WO2022127315A1 - 一种锂电材料截面扫描电镜样品的制备方法和应用 - Google Patents
一种锂电材料截面扫描电镜样品的制备方法和应用 Download PDFInfo
- Publication number
- WO2022127315A1 WO2022127315A1 PCT/CN2021/123396 CN2021123396W WO2022127315A1 WO 2022127315 A1 WO2022127315 A1 WO 2022127315A1 CN 2021123396 W CN2021123396 W CN 2021123396W WO 2022127315 A1 WO2022127315 A1 WO 2022127315A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium battery
- battery material
- sample
- cross
- metal foil
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 51
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 49
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000011888 foil Substances 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 25
- 238000005498 polishing Methods 0.000 claims abstract description 23
- 238000002360 preparation method Methods 0.000 claims abstract description 18
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 17
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052709 silver Inorganic materials 0.000 claims abstract description 14
- 239000004332 silver Substances 0.000 claims abstract description 14
- 238000005520 cutting process Methods 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 10
- 229910052786 argon Inorganic materials 0.000 claims abstract description 9
- 238000003825 pressing Methods 0.000 claims abstract description 7
- 238000003756 stirring Methods 0.000 claims abstract description 6
- 239000000853 adhesive Substances 0.000 claims description 25
- 230000001070 adhesive effect Effects 0.000 claims description 25
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 15
- 239000011889 copper foil Substances 0.000 claims description 15
- -1 isobutyl methyl ketone silver Chemical compound 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 4
- JUADHDHZVNYPHD-UHFFFAOYSA-N propan-2-one;silver Chemical compound [Ag].CC(C)=O JUADHDHZVNYPHD-UHFFFAOYSA-N 0.000 claims description 4
- 238000004026 adhesive bonding Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 239000003292 glue Substances 0.000 abstract description 8
- 239000000843 powder Substances 0.000 abstract description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 239000010703 silicon Substances 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract 1
- 239000002243 precursor Substances 0.000 description 25
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 24
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 23
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 23
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 23
- 229910000398 iron phosphate Inorganic materials 0.000 description 20
- 239000002356 single layer Substances 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 11
- 229910001416 lithium ion Inorganic materials 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- 239000010410 layer Substances 0.000 description 7
- 239000010406 cathode material Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000005955 Ferric phosphate Substances 0.000 description 3
- 229940032958 ferric phosphate Drugs 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 241000479842 Pella Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005464 sample preparation method Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 description 1
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- IWTZGPIJFJBSBX-UHFFFAOYSA-G aluminum;cobalt(2+);nickel(2+);heptahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Al+3].[Co+2].[Ni+2] IWTZGPIJFJBSBX-UHFFFAOYSA-G 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 238000001599 direct drying Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/2202—Preparing specimens therefor
Definitions
- the present disclosure relates to the technical field of material analysis and testing, in particular to a preparation method and application of a lithium battery material cross-section scanning electron microscope sample.
- lithium-ion batteries are regarded as the most promising development in the new century due to their advantages of high capacity, long cycle life, low self-discharge rate, fast charging and discharging speed, and environmental protection.
- the demand for a new generation of green high-energy batteries has exploded.
- the current lithium-ion batteries still have some imperfect shortcomings, such as high battery production cost, insufficient stability, and poor safety performance.
- Lithium-ion battery cathode material is the core component of lithium-ion battery, and its microstructure is an important factor affecting the performance of lithium-ion battery. new cathode materials are crucial.
- Scanning electron microscopy is an important analytical tool to characterize the microstructure of lithium-ion battery materials. Due to the relatively active chemical properties of lithium-ion battery cathode materials, there are certain differences in their surface and internal structures. In order to comprehensively observe the real internal structure and microscopic defects such as cracks and pores of lithium-ion battery cathode materials, it is necessary to select an appropriate cross-section sample preparation method. To obtain cross-sectional samples of lithium-ion battery cathode materials with good reproducibility and high flatness for scanning electron microscope observation and analysis.
- the related art discloses a cross-sectional sample preparation method for the characterization of radial element distribution of NCM cathode materials.
- Liquid resin is used as a filler to cure the material, and sandpaper is used to prepare powder cross-sectional samples, but the resin is not conductive.
- the phenomenon of image drift or charging is easy to occur during scanning electron microscope observation, which makes the analysis more difficult, while sandpaper grinding is easy to cause mechanical damage to the sample, and the surface flatness is poor, which affects the true accuracy of the analysis results.
- the embodiments of the present disclosure provide a preparation method and application of a cross-sectional scanning electron microscope sample of a lithium battery material.
- the method is simple to operate, and uses a metal foil and a silver conductive glue to embed the lithium battery material sample, avoiding the direct coating of the powder sample on the silicon wafer.
- the contamination of the instrument caused by the cracking and peeling of the coating layer may be caused.
- the embodiment of the present disclosure provides a preparation method of a lithium battery material cross-sectional scanning electron microscope sample, comprising the following steps:
- the lithium battery material is a lithium ion battery positive electrode material or a lithium ion battery positive electrode material precursor.
- the lithium battery material is ternary nickel cobalt manganese precursor, ternary nickel cobalt lithium manganate, ternary nickel cobalt aluminum hydroxide, ternary nickel cobalt lithium aluminate, iron phosphate, lithium iron phosphate , lithium cobaltate or lithium manganate.
- step (1) further includes the following steps of processing the metal foil: cutting the metal foil into a square with a side length of 30-45 mm, cleaning and flattening the metal foil, cutting the metal foil into a square with a side length of 30-45 mm Fold the ends to the middle so that the foil is evenly divided into three parts by the two fold lines.
- the cleaning method is wiping with alcohol or acetone.
- the amount of the lithium battery material is 0.1-0.2 g.
- the silver conductive adhesive is one of acetone silver conductive adhesive and isobutyl methyl ketone silver conductive adhesive.
- the mass ratio of the silver conductive adhesive and the lithium battery material is 1:(3-6), which is based on the molding and viscosity of the paste-like lithium battery material sample. In some embodiments, the mass ratio of the silver conductive paste and the lithium battery material is about 1:5.
- the metal foil is one of tin foil, aluminum foil and copper foil.
- the stirring time is 30-120 s. In some embodiments, the stirring time is about 60s.
- the folding method is to fold the two ends of the metal foil to the middle so that the two ends overlap, and fix the overlapping parts by gluing, so as to ensure that the metal foil and the lithium battery material are flatly attached Fits well without wrinkling and blistering.
- a water-resistant gel-type adhesive is used for fixation.
- step (3) the pre-pressing lithium battery material sample embeddings are placed in such a way that the single-layer metal foil faces upward and the double-layer metal foil faces downward, and the double-layer metal foil is folded.
- the pressing method is one-time pressing, and a glass slide is covered on the lithium battery material sample embedding member before pressing.
- the drying temperature is 40°C to 70°C, and the drying time is 30 to 120 minutes.
- the cutting method is that the blade is perpendicular to the middle position of the solidified lithium battery material sample embedding part to perform one-time cutting.
- the parameters for performing cross-section polishing with an argon ion beam are: the voltage of the ion beam is 5-7 kV, the current of the ion beam is 1.5-3.5 mA, and the polishing time is 100- 300min.
- the surface of the cut cured lithium battery material sample embedding member facing the ion beam direction is a single-layer metal foil surface.
- the embodiment of the present disclosure also provides an application of the cross-sectional scanning electron microscope sample of the lithium battery material in scanning electron microscope observation and analysis.
- argon ion polishing is used to prepare cross-sectional samples of lithium battery materials.
- the operation is simple, and the metal foil with high temperature resistance and good ductility is innovatively used.
- Glue embeds the lithium battery material sample, which avoids the contamination of the instrument caused by the breakage and falling off of the coating layer that may be caused by the direct coating of the powder sample on the silicon wafer.
- the silver conductive adhesive used in the embodiment of the present disclosure has stronger conductivity and lower resistance, which can reduce the degree of image drift and charge generation during SEM observation, and effectively improve the SEM imaging. image quality.
- the pretreatment sample preparation of the embodiment of the present disclosure is faster, the cross-sectional flatness is better, the shear stress and tensile deformation during the sample preparation process are reduced, and the mechanical damage of the lithium battery material sample is avoided.
- a wider cross-sectional observation area can be obtained, with good integrity and stability, and can fully analyze the internal structure, crystal orientation, cracks, porosity and other defects of lithium battery material nanoparticles, which greatly improves the accuracy of sample detection.
- FIG. 1 is a schematic process flow diagram of an embodiment of the present disclosure
- Example 2 is a scanning electron microscope imaging diagram of a cross-sectional sample of iron phosphate prepared in Example 1 of the disclosure
- Example 3 is a scanning electron microscope image of a cross-sectional sample of a ternary nickel-cobalt-manganese precursor prepared in Example 2 of the disclosure;
- Fig. 4 is a partial enlarged view of Fig. 3;
- Example 5 is a scanning electron microscope image of a cross-sectional sample of lithium cobalt oxide prepared in Example 3 of the present disclosure.
- a preparation method of an iron phosphate cross-section scanning electron microscope sample comprising the following steps:
- Fig. 2 is a scanning electron microscope image of a cross-sectional sample of iron phosphate obtained in Example 1. It can be seen from Fig. 2 that iron phosphate particles of different shapes and sizes are completely embedded in the silver conductive adhesive without being broken, and the cross-section is smooth and flat. There are no obvious scratches, and the cross-sectional morphology of the powder particles and the distribution of pore structure defects inside the particles can be clearly observed.
- a method for preparing a cross-section sample of a ternary nickel-cobalt-manganese precursor sample comprising the following steps:
- the ion beam voltage is controlled to 7kV, and the ion beam The current is 2.5mA, and the polishing time is 120min, and then the cross-section sample of the ternary nickel-cobalt-manganese precursor sample for scanning electron microscope observation can be obtained.
- FIG. 3 and FIG. 4 are respectively the scanning electron microscope image and partial enlarged view of the cross-sectional sample of the ternary nickel-cobalt-manganese precursor prepared in Example 2.
- FIG. 3 the ternary nickel-cobalt-manganese precursor particles embedded in the cross-section of the single-layer tin foil paper and the double-layer tin foil paper are composed of many nano-spherical particles with uniform particle size distribution and closely packed together. Large and smooth section, no obvious scratches.
- Figure 4 that the spherical particles of different sizes are completely embedded in the silver conductive adhesive, without being broken and the cross-sectional flatness is high. The cross-sectional morphology of the powder particles and the distribution of pore structure defects inside the particles can be clearly observed.
- a method for preparing a cross-sectional sample of a lithium cobalt oxide sample comprising the following steps:
- Fig. 5 is a scanning electron microscope image of the cross-sectional sample of lithium cobalt oxide obtained in Example 3. It can be seen from Fig. 5 that the lithium cobalt oxide particles of different shapes and sizes are completely embedded in the silver conductive adhesive, not broken, and the cross-section is smooth Flat, no obvious scratches, the cross-sectional morphology of the powder particles and the distribution of pore structure defects inside the particles can be clearly observed.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
一种锂电材料截面扫描电镜样品的制备方法,包括以下步骤:取锂电材料置于金属箔上,加入银导电胶并搅拌混合,得到浆稠状锂电材料样品,折叠金属箔并包裹住浆稠状锂电材料样品,得到样品包埋件,压合包埋件并干燥,得到固化包埋件,对固化包埋件进行裁切,再用氩离子束对截面进行抛光,即得锂电材料截面扫描电镜样品。制备方法操作简单,使用金属箔及银导电胶对锂电材料样品进行包埋,避免了粉体样品直接涂覆在硅片上可能产生的涂覆层破碎与脱落污染仪器。
Description
本公开涉及材料分析测试技术领域,特别是涉及一种锂电材料截面扫描电镜样品的制备方法和应用。
近年来,随着新能源汽车产业的快速发展,锂离子电池因具有容量高、循环寿命长、自放电率小、充放电速度快及绿色环保等优势,被视为新世纪最具发展前景的新一代绿色高能电池,其需求量呈爆发式增长。然而,当前的锂离子电池还存在一些不完善的缺点,如电池生产成本较高、稳定性不足、安全性能欠佳等问题。锂离子电池正极材料是锂离子电池的核心构成元件,其微观结构是影响锂离子电池性能的重要因素,准确的锂离子电池正极材料的微观形貌结构表征和测试方法,对开发综合性能更加优异的新型正极材料至关重要。
扫描电镜(SEM)是表征锂离子电池材料微观结构的重要分析手段。由于锂离子电池正极材料化学性质较为活泼,其表面和内部结构存在一定的差异,为全面观察锂离子电池正极材料真实的内部结构组成及裂纹、孔隙等微观缺陷,需选择合适的截面制样方法来获得重现性好、平整度高的锂离子电池正极材料截面样品用于扫描电镜观测分析。
相关技术公开了一种用于NCM正极材料径向元素分布表征的断面样品制备方法,使用液体树脂作为填充料对材料进行固化,辅以砂纸打磨制备粉体截面样品,但树脂不导电,在后续扫描电镜观察时易产生图像漂移或荷电现象,使得分析较为困难,而砂纸打磨对样品易造成机械损伤,表面平整性较差,影响分析结果的真实准确性;还公开了一种用于扫描电子显微镜测定的珠光颜料截面样品的制备方法和测定方法,使用液体碳导电胶和珠光颜料混合直接涂覆在硅片表面,但直接干燥后的初始样品在进行离子束截面抛光时可能发生破碎或脱落而污染仪器,降低仪器的使用寿命。
发明内容
本公开实施例提供一种锂电材料截面扫描电镜样品的制备方法和应用,该方法操作简单,使用金属箔及银导电胶对锂电材料样品进行包埋,避免了粉体样品直接涂覆在硅片上可能导致的涂覆层破碎与脱落对仪器造成的污染。
为实现上述目的,本公开实施例提供了一种锂电材料截面扫描电镜样品的制备方法,包 括以下步骤:
(1)取锂电材料置于金属箔上,加入银导电胶搅拌混合,得到浆稠状锂电材料样品;
(2)折叠金属箔包裹住所述浆稠状锂电材料样品,得到锂电材料样品包埋件;
(3)对所述锂电材料样品包埋件进行压合,干燥,得到固化锂电材料样品包埋件;
(4)对所述固化锂电材料样品包埋件进行裁切,再用氩离子束进行截面抛光,得到锂电材料截面扫描电镜样品。
在一些实施例中,所述锂电材料为锂离子电池正极材料或锂离子电池正极材料前驱体。在一些实施例中,所述锂电材料为三元镍钴锰前驱体、三元镍钴锰酸锂、三元镍钴铝氢氧化物、三元镍钴铝酸锂、磷酸铁、磷酸铁锂、钴酸锂或锰酸锂。
在一些实施例中,步骤(1)中,还包括对所述金属箔进行以下步骤的处理:将金属箔裁剪成边长为30-45mm的方形,对其进行清洁平整后,将金属箔的两端向中间折叠使金属箔被两条折叠线平均分成三部分。
在一些实施例中,所述清洁的方式为采用酒精或丙酮进行擦拭。
在一些实施例中,所述锂电材料的用量为0.1~0.2g。
在一些实施例中,步骤(1)中,所述银导电胶为丙酮银导电胶和异丁基甲基酮银导电胶中的一种。
在一些实施例中,步骤(1)中,所述银导电胶和锂电材料的质量比为1:(3~6),以浆稠状锂电材料样品的成型与粘性。在一些实施例中,所述银导电胶和锂电材料的质量比约为1:5。
在一些实施例中,所述金属箔为锡箔纸、铝箔纸和铜箔纸中的一种。
在一些实施例中,步骤(1)中,所述搅拌的时间为30~120s。在一些实施例中,所述搅拌的时间约为60s。
在一些实施例中,步骤(2)中,所述折叠的方式是将金属箔的两端向中间折叠使得两端重叠,并将重叠的部位通过胶粘固定,确保金属箔与锂电材料平整贴合,无褶皱起泡。在一些实施例中,采用耐水啫喱型胶进行固定。
在一些实施例中,步骤(3)中,所述压合前锂电材料样品包埋件的放置方式为单层金属箔面朝上,双层金属箔面朝下,双层即为金属箔折叠时两端重叠所形成的双层。
在一些实施例中,步骤(3)中,所述压合的方式为一次性按压,压合前在锂电材料样品包埋件上盖上载玻片。
在一些实施例中,步骤(3)中,所述干燥的温度为40℃~70℃,干燥的时间为30~120min。
在一些实施例中,步骤(4)中,所述裁切的方式为刀片垂直于固化锂电材料样品包埋件的中间位置进行一次性裁切。
在一些实施例中,步骤(4)中,所述用氩离子束进行截面抛光的参数为:离子束的电压为5~7kV,离子束的电流为1.5~3.5mA,抛光的时间为100~300min。
在一些实施例中,步骤(4)中,裁切后的固化锂电材料样品包埋件朝离子束方向的面为单层金属箔面。
本公开实施例还提供了一种所述的锂电材料截面扫描电镜样品在扫描电镜观测分析中的应用。
本公开实施例的优点:
1、本公开实施例使用氩离子抛光制备锂电材料截面样品,操作简单,创新性地使用耐高温、延展性好的金属箔及耐高温、导电性好、电阻低、粘接强度高的银导电胶对锂电材料样品进行包埋,避免了粉体样品直接涂覆在硅片上可能导致的涂覆层破碎与脱落对仪器造成的污染。
2、相对于液体碳导电胶,本公开实施例中使用的银导电胶的导电性更强,电阻更低,可减少扫描电镜观察时图像漂移及荷电发生的程度,有效改善扫描电镜成像时的成像质量。
3、相对于机械抛光法,本公开实施例的前处理样品制备更为快捷,截面平整度更好,减少了样品制备过程中的剪切应力及拉伸形变,避免了锂电材料样品的机械损伤,同时可以获得更广的截面观察区域,完整性和稳定性较好,可充分剖析锂电材料纳米颗粒的内部结构、晶体取向及裂纹、孔隙度等缺陷,大大提高了样品检测的准确性。
本公开实施例的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例的工艺流程示意图;
图2为本公开实施例1中制得磷酸铁截面样品的扫描电镜成像图;
图3为本公开实施例2中制得三元镍钴锰前驱体截面样品的扫描电镜成像图;
图4为图3的局部放大图;
图5为本公开实施例3中制得钴酸锂截面样品的扫描电镜成像图。
为了对本公开进行深入的理解,下面结合实施例对本公开一些实验方案进行描述,以更好地说明本公开的特点和优点,任何不偏离本公开主旨的变化或者改变能够为本领域的技术 人员理解,本公开的保护范围由所属权利要求范围确定。
实施例1
一种磷酸铁截面扫描电镜样品的制备方法,包括以下步骤:
(1)将铝箔纸裁剪成30mm×30mm的方形状,用棉签沾丙酮对其进行清洁平整后,轻轻将铝箔纸两端向中折叠使铝箔纸被两条折叠线平均分成三部分;
(2)将折叠好的铝箔纸展开,取0.1g磷酸铁样品置于铝箔纸哑光面中间三分之一处,添加美国TED PELLA公司的丙酮银导电胶(产品编码:16062)作粘结剂至磷酸铁中以获得混合样品,控制丙酮银导电胶和磷酸铁的质量比为1:4;
(3)将混合样品快速搅拌60s,充分浸润后得到浆稠状磷酸铁样品;
(4)将铝箔纸两边三分之一朝浆稠状磷酸铁样品中间方向折叠,使得两端的铝箔纸重叠,保持一侧边缘对齐,并用百得牌啫喱胶使得重叠的两端铝箔纸固定在一起,胶粘位置为2处,使铝箔纸与浆稠状磷酸铁样品平整贴合,得到所需磷酸铁样品包埋件;
(5)将磷酸铁样品包埋件单层铝箔纸面朝上,双层铝箔纸面朝下置于平整桌面,盖上载玻片并按压一次使得磷酸铁样品包埋件中的浆稠状磷酸铁样品匀开至厚度均一;
(6)将压合后的磷酸铁样品包埋件置于50℃鼓风干燥箱中干燥120min,得到固化磷酸铁样品包埋件;
(7)将固化磷酸铁样品包埋件置于平整桌面,用刀片对固化磷酸铁样品包埋件单层铝箔纸面中间位置进行垂直一次性裁切,得到待抛光的磷酸铁样品包埋件;
(8)将待抛光的磷酸铁样品包埋件沾附在截面抛光专用样品台上,再将负载有磷酸铁样品包埋件的截面抛光专用样品台装入氩离子束抛光仪中,使离子束发射方向垂直于待抛光的磷酸铁样品包埋件的单层铝箔纸面,进行离子束截面抛光,控制离子束的电压为6kV,离子束的电流为3mA,抛光的时间为150min,即可得到用于扫描电镜观察的磷酸铁截面扫描电镜样品。
图2是实施例1中制得磷酸铁截面样品的扫描电镜成像图,从图2可以看出,不同形状大小的磷酸铁颗粒完整地镶嵌在银导电胶中,没有破碎,且截面光滑平整,无明显划痕,可清晰观察到粉末颗粒的截面形貌及颗粒内部孔隙结构缺陷的分布情况。
实施例2
一种三元镍钴锰前驱体样品截面样品的制备方法,包括以下步骤:
(1)将锡箔纸裁剪成40mm×40mm的方形状,用棉签沾酒精对其进行清洁平整后,轻轻将锡箔纸两端向中折叠使锡箔被两条折叠线平均分成三部分;
(2)将折叠好的锡箔纸展开,取0.15g三元镍钴锰前驱体样品置于锡箔纸哑光面中间三分之一处,添加美国TED PELLA公司的异丁基甲基酮银导电胶(产品编码:16040-30)作粘结剂至三元镍钴锰前驱体中以获得混合样品,控制异丁基甲基酮银导电胶和三元镍钴锰前驱体的质量比为1:5;
(3)将混合样品快速搅拌90s,充分浸润后得到浆稠状三元镍钴锰前驱体样品;
(4)将锡箔纸两边三分之一朝的浆稠状三元镍钴锰前驱体样品中间方向折叠,使得两端的锡箔纸重叠,保持一侧边缘对齐,并用百得啫喱胶使得重叠的两端锡箔纸固定在一起,胶粘位置为3处,使锡箔纸与浆稠状三元镍钴锰前驱体样品平整贴合,得到所需三元镍钴锰前驱体样品包埋件;
(5)将三元镍钴锰前驱体样品包埋件单层锡箔纸面朝上,双层锡箔纸面朝下置于平整桌面,盖上载玻片并按压一次使得三元镍钴锰前驱体样品包埋件中浆稠状三元镍钴锰前驱体样品匀开至厚度均一;
(6)将压合后的三元镍钴锰前驱体样品包埋件置于60℃鼓风干燥箱中干燥90min,得到固化三元镍钴锰前驱体样品包埋件;
(7)将固化三元镍钴锰前驱体样品包埋件置于平整桌面,用刀片对固化三元镍钴锰前驱体样品包埋件单层锡箔纸面中间位置进行垂直一次性裁切,得到待抛光的三元镍钴锰前驱体样品包埋件;
(8)将待抛光的三元镍钴锰前驱体样品包埋件沾附在截面抛光专用样品台上,再将负载有三元镍钴锰前驱体样品包埋件的截面抛光专用样品台装入氩离子束抛光仪中,使离子束发射方向垂直于待抛光的三元镍钴锰前驱体样品包埋件的单层锡箔纸面,进行离子束截面抛光,控制离子束电压为7kV,离子束电流为2.5mA,抛光时间为120min,即可得到用于扫描电镜观察的三元镍钴锰前驱体样品截面样品。
图3和图4分别是实施例2中制得三元镍钴锰前驱体截面样品的扫描电镜成像图及局部放大图。从图3可以看出,单层锡箔纸和双层锡箔纸截面中间包埋的三元镍钴锰前驱体颗粒由很多粒度分布均匀,紧密堆积在一起的纳米类球形颗粒组成,截面观察区域较大且截面光滑平整,无明显划痕。从图4可以看出,不同大小的类球形颗粒完整地镶嵌在银导电胶中,没有破碎且截面平整度高,可清晰观察到粉末颗粒的截面形貌及颗粒内部孔隙结构缺陷的分布情况。
实施例3
一种钴酸锂样品截面样品的制备方法,包括以下步骤:
(1)将铜箔纸裁剪成50mm×50mm的方形状,用棉签沾酒精对其进行清洁平整后,轻轻将铜箔纸两端向中折叠使铜箔被两条折叠线平均分成三部分;
(2)将折叠好的铜箔纸展开,取0.2g钴酸锂样品置于铜箔纸哑光面中间三分之一处,添加美国TED PELLA公司的异丁基甲基酮银导电胶(产品编码:16040-30)作粘结剂至钴酸锂样品中以获得混合样品,控制异丁基甲基酮银导电胶和钴酸锂样品的质量比为1:4;
(3)将混合样品快速搅拌90s,充分浸润后得到浆稠状钴酸锂样品;
(4)将铜箔纸两边三分之一朝浆稠状钴酸锂样品中间方向折叠,使得两端的铜箔纸重叠,保持一侧边缘对齐,并用百得牌啫喱胶使得重叠的两端铜箔纸固定在一起,胶粘位置为3处,使铜箔纸与浆稠状钴酸锂样品平整贴合,得到所需钴酸锂样品包埋件;
(5)将钴酸锂样品包埋件单层铜箔纸面朝上,双层铜箔纸面朝下置于平整桌面,盖上载玻片并按压一次使得钴酸锂样品包埋件中浆稠状钴酸锂样品匀开至厚度均一;
(6)将压合钴酸锂样品包埋件置于70℃鼓风干燥箱中干燥60min,得到固化钴酸锂样品包埋件;
(7)将固化钴酸锂样品包埋件置于平整桌面,用刀片对固化钴酸锂样品包埋件单层铜箔纸面中间位置进行垂直一次性裁切,得到待抛光的钴酸锂样品埋件;
(8)将待抛光的钴酸锂样品包埋件沾附在截面抛光专用样品台上,再将负载有钴酸锂样品包埋件的截面抛光专用样品台装入氩离子束抛光仪中,使离子束发射方向垂直于待抛光的钴酸锂样品包埋件的单层铜箔纸面,进行离子束截面抛光,控制离子束电压为7kV,离子束电流为2.5mA,抛光时间为180min,即可得到用于扫描电镜观察的钴酸锂样品截面样品。
图5是实施例3中制得钴酸锂截面样品的扫描电镜成像图,从图5可以看出,不同形状大小的钴酸锂颗粒完整地镶嵌在银导电胶中,没有破碎,且截面光滑平整,无明显划痕,可清晰观察到粉末颗粒的截面形貌及颗粒内部孔隙结构缺陷的分布情况。
以上对本公开实施例提供的锂电材料截面扫描电镜样品的制备方法和应用进行了详细的介绍,本文中应用了具体实施例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想,包括更好的方式,并且也使得本领域的任何技术人员都能够实践本公开的实施例,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开的实施例进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。本公开专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果 它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。
Claims (10)
- 一种锂电材料截面扫描电镜样品的制备方法,包括以下步骤:(1)取锂电材料置于金属箔上,加入银导电胶搅拌混合,得到浆稠状锂电材料样品;(2)折叠金属箔包裹住所述浆稠状锂电材料样品,得到锂电材料样品包埋件;(3)对所述锂电材料样品包埋件进行压合,干燥,得到固化锂电材料样品包埋件;(4)对所述固化锂电材料样品包埋件进行裁切,再用氩离子束进行截面抛光,得到锂电材料截面扫描电镜样品。
- 根据权利要求1所述的制备方法,其中,步骤(1)中,还包括对所述金属箔进行以下步骤的处理:将金属箔裁剪成边长为30-45mm的方形,对其进行清洁平整后,将金属箔的两端向中间折叠使金属箔被两条折叠线平均分成三部分。
- 根据权利要求1所述的制备方法,其中,步骤(1)中,所述银导电胶为丙酮银导电胶和异丁基甲基酮银导电胶中的一种。
- 根据权利要求1所述的制备方法,其中,步骤(1)中,所述银导电胶和锂电材料的质量比为1:(3~6)。
- 根据权利要求1所述的制备方法,其中,所述金属箔为锡箔纸、铝箔纸和铜箔纸中的一种。
- 根据权利要求1所述的制备方法,其中,步骤(2)中,所述折叠是将金属箔的两端向中间折叠使得两端重叠,并将重叠的部位通过胶粘固定。
- 根据权利要求1所述的制备方法,其中,步骤(3)中,所述干燥的温度为40℃~70℃,干燥的时间为30~120min。
- 根据权利要求1所述的制备方法,其中,步骤(4)中,所述裁切的方式是刀片垂直于固化锂电材料样品包埋件的中间位置进行一次性裁切。
- 根据权利要求1所述的制备方法,其中,步骤(4)中,所述用氩离子束进行截面抛光的参数为:离子束的电压为5~7kV,离子束的电流为1.5~3.5mA,抛光的时间为100~300min。
- 权利要求1-9中任一项所述的锂电材料截面扫描电镜样品在扫描电镜观测分析中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011473031.0 | 2020-12-15 | ||
CN202011473031.0A CN112730490A (zh) | 2020-12-15 | 2020-12-15 | 一种锂电材料截面扫描电镜样品的制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022127315A1 true WO2022127315A1 (zh) | 2022-06-23 |
Family
ID=75602021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/123396 WO2022127315A1 (zh) | 2020-12-15 | 2021-10-13 | 一种锂电材料截面扫描电镜样品的制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112730490A (zh) |
WO (1) | WO2022127315A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117405719A (zh) * | 2023-12-14 | 2024-01-16 | 崇义章源钨业股份有限公司 | 一种薄膜材料截面扫描电镜样品制取装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112730490A (zh) * | 2020-12-15 | 2021-04-30 | 广东邦普循环科技有限公司 | 一种锂电材料截面扫描电镜样品的制备方法和应用 |
CN113959816B (zh) * | 2021-10-25 | 2024-05-17 | 厦门厦钨新能源材料股份有限公司 | 多个样品的截面制样方法 |
CN115728194A (zh) * | 2022-11-21 | 2023-03-03 | 山东大学 | 一种铜箔截面晶粒形貌的检测方法 |
CN116500071B (zh) * | 2023-06-30 | 2023-12-26 | 国家电投集团氢能科技发展有限公司 | 一种增强型复合膜材料的截面扫描电镜样品制备方法 |
CN117007625A (zh) * | 2023-09-28 | 2023-11-07 | 北京中科科仪股份有限公司 | 一种pn结的扫描电镜测试方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019066394A (ja) * | 2017-10-03 | 2019-04-25 | 住友電気工業株式会社 | イオンビーム加工治具および断面加工方法 |
US20190143565A1 (en) * | 2016-05-04 | 2019-05-16 | Somnio Global Holdings, Llc | Additive fabrication methods and devices for manufacture of objects having preform reinforcements |
CN111366424A (zh) * | 2018-12-25 | 2020-07-03 | 上海交通大学 | 一种电极材料截面的加工方法 |
CN111781040A (zh) * | 2020-06-18 | 2020-10-16 | 合肥国轩高科动力能源有限公司 | 一种锂离子电池材料粉末样品截面的处理方法 |
CN112730490A (zh) * | 2020-12-15 | 2021-04-30 | 广东邦普循环科技有限公司 | 一种锂电材料截面扫描电镜样品的制备方法和应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101774570B (zh) * | 2010-01-27 | 2011-10-19 | 中国科学院化学研究所 | 一种石墨炔薄膜及其制备方法与应用 |
CN109030530B (zh) * | 2018-05-03 | 2021-08-06 | 中国科学院上海硅酸盐研究所 | 一种用于扫描电子显微镜测定的珠光颜料截面样品的制备方法及测定方法 |
-
2020
- 2020-12-15 CN CN202011473031.0A patent/CN112730490A/zh active Pending
-
2021
- 2021-10-13 WO PCT/CN2021/123396 patent/WO2022127315A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190143565A1 (en) * | 2016-05-04 | 2019-05-16 | Somnio Global Holdings, Llc | Additive fabrication methods and devices for manufacture of objects having preform reinforcements |
JP2019066394A (ja) * | 2017-10-03 | 2019-04-25 | 住友電気工業株式会社 | イオンビーム加工治具および断面加工方法 |
CN111366424A (zh) * | 2018-12-25 | 2020-07-03 | 上海交通大学 | 一种电极材料截面的加工方法 |
CN111781040A (zh) * | 2020-06-18 | 2020-10-16 | 合肥国轩高科动力能源有限公司 | 一种锂离子电池材料粉末样品截面的处理方法 |
CN112730490A (zh) * | 2020-12-15 | 2021-04-30 | 广东邦普循环科技有限公司 | 一种锂电材料截面扫描电镜样品的制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
REN BOYING :, ET AL.: "Preparation of NCM Particle Cross Section Samples", ANALYTICAL INSTRUMENTATION, no. 3, 28 May 2019 (2019-05-28), pages 90 - 93, XP055943225, ISSN: 1001-232x, DOI: 10.3969/j.issn.1001-232x.2019.03.018 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117405719A (zh) * | 2023-12-14 | 2024-01-16 | 崇义章源钨业股份有限公司 | 一种薄膜材料截面扫描电镜样品制取装置 |
CN117405719B (zh) * | 2023-12-14 | 2024-03-05 | 崇义章源钨业股份有限公司 | 一种薄膜材料截面扫描电镜样品制取装置 |
Also Published As
Publication number | Publication date |
---|---|
CN112730490A (zh) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022127315A1 (zh) | 一种锂电材料截面扫描电镜样品的制备方法和应用 | |
JP4772673B2 (ja) | 乾燥粒子ベースの電気化学デバイスおよびその製造方法 | |
CN103618059B (zh) | 一种高分子无机涂层锂离子电池隔膜及其制备方法 | |
CN104596923B (zh) | 柔性基底材料涂层附着强度的测量方法 | |
JP2013534031A (ja) | 金属電極基板に対する活性電極材料の接着性の改良 | |
CN106299299A (zh) | 一种具有表面疏水性的锂离子电池正极材料及其制备方法 | |
CN107958992B (zh) | 多孔二元NiMn氧化物锂电负极材料及其制备方法 | |
CN108715650B (zh) | 低比表面积亚微米氧化铝的制备方法 | |
CN111928805A (zh) | 一种硅基负极材料的膨胀率的测试分析方法 | |
CN109524622A (zh) | 基于铜锡合金的三维氧化亚铜-纳米多孔铜锂离子电池负极的一步制备法 | |
CN115954616B (zh) | 一种基于mof材料的涂层隔膜及其制备方法 | |
CN104505536A (zh) | 一种应用于生产软壳锂电池的制成工艺 | |
CN115280551A (zh) | 混合正极材料、正极极片及制备方法、电池和装置 | |
CN111693736A (zh) | 一种用于原子力显微镜表征的锂离子电池电极片的截面样品及其制备方法 | |
CN112378941A (zh) | 一种锂电池正负极材料的截面形貌及成分的表征方法 | |
CN115548277A (zh) | 正极材料及其制备方法与应用、锂离子电池正极极片以及锂离子电池 | |
CN111982948A (zh) | 微米级粉体的扫描电镜截面样品的制备方法 | |
DE19609418C2 (de) | Beschichtung von porösen Elektroden mit dünnen Elektrolytschichten | |
CN107591520B (zh) | 多层复合包覆钴酸锂及制备方法、锂电池 | |
EP4386907A1 (en) | Battery | |
JP2018163871A (ja) | リチウムイオン二次電池用正極活物質の評価法 | |
CN116577365A (zh) | 一种观察硅碳粉料内部结构的方法 | |
JP5454106B2 (ja) | 電池用電極ペースト、電池用電極ペーストの製造方法及び電極板の製造方法 | |
EP4042496B1 (en) | A powder for use in the negative electrode of a battery and a battery comprising such a powder | |
CN112952029B (zh) | 硅氧碳锂离子电池复合负极浆料及其制备方法以及由其制备得到的锂离子电池负极 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21905244 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21905244 Country of ref document: EP Kind code of ref document: A1 |