WO2022138611A1 - 飲料充填システム及びcip処理方法 - Google Patents

飲料充填システム及びcip処理方法 Download PDF

Info

Publication number
WO2022138611A1
WO2022138611A1 PCT/JP2021/047205 JP2021047205W WO2022138611A1 WO 2022138611 A1 WO2022138611 A1 WO 2022138611A1 JP 2021047205 W JP2021047205 W JP 2021047205W WO 2022138611 A1 WO2022138611 A1 WO 2022138611A1
Authority
WO
WIPO (PCT)
Prior art keywords
beverage
cip
cleaning liquid
system pipe
filling
Prior art date
Application number
PCT/JP2021/047205
Other languages
English (en)
French (fr)
Inventor
睦 早川
高明 廣岡
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to EP21910754.7A priority Critical patent/EP4269323A1/en
Priority to US18/259,110 priority patent/US20240051808A1/en
Priority to CN202180087389.6A priority patent/CN116685553A/zh
Publication of WO2022138611A1 publication Critical patent/WO2022138611A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/001Cleaning of filling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/007Applications of control, warning or safety devices in filling machinery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C2003/228Aseptic features

Definitions

  • This disclosure relates to a beverage filling system and a CIP processing method.
  • the beverage supply system piping of the beverage filling device is subjected to CIP (Cleaning in Place) processing for cleaning the inside of the beverage supply system piping on a regular basis or when switching the type of product to be manufactured.
  • CIP Ceraning in Place
  • SIP Stterilizing in Place
  • an acidic chemical was added to the water after a cleaning liquid containing an alkaline chemical such as caustic soda was poured into the flow path from the inside of the beverage supply system piping to the filling nozzle of the filling machine. This is done by running a cleaning solution.
  • the SIP treatment is a treatment for sterilizing the inside of the beverage supply system piping in advance before starting the filling work of the product.
  • sterilization treatment at a high temperature is performed by flowing heated steam or hot water into the beverage supply system piping washed by the CIP treatment.
  • the present disclosure provides a beverage filling system and a CIP processing method capable of simultaneously performing CIP processing and SIP processing using low-cost equipment.
  • the carbonated beverage filling system is a beverage filling system for filling a beverage, and includes a beverage supply system pipe for supplying the beverage, a beverage filling machine connected to the beverage supply system pipe, and the beverage filling system.
  • a CIP circulation system pipe that is connected to the machine and sends and circulates the cleaning liquid that flows out from the beverage filling machine during CIP processing toward the beverage supply system pipe side, and a control unit that controls the beverage filling system.
  • the CIP circulation system pipe is provided with a heater for heating the cleaning liquid flowing through the CIP circulation system piping and a holding tube through which the cleaning liquid heated by the heater passes, and the cleaning liquid heated by the heater is provided. Is set to pass through the holding tube over a predetermined residence time or longer.
  • thermometer is provided on the outlet side of the holding tube of the CIP circulation system pipe, and the control unit monitors the F value calculated based on the temperature of the thermometer. May be.
  • the time required for the cleaning liquid to pass through the holding tube may be predetermined based on the F value required for sterilizing the beverage.
  • the cleaning liquid may be heated to 85 ° C. or higher and lower than 150 ° C. in the heater.
  • an aseptic tank is provided in the beverage supply system pipe, the CIP circulation system pipe on the outlet side of the holding tube, and the beverage supply system pipe on the outlet side of the aseptic tank.
  • a bypass flow path is provided, and the bypass flow path may allow the cleaning liquid to flow from the holding tube side to the beverage supply system pipe on the outlet side of the aseptic tank without passing through the aseptic tank.
  • the CIP processing method is a CIP processing method for CIP processing a beverage filling system for filling a beverage, wherein the beverage filling system includes a beverage supply system pipe for supplying the beverage and the beverage supply system pipe.
  • a beverage filling machine connected to the beverage filling machine, and a CIP circulation system piping connected to the beverage filling machine and sending and circulating the cleaning liquid flowing out from the beverage filling machine toward the beverage supply system piping side during CIP processing.
  • the CIP processing method comprises a step of heating the cleaning liquid flowing through the CIP circulation system pipe by a heater and a step of passing the cleaning liquid heated by the heater through the holding tube. The cleaning liquid heated by the heater is set to pass through the holding tube over a predetermined residence time or longer.
  • CIP processing and SIP processing can be performed at the same time using low-cost equipment.
  • FIG. 1 is a schematic view showing a configuration of a beverage filling system according to an embodiment.
  • FIG. 2 is a schematic view showing a fluid flow in and around a beverage filling machine of a beverage filling system according to an embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a filling nozzle of a beverage filling machine of a beverage filling system according to an embodiment.
  • FIG. 4 is a schematic view showing a flow path for CIP cleaning in a beverage filling system.
  • FIG. 5 is a schematic cross-sectional view showing a flow path that is CIP-cleaned during the first CIP process in the filling nozzle.
  • FIG. 6 is a schematic cross-sectional view showing a flow path that is CIP-cleaned during the second CIP process in the filling nozzle.
  • FIG. 7 is a schematic cross-sectional view showing a flow path in which the filling nozzle is CIP-cleaned during the third CIP process.
  • FIGS. 1 to 7 are diagrams showing one embodiment.
  • the same parts are designated by the same reference numerals, and some detailed description may be omitted.
  • the beverage filling system (sterile filling system) 10 shown in FIG. 1 is a system for both carbonated beverages and non-carbonated beverages. That is, the beverage filling system 10 is a sterile filling system capable of selectively filling both a carbonated beverage and a non-carbonated beverage into a bottle (container) 30 (see FIG. 2).
  • the bottle 30 can be manufactured by biaxially stretching blow molding a preform manufactured by injection molding a synthetic resin material.
  • a thermoplastic resin particularly PE (polyethylene), PP (polypropylene), PET (polyethylene terephthalate), or PEN (polyethylene naphthalate).
  • the container may be a paper container, a glass bottle, a can, or the like.
  • the container may be a composite container in which two or more types of plastic containers, paper containers, glass bottles, cans and the like are combined. In the present embodiment, a case where a plastic bottle is used as a container will be described as an example.
  • the beverage filling system 10 includes a beverage sterilizer 41, an aseptic tank 42, a carbonated beverage generation unit 44, and a beverage filling machine (filler) 20.
  • the beverage sterilizer 41 sterilizes the raw material liquid containing animal and plant-derived components such as fruit juice and milk components.
  • the beverage sterilizer 41 may include, for example, an ultra-high temperature instant sterilizer (UHT).
  • UHT ultra-high temperature instant sterilizer
  • the aseptic tank 42 temporarily stores the sterilized beverage sterilized by the beverage sterilizer 41.
  • the aseptic tank 42 does not necessarily have to be provided, and the sterilized beverage from the beverage sterilizer 41 may be directly supplied to the carbonated beverage generation unit 44 or the beverage filling tank 75.
  • a first pump 51 is provided between the aseptic tank 42 and the beverage filling tank 75.
  • the first pump 51 sends a liquid such as a beverage from the aseptic tank 42 to the beverage filling tank 75 side. It should be noted that the first pump 51 may not be provided, and the liquid such as a beverage may be sent to the beverage filling tank 75 side by the pressure from the aseptic tank 42.
  • the carbonated drink generation unit 44 is used when filling a carbonated drink with the drink filling machine 20.
  • the carbonated beverage generation unit 44 dissolves carbon dioxide in the beverage by injecting carbon dioxide into the beverage from the beverage sterilizer 41 to produce a sterile carbonated beverage.
  • the carbonated beverage generation unit 44 may include, for example, a beverage cooling device and a carbonator.
  • the beverage supply system pipe 65 is a pipe that supplies beverages to the beverage filling machine 20, and beverages sequentially pass through the inside of the beverage supply system pipe 65. Further, when performing the CIP treatment described later, the cleaning liquid passes through the inside of the beverage supply system pipe 65.
  • a CIP circulation system pipe 81 is connected to the beverage filling machine 20.
  • the CIP circulation system pipe 81 is a line that sends and circulates the cleaning liquid that has flowed out from the beverage filling machine 20 during the CIP process toward the beverage supply system pipe 65 side.
  • the CIP circulation system pipe 81 connects the beverage filling machine 20 and the middle of the beverage supply system pipe 65.
  • the CIP circulation system pipe 81 is provided with a second pump 52, a heat exchanger 61, a CIP tank 85, a third pump 91, a heater 93, and a holding tube 62 in this order from the beverage filling machine 20 side. ing.
  • the second pump 52 sends the cleaning liquid from the beverage filling machine 20 to the CIP tank 85 or the outlet flow path 61b side of the heat exchanger 61 described later.
  • a heat exchanger 61 is provided between the second pump 52 and the CIP tank 85.
  • the heat exchanger 61 has an inlet flow path 61a into which a liquid such as sterile water flows in from the outside when the beverage filling system 10 is washed, and an outlet flow path 61b in which the drainage from the beverage filling machine 20 flows out.
  • the temperature of the liquid such as sterile water supplied from the inlet flow path 61a rises due to heat exchange with the high-temperature drainage from the beverage filling machine 20 inside the heat exchanger 61.
  • the energy required to raise the temperature of the cleaning liquid containing sterile water or the like with the heater 93 can be reduced.
  • the cleaning liquid flows through the heat exchanger bypass flow path 61c that bypasses the heat exchanger 61.
  • the CIP tank 85 temporarily stores the cleaning liquid from the beverage filling machine 20.
  • a cleaning liquid supply source 63 that supplies an alkaline cleaning liquid to the CIP circulation system pipe 81 is connected between the CIP tank 85 and the third pump 91. Further, the third pump 91 sends the cleaning liquid from the CIP tank 85 to the heater 93 side.
  • the cleaning liquid supply source 63 may supply other cleaning liquids such as an acid cleaning liquid and a deodorant instead of the alkaline cleaning liquid.
  • the heater 93 heats the cleaning liquid flowing through the CIP circulation system pipe 81.
  • a plate type heat exchanger or a shell and tube type heat exchanger can be used as the heater 93.
  • the heater 93 heats the cleaning liquid to, for example, 80 ° C. or higher and 150 ° C. or lower, or 85 ° C. or higher and 100 ° C. or lower, preferably 90 ° C. or higher and lower than 100 ° C., and more preferably 95 ° C. or higher and lower than 100 ° C.
  • the holding tube 62 is provided between the heater 93 of the CIP circulation system pipe 81 and the connection portion between the CIP circulation system pipe 81 and the beverage supply system pipe 65.
  • the holding tube 62 includes a coiled curved tube, a straight tube, a spiral tube, or the like, and is heat-treated or sterilized while flowing inside the holding tube 62.
  • the cleaning liquid is set to pass through the holding tube 62 over a predetermined residence time or longer. As described above, the cleaning liquid stays in the holding tube 62 while maintaining a constant residence time (holding time) and sterilization temperature, so that the sterility of the cleaning liquid can be ensured.
  • a bypass flow path 66 is provided between the holding tube 62 and the first pump 51.
  • the bypass flow path 66 connects the CIP circulation system pipe 81 on the outlet side (inlet side of the aseptic tank 42) of the holding tube 62 and the beverage supply system pipe 65 on the outlet side of the aseptic tank 42.
  • the bypass flow path 66 allows the cleaning liquid to flow from the holding tube 62 side to the beverage supply system pipe 65 on the outlet side of the aseptic tank 42 without passing through the aseptic tank 42.
  • the aseptic tank 42 can be independently cleaned and sterilized by separating it from other elements of the beverage supply system pipe 65.
  • the aseptic tank 42 is separately CIPed by the cleaning liquid that has passed through the beverage sterilizer 41 while flowing the heated cleaning liquid from the holding tube 62 side to the first pump 51 side via the bypass flow path 66. Can be processed.
  • Thermometers 68a to 68d and a flow meter 69 are arranged in the beverage supply system pipe 65 and the CIP circulation system pipe 81.
  • the thermometers 68a to 68d measure the temperature of the liquid flowing in each pipe.
  • the flow meter 69 measures the flow rate of the liquid flowing in each pipe.
  • the thermometer 68a and the flow meter 69 are arranged on the outlet side of the heater 93, and the thermometer 68b is arranged on the outlet side of the holding tube 62.
  • a thermometer 68c is arranged on the outlet side of the beverage filling machine 20.
  • a thermometer 68d is arranged in the bypass flow path 66.
  • the control unit 60 controls the whole or a part of the beverage filling system 10.
  • the control unit 60 may include a plurality of control units that independently control each element of the beverage filling system 10.
  • the beverage filling machine 20 is a sterile carbonated beverage or a sterile non-carbonated beverage that has been sterilized in advance from the mouth of the bottle 30 into the bottle 30, or a non-sterilized carbonated beverage that does not require sterilization (a non-sterilized carbonated beverage).
  • a non-sterilized carbonated beverage a non-sterilized carbonated beverage that does not require sterilization
  • the beverage filling machine 20 an empty bottle 30 is filled with a beverage.
  • the beverage is filled inside the bottle 30 while the plurality of bottles 30 are rotated (revolved).
  • the carbonated drink is in the bottle 30 at a filling temperature of 1 ° C. or higher and 40 ° C. or lower, preferably 5 ° C. or higher and 10 ° C. or lower. Is filled with.
  • the reason why the filling temperature of the carbonated drink is set to, for example, 1 ° C. or higher and 10 ° C. or lower is that if the liquid temperature of the carbonated drink exceeds 10 ° C., carbon dioxide gas is easily released from the carbonated drink.
  • the carbonated beverage filled by the beverage filling machine 20 include various beverages containing carbon dioxide gas, for example, carbonated soft drinks such as cider and cola, and alcoholic beverages such as beer.
  • the beverage filled in the bottle 30 is a sterile non-carbonated beverage
  • the beverage is filled in the bottle 30 at a filling temperature of 1 ° C. or higher and 40 ° C. or lower, preferably 10 ° C. or higher and 30 ° C. or lower.
  • the sterile non-carbonated beverage filled by the beverage filling machine 20 include non-carbonated beverages containing animal and plant-derived components such as fruit juice and milk components, and mineral water containing no animal and plant-derived components.
  • the beverage filling system 10 has an aseptic chamber 13 whose inside is kept aseptic.
  • the beverage filling machine 20 is provided in the sterile chamber 13.
  • a beverage filling tank (filling head tank, buffer tank) 75 is arranged outside the sterile chamber 13 and above the beverage filling machine 20. Beverages are filled inside the beverage filling tank 75.
  • the pressure P1 in the beverage filling tank 75 is measured by a first pressure gauge 64 provided in the beverage filling tank 75.
  • the beverage filling tank 75 does not necessarily have to be installed on the upper part of the beverage filling machine 20, and may be installed on the floor surface on which the beverage filling machine 20 is installed.
  • the beverage supply system pipe 65 described above is connected to the beverage filling tank 75. Further, the beverage supply system pipe 65 is connected to the CIP circulation system pipe 81 as shown in FIG.
  • the beverage supply line 73 is connected to the beverage filling tank 75.
  • the beverage supply line 73 supplies the beverage filled in the beverage filling tank 75 toward the filling nozzle 72 described later.
  • the beverage filling tank 75 is connected to the filling nozzle 72 via a beverage supply line 73.
  • a counter gas line 74 is connected to the beverage filling tank 75.
  • the counter gas line 74 is used when the beverage to be filled is a carbonated beverage, and the sterile carbon dioxide gas filled in the beverage filling tank 75 is supplied toward the filling nozzle 72 described later.
  • the beverage filling tank 75 is connected to the filling nozzle 72 via a counter gas line 74.
  • a valve 67 for counter gas is provided at the connection portion between the beverage filling tank 75 and the counter gas line 74.
  • the counter gas valve 67 is directly connected to the beverage filling tank 75.
  • the counter gas valve 67 is opened when the beverage to be filled is a carbonated beverage, and closed when the beverage to be filled is a non-carbonated beverage.
  • the beverage filled in the beverage filling tank 75 is filled into the empty bottle 30.
  • the beverage filling machine 20 has a transport wheel 71 that rotates about an axis parallel to the vertical direction. Beverages are filled inside the bottles 30 while the plurality of bottles 30 are rotated (revolved) by the transport wheel 71. Further, a plurality of filling nozzles 72 are arranged along the outer circumference of the transport wheel 71. One bottle 30 is attached to each filling nozzle 72, and a beverage is injected from the filling nozzle 72 into the inside of the bottle 30. The configuration of the filling nozzle 72 will be described later.
  • the transport wheel 71, the filling nozzle 72, at least a portion of the beverage supply line 73, and at least a portion of the counter gas line 74 are surrounded by a cover 76 that forms part of the sterile chamber 13.
  • a rotary joint 77 is attached to the upper part of the cover 76.
  • the beverage supply line 73 and the counter gas line 74 are attached to the cover 76 of the sterile chamber 13 by a rotary joint 77.
  • the rotary joint 77 includes a rotating body (conveying wheel 71, a filling nozzle 72, and a rotating pipe of a beverage supply line 73 and a counter gas line 74, etc.) and a non-rotating body (a cover 76, and a beverage supply line 73 and a counter gas line 74). (Fixed piping, etc.) and seal in a sterile condition.
  • a beverage supply line 73 and a counter gas line 74 are connected to each filling nozzle 72.
  • one end of the beverage supply line 73 is connected to the beverage filling tank 75 filled with the beverage, and the other end communicates with the inside of the bottle 30. Then, the beverage supplied from the beverage filling tank 75 passes through the beverage supply line 73 and is injected into the inside of the bottle 30.
  • one end of the counter gas line 74 is connected to the beverage filling tank 75, and the other end of the counter gas line 74 communicates with the inside of the bottle 30.
  • the gas for counter pressure made of sterile carbon dioxide supplied from the beverage filling tank 75 passes through the counter gas line 74 and is filled inside the bottle 30.
  • a counter manifold (counter gas branch portion) 53 is provided in the middle of the counter gas line 74.
  • the counter gas line 74 from the beverage filling tank 75 is branched into a plurality of counter gas lines 74 in the counter manifold 53 and extends to each filling nozzle 72.
  • a sniff line 78 is connected to each filling nozzle 72.
  • the sniff line 78 is used when the beverage to be filled is a carbonated beverage.
  • One end of the sniff line 78 is connected to the counter gas line 74, and the other end of the sniff line 78 extends outward to the sterile chamber 13.
  • the gas inside the bottle 30 can be discharged through the sniff line 78.
  • a sniff manifold (sniff line branch portion) 56 is provided in the middle of the sniff line 78.
  • the carbon dioxide gas from the sniff line 78 is collected in the sniff manifold 56 and discharged into the sterile chamber 13.
  • the sniff line 78 in the sterile chamber 13 is provided with a discharge valve 79.
  • Carbon dioxide gas from the sniff line 78 is discharged into the sterile chamber 13 by the discharge valve 79.
  • the carbon dioxide gas from the sniff line 78 is discharged into the sterile chamber 13 by using the discharge valve 79.
  • the carbon dioxide gas in the bottle 30 can be discharged into the sterile chamber 13, which is a sterile space, without contamination of bacteria.
  • the sniff manifold 56 and the counter manifold 53 are connected by a first bypass line 54.
  • the first bypass line 54 is provided with a first valve 55, which is normally closed.
  • the sniff line 78 may be connected to the rotary joint 77, and carbon dioxide gas may be discharged from the rotary joint 77 to the outside of the sterile chamber 13.
  • the rotary joint 77 is shown in the case where it is provided in the upper part of the beverage filling machine 20. Not limited to this, the rotary joint 77 may be installed at the lower part of the beverage filling machine 20. Further, rotary joints may be provided at the upper part and the lower part of the beverage filling machine 20, respectively.
  • CIP Cleaning in Place
  • the CIP treatment is performed by flowing the acidic cleaning liquid into the flow path after flowing the alkaline cleaning liquid into the flow path or before flowing the alkaline cleaning liquid into the flow path.
  • the alkaline cleaning solution is made by adding an alkaline agent containing caustic soda (sodium hydroxide), potassium hydroxide, sodium carbonate, sodium silicate, sodium phosphate, sodium hypochlorite, surfactant, chelating agent, etc. to water.
  • the acidic cleaning solution is water to which a nitric acid-based or phosphoric acid-based acidic agent is added.
  • the alkaline cleaning step using the alkaline cleaning solution and the acid cleaning step using the acidic cleaning solution may be carried out in any combination. As a result, the residue of the previous beverage adhering to the flow path through which the beverage passes is removed. Further, SIP (Sterilizing in Place) processing may be arbitrarily performed.
  • the SIP treatment is a treatment for sterilizing the inside of the flow path through which the beverage passes before starting the filling operation of the beverage. For example, heated steam or hot water is flowed in the flow path washed by the above-mentioned CIP treatment. It is done by. As a result, the inside of the flow path through which the beverage passes is sterilized and made sterile.
  • a CIP cup 82 that receives the cleaning liquid from the filling nozzle 72 is provided in the vicinity of the filling nozzle 72.
  • a CIP line 83 is connected to the CIP cup 82.
  • One end of the CIP line 83 is connected to the CIP cup 82, and the other end is connected to the CIP tank 85 arranged outside the sterile chamber 13.
  • the cleaning liquid from the filling nozzle 72 can be discharged to the CIP tank 85 via the CIP line 83.
  • the CIP line 83 is connected to the CIP manifold (CIP line branch portion) 59, and the CIP manifold 59 is connected to the CIP circulation system pipe 81.
  • the cleaning liquid from the CIP line 83 is collectively collected by the CIP manifold 59 and discharged to the CIP tank 85 via the CIP circulation system pipe 81.
  • the CIP manifold 59 and the sniff manifold 56 are connected by a second bypass line 57.
  • the second bypass line 57 is provided with a second valve 58. Normally, the second valve 58 is closed.
  • An exhaust line 89 for exhausting the gas inside the CIP tank 85 is provided above the CIP tank 85.
  • An exhaust line 89 is connected to a scrubber (not shown) that processes gas.
  • the cover 76 of the aseptic chamber 13 is provided with a sterile air supply device 70 that sends a large amount of sterile air into the sterile chamber 13.
  • the sterile air supply device 70 introduces sterile air into the sterile chamber 13.
  • the inside of the sterile chamber 13 and the sterile area of the beverage filling machine 20 are all maintained at positive pressure, and the invasion of outside air into the sterile chamber 13 is suppressed. Further, a large amount of aseptic air is sent into the aseptic chamber 13 by the aseptic air supply device 70.
  • the amount of sterile air supplied to satisfy the above object is 5 m 3 / min or more and 100 m 3 / min or less, preferably 10 m 3 / min or more and 50 m 3 / min or less.
  • the filling nozzle 72 has a main body portion 72a.
  • a beverage supply line 73 and a counter gas line 74 are connected to the main body 72a, respectively.
  • the beverage supply line 73 and the counter gas line 74 pass through a rotary joint 77 provided in the cover 76.
  • the upper end of the beverage supply line 73 is connected to the beverage filling tank 75, and the lower end thereof is open to the CIP cup 82 side. Then, the cleaning liquid supplied from the beverage filling tank 75 passes through the beverage supply line 73 and flows into the inside of the CIP cup 82. The cleaning liquid that has flowed into the CIP cup 82 flows into the CIP manifold 59 via the CIP line 83. After that, the cleaning liquid is discharged from the CIP manifold 59 to the outside of the beverage filling machine 20.
  • the counter gas line 74 is used when the beverage to be filled is a carbonated beverage.
  • the upper end of the counter gas line 74 is connected to the beverage filling tank 75, and the counter gas line 74 is open to the CIP cup 82 side at the lower end.
  • a sniff line 78 is connected in the middle of the counter gas line 74.
  • the cleaning liquid supplied from the beverage filling tank 75 passes through the counter gas line 74 and flows into the inside of the CIP cup 82.
  • the cleaning liquid supplied from the beverage filling tank 75 flows into the sniff manifold 56 via the sniff line 78. After that, the cleaning liquid passes through the sniff line 78 from the sniff manifold 56, and then is discharged from the discharge valve 79 into the sterile chamber 13.
  • the sniff line 78 may be discharged to the outside of the beverage filling machine 20 from the rotary joint 77 located at the upper part of the beverage filling machine 20 (not shown). Further, a rotary joint may be separately provided at the lower part of the beverage filling machine 20 to discharge the cleaning liquid from the sniff line 78 to the outside of the beverage filling machine 20 (not shown).
  • the empty bottle 30 that has been sterilized is transported to the beverage filling machine 20.
  • this beverage filling machine 20 while the bottle 30 is rotated (revolved), a sterile carbonated beverage is filled into the bottle 30 from its mouth.
  • the sterilized bottle 30 is filled with the sterile carbonated beverage sent from the beverage filling tank 75 at a filling temperature of 1 ° C. or higher and 40 ° C. or lower, preferably 5 ° C. or higher and 10 ° C. or lower.
  • the filling nozzle 72 is in close contact with the mouth of the bottle 30, and the counter gas line 74 and the bottle 30 communicate with each other.
  • the sniff line 78 is closed.
  • aseptic carbon dioxide gas for counter pressure is supplied from the beverage filling tank 75 to the inside of the bottle 30 via the counter gas line 74.
  • the internal pressure of the bottle 30 is higher than the atmospheric pressure, and the internal pressure of the bottle 30 becomes the same as the internal pressure of the beverage filling tank 75.
  • the inside of the bottle 30 is filled with a sterile carbonated drink from the beverage supply line 73.
  • the sterile carbonated beverage is injected from the beverage filling tank 75 through the beverage supply line 73 into the inside of the bottle 30.
  • the supply of sterile carbonated drinks from the beverage supply line 73 is stopped.
  • the beverage supply line 73 and the counter gas line 74 are closed, the sniff line 78 is opened, and the gas inside the bottle 30 is discharged from the sniff line 78.
  • the pressure inside the bottle 30 becomes equal to the atmospheric pressure, and the filling of the aseptic carbonated drink into the bottle 30 is completed.
  • the gas from the bottle 30 passes through the sniff line 78 and then is discharged from the discharge valve 79 into the sterile chamber 13.
  • the filling nozzle 72 then separates from the mouth of the bottle 30, and the bottle 30 is transported to a capper (not shown).
  • a cap (not shown) is attached to the bottle 30 filled with the sterile carbonated drink by the beverage filling machine 20, whereby a product bottle can be obtained.
  • the production (transportation) speed of the bottle 30 in the beverage filling system 10 is preferably 100 bpm or more and 1500 bpm or less.
  • bpm bottle per minute means the transport speed of the bottle 30 per minute.
  • the empty bottle 30 that has been sterilized is transported to the beverage filling machine 20.
  • the sterile non-carbonated beverage is filled into the inside of the bottle 30 from the beverage supply line 73 in a state where the filling nozzle 72 does not come into close contact with the mouth of the bottle 30.
  • the sterile non-carbonated beverage is injected from the beverage filling tank 75 through the beverage supply line 73 into the inside of the bottle 30.
  • the supply of the sterile non-carbonated beverage from the beverage supply line 73 is stopped.
  • the counter gas line 74 and the sniff line 78 are closed by a valve for counter gas 67 and a valve (not shown), respectively.
  • a cap (not shown) is attached to the bottle 30 filled with the sterile non-carbonated beverage in the beverage filling machine 20, whereby a product bottle can be obtained.
  • CIP processing method Next, in the beverage filling system 10, the operation when the CIP (Cleaning in Place) treatment is performed, for example, periodically or when the type of beverage is switched, will be described.
  • the control of the following CIP processing is controlled by the control unit 60.
  • water is sent from the inlet flow path 61a of the heat exchanger 61 into the CIP circulation system pipe 81.
  • This water circulation purifies the inside of the CIP circulation system pipe 81, the inside of the beverage supply system pipe 65, and the inside of the beverage filling machine 20, respectively.
  • the alkaline cleaning liquid is sent from the cleaning liquid supply source 63.
  • the inside of the CIP circulation system pipe 81, the inside of the beverage supply system pipe 65, and the inside of the beverage filling machine 20 are purified.
  • the flow path through which the alkaline cleaning liquid passes is shown by thick lines and shading.
  • the alkaline cleaning liquid is sent to the heater 93 by the third pump 91 located in the CIP circulation system pipe 81.
  • the alkaline cleaning liquid is heated in the heater 93, for example, at 85 ° C. or higher and 100 ° C. or lower, preferably 90 ° C. or higher and lower than 100 ° C., and more preferably 95 ° C. or higher and lower than 100 ° C.
  • the heated alkaline cleaning liquid reaches the beverage supply system pipe 65 via the holding tube 62.
  • the heated alkaline cleaning liquid then reaches the beverage filling machine 20 via the aseptic tank 42, the first pump 51, and the beverage filling tank 75 in that order.
  • the alkaline cleaning liquid flows out from the beverage filling machine 20 to the CIP circulation system pipe 81, and is sent to the heater 93 again via the second pump 52, the CIP tank 85, and the third pump 91 in that order.
  • the alkaline cleaning liquid is discharged from the heat exchanger 61. It is discharged to the outside from the flow path 61b.
  • the alkaline cleaning solution When a solution containing sodium hydroxide or potassium hydroxide in an amount of 0.1% by mass or more and 10% by mass or less is used as the alkaline cleaning solution, the alkaline cleaning solution is brought to the above temperature by the heater 93 provided in the CIP circulation system pipe 81. Be heated.
  • the heated alkaline cleaning liquid is supplied to the CIP circulation system pipe 81, the beverage supply system pipe 65, and the beverage filling machine 20, respectively.
  • this circulation is performed for, for example, 5 minutes or more and 60 minutes or less, the CIP circulation system pipe 81, the beverage supply system pipe 65, and the beverage filling machine 20 are properly purified.
  • the CIP circulation system pipe 81, the beverage supply system pipe 65, and the beverage filling machine 20 are each sterilized, and the SIP processing is performed at the same time without performing the SIP processing separately (CSIP processing).
  • the various devices of the beverage filling system 10 are washed by the CIP treatment, and at the same time, the sterility treatment is also performed.
  • the time required for SIP processing can be shortened or the SIP processing itself can be deleted.
  • the product switching time of the beverage filling system 10 can be shortened and the production capacity can be improved.
  • the acidic cleaning liquid is flowed into the CIP circulation system pipe 81, the beverage supply system pipe 65, and the beverage filling machine 20, and the CIP circulation system pipe 81, the beverage supply system pipe 65, and the beverage filling machine are flown.
  • the whole of 20 is acid-washed.
  • sterile water is flowed through all of the CIP circulation system pipe 81, the beverage supply system pipe 65 and the beverage filling machine 20, and the entire CIP circulation system pipe 81, the beverage supply system pipe 65 and the beverage filling machine 20 are rinsed. In this way, the residue of the previous beverage adhering to the flow path through which the beverage passes is removed.
  • the acidic cleaning liquid is heated to, for example, 85 ° C.
  • the heated acidic cleaning liquid is supplied to the CIP circulation system pipe 81, the beverage supply system pipe 65, and the beverage filling machine 20, respectively.
  • this circulation is performed for, for example, 5 minutes or more and 30 minutes or less, the CIP circulation system pipe 81, the beverage supply system pipe 65, and the beverage filling machine 20 are properly purified.
  • the CIP circulation system pipe 81, the beverage supply system pipe 65, and the beverage filling machine 20 are each sterilized, and the SIP processing is performed at the same time without performing the SIP processing separately (CSIP processing).
  • the order in which the acidic cleaning liquid and the alkaline cleaning liquid are used may be appropriately determined in view of the cleaning property. For example, acid cleaning may be performed first, and then alkaline cleaning may be performed. Alternatively, only alkaline cleaning may be performed, or only acid cleaning may be performed.
  • the cleaning liquid used for the CIP treatment is discharged from the CIP circulation system pipe 81, and the cleaning liquid remaining in the beverage supply system pipe 65 and the CIP circulation system pipe 81 is washed away with sterile water.
  • the cleaning liquid in the beverage supply system pipe 65 and the CIP circulation system pipe 81 is removed with sterile water and all the cleaning liquid in the filling nozzle 72 of the beverage filling machine 20 is replaced with sterile water, the beverage supply system pipe 65 and the CIP circulation system pipe 65 and CIP circulation. The delivery of sterile water to the system pipe 81 is stopped.
  • aseptic air is supplied into the beverage supply system pipe 65 including the aseptic tank 42 and the beverage filling tank 75 while removing the aseptic water remaining in the aseptic tank 42 and the beverage filling tank 75.
  • the inside of the CIP-treated aseptic tank 42, the beverage filling tank 75, the beverage supply system pipe 65, and the CIP circulation system pipe 81 is maintained at a positive pressure to maintain sterility.
  • aseptic water collected in the aseptic tank 42, the beverage supply system pipe 65, the beverage filling tank 75, and the beverage filling machine 20 was air blown with sterile air while maintaining the positive pressure, and drain lines provided in various places (illustrated). None) may be removed from sterile water. This eliminates the risk of diluting the beverage to be filled at the start of production.
  • the beverage is stored in the aseptic tank 42, and then the beverage reaches the beverage filling machine 20 through the beverage supply system pipe 65, and the manufacturing process for filling the beverage into the bottle 30 is started. ..
  • CIP cleaning liquid heating method Next, a statement will be made regarding the heating method of the CIP cleaning liquid for heating the alkaline cleaning liquid or the acidic cleaning liquid (hereinafter, also referred to as CIP cleaning liquid) at the time of the above-mentioned CIP treatment.
  • the CIP cleaning liquid is sent to the heater 93 of the CIP circulation system pipe 81, and in the heater 93, for example, 85 ° C. or higher and lower than 100 ° C., preferably 90 ° C. or higher and lower than 100 ° C., and more preferably 95 ° C. or higher and 100 ° C. Heated to less than.
  • the heated CIP cleaning liquid is supplied to the beverage supply system pipe 65 via the holding tube 62.
  • the CIP cleaning liquid requires a certain period of time (residence time) or more to pass through the holding tube 62, and maintains a predetermined temperature or more during this period.
  • the degree of sterilization of the CIP cleaning liquid passing through the holding tube 62 may be controlled by the F value.
  • the temperature of the CIP cleaning liquid may be measured by using a thermometer 68b arranged on the outlet side of the holding tube 62 while flowing the CIP cleaning liquid into the holding tube 62.
  • the temperature information from the thermometer 68b is sent to the control unit 60 at regular time intervals.
  • the control unit 60 calculates the F value at that time based on the temperature information from the thermometer 68b.
  • the F value is the heating time required to kill all the bacteria when the bacteria are heated for a certain period of time.
  • the F value is indicated by the mortality time of the bacterium at the reference temperature and is calculated by the following formula.
  • T is the temperature (° C.) measured by the thermometer 68b
  • 10 ⁇ ⁇ (T-Tr) / Z ⁇ is the mortality rate at the sterilization temperature T
  • Tr is the reference temperature (° C.)
  • Z is the Z value.
  • t 1 (minute) is the (minimum) residence time required for the CIP cleaning liquid to pass through the holding tube 62, and is predetermined as a predetermined value.
  • a value measured in real time from the volume of the flow meter 69 and the holding tube 62 and the time when the cleaning liquid actually passed may be set as t1 (minute).
  • the control unit 60 monitors the F value calculated based on the temperature of the thermometer 68b on the outlet side, and if this value is maintained at or above a predetermined value, the CIP process is continued. That is, the control unit 60 integrates the values of 10 ⁇ ⁇ (T—Tr) / Z ⁇ based on the temperature information sent from the thermometer 68b at regular time intervals. Then, the integrated value between the current time point and the immediately preceding t1 (minutes) is taken as the F value at that time point. If the F value is maintained at or above a predetermined value, the control unit 60 continues the CIP process, assuming that the sterility of the CIP cleaning liquid passing through the holding tube 62 is guaranteed.
  • the control unit 60 may determine that some trouble has occurred and the sterility of the CIP cleaning solution is no longer guaranteed, and may stop the CIP process. Further, only when the F value is lower than the predetermined value, the cleaning liquid having poor sterilization may be discharged from a blow valve (not shown) without being supplied to the beverage supply system pipe 65. After that, after the F value returns to a predetermined value, the liquid may be sent to the beverage supply system pipe 65.
  • the (minimum) residence time t 1 (minutes) required for the CIP cleaning liquid to pass through the holding tube 62 is set to 0.3 minutes (18 seconds), and the temperature T of the thermometer 68b on the outlet side is 95. If the temperature is maintained at ° C or higher, the F value is maintained at 30 or higher, and it can be considered that the sterility of the CIP cleaning solution is guaranteed.
  • Z 8 ° C. and 10 ° C. are used to further enhance the bactericidal effect
  • the (minimum) residence time t 1 (minutes) required for the CIP cleaning liquid to pass through the holding tube 62 is 1.7 minutes (each). It may be set to 101 seconds) and 3 minutes (180 seconds).
  • the temperature T of the thermometer 68b on the outlet side is maintained at 95 ° C. or higher, the F value is maintained at 30 or higher, and it is considered that the sterility of the CIP cleaning solution is guaranteed.
  • the CIP cleaning liquid whose sterility is guaranteed can be supplied to the beverage supply system pipe 65.
  • each tank or the like arranged in the CIP circulation system pipe 81 is specified by the Industrial Safety and Health Act Enforcement Ordinance. It can be handled as a type 2 pressure vessel.
  • various equipment required for CIP processing can be implemented at low cost compared to the case where each tank, etc. arranged in the CIP circulation system piping 81 is used as a first-class pressure vessel specified by the Industrial Safety and Health Act Enforcement Ordinance. can.
  • each tank or the like may be changed to a first-class pressure vessel and the CIP treatment may be performed with water at 100 ° C. or higher.
  • the (minimum) residence time t 1 (minutes) required for the CIP cleaning liquid to pass through the holding tube 62 is the F value, the Z value, and the reference temperature Tr required for sterilizing the beverage. It can be determined in advance based on this.
  • the residence time t 1 is preferably 0.05 minutes or more and 10 minutes or less, and more preferably 0.1 minutes or more and 3 minutes or less.
  • the reference temperature Tr is preferably less than 100 ° C., more preferably 97 ° C. or lower, because each tank or the like arranged in the CIP circulation system pipe 81 is a type 2 pressure vessel. Further, the reference temperature Tr is preferably 87 ° C. or higher, and more preferably 90 ° C. or higher, in order not to lengthen the residence time t 1 more than necessary.
  • the sterilization method is not limited to the method of calculating the F value and sterilizing as described above, and for example, a sterilization method using temperature and time may be adopted as conventionally known.
  • a first CIP process for CIP processing the first piping system and a second CIP process for CIP processing the second piping system are sequentially performed. Further, a third CIP process for CIP processing the third piping system may be performed.
  • the first piping system, the second piping system, and the third piping system are different piping systems from each other, but may include a part of the common flow path.
  • the first piping system, the second piping system, and the third piping system may be a flow path through which a liquid flows at the time of filling a beverage, or may be a flow path through which a gas flows. It was
  • the first piping system is a piping system in the beverage filling machine 20, and includes at least a beverage supply line 73.
  • the second piping system is a piping system in the beverage filling machine 20, and includes at least a counter gas line 74.
  • the third piping system is a piping system in the beverage filling machine 20, and includes at least a sniff line 78.
  • FIGS. 5 to 7 show the first CIP process (first CIP process), the second CIP process (second CIP process), and the third CIP process (third CIP process), respectively.
  • the flow of the CIP cleaning liquid at the time of carrying out is shown.
  • the flow path through which the CIP cleaning liquid passes is shown by a thick line
  • the flow path through which the CIP cleaning liquid does not pass is shown by a thin line.
  • the CIP cleaning liquid flows in from the beverage supply system pipe 65 and flows into the beverage filling machine 20 via the beverage filling tank 75.
  • the CIP cleaning liquid flows out from the beverage filling machine 20 via the beverage supply line 73, the filling nozzle 72, the CIP cup 82, the CIP line 83, and the CIP manifold 59.
  • the CIP cleaning liquid flows into the CIP tank 85 via the CIP circulation system pipe 81.
  • the first piping system includes a beverage supply line 73, a filling nozzle 72, a CIP cup 82, a CIP line 83, and a CIP manifold 59 of the beverage filling machine 20.
  • the CIP cleaning liquid does not flow through the counter gas line 74 and the sniff line 78, but the CIP cleaning liquid is not limited to this, and the CIP cleaning liquid is a part of the counter gas line 74 or a part of the sniff line 78. May flow.
  • the CIP cleaning liquid flows in from the beverage supply system pipe 65 and flows into the beverage filling machine 20 via the beverage filling tank 75.
  • the CIP cleaning liquid flows out from the beverage filling machine 20 via the counter gas line 74, the counter manifold 53, the filling nozzle 72, the CIP cup 82, the CIP line 83, and the CIP manifold 59.
  • the CIP cleaning liquid flows into the CIP tank 85 via the CIP circulation system pipe 81.
  • the second piping system includes a counter manifold 53, a counter gas line 74, a filling nozzle 72, a CIP cup 82, a CIP line 83, and a CIP manifold 59 of the beverage filling machine 20.
  • the CIP cleaning liquid does not flow through the beverage supply line 73 and the sniff line 78, but the CIP cleaning liquid is not limited to this, and the CIP cleaning liquid is a part of the beverage supply line 73 or a part of the sniff line 78. May flow.
  • the CIP cleaning liquid flows in from the beverage supply system pipe 65 and flows into the beverage filling machine 20 via a part of the beverage filling tank 75 and the counter gas line 74. do.
  • the CIP cleaning liquid fills the beverage via the counter manifold 53, the first bypass line 54, the sniff manifold 56, the sniff line 78, the filling nozzle 72, the CIP cup 82, the CIP line 83, and the CIP manifold 59. Outflow from machine 20.
  • the CIP cleaning liquid flows into the CIP tank 85 via the CIP circulation system pipe 81.
  • the CIP cleaning liquid also flows from the sniff manifold 56 to the CIP manifold 59 via the second bypass line 57.
  • the third piping system is the counter manifold 53, the first bypass line 54, the second bypass line 57, the sniff manifold 56, the sniff line 78, the filling nozzle 72, the CIP cup 82, and the CIP line of the beverage filling machine 20.
  • 83 including CIP manifold 59.
  • the CIP cleaning liquid does not flow through the beverage supply line 73, but the CIP cleaning liquid may flow through a part of the beverage supply line 73.
  • Switching between the first CIP process, the second CIP process, and the third CIP process is performed by appropriately controlling on / off a valve (not shown) of each flow path by the control unit 60.
  • the first CIP process, the second CIP process, and the third CIP process are performed on all the filling nozzles 72, respectively.
  • the first CIP process, the second CIP process, and the third CIP process may be performed in this order or in any other order. Further, the first CIP process, the second CIP process, and the third CIP process may be performed at the same time or different times from each other.
  • the second piping system may include both the counter gas line 74 and the sniff line 78. In this case, the first CIP process for CIP processing the first piping system and the second CIP processing for the second piping system including the counter gas line 74 and the sniff line 78 without performing the third CIP processing are performed.
  • the CIP process of 2 may be performed.
  • the flow paths included in the first piping system, the second piping system, and the third piping system are not limited to the above, and may be any combination of flow paths in the beverage filling machine 20. Further, in addition to the first piping system, the second piping system, and the third piping system, one or a plurality of other piping systems different from these may be provided. In this case, one or more CIP processes may be performed in addition to the first CIP process, the second CIP process, and the third CIP process. It is preferable that all the flow paths in the beverage filling machine 20 are included in at least one of a plurality of piping systems including the first piping system, the second piping system, and the third piping system.
  • the flow rate of the CIP cleaning liquid flowing through the first piping system, the second piping system, and the third piping system is appropriately set based on the capacity of the pump, the diameter of each piping, and the like. Specifically, among the first piping system, the second piping system, and the third piping system, the flow rate (L / min) of the CIP cleaning liquid flowing through the piping system having the smallest flow rate is the piping system having the largest flow rate.
  • the flow rate (L / min) of the CIP cleaning liquid flowing through the pipe may be 10% or more, preferably 20% or more.
  • the flow rate (L / min) of the CIP cleaning liquid flowing through the piping system having the smallest flow rate is the CIP flowing through the piping system having the largest flow rate.
  • the flow rate (L / min) of the cleaning liquid is 100% or less, and may be 90% or less.
  • the control unit 60 monitors the temperature Ta on the inlet side and the temperature Tb on the outlet side of the beverage filling machine 20, respectively.
  • the temperature Ta on the inlet side of the beverage filling machine 20 may be monitored by the thermometer 68b.
  • the temperature Tb on the outlet side may be monitored by a thermometer 68c.
  • only one of the first piping system, the second piping system, and the third piping system is CIP-processed, and the other piping systems are not CIP-processed. ..
  • the control unit 60 maintains sterility even in the pipeline through which the CIP cleaning liquid is not flowing at that time. It can be determined that there is, and the CIP process can be continued. Even if the pipe is opened, if the sterilization in the sterile chamber 13 is completed, the temperature of the pipe through which the CIP cleaning liquid is not flowing drops and the inside of the pipe becomes negative pressure. Theoretically, it can be said that the above-mentioned pipeline can be maintained in an aseptic state.
  • the control unit 60 may stop the CIP process when the temperatures Ta and Tb become lower than the predetermined threshold temperature during the CIP process.
  • the threshold temperature may be a predetermined temperature of 85 ° C. or higher and lower than 100 ° C., or 90 ° C. as an example.
  • the CIP cleaning liquid passes through the secondary (downstream) side (sniff line 78, sniff manifold 56, CIP manifold 59, CIP circulation system pipe 81) of the filling nozzle 72 to dissipate heat and dissipate heat to the outlet of the beverage filling machine 20.
  • the temperature Tb on the side may be lower than a predetermined threshold temperature.
  • the temperature of the CIP cleaning liquid measured by the thermometer 68e (see FIG. 2) installed in the filling nozzle 72 may be substituted as the temperature Tb on the outlet side.
  • the lowest temperature of the CIP cleaning liquid measured by the thermometer 68e installed in all the filling nozzles 72 may be substituted as the temperature Tb.
  • the location of the thermometer 68e is not limited to the filling nozzle 72, and may be installed in at least one of the sniff line 78, the sniff manifold 56, the CIP manifold 59, and the CIP circulation system pipe 81.
  • the first CIP process (FIG. 5) for CIP processing the first piping system including the beverage supply line 73 and the second piping system including the counter gas line 74 are CIP processed.
  • a second CIP process for processing (FIG. 6) and a third CIP process for CIP processing the third piping system including the sniff line 78 (FIG. 7) are performed.
  • the pipes in the beverage filling machine 20 are divided into a plurality of pipe systems at the time of CIP processing, and these pipes are sequentially subjected to CIP processing. This makes it possible to efficiently perform CIP processing on the beverage filling machine 20 for carbonated beverages without significantly modifying the equipment of the beverage filling system 10.
  • SIP processing may be performed after CIP processing.
  • This SIP treatment is a treatment for sterilizing the inside of the flow path through which the beverage passes in advance before starting the filling operation of the beverage.
  • the SIP treatment is performed, for example, by flowing heated steam or hot water into the flow path washed by the above-mentioned CIP washing. As a result, the inside of the flow path through which the beverage passes is sterilized and made sterile.
  • the CIP treatment has been described by taking the case of CSIP treatment in which cleaning and sterilization are performed at the same time while circulating an alkaline cleaning liquid or an acidic cleaning liquid as an example, but sterility is ensured in the rinsing step after circulating the CIP cleaning liquid.
  • the water may be supplied to the beverage supply system pipe 65, and the SIP treatment may be performed while rinsing the CIP cleaning liquid.
  • the heater 93 and the holding tube 62 are provided in the CIP circulation system pipe 81, and the CIP cleaning liquid heated by the heater 93 is set to pass through the holding tube 62 over a predetermined residence time or longer. Has been done. As a result, the sterility of the CIP cleaning liquid can be ensured, and the sterility-guaranteed CIP cleaning liquid can be supplied to the beverage supply system pipe 65.
  • thermometer 68b is provided on the outlet side of the holding tube 62 of the CIP circulation system pipe 81, and the control unit 60 monitors the F value calculated based on the temperature of the thermometer 68b.
  • the control unit 60 can determine that the sterility of the CIP cleaning liquid passing through the holding tube 62 is ensured if the F value is maintained at a predetermined value or higher.
  • the switching time of the product of the beverage filling system 10 can be shortened, and the production capacity can be improved. ..
  • the beverage filling system may be, for example, a beverage filling system using a hot filling method for filling a beverage at a high temperature of 55 ° C. or higher and 95 ° C. or lower. It can be applied to any beverage filling system such as chilled beverages and alcoholic beverages that undergo SIP treatment (microorganism inactivation) after CIP treatment.
  • SIP treatment microorganism inactivation

Landscapes

  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)

Abstract

飲料を充填する飲料充填システム(10)は、飲料を供給する飲料供給系配管(65)と、飲料供給系配管(65)に連結された飲料充填機(20)と、飲料充填機(20)に連結され、CIP処理時に飲料充填機(20)から流出した洗浄液を、飲料供給系配管(65)側に向けて送液し、循環させるCIP循環系配管(81)と、飲料充填システムを制御する制御部(60)と、を備えている。CIP循環系配管(81)に、CIP循環系配管(81)を流れる洗浄液を加熱するヒータ(93)と、ヒータ(93)で加熱された洗浄液が通過するホールディングチューブ(62)とが設けられている。ヒータ(93)で加熱した洗浄液は、ホールディングチューブ(62)内を所定の滞留時間以上かけて通過するように設定されている。 

Description

飲料充填システム及びCIP処理方法
 本開示は、飲料充填システム及びCIP処理方法に関する。
 従来より、炭酸飲料無菌充填装置に設けられたフィラー等の充填機を用いて、高速で搬送されている多数のプラスチックボトルに、炭酸飲料等の内容物を連続的に無菌充填することが行われている。このような炭酸飲料無菌充填装置において、炭酸飲料をプラスチックボトルに充填する充填ノズルは、無菌チャンバ内で回転可能に配置されている。(例えば特許文献1、2参照)。
特開2007-302325号公報 特開2010-006429号公報 国際公開2014/098058号
 また従来、飲料充填装置の飲料供給系配管については、定期的にあるいは製造される製品の種類を切り替える際に、飲料供給系配管内を洗浄するCIP(Cleaning in Place)処理を行う。さらに、飲料供給系配管内を殺菌するSIP(Sterilizing in Place)処理を行っている。CIP処理は、飲料供給系配管の管路内から充填機の充填ノズルに至るまでの流路に、例えば水に苛性ソーダ等のアルカリ性薬剤を添加した洗浄液を流した後に、水に酸性薬剤を添加した洗浄液を流すことにより行われる。SIP処理は、製品の充填作業に入る前に、予め上記飲料供給系配管内を殺菌するための処理である。SIP処理は、例えば、上記CIP処理で洗浄した飲料供給系配管内に加熱水蒸気又は熱水を流すことによって高温での殺菌処理が行われる。
 これに対して本発明者らは、CIP処理とSIP処理とを同時に行うことにより、SIP処理に必要な時間を短縮できることを見出した(特許文献3)。
 本開示は、低コストの設備を用いてCIP処理とSIP処理とを同時に行うことが可能な、飲料充填システム及びCIP処理方法を提供する。
 一実施の形態による炭酸飲料充填システムは、飲料を充填する飲料充填システムであって、前記飲料を供給する飲料供給系配管と、前記飲料供給系配管に連結された飲料充填機と、前記飲料充填機に連結され、CIP処理時に前記飲料充填機から流出した洗浄液を、前記飲料供給系配管側に向けて送液し、循環させるCIP循環系配管と、前記飲料充填システムを制御する制御部と、を備え、前記CIP循環系配管に、前記CIP循環系配管を流れる前記洗浄液を加熱するヒータと、前記ヒータで加熱された前記洗浄液が通過するホールディングチューブとが設けられ、前記ヒータで加熱した前記洗浄液は、前記ホールディングチューブ内を所定の滞留時間以上かけて通過するように設定されている。
 一実施の形態による炭酸飲料充填システムにおいて、前記CIP循環系配管の前記ホールディングチューブの出口側に温度計を設け、前記制御部は、前記温度計の温度に基づいて演算されたF値を監視しても良い。
 一実施の形態による炭酸飲料充填システムにおいて、前記ホールディングチューブ内を前記洗浄液が通過するのに要する時間は、前記飲料の殺菌に必要とされるF値に基づいて予め定められていても良い。
 一実施の形態による炭酸飲料充填システムにおいて、前記洗浄液は、前記ヒータ内で85℃以上150℃未満に加熱されても良い。
 一実施の形態による炭酸飲料充填システムにおいて、前記飲料供給系配管にアセプティックタンクが設けられ、前記ホールディングチューブの出口側の前記CIP循環系配管と、前記アセプティックタンクの出口側の前記飲料供給系配管とを連結するバイパス流路が設けられ、前記バイパス流路は、前記アセプティックタンクを介することなく、前記洗浄液を前記ホールディングチューブ側から前記アセプティックタンクの出口側の前記飲料供給系配管に流しても良い。
 一実施の形態によるCIP処理方法は、飲料を充填する飲料充填システムをCIP処理するCIP処理方法であって、前記飲料充填システムは、前記飲料を供給する飲料供給系配管と、前記飲料供給系配管に連結された飲料充填機と、前記飲料充填機に連結され、CIP処理時に前記飲料充填機から流出した洗浄液を、前記飲料供給系配管側に向けて送液し、循環させるCIP循環系配管と、を有し、前記CIP処理方法は、前記CIP循環系配管を流れる前記洗浄液をヒータにより加熱する工程と、前記ヒータで加熱された前記洗浄液を、ホールディングチューブ内を通過させる工程と、を備え、前記ヒータで加熱された前記洗浄液は、前記ホールディングチューブ内を所定の滞留時間以上かけて通過するように設定されている。
 本開示によれば、低コストの設備を用いてCIP処理とSIP処理とを同時に行うことができる。
図1は、一実施の形態による飲料充填システムの構成を示す概略図。 図2は、一実施の形態による飲料充填システムの飲料充填機及びその周囲における流体の流れを示す概略図。 図3は、一実施の形態による飲料充填システムの飲料充填機の充填ノズルを示す概略断面図。 図4は、飲料充填システムのうちCIP洗浄する流路を示す概略図。 図5は、充填ノズルにおいて、第1のCIP処理時にCIP洗浄される流路を示す概略断面図。 図6は、充填ノズルにおいて、第2のCIP処理時にCIP洗浄される流路を示す概略断面図。 図7は、充填ノズルにおいて、第3のCIP処理時にCIP洗浄される流路を示す概略断面図。
 以下、一実施の形態について、図1乃至図7を参照して説明する。図1乃至図7は一実施の形態を示す図である。なお、以下の各図において、同一部分には同一の符号を付しており、一部詳細な説明を省略する場合がある。
 (飲料充填システム)
 まず図1及び図2により本実施の形態による飲料充填システムの全体の構成について説明する。
 図1に示す飲料充填システム(無菌充填システム)10は、炭酸飲料及び非炭酸飲料兼用のシステムである。すなわち飲料充填システム10は、ボトル(容器)30(図2参照)に対して炭酸飲料からなる飲料と非炭酸飲料からなる飲料との両方を択一的に充填可能な無菌充填システムである。ボトル30は、合成樹脂材料を射出成形して製作したプリフォームを二軸延伸ブロー成形することにより作製できる。ボトル30の材料としては、熱可塑性樹脂、特にPE(ポリエチレン)、PP(ポリプロピレン)、PET(ポリエチレンテレフタレート)、又はPEN(ポリエチレンナフタレート)を使用することが好ましい。このほか、容器としては、紙容器、ガラス瓶、缶等であっても良い。また容器としては、プラスチック容器、紙容器、ガラス瓶、缶等を2種以上組合せた複合容器であっても良い。本実施の形態においては、容器としてプラスチックボトルを用いる場合を例にとって説明する。
 図1に示すように、飲料充填システム10は、飲料殺菌装置41と、アセプティックタンク42と、炭酸飲料生成ユニット44と、飲料充填機(フィラー)20と、を備えている。
 このうち飲料殺菌装置41は、例えば果汁や乳成分などの動植物由来の成分を含む原料液を殺菌する。飲料殺菌装置41は、例えば超高温瞬間殺菌装置(UHT:Ultra High-temperature)からなっていても良い。
 アセプティックタンク42は、飲料殺菌装置41で殺菌された殺菌済み飲料を一時的に貯留する。なお、必ずしもアセプティックタンク42を設けなくても良く、飲料殺菌装置41からの殺菌済み飲料が炭酸飲料生成ユニット44又は飲料充填タンク75に直接供給されても良い。
 アセプティックタンク42と飲料充填タンク75との間には、第1ポンプ51が設けられている。第1ポンプ51は、アセプティックタンク42からの飲料等の液体を飲料充填タンク75側に送液する。なお、第1ポンプ51を設けず、アセプティックタンク42からの圧力で飲料等の液体を飲料充填タンク75側に送液しても良い。
 炭酸飲料生成ユニット44は、飲料充填機20で炭酸飲料を充填する場合に用いられる。炭酸飲料生成ユニット44は、飲料殺菌装置41からの飲料に炭酸ガスを注入することにより、飲料に炭酸ガスを溶解し、無菌炭酸飲料を作製する。炭酸飲料生成ユニット44は、例えば飲料冷却装置及びカーボネータを含んでいても良い。
 また、飲料殺菌装置41、アセプティックタンク42、炭酸飲料生成ユニット44及び飲料充填機20は、飲料供給系配管65によって連結されている。飲料供給系配管65は、飲料充填機20に飲料を供給する配管であり、飲料供給系配管65の内部には、飲料が順次通過する。また、後述するCIP処理を行う際には、洗浄液が飲料供給系配管65の内部を通過する。
 飲料充填機20には、CIP循環系配管81が連結されている。このCIP循環系配管81は、CIP処理時に飲料充填機20から流出した洗浄液を、飲料供給系配管65側に向けて送液し、循環させるラインである。CIP循環系配管81は、飲料充填機20と、飲料供給系配管65の途中とを連結している。CIP循環系配管81には、飲料充填機20側から順に、第2ポンプ52と、熱交換器61と、CIPタンク85と、第3ポンプ91と、ヒータ93と、ホールディングチューブ62とが設けられている。
 第2ポンプ52は、飲料充填機20からの洗浄液をCIPタンク85又は後述する熱交換器61の出口流路61b側に送液する。
 第2ポンプ52とCIPタンク85との間には、熱交換器61が設けられている。熱交換器61は、飲料充填システム10の洗浄時に外部から無菌水等の液体が流入する入口流路61aと、飲料充填機20からの排液が流出する出口流路61bとを有する。入口流路61aから供給された無菌水等の液体は、熱交換器61の内部で飲料充填機20からの高温の排液と熱交換されることにより温度が上昇する。これにより、ヒータ93で無菌水等を含む洗浄液の温度を上昇させるのに必要なエネルギーを低減できる。なお、CIP循環系配管81内で洗浄液を循環させる場合には、洗浄液は、熱交換器61を迂回する熱交換器バイパス流路61cを流れる。
 CIPタンク85は、飲料充填機20からの洗浄液を一時的に貯留する。CIPタンク85と第3ポンプ91との間には、CIP循環系配管81に対してアルカリ性洗浄液を供給する洗浄液供給源63が接続されている。また第3ポンプ91は、CIPタンク85からの洗浄液をヒータ93側に送液する。洗浄液供給源63は、アルカリ性洗浄液に代えて、酸洗浄液や脱臭剤等その他の洗浄液を供給しても良い。
 ヒータ93は、CIP循環系配管81を流れる洗浄液を加熱する。このヒータ93としては、例えばプレート式熱交換器やシェルアンドチューブ式熱交換器を用いることができる。ヒータ93は、洗浄液を例えば80℃以上150℃以下、あるいは85℃以上100℃以下、好ましくは90℃以上100℃未満、更に好ましくは95℃以上100℃未満に加熱する。
 ホールディングチューブ62は、CIP循環系配管81のうちヒータ93と、CIP循環系配管81と飲料供給系配管65との接続部との間に設けられている。ホールディングチューブ62は、コイル状の曲線管や直管又はスパイラル管等を含み、その内部を流れる間に熱処理ないし滅菌処理を施す。洗浄液は、ホールディングチューブ62内を所定の滞留時間以上かけて通過するように設定されている。このようにホールディングチューブ62内に一定の滞留時間(ホールディング時間)、滅菌温度を保った状態で洗浄液が滞留することにより、洗浄液の無菌性を担保できる。
 ホールディングチューブ62と第1ポンプ51との間には、バイパス流路66が設けられている。バイパス流路66は、ホールディングチューブ62の出口側(アセプティックタンク42の入口側)のCIP循環系配管81と、アセプティックタンク42の出口側の飲料供給系配管65とを連結している。バイパス流路66は、アセプティックタンク42を介することなく、洗浄液をホールディングチューブ62側からアセプティックタンク42の出口側の飲料供給系配管65に流す。これにより、飲料供給系配管65の他の要素と切り離して、アセプティックタンク42を単独で洗浄・滅菌処理できる。例えば、後述するCIP処理の際、加熱した洗浄液をバイパス流路66を介してホールディングチューブ62側から第1ポンプ51側に流しつつ、別途、飲料殺菌装置41を通過した洗浄液によりアセプティックタンク42をCIP処理できる。
 飲料供給系配管65及びCIP循環系配管81には、温度計68a~68d及び流量計69が配置されている。温度計68a~68dは、各配管内を流れる液体の温度を測定する。流量計69は、各配管内を流れる液体の流量を測定する。具体的には、CIP循環系配管81のうち、ヒータ93の出口側に温度計68a及び流量計69が配置され、ホールディングチューブ62の出口側に温度計68bが配置されている。また飲料供給系配管65のうち、飲料充填機20の出口側に温度計68cが配置されている。さらにバイパス流路66に温度計68dが配置されている。
 制御部60は、飲料充填システム10の全体又は一部を制御する。なお、制御部60は、飲料充填システム10の各要素をそれぞれ独立して制御する複数の制御部を含んでいても良い。
 図2に示すように、飲料充填機20は、ボトル30の口部からボトル30内へ、予め殺菌処理された無菌炭酸飲料又は無菌非炭酸飲料、あるいは、殺菌処理が不要な無殺菌炭酸飲料(以下、単に「飲料」ともいう)を充填する。飲料充填機20において、空の状態のボトル30に対して飲料が充填される。この飲料充填機20において、複数のボトル30が回転(公転)されながら、ボトル30の内部へ飲料が充填される。
 ボトル30内へ充填される飲料が炭酸飲料(無菌炭酸飲料又は無殺菌炭酸飲料)である場合、炭酸飲料は1℃以上40℃以下、好ましくは5℃以上10℃以下の充填温度でボトル30内に充填される。このように炭酸飲料の充填温度を例えば1℃以上10℃以下とする理由は、炭酸飲料の液温が10℃を上回ると炭酸ガスが炭酸飲料から抜けやすくなってしまうためである。飲料充填機20で充填される炭酸飲料としては、炭酸ガスを含む各種飲料、例えば、サイダー、コーラ等の炭酸清涼飲料、ビール等のアルコール飲料等が挙げられる。
 ボトル30内へ充填される飲料が無菌非炭酸飲料である場合、飲料は1℃以上40℃以下、好ましくは10℃以上30℃以下の充填温度でボトル30内に充填される。なお、飲料充填機20で充填される無菌非炭酸飲料としては、例えば果汁や乳成分などの動植物由来の成分を含む非炭酸飲料や、動植物由来の成分を含まないミネラルウォーター等が挙げられる。
 また、飲料充填システム10は、内部が無菌状態に保持された無菌チャンバ13を有している。飲料充填機20は、無菌チャンバ13内に設けられている。また、無菌チャンバ13の外部であって、飲料充填機20の上方には、飲料充填タンク(充填ヘッドタンク、バッファータンク)75が配置されている。飲料充填タンク75の内部には飲料が充填されている。飲料充填タンク75内の圧力P1は、飲料充填タンク75に設けられた第1圧力計64によって測定されている。飲料充填タンク75は、必ずしも飲料充填機20の上部に設置する必要はなく、飲料充填機20を設置する床面に設置しても良い。
 飲料充填タンク75には、上述した飲料供給系配管65が連結されている。また飲料供給系配管65には、図1に示すようにCIP循環系配管81に連結されている。
 また、飲料充填タンク75には、飲料供給ライン73が連結されている。飲料供給ライン73は、飲料充填タンク75に充填された飲料を、後述する充填ノズル72に向けて供給する。この飲料充填タンク75は、飲料供給ライン73を介して充填ノズル72に連結されている。
 さらに、飲料充填タンク75には、カウンタガスライン74が連結されている。カウンタガスライン74は、充填される飲料が炭酸飲料である場合に用いられ、飲料充填タンク75に充填された無菌炭酸ガスを、後述する充填ノズル72に向けて供給する。この飲料充填タンク75は、カウンタガスライン74を介して充填ノズル72に連結されている。
 飲料充填タンク75とカウンタガスライン74との接続部には、カウンタガス用バルブ67が設けられている。カウンタガス用バルブ67は、飲料充填タンク75に直結されている。このカウンタガス用バルブ67は、充填される飲料が炭酸飲料である場合に開放され、充填される飲料が非炭酸飲料である場合に閉鎖される。
 飲料充填機20においては、飲料充填タンク75に充填された飲料が、空の状態のボトル30に対して充填される。飲料充填機20は、鉛直方向に平行な軸周りに回転する搬送ホイール71を有している。この搬送ホイール71によって複数のボトル30が回転(公転)されながら、ボトル30内部へ飲料が充填される。また搬送ホイール71の外周に沿って、複数の充填ノズル72が配置されている。各充填ノズル72には、それぞれ1本のボトル30が装着され、充填ノズル72からボトル30の内部に飲料が注入される。なお、充填ノズル72の構成は後述する。
 搬送ホイール71と、充填ノズル72と、飲料供給ライン73の少なくとも一部と、カウンタガスライン74の少なくとも一部とは、無菌チャンバ13の一部を構成するカバー76によって取り囲まれている。カバー76の上部にはロータリージョイント77が取り付けられている。飲料供給ライン73及びカウンタガスライン74は、ロータリージョイント77によって無菌チャンバ13のカバー76に取り付けられている。このロータリージョイント77は、回転体(搬送ホイール71、充填ノズル72、ならびに飲料供給ライン73及びカウンタガスライン74の回転配管等)と非回転体(カバー76、ならびに飲料供給ライン73及びカウンタガスライン74の固定配管等)とを、無菌状態でシールする。
 各充填ノズル72には、飲料供給ライン73及びカウンタガスライン74が連結されている。このうち飲料供給ライン73は、飲料の充填時に、その一端が飲料を充填した飲料充填タンク75に連結されるとともに、他端においてボトル30の内部に連通する。そして飲料充填タンク75から供給された飲料は、飲料供給ライン73を通過して、ボトル30の内部に注入される。
 カウンタガスライン74は、飲料の充填時に、その一端が飲料充填タンク75に連結されるとともに、他端においてボトル30の内部に連通する。飲料充填タンク75から供給される無菌炭酸ガスからなるカウンタープレッシャー用のガスは、カウンタガスライン74を通過して、ボトル30の内部に充填される。カウンタガスライン74の途中にはカウンタマニホールド(カウンタガス分岐部)53が設けられている。飲料充填タンク75からのカウンタガスライン74は、カウンタマニホールド53において複数に分岐されて、それぞれの充填ノズル72まで延在する。
 さらに、各充填ノズル72には、スニフトライン78が連結されている。スニフトライン78は、充填される飲料が炭酸飲料である場合に用いられる。スニフトライン78は、その一端がカウンタガスライン74に連結されるとともに、他端において無菌チャンバ13の外方へ延在している。このスニフトライン78を介してボトル30の内部のガスを排出可能となっている。スニフトライン78の途中にはスニフトマニホールド(スニフトライン分岐部)56が設けられている。スニフトライン78からの炭酸ガスは、スニフトマニホールド56においてまとめられて、無菌チャンバ13内に排出されるようになっている。無菌チャンバ13内のスニフトライン78には、排出弁79が設けられている。この排出弁79によって、スニフトライン78からの炭酸ガスが無菌チャンバ13内に排出される。このように、排出弁79を用いてスニフトライン78からの炭酸ガスを無菌チャンバ13内に排出する。これにより、ボトル30内の炭酸ガスを無菌空間である無菌チャンバ13内に、菌のコンタミなく排出できる。なお、スニフトマニホールド56とカウンタマニホールド53とは、第1バイパスライン54によって連結されている。第1バイパスライン54には、第1バルブ55が設けられており、通常、この第1バルブ55は閉鎖されている。スニフトライン78に排出弁79を設けずに、スニフトライン78をロータリージョイント77に接続し、炭酸ガスをロータリージョイント77から無菌チャンバ13の外部へ排出しても良い。またロータリージョイント77は、飲料充填機20の上部に設けられている場合を図示している。これに限らず、ロータリージョイント77は、飲料充填機20の下部に設置しても良い。またロータリージョイントは、飲料充填機20の上部と下部とにそれぞれ設けても良い。
 ところで、飲料充填システム10のうち、飲料が通過する流路については、定期的にあるいは飲料の種類を切り替える際に、CIP(Cleaning in Place)処理をすることが好ましい。CIP処理は、アルカリ性洗浄液を流路内に流した後、又はアルカリ性洗浄液を流路内に流す前に、酸性洗浄液を流路内に流すことによって行われる。アルカリ性洗浄液は、水に苛性ソーダ(水酸化ナトリウム)、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、リン酸ナトリウム、次亜塩素酸ナトリウム、界面活性剤及びキレート剤などを混ぜたアルカリ性薬剤を添加したものである。酸性洗浄液は、水に硝酸系やリン酸系の酸性薬剤を添加したものである。なお、アルカリ性洗浄液によるアルカリ洗浄工程と酸性洗浄液による酸洗浄工程とは、自由に組み合わせて実施しても良い。これにより、飲料が通過する流路内に付着した前回の飲料の残留物等が除去される。また、任意的にSIP(Sterilizing in Place)処理を行っても良い。SIP処理は、飲料の充填作業に入る前に、予め飲料が通過する流路内を殺菌するための処理であり、例えば、上記CIP処理で洗浄した流路内に加熱蒸気又は熱水を流すことによって行われる。これにより、飲料が通過する流路内が殺菌処理され無菌状態とされる。
 上述したCIP処理を行うために、充填ノズル72の近傍には、充填ノズル72からの洗浄液を受けるCIPカップ82が設けられている。このCIPカップ82には、CIPライン83が連結されている。CIPライン83は、その一端がCIPカップ82に連結されるとともに、他端が無菌チャンバ13の外方に配置されたCIPタンク85に連結されている。このCIPライン83を介して充填ノズル72からの洗浄液をCIPタンク85に排出可能となっている。CIPライン83はCIPマニホールド(CIPライン分岐部)59に連結されており、CIPマニホールド59はCIP循環系配管81に連結されている。CIPライン83からの洗浄液は、CIPマニホールド59でまとめて回収されて、CIP循環系配管81を介してCIPタンク85に排出される。なお、CIPマニホールド59とスニフトマニホールド56とは、第2バイパスライン57によって連結されている。第2バイパスライン57には、第2バルブ58が設けられている。通常、この第2バルブ58は閉鎖されている。
 CIPタンク85の上部には、CIPタンク85の内部のガスを排出する排気ライン89が設けられている。排気ライン89には、ガスを処理する図示しないスクラバーが連結されている。
 無菌チャンバ13のカバー76には、無菌チャンバ13内に大容量の無菌エアを送り込む無菌エア供給装置70が設けられている。この無菌エア供給装置70が、無菌チャンバ13内に無菌エアを導入する。これにより、無菌チャンバ13内と飲料充填機20の無菌エリアが全て陽圧に保持され、無菌チャンバ13内に外気が侵入することを抑止している。また、無菌エア供給装置70によって大容量の無菌エアが無菌チャンバ13内に送られる。これにより、上述したように排出弁79から無菌チャンバ13内に炭酸ガスが排出された場合でも、無菌チャンバ13内の炭酸ガス濃度が過度に上昇するおそれがない。上記目的を満たすための無菌エアの供給量は、5m/min以上100m/min以下であり、好ましくは10m/min以上50m/min以下である。
 (充填ノズル)
 次に、図3を用いて、上述した飲料充填機20の充填ノズル72の構成について説明する。なお、図3において、CIP処理時の充填ノズル72を示しており、充填ノズル72の下方にはCIPカップ82が配置されている。
 図3に示すように、充填ノズル72は、本体部72aを有している。本体部72aには、飲料供給ライン73及びカウンタガスライン74がそれぞれ連結されている。飲料供給ライン73及びカウンタガスライン74は、カバー76に設けられたロータリージョイント77を通過している。
 飲料供給ライン73は、その上端が飲料充填タンク75に連結されるとともに、下端においてCIPカップ82側に開放されている。そして飲料充填タンク75から供給された洗浄液は、飲料供給ライン73を通過して、CIPカップ82の内部に流入する。CIPカップ82の内部に流入した洗浄液は、CIPライン83を介してCIPマニホールド59に流入する。その後、洗浄液は、CIPマニホールド59から飲料充填機20の外部へ排出される。
 カウンタガスライン74は、充填される飲料が炭酸飲料である場合に用いられる。カウンタガスライン74は、その上端が飲料充填タンク75に連結されるとともに、下端においてCIPカップ82側に開放されている。カウンタガスライン74の途中には、スニフトライン78が連結されている。飲料充填タンク75から供給された洗浄液は、カウンタガスライン74を通過して、CIPカップ82の内部に流入する。あるいは、飲料充填タンク75から供給された洗浄液は、スニフトライン78を介してスニフトマニホールド56に流入する。その後、洗浄液は、スニフトマニホールド56からスニフトライン78を通過した後、排出弁79から無菌チャンバ13内へ排出される。スニフトライン78は、飲料充填機20の上部に位置するロータリージョイント77から飲料充填機20の外部へ排出しても良い(図示せず)。また、飲料充填機20の下部にロータリージョイントを別に設け、スニフトライン78からの洗浄液を飲料充填機20の外部へ排出しても良い(図示せず)。
 (無菌炭酸飲料充填方法)
 次に、上述した飲料充填システム10を用いた無菌炭酸飲料充填方法について説明する。なお、以下において、通常時における無菌炭酸飲料の充填方法、すなわち無菌炭酸飲料をボトル30に充填して製品ボトルを製造する無菌炭酸飲料充填方法について説明する。
 まず殺菌処理が行われた空のボトル30が飲料充填機20に搬送される。この飲料充填機20において、ボトル30は回転(公転)されながら、その口部からボトル30内へ無菌炭酸飲料が充填される。飲料充填機20においては、殺菌されたボトル30に、飲料充填タンク75から送られた無菌炭酸飲料が1℃以上40℃以下、好ましくは5℃以上10℃以下の充填温度で充填される。
 この間、飲料充填機20において、充填ノズル72がボトル30の口部に密着し、カウンタガスライン74とボトル30とが互いに連通する。なお、このときスニフトライン78は閉鎖されている。次に、飲料充填タンク75からカウンタガスライン74を介して、ボトル30の内部にカウンタープレッシャー用の無菌炭酸ガスが供給される。これにより、ボトル30の内圧が大気圧よりも高められ、ボトル30の内圧が飲料充填タンク75の内圧と同一の圧力となる。
 次に、飲料供給ライン73からボトル30の内部に無菌炭酸飲料が充填される。この場合、無菌炭酸飲料は、飲料充填タンク75から飲料供給ライン73を通過して、ボトル30の内部に注入される。
 続いて、飲料供給ライン73からの無菌炭酸飲料の供給を停止する。次いで、飲料供給ライン73及びカウンタガスライン74を閉鎖するとともに、スニフトライン78を開放し、スニフトライン78からボトル30の内部のガスを排出する。これにより、ボトル30の内部の圧力が大気圧と等しくなり、ボトル30への無菌炭酸飲料の充填が完了する。このとき、ボトル30からのガスは、スニフトライン78を通過した後、排出弁79から無菌チャンバ13内へ排出される。次いで、充填ノズル72がボトル30の口部から離れ、ボトル30は、図示しないキャッパへと搬送される。
 その後、飲料充填機20で無菌炭酸飲料が充填されたボトル30には図示しないキャップが装着され、これにより製品ボトルが得られる。
 なお、飲料充填システム10におけるボトル30の生産(搬送)速度は、100bpm以上かつ1500bpm以下とすることが好ましい。ここでbpm(bottle per minute)とは、1分間当たりのボトル30の搬送速度をいう。
 (無菌非炭酸飲料充填方法)
 次に、飲料充填システム10を用いた無菌非炭酸飲料充填方法について説明する。なお、以下において、通常時における無菌非炭酸飲料の充填方法、すなわち無菌非炭酸飲料をボトル30に充填して製品ボトルを製造する無菌非炭酸飲料充填方法について説明する。
 まず、殺菌処理が行われた空のボトル30が飲料充填機20に搬送される。次に、飲料充填機20において、充填ノズル72がボトル30の口部に密着しない状態で、飲料供給ライン73からボトル30の内部に無菌非炭酸飲料が充填される。無菌非炭酸飲料は、飲料充填タンク75から飲料供給ライン73を通過して、ボトル30の内部に注入される。その後、飲料供給ライン73からの無菌非炭酸飲料の供給を停止する。なお、このときカウンタガスライン74及びスニフトライン78は、それぞれカウンタガス用バルブ67及び図示しないバルブによって閉鎖されている。
 飲料充填機20で無菌非炭酸飲料が充填されたボトル30には図示しないキャップが装着され、これにより製品ボトルが得られる。
 (CIP処理方法)
 次に、飲料充填システム10において、例えば定期的にあるいは飲料の種類を切り替える際に、CIP(Cleaning in Place)処理を行う場合の作用について説明する。なお、下記のCIP処理の制御は、制御部60によって制御される。
 まず、水が熱交換器61の入口流路61aからCIP循環系配管81内に送られる。この水の循環によって、CIP循環系配管81内と、飲料供給系配管65内と、飲料充填機20内とが各々浄化される。
 続いて、図4に示すように、洗浄液供給源63からアルカリ性洗浄液が送り込まれる。このアルカリ性洗浄液が循環することによって、CIP循環系配管81内と、飲料供給系配管65内と、飲料充填機20内とが浄化される。なお、図4において、アルカリ性洗浄液が通過する流路を太線及び網掛けで示している。
 この間、アルカリ性洗浄液は、CIP循環系配管81に位置する第3ポンプ91により、ヒータ93に送り込まれる。アルカリ性洗浄液は、ヒータ93内で例えば85℃以上100℃以下、好ましくは90℃以上100℃未満、更に好ましくは95℃以上100℃未満に加熱される。この加熱されたアルカリ性洗浄液は、ホールディングチューブ62を介して飲料供給系配管65に到達する。次いで、加熱されたアルカリ性洗浄液は、アセプティックタンク42、第1ポンプ51及び飲料充填タンク75を順次介して、飲料充填機20に達する。その後、アルカリ性洗浄液は、飲料充填機20からCIP循環系配管81に流出し、第2ポンプ52、CIPタンク85及び第3ポンプ91を順次介して、再びヒータ93に送られる。このようにして、アルカリ性洗浄液により、CIP循環系配管81内と、飲料供給系配管65内と、飲料充填機20内とを所定時間循環・洗浄した後、アルカリ性洗浄液は、熱交換器61の出口流路61bから外部に排出される。
 アルカリ性洗浄液として、水酸化ナトリウム又は水酸化カリウムを0.1質量%以上10質量%以下含んだものが使用される場合は、アルカリ性洗浄液は、CIP循環系配管81に設けたヒータ93によって上記温度に加熱される。加熱されたアルカリ性洗浄液は、CIP循環系配管81、飲料供給系配管65及び飲料充填機20に各々供給される。この循環が例えば5分間以上60分間以下程度行われると、CIP循環系配管81、飲料供給系配管65及び飲料充填機20が各々適正に浄化処理される。また、同時にCIP循環系配管81、飲料供給系配管65及び飲料充填機20が各々殺菌処理され、SIP処理を別途行うことなく同時にSIP処理が行われることになる(CSIP処理)。このように、飲料充填システム10の各種機器をCIP処理により洗浄することと同時に、滅菌処理も併せて行う。これにより、SIP処理に必要な時間を短縮又はSIP処理そのものを削除できる。これにより、飲料充填システム10の製品の切り換え時間を短縮し、生産能力を向上させることができる。
 続いて、同様にして、酸性洗浄液をCIP循環系配管81内と、飲料供給系配管65内と、飲料充填機20内とに流し、CIP循環系配管81、飲料供給系配管65及び飲料充填機20の全体を酸洗浄する。その後、無菌水をCIP循環系配管81、飲料供給系配管65及び飲料充填機20の全てに対して流し、CIP循環系配管81、飲料供給系配管65及び飲料充填機20の全体を濯ぐ。このようにして、飲料が通過する流路内に付着した前回の飲料の残留物等が除去される。酸性洗浄液は、CIP循環系配管81に設けたヒータ93によって例えば85℃以上100℃以下、好ましくは90℃以上100℃未満、更に好ましくは95℃以上100℃未満に加熱される。加熱された酸性洗浄液は、CIP循環系配管81、飲料供給系配管65及び飲料充填機20に各々供給される。この循環が例えば5分間以上30分間以下行われると、CIP循環系配管81、飲料供給系配管65及び飲料充填機20が各々適正に浄化処理される。また、同時にCIP循環系配管81、飲料供給系配管65及び飲料充填機20が各々殺菌処理され、SIP処理を別途行うことなく同時にSIP処理が行われることになる(CSIP処理)。なお、酸性の洗浄液とアルカリ性洗浄液とを用いる順番は洗浄性をみて適宜判断してよく、例えばまず酸洗浄した後、アルカリ洗浄を行っても良い。あるいは、アルカリ洗浄だけを実施しても良く、酸洗浄だけを実施しても良い。
 CIP処理を完了した後に、CIP処理に使用した洗浄液をCIP循環系配管81から排出し、飲料供給系配管65及びCIP循環系配管81内に残留する洗浄液を無菌水により洗い流す。無菌水により飲料供給系配管65及びCIP循環系配管81内の洗浄液を除去し、飲料充填機20の充填ノズル72内の洗浄液が全て無菌水に置き換わった時点で、飲料供給系配管65及びCIP循環系配管81への無菌水の送液は停止される。これと同時に又はその後、アセプティックタンク42及び飲料充填タンク75内に残存する無菌水を除去しつつ、無菌エアをアセプティックタンク42及び飲料充填タンク75を含む飲料供給系配管65内に供給する。これにより、CIP処理を行ったアセプティックタンク42、飲料充填タンク75、飲料供給系配管65及びCIP循環系配管81内を陽圧に保持して無菌性を維持する。その後、陽圧を維持したまま無菌エアで、アセプティックタンク42、飲料供給系配管65、飲料充填タンク75、及び飲料充填機20内に溜まった無菌水をエアブローし、各所に設けたドレンライン(図示なし)から無菌水を除去しても良い。これにより、生産開始時に充填される飲料が薄まるリスクを解消できる。
 すすぎが終了した後、アセプティックタンク42に飲料が貯められ、続いて飲料が飲料供給系配管65を通って飲料充填機20に達し、ボトル30内へ飲料の充填作業を行う製造工程が開始される。
 (CIP洗浄液の加熱方法)
 次に、上述したCIP処理時における、アルカリ性洗浄液又は酸性洗浄液(以下、CIP洗浄液ともいう)を加熱するCIP洗浄液の加熱方法について声明する。
 上述したように、CIP洗浄液は、CIP循環系配管81のヒータ93に送り込まれ、ヒータ93内で例えば85℃以上100℃未満、好ましくは90℃以上100℃未満、更に好ましくは95℃以上100℃未満に加熱される。この加熱されたCIP洗浄液は、ホールディングチューブ62を介して飲料供給系配管65に供給される。CIP洗浄液は、ホールディングチューブ62内を通過するのに一定時間(滞留時間)以上を要し、この間、所定温度以上を維持する。
 ホールディングチューブ62内を通過するCIP洗浄液の殺菌の程度については、F値によって管理されても良い。例えば、ホールディングチューブ62内にCIP洗浄液を流しつつ、ホールディングチューブ62の出口側に配置された温度計68bを用いてCIP洗浄液の温度を測定しても良い。この場合、制御部60に温度計68bからの温度情報が一定時間間隔で送られる。制御部60は、温度計68bからの温度情報に基づいて、その時点でのF値を演算する。ここでF値とは、細菌を一定時間加熱したとき、全ての細菌を死滅させるのに要する加熱時間である。F値は、基準温度における細菌の致死時間で示され、下記の式によって算出される。
Figure JPOXMLDOC01-appb-M000001
 上記式中、Tは温度計68bで測定された温度(℃)、10^{(T-Tr)/Z}は殺菌温度Tでの致死率、Trは基準温度(℃)、ZはZ値(℃)を表す。またt(分)はホールディングチューブ62内をCIP洗浄液が通過するのに要する(最小)滞留時間であり、予め所定の値として定められている。あるいは、流量計69とホールディングチューブ62の体積量より洗浄液が実際に通過した時間をリアルタイムに計測した値をt1(分)としても良い。
 制御部60は、出口側の温度計68bの温度に基づいて演算されたF値を監視し、この値が所定値以上を維持していれば、CIP処理を続行する。すなわち、制御部60は、温度計68bから一定時間間隔で送られた温度情報に基づき、10^{(T-Tr)/Z}の値を積算していく。そして現在の時点からその直前t(分)間における当該積算値をその時点におけるF値とする。制御部60は、このF値が所定値以上を維持していれば、ホールディングチューブ62内を通過するCIP洗浄液の無菌性が担保されているとして、CIP処理を続行する。一方、制御部60は、F値が所定値を下回った場合、何らかのトラブルが発生し、CIP洗浄液の無菌性が担保されなくなったと判断して、CIP処理を停止しても良い。また、F値を所定値より下回った場合のみ、殺菌不良の洗浄液を飲料供給系配管65に供給せずに、図示しないブローバルブより排液しても良い。その後F値が所定値に戻った後、飲料供給系配管65に送液しても良い。
 一例として、例えばボトル30に充填する飲料のpHが4以上4.6未満のときは、基準温度Tr=85℃、Z値=5℃として殺菌温度条件を決定しても良い。すなわち、pHが4以上4.6未満の飲料を殺菌するのに必要な殺菌価は、食品衛生法で85℃で30分間の加熱と同等以上(F85≧30)と規定されている。Z=5℃を用いた場合、95℃であれば、0.3分間(18秒間)の加熱で同等の殺菌価を実現することが可能である。このため、ホールディングチューブ62内をCIP洗浄液が通過するのに要する(最小)滞留時間t(分)を0.3分(18秒)に設定し、出口側の温度計68bの温度Tが95℃以上を維持していれば、F値が30以上を維持しており、CIP洗浄液の無菌性が担保されていると考えることができる。殺菌効果をより高めるために、Z=8℃、10℃を用いた場合、ホールディングチューブ62内をCIP洗浄液が通過するのに要する(最小)滞留時間t(分)をそれぞれ1.7分(101秒)、3分(180秒)に設定しても良い。この場合、出口側の温度計68bの温度Tが95℃以上を維持していれば、F値が30以上を維持しており、CIP洗浄液の無菌性が担保されていると考えられる。これにより、無菌性が担保されたCIP洗浄液を飲料供給系配管65に供給できる。
 また、この場合、CIP循環系配管81を通過するCIP洗浄液が100℃超に昇温させる必要がないため、CIP循環系配管81に配置された各タンク等を、労働安全衛生法施行令で定める第二種圧力容器として取り扱うことができる。これにより、CIP循環系配管81に配置された各タンク等を、労働安全衛生法施行令で定める第一種圧力容器とする場合と比較して、CIP処理に必要な各種設備を低コストで実施できる。なお、CIP処理をより効率良く行うために、高コストではあるが、各タンク等を第一種圧力容器に変更して、100℃以上の水でCIP処理しても良い。
 このように、ホールディングチューブ62内をCIP洗浄液が通過するのに要する(最小)滞留時間t(分)は、飲料の殺菌に必要とされるF値と、Z値と、基準温度Trとに基づいて予め定めておくことができる。例えば、上記滞留時間tは、0.05分以上10分以下とすることが好ましく、0.1分以上3分以下とすることがさらに好ましい。基準温度Trは、CIP循環系配管81に配置された各タンク等を第二種圧力容器とするため、100℃未満とすることが好ましく、97℃以下とすることがさらに好ましい。また基準温度Trは、上記滞留時間tを必要以上に長くしないようにするため、87℃以上とすることが好ましく、90℃以上とすることがさらに好ましい。
 上記F値の演算式において、製品液である飲料の種類に応じて基準温度Tr、Z値は変更可能である。例えば、製品液のpHが4未満のときは基準温度Tr=65℃、Z値=5℃とすることができる。すなわち、緑茶飲料、ミネラルウォーター、チルド飲料等、製品液の微生物発育特性、流通温度等に合わせて上記演算式に代入する値を適宜変更することも可能である。
 なお、殺菌の方法は上述したようにF値を算出して殺菌する方法に限らず、例えば従来から知られているように温度と時間を用いた殺菌方法を採用しても構わない。
 (飲料充填機のCIP処理方法)
 次に、上述したCIP処理時における、飲料充填機20のCIP処理方法について具体的に説明する。
 本実施の形態において、飲料充填機20については、第1の配管系統をCIP処理する第1のCIP処理と、第2の配管系統をCIP処理する第2のCIP処理とを順次行う。さらに第3の配管系統をCIP処理する第3のCIP処理を行っても良い。第1の配管系統と第2の配管系統と第3の配管系統とは、互いに異なる配管系統であるが、一部が共通する流路を含んでいても良い。第1の配管系統、第2の配管系統及び第3の配管系統は、それぞれ飲料充填時に液体を流す流路であっても良く、気体を流す流路であっても良い。 
 第1の配管系統は、飲料充填機20内の配管系統であって、少なくとも飲料供給ライン73を含む。また第2の配管系統は、飲料充填機20内の配管系統であって、少なくともカウンタガスライン74を含む。また第3の配管系統は、飲料充填機20内の配管系統であって、少なくともスニフトライン78を含む。
 図5乃至図7は、それぞれ第1のCIP処理(第1のCIP処理工程)、第2のCIP処理(第2のCIP処理工程)及び第3のCIP処理(第3のCIP処理工程)を行う際のCIP洗浄液の流れを示している。図5乃至図7において、CIP洗浄液が通過する流路を太線で示しており、CIP洗浄液が通過しない流路を細線で示している。
 図5に示すように、第1のCIP処理時において、CIP洗浄液は、飲料供給系配管65から流入し、飲料充填タンク75を介して、飲料充填機20に流入する。飲料充填機20において、CIP洗浄液は、飲料供給ライン73、充填ノズル72、CIPカップ82、CIPライン83、CIPマニホールド59を経由し、飲料充填機20から流出する。その後、CIP洗浄液は、CIP循環系配管81を経て、CIPタンク85に流入する。この場合、第1の配管系統は、飲料充填機20の飲料供給ライン73、充填ノズル72、CIPカップ82、CIPライン83及びCIPマニホールド59を含む。なお、第1のCIP処理時において、CIP洗浄液は、カウンタガスライン74及びスニフトライン78を流れないが、これに限らず、CIP洗浄液が、カウンタガスライン74の一部又はスニフトライン78の一部を流れても良い。
 図6に示すように、第2のCIP処理時において、CIP洗浄液は、飲料供給系配管65から流入し、飲料充填タンク75を介して、飲料充填機20に流入する。飲料充填機20において、CIP洗浄液は、カウンタガスライン74、カウンタマニホールド53、充填ノズル72、CIPカップ82、CIPライン83、CIPマニホールド59を経由し、飲料充填機20から流出する。その後、CIP洗浄液は、CIP循環系配管81を経て、CIPタンク85に流入する。この場合、第2の配管系統は、飲料充填機20のカウンタマニホールド53、カウンタガスライン74、充填ノズル72、CIPカップ82、CIPライン83、CIPマニホールド59を含む。なお、第2のCIP処理時において、CIP洗浄液は、飲料供給ライン73及びスニフトライン78を流れないが、これに限らず、CIP洗浄液が、飲料供給ライン73の一部又はスニフトライン78の一部を流れても良い。
 図7に示すように、第3のCIP処理時において、CIP洗浄液は、飲料供給系配管65から流入し、飲料充填タンク75及びカウンタガスライン74の一部を介して、飲料充填機20に流入する。飲料充填機20において、CIP洗浄液は、カウンタマニホールド53、第1バイパスライン54、スニフトマニホールド56、スニフトライン78、充填ノズル72、CIPカップ82、CIPライン83、CIPマニホールド59を経由し、飲料充填機20から流出する。その後、CIP洗浄液は、CIP循環系配管81を経て、CIPタンク85に流入する。なお、飲料充填機20において、CIP洗浄液は、スニフトマニホールド56から第2バイパスライン57を介してCIPマニホールド59へも流れ込む。この場合、第3の配管系統は、飲料充填機20のカウンタマニホールド53、第1バイパスライン54、第2バイパスライン57、スニフトマニホールド56、スニフトライン78、充填ノズル72、CIPカップ82、CIPライン83、CIPマニホールド59を含む。なお、第2のCIP処理時において、CIP洗浄液は、飲料供給ライン73を流れないが、これに限らず、CIP洗浄液が、飲料供給ライン73の一部を流れても良い。
 上記第1のCIP処理、第2のCIP処理及び第3のCIP処理の切り換えは、制御部60により、各流路の図示しないバルブを適宜オン/オフ制御することにより行われる。この場合、第1のCIP処理、第2のCIP処理及び第3のCIP処理は、それぞれ全ての充填ノズル72に対して行われる。これにより、流路やポンプ等を変更することなく、全ての流路を完全に殺菌可能という効果が得られる。
 なお、上記第1のCIP処理、第2のCIP処理及び第3のCIP処理は、この順番で行っても良く、これ以外の順番で行っても良い。また第1のCIP処理、第2のCIP処理及び第3のCIP処理は、互いに同一の時間ずつ行っても良く、互いに異なる時間行っても良い。なお、第2の配管系統がカウンタガスライン74とスニフトライン78との両方を含んでも良い。この場合、第3のCIP処理を行うことなく、第1の配管系統をCIP処理する第1のCIP処理と、カウンタガスライン74とスニフトライン78とを含む第2の配管系統をCIP処理する第2のCIP処理とを行っても良い。
 第1の配管系統、第2の配管系統及び第3の配管系統に含まれる流路は、上記に限らず、飲料充填機20内の任意の流路の組合せとすることができる。また、第1の配管系統、第2の配管系統及び第3の配管系統に加え、これらと異なる1つ又は複数の他の配管系統が設けられていても良い。この場合、第1のCIP処理、第2のCIP処理及び第3のCIP処理に加え、1つ又は複数のCIP処理が行われても良い。なお、飲料充填機20内の全ての流路が、第1の配管系統、第2の配管系統及び第3の配管系統を含む複数の配管系統のうち、少なくともいずれかに含まれることが好ましい。
 第1の配管系統、第2の配管系統及び第3の配管系統を流れるCIP洗浄液の流量は、ポンプの能力や、各配管の径等に基づいて適宜設定されることが好ましい。具体的には、第1の配管系統、第2の配管系統及び第3の配管系統のうち、最も流量の小さい配管系統を流れるCIP洗浄液の流量(L/min)は、最も流量の大きい配管系統を流れるCIP洗浄液の流量(L/min)の10%以上としても良く、20%以上とすることが好ましい。また、第1の配管系統、第2の配管系統及び第3の配管系統のうち、最も流量の小さい配管系統を流れるCIP洗浄液の流量(L/min)は、最も流量の大きい配管系統を流れるCIP洗浄液の流量(L/min)の100%以下であり、90%以下としても良い。
 このように飲料充填機20内を順次CIP処理している間、制御部60は、飲料充填機20の入口側の温度Taと出口側の温度Tbとをそれぞれ監視する。具体的には、飲料充填機20の入口側の温度Taは、温度計68bによって監視されても良い。出口側の温度Tbは、温度計68cによって監視されても良い。上述したように、CIP処理中、第1の配管系統、第2の配管系統及び第3の配管系統のうちいずれかの配管系統のみがCIP処理され、他の配管系統はCIP処理が行われない。すなわち、CIP処理中、飲料充填機20内にはCIP洗浄液が流れない管路が存在する。これに対して、制御部60は、CIP処理中、温度Ta、Tbが所定の閾値温度以上を維持していれば、その時点でCIP洗浄液が流れていない管路についても無菌性を維持していると判断し、CIP処理を続行できる。仮に、上記管路が開放されたとしても、無菌チャンバ13内の殺菌が完了していれば、CIP洗浄液が流れていない管路の温度が低下し、配管内が陰圧になった場合も、理論上上記管路が無菌状態が維持できていると言える。すなわち、飲料充填機20に、CIP洗浄液が流れておらず、温度が閾値温度未満となっている管路があったとしても、当該管路が非無菌状態の雰囲気に対して開放されない。このため、当該管路に菌が混入することが抑えられ、無菌状態を維持していると判断できる。なお、制御部60は、CIP処理中、温度Ta、Tbが所定の閾値温度未満となった場合には、CIP処理を中止しても良い。閾値温度としては、85℃以上100℃未満の所定の温度としても良く、一例として90℃としても良い。また、CIP洗浄液が充填ノズル72よりも2次(下流)側(スニフトライン78、スニフトマニホールド56、CIPマニホールド59、CIP循環系配管81)を通過することで放熱し、飲料充填機20の出口側の温度Tbが所定の閾値温度を下回る場合がある。この場合、充填ノズル72に設置してある温度計68e(図2参照)で測定したCIP洗浄液の温度を、出口側の温度Tbとして代用しても良い。具体的には、全ての充填ノズル72に設置した温度計68eで測定したCIP洗浄液の最低温度を、温度Tbとして代用すると良い。また、温度計68eの設置場所は、充填ノズル72に限らず、スニフトライン78、スニフトマニホールド56、CIPマニホールド59及びCIP循環系配管81のうちの少なくともいずれかに設置しても良い。
 このように本実施の形態によれば、飲料供給ライン73を含む第1の配管系統をCIP処理する第1のCIP処理(図5)と、カウンタガスライン74を含む第2の配管系統をCIP処理する第2のCIP処理(図6)と、スニフトライン78を含む第3の配管系統をCIP処理する第3のCIP処理(図7)とを行う。これにより、炭酸飲料用の飲料充填機20を効率良く迅速にCIP処理できる。すなわち、炭酸飲料用の飲料充填機20において、充填ノズル72の周辺には非炭酸飲料用の充填ノズルと比べて流路が多く存在し、複雑な構造をもつ。このため、充填ノズル72の周辺にある全ての流路を一度にCIP洗浄液で満たすことは難しい。これは、充填ノズル72の周辺にある全ての流路をCIP洗浄液で満たそうとすると、飲料供給系配管65及びCIP循環系配管81に存在するポンプ51、52、91等の能力が不足したり、各配管の圧力損失の影響を受けたりするためである。この場合、ポンプを増強したり、配管を太くしたり、バルブを大型化する等、設備を改造することも考えられるが、これはコスト等の面からも現実的ではない。本実施の形態によれば、CIP処理時に飲料充填機20内の配管を複数の配管系統に分け、これらの配管を順次CIP処理していく。これにより、飲料充填システム10に対して大幅な設備改造を施すことなく、炭酸飲料用の飲料充填機20を効率良くCIP処理することが可能となる。
 上記においては、SIP処理を別途行うことなく同時にCIP処理とSIP処理が行われる場合を例にとって説明した(CSIP処理)。これに限らず、CIP処理の後に、SIP処理を行っても良い。このSIP処理は、飲料の充填作業に入る前に、予め飲料が通過する流路内を殺菌するための処理である。SIP処理は、例えば、上記CIP洗浄で洗浄した流路内に加熱蒸気又は熱水を流すことによって行われる。これにより、飲料が通過する流路内が殺菌処理され無菌状態とされる。
 また上記においては、CIP処理はアルカリ性洗浄液や酸性洗浄液を循環しながら、洗浄と殺菌を同時に行うCSIP処理の場合を例にとって説明したが、CIP洗浄液を循環した後のすすぎ工程で、無菌性を担保した水を飲料供給系配管65に供給し、CIP洗浄液を濯ぎながらSIP処理を行っても良い。
 また本実施の形態によれば、CIP循環系配管81にヒータ93及びホールディングチューブ62を設け、ヒータ93で加熱したCIP洗浄液が、ホールディングチューブ62内を所定の滞留時間以上かけて通過するように設定されている。これにより、CIP洗浄液の無菌性を担保でき、無菌性が担保されたCIP洗浄液を飲料供給系配管65に供給できる。
 また本実施の形態によれば、CIP循環系配管81のホールディングチューブ62の出口側に温度計68bを設け、制御部60は、温度計68bの温度に基づいて演算されたF値を監視する。これにより、制御部60は、F値が所定値以上を維持していれば、ホールディングチューブ62内を通過するCIP洗浄液の無菌性が担保されていると判断できる。また、F値によりCIP洗浄液の無菌性を管理することにより、必要以上に長い時間CIP処理を行う必要がなくなり、飲料充填システム10の製品の切り換え時間を短縮し、生産能力を向上させることができる。
 上記において、飲料充填システムとして、無菌充填方式を用いる飲料充填システム10を例にとって説明したが、これに限られるものではない。飲料充填システムとしては、例えば55℃以上95℃以下の高温下で飲料を充填するホット充填方式を用いる飲料充填システムであっても良い。チルド飲料やアルコール飲料など、CIP処理の後、SIP処理(微生物の不活性化)する飲料充填システムであれば適用可能である。
 上記実施の形態及び変形例に開示されている複数の構成要素を必要に応じて適宜組合せることも可能である。あるいは、上記実施の形態及び変形例に示される全構成要素から幾つかの構成要素を削除してもよい。

Claims (6)

  1.  飲料を充填する飲料充填システムであって、
     前記飲料を供給する飲料供給系配管と、
     前記飲料供給系配管に連結された飲料充填機と、
     前記飲料充填機に連結され、CIP処理時に前記飲料充填機から流出した洗浄液を、前記飲料供給系配管側に向けて送液し、循環させるCIP循環系配管と、
     前記飲料充填システムを制御する制御部と、を備え、
     前記CIP循環系配管に、前記CIP循環系配管を流れる前記洗浄液を加熱するヒータと、前記ヒータで加熱された前記洗浄液が通過するホールディングチューブとが設けられ、
     前記ヒータで加熱した前記洗浄液は、前記ホールディングチューブ内を所定の滞留時間以上かけて通過するように設定されている、飲料充填システム。
  2.  前記CIP循環系配管の前記ホールディングチューブの出口側に温度計を設け、前記制御部は、前記温度計の温度に基づいて演算されたF値を監視する、請求項1に記載の飲料充填システム。
  3.  前記ホールディングチューブ内を前記洗浄液が通過するのに要する時間は、前記飲料の殺菌に必要とされるF値に基づいて予め定められている、請求項2に記載の飲料充填システム。
  4.  前記洗浄液は、前記ヒータ内で85℃以上150℃未満に加熱される、請求項1乃至3のいずれか一項に記載の飲料充填システム。
  5.  前記飲料供給系配管にアセプティックタンクが設けられ、前記ホールディングチューブの出口側の前記CIP循環系配管と、前記アセプティックタンクの出口側の前記飲料供給系配管とを連結するバイパス流路が設けられ、前記バイパス流路は、前記アセプティックタンクを介することなく、前記洗浄液を前記ホールディングチューブ側から前記アセプティックタンクの出口側の前記飲料供給系配管に流す、請求項1乃至4のいずれか一項に記載の飲料充填システム。
  6.  飲料を充填する飲料充填システムをCIP処理するCIP処理方法であって、
     前記飲料充填システムは、前記飲料を供給する飲料供給系配管と、前記飲料供給系配管に連結された飲料充填機と、前記飲料充填機に連結され、CIP処理時に前記飲料充填機から流出した洗浄液を、前記飲料供給系配管側に向けて送液し、循環させるCIP循環系配管と、を有し、
     前記CIP処理方法は、
     前記CIP循環系配管を流れる前記洗浄液をヒータにより加熱する工程と、
     前記ヒータで加熱された前記洗浄液を、ホールディングチューブ内を通過させる工程と、を備え、
     前記ヒータで加熱された前記洗浄液は、前記ホールディングチューブ内を所定の滞留時間以上かけて通過するように設定されている、CIP処理方法。
PCT/JP2021/047205 2020-12-25 2021-12-21 飲料充填システム及びcip処理方法 WO2022138611A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21910754.7A EP4269323A1 (en) 2020-12-25 2021-12-21 Beverage filling system and cip processing method
US18/259,110 US20240051808A1 (en) 2020-12-25 2021-12-21 Beverage filling system and cip processing method
CN202180087389.6A CN116685553A (zh) 2020-12-25 2021-12-21 饮料填充系统和cip处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-217151 2020-12-25
JP2020217151A JP7302588B2 (ja) 2020-12-25 2020-12-25 飲料充填システム及びcip処理方法

Publications (1)

Publication Number Publication Date
WO2022138611A1 true WO2022138611A1 (ja) 2022-06-30

Family

ID=82159308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047205 WO2022138611A1 (ja) 2020-12-25 2021-12-21 飲料充填システム及びcip処理方法

Country Status (5)

Country Link
US (1) US20240051808A1 (ja)
EP (1) EP4269323A1 (ja)
JP (1) JP7302588B2 (ja)
CN (1) CN116685553A (ja)
WO (1) WO2022138611A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116116844A (zh) * 2023-02-02 2023-05-16 海洋之星宠物食品(佛山)有限公司 一种宠物粮鲜肉处理设备的清洗系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302325A (ja) 2006-05-15 2007-11-22 Mitsubishi Heavy Industries Food & Packaging Machinery Co Ltd 液体の無菌充填装置及び無菌充填方法
JP2010006429A (ja) 2008-06-27 2010-01-14 Shibuya Kogyo Co Ltd 充填装置の洗浄方法および充填装置
WO2014098058A1 (ja) 2012-12-21 2014-06-26 大日本印刷株式会社 飲料の充填方法
JP2019023115A (ja) * 2018-11-22 2019-02-14 大日本印刷株式会社 無菌充填装置及びその浄化方法
JP2019147625A (ja) * 2016-04-07 2019-09-05 大日本印刷株式会社 飲料充填装置の洗浄・殺菌方法及び装置
WO2019245019A1 (ja) * 2018-06-21 2019-12-26 大日本印刷株式会社 炭酸飲料無菌充填システム、飲料充填システム及びcip処理方法
JP2020070067A (ja) * 2018-10-31 2020-05-07 大日本印刷株式会社 加熱殺菌システムの洗浄方法および洗浄装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414036A (en) * 1981-09-18 1983-11-08 Anderson Frank E Sanitizer system and sanitizing method for carbonated beverage container filler machine
US4989649A (en) * 1989-09-14 1991-02-05 Automatic Liquid Packaging, Inc. Fill machine sterilization process
FI110237B (fi) * 2000-06-06 2002-12-31 Rescontrol Oy Menetelmä ja järjestelmä juomien jakelulinjan pesemiseksi sekä järjestelmässä käytettävä tunnistinyksikkö
JP5574025B1 (ja) * 2013-06-25 2014-08-20 大日本印刷株式会社 飲料供給系配管の殺菌方法及び装置
EP3180746A4 (en) * 2014-08-15 2018-01-24 Ecolab USA Inc. Cip wash summary and library
WO2017047691A1 (ja) * 2015-09-17 2017-03-23 大日本印刷株式会社 無菌充填装置及びその浄化方法
EP3881946B1 (en) * 2015-12-22 2023-09-27 Dai Nippon Printing Co., Ltd. Method of cleaning and sterilizing a product filling apparatus
JP6521396B2 (ja) * 2017-07-04 2019-05-29 大日本印刷株式会社 無菌充填システム
JP6696516B2 (ja) * 2018-01-16 2020-05-20 大日本印刷株式会社 飲料充填装置の洗浄・殺菌方法
JP6760343B2 (ja) * 2018-08-31 2020-09-23 大日本印刷株式会社 無菌充填機及びその浄化方法
WO2021230342A1 (ja) * 2020-05-15 2021-11-18 大日本印刷株式会社 無菌充填機の洗浄・殺菌方法及び無菌充填機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302325A (ja) 2006-05-15 2007-11-22 Mitsubishi Heavy Industries Food & Packaging Machinery Co Ltd 液体の無菌充填装置及び無菌充填方法
JP2010006429A (ja) 2008-06-27 2010-01-14 Shibuya Kogyo Co Ltd 充填装置の洗浄方法および充填装置
WO2014098058A1 (ja) 2012-12-21 2014-06-26 大日本印刷株式会社 飲料の充填方法
JP2019147625A (ja) * 2016-04-07 2019-09-05 大日本印刷株式会社 飲料充填装置の洗浄・殺菌方法及び装置
JP2020023370A (ja) * 2016-04-07 2020-02-13 大日本印刷株式会社 飲料充填装置の洗浄・殺菌方法及び装置
WO2019245019A1 (ja) * 2018-06-21 2019-12-26 大日本印刷株式会社 炭酸飲料無菌充填システム、飲料充填システム及びcip処理方法
JP2020070067A (ja) * 2018-10-31 2020-05-07 大日本印刷株式会社 加熱殺菌システムの洗浄方法および洗浄装置
JP2019023115A (ja) * 2018-11-22 2019-02-14 大日本印刷株式会社 無菌充填装置及びその浄化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116116844A (zh) * 2023-02-02 2023-05-16 海洋之星宠物食品(佛山)有限公司 一种宠物粮鲜肉处理设备的清洗系统
CN116116844B (zh) * 2023-02-02 2023-12-29 海洋之星宠物食品(佛山)有限公司 一种宠物粮鲜肉处理设备的清洗系统

Also Published As

Publication number Publication date
CN116685553A (zh) 2023-09-01
JP2022102429A (ja) 2022-07-07
EP4269323A1 (en) 2023-11-01
JP7302588B2 (ja) 2023-07-04
US20240051808A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
JP6044651B2 (ja) 包装体の製造方法及び装置
JP6517177B2 (ja) 無菌炭酸飲料充填システム及び無菌炭酸飲料充填方法
WO2019245019A1 (ja) 炭酸飲料無菌充填システム、飲料充填システム及びcip処理方法
JP6379233B2 (ja) 炭酸飲料無菌充填システム
JP6449357B2 (ja) 飲料無菌充填システム
JP2021119087A (ja) 炭酸飲料無菌充填システム
JP6849009B2 (ja) 飲料充填システム及びcip処理方法
WO2022138611A1 (ja) 飲料充填システム及びcip処理方法
JP7070816B2 (ja) 無菌充填機の洗浄・殺菌方法及び無菌充填機
WO2022138612A1 (ja) 飲料充填システム及びcip処理方法
CN115210145B (zh) 杀菌方法
JP2022160705A (ja) 殺菌方法
CN115968353A (zh) 无菌灌装机的清洗杀菌方法及无菌灌装机
WO2023234282A1 (ja) 内容物充填システム及び処理方法
JP6132000B1 (ja) 無菌充填装置及びその浄化方法
JP7157936B2 (ja) 飲料充填システム及びcip処理方法
JP7157937B2 (ja) 飲料充填システム及びcip処理方法
JP7329200B2 (ja) 飲料充填システム及びcip処理方法
JP6645538B2 (ja) 無菌炭酸飲料充填システム及び無菌炭酸飲料充填方法
JP7324438B2 (ja) 水殺菌機及び内容物充填システム
JP2017132547A (ja) 無菌充填装置及びその浄化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910754

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18259110

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180087389.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910754

Country of ref document: EP

Effective date: 20230725