WO2022142203A1 - 一种利用射流注射法制备微电极的方法 - Google Patents

一种利用射流注射法制备微电极的方法 Download PDF

Info

Publication number
WO2022142203A1
WO2022142203A1 PCT/CN2021/102708 CN2021102708W WO2022142203A1 WO 2022142203 A1 WO2022142203 A1 WO 2022142203A1 CN 2021102708 W CN2021102708 W CN 2021102708W WO 2022142203 A1 WO2022142203 A1 WO 2022142203A1
Authority
WO
WIPO (PCT)
Prior art keywords
microelectrodes
metal wire
precursor solution
preparing
jet injection
Prior art date
Application number
PCT/CN2021/102708
Other languages
English (en)
French (fr)
Inventor
李德
任园园
陈永
Original Assignee
海南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南大学 filed Critical 海南大学
Publication of WO2022142203A1 publication Critical patent/WO2022142203A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy

Definitions

  • the invention relates to the technical field of micro-electrode preparation, in particular to a method for preparing a micro-electrode by using a jet injection method.
  • Microelectrodes generally refer to electrodes with a small working area. According to the different materials, it can be divided into glass tube microelectrodes and metal microelectrodes.
  • the glass tube microelectrode is formed by making a glass capillary into a necked shape and then filling the lumen with electrolyte.
  • the traditional glass tube microelectrode needs to grind the glass tube during preparation, the process is complex and the cost is high, and since only electrode material particles can be placed at the tip of the glass tube, only single-particle micro-monopolar can be prepared, which is difficult to achieve.
  • Metal microelectrodes can be made of fusible metal tin, lead or insoluble metal silver, molybdenum, nickel-chromium alloy, stainless steel, etc. Early metal microelectrodes were rarely used because they were easily affected by polarization potential and the electrode potential was unstable. In recent years, due to the advancement of technology, the electrical properties of metal microelectrodes have been improved. However, due to the complicated preparation process of such metal microelectrodes, the application at home and abroad is not yet common.
  • the present invention provides a method for preparing a microelectrode by using a jet injection method.
  • the scheme of the present invention includes the following aspects:
  • a method for preparing microelectrodes by jet injection method comprising the following steps:
  • step 7 The metal wire treated in step 6 is dried and then sintered.
  • the drying temperature is 30-40°C for more than 12 hours; in step 7, the drying temperature is 30-40°C for more than 6 hours; the drying treatment can prevent the droplets from falling off, and the above drying temperature and drying time are used. , the water can be slowly and completely volatilized, thereby preventing the electrochemical performance of the microelectrode from being affected by the rupture of the electrode particles.
  • the soaking time is 20-30s.
  • 13-17wt% PVA solution is used as an adhesive for soaking treatment for 20-30s, which is beneficial to improve the electrochemical performance of the micro-electrode.
  • the pre-sintering is carried out in an Ar+H 2 atmosphere, the heating rate during the pre-sintering is 5° C./min, and the temperature is raised to 400° C. and then kept for 5 hours.
  • the pre-sintering treatment can effectively remove the bound water in the precursor.
  • the method described in the present invention can be applied to prepare various types of microelectrodes, including but not limited to LiFePO4 ( lithium iron phosphate) microelectrodes and Li4Ti5O12 ( lithium titanate) microelectrodes.
  • the metal wire of the present invention includes but is not limited to platinum wire and gold wire.
  • the precursor solution of the LiFePO 4 microelectrode includes a lithium source, an iron source, a phosphate source and a carbon source;
  • the precursor solution of the Li 4 Ti 5 O 12 microelectrode includes a lithium source, a titanium source and a carbon source.
  • the precursor solution formulation of the LiFePO 4 microelectrode is as follows: every 15mL of the precursor solution contains 1.1131g Fe(NO 3 ) 3 ⁇ 9H 2 O (iron nitrate nonahydrate), 0.2812g LiH 2 PO 4 (dihydrogen phosphate) Lithium), 0.0034g LiOH ⁇ H 2 O (lithium hydroxide monohydrate), 0.0355g sucrose, 0.0435g citric acid monohydrate;
  • the formula of the precursor solution of Li 4 Ti 5 O 12 microelectrode is as follows: every 15mL of the precursor solution contains 0.0364g Ti(OC 4 H 9 ) 4 (tetrabutyl titanate), 0.0364g LiOH ⁇ H 2 O, 1.1mL H 2 O 2 .
  • the inner diameter of the needle of the syringe is 0.06-0.08 mm
  • the injection speed is 0.1 mL/s
  • the vertical distance between the needle and the metal wire is 2-5 cm.
  • the diameter of the platinum wire is 30-50 ⁇ m.
  • the sintering temperature program of the LiFePO 4 microelectrode is:
  • the sintering temperature program of the Li 4 Ti 5 O 12 microelectrode is:
  • Holding at 180°C ⁇ 220°C for 210min can fully melt PVA; holding at 450°C for 180min can carbonize PVA; treating at 650°C or 800°C for 480min is conducive to rapid prototyping of materials.
  • the micro-electrode preparation method proposed by the present invention has simple process and low cost, and can effectively reduce the shortcomings of traditional electrodes. Compared with other micro-electrode preparation methods, the method can prepare single-particle micro-electrodes, and the number of particles can be adjusted according to Research needs to add or subtract.
  • the method of the invention can be suitable for preparing various micro-electrodes, and has a wide application range.
  • the microelectrode obtained by the invention has good electrochemical performance, small battery polarization and high coulombic efficiency.
  • Figure 1 Schematic diagram of the use of a syringe to inject a precursor solution into a platinum wire;
  • Figure 2 Scanning electron microscope image of LiFePO 4 microelectrode
  • Figure 3 Scanning electron microscope image of Li 4 Ti 5 O 12 microelectrode
  • Figure 5 Coulombic efficiency of charge and discharge of LiFePO 4 microelectrode; 1 to 5 in the figure represent the 1 to 5 circles;
  • Figure 7 Coulombic efficiency of charge and discharge of Li 4 Ti 5 O 12 microelectrode; 1 to 6 in the figure represent the 1 to 6 circles;
  • Figure 8 The charge-discharge curve of the microelectrode in Comparative Example 1;
  • Figure 10 The charge-discharge curve of the microelectrode in Comparative Example 3.
  • Figure 11 The charge-discharge curve of the microelectrode in Comparative Example 4.
  • Figure 12 The charge-discharge curve of the microelectrode in Comparative Example 5;
  • FIG. 13 Battery structure.
  • a method for preparing microelectrodes by jet injection method comprising the following steps:
  • the formula of the precursor solution is: every 15mL of the precursor solution contains 1.1131g Fe(NO 3 ) 3 ⁇ 9H 2 O, 0.2812g LiH 2 PO 4 , 0.0034g LiOH ⁇ H 2 O, 0.0355g sucrose, 0.0435g lemon monohydrate acid, the balance is water;
  • step 5 Put the platinum wire treated in step 4 into a tube furnace and pre-sinter in an Ar+H 2 atmosphere.
  • the heating rate during pre-sintering is 5°C/min, and the temperature is raised to 400°C and then kept for 5h.
  • step 7 Dry the platinum wire treated in step 6 at 30-40° C. for 6 hours, and then sinter it in a tube furnace (Ar+H 2 atmosphere).
  • the sintering temperature program is:
  • the obtained microelectrodes were assembled into the battery structure shown in Figure 13, and electrochemical performance was detected.
  • the specific operation is as follows: insert one end of a quartz tube with an outer diameter of 3 mm, an inner diameter of 0.4 mm and a length of 1.5 to 2.0 cm into a PVC hose (outer diameter of 4 mm, inner diameter of 2 mm, and a length of 1.5 to 2.0 cm).
  • 50 ⁇ m Cu wire is inserted 5mm from the other end of the quartz tube, and the extra part of the Cu wire is fixed on the outer wall of the PVC hose with tape; the molten lithium is sucked into the quartz tube, and the height of the inhaled lithium is controlled between 1.0 and 1.5cm, and the seal is sealed.
  • Figure 4 shows that the cell polarization is below 60mV
  • Figure 5 shows that the Coulombic efficiency reaches over 99%.
  • a method for preparing microelectrodes by jet injection method comprising the following steps:
  • the formula of the precursor solution is as follows: every 15mL of the precursor solution contains 0.0364g Ti(OC 4 H 9 ) 4 , 0.0364g LiOH ⁇ H 2 O, 1.1 mL H 2 O 2 , and the balance is water.
  • step 5 Put the platinum wire treated in step 4 into a tube furnace and pre-sinter in an Ar+H 2 atmosphere.
  • the heating rate during pre-sintering is 5°C/min, and the temperature is raised to 400°C and then kept for 5h.
  • step 7 Dry the platinum wire treated in step 6 at 30-40° C. for 6 hours, and then sinter it in a tube furnace (Ar+H 2 atmosphere).
  • the diameter of the platinum wire is 30-50 ⁇ m.
  • the sintering temperature program is:
  • Example 1 The difference between this example and Example 1 is that the concentration of the PVA solution is 20 wt %.
  • the charge-discharge cycle curve of its microelectrode shows that there is no charge-discharge plateau.
  • the main reason is that a high concentration of PVA solution forms a thick PVA film on the surface of the microelectrode, and a carbon layer is formed after sintering, which hinders the contact between the microelectrode and the electrolyte and prevents charging and discharging.
  • Example 2 The difference between this example and Example 2 is that the concentration of the PVA solution is 20 wt %.
  • Example 1 The difference between this example and Example 1 is that the concentration of the PVA solution is 10 wt %.
  • the charge-discharge cycle curve of its microelectrode shows that there is a charge-discharge plateau, but the electrochemical performance is poor.
  • the main reason is that the too low concentration of PVA cannot act as a binder, which leads to the cracking of the sintered microelectrode particles.
  • Example 2 The difference between this example and Example 2 is that the concentration of the PVA solution is 10 wt %.
  • the electrochemical performance test results of the microelectrode obtained in this example are shown in Figure 11.
  • the charge-discharge cycle curve shows that there is a charge-discharge platform, but the electrochemical performance is very poor.
  • step 5 After mixing the PVA solution and the precursor solution, jet spraying is performed to make the mixed droplets adhere to the Pt wire, and then drying and sintering are performed, and the drying treatment of step 5, step 6 and step 7 is omitted.
  • the electrochemical performance test results of the microelectrode obtained in this example are shown in Figure 12, and the results show that the electrochemical performance is poor.
  • the main reason is that the micro-electrode structure obtained by drying and sintering after mixing PVA with the precursor solution is dense, which hinders the contact between the electrode material and the electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种利用射流注射法制备微电极的方法,包括以下步骤:①配制电极材料前驱体溶液;②取金属丝,使金属丝处于拉直状态;③用注射器吸取前驱体溶液,将注射器针头对准金属丝,推动注射器,使前驱体溶液以射流状射出并均匀依附在金属丝上;④将步骤③处理后的金属丝干燥;⑤将步骤④处理后的金属丝进行预烧结;⑥将预烧结后的金属丝在13~17wt%的PVA溶液中浸泡;⑦将步骤⑥处理后的金属丝干燥后进行烧结。本发明提出的微电极制备方法,工艺简单,成本低,能有效降低传统电极的缺点,相比于其他微电极的制备方法,该方法能够制备出单颗粒的微电极,且颗粒数目可根据研究需要进行加减。所得微电极的电化学性能良好,电池极化小,库伦效率高。

Description

一种利用射流注射法制备微电极的方法 技术领域
本发明涉及微电极制备技术领域,具体涉及一种利用射流注射法制备微电极的方法。
背景技术
微电极通常指工作面积很小的电极。根据制作材料的不同,可分为玻璃管微电极和金属微电极。玻璃管微电极是把玻璃毛细管制成颈缩形后,在管腔内填充电解液而成的。传统的玻璃管微电极在制备时需要对玻璃管进行打磨,工艺复杂,成本较高,且由于只能在玻璃管尖端放置电极材料颗粒,因此只能制备单颗粒的微单极,难以做到颗粒数目的可控,并且传统的玻璃管微电极在进行电池组装时较为困难,难以将其应用于锂离子电池的性能研究领域。金属微电极可用易熔金属锡、铅或难溶金属银、钼、镍铬合金、不锈钢等制成。早期的金属微电极由于易受极化电位的影响,电极电位不稳定等而较少被采用。近年来由于技术的进步,金属微电极的电学特性得到改善,但由于这种金属微电极的制备过程较为复杂,国内外的应用还不普遍。
发明内容
鉴于现有技术的不足,本发明提供一种利用射流注射法制备微电极的方法。
本发明方案包括以下方面:
一种利用射流注射法制备微电极的方法,包括以下步骤:
①配制电极材料前驱体溶液;
②取金属丝,使金属丝处于拉直状态;
③用注射器吸取前驱体溶液,将注射器针头对准金属丝,推动注射器,使前驱体溶液以射流状射出并均匀依附在金属丝上;
④将步骤③处理后的金属丝干燥;
⑤将步骤④处理后的金属丝进行预烧结;
⑥将预烧结后的金属丝在13~17wt%的PVA(聚乙烯醇)溶液中浸泡;
⑦将步骤⑥处理后的金属丝干燥后进行烧结。
优选的,步骤④,干燥温度是30~40℃,干燥12h以上;步骤⑦,干燥温度30~40℃,干燥6h以上;进行干燥处理可防止液滴的脱落,而采用以上干燥温度及干燥时间,能够使得水分缓慢且完全被挥发,进而防止因电极颗粒的破裂影响微电极的电化学性能。
优选的,步骤⑥,浸泡时间是20~30s。本发明在预烧结后以13~17wt%的PVA溶液作为胶粘剂浸泡处理20~30s,有利于提高微电极的电化学性能。
优选的,预烧结在Ar+H 2气氛中进行,预烧结时的升温速率为5℃/min,升温至400℃后保温5h。采用该预烧结处理可有效去除前驱体中的结合水。
本发明所述的方法可适用于制备各类微电极,包括但不限于LiFePO 4(磷酸铁锂)微电极和Li 4Ti 5O 12(钛酸锂)微电极。本发明所述金属丝包括但不限于铂丝、金丝。
优选的,LiFePO 4微电极的前驱体溶液包括锂源、铁源、磷酸根源和碳源;Li 4Ti 5O 12微电极的前驱体溶液包括锂源、钛源和碳源。
优选的,LiFePO 4微电极的前驱体溶液配方为:每15mL前驱体溶液中含有1.1131g Fe(NO 3) 3·9H 2O(九水合硝酸铁)、0.2812g LiH 2PO 4(磷酸二氢锂)、0.0034g LiOH·H 2O(单水氢氧化锂)、0.0355g蔗糖、0.0435g一水柠檬酸;
Li 4Ti 5O 12微电极的前驱体溶液配方为:每15mL前驱体溶液中含有0.0364g Ti(OC 4H 9) 4(钛酸四丁酯)、0.0364g LiOH·H 2O、1.1mL H 2O 2
优选的,注射器针头的内径为0.06~0.08mm,注射速度为0.1mL/s,针头与金属丝的垂直距离为2~5cm。
优选的,所述铂丝的直径是30~50μm。
优选的,LiFePO 4微电极的烧结升温程序是:
时间/min 0 150 360 590 770 970 1450
温度/℃ 30 180 220 450 450 650 650
优选的,Li 4Ti 5O 12微电极的烧结升温程序是:
时间/min 0 150 360 590 770 1120 1600
温度/℃ 30 180 220 450 450 800 800
180℃~220℃保温210min,可使PVA充分熔融;450℃保温180min,使PVA炭化;650℃或800℃处理480min有利于材料快速成型。
本发明所取得的有益效果:
本发明提出的微电极制备方法,其工艺简单,成本低,能有效降低传统电极的缺点,相比于其他微电极的制备方法,该方法能够制备出单颗粒的微电极,且颗粒数目可根据研究需 要进行加减。
本发明方法可适用于制备各类微电极,适用范围广。
本发明所得微电极的电化学性能良好,电池极化小,库伦效率高。
附图说明
图1:使用注射器向铂丝注射前驱体溶液的示意图;
图2:LiFePO 4微电极扫描电镜图;
图3:Li 4Ti 5O 12微电极扫描电镜图;
图4:LiFePO 4微电极充放电循环曲线(5圈);
图5:LiFePO 4微电极充放电库伦效率;图中1~5代表第1~5圈;
图6:Li 4Ti 5O 12微电极充放电循环曲线(6圈);
图7:Li 4Ti 5O 12微电极充放电库伦效率;图中1~6代表第1~6圈;
图8:对比例1微电极充放电曲线图;
图9:对比例2微电极充放电曲线图;
图10:对比例3微电极充放电曲线图;
图11:对比例4微电极充放电曲线图;
图12:对比例5微电极充放电曲线图;
图13:电池结构。
具体实施方式
为了更好理解本发明技术内容,下面提供具体实施例,对本发明做进一步的说明。
本发明实施例所用的实验方法如无特殊说明,均为常规方法。
本发明实施例所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1 LiFePO 4微电极的制备
一种利用射流注射法制备微电极的方法,包括以下步骤:
①配制电极材料前驱体溶液;
前驱体溶液配方为:每15mL前驱体溶液中含有1.1131g Fe(NO 3) 3·9H 2O、0.2812g LiH 2PO 4、0.0034g LiOH·H 2O、0.0355g蔗糖、0.0435g一水柠檬酸,余量是水;
②取长度约4~5cm,直径30~50μm的铂丝固定于支架上,保证铂丝处于拉直状态;
③用注射器吸取前驱体溶液,将注射器针头(针头内径0.06~0.08mm)对准铂丝,推动注射器,使前驱体溶液以射流状射出从而以微小液滴的形态均匀依附在铂丝上;其中,注射速度约0.1mL/s,针头与铂丝的垂直距离为2~5cm。
④将步骤③处理后的铂丝30~40℃干燥12h;
⑤将步骤④处理后的铂丝放入管式炉并在Ar+H 2气氛中进行预烧结,预烧结时的升温速率为5℃/min,升温至400℃后保温5h。
⑥将预烧结后的铂丝在15wt%的PVA溶液中浸泡20~30s;
⑦将步骤⑥处理后的铂丝30~40℃干燥6h,然后在管式炉中(Ar+H 2气氛)进行烧结。
烧结升温程序是:
时间/min 0 150 360 590 770 970 1450
温度/℃ 30 180 220 450 450 650 650
将所得微电极装配成如图13所示的电池结构,进行电化学性能检测。具体操作为:将外径3mm、内径0.4mm、长1.5~2.0cm的石英管的一端塞进PVC软管(外径4mm、内径2mm,长为1.5~2.0cm)中,将长4cm、粗50μm的Cu丝从石英管的另一端塞入5mm,Cu丝多出来的部分用胶布固定在PVC软管外壁;将熔融的锂吸入石英管内,控制吸入锂高度在1.0~1.5cm之间,封口;将Cu丝和石英管从PVC软管中拆下,从石英管的另一端注入电解液,将石英管的剩余空间填满,电解液与铜丝不能接触;⑦将微电极塞入石英管中,使微电极颗粒完全浸没在电解液中,并保证微电极和锂带有一段距离,封口;⑧组装完成后用黑色绝缘胶带将石英管包裹住。电解液为LiClO 4,浓度为1mol/L,电流大小为5nA。
结果见图4和图5。图4显示电池极化低于60mV,图5显示库伦效率达到99%以上。
实施例2 Li 4Ti 5O 12微电极的制备
一种利用射流注射法制备微电极的方法,包括以下步骤:
①配制电极材料前驱体溶液;
前驱体溶液配方为:每15mL前驱体溶液中含有0.0364g Ti(OC 4H 9) 4、0.0364g LiOH·H 2O、1.1mL H 2O 2,余量是水。
②取长度约4~5cm,直径30~50μm的铂丝固定于支架上,保证铂丝处于拉直状态;
③用注射器吸取前驱体溶液,将注射器针头(针头内径0.06~0.08mm)对准铂丝,推动注射器,使前驱体溶液以射流状射出从而以微小液滴的形态均匀依附在铂丝上;其中,注射速度约0.1mL/s,针头与铂丝的垂直距离为2~5cm。
④将步骤③处理后的铂丝30~40℃干燥12h;
⑤将步骤④处理后的铂丝放入管式炉并在Ar+H 2气氛中进行预烧结,预烧结时的升温速率为5℃/min,升温至400℃后保温5h。
⑥预烧结后的铂丝在15wt%的PVA溶液中浸泡20~30s;
⑦将步骤⑥处理后的铂丝30~40℃干燥6h,然后在管式炉中(Ar+H 2气氛)进行烧结。
所述铂丝的直径是30~50μm。
烧结升温程序是:
时间/min 0 150 360 590 770 1120 1600
温度/℃ 30 180 220 450 450 800 800
将所得微电极进行电化学性能检测,结果见图6和图7。图6显示电池极化低于20mV,图7显示库伦效率达到90%以上。
对比例1
本例与实施例1的区别是:PVA溶液浓度为20wt%。
其微电极的充放电循环曲线(图8)显示,无充放电平台。其原因主要是:过高浓度的PVA溶液在微电极表面形成一层较厚的PVA薄膜,烧结后形成碳层,阻碍微电极与电解质的接触导致无法进行充放电。
对比例2
本例与实施例2的区别是:PVA溶液浓度为20wt%。
本例所得微电极的电化学性能测试结果见图9。充放电循环曲线显示无充放电平台。
对比例3
本例与实施例1的区别是:PVA溶液浓度为10wt%。
其微电极的充放电循环曲线(图10)显示,有充放电平台,但是电化学性能很差。其原因主要是:过低的PVA浓度不能够起到胶粘剂的作用,导致烧结后的微电极颗粒破裂。
对比例4
本例与实施例2的区别是:PVA溶液浓度为10wt%。
本例所得微电极的电化学性能测试结果见图11,充放电循环曲线显示:有充放电平台,但是电化学性能很差。
对比例5
本例与实施例1的区别是:
将PVA溶液与前驱体溶液等质量混合后再进行射流喷射使混液滴依附在Pt丝上,而后再进行干燥、烧结,省略步骤⑤、步骤⑥以及省略步骤⑦的干燥处理。
本例所得微电极的电化学性能测试结果见图12,结果显示电化学性能较差。其原因主要是:PVA与前驱体溶液混合后,干燥,烧结得到的微电极结构密实,阻碍了电极材料与电解液的接触。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种利用射流注射法制备微电极的方法,其特征在于,包括以下步骤:
    ①配制电极材料前驱体溶液;
    ②取金属丝,使金属丝处于拉直状态;
    ③用注射器吸取前驱体溶液,将注射器针头对准金属丝,推动注射器,使前驱体溶液以射流状射出并均匀依附在金属丝上;
    ④将步骤③处理后的金属丝干燥;
    ⑤将步骤④处理后的金属丝进行预烧结;
    ⑥将预烧结后的金属丝在13~17wt%的PVA溶液中浸泡;
    ⑦将步骤⑥处理后的金属丝干燥后进行烧结。
  2. 根据权利要求1所述利用射流注射法制备微电极的方法,其特征在于,所述微电极包括LiFePO 4微电极和Li 4Ti 5O 12微电极。
  3. 根据权利要求2所述利用射流注射法制备微电极的方法,其特征在于,LiFePO 4微电极的前驱体溶液包括锂源、铁源、磷酸根源和碳源;Li 4Ti 5O 12微电极的前驱体溶液包括锂源、钛源和碳源。
  4. 根据权利要求1所述利用射流注射法制备微电极的方法,其特征在于,步骤④,干燥温度是30~40℃,干燥12h以上;步骤⑦,干燥温度30~40℃,干燥6h以上;步骤⑥,浸泡时间是20~30s。
  5. 根据权利要求3所述利用射流注射法制备微电极的方法,其特征在于,
    LiFePO 4微电极的前驱体溶液配方为:每15mL前驱体溶液中含有1.1131g Fe(NO 3) 3·9H 2O、0.2812g LiH 2PO 4、0.0034g LiOH·H 2O、0.0355g蔗糖、0.0435g一水柠檬酸;
    Li 4Ti 5O 12微电极的前驱体溶液配方为:每15mL前驱体溶液中含有0.0364g Ti(OC 4H 9) 4、0.0364g LiOH·H 2O、1.1mL H 2O 2
  6. 根据权利要求1所述利用射流注射法制备微电极的方法,其特征在于,注射器针头的内径为0.06~0.08mm,注射速度为0.1mL/s,针头与金属丝的垂直距离为2~5cm。
  7. 根据权利要求1所述利用射流注射法制备微电极的方法,其特征在于,预烧结在Ar+H 2气氛中进行,预烧结时的升温速率为5℃/min,升温至400℃后保温5h。
  8. 根据权利要求1所述利用射流注射法制备微电极的方法,其特征在于,
    所述微电极为LiFePO 4微电极,LiFePO 4微电极的烧结升温程序是:
    时间/min 0 150 360 590 770 970 1450 温度/℃ 30 180 220 450 450 650 650
  9. 根据权利要求1所述利用射流注射法制备微电极的方法,其特征在于,
    所述微电极为Li 4Ti 5O 12微电极,Li 4Ti 5O 12微电极的烧结升温程序是:
    时间/min 0 150 360 590 770 1120 1600 温度/℃ 30 180 220 450 450 800 800
PCT/CN2021/102708 2020-12-28 2021-06-28 一种利用射流注射法制备微电极的方法 WO2022142203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011580188.3A CN112670440B (zh) 2020-12-28 2020-12-28 一种利用射流注射法制备微电极的方法
CN202011580188.3 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022142203A1 true WO2022142203A1 (zh) 2022-07-07

Family

ID=75410957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102708 WO2022142203A1 (zh) 2020-12-28 2021-06-28 一种利用射流注射法制备微电极的方法

Country Status (2)

Country Link
CN (1) CN112670440B (zh)
WO (1) WO2022142203A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670440B (zh) * 2020-12-28 2022-09-16 海南大学 一种利用射流注射法制备微电极的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201340448A (zh) * 2012-03-27 2013-10-01 Univ Fu Jen Catholic 單顆粉體微電極
CN109752431A (zh) * 2018-12-29 2019-05-14 海南大学 一种利用喷雾干燥法制备微电极的方法
CN112670440A (zh) * 2020-12-28 2021-04-16 海南大学 一种利用射流注射法制备微电极的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936721B1 (en) * 2005-09-21 2015-11-11 Kanto Denka Kogyo Co., Ltd. Positive electrode active material, method for producing same, and nonaqueous electrolyte battery having positive electrode containing positive electrode active material
KR20100017919A (ko) * 2007-05-25 2010-02-16 메사추세츠 인스티튜트 오브 테크놀로지 전지 및 그의 사용을 위한 전극
US20160126558A1 (en) * 2013-05-10 2016-05-05 The Board Of Trustees Of The University Of Illinois Three-dimensional (3d) electrode architecture for a microbattery
FR3011727B1 (fr) * 2013-10-16 2018-03-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Microelectrodes a base de diamant structure pour des applications d'interfacage neuronale.
WO2016144944A1 (en) * 2015-03-09 2016-09-15 President And Fellows Of Harvard College Method of making an electrode structure and a microbattery cell
CN110875472A (zh) * 2018-08-31 2020-03-10 于志远 一种锂电池微纳米正极材料的制备方法
KR102203959B1 (ko) * 2019-05-24 2021-01-19 울산과학기술원 폴더블 전극 구조체, 이의 제조방법 및 이를 포함하는 플렉서블 디바이스
CN111785918A (zh) * 2020-08-13 2020-10-16 武汉理工大学 一种三维石墨烯基镍-钼纳米线水系电池正极的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201340448A (zh) * 2012-03-27 2013-10-01 Univ Fu Jen Catholic 單顆粉體微電極
CN109752431A (zh) * 2018-12-29 2019-05-14 海南大学 一种利用喷雾干燥法制备微电极的方法
CN112670440A (zh) * 2020-12-28 2021-04-16 海南大学 一种利用射流注射法制备微电极的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU LIN, NING WEIWEI, WU CHEN, ZHANG DOU, WEI WEIFENG, MA JIANMIN, LI CHENGCHAO, CHEN LIBAO: "3D‐Printed Microelectrodes with a Developed Conductive Network and Hierarchical Pores toward High Areal Capacity for Microbatteries", ADVANCED MATERIALS TECHNOLOGIES, WILEY, DE, vol. 4, no. 2, 1 February 2019 (2019-02-01), DE , pages 1800402, XP055948142, ISSN: 2365-709X, DOI: 10.1002/admt.201800402 *

Also Published As

Publication number Publication date
CN112670440B (zh) 2022-09-16
CN112670440A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
CN109950494B (zh) 一种熔盐电解制备硅碳复合材料的方法
WO2022142203A1 (zh) 一种利用射流注射法制备微电极的方法
CN109244547A (zh) 一种复合固态电解质隔膜及其制备方法和锂离子电池
CN105609736A (zh) 一种三维碳纳米管/氮掺杂石墨烯/硫电极片的制备方法
CN108470882A (zh) 氧化锡改性碳布基锂及钠金属负极及其制备方法
CN104835984A (zh) 电极复合体的制造方法、电极复合体以及电池
CN106784763B (zh) 一种多孔氧化物包裹电池硅负极材料的制备方法
JP4603664B2 (ja) リチウム同位体分離方法とその装置
CN108878812A (zh) 一种在不锈钢网负载SnO2/SnS2纳米片钾离子电池负极复合材料的制备方法及应用
EP2639199A1 (en) Heterojunction nanomaterial, cathode pole piece for lithium-ion batteries, and lithium-ion battery
CN111430776B (zh) 一种柔性锂硫电池及其制备方法
CN116487553A (zh) 一种双包覆高镍锂离子正极材料及其制备方法和应用
CN106252638A (zh) 一种具有硅酸锂界面层的硅/氧化物复合负极材料及制备方法
CN109461913A (zh) 一种提高锂离子电池金属氧化物负极的电导率的方法
CN110085830B (zh) 一种钌掺杂碳包覆磷酸钒钠正极材料及其制备方法
CN106299300A (zh) 一种碳复合金属锂氧化物正极材料的制备方法
CN110350173A (zh) 一种新型锂硫软包电池及其制备方法
CN113707885B (zh) 一种无负极碱金属离子电池中负极集流体的改性方法
CN112687961B (zh) 一种锂离子微电极电池及其制备方法
CN115050920A (zh) 一种锑基一体化电极及其制备方法和应用
JP2975790B2 (ja) 水素吸蔵合金電極の表面処理方法
CN113540420A (zh) 一种锂硫电池正极材料制备方法以及锂硫电池
CN110459737B (zh) 一种核壳结构的碳包覆硼酸亚铁的制备方法及其应用
CN113540444A (zh) 碳包覆纳米纤维材料及其制备方法、电池
CN113201808A (zh) 一种多孔纤维硅氧负极复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912959

Country of ref document: EP

Kind code of ref document: A1