WO2022124592A1 - 열가소성 수지 조성물 및 이로부터 형성된 성형품 - Google Patents

열가소성 수지 조성물 및 이로부터 형성된 성형품 Download PDF

Info

Publication number
WO2022124592A1
WO2022124592A1 PCT/KR2021/016187 KR2021016187W WO2022124592A1 WO 2022124592 A1 WO2022124592 A1 WO 2022124592A1 KR 2021016187 W KR2021016187 W KR 2021016187W WO 2022124592 A1 WO2022124592 A1 WO 2022124592A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
thermoplastic resin
resin composition
rubber
parts
Prior art date
Application number
PCT/KR2021/016187
Other languages
English (en)
French (fr)
Inventor
임성오
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to US18/037,167 priority Critical patent/US20230407080A1/en
Priority to CN202180081856.4A priority patent/CN116529313A/zh
Publication of WO2022124592A1 publication Critical patent/WO2022124592A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded article formed therefrom. More specifically, the present invention relates to a thermoplastic resin composition having excellent chemical resistance, processability, impact resistance, rigidity, heat resistance, and the like, and a molded article formed therefrom.
  • Rubber-modified aromatic vinyl-based copolymer resins such as acrylonitrile-butadiene-styrene copolymer resin (ABS resin) have excellent mechanical properties, processability, and appearance characteristics, such as interior/exterior materials for electric/electronic products, and interior/exterior materials for automobiles , widely used as exterior materials for construction.
  • ABS resin acrylonitrile-butadiene-styrene copolymer resin
  • thermoplastic resin composition having excellent chemical resistance and processability (injection property) compared to the existing rubber-modified aromatic vinyl-based copolymer resin is required.
  • the content of vinyl cyanide monomer, the ratio of the rubber-modified vinyl-based graft copolymer, and the molecular weight of the resin may be lowered, but in this case, chemical resistance, etc. There is a risk of deterioration.
  • chemical resistance when a conventional olefin-based chemical resistance additive is applied, there is a risk that fluidity, mechanical properties, etc. may be deteriorated.
  • thermoplastic resin composition excellent in chemical resistance, processability, impact resistance, rigidity, heat resistance, and balance of these properties.
  • An object of the present invention is to provide a thermoplastic resin composition excellent in chemical resistance, processability, impact resistance, rigidity, heat resistance, and the like.
  • Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.
  • thermoplastic resin composition comprises about 100 parts by weight of a rubber-modified aromatic vinyl-based copolymer resin; about 2 to about 23 parts by weight of a rubber-modified polystyrene resin; about 2 to about 23 parts by weight of a polyolefin resin; about 1 to about 13 parts by weight of saturated fatty acid bis amide; about 1 to about 13 parts by weight of a styrene-butadiene rubbery polymer; and about 1 to about 13 parts by weight of an ethylene- ⁇ -olefin rubbery polymer.
  • the rubber-modified aromatic vinyl-based copolymer resin may include a rubber-modified vinyl-based graft copolymer and an aromatic vinyl-based copolymer resin.
  • the rubber-modified vinyl-based graft copolymer may be a rubbery polymer by graft polymerization of a monomer mixture including an aromatic vinyl-based monomer and a vinyl cyanide-based monomer.
  • the rubber-modified polystyrene resin may be a polymer of about 3 to about 30 wt% of a rubbery polymer and about 70 to about 97 wt% of an aromatic vinylic monomer.
  • the polyolefin resin may include at least one of polypropylene, polyethylene, and a propylene-ethylene copolymer.
  • the saturated fatty acid bis amide is one of methylene bis stearamide, methylene bis oleamide, ethylene bis stearamide, ethylene bis oleamide, hexamethylene bis stearamide, and hexamethylene bis oleamide may include more than one.
  • the styrene-butadiene rubbery polymer may be a polymer of a monomer mixture comprising about 25 to about 45 wt% of styrene and about 55 to about 75 wt% of butadiene.
  • the ethylene- ⁇ -olefin rubbery polymer may be a polymer of a monomer mixture comprising about 25 to about 55% by weight of ethylene and about 45 to about 75% by weight of an ⁇ -olefin.
  • the weight ratio of the rubber-modified polystyrene resin and the polyolefin resin may be from about 1:0.2 to about 1:5.
  • the weight ratio of the saturated fatty acid bis amide and the styrene-butadiene rubbery polymer may be from about 1:0.2 to about 1:4.
  • the weight ratio of the styrene-butadiene rubber polymer and the ethylene- ⁇ -olefin rubber polymer may be from about 1:0.2 to about 1:4.
  • thermoplastic resin composition is prepared by mounting a 200 mm ⁇ 50 mm ⁇ 2 mm specimen on a 1/4 oval jig (long axis length: 120 mm, short axis length: 34 mm), After 10 ml of olive oil or isopropanol is applied to the whole and 24 hours have elapsed, the cracking strain ( ⁇ ) calculated according to Equation 1 below may be about 1.0 to about 1.4%:
  • Equation 1 ⁇ means cracking strain
  • a is the major axis length (mm) of the elliptical jig
  • b is the minor axis length (mm) of the elliptical jig
  • t is the thickness of the specimen (mm)
  • x It is the distance from the vertical intersection of the crack location and the long axis of the elliptical jig to the center point of the elliptical jig.
  • the thermoplastic resin composition comprises a spiral having a width of 15 mm and a thickness of 1 mm under the conditions of a molding temperature of 230 ° C., a mold temperature of 60 ° C., an injection pressure of 100 MPa and an injection speed of 100 mm / s ( Spiral flow length of the specimen measured after injection molding in a mold in the form of spiral) may be about 210 to about 280 mm.
  • the notch Izod impact strength of the 1/4" thick specimen measured according to ASTM D256 may be about 12 to about 30 kgf ⁇ cm/cm, and 50 according to ASTM D638
  • the tensile strength of a 3.2 mm thick specimen measured at mm/min may be about 290 to about 380 kgf/cm 2
  • the Vicat softening temperature measured at 5 kg load and 50°C/hr according to ISO R306 is about 79 to about 92°C.
  • Another aspect of the present invention relates to a molded article.
  • the molded article is characterized in that it is formed from the thermoplastic resin composition according to any one of 1 to 14.
  • the present invention has the effect of providing a thermoplastic resin composition excellent in chemical resistance, processability, impact resistance, rigidity, heat resistance, and the like, and a molded article formed therefrom.
  • thermoplastic resin composition comprises (A) a rubber-modified aromatic vinyl-based copolymer resin; (B) rubber-modified polystyrene resin; (C) polyolefin resin; (D) saturated fatty acid bis amide; (E) a styrene-butadiene rubbery polymer; and (F) an ethylene- ⁇ -olefin rubbery polymer.
  • the rubber-modified aromatic vinyl-based copolymer resin according to an embodiment of the present invention may include (A1) a rubber-modified vinyl-based graft copolymer and (A2) an aromatic vinyl-based copolymer resin.
  • the rubber-modified vinyl-based graft copolymer according to an embodiment of the present invention may be graft polymerization of a monomer mixture including an aromatic vinyl-based monomer and a vinyl cyanide-based monomer to a rubbery polymer.
  • the rubber-modified vinyl-based graft copolymer can be obtained by graft polymerization of a monomer mixture containing an aromatic vinyl-based monomer and a vinyl cyanide-based monomer to a rubbery polymer. Graft polymerization may be performed by further including a monomer that imparts heat resistance. The polymerization may be performed by a known polymerization method such as emulsion polymerization or suspension polymerization.
  • the rubber-modified vinyl-based graft copolymer may form a core (rubber polymer)-shell (copolymer of a monomer mixture) structure, but is not limited thereto.
  • the rubbery polymer includes a diene rubber such as polybutadiene and poly(acrylonitrile-butadiene), a saturated rubber hydrogenated to the diene rubber, an isoprene rubber, an alkyl (meth)acryl having 2 to 10 carbon atoms.
  • Late rubber, a copolymer of an alkyl (meth)acrylate having 2 to 10 carbon atoms and styrene, an ethylene-propylene-diene monomer terpolymer (EPDM), and the like can be exemplified. These may be applied alone or in mixture of two or more.
  • a diene-based rubber, a (meth)acrylate rubber, etc. may be used, and specifically, a butadiene-based rubber, a butyl acrylate rubber, or the like may be used.
  • the rubbery polymer (rubber particles) may have an average particle size of about 0.05 to about 6 ⁇ m, for example, about 0.15 to about 4 ⁇ m, specifically about 0.25 to about 3.5 ⁇ m.
  • the thermoplastic resin composition may have excellent impact resistance and appearance characteristics.
  • the average particle size (z-average) of the rubbery polymer (rubber particles) may be measured using a light scattering method in a latex state.
  • the rubbery polymer latex is filtered through a mesh to remove coagulation generated during polymerization of the rubbery polymer, and a solution of 0.5 g of latex and 30 ml of distilled water is poured into a 1,000 ml flask and distilled water is filled to prepare a sample. , 10 ml of the sample is transferred to a quartz cell, and the average particle size of the rubbery polymer can be measured with a light scattering particle size analyzer (malvern, nano-zs).
  • a light scattering particle size analyzer malvern, nano-zs
  • the content of the rubbery polymer may be about 20 to about 80% by weight, for example, about 25 to about 70% by weight, of the total 100% by weight of the rubber-modified vinyl-based graft copolymer, and the monomer mixture (aromatic The content of the vinyl-based monomer and the cyanide-based monomer) may be about 20 to about 80% by weight, for example, about 30 to about 75% by weight, based on 100% by weight of the total rubber-modified vinyl-based graft copolymer.
  • the thermoplastic resin composition may have excellent impact resistance and appearance characteristics.
  • the aromatic vinyl-based monomer may be graft copolymerized to the rubber polymer, and may include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, p-t-butylstyrene, ethylstyrene, vinylxylene, Monochlorostyrene, dichlorostyrene, dibromostyrene, vinyl naphthalene, etc. can be illustrated. These may be used individually or in mixture of 2 or more types.
  • the content of the aromatic vinyl-based monomer may be about 10 to about 90 wt%, for example, about 20 to about 80 wt%, based on 100 wt% of the monomer mixture. In the above range, the processability and impact resistance of the thermoplastic resin composition may be excellent.
  • the cyanide-based monomer is copolymerizable with the aromatic vinyl-based monomer, and includes acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, and the like.
  • acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, and the like. can be exemplified. These may be used individually or in mixture of 2 or more types. For example, acrylonitrile, methacrylonitrile, etc. can be used.
  • the content of the vinyl cyanide monomer may be about 10 to about 90 wt%, for example, about 20 to about 80 wt% of 100 wt% of the monomer mixture. In the above range, the thermoplastic resin composition may have excellent chemical resistance, mechanical properties, and the like.
  • the monomer for imparting the processability and heat resistance may include (meth)acrylic acid, alkyl (meth)acrylate having 1 to 10 carbon atoms, maleic anhydride, N-substituted maleimide, and the like, but is not limited thereto. does not When the monomer for imparting the processability and heat resistance is used, the content thereof may be about 60% by weight or less, for example, about 1 to about 50% by weight based on 100% by weight of the monomer mixture. Within the above range, processability and heat resistance may be imparted to the thermoplastic resin composition without deterioration of other physical properties.
  • a copolymer (g-ABS) in which a butadiene-based rubber polymer is grafted with an aromatic vinyl-based compound styrene monomer and a vinyl cyanide-based compound acrylonitrile monomer is exemplified can do.
  • the rubber-modified vinyl-based graft copolymer may be included in an amount of about 10 to about 50% by weight, for example, about 15 to about 45% by weight of 100% by weight of the total rubber-modified aromatic vinyl-based copolymer resin.
  • the thermoplastic resin composition may have excellent impact resistance, fluidity (molding processability), appearance characteristics, and balance of physical properties thereof.
  • the aromatic vinyl-based copolymer resin according to an embodiment of the present invention may be an aromatic vinyl-based copolymer resin used in a conventional rubber-modified aromatic vinyl-based copolymer resin.
  • the aromatic vinyl-based copolymer resin may be a polymer of a monomer mixture including an aromatic vinyl-based monomer and a vinyl cyanide-based monomer.
  • the aromatic vinyl-based copolymer resin may be obtained by mixing an aromatic vinyl-based monomer, a vinyl cyanide-based monomer, etc., and then polymerizing it, and the polymerization is a known polymerization such as emulsion polymerization, suspension polymerization, and bulk polymerization. method can be carried out.
  • the aromatic vinyl monomer includes styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, p-t-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, dibromostyrene , vinyl naphthalene, etc. can be used. These may be applied alone or in mixture of two or more.
  • the content of the aromatic vinyl-based monomer may be 60 to 90% by weight, for example, 65 to 85% by weight, based on 100% by weight of the total aromatic vinyl-based copolymer resin. In the above range, the thermoplastic resin composition may have excellent impact resistance, fluidity, appearance characteristics, and the like.
  • the vinyl cyanide-based monomer may include acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, and the like. These may be used individually or in mixture of 2 or more types. For example, acrylonitrile, methacrylonitrile, etc. can be used.
  • the content of the vinyl cyanide-based monomer may be about 10 to about 40 wt%, for example, about 15 to about 35 wt%, based on 100 wt% of the total aromatic vinyl-based copolymer resin. In the above range, the thermoplastic resin composition may have excellent impact resistance, fluidity, heat resistance, appearance characteristics, and the like.
  • the aromatic vinyl-based copolymer resin may be polymerized by further including a monomer for imparting processability and heat resistance to the monomer mixture.
  • a monomer for imparting the processability and heat resistance (meth)acrylic acid, N-substituted maleimide, and the like may be exemplified, but the present invention is not limited thereto.
  • the content thereof may be about 15% by weight or less, for example, about 0.1 to about 10% by weight based on 100% by weight of the monomer mixture.
  • processability and heat resistance may be imparted to the thermoplastic resin composition without deterioration of other physical properties.
  • the aromatic vinyl-based copolymer resin has a weight average molecular weight (Mw) of about 10,000 to about 300,000 g/mol, for example, about 20,000 to about 200,000 g/mol, measured by gel permeation chromatography (GPC).
  • Mw weight average molecular weight
  • the thermoplastic resin composition may have excellent mechanical strength, molding processability, and the like.
  • the aromatic vinyl-based copolymer resin may be included in an amount of about 50 to about 90% by weight, for example, about 55 to about 85% by weight of 100% by weight of the total rubber-modified aromatic vinyl-based copolymer resin.
  • the thermoplastic resin composition may have excellent impact resistance, fluidity (molding processability), and the like.
  • the rubber-modified polystyrene resin according to an embodiment of the present invention can improve the impact resistance, rigidity, etc. of the thermoplastic resin composition, and is a polymer prepared by polymerizing a rubber polymer and an aromatic vinyl monomer, for example, conventional impact-resistant polystyrene. (HIPS) resins can be used.
  • HIPS impact-resistant polystyrene
  • the rubbery polymer includes a diene rubber such as polybutadiene and poly(acrylonitrile-butadiene), a saturated rubber hydrogenated to the diene rubber, an isoprene rubber, an alkyl (meth)acryl having 2 to 10 carbon atoms.
  • Late rubber, a copolymer of an alkyl (meth)acrylate having 2 to 10 carbon atoms and styrene, an ethylene-propylene-diene monomer terpolymer (EPDM), and the like can be exemplified. These may be applied alone or in mixture of two or more.
  • a diene-based rubber, a (meth)acrylate rubber, etc. may be used, and specifically, a butadiene-based rubber, a butyl acrylate rubber, or the like may be used.
  • the rubbery polymer (rubber particles) may have an average particle size of about 0.05 to about 6 ⁇ m, for example, about 0.15 to about 4 ⁇ m, specifically about 0.25 to about 3.5 ⁇ m.
  • the thermoplastic resin composition may have excellent impact resistance and appearance characteristics.
  • the average particle size (z-average) of the rubbery polymer (rubber particles) may be measured using a light scattering method in a latex state.
  • the rubbery polymer latex is filtered through a mesh to remove coagulation generated during polymerization of the rubbery polymer, and a solution of 0.5 g of latex and 30 ml of distilled water is poured into a 1,000 ml flask and distilled water is filled to prepare a sample. , 10 ml of the sample is transferred to a quartz cell, and the average particle size of the rubbery polymer can be measured with a light scattering particle size analyzer (malvern, nano-zs).
  • a light scattering particle size analyzer malvern, nano-zs
  • the content of the rubbery polymer may be from about 3 to about 30% by weight, for example, from about 5 to about 20% by weight, based on 100% by weight of the total rubber-modified polystyrene resin.
  • the thermoplastic resin composition may have excellent impact resistance and appearance characteristics.
  • the aromatic vinyl monomer includes styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, p-t-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, dibromostyrene , vinyl naphthalene, and the like can be exemplified. These may be used individually or in mixture of 2 or more types.
  • the content of the aromatic vinyl-based monomer may be about 70 to about 97 wt%, for example, about 80 to about 95 wt%, based on 100 wt% of the total rubber-modified polystyrene resin. In the above range, molding processability, impact resistance, and appearance characteristics of the thermoplastic resin composition may be excellent.
  • the rubber-modified polystyrene resin is acrylonitrile, acrylic acid, methacrylic acid, maleic anhydride, N- during polymerization of the rubber-modified polystyrene resin in order to impart properties such as chemical resistance, processability, and heat resistance to the thermoplastic resin composition.
  • the polymerization can be carried out by adding a monomer such as substituted maleimide.
  • the amount of the monomer added may be about 40% by weight or less based on 100% by weight of the total rubber-modified polystyrene resin.
  • Chemical resistance, processability, heat resistance, etc. can be imparted to the thermoplastic resin composition without lowering other physical properties within the above range.
  • the rubber-modified polystyrene resin may be polymerized by thermal polymerization without the presence of an initiator, or may be polymerized in the presence of an initiator.
  • the initiator may be exemplified by at least one of peroxide-based initiators such as benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide, and cumene hydroperoxide, and azo-based initiators such as azobis isobutyronitrile.
  • the rubber-modified polystyrene resin may be prepared by known polymerization methods such as bulk polymerization, suspension polymerization, and emulsion polymerization.
  • the rubber-modified polystyrene resin may be included in an amount of about 2 to about 23 parts by weight, for example, about 3 to about 20 parts by weight, based on 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin.
  • the content of the rubber-modified polystyrene resin is less than about 2 parts by weight, there is a fear that the impact resistance of the thermoplastic resin composition may be lowered, and if it exceeds about 23 parts by weight, the processability, heat resistance, rigidity, etc. of the thermoplastic resin composition may be reduced. There are concerns.
  • the polyolefin resin according to an embodiment of the present invention can improve chemical resistance, processability, etc. of the thermoplastic resin composition, and a conventional polyolefin resin can be used.
  • polyethylene such as low-density polyethylene (LDPE), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), and linear low-density polyethylene (LLDPE), polypropylene, propylene-ethylene copolymer, propylene-1-butene copolymer , polypropylene resins such as mixtures thereof; polymers obtained by crosslinking them; blends comprising polyisobutene; A combination of these and the like can be used.
  • polypropylene, polyethylene, propylene-ethylene copolymer, combinations thereof, and the like can be used.
  • the polyolefin resin has a melt-flow index of about 0.5 to about 50 g/10 min, for example, about 1 to about 1 about 30 g/10 min.
  • the thermoplastic resin composition may have excellent chemical resistance, processability, and the like.
  • the polyolefin resin may be included in an amount of about 2 to about 23 parts by weight, for example, about 3 to about 20 parts by weight, based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin.
  • the content of the polyolefin resin is less than about 2 parts by weight, there is a fear that the chemical resistance of the thermoplastic resin composition may be lowered, and if it exceeds about 23 parts by weight, the impact resistance, heat resistance, rigidity, etc. of the thermoplastic resin composition may decrease.
  • the weight ratio (B:C) of the rubber-modified polystyrene resin (B) and the polyolefin resin (C) is about 1: 0.2 to about 1: 5, for example, about 1: 0.25 to about 1: 4 days.
  • the chemical resistance, impact resistance, heat resistance, rigidity, and the like of the thermoplastic resin composition may be more excellent.
  • Saturated fatty acid bis amide according to an embodiment of the present invention is applied to the rubber-modified aromatic vinyl-based copolymer resin, rubber-modified polystyrene resin and polyolefin resin together with a styrene-butadiene rubber polymer, an ethylene- ⁇ -olefin rubber polymer, etc.
  • Chemical resistance, processability, impact resistance, rigidity, heat resistance, and the like of the resin composition can be improved, and a general saturated fatty acid bisamide can be used.
  • the saturated fatty acid bis amide is methylene bis stearamide, methylene bis oleamide, ethylene bis stearamide, ethylene bis oleamide, hexamethylene bis stearamide, hexamethylene bis oleamide, combinations thereof, and the like.
  • the saturated fatty acid bis amide may be included in an amount of about 1 to about 13 parts by weight, for example, about 1 to about 10 parts by weight, based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin.
  • the content of the saturated fatty acid bis amide is less than about 1 part by weight, there is a fear that the processability of the thermoplastic resin composition may be deteriorated, and if it exceeds about 13 parts by weight, there is a fear that the heat resistance of the thermoplastic resin composition may be reduced.
  • the styrene-butadiene rubber polymer according to an embodiment of the present invention is applied to the rubber-modified aromatic vinyl-based copolymer resin, rubber-modified polystyrene resin and polyolefin resin together with saturated fatty acid bis amide, ethylene- ⁇ -olefin rubber polymer, etc. It is possible to improve the chemical resistance, workability, impact resistance, rigidity, heat resistance, and balance of these properties of the resin composition.
  • the styrene-butadiene rubbery polymer comprises from about 25% to about 45% by weight styrene, such as from about 25% to about 35% by weight, and from about 55% to about 75% by weight butadiene, such as from about 65% to about 75% by weight. It may be a polymer of a monomer mixture comprising Within the above range, the thermoplastic resin composition may have excellent impact resistance, rigidity, and the like.
  • the styrene-butadiene rubber polymer has a melt-flow index of about 1 to about 10 g/10 min, for example, measured at 200° C. and under a load of 5 kg, according to ASTM D1238. from about 3 to about 8 g/10 min.
  • the thermoplastic resin composition may have excellent impact resistance, rigidity, and the like.
  • the styrene-butadiene rubbery polymer may be included in an amount of about 1 to about 13 parts by weight, for example, about 1 to about 10 parts by weight, based on 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin.
  • the content of the styrene-butadiene rubber polymer is less than about 1 part by weight, there is a risk that the impact resistance of the thermoplastic resin composition may be lowered, and if it exceeds about 13 parts by weight, the processability, heat resistance, rigidity, etc. of the thermoplastic resin composition are lowered there is a risk of becoming
  • the weight ratio (D:E) of the saturated fatty acid bis amide (D) and the styrene-butadiene rubbery polymer (E) is about 1: 0.2 to about 1: 4, for example about 1: 0.3 to about 1 : It could be 3.4.
  • the chemical resistance, impact resistance, heat resistance, rigidity, and the like of the thermoplastic resin composition may be more excellent.
  • the ethylene- ⁇ -olefin rubbery polymer according to one embodiment of the present invention is
  • the rubber-modified aromatic vinyl-based copolymer resin, the rubber-modified polystyrene resin and the polyolefin resin are applied together with saturated fatty acid bisamide, styrene-butadiene rubber polymer, etc., and the chemical resistance, processability, impact resistance, rigidity, and heat resistance of the thermoplastic resin composition, It is possible to improve the balance of physical properties of
  • the ethylene- ⁇ -olefin rubbery polymer comprises from about 25 to about 55 weight percent ethylene, such as from about 30 to about 50 weight percent, and from about 45 to about 75 weight percent ⁇ -olefin, such as from about 50 to about 75 weight percent. It may be a polymer of a monomer mixture comprising about 70% by weight. Within the above range, the thermoplastic resin composition may have excellent impact resistance, toughness, and the like.
  • the ethylene- ⁇ -olefin rubbery polymer includes ethylene-1-octene copolymer, ethylene-1-butene copolymer, ethylene-1-pentene copolymer, ethylene-1-hexene copolymer, and ethylene-1-octene copolymer. At least one of a heptene copolymer, an ethylene-1-decene copolymer, an ethylene-1-undecene copolymer, and an ethylene-1-dodecene copolymer may be used.
  • the ethylene- ⁇ -olefin rubber polymer may have a specific gravity of about 0.85 to about 0.88, for example, about 0.86 to about 0.87, as measured by ASTM D792, and, according to ASTM D1238, 190°C, 2.16
  • a melt-flow index measured under a kg load condition may be about 0.5 to about 5, for example, about 0.5 to about 2.
  • the thermoplastic resin composition may have excellent impact resistance, toughness, and the like.
  • the ethylene- ⁇ -olefin rubber polymer may be included in an amount of about 1 to about 13 parts by weight, for example, about 1 to about 10 parts by weight, based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin. .
  • the content of the ethylene- ⁇ -olefin rubbery polymer is less than about 1 part by weight, there is a fear that the impact resistance of the thermoplastic resin composition may be lowered, and if it exceeds about 13 parts by weight, the heat resistance, rigidity, etc. of the thermoplastic resin composition are lowered there is a risk of becoming
  • the weight ratio (E:F) of the styrene-butadiene rubbery polymer (E) and the ethylene- ⁇ -olefin rubbery polymer (F) is from about 1:0.2 to about 1:4, for example about 1:0.3 to about 1:3.4.
  • the chemical resistance, impact resistance, heat resistance, rigidity, and the like of the thermoplastic resin composition may be more excellent.
  • the thermoplastic resin composition according to an embodiment of the present invention may further include an additive included in a conventional thermoplastic resin composition.
  • the additive include, but are not limited to, organic/inorganic fillers, antioxidants, flame retardants, anti-drip agents, nucleating agents, antistatic agents, stabilizers, pigments, dyes, and mixtures thereof.
  • its content may be from about 0.001 to about 40 parts by weight, for example, from about 0.1 to about 10 parts by weight, based on about 100 parts by weight of the rubber-modified aromatic vinyl-based copolymer resin.
  • thermoplastic resin composition according to one embodiment of the present invention is in the form of pellets that are melt-extruded at about 180 to about 280 ° C, for example, about 200 to about 260 ° C, by mixing the above components and using a conventional twin screw extruder.
  • the thermoplastic resin composition is prepared by mounting a 200 mm ⁇ 50 mm ⁇ 2 mm specimen on a 1/4 oval jig (major axis length: 120 mm, short axis length: 34 mm), and then applying olive oil or isopropanol to the entire specimen. After 10 ml is applied and 24 hours have elapsed, the cracking strain ( ⁇ ) calculated according to the following formula 1 may be about 1.0 to about 1.4%, for example about 1.1 to about 1.38%:
  • Equation 1 ⁇ means cracking strain
  • a is the major axis length (mm) of the elliptical jig
  • b is the minor axis length (mm) of the elliptical jig
  • t is the thickness of the specimen (mm)
  • x It is the distance from the vertical intersection of the crack location and the long axis of the elliptical jig to the center point of the elliptical jig.
  • the thermoplastic resin composition is formed in a spiral mold having a width of 15 mm and a thickness of 1 mm under the conditions of a molding temperature of 230° C., a mold temperature of 60° C., an injection pressure of 100 MPa and an injection speed of 100 mm/s.
  • a spiral flow length of the specimen measured after injection molding may be about 210 to about 280 mm, for example, about 220 to about 280 mm.
  • the thermoplastic resin composition has a notch Izod impact strength of about 12 to about 30 kgf ⁇ cm/cm, for example about 13 to about 25 kgf ⁇ cm/cm.
  • the thermoplastic resin composition has a tensile strength of about 290 to about 380 kgf/cm 2 , for example about 300 to about 380 kgf/cm, of a 3.2 mm thick specimen measured at 50 mm/min according to ASTM D638. can be cm 2
  • the thermoplastic resin composition may have a Vicat softening temperature of about 79 to about 92° C., for example, about 80 to about 90° C., measured under a 5 kg load and 50° C./hr condition according to ISO R306.
  • the molded article according to the present invention is formed from the thermoplastic resin composition.
  • the thermoplastic resin composition may be manufactured in the form of pellets, and the manufactured pellets may be manufactured into various molded articles (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. Such a molding method is well known by those of ordinary skill in the art to which the present invention pertains. Since the molded article is excellent in chemical resistance, workability, impact resistance, rigidity, heat resistance, and balance of these properties, it is useful as interior and exterior materials for electric and electronic products, housings for everyday products, and the like.
  • a SAN resin (weight average molecular weight: 140,000 g/mol) prepared by polymerizing 80% by weight of styrene and 20% by weight of acrylonitrile was used.
  • HIPS Impact-resistant polystyrene resin
  • Ethylene bis stearamide (manufacturer: Shinwon Chemical, product name: HI-LUB B-50) was used.
  • E2 A styrene-ethylene-butadiene-styrene copolymer (SEBS, manufacturer: KRATON, product name: G1652) was used.
  • extrusion was performed at 230° C. to prepare pellets.
  • a specimen was prepared.
  • the physical properties of the prepared specimens were evaluated by the following method, and the results are shown in Tables 1, 2, 3 and 4 below.
  • Equation 1 ⁇ means cracking strain
  • a is the major axis length (mm) of the elliptical jig
  • b is the minor axis length (mm) of the elliptical jig
  • t is the thickness of the specimen (mm)
  • x It is the distance from the vertical intersection of the crack location and the long axis of the elliptical jig to the center point of the elliptical jig.
  • Vicat softening temperature (VST, unit: °C): Vicat softening temperature was measured under the conditions of 5 kg load and 50 °C/hr according to ISO 306.
  • Example One 2 3 4 5 (A) (parts by weight) 100 100 100 100 100 100 100 (B) (parts by weight) 3 5 20 5 5 (C) (parts by weight) 5 5 5 3 20 (D) (parts by weight) 3 3 3 3 3 3 (E1) (parts by weight) 3 3 3 3 3 (E2) (parts by weight) - - - - - (F1) (parts by weight) 3 3 3 3 3 (F2) (parts by weight) - - - - - - Cracking strain ( ⁇ ) 1.22 1.26 1.28 1.10 1.38 spiral flow length 270 260 220 260 280 Notched Izod Impact Strength 15 20 25 20 13 tensile strength 380 370 300 380 300 Heat resistance (VST) 87 87 80 87 82
  • comparative example 7 8 9 10 11 12 (A) (parts by weight) 100 100 100 100 100 100 100 (B) (parts by weight) 5 5 5 5 5 5 (C) (parts by weight) 5 5 5 5 5 5 (D) (parts by weight) 3 3 3 3 3 3 3 (E1) (parts by weight) 0.5 15 - 3 3 3 (E2) (parts by weight) - - 3 - - - (F1) (parts by weight) 3 3 3 0.5 15 - (F2) (parts by weight) - - - - - 3 Cracking strain ( ⁇ ) 1.14 1.24 1.14 1.14 1.22 1.16 spiral flow length 290 200 260 290 210 260 Notched Izod Impact Strength 8 22 11 8 27 11 tensile strength 320 280 350 370 280 350 Heat resistance (VST) 88 75 87 87 74 87
  • thermoplastic resin composition of the present invention has excellent chemical resistance, processability, impact resistance, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 열가소성 수지 조성물은 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부; 고무변성 폴리스티렌 수지 약 2 내지 약 23 중량부; 폴리올레핀 수지 약 2 내지 약 23 중량부; 포화지방산 비스 아미드 약 1 내지 약 13 중량부; 스티렌-부타디엔 고무질 중합체 약 1 내지 약 13 중량부; 및 에틸렌-α-올레핀 고무질 중합체 약 1 내지 약 13 중량부;를 포함하는 것을 특징으로 한다. 상기 열가소성 수지 조성물은 내화학성, 가공성, 내충격성, 강성, 내열성 등이 우수하다.

Description

열가소성 수지 조성물 및 이로부터 형성된 성형품
본 발명은 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다. 보다 구체적으로 본 발명은 내화학성, 가공성, 내충격성, 강성, 내열성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다.
아크릴로니트릴-부타디엔-스티렌 공중합체 수지(ABS 수지) 등의 고무변성 방향족 비닐계 공중합체 수지는 기계적 물성, 가공성, 외관 특성 등이 우수하여, 전기/전자 제품의 내/외장재, 자동차 내/외장재, 건축용 외장재 등으로 널리 사용되고 있다.
최근, 소재의 내화학 성능이 강화되는 추세에 따라, 기존 고무변성 방향족 비닐계 공중합체 수지에 비하여, 우수한 내화학성 및 가공성(사출성)을 갖는 열가소성 수지 조성물이 요구되고 있다.
고무변성 방향족 비닐계 공중합체 수지의 가공성을 향상시키기 위하여, 시안화 비닐계 단량체의 함량, 고무변성 비닐계 그라프트 공중합체의 비율, 수지의 분자량 등을 낮춰볼 수 있으나, 이 경우, 내화학성 등이 저하될 우려가 있다. 또한, 내화학성 향상을 위하여, 통상의 올레핀계 내화학 첨가제를 적용할 경우, 유동성, 기계적 물성 등이 저하될 우려가 있다.
따라서, 이러한 문제 없이, 내화학성, 가공성, 내충격성, 강성, 내열성, 이들의 물성 발란스 등이 우수한 열가소성 수지 조성물의 개발이 필요한 실정이다.
본 발명의 배경기술은 대한민국 등록특허 제10-0760457호 등에 개시되어 있다.
본 발명의 목적은 내화학성, 가공성, 내충격성, 강성, 내열성 등이 우수한 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 열가소성 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
1. 본 발명의 하나의 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부; 고무변성 폴리스티렌 수지 약 2 내지 약 23 중량부; 폴리올레핀 수지 약 2 내지 약 23 중량부; 포화지방산 비스 아미드 약 1 내지 약 13 중량부; 스티렌-부타디엔 고무질 중합체 약 1 내지 약 13 중량부; 및 에틸렌-α-올레핀 고무질 중합체 약 1 내지 약 13 중량부;를 포함하는 것을 특징으로 한다.
2. 상기 1 구체예에서, 상기 고무변성 방향족 비닐계 공중합체 수지는 고무변성 비닐계 그라프트 공중합체 및 방향족 비닐계 공중합체 수지를 포함할 수 있다.
3. 상기 1 또는 2 구체예에서, 상기 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것일 수 있다.
4. 상기 1 내지 3 구체예에서, 상기 고무변성 폴리스티렌 수지는 고무질 중합체 약 3 내지 약 30 중량% 및 방향족 비닐계 단량체 약 70 내지 약 97 중량%의 중합체일 수 있다.
5. 상기 1 내지 4 구체예에서, 상기 폴리올레핀 수지는 폴리프로필렌, 폴리에틸렌, 프로필렌-에틸렌 공중합체 중 1종 이상을 포함할 수 있다.
6. 상기 1 내지 5 구체예에서, 상기 포화지방산 비스 아미드는 메틸렌 비스 스테아르아미드, 메틸렌 비스 올레아미드, 에틸렌 비스 스테아르아미드, 에틸렌 비스 올레아미드, 헥사메틸렌 비스 스테아르아미드 및 헥사메틸렌 비스 올레아미드 중 1종 이상을 포함할 수 있다.
7. 상기 1 내지 6 구체예에서, 상기 스티렌-부타디엔 고무질 중합체는 스티렌 약 25 내지 약 45 중량% 및 부타디엔 약 55 내지 약 75 중량%를 포함하는 단량체 혼합물의 중합체일 수 있다.
8. 상기 1 내지 7 구체예에서, 상기 에틸렌-α-올레핀 고무질 중합체는 에틸렌 약 25 내지 약 55 중량% 및 α-올레핀 약 45 내지 약 75 중량%를 포함하는 단량체 혼합물의 중합체일 수 있다.
9. 상기 1 내지 8 구체예에서, 상기 고무변성 폴리스티렌 수지 및 상기 폴리올레핀 수지의 중량비는 약 1 : 0.2 내지 약 1 : 5일 수 있다.
10. 상기 1 내지 9 구체예에서, 상기 포화지방산 비스 아미드 및 상기 스티렌-부타디엔 고무질 중합체의 중량비는 약 1 : 0.2 내지 약 1 : 4일 수 있다.
11. 상기 1 내지 10 구체예에서, 상기 스티렌-부타디엔 고무질 중합체 및 상기 에틸렌-α-올레핀 고무질 중합체의 중량비는 약 1 : 0.2 내지 약 1 : 4일 수 있다.
12. 상기 1 내지 11 구체예에서, 상기 열가소성 수지 조성물은 200 mm × 50 mm × 2 mm 크기 시편을 1/4 타원 치구(장축 길이: 120 mm, 단축 길이: 34 mm)에 장착한 후, 시편 전체에 올리브 오일 또는 이소프로판올 10 ml를 도포하고 24시간 경과 후, 하기 식 1에 따라 산출한 크랙 발생 스트레인(ε)이 약 1.0 내지 약 1.4%일 수 있다:
[식 1]
Figure PCTKR2021016187-appb-I000001
상기 식 1에서, ε은 크랙 발생 스트레인을 의미하고, a는 타원 치구의 장축 길이(mm)이고, b는 타원 치구의 단축 길이(mm)이고, t는 시편의 두께(mm)이며, x는 크랙이 발생한 위치와 타원 치구 장축의 수직 교차점에서부터 타원 치구의 중심점까지의 거리이다.
13. 상기 1 내지 12 구체예에서, 상기 열가소성 수지 조성물은 성형 온도 230℃, 금형 온도 60℃, 사출압 100 MPa 및 사출속도 100 mm/s의 조건에서, 너비 15 mm, 두께 1 mm인 스파이럴(spiral) 형태의 금형에서 사출 성형 후 측정한 시편의 스파이럴 플로우(spiral flow) 길이가 약 210 내지 약 280 mm일 수 있다.
14. 상기 1 내지 13 구체예에서, ASTM D256에 의거하여, 측정한 1/4" 두께 시편의 노치 아이조드 충격강도가 약 12 내지 약 30 kgf·cm/cm일 수 있고, ASTM D638에 의거하여 50 mm/min 조건에서 측정한 3.2 mm 두께 시편의 인장강도가 약 290 내지 약 380 kgf/cm2일 수 있으며, ISO R306에 의거하여 5 kg 하중, 50℃/hr 조건에서 측정한 Vicat 연화온도가 약 79 내지 약 92℃일 수 있다.
15. 본 발명의 다른 관점은 성형품에 관한 것이다. 상기 성형품은 상기 1 내지 14 중 어느 하나에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 한다.
본 발명은 내화학성, 가공성, 내충격성, 강성, 내열성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 갖는다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 열가소성 수지 조성물은 (A) 고무변성 방향족 비닐계 공중합체 수지; (B) 고무변성 폴리스티렌 수지; (C) 폴리올레핀 수지; (D) 포화지방산 비스 아미드; (E) 스티렌-부타디엔 고무질 중합체; 및 (F) 에틸렌-α-올레핀 고무질 중합체;를 포함한다.
본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.
(A) 고무변성 방향족 비닐계 공중합체 수지
본 발명의 일 구체예에 따른 고무변성 방향족 비닐계 공중합체 수지는 (A1) 고무변성 비닐계 그라프트 공중합체 및 (A2) 방향족 비닐계 공중합체 수지를 포함할 수 있다.
(A1) 고무변성 비닐계 그라프트 공중합체
본 발명의 일 구체예에 따른 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것일 수 있다. 예를 들면, 상기 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물을 그라프트 중합하여 얻을 수 있으며, 필요에 따라, 상기 단량체 혼합물에 가공성 및 내열성을 부여하는 단량체를 더욱 포함시켜 그라프트 중합할 수 있다. 상기 중합은 유화중합, 현탁중합 등의 공지의 중합방법에 의하여 수행될 수 있다. 또한, 상기 고무변성 비닐계 그라프트 공중합체는 코어(고무질 중합체)-쉘(단량체 혼합물의 공중합체) 구조를 형성할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 고무질 중합체로는 폴리부타디엔, 폴리(아크릴로니트릴-부타디엔) 등의 디엔계 고무 및 상기 디엔계 고무에 수소 첨가한 포화고무, 이소프렌고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 및 스티렌의 공중합체, 에틸렌-프로필렌-디엔단량체 삼원공중합체(EPDM) 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 예를 들면, 디엔계 고무, (메타)아크릴레이트 고무 등을 사용할 수 있고, 구체적으로, 부타디엔계 고무, 부틸아크릴레이트 고무 등을 사용할 수 있다.
구체예에서, 상기 고무질 중합체(고무 입자)는 평균 입자 크기가 약 0.05 내지 약 6 ㎛, 예를 들면 약 0.15 내지 약 4 ㎛, 구체적으로 약 0.25 내지 약 3.5 ㎛일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다. 여기서, 상기 고무질 중합체(고무 입자)의 평균 입자 크기(z-평균)는 라텍스(latex) 상태에서 광 산란(light scattering) 방법을 이용하여 측정할 수 있다. 구체적으로, 고무질 중합체 라텍스를 메쉬(mesh)에 걸러서, 고무질 중합체 중합 중 발생하는 응고물 제거하고, 라텍스 0.5 g 및 증류수 30 ml를 혼합한 용액을 1,000 ml 플라스크에 따르고 증류수를 채워 시료를 제조한 다음, 시료 10 ml를 석영 셀(cell)로 옮기고, 이에 대하여, 광 산란 입도 측정기(malvern社, nano-zs)로 고무질 중합체의 평균 입자 크기를 측정할 수 있다.
구체예에서, 상기 고무질 중합체의 함량은 고무변성 비닐계 그라프트 공중합체 전체 100 중량% 중 약 20 내지 약 80 중량%, 예를 들면 약 25 내지 약 70 중량%일 수 있고, 상기 단량체 혼합물(방향족 비닐계 단량체 및 시안화 비닐계 단량체 포함)의 함량은 고무변성 비닐계 그라프트 공중합체 전체 100 중량% 중 약 20 내지 약 80 중량%, 예를 들면 약 30 내지 약 75 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체는 상기 고무질 중합체에 그라프트 공중합될 수 있는 것으로서, 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 상기 방향족 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 90 중량%, 예를 들면 약 20 내지 약 80 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 가공성, 내충격성 등이 우수할 수 있다.
구체예에서, 상기 시안화 비닐계 단량체는 상기 방향족 비닐계와 공중합 가능한 것으로서, 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴 등을 사용할 수 있다. 상기 시안화 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 90 중량%, 예를 들면 약 20 내지 약 80 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내화학성, 기계적 특성 등이 우수할 수 있다.
구체예에서, 상기 가공성 및 내열성을 부여하기 위한 단량체로는 (메타)아크릴산, 탄소수 1 내지 10의 알킬(메타)아크릴레이트, 무수말레인산, N-치환말레이미드 등을 예시할 수 있으나, 이에 한정되지 않는다. 상기 가공성 및 내열성을 부여하기 위한 단량체 사용 시, 그 함량은 상기 단량체 혼합물 100 중량% 중 약 60 중량% 이하, 예를 들면 약 1 내지 약 50 중량%일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 열가소성 수지 조성물에 가공성 및 내열성을 부여할 수 있다.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체로는 부타디엔계 고무질 중합체에 방향족 비닐계 화합물인 스티렌 단량체와 시안화 비닐계 화합물인 아크릴로니트릴 단량체가 그라프트된 공중합체(g-ABS) 등을 예시할 수 있다.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체는 전체 고무변성 방향족 비닐계 공중합체 수지 100 중량% 중 약 10 내지 약 50 중량%, 예를 들면 약 15 내지 약 45 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성(성형 가공성), 외관 특성, 이들의 물성 발란스 등이 우수할 수 있다.
(A2) 방향족 비닐계 공중합체 수지
본 발명의 일 구체예에 따른 방향족 비닐계 공중합체 수지는 통상의 고무변성 방향족 비닐계 공중합체 수지에 사용되는 방향족 비닐계 공중합체 수지일 수 있다. 예를 들면, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물의 중합체일 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체, 시안화 비닐계 단량체 등을 혼합한 후, 이를 중합하여 얻을 수 있으며, 상기 중합은 유화중합, 현탁중합, 괴상중합 등의 공지의 중합방법에 의하여 수행될 수 있다.
구체예에서, 상기 방향족 비닐계 단량체로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 상기 방향족 비닐계 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중, 60 내지 90 중량%, 예를 들면 65 내지 85 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 시안화 비닐계 단량체로는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴 등을 사용할 수 있다. 상기 시안화 비닐계 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중, 약 10 내지 약 40 중량%, 예를 들면 약 15 내지 약 35 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성, 내열성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 상기 단량체 혼합물에 가공성 및 내열성을 부여하기 위한 단량체를 더 포함하여 중합한 것일 수 있다. 상기 가공성 및 내열성을 부여하기 위한 단량체로는 (메타)아크릴산, N-치환말레이미드 등을 예시할 수 있으나, 이에 한정되지 않는다. 상기 가공성 및 내열성을 부여하기 위한 단량체 사용 시, 그 함량은 상기 단량체 혼합물 100 중량% 중 약 15 중량% 이하, 예를 들면 약 0.1 내지 약 10 중량%일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 열가소성 수지 조성물에 가공성 및 내열성을 부여할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 300,000 g/mol, 예를 들면, 약 20,000 내지 약 200,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 기계적 강도, 성형 가공성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 전체 고무변성 방향족 비닐계 공중합체 수지 100 중량% 중, 약 50 내지 약 90 중량%, 예를 들면 약 55 내지 약 85 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성(성형 가공성) 등이 우수할 수 있다.
(B) 고무변성 폴리스티렌 수지
본 발명의 일 구체예에 따른 고무변성 폴리스티렌 수지는 열가소성 수지 조성물의 내충격성, 강성 등을 향상시킬 수 있는 것으로서, 고무질 중합체와 방향족 비닐 단량체를 중합하여 제조한 중합체, 예를 들면, 통상의 내충격 폴리스티렌(HIPS) 수지를 사용할 수 있다.
구체예에서, 상기 고무질 중합체로는 폴리부타디엔, 폴리(아크릴로니트릴-부타디엔) 등의 디엔계 고무 및 상기 디엔계 고무에 수소 첨가한 포화고무, 이소프렌고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 및 스티렌의 공중합체, 에틸렌-프로필렌-디엔단량체 삼원공중합체(EPDM) 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 예를 들면, 디엔계 고무, (메타)아크릴레이트 고무 등을 사용할 수 있고, 구체적으로, 부타디엔계 고무, 부틸아크릴레이트 고무 등을 사용할 수 있다.
구체예에서, 상기 고무질 중합체(고무 입자)는 평균 입자 크기가 약 0.05 내지 약 6 ㎛, 예를 들면 약 0.15 내지 약 4 ㎛, 구체적으로 약 0.25 내지 약 3.5 ㎛일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다. 여기서, 상기 고무질 중합체(고무 입자)의 평균 입자 크기(z-평균)는 라텍스(latex) 상태에서 광 산란(light scattering) 방법을 이용하여 측정할 수 있다. 구체적으로, 고무질 중합체 라텍스를 메쉬(mesh)에 걸러서, 고무질 중합체 중합 중 발생하는 응고물 제거하고, 라텍스 0.5 g 및 증류수 30 ml를 혼합한 용액을 1,000 ml 플라스크에 따르고 증류수를 채워 시료를 제조한 다음, 시료 10 ml를 석영 셀(cell)로 옮기고, 이에 대하여, 광 산란 입도 측정기(malvern社, nano-zs)로 고무질 중합체의 평균 입자 크기를 측정할 수 있다.
구체예에서, 상기 고무질 중합체의 함량은 고무변성 폴리스티렌 수지 전체 100 중량% 중 약 3 내지 약 30 중량%, 예를 들면 약 5 내지 약 20 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 방향족 비닐계 단량체로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 상기 방향족 비닐계 단량체의 함량은 고무변성 폴리스티렌 수지 전체 100 중량% 중 약 70 내지 약 97 중량%, 예를 들면 약 80 내지 약 95 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 성형 가공성, 내충격성, 외관 특성 등이 우수할 수 있다.
구체예에서, 상기 고무변성 폴리스티렌 수지는 열가소성 수지 조성물에 내화학성, 가공성, 내열성과 같은 특성을 부여하기 위해, 고무변성 폴리스티렌 수지 중합 시, 아크릴로니트릴, 아크릴산, 메타크릴산, 무수말레인산, N-치환말레이미드 등의 단량체를 부가하여 중합할 수 있다. 이 경우, 상기 단량체의 첨가량은 고무변성 폴리스티렌 수지 전체 100 중량%에 대하여, 약 40 중량% 이하일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 열가소성 수지 조성물에 내화학성, 가공성 및 내열성 등을 부여할 수 있다.
구체예에서, 상기 고무변성 폴리스티렌 수지는 개시제의 존재 없이 열중합에 의해 중합되거나, 개시제의 존재 하에 중합될 수 있다. 상기 개시제로는 벤조일 퍼옥사이드, t-부틸 하이드로 퍼옥사이드, 아세틸 퍼옥사이드, 큐멘하이드로 퍼옥사이드 등의 과산화물계 개시제와 아조비스 이소부티로니트릴 같은 아조계 개시제 중 1종 이상을 예시할 수 있다. 상기 고무변성 폴리스티렌 수지는 괴상중합, 현탁중합, 유화중합 등의 공지의 중합방법에 의하여 수행될 수 있다.
구체예에서, 상기 고무변성 폴리스티렌 수지는 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 2 내지 약 23 중량부, 예를 들면 약 3 내지 약 20 중량부로 포함될 수 있다. 상기 고무변성 폴리스티렌 수지의 함량이 약 2 중량부 미만일 경우, 열가소성 수지 조성물의 내충격성 등이 저하될 우려가 있고, 약 23 중량부를 초과할 경우, 열가소성 수지 조성물의 가공성, 내열성, 강성 등이 저하될 우려가 있다.
(C) 폴리올레핀 수지
본 발명의 일 구체예 따른 폴리올레핀 수지는 열가소성 수지 조성물의 내화학성, 가공성 등을 향상시킬 수 있는 것으로서, 통상의 폴리올레핀 수지를 사용할 수 있다. 예를 들면, 저밀도 폴리에틸렌(LDPE), 중밀도 폴리에틸렌(MDPE), 고밀도 폴리에틸렌(HDPE), 직쇄상 저밀도 폴리에틸렌(LLDPE) 등의 폴리에틸렌, 폴리프로필렌, 프로필렌-에틸렌 공중합체, 프로필렌-1-부텐 공중합체, 이들의 혼합물 등의 폴리프로필렌계 수지; 이들을 가교시킨 중합체; 폴리이소부텐을 포함하는 블렌드; 이들의 조합 등을 사용할 수 있다. 구체적으로는 폴리프로필렌, 폴리에틸렌, 프로필렌-에틸렌 공중합체, 이들의 조합 등을 사용할 수 있다.
구체예에서, 상기 폴리올레핀 수지는 ASTM D1238에 의거하여, 230℃, 2.16 kg 하중 조건에서 측정한 유동흐름지수(Melt-flow index)가 약 0.5 내지 약 50 g/10분, 예를 들면 약 1 내지 약 30 g/10분일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내화학성, 가공성 등이 우수할 수 있다.
구체예에서, 상기 폴리올레핀 수지는 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 2 내지 약 23 중량부, 예를 들면 약 3 내지 약 20 중량부로 포함될 수 있다. 상기 폴리올레핀 수지의 함량이 약 2 중량부 미만일 경우, 열가소성 수지 조성물의 내화학성 등이 저하될 우려가 있고, 약 23 중량부를 초과할 경우, 열가소성 수지 조성물의 내충격성, 내열성, 강성 등이 저하될 우려가 있다.
구체예에서, 상기 고무변성 폴리스티렌 수지(B) 및 상기 폴리올레핀 수지(C)의 중량비(B:C)는 약 1 : 0.2 내지 약 1 : 5, 예를 들면 약 1 : 0.25 내지 약 1 : 4일 수 있다. 상기 범위에서, 열가성 수지 조성물의 내화학성, 내충격성, 내열성, 강성, 이들의 물성 발란스 등이 더 우수할 수 있다.
(D) 포화지방산 비스 아미드
본 발명의 일 구체예에 따른 포화지방산 비스 아미드는 상기 고무변성 방향족 비닐계 공중합체 수지, 고무변성 폴리스티렌 수지 및 폴리올레핀 수지에 스티렌-부타디엔 고무질 중합체, 에틸렌-α-올레핀 고무질 중합체 등과 함께 적용되어, 열가소성 수지 조성물의 내화학성, 가공성, 내충격성, 강성, 내열성, 이들의 물성 발란스 등을 향상시킬 수 있는 것으로서, 통상의 포화지방산 비스 아미드를 사용할 수 있다.
구체예에서, 상기 포화지방산 비스 아미드는 메틸렌 비스 스테아르아미드(methylene bis stearamide), 메틸렌 비스 올레아미드(methylene bis oleamide), 에틸렌 비스 스테아르아미드(ethylene bis stearamide), 에틸렌 비스 올레아미드(ethylene bis oleamide), 헥사메틸렌 비스 스테아르아미드(hexa methylene bis stearamide), 헥사메틸렌 비스 올레아미드(hexamethylene bis oleamide), 이들의 조합 등을 포함할 수 있다.
구체예에서, 상기 포화지방산 비스 아미드는 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 1 내지 약 13 중량부, 예를 들면 약 1 내지 약 10 중량부로 포함될 수 있다. 상기 포화지방산 비스 아미드의 함량이 약 1 중량부 미만일 경우, 열가소성 수지 조성물의 가공성 등이 저하될 우려가 있고, 약 13 중량부를 초과할 경우, 열가소성 수지 조성물의 내열성 등이 저하될 우려가 있다.
(E) 스티렌-부타디엔 고무질 중합체
본 발명의 일 구체예에 따른 스티렌-부타디엔 고무질 중합체는 상기 고무변성 방향족 비닐계 공중합체 수지, 고무변성 폴리스티렌 수지 및 폴리올레핀 수지에 포화지방산 비스 아미드, 에틸렌-α-올레핀 고무질 중합체 등과 함께 적용되어, 열가소성 수지 조성물의 내화학성, 가공성, 내충격성, 강성, 내열성, 이들의 물성 발란스 등을 향상시킬 수 있는 것이다.
구체예에서, 상기 스티렌-부타디엔 고무질 중합체는 스티렌 약 25 내지 약 45 중량%, 예를 들면 약 25 내지 약 35 중량% 및 부타디엔 약 55 내지 약 75 중량%, 예를 들면 약 65 내지 약 75 중량%를 포함하는 단량체 혼합물의 중합체일 수 있다. 상기 범위에서, 열가소성 수지 조성물의 내충격성, 강성 등이 우수할 수 있다.
구체예에서, 상기 스티렌-부타디엔 고무질 중합체는 ASTM D1238에 의거하여, 200℃, 5 kg 하중 조건에서 측정한 유동흐름지수(Melt-flow index)가 약 1 내지 약 10 g/10분, 예를 들면 약 3 내지 약 8 g/10분일 수 있다. 상기 범위에서, 열가소성 수지 조성물의 내충격성, 강성 등이 우수할 수 있다.
구체예에서, 상기 스티렌-부타디엔 고무질 중합체는 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 1 내지 약 13 중량부, 예를 들면 약 1 내지 약 10 중량부로 포함될 수 있다. 상기 스티렌-부타디엔 고무질 중합체의 함량이 약 1 중량부 미만일 경우, 열가소성 수지 조성물의 내충격성 등이 저하될 우려가 있고, 약 13 중량부를 초과할 경우, 열가소성 수지 조성물의 가공성, 내열성, 강성 등이 저하될 우려가 있다.
구체예에서, 상기 포화지방산 비스 아미드(D) 및 상기 스티렌-부타디엔 고무질 중합체(E)의 중량비(D:E)는 약 1 : 0.2 내지 약 1 : 4, 예를 들면 약 1 : 0.3 내지 약 1 : 3.4일 수 있다. 상기 범위에서, 열가성 수지 조성물의 내화학성, 내충격성, 내열성, 강성, 이들의 물성 발란스 등이 더 우수할 수 있다.
(F) 에틸렌-α-올레핀 고무질 중합체
본 발명의 일 구체예에 따른 에틸렌-α-올레핀 고무질 중합체는
상기 고무변성 방향족 비닐계 공중합체 수지, 고무변성 폴리스티렌 수지 및 폴리올레핀 수지에 포화지방산 비스 아미드, 스티렌-부타디엔 고무질 중합체 등과 함께 적용되어, 열가소성 수지 조성물의 내화학성, 가공성, 내충격성, 강성, 내열성, 이들의 물성 발란스 등을 향상시킬 수 있는 것이다.
구체예에서, 상기 에틸렌-α-올레핀 고무질 중합체는 에틸렌 약 25 내지 약 55 중량%, 예를 들면 약 30 내지 약 50 중량% 및 α-올레핀 약 45 내지 약 75 중량%, 예를 들면 약 50 내지 약 70 중량%를 포함하는 단량체 혼합물의 중합체일 수 있다. 상기 범위에서, 열가소성 수지 조성물의 내충격성, 인성 등이 우수할 수 있다.
구체예에서, 상기 에틸렌-α-올레핀 고무질 중합체로는 에틸렌-1-옥텐 공중합체, 에틸렌-1-부텐 공중합체, 에틸렌-1-펜텐 공중합체, 에틸렌-1-헥센 공중합체, 에틸렌-1-헵텐 공중합체, 에틸렌-1-데켄 공중합체, 에틸렌-1-운데켄 공중합체 및 에틸렌-1-도데켄 공중합체 중 1종 이상을 사용할 수 있다.
구체예에서, 상기 에틸렌-α-올레핀 고무질 중합체는 ASTM D792한 방법으로 측정한 비중이 약 0.85 내지 약 0.88, 예를 들면 약 0.86 내지 약 0.87일 수 있으며, ASTM D1238에 의거하여, 190℃, 2.16 kg 하중 조건에서 측정한 유동흐름지수(Melt-flow index)가 약 0.5 내지 약 5, 예를 들면 약 0.5 내지 약 2일 수 있다. 상기 범위에서, 열가소성 수지 조성물의 내충격성, 인성 등이 우수할 수 있다.
구체예에서, 상기 에틸렌-α-올레핀 고무질 중합체는 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 1 내지 약 13 중량부, 예를 들면 약 1 내지 약 10 중량부로 포함될 수 있다. 상기 에틸렌-α-올레핀 고무질 중합체의 함량이 약 1 중량부 미만일 경우, 열가소성 수지 조성물의 내충격성 등이 저하될 우려가 있고, 약 13 중량부를 초과할 경우, 열가소성 수지 조성물의 내열성, 강성 등이 저하될 우려가 있다.
구체예에서, 상기 스티렌-부타디엔 고무질 중합체(E) 및 상기 에틸렌-α-올레핀 고무질 중합체(F)의 중량비(E:F)는 약 1 : 0.2 내지 약 1 : 4, 예를 들면 약 1 : 0.3 내지 약 1 : 3.4일 수 있다. 상기 범위에서, 열가성 수지 조성물의 내화학성, 내충격성, 내열성, 강성, 이들의 물성 발란스 등이 더 우수할 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 통상의 열가소성 수지 조성물에 포함되는 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 유/무기 충진제, 산화방지제, 난연제, 적하방지제, 핵제, 대전방지제, 안정제, 안료, 염료, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 상기 첨가제 사용 시, 그 함량은 상기 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부에 대하여, 약 0.001 내지 약 40 중량부, 예를 들면 약 0.1 내지 약 10 중량부일 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 상기 구성 성분을 혼합하고, 통상의 이축 압출기를 사용하여, 약 180 내지 약 280℃, 예를 들면 약 200 내지 약 260℃에서 용융 압출한 펠렛 형태일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 200 mm × 50 mm × 2 mm 크기 시편을 1/4 타원 치구(장축 길이: 120 mm, 단축 길이: 34 mm)에 장착한 후, 시편 전체에 올리브 오일 또는 이소프로판올 10 ml를 도포하고 24시간 경과 후, 하기 식 1에 따라 산출한 크랙 발생 스트레인(ε)이 약 1.0 내지 약 1.4%, 예를 들면 약 1.1 내지 약 1.38%일 수 있다:
[식 1]
Figure PCTKR2021016187-appb-I000002
상기 식 1에서, ε은 크랙 발생 스트레인을 의미하고, a는 타원 치구의 장축 길이(mm)이고, b는 타원 치구의 단축 길이(mm)이고, t는 시편의 두께(mm)이며, x는 크랙이 발생한 위치와 타원 치구 장축의 수직 교차점에서부터 타원 치구의 중심점까지의 거리이다.
구체예에서, 상기 열가소성 수지 조성물은 성형 온도 230℃, 금형 온도 60℃, 사출압 100 MPa 및 사출속도 100 mm/s의 조건에서, 너비 15 mm, 두께 1 mm인 스파이럴(spiral) 형태의 금형에서 사출 성형 후 측정한 시편의 스파이럴 플로우(spiral flow) 길이가 약 210 내지 약 280 mm, 예를 들면 약 220 내지 약 280 mm일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여, 측정한 1/4" 두께 시편의 노치 아이조드 충격강도가 약 12 내지 약 30 kgf·cm/cm, 예를 들면 약 13 내지 약 25 kgf·cm/cm일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D638에 의거하여 50 mm/min 조건에서 측정한 3.2 mm 두께 시편의 인장강도가 약 290 내지 약 380 kgf/cm2, 예를 들면 약 300 내지 약 380 kgf/cm2일 수 있다
구체예에서, 상기 열가소성 수지 조성물은 ISO R306에 의거하여 5 kg 하중, 50℃/hr 조건에서 측정한 Vicat 연화온도가 약 79 내지 약 92℃, 예를 들어 약 80 내지 약 90℃일 수 있다.
본 발명에 따른 성형품은 상기 열가소성 수지 조성물로부터 형성된다. 상기 열가소성 수지 조성물은 펠렛 형태로 제조될 수 있으며, 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품(제품)으로 제조될 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 상기 성형품은 내화학성, 가공성, 내충격성, 강성, 내열성, 이들의 물성 발란스 등이 우수하므로, 전기 전자 제품의 내외장재, 일상 제품의 하우징 등으로 유용하다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
실시예
이하, 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다.
(A) 고무변성 방향족 비닐계 공중합체 수지
하기 (A1) 고무변성 비닐계 그라프트 공중합체 25 중량% 및 (A2) 방향족 비닐계 공중합체 수지 75 중량%를 혼합하여 사용하였다.
(A1) 고무변성 비닐계 그라프트 공중합체
평균 입자 크기가 0.3 ㎛인 부타디엔 고무 58 중량%에 스티렌 및 아크릴로니트릴(중량비: 75/25) 42 중량%가 그라프트 공중합하여 제조된 코어-쉘 형태의 그라프트 공중합체(g-ABS)를 사용하였다.
(A2) 방향족 비닐계 공중합체 수지
스티렌 80 중량% 및 아크릴로니트릴 20 중량%를 중합하여 제조된 SAN 수지(중량평균분자량: 140,000 g/mol)를 사용하였다.
(B) 고무변성 폴리스티렌 수지
내충격 폴리스티렌(HIPS) 수지(제조사: Styrolution, 제품명: PS576H)를 사용하였다.
(C) 폴리올레핀 수지
ASTM D1238에 의거하여, 230℃, 2.16 kg 하중 조건에서 측정한 유동흐름지수(MI)가 12 g/10분인 폴리프로필렌 수지(제조사: 롯데케미칼, 제품명: B-311)를 사용하였다.
(D) 포화지방산 비스 아미드
에틸렌 비스 스테아르아미드(제조사: 신원화학, 제품명: HI-LUB B-50)를 사용하였다.
(E1) 스티렌-부타디엔 고무질 중합체(SBR, 제조사: 금호석유화학, 제품명: KTR-201, 스티렌 함량: 31.5 중량%)를 사용하였다.
(E2) 스티렌-에틸렌-부타디엔-스티렌 공중합체(SEBS, 제조사: KRATON, 제품명: G1652)를 사용하였다.
(F1) 에틸렌-α-올레핀 고무질 중합체로서, 에틸렌-1-옥텐 고무질 중합체(EOR, 제조사: DOW, 제품명: ENGAGE8150)를 사용하였다.
(F2) 에틸렌메틸아크릴레이트 공중합체(EMA, 제조사: Dupont 제품명: Elvaloy AC1330)를 사용하였다.
실시예 1 내지 11 및 비교예 1 내지 12
상기 각 구성 성분을 하기 표 1, 2, 3 및 4에 기재된 바와 같은 함량으로 첨가한 후, 230℃에서 압출하여 펠렛을 제조하였다. 압출은 L/D=44, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 80℃에서 4시간 이상 건조 후, 6 oz 사출기(성형 온도: 230℃, 금형 온도: 60℃)에서 사출 성형하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1, 2, 3 및 4에 나타내었다.
물성 측정 방법
(1) 내화학성 평가: 200 mm × 50 mm × 2 mm 크기 시편을 1/4 타원 치구(장축 길이: 120 mm, 단축 길이: 34 mm)에 장착한 후, 시편 전체에 올리브 오일 또는 이소프로판올 10 ml를 도포하고 24시간 경과 후, 하기 식 1에 따라 크랙 발생 스트레인(ε, 단위: %)을 산출하였다.
[식 1]
Figure PCTKR2021016187-appb-I000003
상기 식 1에서, ε은 크랙 발생 스트레인을 의미하고, a는 타원 치구의 장축 길이(mm)이고, b는 타원 치구의 단축 길이(mm)이고, t는 시편의 두께(mm)이며, x는 크랙이 발생한 위치와 타원 치구 장축의 수직 교차점에서부터 타원 치구의 중심점까지의 거리이다.
(2) 가공성 평가: 성형 온도 230℃, 금형 온도 60℃, 사출압 100 MPa 및 사출속도 100 mm/s의 조건에서, 너비 15 mm, 두께 1 mm인 스파이럴(spiral) 형태의 금형에서 사출 성형 후, 시편의 스파이럴 플로우(spiral flow) 길이(단위: mm)를 측정하였다.
(3) 내충격성 평가: ASTM D256에 의거하여, 1/4" 두께 시편의 노치 아이조드 충격강도(단위: kgf·cm/cm)를 측정하였다.
(4) 인장강도(TS, 단위: kgf/cm2): ASTM D638에 의거하여 50 mm/min 조건에서 3.2 mm 두께 시편의 인장강도를 측정하였다.
(5) Vicat 연화온도(VST, 단위: ℃): ISO 306에 의거하여 5 kg 하중, 50℃/hr 조건에서 Vicat 연화온도를 측정하였다.
실시예
1 2 3 4 5
(A) (중량부) 100 100 100 100 100
(B) (중량부) 3 5 20 5 5
(C) (중량부) 5 5 5 3 20
(D) (중량부) 3 3 3 3 3
(E1) (중량부) 3 3 3 3 3
(E2) (중량부) - - - - -
(F1) (중량부) 3 3 3 3 3
(F2) (중량부) - - - - -
크랙 발생 스트레인(ε) 1.22 1.26 1.28 1.10 1.38
스파이럴 플로우 길이 270 260 220 260 280
노치 아이조드 충격강도 15 20 25 20 13
인장 강도 380 370 300 380 300
내열도(VST) 87 87 80 87 82
실시예
6 7 8 9 10 11
(A) (중량부) 100 100 100 100 100 100
(B) (중량부) 5 5 5 5 5 5
(C) (중량부) 5 5 5 5 5 5
(D) (중량부) 1 10 3 3 3 3
(E1) (중량부) 3 3 1 10 3 3
(E2) (중량부) - - - - - -
(F1) (중량부) 3 3 3 3 1 10
(F2) (중량부) - - - - - -
크랙 발생 스트레인(ε) 1.26 1.26 1.20 1.28 1.24 1.26
스파이럴 플로우 길이 220 280 280 220 280 220
노치 아이조드 충격강도 20 20 13 25 13 25
인장 강도 370 370 360 300 370 300
내열도(VST) 90 82 90 81 87 80
비교예
1 2 3 4 5 6
(A) (중량부) 100 100 100 100 100 100
(B) (중량부) 1 25 5 5 5 5
(C) (중량부) 5 5 1 25 5 5
(D) (중량부) 3 3 3 3 0.5 15
(E1) (중량부) 3 3 3 3 3 3
(E2) (중량부) - - - - - -
(F1) (중량부) 3 3 3 3 3 3
(F2) (중량부) - - - - - -
크랙 발생 스트레인(ε) 1.18 1.22 0.80 1.44 1.24 1.26
스파이럴 플로우 길이 280 200 280 300 200 320
노치 아이조드 충격강도 11 22 21 10 20 20
인장 강도 390 280 390 280 370 370
내열도(VST) 88 75 88 78 88 75
비교예
7 8 9 10 11 12
(A) (중량부) 100 100 100 100 100 100
(B) (중량부) 5 5 5 5 5 5
(C) (중량부) 5 5 5 5 5 5
(D) (중량부) 3 3 3 3 3 3
(E1) (중량부) 0.5 15 - 3 3 3
(E2) (중량부) - - 3 - - -
(F1) (중량부) 3 3 3 0.5 15 -
(F2) (중량부) - - - - - 3
크랙 발생 스트레인(ε) 1.14 1.24 1.14 1.14 1.22 1.16
스파이럴 플로우 길이 290 200 260 290 210 260
노치 아이조드 충격강도 8 22 11 8 27 11
인장 강도 320 280 350 370 280 350
내열도(VST) 88 75 87 87 74 87
상기 결과로부터, 본 발명의 열가소성 수지 조성물은 내화학성, 가공성, 내충격성 등이 모두 우수함을 알 수 있다.
반면, 고무변성 폴리스티렌 수지를 본 발명의 함량 범위 미만으로 적용할 경우(비교예 1), 내충격성 등이 저하됨을 알 수 있고, 고무변성 폴리스티렌 수지를 본 발명의 함량 범위보다 초과하여 적용할 경우(비교예 2), 가공성, 내열성, 강성 등이 저하됨을 알 수 있다. 폴리올레핀 수지를 본 발명의 함량 범위 미만으로 적용할 경우(비교예 3), 내화학성 등이 저하됨을 알 수 있고, 폴리올레핀 수지를 본 발명의 함량 범위보다 초과하여 적용할 경우(비교예 4), 내충격성, 내열성, 강성 등이 저하됨을 알 수 있다. 포화지방산 비스 아미드를 본 발명의 함량 범위 미만으로 적용할 경우(비교예 5), 가공성 등이 저하됨을 알 수 있고, 포화지방산 비스 아미드를 본 발명의 함량 범위보다 초과하여 적용할 경우(비교예 6), 내열성 등이 저하됨을 알 수 있다. 스티렌-부타디엔 고무질 중합체를 본 발명의 함량 범위 미만으로 적용할 경우(비교예 7), 내충격성 등이 저하됨을 알 수 있고, 스티렌-부타디엔 고무질 중합체를 본 발명의 함량 범위보다 초과하여 적용할 경우(비교예 8), 가공성, 내열성, 강성 등이 저하됨을 알 수 있으며, 스티렌-부타디엔 고무질 중합체 대신에, SEBS (E2)를 적용할 경우(비교예 9), 내충격성 등이 저하됨을 알 수 있다. 또한, 에틸렌-α-올레핀 고무질 중합체를 본 발명의 함량 범위 미만으로 적용할 경우(비교예 10), 내충격성 등이 저하됨을 알 수 있고, 에틸렌-α-올레핀 고무질 중합체를 본 발명의 함량 범위보다 초과하여 적용할 경우(비교예 11), 내열성, 강성 등이 저하됨을 알 수 있으며, 에틸렌-α-올레핀 고무질 중합체 대신에, EMA (F2)를 적용할 경우(비교예 12), 내충격성 등이 저하됨을 알 수 있다.
이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (15)

  1. 고무변성 방향족 비닐계 공중합체 수지 약 100 중량부;
    고무변성 폴리스티렌 수지 약 2 내지 약 23 중량부;
    폴리올레핀 수지 약 2 내지 약 23 중량부;
    포화지방산 비스 아미드 약 1 내지 약 13 중량부;
    스티렌-부타디엔 고무질 중합체 약 1 내지 약 13 중량부; 및
    에틸렌-α-올레핀 고무질 중합체 약 1 내지 약 13 중량부;를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  2. 제1항에 있어서, 상기 고무변성 방향족 비닐계 공중합체 수지는 고무변성 비닐계 그라프트 공중합체 및 방향족 비닐계 공중합체 수지를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  3. 제2항에 있어서, 상기 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 고무변성 폴리스티렌 수지는 고무질 중합체 약 3 내지 약 30 중량% 및 방향족 비닐계 단량체 약 70 내지 약 97 중량%의 중합체일 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 폴리올레핀 수지는 폴리프로필렌, 폴리에틸렌, 프로필렌-에틸렌 공중합체 중 1종 이상을 포함할 것을 특징으로 하는 열가소성 수지 조성물.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 포화지방산 비스 아미드는 메틸렌 비스 스테아르아미드, 메틸렌 비스 올레아미드, 에틸렌 비스 스테아르아미드, 에틸렌 비스 올레아미드, 헥사메틸렌 비스 스테아르아미드 및 헥사메틸렌 비스 올레아미드 중 1종 이상을 포함할 것을 특징으로 하는 열가소성 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 스티렌-부타디엔 고무질 중합체는 스티렌 약 25 내지 약 45 중량% 및 부타디엔 약 55 내지 약 75 중량%를 포함하는 단량체 혼합물의 중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 에틸렌-α-올레핀 고무질 중합체는 에틸렌 약 25 내지 약 55 중량% 및 α-올레핀 약 45 내지 약 75 중량%를 포함하는 단량체 혼합물의 중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 고무변성 폴리스티렌 수지 및 상기 폴리올레핀 수지의 중량비는 약 1 : 0.2 내지 약 1 : 5인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 포화지방산 비스 아미드 및 상기 스티렌-부타디엔 고무질 중합체의 중량비는 약 1 : 0.2 내지 약 1 : 4인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 스티렌-부타디엔 고무질 중합체 및 상기 에틸렌-α-올레핀 고무질 중합체의 중량비는 약 1 : 0.2 내지 약 1 : 4인 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 200 mm × 50 mm × 2 mm 크기 시편을 1/4 타원 치구(장축 길이: 120 mm, 단축 길이: 34 mm)에 장착한 후, 시편 전체에 올리브 오일 또는 이소프로판올 10 ml를 도포하고 24시간 경과 후, 하기 식 1에 따라 산출한 크랙 발생 스트레인(ε)이 약 1.0 내지 약 1.4%인 것을 특징으로 하는 열가소성 수지 조성물:
    [식 1]
    Figure PCTKR2021016187-appb-I000004
    상기 식 1에서, ε은 크랙 발생 스트레인을 의미하고, a는 타원 치구의 장축 길이(mm)이고, b는 타원 치구의 단축 길이(mm)이고, t는 시편의 두께(mm)이며, x는 크랙이 발생한 위치와 타원 치구 장축의 수직 교차점에서부터 타원 치구의 중심점까지의 거리이다.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 성형 온도 230℃, 금형 온도 60℃, 사출압 100 MPa 및 사출속도 100 mm/s의 조건에서, 너비 15 mm, 두께 1 mm인 스파이럴(spiral) 형태의 금형에서 사출 성형 후 측정한 시편의 스파이럴 플로우(spiral flow) 길이가 약 210 내지 약 280 mm인 것을 특징으로 하는 열가소성 수지 조성물.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여, 측정한 1/4" 두께 시편의 노치 아이조드 충격강도가 약 12 내지 약 30 kgf·cm/cm이고, ASTM D638에 의거하여 50 mm/min 조건에서 측정한 3.2 mm 두께 시편의 인장강도가 약 290 내지 약 380 kgf/cm2이며, ISO R306에 의거하여 5 kg 하중, 50℃/hr 조건에서 측정한 Vicat 연화온도가 약 79 내지 약 90℃인 것을 특징으로 하는 열가소성 수지 조성물.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 하는 성형품.
PCT/KR2021/016187 2020-12-11 2021-11-09 열가소성 수지 조성물 및 이로부터 형성된 성형품 WO2022124592A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/037,167 US20230407080A1 (en) 2020-12-11 2021-11-09 Thermoplastic Resin Composition and Molded Article Formed Therefrom
CN202180081856.4A CN116529313A (zh) 2020-12-11 2021-11-09 热塑性树脂组合物及由此形成的成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200173657A KR102596130B1 (ko) 2020-12-11 2020-12-11 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR10-2020-0173657 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022124592A1 true WO2022124592A1 (ko) 2022-06-16

Family

ID=81974620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016187 WO2022124592A1 (ko) 2020-12-11 2021-11-09 열가소성 수지 조성물 및 이로부터 형성된 성형품

Country Status (4)

Country Link
US (1) US20230407080A1 (ko)
KR (1) KR102596130B1 (ko)
CN (1) CN116529313A (ko)
WO (1) WO2022124592A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020082335A1 (en) * 2000-09-21 2002-06-27 Herbert Eichenauer Thermoplastic molding compositions containing additive mixtures
KR20070032419A (ko) * 2005-09-16 2007-03-22 주식회사 위스컴 내충격성이 우수한 열가소성 수지 조성물
KR20130067516A (ko) * 2011-12-14 2013-06-25 주식회사 엘지화학 충격강도가 우수한 열가소성 abs 수지 조성물
KR20180136990A (ko) * 2016-04-21 2018-12-26 이네오스 스티롤루션 그룹 게엠베하 개선된 균열 및 화학적 내성을 갖는 abs 몰딩 조성물 및 그의 사용
KR20200021430A (ko) * 2018-08-20 2020-02-28 치 메이 코퍼레이션 고무 변성 수지 조성물 및 그 성형품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020082335A1 (en) * 2000-09-21 2002-06-27 Herbert Eichenauer Thermoplastic molding compositions containing additive mixtures
KR20070032419A (ko) * 2005-09-16 2007-03-22 주식회사 위스컴 내충격성이 우수한 열가소성 수지 조성물
KR20130067516A (ko) * 2011-12-14 2013-06-25 주식회사 엘지화학 충격강도가 우수한 열가소성 abs 수지 조성물
KR20180136990A (ko) * 2016-04-21 2018-12-26 이네오스 스티롤루션 그룹 게엠베하 개선된 균열 및 화학적 내성을 갖는 abs 몰딩 조성물 및 그의 사용
KR20200021430A (ko) * 2018-08-20 2020-02-28 치 메이 코퍼레이션 고무 변성 수지 조성물 및 그 성형품

Also Published As

Publication number Publication date
CN116529313A (zh) 2023-08-01
KR20220083426A (ko) 2022-06-20
US20230407080A1 (en) 2023-12-21
KR102596130B1 (ko) 2023-10-30

Similar Documents

Publication Publication Date Title
WO2016089042A1 (ko) 열가소성 수지 조성물 및 이를 적용한 성형품
WO2016052832A1 (ko) 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2015152468A1 (ko) 내열성 및 착색성이 향상된 열가소성 수지 조성물
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
WO2019078464A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2019103519A2 (ko) 수지 조성물
WO2019031694A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2016076503A1 (ko) 폴리카보네이트계 열가소성 수지 조성물 및 이를 이용한 제품
WO2018124517A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하여 제조되는 성형품
WO2020111552A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2022145727A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021020741A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2017057904A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2016085222A1 (ko) 열가소성 수지 조성물 및 이를 적용한 성형품
WO2021201444A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2011081317A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2018043930A1 (ko) 방향족 비닐계 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2012091295A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2017105007A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2022124592A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2018080250A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 형성된 성형품
WO2020091371A1 (ko) 열가소성 수지 조성물
WO2023219272A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2021085840A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2019124857A2 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18037167

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180081856.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903639

Country of ref document: EP

Kind code of ref document: A1