication units 22A to 22C is in a normal state.
  • the communication state detection units 23A to 23C detect the corresponding slave devices 2B to 2D in communication with the slave devices 2B to 2D, respectively. Assuming that the 2D communication cable connector is in a one-sided contact state, a signal indicating that the communication by the second communication units 22A to 22C is in an abnormal state is sent to the control unit 25 through the switching circuit 24. do.
  • the one-side contact state of the communication cable connector referred to here means a state in which the communication cable connector is in an incomplete contact state with the connector of the communication cable to be contacted. More specifically, the one-sided contact state means, for example, that one of a pair of contact pins provided on the communication cable connector is in almost complete contact with the pin of the communication cable connector, and the other is in contact with the pin of the communication cable connector. A state in which the contact pins are not in contact.
  • the network system 100 of the present embodiment it is possible to insert and remove slave devices of various manufacturers. It has been found that depending on the shape of the connector, the one-sided contact state described above may occur when the connector is pulled out.
  • the communication state detection units 23A to 23C detect that the signals from the slave devices 2B to 2D have not reached the second communication units 22A to 22C, respectively. , the switching circuit 24 is interposed to notify the control unit 25 of a signal indicating that the communication by the second communication units 22A to 22C is cut off.
  • the switching circuit 24 opens or closes the operating states of the ports P0, P1, P2, and P3 based on the instruction signal from the control unit 25, and switches the corresponding first communication unit 21 or second communication unit 22A to 22C is turned on or off, respectively.
  • the switching circuit 24 switches the master device 1 to the slave devices 2B, 2C, 2B, 2C, 2C, 2C, 2C, 2B, 2C, 2C, 2C, 2C, 2B, 2C, 2C, 2C, 2C, 2B, 2C, 2C, 2C, 2C, 2C, 2C, 2C, 2C, 2C, 2C, 2C, 2C, 2C, 2C, 2C, respectively, based on the instruction signal from the control unit 25, for example, as indicated by arrows D1, D2, D3, and D4 in FIG. A daisy chain connection in which 2D is sequentially connected is made.
  • the switching circuit 24 for example, when blocking the communication by the second communication unit 22A, switches to other devices except for the second communication unit 22A. Switch so that the slave devices 2C and 2D are daisy-chained.
  • the network device 2N of the present embodiment for example, even when the slave device 2B is removed by pulling out the communication cable from the slave device 2A while the network is in operation, the network device 2N can connect to the slave devices 2C and 2D. By appropriately performing the switching operation, it is possible to prevent disruption of communication (that is, network communication) with other slave devices 2C and 2D (details will be described later).
  • the control unit 25 is a functional block that controls each component by executing information processing. Further, when the control unit 25 receives a signal indicating that the communication by the second communication units 22A to 22C is in an abnormal state from the communication state detection units 23A to 23C, the control unit 25 controls the communication by the second communication units 22A to 22C.
  • the switching circuit 24 is controlled so as to cut off the current. That is, the control unit 25 causes the switching circuit 24 to close the corresponding ports P1 to P3, thereby turning off the links with the corresponding second communication units 22A to 22C.
  • the function of the switching circuit 24 and the function of the control section 25 may be implemented as an integrated IC (Integrated Circuit) chip.
  • FIG. 3 is a diagram for explaining the state of each part of the network device when the communication cable is pulled out on the slave device side while the network is in operation.
  • the communication state detection unit 23A detects a value A0, which is a value equal to or greater than the first threshold value, as the value of the amplitude of the signal received by the second communication unit 22A. , a signal indicating that the communication by the second communication unit 22A is in a normal state.
  • control unit 25 determines that the communication state at the communication cable connector of the slave device 2B is normal communication, turns on the link state of the second communication unit 22A, and further changes the state of the port P1.
  • the switching circuit 24 is controlled so as to be open.
  • the one-sided contact state occurs until the operation of pulling out the communication cable connector of the slave device 2B starts at time T1 and ends at time T2.
  • the slave device 2B is not normally connected to the unit 22A.
  • the communication cable connector of the slave device 2B is in a one-sided contact state, causing an impedance mismatch with the second communication section 22A, and the connector is in the second communication section 22A. 2 is not in normal contact with the communication unit 22A.
  • the communication state detection unit 23A detects a value A1, which is less than the first threshold value, as the amplitude value of the signal received by the second communication unit 22A. 25, a signal indicating that the communication by the second communication unit 22A is in an abnormal state.
  • the control unit 25 determines that the communication state at the communication cable connector of the slave device 2B is not normal communication, and turns off the link state of the second communication unit 22A.
  • the switching circuit 24 is controlled so that the state of (1) is closed.
  • communication by the second communication unit 22A is cut off, and the slave device 2B is electrically disconnected from the network system 100.
  • control unit 25 controls the switching circuit 24 to cut off communication by the second communication unit 22A. is switched so that the slave device 2C (another device) is daisy chain connected.
  • control unit 25 connects the port P0 and the port P1 in FIG. 2, and transmits the signal from the master device 1 received by the first communication unit 21 to the slave device 2C through the second communication unit 22B.
  • the switching circuit 24 is controlled so as to do so.
  • the slave device 2B is completely separated from the second communication unit 22A. That is, after time T2, the communication cable connector of the slave device 2B is completely separated from the second communication unit 22A.
  • the detection result of the communication state detection unit 23A indicates a value of "0", and the control unit 25 is notified that communication with the connector is not possible, that is, the signal from the slave device 2B has not arrived. , a signal indicating that the communication by the second communication unit 22A is cut off. As a result, the control unit 25 does not instruct the switching circuit 24 to control the second communication unit 22A.
  • the above-described unauthorized communication occurs because the signal communication interval period in the network system 100 (that is, the transmission cycle of communication frames in the network) is shorter than the time required to attach and detach the connector. do.
  • the corresponding slave device 2B is immediately electrically connected or disconnected. Be able to work properly.
  • valid frames and meaningless frames flow as communication between the two slave devices 2A and 2B. Then, when a valid frame is flowing, if a one-sided contact state is brought about by pulling out the communication cable connector of the slave device 2B, the valid frame breaks and becomes an invalid frame. If such illegal frames occur two or more times in a row, the communication between the slave devices 2A and 2B will be interrupted.
  • the state of the port P1 to which the corresponding slave device 2B is connected is immediately closed when the one-sided contact state is detected.
  • the next valid frame is sent to the slave device 2C to appropriately perform the switching operation to the slave device 2C. can be done.
  • FIG. 4 is a diagram for explaining a problem in the comparative example when the communication cable is pulled out on the side of the slave device while the network is in operation.
  • FIG. 5 is an explanatory diagram for explaining the state of each part when the above problem occurs in the above comparative example.
  • the network device of the comparative example is the same as the network device 2N according to the first embodiment, except that the second communication units 122A to 122C do not have the function of detecting the one-sided contact state.
  • the comparative example includes a master device 11, a branching slave device S1, and slave devices 12A, 12B, and 12C.
  • the branch slave device S1 comprises a first communication unit 121, three second communication units 122A, 122B, 122C, and a switching circuit 124 having ports P10, P11, P12, P13.
  • the master device 11 is connected to the first communication unit 121, and other slave devices 12A, 12B, and 12C are connected to the second communication units 122A, 122B, and 122C, respectively.
  • the communication cable connector of the slave device 12A is in a one-sided contact state.
  • the signal from the master device 11 reaches up to the slave device 12A, as indicated by the solid arrow D11 in FIG.
  • the signal from the master device 11 is not normally delivered to the slave devices 12B, 12C, and the daisy chain connection of these slave devices 12B, 12C goes down, and in the comparative example network, Loss of communication occurs.
  • the comparative example does not include the communication state detection units 23A to 23C for detecting the one-sided contact state. Therefore, even if the illegal communication occurs, the link state of the second communication unit 122A is not turned off, and the port P11 state is not closed.
  • the signal from the master device 11 continues to be transmitted toward the slave device 12A in the one-sided contact state (disconnection point), and the signal does not reach the slave devices 12B and 12C. disruption occurs. That is, in the comparative example, it becomes impossible to perform daisy chain connection.
  • the control unit 25 causes the second communication unit 22A to perform communication at time T1 when the one-sided contact state occurs. to block the As a result, in the network device 2N and the network system 100 of the present embodiment, even when the slave device 2B is attached and detached online, it is possible to prevent the interruption of communication with the other slave devices 2C and 2D.
  • the above-mentioned problem in the comparative example is caused by the inventors of the present disclosure, in an actual network system, by pulling out the communication cable from the slave device while the network is in operation, thereby disconnecting other slave devices. It is a finding that occurred in the case. Further, the inventors of the present disclosure use the network device 2N and the network system 100 of the present embodiment, so that even when the slave device is removed from the network by disconnecting the communication cable while the network is in operation, It was found that it is possible to prevent the communication from being interrupted.
  • the communication state detection unit 23A detects whether or not communication is being performed in the one-sided contact state based on the amplitude value of the signal from the slave device 2B (another device). It is possible to reliably detect the one-sided contact state with high accuracy.
  • the communication state detectors 23A-23C detect whether the communication is performed in the one-sided contact state based on the pulse width values of the signals from the slave devices 2B-2D. It is a point to detect whether or not there is. That is, the communication state detection units 23A to 23C of the present embodiment detect that the detected pulse width becomes smaller because the signal waveform becomes smaller than that in the normal state in the one-sided contact state. It is designed to detect a one-sided contact state.
  • the communication state detection units 23A to 23C are functional blocks that detect the pulse width values of the signals received by the second communication units 22A to 22C, respectively.
  • the communication state detection units 23A to 23C detect that the signals from the slave devices B to 2D reach the second communication units 22A to 22C, respectively, when the value of the detected pulse width is equal to or greater than a preset second threshold.
  • the switching circuit 24 is interposed to notify the control unit 25 of a signal indicating that the communication by the second communication units 22A to 22C is in a normal state.
  • the communication state detection units 23A to 23C in communication with the slave devices 2B to 2D respectively, 2D communication cable connectors are in a one-sided contact state, a signal to the effect that the communication by the second communication units 22A to 22C is in an abnormal state is sent to the control unit 25 through the switching circuit 24. Notice.
  • the communication state detection units 23A to 23C detect that the signals from the slave devices 2B to 2D have reached the second communication units 22A to 22C, respectively. Assuming that there is no communication, the switching circuit 24 is interposed to notify the control unit 25 of a signal indicating that the communication by the second communication units 22A to 22C is cut off.
  • FIG. 6 is a diagram illustrating the state of each unit in the network device according to the second embodiment of the present disclosure when the communication cable is pulled out on the slave device side during network operation.
  • the switching operation when, for example, the slave device 2B is pulled out online in the embodiment 1, as in the case described with reference to FIG. 3, will be described.
  • the slave device 2B is normal with respect to the second communication unit 22A. It is connected to the.
  • the communication state detection unit 23A detects a value P0, which is a value equal to or greater than the second threshold value, as the value of the pulse width of the signal received by the second communication unit 22A. Then, a signal indicating that the communication by the second communication unit 22A is in a normal state is sent.
  • control unit 25 determines that the communication state at the communication cable connector of the slave device 2B is normal communication, turns on the link state of the second communication unit 22A, and further changes the state of the port P1.
  • the switching circuit 24 is controlled so as to be open.
  • the one-sided contact state occurs until the operation of pulling out the communication cable connector of the slave device 2B starts at time T1 and ends at time T2.
  • the slave device 2B is not normally connected to the unit 22A.
  • the communication cable connector of the slave device 2B is in a one-sided contact state, causing an impedance mismatch with the second communication section 22A, and the connector is in the second communication section 22A. 2 is not in normal contact with the communication unit 22A.
  • the communication state detection unit 23A detects a value P1, which is less than the second threshold value, as the amplitude value of the signal received by the second communication unit 22A. 25, a signal indicating that the communication by the second communication unit 22A is in an abnormal state.
  • the control unit 25 determines that the communication state at the communication cable connector of the slave device 2B is not normal communication, and turns off the link state of the second communication unit 22A.
  • the switching circuit 24 is controlled so that the state of (1) is closed.
  • control unit 25 controls the switching circuit 24 to cut off communication by the second communication unit 22A. is switched so that the slave device 2C (another device) is daisy chain connected.
  • control unit 25 connects the port P0 and the port P1 in FIG. 2, and transmits the signal from the master device 1 received by the first communication unit 21 to the slave device 2C through the second communication unit 22B.
  • the switching circuit 24 is controlled so as to do so.
  • the slave device 2B is completely separated from the second communication unit 22A. .
  • the communication cable connector of the slave device 2B is completely separated from the second communication unit 22A. Further, the detection result of the communication state detection unit 23A indicates a value of "0", and the control unit 25 is notified that communication with the connector is not possible, that is, the signal from the slave device 2B has not arrived. , a signal indicating that the communication by the second communication unit 22A is cut off. As a result, the control unit 25 does not instruct the switching circuit 24 to control the second communication unit 22A.
  • the communication state detection unit 23 detects whether or not communication is being performed in the one-sided contact state based on the value of the pulse width of the signal from the slave device 2B (another device). , the one-sided contact state can be reliably detected with high accuracy.
  • the communication state detection units 23A to 23C are functional blocks for detecting code rule error values in communication between the second communication units 22A to 22C and the slave devices 2B to 2D, respectively. . Specifically, the communication state detection units 23A to 23C perform a code rule check on the signals received by the second communication units 22A to 22C, respectively, and determine whether or not the signals have been correctly transmitted. .
  • the communication state detection units 23A to 23C notify the control unit 25 via the switching circuit 24 that the communication by the second communication units 22A to 22C is normal. signal to that effect.
  • the communication state detection units 23A to 23C determine that the communication cable connectors of the slave devices 2B to 2D are in a one-sided contact state, and the switch circuit 24 intervenes. Then, the control unit 25 is notified of a signal indicating that the communication by the second communication units 22A to 22C is in an abnormal state.
  • the signals from the slave devices 2B to 2D have not reached the second communication units 22A to 22C.
  • 24 is interposed to notify the control unit 25 of a signal indicating that the communication by the second communication units 22A to 22D is cut off.
  • a coding rule check method for example, it can be performed based on the ETHERNET (registered trademark) standard coding standard (4B5B coding (decoding)).
  • the communication state detection unit 23 detects whether or not the communication is performed in the one-sided contact state based on the value of the code rule error in communication with another device. , the one-sided contact state can be reliably detected with high accuracy.
  • FIG. 7 is an explanatory diagram illustrating a configuration example of a network system according to Embodiment 4 of the present disclosure.
  • FIG. 8 is a schematic configuration diagram showing a network device (slave device) according to Embodiment 4 of the present disclosure.
  • the main difference between this embodiment and the above embodiment is that the network device 2N is applied to the daisy chain connected slave device.
  • the network system 100 of the present embodiment for example, four slave devices 2E, 2F, 2G, and 2H are daisy chain connected as a plurality of slave devices. Further, when any one of the slave devices 2E to 2H constitutes the network device of this embodiment, it is also referred to as the network device 2N. In the following description, a case where the network device 2N is applied to the slave device 2G will be described as an example.
  • the network device 2N of this embodiment includes a first communication unit 21, a second communication unit 22A, a switching circuit 24, and a control unit 25.
  • the first communication unit 21 communicates with the slave device 2F on the upstream side.
  • the second communication unit 22A communicates with the slave device 2H on the downstream side.
  • only one second communication unit 22A is provided in the network device 2N of the present embodiment. Further, the communication state detection section 23A of the second communication section 22A uses the communication state detection section 23 of any one of the first to third embodiments.
  • the switching circuit 24 has ports P0 and P1.
  • a first communication unit 21 and a second communication unit 22A are connected to these ports P0 and P1, respectively.
  • These ports P0 and P1 also deliver signals as indicated by arrows D5 and D6 in FIG.
  • the communication state detection unit 23A detects an abnormal state of communication by the second communication unit 22A, that is, when it detects a one-sided contact state of the communication cable connector of the slave device 2H, the detected At this time, the state of the link with the second communication unit 22A is turned off, and the communication by the second communication unit 22A is cut off.
  • the control unit 25 also closes the port P1 and turns off the link of the second communication unit 22A.
  • the port P0 is turned on, so the signal from the slave device 2F is delivered to the slave device 2F via the first communication section 21 and the port P0. Moreover, in this embodiment, the daisy chain connection between the master device 1 and the slave devices 2E to 2G is maintained.
  • FIG. 9 is a schematic configuration diagram showing a network device (slave device) according to Embodiment 5 of the present disclosure.
  • the main difference between this embodiment and the first embodiment is that a signal from another device does not reach the second communication unit, or the communication state detection unit in the second communication unit A switching unit is provided for disconnecting the other device from the network in accordance with an instruction from the control unit when it is detected that communication with the other device is being performed in a one-sided contact state.
  • a plurality of second communication units 22A to 22C are connected to the first communication unit 21 in a loop. Further, the second communication units 22A to 22C are provided with communication state detection units 23A to 23C and switching units 24A to 24C, respectively.
  • the communication state detection units 23A to 23C in communication with the slave devices 2B to 2D, respectively, detect that the signals from the slave devices 2B to 2D have not arrived or that the communication cables of the slave devices 2B to 2D have not arrived. When it is detected that the connector is in a one-sided contact state, the controller 25 is notified of the detection.
  • the switching units 24A to 24C detect that the signals from the slave devices 2B to 2D have not reached the communication state detectors 23A to 23C, respectively, or that the signals from the slave devices 2B to 2D have not reached the slave devices 2B to 2D.
  • the slave devices 2B to 2D are disconnected from the network according to instructions from the control unit 25.
  • FIG. 10 is a diagram for explaining an operation example when the communication cable is pulled out on the slave device side during network operation in the network device shown in FIG.
  • the communication state detection unit 23B when the communication state detection unit 23B detects the one-sided communication state in communication with the slave device 2C, the communication state detection unit 23B causes the control unit 25 notifies that a one-sided communication state has been detected. Then, the control unit 25 notifies the switching unit 24B of the instruction. After that, the switching unit 24B causes the second communication unit 22B to cut off the communication with the slave device 2C according to the instruction of the control unit 25 . As a result, communication between the second communication unit 22B and the slave device 2C is no longer performed, as indicated by the dotted arrow in FIG. 10, and the switching unit 24B causes the slave device 2C to leave the network. .
  • the switching unit 24B switches the communication path so that the second communication unit 22B is interposed between the second communication unit 22A and the second communication unit 22C, as indicated by an arrow D6 in FIG. .
  • the network device 2N as indicated by arrows D1, D5, D6, D7, and D8 in FIG.
  • the network device 2N of the present embodiment for example, even when the slave device 2C is removed from the network by pulling out the communication cable from the slave device 2A while the network is in operation, the network device 2N is connected to the slave devices 2B and 2D. It is possible to prevent interruption of communication (that is, network communication) with the other slave devices 2B and 2D by appropriately performing the switching operation.
  • switching units 24A to 24C are provided in the second communication units 22A to 22C, respectively. be able to.
  • the number of components of the network device 2N can be reduced, and each of the second communication units 22A to 22C can be configured using, for example, one communication chip. .
  • the functional blocks (especially the control unit 25) of the network device 2N may be implemented by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be implemented by software.
  • control unit 25 is provided with a computer that executes program instructions, which are software that implements each function.
  • This computer includes, for example, one or more processors, and a computer-readable recording medium storing the program.
  • the processor reads the program from the recording medium and executes it, thereby achieving the object of the present disclosure.
  • a CPU Central Processing Unit
  • a recording medium a "non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, etc. can be used.
  • a RAM Random Access Memory
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast waves, etc.) capable of transmitting the program.
  • any transmission medium communication network, broadcast waves, etc.
  • one aspect of the present invention can also be implemented in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • the present disclosure prevents interruption of network communication such as communication down of daisy chain connection even when a slave device is attached to the network by attaching a communication cable to the network while the network is in operation. can be done. Furthermore, the present disclosure can prevent network communication from being disrupted even when a communication cable is partially disconnected, for example, in cases other than the insertion and removal of the communication cable described above.
  • the communication state detection units 23A to 23C have described the case where the communication cable connector of the other device is in a one-side contact state and detects whether or not communication is being performed with the other device.
  • the present disclosure is not limited to this. It may be configured to detect whether or not communication from the device is being performed.
  • the communication state detection units 23A to 23C for example, out of the four signal lines, when inserting/removing the other device, only one signal line is connected to the other device. communication is being performed.
  • a network device is a network device which is a slave device used in a network system in which a master device and a plurality of slave devices controlled by the master device are connected, and which is an upstream device. and at least one second communication unit that communicates with other devices on the downstream side, and a control unit that controls each unit of the network device.
  • the second communication unit determines whether or not a signal from another device has arrived, furthermore, in a state where only a part of a plurality of signal lines for performing communication from the other device is connected, A communication state detection unit capable of detecting whether or not communication is being performed from the other device, and the control unit detects that the communication state detection unit has not received a signal from the other device, or , when it is detected that communication from the other device is being performed in a state where only some of the plurality of signal lines for communication from the other device are connected, the second communication It has a configuration for blocking communication by the unit.
  • the network device includes a plurality of the second communication units, and further includes a switching circuit for switching connections between the plurality of the second communication units, wherein the control unit controls the switching circuit.
  • a plurality of slave devices can be connected in a daisy chain while preventing disruption of network communication. can.
  • a network device is a network device that is a slave device used in a network system in which a master device and a plurality of slave devices controlled by the master device are connected, a first communication unit that communicates with other devices on the downstream side; and a control unit that controls each unit of the network device; A plurality of communication units are provided, a plurality of the second communication units are connected to the first communication unit in a loop, and the second communication unit determines whether or not a signal from another device has arrived. Furthermore, a communication state detection unit capable of detecting whether or not communication from the other device is being performed in a state in which only some of the plurality of signal lines for performing communication from the other device are connected.
  • the control unit detects that the communication state detection unit detects that a signal from the other device has not arrived or that the communication from the other device
  • the switching unit causes the other device to leave the network. It has configuration.
  • each of the second communication units prevents interruption of network communication, and the plurality of Slave devices can be daisy chained.
  • the communication state detection unit connects only some of the plurality of signal lines for communication from the other device based on the amplitude value of the signal from the other device.
  • a configuration may be provided for detecting whether or not communication from the other device is being performed in the state where the device is set.
  • the communication state detection unit detects, based on the pulse width value of the signal from the other device, that only some of the plurality of signal lines for communicating from the other device are A configuration may be provided for detecting whether or not communication from the other device is being performed in the connected state.
  • the communication state detection unit detects, based on a code rule error value in communication with the other device, A configuration may be provided for detecting whether or not communication from the other device is being performed while only a portion of the device is connected.
  • a network system is a network system in which a master device and a plurality of slave devices controlled by the master device are connected, wherein any one of the above network devices serves as the slave device It has a connected configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

ネットワークが稼動中に当該ネットワークから、通信ケーブルの取り外しによりスレーブ装置を離脱させる場合でも、ネットワークの通信が途絶するのを防ぐことができるネットワーク機器を実現する。ネットワーク機器(2N)の制御部(25)は、通信状態検出部(23A)が、他機からの信号が到達していないこと、または、他機との間での通信が片側接触状態で行われていることを検出した場合に、第2の通信部(22A)による通信の遮断をさせる。

Description

ネットワーク機器、及びネットワークシステム
 本開示は、ネットワーク機器、及びこれを用いたネットワークシステムに関する。
 ファクトリーオートメーション(Factory Automation:FA)の分野においては、作業の工程を分担する様々な種類の装置の制御が行われる。工場施設等一定の領域において作業に用いられる各種のコントローラ、リモートI/O、および製造装置を連携して動作させるために、これらの装置を接続する、フィールドネットワークとも呼ばれる産業用ネットワークが構築されている。
 一般的な産業用ネットワークでは、各種のスレーブ装置と、マスタ装置などから構成されるマスタスレーブ方式が採用される。スレーブ装置は、工場内に設置される設備の制御あるいはデータ収集を行う装置である。マスタ装置は、これらのスレーブ装置を集中管理する、例えば(PLC:Programmable Logic Controller)と呼ばれる装置である。
 従来のネットワークシステムには、マスタ装置に対して、複数のスレーブ装置をデージーチェーン接続させる技術が知られている(例えば、下記特許文献1参照)。
日本国特開2016-195329号公報
 しかしながら、上記のような従来技術では、ネットワークが稼動中に当該ネットワークから、通信ケーブルの取り外しによりスレーブ装置を離脱させる場合に、ネットワークの通信が途絶するという問題点を生じることがあった。
 本開示は上記の問題点を鑑みてなされたものであり、ネットワークが稼動中に当該ネットワークから、通信ケーブルの取り外しによりスレーブ装置を離脱させる場合に、ネットワークの通信が途絶するのを防ぐことができるネットワーク機器、及びネットワークシステムを提供することを目的とする。
 本開示は、上述の課題を解決するために、以下の構成を採用する。
 本開示の一側面に係るネットワーク機器は、マスタ装置と、前記マスタ装置により制御される複数のスレーブ装置が接続されるネットワークシステムに用いられるスレーブ装置であるネットワーク機器であって、上流側の他機との間で通信を行う第1の通信部と、下流側の他機との間で通信を行う少なくとも1つの第2の通信部と、当該ネットワーク機器の各部を制御する制御部と、を備え、前記第2の通信部は、他機からの信号が到達しているか否かと、更に、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われているか否か、を検出できる通信状態検出部を有し、前記制御部は、前記通信状態検出部が、他機からの信号が到達していないこと、または、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われていることを検出した場合に、当該第2の通信部による通信の遮断をさせる構成を備えている。
 また、本開示の別の一側面に係るネットワーク機器は、マスタ装置と、前記マスタ装置により制御される複数のスレーブ装置が接続されるネットワークシステムに用いられるスレーブ装置であるネットワーク機器であって、上流側の他機との間で通信を行う第1の通信部と、当該ネットワーク機器の各部を制御する制御部と、を備え、更に、下流側の他機との間で通信を行う第2の通信部を複数備え、前記第1の通信部に複数の前記第2の通信部がループ状に接続されており、前記第2の通信部は、他機からの信号が到達しているか否かと、更に、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われているか否か、を検出できる通信状態検出部と、当該他機をネットワークから離脱させる切替部と、を備え、前記制御部は、前記通信状態検出部が、他機からの信号が到達していないこと、または、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われていることを検出した場合に、前記切替部により、当該他機をネットワークから離脱させる構成を備えている。
 本開示によれば、ネットワークが稼動中に当該ネットワークから、通信ケーブルの取り外しによりスレーブ装置を離脱させる場合でも、ネットワークの通信が途絶するのを防ぐことができるネットワーク機器、及びネットワークシステムを提供することができる。
本開示の実施形態1に係るネットワークシステムの構成例を説明する説明図である。 本開示の実施形態1に係るネットワーク機器(スレーブ装置)を示す概略構成図である。 上記ネットワーク機器において、ネットワーク稼働中にスレーブ装置側で通信ケーブルを引き抜いた場合での各部の状態を説明する図である。 比較例において、ネットワーク稼働中にスレーブ装置側で通信ケーブルを引き抜いた場合での問題点を説明する図である。 上記比較例において、上記問題点が発生したときの各部の状態を説明する説明図である。 本開示の実施形態2に係るネットワーク機器において、ネットワーク稼働中にスレーブ装置側で通信ケーブルを引き抜いた場合での各部の状態を説明する図である。 本開示の実施形態4に係るネットワークシステムの構成例を説明する説明図である。 本開示の実施形態4に係るネットワーク機器(スレーブ装置)を示す概略構成図である。 本開示の実施形態5に係るネットワーク機器(スレーブ装置)を示す概略構成図である。 図9に示したネットワーク機器において、ネットワーク稼働中にスレーブ装置側で通信ケーブルを引き抜いた場合での動作例を説明するための図である。
 〔実施形態1〕
 §1 適用例
 まず、図1及び図2を用いて、本開示が適用される場面の一例について説明する。図1は、本開示の実施形態に係るネットワークシステムの構成例を説明する説明図である。図2は、本開示の実施形態に係るネットワーク機器(スレーブ装置)を示す概略構成図である。
 なお、以下の説明では、本実施形態のネットワークシステム100において、複数のスレーブ装置として、例えば、4つのスレーブ装置2A、2B、2C、2Dを接続した場合を例示して説明する。また、スレーブ装置2A~2Dのいずれかのスレーブ装置が、本実施形態のネットワーク機器を構成する場合には、ネットワーク機器2Nともいう。
 本実施形態のネットワークシステム100は、マスタ装置1と、当該マスタ装置1に制御される複数のスレーブ装置2A~2Dが接続されるネットワークシステムである。また、本実施形態のネットワーク機器2Nは、ネットワークシステム100に対して、1つの上記スレーブ装置として接続される。
 また、本実施形態のネットワークシステム100では、ネットワーク機器2Nとして、スレーブ装置2Aに適用した場合を例示して説明する。このスレーブ装置2Aは、図1に示されるように、複数、例えば、3つのスレーブ装置2B、2C、2Dが接続される分岐スレーブ装置を構成している。
 また、本実施形態のネットワーク機器2Nは、ネットワークシステム100での上流側の他機との間で通信を行う第1の通信部21と、ネットワークシステム100での下流側の他機との間で通信を行う少なくとも1つの第2の通信部22A、22B、22Cと、複数の第2の通信部22A~22Cの間の接続を切り替える切替回路24と、当該ネットワーク機器2Nの各部を制御する制御部25と、を備える。
 第2の通信部22A、22B、22Cは、それぞれ通信状態検出部23A、23B、23Cを有する。通信状態検出部23A~23Cは、他機からの信号が到達しているか否かを検出できる。また、通信状態検出部23A~23Cは、他機の通信ケーブル用コネクタが片側接触状態で当該他機との間で通信が行われているか否かを検出できる。
 切替回路24は、第1の通信部21に接続されたポートP0、及び第2の通信部22A、22B、22Cにそれぞれ接続されたポートP1、P2、P3を有する。
 制御部25は、通信状態検出部23A~23Cの検出結果に基づいて、切替回路24のポートP1~P3を制御することにより、第2の通信部22A~22Cの通信状態(リンク)を変更する。つまり、制御部25は、ポートP1~P3をオープンとすることにより、第2の通信部22A~22Cによる通信を許容する。一方、制御部25は、ポートP1~P3をクローズとすることにより、第2の通信部22A~22Cによる通信の遮断をさせる。
 よって本実施形態によれば、例えば、通信状態検出部23Aが片側接触状態を検知し、その場合にスレーブ装置2Bをネットワークから離脱させる。そのため、ネットワーク稼動中に通信ケーブルをスレーブ装置2Aから引き抜くことにより、スレーブ装置2Bを離脱させる場合でも、ネットワークの通信が途絶するのを防ぐことができるネットワーク機器2N及びこれを用いたネットワークシステム100を構成することができる。
 §2 構成例
 <ネットワークシステム>
 図1の例では、本実施形態のネットワークシステム100は、マスタ装置1と、マスタ装置1に接続される複数のスレーブ装置2A~2Dとを備える。
 また、本実施形態のネットワークシステム100では、例えば、Ether CAT(Ethernet for Control Automation Technology:登録商標)規格のネットワークシステムが用いられている。
 また、本実施形態のネットワークシステム100では、例えば、通信ケーブルを使用して、マスタ装置1、及びスレーブ装置2A~2Dが図1に例示するように接続されており、通信ケーブルを介在させて通信を行うようになっている。
 マスタ装置1は、例えば、PLC(Programmable Logic Controller)を含んでいる。また、マスタ装置1は、情報処理装置3から設定される所定のプログラムに従って、動作することにより、複数の各スレーブ装置2A~2Dの制御を行うように構成されている。
 <ネットワーク機器>
 図2の例では、本実施形態のネットワーク機器2Nは、第1の通信部21、3つの第2の通信部22A、22B、22C、切替回路24、及び制御部25を備える。また、本実施形態のネットワーク機器2Nでは、通信状態検出部23A、23B、23Cがそれぞれ第2の通信部22A、22B、22Cに設けられている。
 また、本実施形態のネットワーク機器2Nは、上記分岐スレーブ装置を構成しており、マスタ装置1に対して、第2の通信部22A、22B、22Cにそれぞれ接続されたスレーブ装置2B、2C、2Dをデージーチェーン接続している。
 第1の通信部21は、通信装置5を介在させてマスタ装置1と通信ケーブルによって接続されることで、当該マスタ装置1との間で信号を送受信する機能ブロックである。
 また、第2の通信部22A、22B、22Cは、それぞれスレーブ装置2B、2C、2Dと通信ケーブルによって接続されることで、当該スレーブ装置2B、2C、2Dとの間で信号を送受信する機能ブロックである。
 通信状態検出部23A~23Cは、それぞれ第2の通信部22A~22Cが受信した信号の振幅の値を検出する機能ブロックである。通信状態検出部23A~23Cは、検出した振幅の値が予め設定された第1の閾値以上である場合に、それぞれ第2の通信部22A~22Cにスレーブ装置2B~2Dからの信号が正常に到達しているとして、切替回路24を介在させて制御部25に対し、第2の通信部22A~22Cによる通信が正常状態である旨の信号を通知する。
 また、通信状態検出部23A~23Cは、検出した振幅の値が予め設定された第1の閾値未満である場合に、それぞれスレーブ装置2B~2Dとの間での通信において、当該スレーブ装置2B~2Dの通信ケーブル用コネクタが片側接触状態で行われているとして、切替回路24を介在させて制御部25に対し、第2の通信部22A~22Cによる通信が異常状態である旨の信号を通知する。
 尚、ここでいう通信ケーブル用コネクタでの片側接触状態とは、当該通信ケーブル用コネクタが接触対象の通信ケーブルのコネクタに対して不完全な接触状態となる状態をいう。より具体的には、片側接触状態とは、例えば、当該通信ケーブル用コネクタに設けられた一対の接触ピンのうち、一方の接触ピンが通信ケーブルのコネクタのピンにほぼ完全に接触し、他方の接触ピンが接触していない状態をいう。
 また、この片側接触状態では、相手側のスレーブ装置と当該第2の通信部との間で大きくインピーダンス不整合を生じている状態となるものの、信号は伝達可能である。
 また、本実施形態のネットワークシステム100では、種々のメーカーのスレーブ装置を挿抜することが可能であるが、本開示の発明者等は、このような多種のスレーブ装置に接続された通信ケーブルのコネクタの形状などによっては、そのコネクタを引き抜く場合に、上記のような片側接触状態を生じることがあることを見出した。
 また、通信状態検出部23A~23Cは、検出した振幅の値が“0”の値である場合に、それぞれ第2の通信部22A~22Cにスレーブ装置2B~2Dからの信号が到達していないとして、切替回路24を介在させて制御部25に対し、第2の通信部22A~22Cによる通信が遮断状態である旨の信号を通知する。
 切替回路24は、制御部25からの指示の信号に基づいて、ポートP0、P1、P2、P3の動作状態をオープンまたはクローズとして、対応する第1の通信部21または第2の通信部22A~22Cとのリンクの状態をそれぞれオンまたはオフとする。
 また、切替回路24は、制御部25からの指示の信号に基づいて、例えば、図2に矢印D1、D2、D3、D4にて示すように、マスタ装置1に対し、スレーブ装置2B、2C、2Dを順次接続したデージーチェーン接続をさせている。
 また、切替回路24は、制御部25からの指示の信号に基づいて、例えば、第2の通信部22Aによる通信の遮断をさせる場合には、当該第2の通信部22Aを除いて他機のスレーブ装置2C、2Dをデージーチェーン接続させるように切替える。
 これにより、本実施形態のネットワーク機器2Nでは、例えば、ネットワーク稼動中に通信ケーブルをスレーブ装置2Aから引き抜くことにより、スレーブ装置2Bを離脱させる場合でも、当該ネットワーク機器2Nがスレーブ装置2C、2Dへの切替動作を適切に行って、他のスレーブ装置2C、2Dとの間の通信(つまり、ネットワークの通信)が途絶するのを防ぐことができる(詳細は後述)。
 制御部25は、情報処理の実行によって各構成要素の制御を行う機能ブロックである。また、制御部25は、通信状態検出部23A~23Cから第2の通信部22A~22Cによる通信が異常状態である旨の信号が通知された場合、当該第2の通信部22A~22Cによる通信の遮断をさせるように切替回路24を制御する。すなわち、制御部25は、切替回路24に対して、対応するポートP1~P3の状態をクローズとさせて、対応する第2の通信部22A~22Cとのリンクの状態をオフにする。
 尚、上記の切替回路24の機能と、制御部25の機能は、一体のIC(Integrated Circuit)チップとして実現されていてもよい。
 §3 動作例
 <切替動作>
 図3も参照して、本実施形態のネットワーク機器2Nの動作例について具体的に説明する。図3は、上記ネットワーク機器において、ネットワーク稼働中にスレーブ装置側で通信ケーブルを引き抜いた場合での各部の状態を説明する図である。
 尚、以下の説明では、図2において、例えば、ネットワーク稼働中にスレーブ装置2B側でその通信ケーブルを引き抜いて当該スレーブ装置2Bを離脱させる場合での切替動作について説明する。また、以下の説明では、スレーブ装置2Bの通信ケーブル用コネクタが片側接触状態で引き抜かれる場合を例示して説明する。
 図3の時点T1までは、スレーブ装置2Bの通信ケーブル用コネクタの引き抜き動作が行われておらず、本実施形態のネットワーク機器2Nでは、第2の通信部22Aに対して、スレーブ装置2Bが正常に接続されている。つまり、時点T1までは、スレーブ装置2Bの通信ケーブル用コネクタは、第2の通信部22Aに正常に接触している。
 また、通信状態検出部23Aは、第2の通信部22Aで受信した信号の振幅の値として、上記第1の閾値以上の値である、値A0を検出しており、制御部25に対して、第2の通信部22Aによる通信が正常状態である旨の信号を通知する。
 この結果、制御部25は、スレーブ装置2Bの通信ケーブル用コネクタでの通信状態が正常通信であると判別して、第2の通信部22Aのリンクの状態をオンとし、更にポートP1の状態をオープンとするように切替回路24の制御を行う。
 そして、スレーブ装置2Bの通信ケーブル用コネクタの引き抜き動作が時点T1から開始されて時点T2で終了するまでは、本実施形態のネットワーク機器2Nでは、上記片側接触状態が発生して、第2の通信部22Aに対して、スレーブ装置2Bが正常に接続されなくなる。
 すなわち、時点T1から時点T2までの期間THでは、スレーブ装置2Bの通信ケーブル用コネクタは片側接触状態となって第2の通信部22Aとの間でインピーダンス不整合を生じて、当該コネクタは、第2の通信部22Aに対して、正常に接触していない。
 また、通信状態検出部23Aは、時点T1で、第2の通信部22Aで受信した信号の振幅の値として、上記第1の閾値未満の値である、値A1を検出しており、制御部25に対して、第2の通信部22Aによる通信が異常状態である旨の信号を通知する。
 この結果、制御部25は、時点T1で、スレーブ装置2Bの通信ケーブル用コネクタでの通信状態が正常通信でないと判別して、第2の通信部22Aのリンクの状態をオフとし、更にポートP1の状態をクローズとするように切替回路24の制御を行う。これにより、第2の通信部22Aによる通信が遮断されて、スレーブ装置2Bは、ネットワークシステム100から電気的に切り離される。
 更に、制御部25は、時点T1で、切替回路24を制御して、第2の通信部22Aによる通信の遮断をさせたので、制御部25は、時点T1で、当該第2の通信部22Aを除いてスレーブ装置2C(他機)をデージーチェーン接続させるように切替えさせる。
 つまり、制御部25は、図2において、ポートP0とポートP1とを接続させて、第1の通信部21が受信したマスタ装置1からの信号を第2の通信部22Bを通じてスレーブ装置2Cに送信するように、切替回路24を制御する。
 その後、スレーブ装置2Bの通信ケーブル用コネクタの引き抜き動作が時点T2で終了した後は、本実施形態のネットワーク機器2Nでは、第2の通信部22Aに対して、スレーブ装置2Bが完全に乖離される。つまり、時点T2以降では、スレーブ装置2Bの通信ケーブル用コネクタは、第2の通信部22Aから完全に離間している。
 また、通信状態検出部23Aの検出結果は、“0”の値を示し、上記コネクタとの通信が通信不可、つまり、スレーブ装置2Bからの信号が到達していないとして、制御部25に対して、第2の通信部22Aによる通信が遮断状態である旨の信号を通知する。この結果、制御部25は、切替回路24に対して、第2の通信部22Aに関する制御の指示を行わない。
 ここで、期間THでは、図3に示すように、スレーブ装置2Bの通信ケーブル用コネクタの片側接触状態に起因して、当該コネクタと第2の通信部22Aとの間において、不正通信が行われる。しかしながら、本実施形態のネットワーク機器2Nでは、通信状態検出部23が異常を検出した時点T1で、第2の通信部22Aのリンクの状態をオフとし、更にポートP1の状態をクローズとしているので、この不正通信の影響を受けることなく、スレーブ装置2Cへの切替動作を行うことができる。
 また、上記のような不正通信は、上記コネクタを脱着することに要する時間よりも、ネットワークシステム100での信号の通信間隔期間(つまり、ネットワークでの通信フレームの送出周期)が短いために、発生する。言い換えれば、本実施形態では、上記片側接触状態を検出した時点で即座に該当するスレーブ装置2Bを電気的に接続または非接続とするので、通信フレームの送出周期に関わらず、スレーブ装置2Bの切替動作を適切に行うことができる。
 詳細にいえば、例えば、2つのスレーブ装置2A、2Bの間の通信として、有効なフレームと無意味なフレーム(アイドルフレーム)が流れている。そして、有効なフレームが流れているときに、スレーブ装置2Bの通信ケーブル用コネクタの引き抜き動作によって片側接触状態となると、その有効なフレームは壊れて不正なフレームとなる。このような不正なフレームが2回以上連続で発生すると、スレーブ装置2A、2Bの間は通信途絶となる。
 これに対して、本実施形態では、上記のように、片側接触状態を検出した時点で即座に該当するスレーブ装置2Bが接続されたポートP1の状態をクローズとしている。この結果、本実施形態では、次の有効なフレームが壊れた不正フレームとなるのを防ぐことができ、当該次の有効なフレームをスレーブ装置2Cに送出してスレーブ装置2Cへの切替動作を適切に行うことができる。
 以下、図4及び図5を参照して、不適切な切替動作について具体的に説明する。図4は、比較例において、ネットワーク稼働中にスレーブ装置側で通信ケーブルを引き抜いた場合での問題点を説明する図である。図5は、上記比較例において、上記問題点が発生したときの各部の状態を説明する説明図である。
 比較例のネットワーク機器では、第2の通信部122A~122Cにおいて、片側接触状態を検知する機能が無い他は、実施形態1に係るネットワーク機器2Nと同様である。
 具体的にいえば、図4に示すように、比較例は、マスタ装置11と、分岐スレーブ装置S1と、スレーブ装置12A、12B、12Cを備える。分岐スレーブ装置S1は、第1の通信部121と、3つの第2の通信部122A、122B、122Cと、ポートP10、P11、P12、P13を有する切替回路124を備える。
 第1の通信部121には、例えば、マスタ装置11が接続され、第2の通信部122A、122B、122Cには、例えば、他のスレーブ装置12A、12B、12Cがそれぞれ接続されている。
 ここで、比較例において、例えば、ネットワーク稼動中に通信ケーブルを分岐スレーブ装置S1から引き抜くことにより、スレーブ装置12Aを離脱させる場合、当該スレーブ装置12Aの通信ケーブル用コネクタが片側接触状態となる。この結果、比較例では、図4に実線の矢印D11にて示すように、マスタ装置11からの信号が、スレーブ装置12Aまでは到達する。
 しかしながら、比較例では、図4に点線の矢印D12、D13、D14にて示すように、マスタ装置11からの信号が、スレーブ装置12Aと第2の通信部122Aとの間の片側接触状態の箇所で、不正通信、すなわち通信内容に多数のエラーが含まれている信号の通信が行われる。
 この結果、比較例では、マスタ装置11からの信号は、スレーブ装置12B、12Cに正常に送達されずに、これらのスレーブ装置12B、12Cのデージーチェーン接続がダウンして、比較例のネットワークでは、通信の途絶が発生する。
 具体的にいえば、比較例では、本実施形態と異なり、片側接触状態を検出する通信状態検出部23A~23Cを備えていないので、図3に例示した本実施形態の場合と異なり、時点T1で、上記不正通信が発生しても、第2の通信部122Aのリンクの状態がオフとされず、またポートP11の状態もクローズにされない。
 このため、比較例では、マスタ装置11からの信号が片側接触状態(断線箇所)のスレーブ装置12Aに向けて送信され続けて、当該信号がスレーブ装置12B、12Cに到達せずに、ネットワークで通信の途絶が発生する。すなわち、比較例では、デージーチェーン接続を実行することが不可能となる。
 これに対して、本実施形態のネットワーク機器2N及びネットワークシステム100では、図3に示したように、制御部25は、上記片側接触状態が発生した時点T1で、第2の通信部22Aによる通信の遮断をさせる。この結果、本実施形態のネットワーク機器2N及びネットワークシステム100では、オンラインでスレーブ装置2Bを脱着した場合でも、他のスレーブ装置2C、2Dとの間の通信が途絶するのを防ぐことができる。
 また、比較例での上記のような問題点は、本開示の発明者等が、実際のネットワークシステムにおいて、ネットワーク稼動中に通信ケーブルをスレーブ装置から引き抜くことにより、他のスレーブ装置を離脱させた場合に生じたことを知見したものである。そして、本開示の発明者等は、本実施形態のネットワーク機器2N及びネットワークシステム100を用いることにより、ネットワークが稼動中に当該ネットワークから、通信ケーブルの取り外しによりスレーブ装置を離脱させる場合でも、ネットワークの通信が途絶するのを防ぐことができることを見出した。
 また、本実施形態では、通信状態検出部23Aは、スレーブ装置2B(他機)からの信号の振幅の値に基づいて、通信が上記片側接触状態で行われているか否かを検出するので、当該片側接触状態の高精度な検出を確実に行うことができる。
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 本実施形態と上記実施形態との主な相違点は、通信状態検出部23A~23Cがスレーブ装置2B~2Dからの信号のパルス幅の値に基づいて、通信が上記片側接触状態で行われているか否かを検出する点である。つまり、本実施形態の通信状態検出部23A~23Cは、片側接触状態のときに、信号の波形が正常時よりも小さくなるために検知されるパルス幅が小さくなることを検出することにより、当該片側接触状態を検出するようになっている。
 すなわち、本実施形態では、通信状態検出部23A~23Cは、それぞれ第2の通信部22A~22Cが受信した信号のパルス幅の値を検出する機能ブロックである。通信状態検出部23A~23Cは、検出したパルス幅の値が予め設定された第2の閾値以上である場合に、それぞれ第2の通信部22A~22Cにスレーブ装置B~2Dからの信号が到達しているとして、切替回路24を介在させて制御部25に対し、第2の通信部22A~22Cによる通信が正常状態である旨の信号を通知する。
 また、通信状態検出部23A~23Cは、検出したパルス幅の値が予め設定された第2の閾値未満である場合に、それぞれスレーブ装置2B~2Dとの間での通信において、当該スレーブ装置2B~2Dの通信ケーブル用コネクタが片側接触状態で行われているとして、切替回路24を介在させて制御部25に対し、第2の通信部22A~22Cによる通信が異常状態である旨の信号を通知する。
 また、通信状態検出部23A~23Cは、検出したパルス幅の値が“0”の値である場合に、それぞれ第2の通信部22A~22Cにスレーブ装置2B~2Dからの信号が到達していないとして、切替回路24を介在させて制御部25に対し、第2の通信部22A~22Cによる通信が遮断状態である旨の信号を通知する。
 以下、図6を参照して、本実施形態のネットワーク機器2Nの動作例について具体的に説明する。図6は、本開示の実施形態2に係るネットワーク機器において、ネットワーク稼働中にスレーブ装置側で通信ケーブルを引き抜いた場合での各部の状態を説明する図である。尚、以下の説明では、実子形態1において、図3を用いて説明した場合と同様に、例えば、スレーブ装置2Bをオンラインで引き抜いた場合での切替動作について説明する。
 図6の時点T1までは、スレーブ装置2Bの通信ケーブル用コネクタの引き抜き動作が行われておらず、本実施形態のネットワーク機器2Nでは、第2の通信部22Aに対して、スレーブ装置2Bが正常に接続されている。
 つまり、時点T1までは、スレーブ装置2Bの通信ケーブル用コネクタは、第2の通信部22Aに正常に接触している。また、通信状態検出部23Aは、第2の通信部22Aで受信した信号のパルス幅の値として、上記第2の閾値以上の値である、値P0を検出しており、制御部25に対して、第2の通信部22Aによる通信が正常状態である旨の信号を通知する。
 この結果、制御部25は、スレーブ装置2Bの通信ケーブル用コネクタでの通信状態が正常通信であると判別して、第2の通信部22Aのリンクの状態をオンとし、更にポートP1の状態をオープンとするように切替回路24の制御を行う。
 そして、スレーブ装置2Bの通信ケーブル用コネクタの引き抜き動作が時点T1から開始されて時点T2で終了するまでは、本実施形態のネットワーク機器2Nでは、上記片側接触状態が発生して、第2の通信部22Aに対して、スレーブ装置2Bが正常に接続されなくなる。
 すなわち、時点T1から時点T2までの期間THでは、スレーブ装置2Bの通信ケーブル用コネクタは片側接触状態となって第2の通信部22Aとの間でインピーダンス不整合を生じて、当該コネクタは、第2の通信部22Aに対して、正常に接触していない。
 また、通信状態検出部23Aは、時点T1で、第2の通信部22Aで受信した信号の振幅の値として、上記第2の閾値未満の値である、値P1を検出しており、制御部25に対して、第2の通信部22Aによる通信が異常状態である旨の信号を通知する。
 この結果、制御部25は、時点T1で、スレーブ装置2Bの通信ケーブル用コネクタでの通信状態が正常通信でないと判別して、第2の通信部22Aのリンクの状態をオフとし、更にポートP1の状態をクローズとするように切替回路24の制御を行う。
 これにより、第2の通信部22Aによる通信が遮断されて、スレーブ装置2Bは、ネットワークシステム100から電気的に切り離される。
 更に、制御部25は、時点T1で、切替回路24を制御して、第2の通信部22Aによる通信の遮断をさせたので、制御部25は、時点T1で、当該第2の通信部22Aを除いてスレーブ装置2C(他機)をデージーチェーン接続させるように切替えさせる。
 つまり、制御部25は、図2において、ポートP0とポートP1とを接続させて、第1の通信部21が受信したマスタ装置1からの信号を第2の通信部22Bを通じてスレーブ装置2Cに送信するように、切替回路24を制御する。
 その後、スレーブ装置2Bの通信ケーブル用コネクタの引き抜き動作が時点T2で終了した後は、本実施形態のネットワーク機器2Nでは、第2の通信部22Aに対して、スレーブ装置2Bが完全に乖離される。
 つまり、時点T2以降では、スレーブ装置2Bの通信ケーブル用コネクタは、第2の通信部22Aから完全に離間している。また、通信状態検出部23Aの検出結果は、“0”の値を示し、上記コネクタとの通信が通信不可、つまり、スレーブ装置2Bからの信号が到達していないとして、制御部25に対して、第2の通信部22Aによる通信が遮断状態である旨の信号を通知する。この結果、制御部25は、切替回路24に対して、第2の通信部22Aに関する制御の指示を行わない。
 以上のように、本実施形態では、上記実施形態1と同様な効果を奏する。
 また、本実施形態では、通信状態検出部23は、スレーブ装置2B(他機)からの信号のパルス幅の値に基づいて、通信が上記片側接触状態で行われているか否かを検出するので、上記片側接触状態の高精度な検出を確実に行うことができる。
 〔実施形態3〕
 本実施形態と上記実施形態との主な相違点は、通信状態検出部23A~23Cがスレーブ装置2B~2Dとの間での通信における符号則エラーの値に基づいて、通信が上記片側接触状態で行われているか否かを検出する点である。
 すなわち、本実施形態では、通信状態検出部23A~23Cは、それぞれ第2の通信部22A~22Cがスレーブ装置2B~2Dとの間での通信における符号則エラーの値を検出する機能ブロックである。具体的には、通信状態検出部23A~23Cは、それぞれ第2の通信部22A~22Cが受信した信号において、符号則チェックを実施して、その信号の送信が正しくなされたか否かについて判別する。
 通信状態検出部23A~23Cは、それぞれ符号則チェックの結果が正常であれば、切替回路24を介在させて制御部25に対して、第2の通信部22A~22Cによる通信が正常状態である旨の信号を通知する。
 また、通信状態検出部23A~23Cは、それぞれ符号則チェックの結果が異常であれば、それぞれスレーブ装置2B~2Dの通信ケーブル用コネクタが片側接触状態で行われているとして、切替回路24を介在させて制御部25に対し、第2の通信部22A~22Cによる通信が異常状態である旨の信号を通知する。
 また、通信状態検出部23A~23Cは、それぞれ符号則チェックを実行することができなければ、第2の通信部22A~22Cにスレーブ装置2B~2Dからの信号が到達していないとして、切替回路24を介在させて制御部25に対し、第2の通信部22A~22Dによる通信が遮断状態である旨の信号を通知する。
 以上のように、本実施形態では、上記実施形態1と同様な効果を奏する。
 符号則チェックの方式としては、例えば、ETHERNET(登録商標)の標準的符号化規格(4B5B符号化(復号化))に基づいて行うことができる。
 また、本実施形態では、通信状態検出部23は、他機との間での通信における符号則エラーの値に基づいて、当該通信が前記片側接触状態で行われているか否かを検出するので、上記片側接触状態の高精度な検出を確実に行うことができる。
 〔実施形態4〕
 本発明の他の実施形態について、図7及び図8を用いて以下に説明する。図7は、本開示の実施形態4に係るネットワークシステムの構成例を説明する説明図である。図8は、本開示の実施形態4に係るネットワーク機器(スレーブ装置)を示す概略構成図である。
 本実施形態と上記実施形態との主な相違点は、デージーチェーン接続されたスレーブ装置に、ネットワーク機器2Nを適用した点である。
 図7に示すように、本実施形態のネットワークシステム100では、複数のスレーブ装置として、例えば、4つのスレーブ装置2E、2F、2G、2Hをデージーチェーン接続した場合を例示して説明する。また、スレーブ装置2E~2Hのいずれかのスレーブ装置が、本実施形態のネットワーク機器を構成する場合には、ネットワーク機器2Nともいう。尚、以下の説明では、ネットワーク機器2Nとして、スレーブ装置2Gに適用した場合を例示して説明する。
 図7に示すように、本実施形態のネットワーク機器2Nは、第1の通信部21と、第2の通信部22Aと、切替回路24と、制御部25を備える。第1の通信部21は、上流側のスレーブ装置2Fとの間で通信を行う。また、第2の通信部22Aは、下流側のスレーブ装置2Hとの間で通信を行う。
 また、本実施形態のネットワーク機器2Nでは、第2の通信部22Aが1つのみ設けられている。また、この第2の通信部22Aが有する通信状態検出部23Aは、上記実施形態1から3のいずれかの通信状態検出部23が用いられている。
 切替回路24は、ポートP0、P1を備える。これらのポートP0、P1には、それぞれ第1の通信部21、第2の通信部22Aが接続されている。また、これらのポートP0、P1では、図7に矢印D5、D6にて示すように、信号を送達するようになっている。
 本実施形態では、通信状態検出部23Aが第2の通信部22Aによる通信の異常状態を検出した場合、すなわち、スレーブ装置2Hの通信ケーブル用コネクタの片側接触状態を検出した場合は、その検出した時点で第2の通信部22Aとのリンクの状態をオフとして、当該第2の通信部22Aによる通信の遮断をさせる。また、制御部25は、ポートP1の状態をクローズとして、第2の通信部22Aのリンクの状態をオフとする。
 この結果、ポートP0のみが、オンの状態とされるので、スレーブ装置2Fからの信号は、第1の通信部21及びポートP0を介して、スレーブ装置2Fに送達される。また、これにより、本実施形態では、マスタ装置1とスレーブ装置2E~2Gでのデージーチェーン接続は維持される。
 以上のように、本実施形態では、上記実施形態1と同様な効果を奏する。
 〔実施形態5〕
 本発明の他の実施形態について、図9を用いて以下に説明する。図9は、本開示の実施形態5に係るネットワーク機器(スレーブ装置)を示す概略構成図である。
 本実施形態と上記実施形態1との主な相違点は、第2の通信部に、当該第2の通信部において、通信状態検出部が、他機からの信号が到達していないこと、または、他機との間の通信が片側接触状態で行われていることを検出した場合に、制御部からの指示に従って、当該他機をネットワークから離脱させる切替部を設けた点である。
 図9に示すように、本実施形態のネットワーク機器2Nでは、第1の通信部21に複数の第2の通信部22A~22Cがループ状に接続されている。また、第2の通信部22A~22Cのそれぞれに、通信状態検出部23A~23Cと、切替部24A~24Cとが設けられている。
 通信状態検出部23A~23Cは、それぞれスレーブ装置2B~2Dとの間での通信において、当該スレーブ装置2B~2Dからの信号が到達していないこと、または、当該スレーブ装置2B~2Dの通信ケーブル用コネクタが片側接触状態で行われていることを検出した場合に、その検出したことを制御部25に通知する。
 切替部24A~24Cは、通信状態検出部23A~23Cがそれぞれスレーブ装置2B~2Dとの間での通信において、当該スレーブ装置2B~2Dからの信号が到達していないこと、または、当該スレーブ装置2B~2Dの通信ケーブル用コネクタが片側接触状態で行われていることを検出した場合に、制御部25からの指示に従って、当該スレーブ装置2B~2Dをネットワークから離脱させる。
 <切替動作>
 図10も参照して、本実施形態のネットワーク機器2Nの動作例について具体的に説明する。図10は、図9に示したネットワーク機器において、ネットワーク稼働中にスレーブ装置側で通信ケーブルを引き抜いた場合での動作例を説明するための図である。
 尚、以下の説明では、図9において、例えば、ネットワーク稼働中にスレーブ装置2C側でその通信ケーブルを引き抜いて当該スレーブ装置2Cを離脱させる場合での切替動作について説明する。また、以下の説明では、スレーブ装置2Cの通信ケーブル用コネクタが片側接触状態で引き抜かれる場合を例示して説明する。
 図10に示すように、第2の通信部22Bにおいて、通信状態検出部23Bがスレーブ装置2Cとの間での通信において、上記片側通信状態を検出すると、通信状態検出部23Bは、制御部25に片側通信状態を検出したことを通知する。そして、制御部25は、切替部24Bに指示を通知する。その後、切替部24Bは、制御部25の指示に従って、当該第2の通信部22Bによるスレーブ装置2Cとの間の通信の遮断をさせる。これにより、図10に点線の矢印にて示すように、第2の通信部22Bとスレーブ装置2Cとの間での通信は行われなくなり、切替部24Bは、当該スレーブ装置2Cをネットワークから離脱させる。
 更に、切替部24Bは、図10に矢印D6にて示すように、第2の通信部22Bが第2の通信部22Aと第2の通信部22Cとの間に介在するように通信経路を切り替える。この結果、ネットワーク機器2Nでは、図10に矢印D1、D5、D6、D7、D8にて示すように、マスタ装置1に対し、スレーブ装置2C以外のスレーブ装置2B、2Dを順次接続したデージーチェーン接続をさせる。
 これにより、本実施形態のネットワーク機器2Nでは、例えば、ネットワーク稼動中に通信ケーブルをスレーブ装置2Aから引き抜くことにより、ネットワークからスレーブ装置2Cを離脱させる場合でも、当該ネットワーク機器2Nがスレーブ装置2B、2Dへの切替動作を適切に行って、他のスレーブ装置2B、2Dとの間の通信(つまり、ネットワークの通信)が途絶するのを防ぐことができる。
 以上のように、本実施形態では、上記実施形態1と同様な効果を奏する。
 また、本実施形態では、第2の通信部22A~22Cのそれぞれに、切替部24A~24Cを設けているので、実施形態1と異なり、ネットワーク機器2Nにおいて、切替回路24との設置を省略することができる。この結果、本実施形態では、ネットワーク機器2Nの部品点数を削減することができるとともに、第2の通信部22A~22Cのそれぞれを、例えば、1つの通信チップを用いて構成することも可能となる。
 〔ソフトウェアによる実現例〕
 ネットワーク機器2Nの機能ブロック(特に、制御部25)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
 後者の場合、制御部25は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本開示の目的が達成される。
 上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などを更に備えていてもよい。
 また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 また、上記の説明では、ネットワークが稼動中に当該ネットワークから、通信ケーブルの取り外しによりスレーブ装置を離脱させる場合でも、ネットワークの通信が途絶するのを防ぐことができる構成について説明したが、本開示はこれに限定されない。具体的には、本開示は、ネットワークが稼動中に当該ネットワークに対し、通信ケーブルの取り付けによりスレーブ装置を装着させる場合でも、デージーチェーン接続の通信ダウンなどのネットワークの通信が途絶するのを防ぐことができる。更に、本開示は、上述の通信ケーブルの挿抜以外の場合、例えば、通信ケーブルに一部断線が生じた場合でも、ネットワークの通信が途絶するのを防ぐことができる。
 また、上記の説明では、通信状態検出部23A~23Cは、他機の通信ケーブル用コネクタが片側接触状態で当該他機との間で通信が行われているか否かを検出する場合について説明したが、本開示はこれに限定されるものではなく、通信状態検出部23A~23Cが、他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われている否かを検出する構成でもよい。具体的には、通信状態検出部23A~23Cは、例えば、4本の信号線のうち、他機の挿抜動作の際に、1本の信号線のみが接続された状態で、当該他機との通信が行われているか否かを検出することもできる。
 〔まとめ〕
 本開示の一側面に係るネットワーク機器は、マスタ装置と、前記マスタ装置により制御される複数のスレーブ装置が接続されるネットワークシステムに用いられるスレーブ装置であるネットワーク機器であって、上流側の他機との間で通信を行う第1の通信部と、下流側の他機との間で通信を行う少なくとも1つの第2の通信部と、当該ネットワーク機器の各部を制御する制御部と、を備え、前記第2の通信部は、他機からの信号が到達しているか否かと、更に、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われているか否か、を検出できる通信状態検出部を有し、前記制御部は、前記通信状態検出部が、他機からの信号が到達していないこと、または、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われていることを検出した場合に、当該第2の通信部による通信の遮断をさせる構成を備えている。
 上記構成によれば、ネットワークが稼動中に当該ネットワークから、通信ケーブルの取り外しによりスレーブ装置を離脱させる場合でも、ネットワークの通信が途絶するのを防ぐことができる。
 上記一側面に係るネットワーク機器において、前記第2の通信部を複数備え、更に複数の前記第2の通信部の間の接続を切り替える切替回路を備え、前記制御部は、前記切替回路を制御して、複数の前記第2の通信部の少なくとも一部にそれぞれ接続された他機をデージーチェーン接続させるとともに、前記第2の通信部による前記遮断をさせる場合には、当該第2の通信部を除いて他機をデージーチェーン接続させるように切替えさせる構成を備えていてもよい。
 上記構成によれば、ネットワークが稼動中に当該ネットワークから、通信ケーブルの取り外しによりスレーブ装置を離脱させる場合でも、ネットワークの通信が途絶するのを防ぎつつ、複数のスレーブ装置をデージーチェーン接続させることができる。
 また、本開示の別の一側面に係るネットワーク機器は、マスタ装置と、前記マスタ装置により制御される複数のスレーブ装置が接続されるネットワークシステムに用いられるスレーブ装置であるネットワーク機器であって、上流側の他機との間で通信を行う第1の通信部と、当該ネットワーク機器の各部を制御する制御部と、を備え、更に、下流側の他機との間で通信を行う第2の通信部を複数備え、前記第1の通信部に複数の前記第2の通信部がループ状に接続されており、前記第2の通信部は、他機からの信号が到達しているか否かと、更に、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われているか否か、を検出できる通信状態検出部と、当該他機をネットワークから離脱させる切替部と、を備え、前記制御部は、前記通信状態検出部が、他機からの信号が到達していないこと、または、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われていることを検出した場合に、前記切替部により、当該他機をネットワークから離脱させる構成を備えている。
 上記構成によれば、ネットワークが稼動中に当該ネットワークから、通信ケーブルの取り外しによりスレーブ装置を離脱させる場合でも、第2の通信部のそれぞれが、ネットワークの通信が途絶するのを防ぎつつ、複数のスレーブ装置をデージーチェーン接続させることができる。
 上記一側面に係るネットワーク機器において、前記通信状態検出部は、他機からの信号の振幅の値に基づいて、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われているか否かを検出する構成を備えていてもよい。
 上記構成によれば、上記複数の信号線のうち一部のみが接続された状態での高精度な検出を確実に行うことができる。
 上記一側面に係るネットワーク機器において、前記通信状態検出部は、他機からの信号のパルス幅の値に基づいて、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われているか否かを検出する構成を備えていてもよい。
 上記構成によれば、上記複数の信号線のうち一部のみが接続された状態での高精度な検出を確実に行うことができる。
 上記一側面に係るネットワーク機器において、前記通信状態検出部は、他機との間での通信における符号則エラーの値に基づいて、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われているか否かを検出する構成を備えていてもよい。
 上記構成によれば、上記複数の信号線のうち一部のみが接続された状態での高精度な検出を確実に行うことができる。
 また、本開示の一側面に係るネットワークシステムは、マスタ装置と、前記マスタ装置により制御される複数のスレーブ装置が接続されるネットワークシステムであって、上記いずれかのネットワーク機器が、前記スレーブ装置として接続されている構成を備えている。
 上記構成によれば、ネットワークが稼動中に当該ネットワークから、通信ケーブルの取り外しによりスレーブ装置を離脱させる場合でも、ネットワークの通信が途絶するのを防ぐことができるネットワークシステムを構成することが可能である。
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。
 1 マスタ装置
 2A~2H スレーブ装置
 2N ネットワーク機器
 21 第1の通信部
 22A~22C 第2の通信部
 23A~23C 通信状態検出部
 24 切替回路
 24A~24C 切替部
 25 制御部
 100 ネットワークシステム

Claims (7)

  1.  マスタ装置と、前記マスタ装置により制御される複数のスレーブ装置が接続されるネットワークシステムに用いられるスレーブ装置であるネットワーク機器であって、
     上流側の他機との間で通信を行う第1の通信部と、
     下流側の他機との間で通信を行う少なくとも1つの第2の通信部と、
     当該ネットワーク機器の各部を制御する制御部と、を備え、
     前記第2の通信部は、他機からの信号が到達しているか否かと、更に、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われているか否か、を検出できる通信状態検出部を有し、
     前記制御部は、
     前記通信状態検出部が、他機からの信号が到達していないこと、または、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われていることを検出した場合に、当該第2の通信部による通信の遮断をさせる、ネットワーク機器。
  2.  前記第2の通信部を複数備え、
     更に複数の前記第2の通信部の間の接続を切り替える切替回路を備え、
     前記制御部は、
     前記切替回路を制御して、複数の前記第2の通信部の少なくとも一部にそれぞれ接続された他機をデージーチェーン接続させるとともに、
     前記第2の通信部による前記遮断をさせる場合には、当該第2の通信部を除いて他機をデージーチェーン接続させるように切替えさせる、請求項1に記載のネットワーク機器。
  3.  マスタ装置と、前記マスタ装置により制御される複数のスレーブ装置が接続されるネットワークシステムに用いられるスレーブ装置であるネットワーク機器であって、
     上流側の他機との間で通信を行う第1の通信部と、
     当該ネットワーク機器の各部を制御する制御部と、を備え、
     更に、下流側の他機との間で通信を行う第2の通信部を複数備え、
     前記第1の通信部に複数の前記第2の通信部がループ状に接続されており、
     前記第2の通信部は、
     他機からの信号が到達しているか否かと、更に、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われているか否か、を検出できる通信状態検出部と、当該他機をネットワークから離脱させる切替部と、を備え、
     前記制御部は、
     前記通信状態検出部が、他機からの信号が到達していないこと、または、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われていることを検出した場合に、前記切替部により、当該他機をネットワークから離脱させる、ネットワーク機器。
  4.  前記通信状態検出部は、他機からの信号の振幅の値に基づいて、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われているか否かを検出する、請求項1~3のいずれか1項に記載のネットワーク機器。
  5.  前記通信状態検出部は、他機からの信号のパルス幅の値に基づいて、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われているか否かを検出する、請求項1~3のいずれか1項に記載のネットワーク機器。
  6.  前記通信状態検出部は、他機との間での通信における符号則エラーの値に基づいて、当該他機からの通信を行うための複数の信号線のうち一部のみが接続された状態で、当該他機からの通信が行われているか否かを検出する、請求項1~3のいずれか1項に記載のネットワーク機器。
  7.  マスタ装置と、前記マスタ装置により制御される複数のスレーブ装置が接続されるネットワークシステムであって、
     請求項1から6のいずれか1項に記載のネットワーク機器が、前記スレーブ装置として接続されている、ネットワークシステム。
PCT/JP2021/008555 2021-01-25 2021-03-04 ネットワーク機器、及びネットワークシステム WO2022157990A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-009871 2021-01-25
JP2021009871A JP2022113556A (ja) 2021-01-25 2021-01-25 ネットワーク機器、及びネットワークシステム

Publications (1)

Publication Number Publication Date
WO2022157990A1 true WO2022157990A1 (ja) 2022-07-28

Family

ID=82548613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008555 WO2022157990A1 (ja) 2021-01-25 2021-03-04 ネットワーク機器、及びネットワークシステム

Country Status (2)

Country Link
JP (1) JP2022113556A (ja)
WO (1) WO2022157990A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10187309A (ja) * 1996-12-27 1998-07-14 Hitachi Ltd バス二重化接続構造
JP2000040039A (ja) * 1998-07-23 2000-02-08 Nec Kofu Ltd デイジーチェーン障害回避方式
JP2000151755A (ja) * 1998-11-10 2000-05-30 Hitachi Cable Ltd 通信経路切替装置
JP2011010190A (ja) * 2009-06-29 2011-01-13 Denso Corp 断線異常検出装置
JP2020141282A (ja) * 2019-02-28 2020-09-03 株式会社安川電機 スレーブ機器及び通信システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10187309A (ja) * 1996-12-27 1998-07-14 Hitachi Ltd バス二重化接続構造
JP2000040039A (ja) * 1998-07-23 2000-02-08 Nec Kofu Ltd デイジーチェーン障害回避方式
JP2000151755A (ja) * 1998-11-10 2000-05-30 Hitachi Cable Ltd 通信経路切替装置
JP2011010190A (ja) * 2009-06-29 2011-01-13 Denso Corp 断線異常検出装置
JP2020141282A (ja) * 2019-02-28 2020-09-03 株式会社安川電機 スレーブ機器及び通信システム

Also Published As

Publication number Publication date
JP2022113556A (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
US7430690B2 (en) Circuit arrangement for protected data transmission, particularly in ring-shaped bus systems
US5522047A (en) Graceful insertion of a tree into a ring network
US5297134A (en) Loop mode transmission system with bus mode backup
JP2004072770A (ja) Ieee−1394phyにおける中断からの自動復帰方式
WO2022157990A1 (ja) ネットワーク機器、及びネットワークシステム
CN115053462A (zh) 线缆异常判定系统、从机装置及线缆异常判定方法
JPH0795223A (ja) 通信システム内で経路識別を実行する方法
KR100240959B1 (ko) 입출력 다중화 피엘씨 시스템
JPH1174884A (ja) 通信装置
JP2009130535A (ja) 異常信号伝播防止装置
JP2555472B2 (ja) 信号ケーブル接続状態監視機能付きの分散制御システム
JP3161530B2 (ja) 接続ケーブルの非接続に起因する制御システムの誤動作防止方式および方法
JP2738374B2 (ja) 活線挿抜方式
CN213122705U (zh) 一种故障自诊断的通讯系统
JPWO2020090034A1 (ja) 処理装置
EP4178162A1 (en) Configurable media interface module
CN117609145B (zh) 串口防护电路、交换机、服务器、防护方法及相关组件
KR100237613B1 (ko) 피엘씨 리모트 이중화 시스템 및 제어방법
JP3604868B2 (ja) システムおよびエラー処理方法
CN220455472U (zh) 一种开关检测装置和机器人
JP2701769B2 (ja) 活線挿抜方式
JPH0546735B2 (ja)
JP3461727B2 (ja) データリンクケーブルの接続状態検出方法
JP2011044896A (ja) ネットワークシステム
JPS63252043A (ja) デ−タ伝送システムにおける回線復帰方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921097

Country of ref document: EP

Kind code of ref document: A1