WO2018209912A1 - 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用 - Google Patents

一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2018209912A1
WO2018209912A1 PCT/CN2017/111342 CN2017111342W WO2018209912A1 WO 2018209912 A1 WO2018209912 A1 WO 2018209912A1 CN 2017111342 W CN2017111342 W CN 2017111342W WO 2018209912 A1 WO2018209912 A1 WO 2018209912A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
powder
ball
composite material
tin
Prior art date
Application number
PCT/CN2017/111342
Other languages
English (en)
French (fr)
Inventor
朱敏
程得亮
杨黎春
胡仁宗
曾美琴
鲁忠臣
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2018209912A1 publication Critical patent/WO2018209912A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of new energy materials, in particular to a tin sulfide/sulfur/small layer graphene composite material, a preparation method thereof and the application in a lithium/sodium ion battery.
  • Lithium-ion batteries are widely used as working power sources for various electronic products including mobile phones, notebook computers, and digital cameras, as well as power batteries including mobile equipment for electric vehicles, because of their high energy density and long cycle life.
  • the negative electrode materials for lithium ion batteries widely used in commercialization are mainly graphite carbon materials, and their theoretical specific capacity is low, which cannot meet the development needs of high-capacity, high-power, long-life secondary batteries, and therefore, development and research capacity are high.
  • the anode material is the key to further development of lithium-ion batteries.
  • the resulting composite material has high capacity and excellent cycle performance and rate performance, and is particularly suitable as a negative electrode material for lithium/sodium ion batteries.
  • a method for preparing a tin sulfide/sulfur/small layer graphene composite material comprises the steps of: adding tin powder, sulfur powder and expanded graphite into a ball mill tank, and then performing ball milling by medium barrier discharge plasma assisted high energy ball milling method; The tin sulfide/sulfur/small layer graphene composite material is obtained; in the mixture of tin powder, sulfur powder and expanded graphite, the mass fraction of the expanded graphite is 20% to 80%, and the tin powder and the sulfur powder are The molar ratio is 1:1 to 1:4, the ball-to-ball ratio of the ball mill is 30:1 to 70:1, and the ball milling time is 10h to 40h.
  • the expanded graphite has a mass fraction of 30% to 50%.
  • the molar ratio of the tin powder to the sulfur powder is 1:1 to 1:3.
  • the ball mill has a ball to ball ratio of 40:1 to 60:1.
  • the ball milling time is from 15 h to 30 h.
  • the specific steps of the dielectric barrier discharge plasma assisted high energy ball milling method are:
  • the excitation block adopts a double amplitude of 7 mm and a motor speed of 960 r/min.
  • the dielectric gas of the dielectric barrier discharge plasma assisted high energy ball milling method is a mixture of an inert gas or an inert gas.
  • the tin sulfide/sulfur/small layer graphene composite material (SnS x /S/FLG composite material) prepared by the above method is composed of nanocrystalline tin sulfide, amorphous sulfur and a small layer of graphene, and its structure is nanometer.
  • the tin tin sulfide and the amorphous sulfur are uniformly coated in a small layer of graphene carbon matrix.
  • the invention combines tin sulfide with sulfur and a small layer of graphene carbon material, and prepares tin sulfide/sulfur/small layer graphene composite material by dielectric barrier discharge plasma assisted high energy ball milling method, and nanocrystalline tin sulfide in composite material. It is also beneficial for the transport of lithium/sodium ions, while the small layer of graphene-based body facilitates the transport of ions during charge and discharge, improves the electronic conductivity of the entire material, and alleviates the large volume change during the charge and discharge of tin sulfide.
  • the resulting composite material has high capacity and excellent cycle performance and rate performance, and is particularly suitable as a negative electrode material for lithium/sodium ion batteries.
  • the present invention has the following advantages and benefits:
  • the present invention adopts dielectric barrier discharge plasma-assisted high-energy ball milling to prepare tin sulfide of lithium/sodium ion battery anode material, which has a wide range of raw materials, simple preparation method and low cost compared with chemically prepared tin sulfide. It is easy to mass produce and has no pollution to the environment.
  • the tin sulfide/sulfur/small-layer graphene composite material of the present invention as a negative electrode material of a lithium/sodium ion battery, can improve ion mobility and electron conduction of a material due to recombination of a small layer of graphene, and It can alleviate the huge volume change in the process of sodium encapsulation of tin sulfide, taking into account the characteristics of high capacity and high cycle stability.
  • the tin sulfide/sulfur/small-layer graphene composite material of the present invention exhibits high capacity and excellent cycle performance and rate performance as a lithium/sodium ion battery anode material.
  • Example 1 is an XRD pattern of a SnS x /S/FLG composite prepared in Example 3;
  • Example 2 is an XPS sulfur spectrum of the SnS x /S/FLG composite prepared in Example 3;
  • Example 3 is an SEM image of the SnS x /S/FLG composite prepared in Example 3;
  • Example 4 is an HRTEM image of the SnS x /S/FLG composite prepared in Example 3;
  • Example 5 is a lithium-charged charge-discharge curve diagram of the SnS x /S/FLG composite material prepared in Example 3;
  • Example 6 is a graph showing the lithium intercalation cycle performance of the SnS x /S/FLG composite prepared in Example 3;
  • Example 7 is a graph showing the lithium intercalation ratio performance of the SnS x /S/FLG composite prepared in Example 3;
  • Example 8 is a graph showing a sodium insertion and discharge curve of a SnS x /S/FLG composite prepared in Example 3;
  • Fig. 10 is a graph showing the sodium insertion rate performance of the SnS x /S/FLG composite prepared in Example 3.
  • the composite materials of the embodiments of the present invention are all prepared by a dielectric barrier discharge plasma assisted high energy ball milling method.
  • the specific steps of the dielectric barrier discharge plasma assisted high energy ball milling method are:
  • the prepared tin sulfide/sulfur/small layer graphene composite material is used as a lithium ion battery anode material to prepare a lithium ion battery:
  • the SnS x /S/FLG composite material, the conductive agent Super P and the binder CMC were mixed and mixed at a mass ratio of 8:1:1, and uniformly coated on a copper foil to form an electrode sheet; in an argon atmosphere glove box
  • the lithium sheet is used as the counter electrode
  • the electrolyte is 1 mol/L LiPF 6 /EC/DEC (volume ratio 1:1)
  • the fluoroethylene carbonate (FEC) is added in a volume ratio of 5%
  • the separator is polypropylene. Assembled into CR2016 button battery for testing.
  • the prepared tin sulfide/sulfur/small layer graphene composite material is used as a sodium ion battery anode material to prepare a sodium ion battery:
  • the SnS x /S/FLG composite material, the conductive agent Super P and the binder CMC were mixed and mixed at a mass ratio of 8:1:1, and uniformly coated on a copper foil to form an electrode sheet; in an argon atmosphere glove box
  • the sodium plate is used as the counter electrode
  • the electrolyte is 1 mol/L NaClO 4 /EC/PC (volume ratio 1:1)
  • the fluoroethylene carbonate (FEC) is added in a volume ratio of 5%
  • the separator is glass fiber. Assembled into a CR2032 button battery for testing.
  • tin powder, sulfur powder and expanded graphite raw material powder into a ball mill tank, wherein the quality of the expanded graphite
  • the amount fraction is 30%, the molar ratio of tin powder to sulfur powder is 1:1, the mass ratio of grinding ball to raw material is 50:1, dielectric barrier plasma is assisted by high energy ball milling for 20h, and the discharge gas medium is argon.
  • the prepared composite material was made into a negative electrode sheet of a lithium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 1 A g -1 between 0 and 3 V.
  • the first reversible specific capacity of the SnS/FLG composite material was 746.5 mAh g -1 . After 250 cycles, the reversible specific capacity decreased to 588 mAh g -1 .
  • the prepared composite material was made into a negative electrode sheet of a sodium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 1 A g -1 between 0 and 3 V.
  • the first reversible specific capacity of the SnS/FLG composite material was 443.9 mAh g -1 . After 200 cycles, the reversible specific capacity decreased to 373.4 mAh g -1 .
  • Example 1 The difference from Example 1 is that the molar ratio of tin powder to sulfur powder is 1:2.
  • tin reacts with sulfur to form stannous sulfide and tin sulfide, resulting in a tin sulfide/small layer graphene composite.
  • the prepared composite material was made into a negative electrode sheet of a lithium ion battery and assembled into a battery, and charged and discharged at a magnification of 1 A g -1 at 0 to 3 V.
  • the first reversible specific capacity of the SnS x /FLG composite material was 924.5 mAh g - 1. After 250 cycles, the reversible specific capacity is reduced to 708 mAh g -1 .
  • the prepared composite material was made into a negative electrode sheet of a sodium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 1 A g -1 between 0 and 3 V.
  • the first reversible specific capacity of the SnS x /FLG composite material was 560.9 mAh g - 1. After 200 cycles, the reversible specific capacity is reduced to 508.6 mAh g -1 .
  • Example 2 The difference from Example 1 is that the molar ratio of tin powder to sulfur powder is 1:3.
  • FIG. 1 After discharge ball milling, the XRD pattern of the prepared SnS x /S/FLG composite material is shown in Fig. 1. It can be seen from Fig. 1 that the composite component has stannous sulfide and tin sulfide; FIG. 2 is the prepared SnS x / The XPS sulfur spectrum of S/FLG composites can be seen from the presence of elemental sulfur, but it is not shown in XRD, indicating that elemental sulfur exists in amorphous form; SEM of prepared SnS x /S/FLG composites The graph and the HRTEM image are shown in FIG. 3 and FIG. 4, respectively. As can be seen from FIG. 3 and FIG. 4, the nanocrystalline tin sulfide and the amorphous sulfur are uniformly coated in the small layer graphene carbon matrix.
  • the prepared composite material was made into a negative electrode sheet of a lithium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 0.1 A g -1 between 0 and 3 V.
  • the first discharge specific capacity of the SnS x /S/FLG composite material was 1498 mAh g. -1
  • the first charge specific capacity is 1271.5mAh g -1
  • the first coulon efficiency is 84.9% ( Figure 5).
  • the charge-discharge cycle was carried out at a magnification of 1A g -1 .
  • the specific capacity of the composite material reached 1080.2 mAh g -1 .
  • the reversible specific capacity was still 960.2 mAh g -1 (Fig.
  • the prepared composite material was made into a negative electrode sheet of a sodium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 0.1 A g -1 between 0 and 3 V.
  • the first discharge specific capacity of the SnS x /S/FLG composite material was 936.6 mAh. g -1
  • the first charge specific capacity was 786.1mAh g -1
  • the first coulon efficiency was 83.9% ( Figure 8).
  • the charge-discharge cycle was performed at a magnification of 1A g -1
  • the specific capacity of the composite material reached 652.3 mAh g -1 .
  • the reversible specific capacity was still 597.6 mAh g -1 (Fig.
  • Example 2 The difference from Example 1 is that the molar ratio of tin powder to sulfur powder is 1:4.
  • the prepared composite material was made into a negative electrode sheet of a lithium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 1 A g -1 at 0 to 3 V.
  • the first reversible specific capacity of the SnS x /S/FLG composite material was 611 mAh g. -1 , after 250 cycles, the reversible specific capacity decreased to 582.1 mAh g -1 .
  • the prepared composite material was made into a negative electrode plate of a sodium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 1 A g -1 between 0 and 3 V.
  • the first reversible specific capacity of the SnS x /S/FLG composite material was 357.9 mAh. g -1 , after 200 cycles, the reversible specific capacity decreased to 353.6 mAh g -1 .
  • Example 3 The difference from Example 3 is that the mass fraction of expanded graphite in the raw material is 80%.
  • the prepared composite material was made into a negative electrode sheet of a lithium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 1 A g -1 between 0 and 3 V.
  • the first reversible specific capacity of the SnS x /S/FLG composite material was 550.8 mAh. g -1 , after 250 cycles, the reversible specific capacity decreased to 503.5 mAh g -1 .
  • the prepared composite material was made into a negative electrode sheet of a sodium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 1 A g -1 between 0 and 3 V.
  • the first reversible specific capacity of the SnS x /S/FLG composite material was 345.6 mAh. g -1 , after 200 cycles, the reversible specific capacity decreased to 303.6 mAh g -1 .
  • Example 3 The difference from Example 3 is that the mass fraction of expanded graphite in the raw material is 20%.
  • the prepared composite material was made into a negative electrode sheet of a lithium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 1 A g -1 between 0 and 3 V.
  • the first reversible specific capacity of the SnS x /S/FLG composite material was 1050.8 mAh. g -1 , after 250 cycles, the reversible specific capacity decreased to 663.5 mAh g -1 .
  • the prepared composite material was made into a negative electrode sheet of a sodium ion battery and assembled into a battery, and charged and discharged at a rate of 1 A g -1 at 0 to 3 V.
  • the first reversible specific capacity of the SnS x /S/FLG composite material was 675.6 mAh. g -1 , after 200 cycles, the reversible specific capacity decreased to 392.3 mAh g -1 .
  • Example 3 The difference from Example 3 is that the mass ratio of the ball to the raw material is 30:1.
  • the prepared composite material was made into a negative electrode sheet of a lithium ion battery and assembled into a battery, and charged and discharged at a magnification of 1 A g -1 at 0 to 3 V.
  • the first reversible specific capacity of the prepared SnS x /S/FLG composite material was 880.5 mAh g -1 , after 250 cycles, the reversible specific capacity decreased to 545.5 mAh g -1 .
  • the prepared composite material was made into a negative electrode sheet of a sodium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 1 A g -1 between 0 and 3 V.
  • the first reversible specific capacity of the SnS x /S/FLG composite material was 465.6 mAh. g -1 , after 200 cycles, the reversible specific capacity decreased to 386.3 mAh g -1 .
  • Example 3 The difference from Example 3 is that the mass ratio of the ball to the raw material is 70:1.
  • the prepared composite material was made into a negative electrode sheet of a lithium ion battery and assembled into a battery, and charged and discharged at a magnification of 1 A g -1 at 0 to 3 V.
  • the first reversible specific capacity of the prepared SnS x /S/FLG composite material was 960.5 mAh g -1 , after 250 cycles, the reversible specific capacity decreased to 655.4 mAh g -1 .
  • the prepared composite material was made into a negative electrode sheet of a sodium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 1 A g -1 between 0 and 3 V.
  • the first reversible specific capacity of the SnS x /S/FLG composite material was 605.6 mAh. g -1 , after 200 cycles, the reversible specific capacity decreased to 454.3 mAh g -1 .
  • Example 3 The difference from Example 3 was that the ball milling time was 10 h.
  • the prepared composite material was made into a negative electrode sheet of a lithium ion battery and assembled into a battery, and charged and discharged at a magnification of 1 A g -1 at 0 to 3 V.
  • the first reversible specific capacity of the prepared SnS x /S/FLG composite material was 763.5 mAh g -1 , after 250 cycles, the reversible specific capacity decreased to 455.6 mAh g -1 .
  • the prepared composite material was made into a negative electrode sheet of a sodium ion battery and assembled into a battery, and the charge and discharge cycle was performed at a magnification of 1 A g -1 at 0 to 3 V.
  • the first reversible specific capacity of the SnS x /S/FLG composite material was 415.6 mAh. g -1 , after 200 cycles, the reversible specific capacity decreased to 284.3 mAh g -1 .
  • Example 3 The difference from Example 3 was that the ball milling time was 40 h.
  • the prepared composite material was made into a negative electrode sheet of a lithium ion battery and assembled into a battery, and charged and discharged at a magnification of 1 A g -1 at 0 to 3 V.
  • the first reversible specific capacity of the prepared SnS x /S/FLG composite material was 983.6mAh g -1 , after 250 cycles, the reversible specific capacity decreased to 635.6mAh g -1 .
  • the prepared composite material was made into a negative electrode sheet of a sodium ion battery and assembled into a battery.
  • the charge and discharge cycle was performed at a magnification of 1 A g -1 between 0 and 3 V.
  • the first reversible specific capacity of the SnS x /S/FLG composite was 615.8 mAh. g -1 , after 200 cycles, the reversible specific capacity decreased to 483.4 mAh g -1 .

Abstract

一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用,包括如下步骤:将锡粉、硫粉和膨胀石墨加入球磨罐中混合后,采用介质阻挡放电等离子体辅助高能球磨法进行球磨,得到所述锡硫化物/硫/少层石墨烯复合材料;在锡粉、硫粉和膨胀石墨的混合物中,所述膨胀石墨的质量分数为20%~80%,锡粉和硫粉的摩尔比为1:1~1:4,球磨的球料比为30:1~70:1,球磨时间为10h~40h。将该复合材料作为锂/钠离子电池负极材料,表现出优越的电化学性能,具有高容量和优异的循环性能和倍率性能。本发明原材料来源广泛,制备方法简单,成本低廉,易于大规模生产,且对环境无污染。

Description

一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用 技术领域
本发明涉及新能源材料领域,具体涉及一种锡硫化物/硫/少层石墨烯复合材料及其制备方法与在锂/钠离子电池中的应用。
背景技术
锂离子电池由于具有能量密度大,循环寿命长等优点,被广泛用作包括手机、笔记本电脑、数码相机的各种电子产品的工作电源,以及包括电动车的移动式装备的动力电池。伴随着锂离子电池的广泛应用,一方面,人们对于锂离子电池的性能提出了更高的要求,包括更高的容量、更大的功率、更长的循环寿命等需求。目前,商业化广泛使用的锂离子电池负极材料主要是石墨碳材料,其理论比容量较低,不能满足高容量、大功率、长寿命的二次电池的发展需求,因此,开发和研究容量高的负极材料是推动锂离子电池进一步发展的关键。另一方面,全球锂资源并不丰富,且成本较高,这很大程度上制约着锂离子电池大规模应用。相比锂资源而言,钠资源十分丰富,成本较低,且二者为同一主族元素,化学性质相近,因此用钠替代锂开发钠离子电池具有非常广阔的应用前景。然而,由于钠离子具有更大的离子半径,商业化锂离子负极石墨材料很难嵌入钠离子,严重制约着钠离子电池的发展。
锡的硫化物由于具有较高的脱嵌锂/钠理论比容量(如SnS2的脱嵌锂和钠理论比容量分别为1230mAh g-1和1135mAh g-1),得到了广泛关注。但研究表明,单一的锡硫化物作为锂/钠离子电极负极材料,在脱嵌锂/钠过程中会产 生巨大的体积膨胀,导致电极材料的粉化,使电极材料从集流体上脱落,无法获得良好的电化学性能。
发明内容
本发明的目的在于提供一种方法简单、性能优异的锡硫化物/硫/少层石墨烯复合材料及其制备方法。所得到的复合材料具有高容量和优异的循环性能和倍率性能,特别适合作为锂/钠离子电池的负极材料。
本发明目的通过以下技术方案实现:
一种锡硫化物/硫/少层石墨烯复合材料的制备方法,包括如下步骤:将锡粉、硫粉和膨胀石墨加入球磨罐中混合后,采用介质阻挡放电等离子体辅助高能球磨法进行球磨,得到所述锡硫化物/硫/少层石墨烯复合材料;在锡粉、硫粉和膨胀石墨的混合物中,所述膨胀石墨的质量分数为20%~80%,锡粉和硫粉的摩尔比为1:1~1:4,球磨的球料比为30:1~70:1,球磨时间为10h~40h。
所述膨胀石墨的质量分数为30%~50%。
所述锡粉和硫粉的摩尔比为1:1~1:3。
所述球磨的球料比为40:1~60:1。
所述球磨的时间为15h~30h。
所述介质阻挡放电等离子体辅助高能球磨法的具体步骤是:
(1)安装好球磨罐的前盖板和电极棒,并把前盖板和电极棒内的铁芯分别与等离子体电源的正负极相连,其中,电极棒内的铁芯接等离子体电源的正极,前盖板接等离子体电源的负极;
(2)在球磨罐中装入磨球和配比好的锡粉、硫粉和膨胀石墨混合粉末;
(3)通过真空阀对球磨罐抽真空,然后充入放电气体介质,使球磨罐内的压力值达到0.1Mpa;
(4)接通等离子体电源,设置等离子体电源电压为15KV,电流为0.25A,放电频率60KHz,启动驱动电机带动激振块,使机架及固定在机架上的球磨罐同时振动,进行介质阻挡放电等离子辅助高能球磨。
所述激振块采用双振幅7mm,电机转速960r/min。
所述介质阻挡放电等离子体辅助高能球磨法采用的放电气体介质为惰性气体或惰性气体的混合气。
上述方法制备的锡硫化物/硫/少层石墨烯复合材料(SnSx/S/FLG复合材料),由纳米晶锡硫化物、非晶硫和少层石墨烯复合而成,其结构为纳米晶锡硫化物和非晶硫均匀地被包覆在少层石墨烯碳基体中。
所述的锡硫化物/硫/少层石墨烯复合材料在制作锂/钠离子电池负极材料中的应用。
本发明将锡硫化物与硫、少层石墨烯碳材料复合,采用介质阻挡放电等离子体辅助高能球磨法制备锡硫化物/硫/少层石墨烯复合材料,复合材料中的纳米晶锡硫化物也有利于锂/钠离子的传输,而少层石墨烯基体有利于充放电过程中离子的传输,提高整个材料的电子导电性,缓解锡硫化物充放电过程中巨大的体积变化。所得到的复合材料具有高容量和优异的循环性能和倍率性能,特别适合作为锂/钠离子电池的负极材料。
与现有的技术相比,本发明具有如下优点和有益效果:
(1)本发明首次采用介质阻挡放电等离子体辅助高能球磨法制备锂/钠离子电池负极材料锡硫化物,与通常采用化学法制备锡硫化物相比,原材料来源广泛,制备方法简单,成本低,易于大规模生产,且对环境无污染。
(2)本发明的锡硫化物/硫/少层石墨烯复合材料,作为锂/钠离子电池负极材料,由于少层石墨烯的复合,能够提高材料的离子迁移和电子导电,并且 缓解锡硫化物嵌钠过程中巨大的体积变化,兼顾了高容量和高循环稳定性等特点。
(3)本发明的锡硫化物/硫/少层石墨烯复合材料,作为锂/钠离子电池负极材料,表现出高容量和优异的循环性能和倍率性能。
附图说明
图1是实施例3所制备的SnSx/S/FLG复合材料的XRD图谱;
图2是实施例3所制备的SnSx/S/FLG复合材料的XPS硫谱;
图3是实施例3所制备的SnSx/S/FLG复合材料的SEM图;
图4是实施例3所制备的SnSx/S/FLG复合材料的HRTEM图;
图5是实施例3所制备的SnSx/S/FLG复合材料的嵌锂充放电曲线图;
图6是实施例3所制备的SnSx/S/FLG复合材料的嵌锂循环性能曲线图;
图7是实施例3所制备的SnSx/S/FLG复合材料的嵌锂倍率性能曲线图;
图8是实施例3所制备的SnSx/S/FLG复合材料的嵌钠充放电曲线图;
图9是实施例3所制备的SnSx/S/FLG复合材料的嵌钠循环性能曲线图;
图10是实施例3所制备的SnSx/S/FLG复合材料的嵌钠倍率性能曲线图。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
本发明各实施例复合材料的制备均采用介质阻挡放电等离子体辅助高能球磨方法。
介质阻挡放电等离子体辅助高能球磨方法的具体步骤是:
(1)安装好球磨罐的前盖板和电极棒,并把前盖板和电极棒内的铁芯分别与等离子体电源的正负极相连,其中,电极棒内的铁芯接等离子体电源的正 极,前盖板接等离子体电源的负极;
(2)在球磨罐中装入磨球和配比好的锡粉、硫粉和膨胀石墨混合粉末;
(3)通过真空阀对球磨罐抽真空,然后充入放电气体介质氩气、氦气等惰性气体或惰性气体的混合气,使球磨罐内的压力值达到0.1Mpa;
(4)接通等离子体电源,设置等离子体电源电压为15KV,电流为0.25A,放电频率60KHz,启动驱动电机带动激振块,使机架及固定在机架上的球磨罐同时振动,进行介质阻挡放电等离子辅助高能球磨;所述激振块采用双振幅7mm,电机转速960r/min。
将制得的锡硫化物/硫/少层石墨烯复合材料作为锂离子电池负极材料制备锂离子电池:
将SnSx/S/FLG复合材料、导电剂Super P和粘结剂CMC按质量比8:1:1混合调浆后均匀涂敷在铜箔上制成电极片;在氩气气氛手套箱中,以锂片作为对电极,电解液为1mol/L LiPF6/EC/DEC(体积比1:1),同时添加体积比为5%的氟代碳酸乙烯酯(FEC),隔膜为聚丙烯,组装成CR2016扣式电池进行测试。
将制得的锡硫化物/硫/少层石墨烯复合材料作为钠离子电池负极材料制备钠离子电池:
将SnSx/S/FLG复合材料、导电剂Super P和粘结剂CMC按质量比8:1:1混合调浆后均匀涂敷在铜箔上制成电极片;在氩气气氛手套箱中,以钠片作为对电极,电解液为1mol/L NaClO4/EC/PC(体积比1:1),同时添加体积比为5%的氟代碳酸乙烯酯(FEC),隔膜为玻璃纤维,组装成CR2032扣式电池进行测试。
实施例1
将锡粉、硫粉和膨胀石墨原料粉末加入球磨罐中混合,其中膨胀石墨的质 量分数为30%,锡粉和硫粉摩尔比为1:1,磨球与原料的球粉质量比为50:1,进行介质阻挡放电等离子体辅助高能球磨20h,放电气体介质为氩气。
放电球磨之后,得到硫化亚锡/少层石墨烯复合材料。
将制备的复合材料制成锂离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnS/FLG复合材料的首次可逆比容量为746.5mAh g-1,循环250次后,可逆比容量降至588mAh g-1
将制备的复合材料制成钠离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnS/FLG复合材料的首次可逆比容量为443.9mAh g-1,循环200次后,可逆比容量降至373.4mAh g-1
实施例2
与实施例1不同的是锡粉和硫粉摩尔比为1:2。
放电球磨之后,锡与硫反应生成硫化亚锡和硫化锡,得到锡硫化物/少层石墨烯复合材料。
将制备的复合材料制成锂离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnSx/FLG复合材料的首次可逆比容量为924.5mAh g-1,循环250次后,可逆比容量降至708mAh g-1
将制备的复合材料制成钠离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnSx/FLG复合材料的首次可逆比容量为560.9mAh g-1,循环200次后,可逆比容量降至508.6mAh g-1
实施例3
与实施例1不同的是锡粉和硫粉摩尔比为1:3。
放电球磨之后,如图1所示为制备的SnSx/S/FLG复合材料的XRD图谱,由图1可知,复合材料组分有硫化亚锡和硫化锡;图2是所制备的SnSx/S/FLG 复合材料的XPS硫图谱,从图中可以看出有单质硫的存在,但XRD中却没有显示,说明单质硫以非晶形式存在;制备的SnSx/S/FLG复合材料的SEM图和HRTEM图分别如图3和图4所示,由图3和图4可知,纳米晶锡硫化物与非晶硫均匀地被包覆在少层石墨烯碳基体中。
将制备的复合材料制成锂离子电池负极电极片并组装电池,以0.1A g-1的倍率在0~3V间进行充放电循环,SnSx/S/FLG复合材料首次放电比容量为1498mAh g-1,首次充电比容量为1271.5mAh g-1,首次库伦效率为84.9%(图5)。以1A g-1的倍率进行充放电循环,复合材料的比容量可达到1080.2mAh g-1,循环250次后,可逆比容量仍有960.2mAh g-1(图6),具有高容量和优异的循环性能。而从图7嵌锂倍率性能曲线可以看出,在0.1A g-1的倍率下充放电,可逆比容量达到1241mAh g-1,即而使充放电倍率升到2、5、10A g-1,容量仍有1014、935、833mAh g-1,具有优异的倍率性能。
将制备的复合材料制成钠离子电池负极电极片并组装电池,以0.1A g-1的倍率在0~3V间进行充放电循环,SnSx/S/FLG复合材料首次放电比容量为936.6mAh g-1,首次充电比容量为786.1mAh g-1,首次库伦效率为83.9%(图8)。以1A g-1的倍率进行充放电循环,复合材料的比容量可达到652.3mAh g-1,循环200次后,可逆比容量仍有597.6mAh g-1(图9),具有高容量和优异的循环性能。而从图10嵌钠倍率性能曲线可以看出,在0.1A g-1的倍率下充放电,可逆比容量达到750mAh g-1,即而使充放电倍率升到2、5、10A g-1,容量仍有595、565、530mAh g-1,具有优异的倍率性能。
实施例4
与实施例1不同的是锡粉和硫粉摩尔比为1:4。
放电球磨之后,锡与硫反应生成硫化亚锡和硫化锡,同时有单质硫剩余, 得到锡硫化物/硫/少层石墨烯复合材料。
将制备的复合材料制成锂离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnSx/S/FLG复合材料的首次可逆比容量为611mAh g-1,循环250次后,可逆比容量降至582.1mAh g-1
将制备的复合材料制成钠离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnSx/S/FLG复合材料的首次可逆比容量为357.9mAh g-1,循环200次后,可逆比容量降至353.6mAh g-1
实施例5
与实施例3不同的是原料中膨胀石墨的质量分数为80%。
放电球磨之后,得到锡硫化物/硫/少层石墨烯复合材料。
将制备的复合材料制成锂离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnSx/S/FLG复合材料的首次可逆比容量为550.8mAh g-1,循环250次后,可逆比容量降至503.5mAh g-1
将制备的复合材料制成钠离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnSx/S/FLG复合材料的首次可逆比容量为345.6mAh g-1,循环200次后,可逆比容量降至303.6mAh g-1
实施例6
与实施例3不同的是原料中膨胀石墨的质量分数为20%。
放电球磨之后,得到锡硫化物/硫/少层石墨烯复合材料。
将制备的复合材料制成锂离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnSx/S/FLG复合材料的首次可逆比容量为1050.8mAh g-1,循环250次后,可逆比容量降至663.5mAh g-1
将制备的复合材料制成钠离子电池负极电极片并组装电池,以1A g-1的倍 率在0~3V间进行充放电循环,SnSx/S/FLG复合材料的首次可逆比容量为675.6mAh g-1,循环200次后,可逆比容量降至392.3mAh g-1
实施例7
与实施例3不同的是磨球与原料的球粉质量比为30:1。
放电球磨之后,得到锡硫化物/硫/少层石墨烯复合材料。
将制备的复合材料制成锂离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,制备的SnSx/S/FLG复合材料的首次可逆比容量为880.5mAh g-1,循环250次后,可逆比容量降至545.5mAh g-1
将制备的复合材料制成钠离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnSx/S/FLG复合材料的首次可逆比容量为465.6mAh g-1,循环200次后,可逆比容量降至386.3mAh g-1
实施例8
与实施例3不同的是磨球与原料的球粉质量比为70:1。
放电球磨之后,得到锡硫化物/硫/少层石墨烯复合材料。
将制备的复合材料制成锂离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,制备的SnSx/S/FLG复合材料的首次可逆比容量为960.5mAh g-1,循环250次后,可逆比容量降至655.4mAh g-1
将制备的复合材料制成钠离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnSx/S/FLG复合材料的首次可逆比容量为605.6mAh g-1,循环200次后,可逆比容量降至454.3mAh g-1
实施例9
与实施例3不同的是球磨时间为10h。
放电球磨之后,得到锡硫化物/硫/少层石墨烯复合材料。
将制备的复合材料制成锂离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,制备的SnSx/S/FLG复合材料的首次可逆比容量为763.5mAh g-1,循环250次后,可逆比容量降至455.6mAh g-1
将制备的复合材料制成钠离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnSx/S/FLG复合材料的首次可逆比容量为415.6mAh g-1,循环200次后,可逆比容量降至284.3mAh g-1
实施例10
与实施例3不同的是球磨时间为40h。
放电球磨之后,得到锡硫化物/硫/少层石墨烯复合材料。
将制备的复合材料制成锂离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,制备的SnSx/S/FLG复合材料的首次可逆比容量为983.6mAh g-1,循环250次后,可逆比容量降至635.6mAh g-1
将制备的复合材料制成钠离子电池负极电极片并组装电池,以1A g-1的倍率在0~3V间进行充放电循环,SnSx/S/FLG复合材料的首次可逆比容量为615.8mAh g-1,循环200次后,可逆比容量降至483.4mAh g-1
如上所述,便可较好地实现本发明,上述实施例仅为本发明的部分实施例,并非用来限定本发明的实施范围;即凡依本发明内容所做的均等变化与修饰,都为本发明权利要求所要求保护的范围所涵盖。

Claims (10)

  1. 一种锡硫化物/硫/少层石墨烯复合材料的制备方法,其特征在于,包括如下步骤:将锡粉、硫粉和膨胀石墨加入球磨罐中混合后,采用介质阻挡放电等离子体辅助高能球磨法进行球磨,得到所述锡硫化物/硫/少层石墨烯复合材料;在锡粉、硫粉和膨胀石墨的混合物中,所述膨胀石墨的质量分数为20%~80%,锡粉和硫粉的摩尔比为1:1~1:4,球磨的球料比为30:1~70:1,球磨时间为10h~40h。
  2. 根据权利要求1所述的制备方法,其特征在于,所述膨胀石墨的质量分数为30%~50%。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述锡粉和硫粉的摩尔比为1:1~1:3。
  4. 根据权利要求3所述的制备方法,其特征在于,所述球磨的球料比为40:1~60:1。
  5. 根据权利要求4所述的制备方法,其特征在于,所述球磨的时间为15h~30h。
  6. 根据权利要求5所述的制备方法,其特征在于,所述介质阻挡放电等离子体辅助高能球磨法的具体步骤是:
    (1)安装好球磨罐的前盖板和电极棒,并把前盖板和电极棒内的铁芯分别与等离子体电源的正负极相连,其中,电极棒内的铁芯接等离子体电源的正极,前盖板接等离子体电源的负极;
    (2)在球磨罐中装入磨球和配比好的锡粉、硫粉和膨胀石墨混合粉末;
    (3)通过真空阀对球磨罐抽真空,然后充入放电气体介质,使球磨罐内 的压力值达到0.1Mpa;
    (4)接通等离子体电源,设置等离子体电源电压为15KV,电流为0.25A,放电频率60KHz,启动驱动电机带动激振块,使机架及固定在机架上的球磨罐同时振动,进行介质阻挡放电等离子辅助高能球磨。
  7. 根据权利要求6所述的制备方法,其特征在于,所述激振块采用双振幅7mm,电机转速960r/min。
  8. 根据权利要求7所述的制备方法,其特征在于,所述介质阻挡放电等离子体辅助高能球磨法采用的放电气体介质为惰性气体或惰性气体的混合气。
  9. 权利要求1~8任意一项方法制备的锡硫化物/硫/少层石墨烯复合材料,其特征在于,由纳米晶锡硫化物、非晶硫和少层石墨烯复合而成,其结构为纳米晶锡硫化物和非晶硫均匀地被包覆在少层石墨烯碳基体中。
  10. 权利要求9所述的锡硫化物/硫/少层石墨烯复合材料在制作锂/钠离子电池负极材料中的应用。
PCT/CN2017/111342 2017-05-17 2017-11-16 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用 WO2018209912A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710348570.3 2017-05-17
CN201710348570.3A CN107316989B (zh) 2017-05-17 2017-05-17 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2018209912A1 true WO2018209912A1 (zh) 2018-11-22

Family

ID=60181963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111342 WO2018209912A1 (zh) 2017-05-17 2017-11-16 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN107316989B (zh)
WO (1) WO2018209912A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841820A (zh) * 2019-03-18 2019-06-04 华南理工大学 一种锂离子电池用无定形三磷化四锡/磷/少层石墨烯负极材料及其制备方法与应用
CN112234184A (zh) * 2020-10-14 2021-01-15 桑顿新能源科技有限公司 一种SnS/CNTs/S复合材料及其制备方法以及应用
CN112786858A (zh) * 2021-01-19 2021-05-11 安徽光特新材料科技有限公司 一种SnS2纳米片负载石墨烯基纳米复合材料的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107316989B (zh) * 2017-05-17 2020-05-22 华南理工大学 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用
CN108428880A (zh) * 2018-03-30 2018-08-21 华南理工大学 一种硒化锡/少层石墨烯复合材料及其制备方法和应用
CN109411737B (zh) * 2018-12-06 2021-07-09 中国地质大学(北京) 一种具有三维结构的极性硫化物-硫/多孔碳复合正极材料及其制备方法
CN111446439B (zh) * 2020-05-20 2021-04-13 中南大学 S@MxSnSy@C复合正极活性材料及其制备和在锂硫电池中的应用
CN113823787B (zh) * 2021-08-17 2023-03-21 华南理工大学 一种多孔硫复合正极材料及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070498A1 (en) * 2009-09-30 2011-03-24 Conocophillips Company Anode material for high power lithium ion batteries
CN102280630A (zh) * 2011-07-04 2011-12-14 中国科学院过程工程研究所 一种硫-石墨烯复合正极材料及其制备方法
CN102427127A (zh) * 2011-12-02 2012-04-25 华南理工大学 锡氧化物/锡碳复合材料及其制备方法和应用
CN103247803A (zh) * 2013-04-16 2013-08-14 华南理工大学 一种石墨烯包覆纳米锗复合材料及其制备方法和应用
CN106410166A (zh) * 2016-11-30 2017-02-15 华南理工大学 一种锡氧化物/锡/少层石墨烯复合材料及其制备方法与应用
CN106654192A (zh) * 2016-08-13 2017-05-10 华南理工大学 一种硫化锡/石墨烯钠离子电池复合负极材料及其制备方法
CN107316989A (zh) * 2017-05-17 2017-11-03 华南理工大学 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447338B (zh) * 2008-10-21 2012-02-22 上海第二工业大学 一种用于超级电容器的SnS/MCNT纳米复合电极材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070498A1 (en) * 2009-09-30 2011-03-24 Conocophillips Company Anode material for high power lithium ion batteries
CN102280630A (zh) * 2011-07-04 2011-12-14 中国科学院过程工程研究所 一种硫-石墨烯复合正极材料及其制备方法
CN102427127A (zh) * 2011-12-02 2012-04-25 华南理工大学 锡氧化物/锡碳复合材料及其制备方法和应用
CN103247803A (zh) * 2013-04-16 2013-08-14 华南理工大学 一种石墨烯包覆纳米锗复合材料及其制备方法和应用
CN106654192A (zh) * 2016-08-13 2017-05-10 华南理工大学 一种硫化锡/石墨烯钠离子电池复合负极材料及其制备方法
CN106410166A (zh) * 2016-11-30 2017-02-15 华南理工大学 一种锡氧化物/锡/少层石墨烯复合材料及其制备方法与应用
CN107316989A (zh) * 2017-05-17 2017-11-03 华南理工大学 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841820A (zh) * 2019-03-18 2019-06-04 华南理工大学 一种锂离子电池用无定形三磷化四锡/磷/少层石墨烯负极材料及其制备方法与应用
CN112234184A (zh) * 2020-10-14 2021-01-15 桑顿新能源科技有限公司 一种SnS/CNTs/S复合材料及其制备方法以及应用
CN112786858A (zh) * 2021-01-19 2021-05-11 安徽光特新材料科技有限公司 一种SnS2纳米片负载石墨烯基纳米复合材料的制备方法

Also Published As

Publication number Publication date
CN107316989B (zh) 2020-05-22
CN107316989A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
WO2018209912A1 (zh) 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用
CN107768620B (zh) 一种具有异质结结构的碳纳米纤维、二硫化锡、二氧化锡和硫复合材料的制备方法及应用
CN103219491B (zh) 一种硫化铜正极及其制备方法
CN101609884B (zh) 一种锂离子电池负极材料SnS2的制备方法
CN109399601B (zh) 一种氮磷共掺杂生物炭材料的制备方法和用途
CN104810506A (zh) 一种高能量密度的锂离子电池
CN102832376B (zh) 一种锂离子电池负极用硅碳基复合材料的制备方法
CN109904408B (zh) MoS2纳米片镶嵌在碳基底复合材料的制备方法及应用
CN108428880A (zh) 一种硒化锡/少层石墨烯复合材料及其制备方法和应用
WO2021088354A1 (zh) 核壳状铁酸镍及制备方法、铁酸镍@c材料及制备方法与应用
CN108400292B (zh) 一种铋单质纳米片复合电极的制备方法及其应用
CN108899522B (zh) 一种高容量硅碳负极材料、制备方法及应用
CN105742695B (zh) 一种锂离子电池及其制备方法
CN111180707B (zh) 二硒化锡/氧化锡-rGO纳米复合负极材料及制备方法
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
CN104332600A (zh) 用于锂硫电池正极的石墨烯/硫/导电聚合物复合材料制备方法
WO2017008615A1 (zh) 一种气相沉积制备改性硅基负极材料的方法
CN110336035B (zh) 一种二氧化锡/氧化铝掺杂碳复合材料及其制备方法
CN112803018B (zh) 一种硅掺杂的石墨烯复合材料及其制备方法和应用
CN106938852A (zh) 一种锂离子电池负极材料用纳米CuO的制备方法
CN110233251A (zh) 一种多孔硅/碳复合材料的制备方法及其应用
CN110600699A (zh) 一种三维有序介孔mof材料的制备方法
WO2020124328A1 (zh) 预嵌锂负极的制备方法及制备得到的预嵌锂负极、储能器件、储能系统及用电设备
CN110867607A (zh) 一种掺杂改性降低锂电池的固态电池制备成本的方法
CN110265650A (zh) 一种锂离子电池用纳米多孔复合负极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 21.01.2020

122 Ep: pct application non-entry in european phase

Ref document number: 17910169

Country of ref document: EP

Kind code of ref document: A1