WO2022142582A1 - 一种硅掺杂的石墨烯复合材料及其制备方法和应用 - Google Patents

一种硅掺杂的石墨烯复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022142582A1
WO2022142582A1 PCT/CN2021/123391 CN2021123391W WO2022142582A1 WO 2022142582 A1 WO2022142582 A1 WO 2022142582A1 CN 2021123391 W CN2021123391 W CN 2021123391W WO 2022142582 A1 WO2022142582 A1 WO 2022142582A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
composite material
doped graphene
graphene
doped
Prior art date
Application number
PCT/CN2021/123391
Other languages
English (en)
French (fr)
Inventor
余海军
彭挺
谢英豪
张学梅
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to GB2310065.4A priority Critical patent/GB2616799A/en
Priority to HU2200286A priority patent/HUP2200286A1/hu
Priority to EP21913327.9A priority patent/EP4273966A1/en
Publication of WO2022142582A1 publication Critical patent/WO2022142582A1/zh
Priority to US18/217,364 priority patent/US20230348274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present disclosure relates to the field of battery materials, in particular to a silicon-doped graphene composite material and a preparation method and application thereof.
  • Lithium-ion batteries have the advantages of high energy density, long cycle life and less environmental pollution, and have become the focus of research around the world, and have been widely used in computers, mobile phones and other portable electronic devices.
  • higher requirements have been placed on the energy density of lithium-ion batteries.
  • the anode materials of commercial lithium-ion batteries are mainly graphite materials, due to their low theoretical specific capacity (only 372mAh/g) and poor rate performance. Therefore, scientists are devoted to the study of new high-capacity anode materials.
  • Silicon has attracted much attention due to its high theoretical specific capacity (4200mAh/g), its low lithium-deintercalation voltage platform ( ⁇ 0.5V), and its reaction with the electrolyte. With low activity, abundant reserves in the earth's crust, and low price, it has broad development prospects as a negative electrode material for lithium-ion batteries. However, the volume of silicon undergoes a huge change (>300%) during the process of lithium deintercalation, which leads to the rapid pulverization and detachment of the active material during the charge-discharge cycle, resulting in the loss of electrical contact between the electrode active material and the current collector.
  • the solid electrolyte interfacial film cannot exist stably in the electrolyte, resulting in reduced cycle life and capacity loss.
  • the low conductivity of silicon severely limits the full utilization of its capacity and the rate capability of silicon electrode materials.
  • the methods to solve these problems include: nanometerization, compounding and other methods. Nanoscale and silicon-carbon composite technology is the focus of scientists' research, and significant progress has been made to improve the cycle performance and rate capability of silicon anode materials.
  • silicon-based materials Due to its high theoretical specific capacity, silicon-based materials can be used as anode materials for lithium-ion batteries, but there are disadvantages such as huge volume effect, low conductivity and unsatisfactory cycle life during the charge and discharge process, which hinder their commercial application. It is denied that the material has great application prospects. To greatly reduce the first irreversible capacity and ease the volume expansion of the material, thereby improving the rate and cycle performance is the focus of scientists' research.
  • the present disclosure aims to solve one of the above-mentioned technical problems in the prior art at least to a certain extent.
  • the embodiments of the present disclosure provide a silicon-doped graphene composite material and a preparation method and application thereof.
  • the silicon-doped graphene composite material has excellent charge-discharge capacity and structural stability.
  • the graphene composite material is based on the graphene structure, and silicon atoms replace the carbon atoms in the two-dimensional network structure of graphene.
  • an embodiment of the present disclosure provides a silicon-doped graphene composite material, which includes silicon and graphene; the silicon is doped in the graphene.
  • the silicon is doped in the graphene, which means that in each layer of graphene, part of the carbon is replaced by silicon, and the silicon is connected with other carbons in each layer of graphene through silicon-carbon bonds.
  • the molar ratio of silicon to carbon in the silicon-doped graphene composite material is 1:(10-120).
  • the molar ratio of silicon to carbon in the silicon-doped graphene composite material is 1:(20-100).
  • Embodiments of the present disclosure also provide a method for preparing a silicon-doped graphene composite material, which includes the following steps:
  • the temperature of the microwave heating is 100°C-120°C, and the microwave heating time is 20-40 min.
  • the organic acid is citric acid monohydrate.
  • the mass ratio of the nitrogen-doped graphene, nano-silicon particles and organic acid is 1:(0.01-0.1):(1-3).
  • the solvent is absolute ethanol.
  • step (2) the temperature of the solvothermal reaction is 150°C-160°C, and the time of the solvothermal reaction is 6-10 hours.
  • the solvent used in the washing process is absolute ethanol, and the number of washings is 3-5 times.
  • the graphene is made by the following preparation methods:
  • the heating temperature is 100°C-150°C.
  • step 1) the time of the ultrasonic treatment is 30-60 min.
  • the acid solution is at least one of sulfuric acid, nitric acid and hydrochloric acid.
  • the concentration of the acid solution is 0.1-0.3 mol/L.
  • the soaking time is 12-24 hours.
  • step 2) the washing times are 3-5 times.
  • the sintering temperature is 700°C-800°C
  • the sintering time is 3-5 hours
  • the sintering atmosphere is an inert atmosphere.
  • the gas in the inert atmosphere is one of nitrogen, helium, neon, and argon.
  • step 2) the heating rate of the sintering is 2-6°C/min.
  • the acid solution is obtained by mixing sulfuric acid and phosphoric acid in a volume ratio of 1:(1-3).
  • the mass-to-volume ratio of the repaired graphite material, potassium permanganate and acid solution is 1:(0.3-0.5):(40-60).
  • the temperature of the heating reaction is 80°C-90°C, and the time of the heating reaction is 1-2 hours.
  • the volume ratio of the suspension to hydrogen peroxide is 1:(1-3).
  • the temperature of the hydrothermal reaction is 120°C-130°C, and the time of the hydrothermal reaction is 6-8 hours.
  • the washing includes the following steps: washing with 0.1-0.2 mol/L hydrochloric acid for 3-5 times, and then washing with ultrapure water for 3-6 times.
  • the drying temperature is 60°C-80°C.
  • the heating temperature is 100°C-120°C
  • the heating time is 1-3 hours
  • the heating atmosphere is an inert atmosphere.
  • the gas in the inert atmosphere is one of nitrogen, helium, neon, and argon.
  • Embodiments of the present disclosure also provide a negative electrode material, which includes the above-mentioned silicon-doped graphene composite material.
  • Embodiments of the present disclosure also provide a battery including the above-mentioned silicon-doped graphene composite material.
  • the battery is a lithium-ion battery.
  • the silicon-doped graphene composite material prepared in the embodiment of the present disclosure has excellent charge-discharge capacity and structural stability; the silicon-doped graphene composite material is based on the graphene structure, and silicon atoms replace graphene two. Dimensional network of carbon atoms.
  • the silicon-doped graphene composite material of the embodiment of the present disclosure has a layered structure similar to that of graphite material, but is superior to other graphene materials in charge-discharge capacity, which is due to the fact that more lithium intercalation sites are constructed at the silicon-doped position site.
  • the preparation method described in the embodiment of the present disclosure involves a process of doping with nitrogen first, and then doping with silicon.
  • the N-C bond has high activity and is easily substituted by silicon to obtain a C-Si bond.
  • the embodiment of the present disclosure is the first to conduct silicon doping treatment through graphene, and pioneer the method of introducing silicon element by nitrogen doping for silicon doping, so as to obtain a new type of silicon-doped graphene composite material.
  • Graphene is a waste graphite negative electrode. It can reduce costs, recycle waste graphite, and reduce environmental pollution.
  • the graphene prepared by hydrothermal method has higher density and higher capacity, which can better reduce the expansion rate of nano-silicon materials and improve The rate of lithium ion transport and the gram capacity of the anode material.
  • Example 2 is an XRD pattern of the silicon-doped graphene composite material of Example 1 of the disclosure.
  • a method for preparing a nitrogen-containing graphene-coated biomass carbon negative electrode material comprising the following steps:
  • the plant raw material is dehydrated at low temperature, and then carbonized at high temperature to obtain the primary biomass carbon powder, and the final biomass carbon powder is obtained after impurity removal; the biomass carbon powder and the nitrogen-containing graphene precursor polymer solution are obtained according to a certain The mass ratio is mixed evenly, and the micro-cured and cross-linked slurry obtained after heating and stirring is spray-dried to remove the solvent, and then the particles are shaped by means of jet milling, etc., and high-temperature calcination is used to prepare the nitrogen-containing graphene-coated biomass carbon negative electrode material.
  • Comparative example 2 is to coat carbon material on the surface of graphene and silicon material, and the preparation process is the same as the embodiment 1 in the CN 106876689A patent application text with the application publication number, and the specific technological process is as follows:
  • A) The preparation method of nitrogen-doped graphene-silicon composite material comprising: adding 3ml hydrogen peroxide and 30% hydrogen peroxide and 0.1g pyrrole in 100ml graphene oxide dispersion liquid with a concentration of 10mg/ml in turn, Ultrasonic dispersion was uniform, then 0.33g of nano-silicon material was added to disperse uniformly, and then transferred to an autoclave, heated to 180 ° C, kept for 6 hours, then naturally cooled to room temperature, filtered, and then dried at 50 ° C for 48 hours, and then transferred to a tubular In the furnace, it is heated to 850 °C for 6 hours in an argon atmosphere for carbonization, and the nitrogen-doped graphene-silicon composite material is obtained;
  • step 2) Take 135 g of the nitrogen-doped graphene-silicon composite material obtained by the method of step 1) A) and add 500 ml of the silane coupling agent solution obtained in step 1) B) to soak for 3 hours, then filter and dry at 250 ° C for 1 hour to obtain the mixture.
  • Nitrogen graphene-silicon/silane coupling agent composite material
  • step 1)C Add 80 g of nitrogen-doped graphene-silicon/silane coupling agent composite material to 500 ml of the organolithium compound composite solution obtained in step 1)C), stir evenly, and then evaporate the solvent.
  • the lithium ion battery of this comparative example adopts the above-mentioned nitrogen-doped graphene-silicon composite negative electrode material as the battery negative electrode material, and the preparation method comprises the following steps:
  • step 2) coating the negative electrode slurry obtained in step 1) on the copper foil, drying and rolling to obtain a negative electrode pole piece;
  • step 3 Using the negative electrode sheet obtained in step 2), with LiPF6/EC+DEC (EC, DEC volume ratio 1:1) as electrolyte, with metal lithium sheet as counter electrode, with polyethylene (PE) film as separator, in Assembled in an argon-filled glove box to obtain a lithium-ion battery.
  • LiPF6/EC+DEC EC, DEC volume ratio 1:1
  • metal lithium sheet as counter electrode
  • PE polyethylene
  • the silicon-doped graphene composite materials prepared in the above-mentioned Examples 1-3, the nitrogen-containing graphene-coated biomass carbon negative electrode materials prepared in Comparative Example 1, and the nitrogen-doped graphene-silicon prepared in Comparative Example 2 are respectively used.
  • the composite negative electrode material was assembled into a button battery with a lithium sheet as the positive electrode, and the first discharge test was carried out at a rate of 1C.
  • the results are shown in Table 1 and Table 2. According to Table 1, at 1C rate, the first discharge specific capacity of the silicon-doped graphene composite material prepared in the embodiment of the present disclosure is higher than that of the nitrogen-containing graphene-coated biomass carbon negative electrode material of the comparative example.
  • Example 1 The first discharge specific capacity of 2 is 862.3mAh/g, while the first discharge specific capacity of Comparative Example 1 is only 543.1mAh/g, and the first discharge specific capacity of Comparative Example 2 is only 698.3mAh/g.
  • Hetero-graphene composites exhibit high-capacity properties. According to Table 2, at 1C rate, the cycle life of the silicon-doped graphene composite material prepared in the embodiment of the present disclosure is higher than that of the nitrogen-containing graphene-coated biomass carbon negative electrode material in Comparative Example 1, and the 1C cycle is 500 After the second time, the capacity retention rate of Example 2 was 95.9%, while the capacity retention rate of Comparative Example 1 was only 72.8%.
  • FIG. 1 is a TEM image of the silicon-doped graphene composite material of Example 1. It can be seen from FIG. 1 that the composite material has a bulk shape and a size of about 300 nm; FIG. 2 is the silicon-doped graphene composite material of Example 1.
  • the XRD pattern of the material shows that the composite material prepared in the embodiment of the present disclosure is silicon doped in graphene.
  • Table 2 the cycle performance of the lithium ion battery (button battery) prepared by using the silicon-doped graphene composite material obtained in Examples 1-3 is significantly better than that of the comparative example at each stage. It can be seen from FIGS.
  • the silicon-doped graphene composite material of the embodiment of the present disclosure has a layered structure similar to that of graphite material, and the silicon doping position constructs more lithium intercalation site, which increases the capacity, thereby improving the structural stability of the material, thereby better improving the cycling performance of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种硅掺杂的石墨烯复合材料及其制备方法和应用,该硅掺杂的石墨烯复合材料,包括硅和石墨烯;硅掺杂在石墨烯中。本公开实施例的硅掺杂的石墨烯复合材料具有优异的充放电容量和结构稳定性;硅掺杂的石墨烯复合材料是在石墨烯结构的基础上,硅原子取代石墨烯二维网状结构的碳原子。本公开实施例的硅掺杂的石墨烯复合材料具有类似于石墨材料层状结构,却又优于其他石墨烯材料的充放电容量,这得益于硅掺杂位置构筑了更多的嵌锂位点。

Description

一种硅掺杂的石墨烯复合材料及其制备方法和应用 技术领域
本公开涉及电池材料领域,尤其是涉及一种硅掺杂的石墨烯复合材料及其制备方法和应用。
背景技术
锂离子电池具有能量密度高、循环寿命长和环境污染少等优点,成为世界各国研究的重点,并且在电脑、手机和其他便携式电子设备中得到了广泛应用。然而,随着电动汽车和先进电子设备的快速发展,对锂离子电池的能量密度提出了更高的要求。如何提高锂离子电池的能量密度,关键在于电极材料的改善和性能的提高。目前商用锂离子电池的负极材料以石墨类材料为主,由于其理论比容量较低(比容量只有372mAh/g),且倍率性能不佳。因此,科学家们致力于研究新型的高容量负极材料,硅由于具有很高的理论比容量(4200mAh/g)而备受关注,其脱嵌锂电压平台低(<0.5V),与电解液反应活性低,在地壳中储量丰富,而且价格低廉,作为锂离子电池负极材料,具有广泛的发展前景。然而,硅在脱嵌锂过程中体积发生巨大的变化(>300%),导致活性物质在充放电循环过程中发生急剧粉化脱落,使得电极活性物质和集流体之间丧失电接触。同时,由于硅材料的巨大体积膨胀,使得固体电解质界面膜在电解液中无法稳定地存在,导致循环寿命降低和容量损失。此外,硅的低电导性,严重限制了其容量的充分利用和硅电极材料的倍率性能。目前,解决这些问题的方法包括:纳米化、复合化和其他方法。纳米化和硅碳复合技术是科学家们的研究重点,且取得了显著的进步,提高了硅负极材料的循环性能和倍率性能。
硅基材料由于其理论比容量高,可作为锂离子电池负极材料,但是在充放电过程中存在巨大的体积效应,导电率低和循环寿命不理想等缺点,阻碍了其商业化应用,但是不可否认该材料具有很大的应用前景。较大程度降低首次不可逆容量,缓解材料的体积膨胀,从而改善倍率和循环性能是科学家研究的重点。
发明内容
本公开旨在至少在一定程度上解决上述现有技术中存在的技术问题之一。为此,本公开实施例提供一种硅掺杂的石墨烯复合材料及其制备方法和应用,该硅掺杂的石墨烯复合材料具有优异的充放电容量和结构稳定性,硅掺杂的石墨烯复合材料是在石墨烯结构的基础上, 硅原子取代石墨烯二维网状结构的碳原子。
为实现上述目的,本公开实施例提供了一种硅掺杂的石墨烯复合材料,其包括硅和石墨烯;所述硅掺杂在石墨烯中。在本公开实施例中,所述硅掺杂在石墨烯中,意指在每层石墨烯中,有部分的碳被硅取代,硅与每层石墨烯中的其他碳通过硅碳键连接。
在一些实施例中,所述硅掺杂的石墨烯复合材料中硅与碳的摩尔比为1:(10-120)。
在一些实施例中,所述硅掺杂的石墨烯复合材料中硅与碳的摩尔比为1:(20-100)。
本公开实施例还提供了一种硅掺杂的石墨烯复合材料的制备方法,其包括以下步骤:
(1)将所述石墨烯在氨气气氛中微波加热,得到掺氮石墨烯;
(2)将所述掺氮石墨烯、纳米硅颗粒、有机酸加入溶剂中,进行溶剂热反应,洗涤,得到所述硅掺杂的石墨烯复合材料。
在一些实施例中,步骤(1)中,所述微波加热的温度为100℃-120℃,微波加热的时间为20-40min。
在一些实施例中,步骤(2)中,所述有机酸为一水合柠檬酸。
在一些实施例中,步骤(2)中,所述掺氮石墨烯、纳米硅颗粒和有机酸的质量比为1:(0.01-0.1):(1-3)。
在一些实施例中,步骤(2)中,所述溶剂为无水乙醇。
在一些实施例中,步骤(2)中,所述溶剂热反应的温度为150℃-160℃,溶剂热反应的时间为6-10小时。
在一些实施例中,步骤(2)中,所述洗涤的过程中使用的溶剂为无水乙醇,洗涤的次数为3-5次。
在一些实施例中,所述石墨烯由以下制备方法制得:
1)将废旧锂电池放电、拆解,取出负极片加热,再置于水中进行超声处理,得到石墨负极材料和集流体;
2)用酸溶液浸渍所述石墨负极材料,过滤,取滤渣洗涤,干燥,烧结,得到修复石墨材料;
3)将所述修复石墨材料、高锰酸钾和酸溶液混合,加热反应,得到悬浊液;
4)将双氧水加入所述悬浊液中进行水热反应,离心,取滤渣洗涤,干燥,加热,得到所述石墨烯。
在一些实施例中,步骤1)中,所述加热的温度为100℃-150℃。
在一些实施例中,步骤1)中,所述超声处理的时间为30-60min。
在一些实施例中,步骤2)中,所述酸溶液为硫酸、硝酸和盐酸中的至少一种。
在一些实施例中,步骤2)中,所述酸溶液的浓度为0.1-0.3mol/L。
在一些实施例中,步骤2)中,所述浸渍的时间为12-24小时。
在一些实施例中,步骤2)中,所述洗涤的次数为3-5次。
在一些实施例中,步骤2)中,所述烧结的温度为700℃-800℃,烧结的时间为3-5小时,烧结的气氛为惰性气氛。
在一些实施例中,所述惰性气氛中的气体为氮气、氦气、氖气和氩气中的一种。
在一些实施例中,步骤2)中,所述烧结的升温速率为2-6℃/min。
在一些实施例中,步骤3)中,所述酸溶液是由硫酸和磷酸按体积比为1:(1-3)混合得到。
在一些实施例中,步骤3)中,所述修复石墨材料、高锰酸钾和酸溶液的质量体积比为1:(0.3-0.5):(40-60)。
在一些实施例中,步骤3)中,所述加热反应的温度为80℃-90℃,加热反应的时间为1-2小时。
在一些实施例中,步骤4)中,所述悬浊液和双氧水的体积比为1:(1-3)。
在一些实施例中,步骤4)中,所述水热反应的温度为120℃-130℃,水热反应的时间为6-8小时。
在一些实施例中,步骤4)中,所述洗涤包括以下步骤:用0.1-0.2mol/L的盐酸洗涤3-5次,再用超纯水洗涤3-6次。
在一些实施例中,步骤4)中,所述干燥的温度为60℃-80℃。
在一些实施例中,步骤4)中,所述加热的温度为100℃-120℃,加热的时间为1-3小时,加热的气氛为惰性气氛。
在一些实施例中,所述惰性气氛中的气体为氮气、氦气、氖气和氩气中的一种。
本公开实施例还提供了一种负极材料,其包括上述硅掺杂的石墨烯复合材料。
本公开实施例还提供了一种电池,其包括上述硅掺杂的石墨烯复合材料。
在一些实施例中,所述电池为锂离子电池。
本公开实施例的优点:
1、本公开实施例制备的硅掺杂的石墨烯复合材料具有优异的充放电容量和结构稳定性;硅掺杂的石墨烯复合材料是在石墨烯结构的基础上,硅原子取代石墨烯二维网状结构的碳原子。本公开实施例的硅掺杂的石墨烯复合材料具有类似于石墨材料层状结构,却又优于其他 石墨烯材料的充放电容量,这得益于硅掺杂位置构筑了更多的嵌锂位点。
2、本公开实施例所述制备方法中涉及先用氮掺杂的过程,然后用硅掺杂,N-C键活性较高,容易被硅取代,得到C-Si键。
3、本公开实施例通过石墨烯首创地进行掺硅处理,首创了以掺氮引入硅元素的方法进行掺硅,得到了新型的硅掺杂的石墨烯复合材料,石墨烯是利用废旧石墨负极材料制备的,可降低成本,回收废旧石墨,减少环境污染,再采用水热法制备出的石墨烯具有更高的密度和更高的容量,能够更好地降低纳米硅材料的膨胀率,提高锂离子的传输的速率和负极材料的克容量。
附图说明
本公开实施例的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例1的硅掺杂的石墨烯复合材料的TEM图;
图2为本公开实施例1的硅掺杂的石墨烯复合材料的XRD图。
具体实施方式
为了对本公开进行深入的理解,下面结合实例对本公开一些实验方案进行描述,以更好地说明本公开的特点和优点,任何不偏离本公开主旨的变化或者改变能够为本领域的技术人员理解,本公开的保护范围由所属权利要求范围确定。
实施例1
本实施例的硅掺杂的石墨烯复合材料的制备方法,包括以下具体步骤:
(1)将废旧锂电池放电、拆解,取出负极片,将负极片真空加热至100℃后,置于水中进行超声处理30min,石墨负极材料与集流体分离后,集流体直接作回收处理;
(2)用0.1mol/L的盐酸浸渍石墨负极材料12小时,过滤,取滤渣用纯水洗涤3次,沥干水分后置于管式炉中,通入氮气,以2℃/min升温至700℃,保温3小时,得到修复石墨材料;
(3)用硫酸和磷酸按1:1比例配成溶液A,将修复石墨材料、高锰酸钾和溶液A按质量体积比为1:0.3:40混合,加热至80℃反应2小时后,得悬浊液;
(4)将H 2O 2(悬浊液:H 2O 2按体积比=1:1)加入至悬浊液中,在120℃下,进行水热反应6小时后,离心,所得沉淀物用0.1mol/L的盐酸洗涤3次,再用超纯水洗涤3次,60℃烘干,在氮气中加热至100℃,保温1小时,得石墨烯;
(5)将石墨烯在氨气气氛中用微波加热至100℃,加热20min,得掺氮石墨烯;
(6)将掺氮石墨烯、纳米硅颗粒、一水合柠檬酸和无水乙醇按质量体积比为1:0.01:1:20混合,搅拌20min,转入水热反应釜中,在150℃下进行溶剂热反应6小时后,用无水乙醇洗涤3次,即得硅掺杂的石墨烯复合材料。
实施例2
本实施例的硅掺杂的石墨烯复合材料的制备方法,包括以下具体步骤:
(1)将废旧锂电池放电、拆解,取出负极片,将负极片真空加热至125℃后,置于水中进行超声处理45min,石墨负极材料与集流体分离后,集流体直接作回收处理;
(2)用0.2mol/L的盐酸浸渍石墨负极材料18小时,过滤,取滤渣用纯水洗涤3次,沥干水分后置于管式炉中,通入氮气,以4℃/min升温至750℃,保温4小时,得到修复石墨材料;
(3)用硫酸和磷酸按1:2比例配成溶液A,将修复石墨材料、高锰酸钾和溶液A按质量体积比为1:0.3:40混合,加热至80℃反应2小时后,得到悬浊液;
(4)将H 2O 2(悬浊液:H 2O 2按体积比=1:2)加入至悬浊液中,在125℃下,进行水热反应7小时后,离心,所得沉淀物用0.15mol/L的盐酸洗涤3次,再用超纯水洗涤3次,70℃烘干,在氮气中加热至110℃,保温1.5小时,得到石墨烯;
(5)将石墨烯在氨气气氛中用微波加热至110℃,加热30min,得掺氮石墨烯;
(6)将掺氮石墨烯、纳米硅颗粒、一水合柠檬酸和无水乙醇按质量体积比为1:0.05:2:30混合,搅拌30min,转入水热反应釜中,在155℃下进行溶剂热反应8小时后,用无水乙醇洗涤3次,即得硅掺杂的石墨烯复合材料。
实施例3
本实施例的硅掺杂的石墨烯复合材料的制备方法,包括以下具体步骤:
(1)将废旧锂电池放电、拆解,取出负极片,将负极片真空加热至150℃后,置于水中进行超声处理60min,石墨负极材料与集流体分离后,集流体直接作回收处理;
(2)用0.3mol/L的盐酸浸渍石墨负极材料24小时,过滤,取滤渣用纯水洗涤3次,沥干水分后置于管式炉中,通入氖气,以6℃/min升温至800℃,保温5小时,得到修复石墨材料;
(3)用硫酸和磷酸按1:3比例配成溶液A,将修复石墨材料、高锰酸钾和溶液A按质量体积比为1:0.5:60混合,加热至90℃,反应4小时后,得悬浊液;
(4)将H 2O 2(悬浊液:H 2O 2按体积比=1:3)加入至悬浊液中,在130℃下,进行水热反应8小时后,离心,所得沉淀物用0.2mol/L的盐酸洗涤3次,再用超纯水洗涤3次,80℃ 烘干,在氖气中加热至120℃,保温2小时,得到石墨烯;
(5)将石墨烯在氨气气氛中用微波加热至120℃,加热40min,得掺氮石墨烯;
(6)将掺氮石墨烯、纳米硅颗粒、一水合柠檬酸和无水乙醇按质量体积比=1:0.1:3:40混合,搅拌40min,转入水热反应釜中,在160℃下进行溶剂热反应10小时后,用无水乙醇洗涤3次,即得硅掺杂的石墨烯复合材料。
对比例1
一种含氮石墨烯包覆生物质碳负极材料的制备方法,包括以下步骤:
对植物原料进行低温脱水,然后高温碳化获得初级生物质碳粉料,经过除杂之后得到最终的生物质碳粉料;将生物质碳粉料与含氮石墨烯前驱体聚合物溶液按照一定的质量配比混合均匀,加热搅拌后得到的微固化交联的浆料采用喷雾干燥除去溶剂,再经过气流磨等手段进行颗粒整形,高温煅烧制备得到含氮石墨烯包覆生物质碳负极材料。
对比例2
对比例2为在石墨烯和硅材料表面包覆碳材料,制备过程与申请公布号为CN 106876689A专利申请文本中的实施例1相同,具体工艺流程如下:
1)制备掺氮石墨烯-硅复合材料、硅烷偶联剂溶液和有机锂化合物复合液:
A)掺氮石墨烯-硅复合材料的制备方法,包括:在100ml浓度为10mg/ml的氧化石墨烯分散液中,依次加入3ml过氧化氢的质量分数为30%的双氧水、0.1g吡咯,超声分散均匀,再加入0.33g纳米硅材料分散均匀,然后转移到高压反应釜中,升温到180℃,保温6h,之后自然降温到室温,过滤,然后在50℃干燥48h,之后转移到管式炉中,再在氩气氛围中加热到850℃保温6h进行碳化,即得掺氮石墨烯-硅复合材料;
B)在500ml N-甲基吡咯烷酮中加入20gγ-氨丙基三乙氧基硅烷,分散均匀得到硅烷偶联剂溶液;
C)在500ml N-甲基吡咯烷酮中先加入3g聚偏氟乙烯溶解,再添加10g正丁基锂,高速分散均匀,得到有机锂化合物复合液;
2)取采用步骤1)A)的方法所得的掺氮石墨烯-硅复合材料135g加入500ml步骤1)B)所得硅烷偶联剂溶液中浸泡3h,然后过滤、在250℃干燥1h,得掺氮石墨烯-硅/硅烷偶联剂复合材料;
3)在步骤1)C)所得的500ml有机锂化合物复合液中加入80g掺氮石墨烯-硅/硅烷偶联剂复合材料,搅拌均匀,然后蒸发溶剂,即得。
本对比例的锂离子电池采用上述掺氮石墨烯-硅复合负极材料作为电池负极材料,制备方 法包括以下步骤:
1)取上述掺氮石墨烯-硅复合负极材料90g、导电剂SP 5g、LA132粘结剂5g、二次蒸馏水220ml混合,搅拌均匀,得到负极浆料;
2)将步骤1)所得的负极浆料涂覆在铜箔上,烘干、碾压得到负极极片;
3)采用步骤2)得到的负极片,以LiPF6/EC+DEC(EC、DEC体积比1∶1)为电解液,以金属锂片为对电极,以聚乙烯(PE)膜为隔膜,在充氩气的手套箱中装配,得到锂离子电池。
性能检测:
分别以上述实施例1-3制得的硅掺杂的石墨烯复合材料和对比例1制得的含氮石墨烯包覆生物质碳负极材料、对比例2制得的掺氮石墨烯-硅复合负极材料,以锂片为正极,组装成扣式电池,以1C倍率进行首次放电测试,结果见表1和表2。根据表1可知,在1C倍率下,本公开实施例的制得的硅掺杂的石墨烯复合材料的首次放电比容量比对比例的含氮石墨烯包覆生物质碳负极材料高,实施例2的首次放电比容量为862.3mAh/g,而对比例1的首次放电比容量只有543.1mAh/g,对比例2首次放电比容量也只有698.3mAh/g,因此,本公开实施例的硅掺杂的石墨烯复合材料具有高容量的性能。根据表2可知,在1C倍率下,本公开实施例的制得的硅掺杂的石墨烯复合材料的循环寿命比对比例1的含氮石墨烯包覆生物质碳负极材料高,1C循环500次后,实施例2的容量保持率为95.9%,而对比例1的容量保持率为只有72.8%。
表1扣式电池性能
Figure PCTCN2021123391-appb-000001
表2全电池循环性能
Figure PCTCN2021123391-appb-000002
图1为实施例1的硅掺杂的石墨烯复合材料的TEM图,从图1可得复合材料为块状形貌,尺寸大约300nm;图2为实施例1的硅掺杂的石墨烯复合材料的XRD图,本公开实施例制备的复合材料为硅掺杂在石墨烯里。从表2可以看出,采用实施例1-3所得硅掺杂的石墨烯复合材料制备的锂离子电池(扣式电池)的循环性能,在各个阶段均明显优于对比例。从图1-2和表2中可以看出本公开实施例的硅掺杂的石墨烯复合材料中,具有类似于石墨材料层状结构,再加上硅掺杂位置构筑了更多的嵌锂位点,提高了容量,进而提高其材料的结构稳定性,从而更好地提高其材料的循环性能。
以上对本公开实施例提供的一种硅掺杂的石墨烯复合材料及其制备方法和应用进行了详细的介绍,本文中应用了具体实施例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想,包括更好的方式,并且也使得本领域的任何技术人员都能够实践本公开的实施例,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开的实施例进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。本公开专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (10)

  1. 一种硅掺杂的石墨烯复合材料,包括硅和石墨烯;所述硅掺杂在石墨烯中。
  2. 根据权利要求1所述的硅掺杂的石墨烯复合材料,其中,所述硅掺杂的石墨烯复合材料中硅与碳的摩尔比为1:(10-120)。
  3. 权利要求1-2中任一项所述的硅掺杂的石墨烯复合材料的制备方法,包括以下步骤:
    (1)将石墨烯在氨气气氛中微波加热,得到掺氮石墨烯;
    (2)将所述掺氮石墨烯、纳米硅颗粒、有机酸加入溶剂中,进行溶剂热反应,洗涤,得到所述石墨烯复合材料。
  4. 根据权利要求3所述的制备方法,其中,步骤(1)中,所述微波加热的温度为100℃-120℃,微波加热的时间为20-40min;步骤(2)中,所述溶剂热反应的温度为150℃-160℃,溶剂热反应的时间为6-10小时。
  5. 根据权利要求3所述的制备方法,其中,步骤(2)中,所述有机酸为一水合柠檬酸;步骤(2)中,所述掺氮石墨烯、纳米硅颗粒和有机酸的质量比为1:(0.01-0.1):(1-3)。
  6. 根据权利要求3所述的制备方法,其中,所述石墨烯由以下制备方法制得:
    1)将废旧锂电池放电、拆解,取出负极片加热,再置于水中进行超声处理,得到石墨负极材料和集流体;
    2)用酸溶液浸渍所述石墨负极材料,过滤,取滤渣洗涤,干燥,烧结,得到修复石墨材料;
    3)将所述修复石墨材料、高锰酸钾和酸溶液混合,加热反应,得到悬浊液;
    4)将双氧水加入所述悬浊液中进行水热反应,离心,取滤渣洗涤,干燥,加热,得到石墨烯。
  7. 根据权利要求6所述的制备方法,其中,步骤2)中,所述酸溶液为硫酸、硝酸和盐酸中的至少一种;步骤2)中,所述烧结的温度为700℃-800℃,烧结的时间为3-5小时,烧结的气氛为惰性气氛,所述惰性气氛中的气体为氮气、氦气、氖气和氩气中的一种;步骤4)中,所述加热的温度为100℃-120℃,加热的时间为1-3小时,加热的气氛为惰性气氛,所述惰性气氛中的气体为氮气、氦气、氖气和氩气中的一种。
  8. 根据权利要求6所述的制备方法,其中,步骤3)中,所述酸溶液是由硫酸和磷酸按体积比为1:(1-3)混合得到;步骤3)中,所述修复石墨材料、高锰酸钾和酸溶液的质量体积比为1:(0.3-0.5):(40-60)。
  9. 一种负极材料,包括权利要求1或2所述的硅掺杂的石墨烯复合材料。
  10. 一种电池,包括权利要求1或2所述的硅掺杂的石墨烯复合材料。
PCT/CN2021/123391 2020-12-31 2021-10-13 一种硅掺杂的石墨烯复合材料及其制备方法和应用 WO2022142582A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB2310065.4A GB2616799A (en) 2020-12-31 2021-10-13 Silicon-doped graphene composite material, preparation method for same, and applications thereof
HU2200286A HUP2200286A1 (hu) 2020-12-31 2021-10-13 Szilíciummal adalékolt grafén alapú kompozit anyag elõállítási eljárása és annak alkalmazása
EP21913327.9A EP4273966A1 (en) 2020-12-31 2021-10-13 Silicon-doped graphene composite material, preparation method for same, and applications thereof
US18/217,364 US20230348274A1 (en) 2020-12-31 2023-06-30 Silicon-doped graphene-based composite material, preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011637262.0A CN112803018B (zh) 2020-12-31 2020-12-31 一种硅掺杂的石墨烯复合材料及其制备方法和应用
CN202011637262.0 2020-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/217,364 Continuation US20230348274A1 (en) 2020-12-31 2023-06-30 Silicon-doped graphene-based composite material, preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2022142582A1 true WO2022142582A1 (zh) 2022-07-07

Family

ID=75808816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123391 WO2022142582A1 (zh) 2020-12-31 2021-10-13 一种硅掺杂的石墨烯复合材料及其制备方法和应用

Country Status (6)

Country Link
US (1) US20230348274A1 (zh)
EP (1) EP4273966A1 (zh)
CN (1) CN112803018B (zh)
GB (1) GB2616799A (zh)
HU (1) HUP2200286A1 (zh)
WO (1) WO2022142582A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803018B (zh) * 2020-12-31 2022-05-17 广东邦普循环科技有限公司 一种硅掺杂的石墨烯复合材料及其制备方法和应用
CN117525321B (zh) * 2023-11-08 2024-05-07 葫芦岛市铭浩新能源材料有限公司 一种锂离子电池负极硅碳复合材料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150028263A1 (en) * 2013-07-26 2015-01-29 Yanbo Wang Methods for mass-producing silicon nano powder and graphene-doped silicon nano powder
CN105655560A (zh) * 2016-01-22 2016-06-08 浙江极力动力新能源有限公司 一种硅掺杂石墨烯锂离子电池负极材料的制备方法
CN106876689A (zh) 2017-03-24 2017-06-20 中航锂电(洛阳)有限公司 一种掺氮石墨烯‑硅复合负极材料及其制备方法、锂离子电池
CN108504354A (zh) * 2018-03-20 2018-09-07 桂林理工大学 一种硅掺杂石墨烯量子点的制备方法
CN108682829A (zh) * 2018-06-11 2018-10-19 清华大学深圳研究生院 一种氮掺杂碳包覆硅复合石墨材料的制备方法
CN111403711A (zh) * 2020-03-26 2020-07-10 内蒙古杉杉科技有限公司 一种硫氮共掺杂石墨烯负载纳米硅三维电极材料及其制备方法
CN111435732A (zh) * 2019-12-23 2020-07-21 蜂巢能源科技有限公司 锂离子电池的负极材料及其制备方法和锂离子电池
CN112803018A (zh) * 2020-12-31 2021-05-14 广东邦普循环科技有限公司 一种硅掺杂的石墨烯复合材料及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591168A (zh) * 2015-01-16 2015-05-06 浙江大学 一种硅掺杂石墨烯材料的制备方法
CN104716321B (zh) * 2015-01-29 2018-08-07 天津大学 一种硅-氮掺杂碳-氮掺杂石墨烯复合材料及其制备和应用
CN106311305B (zh) * 2016-08-17 2018-11-13 北方工业大学 掺杂石墨烯负载合金纳米颗粒催化材料的制备方法
US10916766B2 (en) * 2017-04-10 2021-02-09 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method
KR101965055B1 (ko) * 2017-05-10 2019-04-02 부경대학교 산학협력단 그래핀-다결정 실리콘 복합체, 이의 제조 방법, 전도체 및 기판
CN108358192B (zh) * 2018-03-06 2020-08-18 绍兴文理学院 一种硅掺杂高性能石墨烯材料的制备方法
CN108455587B (zh) * 2018-03-06 2020-09-15 绍兴文理学院 一种硅掺杂石墨烯的制备方法
CN111392719B (zh) * 2020-03-12 2021-02-09 兰州大学 一种硅掺杂石墨烯及其制备方法、硅掺杂石墨烯基化学电阻型氮氧化物室温传感器
CN111916717A (zh) * 2020-07-22 2020-11-10 溧阳紫宸新材料科技有限公司 富氮掺杂硅/石墨/导电聚合物复合材料及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150028263A1 (en) * 2013-07-26 2015-01-29 Yanbo Wang Methods for mass-producing silicon nano powder and graphene-doped silicon nano powder
CN105655560A (zh) * 2016-01-22 2016-06-08 浙江极力动力新能源有限公司 一种硅掺杂石墨烯锂离子电池负极材料的制备方法
CN106876689A (zh) 2017-03-24 2017-06-20 中航锂电(洛阳)有限公司 一种掺氮石墨烯‑硅复合负极材料及其制备方法、锂离子电池
CN108504354A (zh) * 2018-03-20 2018-09-07 桂林理工大学 一种硅掺杂石墨烯量子点的制备方法
CN108682829A (zh) * 2018-06-11 2018-10-19 清华大学深圳研究生院 一种氮掺杂碳包覆硅复合石墨材料的制备方法
CN111435732A (zh) * 2019-12-23 2020-07-21 蜂巢能源科技有限公司 锂离子电池的负极材料及其制备方法和锂离子电池
CN111403711A (zh) * 2020-03-26 2020-07-10 内蒙古杉杉科技有限公司 一种硫氮共掺杂石墨烯负载纳米硅三维电极材料及其制备方法
CN112803018A (zh) * 2020-12-31 2021-05-14 广东邦普循环科技有限公司 一种硅掺杂的石墨烯复合材料及其制备方法和应用

Also Published As

Publication number Publication date
HUP2200286A1 (hu) 2022-11-28
EP4273966A1 (en) 2023-11-08
CN112803018B (zh) 2022-05-17
CN112803018A (zh) 2021-05-14
GB2616799A (en) 2023-09-20
GB202310065D0 (en) 2023-08-16
US20230348274A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2022179292A1 (zh) 利用废旧锂离子电池负极制备硅碳复合材料的方法和应用
CN111129466B (zh) 一种高性能正极材料及其制备方法和在锂离子电池中的应用
CN104966812A (zh) 三维多孔类石墨烯负载二硫化钼复合材料及制备方法
WO2022142582A1 (zh) 一种硅掺杂的石墨烯复合材料及其制备方法和应用
CN106784741B (zh) 一种碳硅复合材料、其制备方法及包含该复合材料的锂离子电池
WO2018209912A1 (zh) 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用
CN110148735B (zh) 一种自支撑石墨相氮化碳/导电高分子复合硫正极材料的制备方法
CN110611092B (zh) 一种纳米二氧化硅/多孔碳锂离子电池负极材料的制备方法
CN111244414A (zh) 一种镁热还原制备硅碳负极材料的方法
CN108550824B (zh) 一种高容量电池负极材料制备方法
US20240014382A1 (en) Silicon-carbon composite anode material, and preparation method and use thereof
CN114725366B (zh) 一种用于锂离子电池的铌钛氧化物负极材料制备方法
CN114400307B (zh) 一种锡碳复合材料及其制备方法和应用
CN111646510A (zh) 高倍率钛铌氧化物微球及其制备方法和应用
CN109802127B (zh) 一种银掺杂四氧化三铁纳米复合材料的制备方法
CN111048753B (zh) 一种氧化铁掺杂磷原子复合材料及其制备方法和应用
CN110867607A (zh) 一种掺杂改性降低锂电池的固态电池制备成本的方法
CN108155022B (zh) 使用微晶石墨材料的锂离子电容器的制备方法
CN115360452A (zh) 一种利用废旧动力电池制备锂电池负极材料的方法
CN114873579A (zh) 一种复合炭微球、其制备方法及应用
CN114023941A (zh) 一种稻壳基硅氧化物/石墨烯气凝胶复合负极材料及其制备方法与应用
CN113921812A (zh) 一种超高功率密度钠离子电池及其制备方法
CN113816425A (zh) 一种MoS2/氮掺杂碳/改性活性炭钠离子电池负极材料及制备方法
CN107959007B (zh) 一种包覆石墨烯-硅锂离子电池负极材料的制备方法
CN111342011A (zh) 磷酸铁锂/硫碳复合正极材料及其制备方法、锂离子电池正极和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202310065

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211013

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021913327

Country of ref document: EP

Effective date: 20230731