WO2022121265A1 - 一种安全锂离子电池隔膜、制备方法及锂离子电池 - Google Patents

一种安全锂离子电池隔膜、制备方法及锂离子电池 Download PDF

Info

Publication number
WO2022121265A1
WO2022121265A1 PCT/CN2021/099441 CN2021099441W WO2022121265A1 WO 2022121265 A1 WO2022121265 A1 WO 2022121265A1 CN 2021099441 W CN2021099441 W CN 2021099441W WO 2022121265 A1 WO2022121265 A1 WO 2022121265A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
ion battery
water
parts
lithium
Prior art date
Application number
PCT/CN2021/099441
Other languages
English (en)
French (fr)
Inventor
臧世伟
刘文卿
Original Assignee
重庆金美新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆金美新材料科技有限公司 filed Critical 重庆金美新材料科技有限公司
Priority to JP2022519384A priority Critical patent/JP7365754B2/ja
Priority to US17/766,223 priority patent/US20230198093A1/en
Priority to EP21870539.0A priority patent/EP4040588B1/en
Publication of WO2022121265A1 publication Critical patent/WO2022121265A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, and more particularly, the invention relates to a safety lithium ion battery separator, a preparation method and a lithium ion battery.
  • Lithium-ion batteries are widely used in various electronic products because of their large specific energy and long cycle life.
  • the shortcomings of lithium-ion batteries have gradually emerged.
  • there are often batteries The incident of the fire was reported, causing huge damage to people's lives and property.
  • lithium ion batteries generate high heat or even explode during use.
  • One of them is that the lithium dendrites generated on the positive and negative electrodes pierce the diaphragm and cause an internal short circuit.
  • the reaction generated inside the battery cannot be blocked in time, resulting in continuous reaction and dangerous results.
  • the present invention provides a safe lithium ion battery separator, a preparation method and a lithium ion battery, which can prevent the reaction of the electrolyte when the temperature increases, so as to protect the battery.
  • the technical solution adopted by the present invention to solve the technical problem is: a preparation method of a safety lithium ion battery separator, and the improvement lies in that the preparation method comprises the following steps:
  • the memory material is added to a solution mixed with aluminum nitride and ethanol, the mixture is dried after stirring and suction filtration, and then the dried material is calcined under the protection of an inert gas to obtain a solid material covered by aluminum nitride ;
  • the polymer particles and solid materials are mixed and put into a film blowing machine, and the mixed material of the polymer particles and the solid material is blown into a film by the film blowing method, and the obtained film is passed through water and dried. , to obtain the first film;
  • the aqueous slurry is coated on the first film, and the aqueous slurry layer is formed on the surface of the first film, thereby forming the first composite film;
  • the aqueous slurry is coated on the second film on the surface of the second film, an aqueous slurry layer is formed, thereby forming a second composite film;
  • the aqueous slurry layer on the first composite film and the aqueous slurry layer of the second composite film are combined together to obtain a lithium ion battery separator.
  • the ceramic material is ⁇ -spodumene powder, wherein the ⁇ -spodumene powder is 30-40 parts, the magnesium oxide is 20-35 parts, the conductive carbon black is 5-10 parts, and the water-based glue is 25-45 servings.
  • the water-based adhesive is a polyvinyl alcohol-based water-based adhesive or a water-based polyurethane; the viscosity of the water-based slurry ranges from 500-1000cps/25°C.
  • step S2 the temperature during mixing is 100-130°C, and the mixing time is 30-60min; the drying temperature of the mixture is 80-100°C, and the calcination temperature is 300-400°C; the memory material The phase transition temperature is 50-80 °C.
  • step S2 and step S3 after passing through water, the film is dried at a temperature of 50-60° C. for 10-20 minutes.
  • the high molecular polymer particles are PP or PET.
  • step S2 aluminum nitride and ethanol are mixed to form a turbid liquid, and the weight ratio of aluminum nitride, ethanol and memory material is 3:6:1
  • step S4 the drying temperature of the first composite film and the second composite film is 50-100° C., and the drying time is 1-2 h.
  • the thicknesses of the aqueous slurry layer of the first composite film and the aqueous slurry layer of the second composite film are both 250-500 nm.
  • the present invention also provides a safety lithium-ion battery separator, which is improved in that it includes a first film, a second film and an aqueous slurry layer, wherein the first film is connected to the first film through the aqueous slurry layer and the first film.
  • the two films are attached to each other;
  • the outside of the solid material is an aluminum nitride shell
  • the inside of the aluminum nitride shell is a memory material
  • holes are formed on the memory material
  • the first film There is a first through hole connected with the hole on the memory material; the second film has a second through hole passing through.
  • the memory material adopts 50-60 parts of trans-1,4-polyisoprene, 20-30 parts of cis-butadiene rubber, 5-10 parts of conductive carbon black and 5-10 parts of water-soluble
  • the volatile salt is put into a mixing granulator and mixed, and the particle size of the memory material is 10-20nm.
  • the memory material is put into a solution mixed with aluminum nitride and ethanol, and the mixture is dried after stirring and suction filtration, and then the dried material is protected by an inert gas. calcined under.
  • the aqueous slurry layer is stirred by 30-40 parts of ⁇ -spodumene powder, 20-35 parts of magnesium oxide, 5-10 parts of conductive carbon black and 25-45 parts of water-based glue production.
  • the present invention also provides a lithium ion battery, which is improved in that the separator of the lithium ion battery is obtained by the method for preparing the safe lithium ion battery separator.
  • the beneficial effects of the present invention are: the first film is covered with spherical particles (ie solid material), the first film has first through holes communicating with the spherical particles, and the memory material in the solid material has holes.
  • the holes on the memory material can automatically close, preventing the electrolyte from reacting further, thus achieving the function of protecting the battery, and when the temperature decreases, the channel is opened.
  • the pores of the diaphragm are automatically closed, preventing the further reaction of the lithium ion electrolyte and improving the safety of the lithium ion battery.
  • FIG. 1 is a schematic flowchart of a method for preparing a safety lithium-ion battery separator according to the present invention.
  • FIG. 2 is a schematic cross-sectional view of a first composite film of a safety lithium-ion battery separator of the present invention.
  • FIG 3 is a schematic cross-sectional view of a second composite film of a safety lithium-ion battery separator of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a safety lithium-ion battery separator of the present invention.
  • FIG. 5 is a schematic structural diagram of a solid material of a safe lithium-ion battery separator of the present invention.
  • the present invention discloses a method for preparing a safety lithium-ion battery separator. Specifically, the method includes the following steps:
  • the ceramic material is ⁇ -spodumene powder, wherein ⁇ -spodumene powder is 30 parts, magnesium oxide is 20 parts, conductive carbon black is 5 parts, and water-based glue is 25 parts;
  • the water-based adhesive is a polyvinyl alcohol-based water-based adhesive, and water is used as a solvent, and the viscosity range of the obtained water-based slurry is 500-1000cps/25°C;
  • the preparation of the first film put 50 parts of trans-1,4-polyisoprene, 20 parts of cis-butadiene rubber, 5 parts of conductive carbon black and 5 parts of water-soluble salts into the mixing granulator, carry out Mixing, the temperature during mixing is 100°C, and the mixing time is 60min to make a memory material with a particle size of 10-20nm. At this time, the phase transition temperature of the memory material is 60°C.
  • the phase transition temperature of the memory material prepared by the process is between 50-80°C; after that, the memory material is added to a solution mixed with aluminum nitride and ethanol, and the mixture is dried after stirring and suction filtration, and the drying temperature is 80°C; then the dried material is calcined under the protection of an inert gas, and the calcination temperature is 300°C to obtain a solid material covered by aluminum nitride; in this embodiment, the aluminum nitride is mixed with ethanol to form turbidity
  • the weight ratio of aluminum nitride, ethanol and memory material is 3:6:1.
  • the polymer particles and solid materials are mixed and put into a film blowing machine, and the mixed material of the polymer particles and the solid material is blown into a film by the film blowing method, and the obtained film is passed through water and dried. After drying, a first film is obtained; in this step, after the film is watered, it is dried at a temperature of 50° C. for 20 minutes; and the above-mentioned macromolecular polymer particles are PP;
  • step S2 when the water is passed through, the water-soluble salt in the memory material dissolves in water to form holes in the memory material.
  • the phase transition temperature of the memory material is generally between 50-80°C, when the temperature rises to this In the interval, the memory material will deform to a certain extent, thereby closing the holes inside the memory material; when the temperature decreases, the memory material will return to its original state, so when the battery is overheated due to improper use or other reasons
  • the temperature When the temperature is high, the memory material will automatically seal the diaphragm, thereby blocking the exchange of lithium ions between the positive and negative electrodes to achieve the purpose of blocking the reaction, and when the temperature reaches the normal level, the shape memory material will automatically recover. At this time, the lithium ion battery can be used normally.
  • the aqueous slurry is coated on the first film 10, and the aqueous slurry layer 30 is formed on the surface of the first film 10, thereby forming the first composite film 40, the structure of which is shown in FIG. 2
  • the water-based slurry is coated on the second film 20, and the water-based slurry layer 30 is formed on the surface of the second film 20, thereby forming a second composite film 50, the structure of which is shown in FIG. 3; the first composite film 40
  • the thickness of the aqueous slurry layer 30 and the aqueous slurry layer 30 of the second composite film 50 are both 250 nm;
  • the aqueous slurry layer 30 on the first composite film 40 and the aqueous slurry layer 30 of the second composite film 50 are combined together to obtain a lithium ion battery separator , and its structure is shown in Figure 4.
  • the drying temperature of the first composite film 40 and the second composite film 50 is 50° C., and the drying time is 2 hours.
  • the present invention also provides a safety lithium-ion battery separator, comprising a first film 10 , a second film 20 and an aqueous slurry layer 30 , and the first film 10 passes through the aqueous slurry
  • the layer 30 is attached to the second film 20; as shown in FIG. 5, a plurality of solid materials 101 are embedded inside the first film 10, and the outside of the solid material 101 is an aluminum nitride shell 102, an aluminum nitride shell
  • the inside of the body 102 is a memory material 103, and a hole is formed on the memory material 103.
  • the first film 10 has a first through hole that communicates with the hole on the memory material 103; the second film 20 There is a second through hole passing through.
  • the memory material 103 is made of 50 parts of trans-1,4-polyisoprene, 20 parts of cis-butadiene rubber, 5 parts of conductive carbon black and 5 parts of water-soluble salt.
  • the particle size of the memory material 103 is 10-20 nm.
  • the memory material 103 is mixed into a solution of aluminum nitride and ethanol, and the mixture is dried after stirring and suction filtration, and then the dried material is protected by an inert gas. Made by calcination.
  • the aqueous slurry layer 30 is made by stirring 30 parts of ⁇ -spodumene powder, 20 parts of magnesium oxide, 5 parts of conductive carbon black and 25 parts of water-based glue.
  • the ⁇ -spodumene powder is a ceramic material, which increases the strength of the separator and avoids the risk of short circuit caused by lithium dendrites generated on the positive and negative electrodes piercing the separator.
  • the first film 10 is covered with spherical particles (that is, the solid material 101 ), the first film 10 has first through holes communicating with the spherical particles, and, The memory material 103 in the solid material 101 has holes therein.
  • the holes on the memory material 103 can be automatically closed to prevent the electrolyte from reacting further, thereby achieving the function of protecting the battery, and when the temperature decreases, the channels are opened.
  • the pores of the diaphragm are automatically closed, preventing the further reaction of the lithium ion electrolyte, and preventing the lithium dendrites on the positive and negative pole pieces from piercing the diaphragm and causing a short circuit.
  • the present invention also provides a lithium ion battery, and the separator of the lithium ion battery is obtained by the method for preparing a safe lithium ion battery separator.
  • the present invention discloses a method for preparing a safety lithium-ion battery separator. Specifically, the method includes the following steps:
  • the ceramic material is ⁇ -spodumene powder, wherein ⁇ -spodumene powder is 40 parts, magnesium oxide is 35 parts, conductive carbon black is 10 parts, and water-based glue is 45 parts;
  • the water-based glue is water-based polyurethane, and water is used as a solvent, and the viscosity range of the obtained water-based slurry is 500-1000cps/25°C;
  • the preparation of the first film put 60 parts of trans-1,4-polyisoprene, 30 parts of cis-butadiene rubber, 10 parts of conductive carbon black and 10 parts of water-soluble salt into the mixing granulator, carry out Mixing, the temperature during mixing is 130°C, and the mixing time is 30min to make a memory material with a particle size of 10-20nm. At this time, the phase transition temperature of the memory material is 51°C.
  • the phase transition temperature of the memory material prepared by the process is between 50-80°C; after that, the memory material is added to a solution mixed with aluminum nitride and ethanol, and the mixture is dried after stirring and suction filtration, and the drying temperature is 100 ° C; then the dried material is calcined under the protection of an inert gas, and the calcination temperature is 400 ° C to obtain a solid material covered by aluminum nitride; in this embodiment, the aluminum nitride is mixed with ethanol to form turbidity
  • the weight ratio of aluminum nitride, ethanol and memory material is 3:6:1.
  • the polymer particles and solid materials are mixed and put into a film blowing machine, and the mixed material of the polymer particles and the solid material is blown into a film by the film blowing method, and the obtained film is passed through water and dried. After drying, the first film is obtained; in this step, after the film is watered, it is dried at a temperature of 60° C. for 10 minutes; and the above-mentioned high molecular polymer particles are PET;
  • step S2 when the water is passed through, the water-soluble salt in the memory material dissolves in water to form holes in the memory material.
  • the phase transition temperature of the memory material is generally between 50-80°C, when the temperature rises to this In the interval, the memory material will deform to a certain extent, thereby closing the holes inside the memory material; when the temperature decreases, the memory material will return to its original state, so when the battery is overheated due to improper use or other reasons
  • the temperature When the temperature is high, the memory material will automatically seal the diaphragm, thereby blocking the exchange of lithium ions between the positive and negative electrodes to achieve the purpose of blocking the reaction, and when the temperature reaches the normal level, the shape memory material will automatically recover. At this time, the lithium ion battery can be used normally.
  • the aqueous slurry is coated on the first film 10, and the aqueous slurry layer 30 is formed on the surface of the first film 10, thereby forming the first composite film 40, the structure of which is shown in FIG. 2
  • the water-based slurry is coated on the second film 20, and the water-based slurry layer 30 is formed on the surface of the second film 20, thereby forming a second composite film 50, the structure of which is shown in FIG. 3; the first composite film 40
  • the thickness of the aqueous slurry layer 30 and the aqueous slurry layer 30 of the second composite film 50 are both 500 nm;
  • the aqueous slurry layer 30 on the first composite film 40 and the aqueous slurry layer 30 of the second composite film 50 are combined together to obtain a lithium ion battery separator , and its structure is shown in Figure 4.
  • the drying temperature of the first composite film 40 and the second composite film 50 is 100° C., and the drying time is 1 h.
  • the present invention also provides a safety lithium-ion battery separator, comprising a first film 10 , a second film 20 and an aqueous slurry layer 30 , and the first film 10 passes through the aqueous slurry
  • the layer 30 is attached to the second film 20; as shown in FIG. 5, a plurality of solid materials 101 are embedded inside the first film 10, and the outside of the solid material 101 is an aluminum nitride shell 102, an aluminum nitride shell
  • the inside of the body 102 is a memory material 103, and a hole is formed on the memory material 103.
  • the first film 10 has a first through hole that communicates with the hole on the memory material 103; the second film 20 There is a second through hole passing through.
  • the memory material 103 is made of 60 parts of trans-1,4-polyisoprene, 30 parts of cis-butadiene rubber, 10 parts of conductive carbon black and 10 parts of water-soluble salt.
  • the particle size of the memory material 103 is 10-20 nm.
  • the memory material 103 is mixed into a solution of aluminum nitride and ethanol, and the mixture is dried after stirring and suction filtration, and then the dried material is protected by an inert gas. Made by calcination.
  • the aqueous slurry layer 30 is made by stirring 40 parts of ⁇ -spodumene powder, 35 parts of magnesium oxide, 10 parts of conductive carbon black and 45 parts of water-based glue.
  • the ⁇ -spodumene powder is a ceramic material, which increases the strength of the separator and avoids the risk of short circuit caused by lithium dendrites generated on the positive and negative electrodes piercing the separator.
  • the first film 10 is covered with spherical particles (that is, the solid material 101 ), the first film 10 has first through holes communicating with the spherical particles, and, The memory material 103 in the solid material 101 has holes therein.
  • the holes on the memory material 103 can be automatically closed to prevent the electrolyte from reacting further, thereby achieving the function of protecting the battery, and when the temperature decreases, the channels are opened.
  • the pores of the diaphragm are automatically closed, preventing the further reaction of the lithium ion electrolyte, and preventing the lithium dendrites on the positive and negative pole pieces from piercing the diaphragm and causing a short circuit.
  • the present invention also provides a lithium ion battery, and the separator of the lithium ion battery is obtained by the method for preparing a safe lithium ion battery separator.
  • the present invention discloses a method for preparing a safety lithium-ion battery separator. Specifically, the method includes the following steps:
  • the ceramic material is ⁇ -spodumene powder, wherein ⁇ -spodumene powder is 35 parts, magnesium oxide is 30 parts, conductive carbon black is 7 parts, and water-based glue is 35 parts;
  • the water-based adhesive is a polyvinyl alcohol-based water-based adhesive, using water as a solvent, and the viscosity range of the obtained water-based slurry is 500-1000cps/25°C;
  • the preparation of the first film put 55 parts of trans-1,4-polyisoprene, 25 parts of cis-butadiene rubber, 7 parts of conductive carbon black and 7 parts of water-soluble salt into the mixing granulator, carry out Mixing, the temperature during mixing is 120°C, and the mixing time is 45min to make a memory material with a particle size of 10-20nm. At this time, the phase transition temperature of the memory material is 70°C.
  • the phase transition temperature of the memory material prepared by the process is between 50-80°C; after that, the memory material is added to a solution mixed with aluminum nitride and ethanol, and the mixture is dried after stirring and suction filtration, and the drying temperature is 90 ° C; then the dried material is calcined under the protection of an inert gas, and the calcination temperature is 350 ° C to obtain a solid material covered by aluminum nitride; in this embodiment, the aluminum nitride is mixed with ethanol to form turbidity
  • the weight ratio of aluminum nitride, ethanol and memory material is 3:6:1.
  • the polymer particles and solid materials are mixed and put into a film blowing machine, and the mixed material of the polymer particles and the solid material is blown into a film by the film blowing method, and the obtained film is passed through water and dried. After drying, a first film is obtained; in this step, after the film is watered, it is baked at a temperature of 55° C. for 30 minutes; and the above-mentioned macromolecular polymer particles are PP;
  • step S2 when the water is passed through, the water-soluble salt in the memory material dissolves in water to form holes in the memory material.
  • the phase transition temperature of the memory material is generally between 50-80°C, when the temperature rises to this In the interval, the memory material will deform to a certain extent, thereby closing the holes inside the memory material; when the temperature decreases, the memory material will return to its original state, so when the battery is overheated due to improper use or other reasons
  • the temperature When the temperature is high, the memory material will automatically seal the diaphragm, thereby blocking the exchange of lithium ions between the positive and negative electrodes to achieve the purpose of blocking the reaction, and when the temperature reaches the normal level, the shape memory material will automatically recover. At this time, the lithium ion battery can be used normally.
  • the aqueous slurry is coated on the first film 10, and the aqueous slurry layer 30 is formed on the surface of the first film 10, thereby forming the first composite film 40, the structure of which is shown in FIG. 2
  • the water-based slurry is coated on the second film 20, and the water-based slurry layer 30 is formed on the surface of the second film 20, thereby forming a second composite film 50, the structure of which is shown in FIG. 3; the first composite film 40
  • the thickness of the aqueous slurry layer 30 and the aqueous slurry layer 30 of the second composite film 50 are both 375nm;
  • the aqueous slurry layer 30 on the first composite film 40 and the aqueous slurry layer 30 of the second composite film 50 are combined together to obtain a lithium ion battery separator , and its structure is shown in Figure 4.
  • the drying temperature of the first composite film 40 and the second composite film 50 is 75° C., and the drying time is 1.5 h.
  • the present invention also provides a safety lithium-ion battery separator, comprising a first film 10 , a second film 20 and an aqueous slurry layer 30 , and the first film 10 passes through the aqueous slurry
  • the layer 30 is attached to the second film 20; as shown in FIG. 5, a plurality of solid materials 101 are embedded inside the first film 10, and the outside of the solid material 101 is an aluminum nitride shell 102, an aluminum nitride shell
  • the inside of the body 102 is a memory material 103, and a hole is formed on the memory material 103.
  • the first film 10 has a first through hole that communicates with the hole on the memory material 103; the second film 20 There is a second through hole passing through.
  • the memory material 103 is made of 55 parts of trans-1,4-polyisoprene, 25 parts of cis-butadiene rubber, 7 parts of conductive carbon black and 7 parts of water-soluble salt.
  • the particle size of the memory material 103 is 10-20 nm.
  • the memory material 103 is mixed into a solution of aluminum nitride and ethanol, and the mixture is dried after stirring and suction filtration, and then the dried material is protected by an inert gas. Made by calcination.
  • the aqueous slurry layer 30 is made by stirring 35 parts of ⁇ -spodumene powder, 30 parts of magnesium oxide, 7 parts of conductive carbon black and 35 parts of water-based glue.
  • the ⁇ -spodumene powder is a ceramic material, which increases the strength of the separator, avoids the risk of short circuit caused by the lithium dendrites generated on the positive and negative electrodes piercing the separator, and does not Affects the free passage of lithium ions from the thinner aqueous slurry layer.
  • the first film 10 is covered with spherical particles (that is, the solid material 101 ), the first film 10 has first through holes communicating with the spherical particles, and, The memory material 103 in the solid material 101 has holes therein.
  • the holes on the memory material 103 can be automatically closed to prevent the electrolyte from reacting further, thereby achieving the function of protecting the battery, and when the temperature decreases, the channels are opened.
  • the pores of the diaphragm are automatically closed, preventing the further reaction of the lithium ion electrolyte, and preventing the lithium dendrites on the positive and negative pole pieces from piercing the diaphragm and causing a short circuit.
  • the present invention also provides a lithium ion battery, and the separator of the lithium ion battery is obtained by the method for preparing a safe lithium ion battery separator.
  • the present invention discloses a method for preparing a safety lithium-ion battery separator. Specifically, the method includes the following steps:
  • the ceramic material is ⁇ -spodumene powder, wherein ⁇ -spodumene powder is 32 parts, magnesium oxide is 35 parts, conductive carbon black is 10 parts, and water-based glue is 30 parts;
  • the water-based glue is water-based polyurethane, and water is used as the solvent, and the viscosity range of the obtained water-based slurry is 500-1000cps/25°C;
  • the preparation of the first film put 58 parts of trans-1,4-polyisoprene, 28 parts of cis-butadiene rubber, 10 parts of conductive carbon black and 10 parts of water-soluble salt into the mixing granulator, carry out Mixing, the temperature during mixing is 130°C, and the mixing time is 30min to make a memory material with a particle size of 10-20nm. At this time, the phase transition temperature of the memory material is 53°C.
  • the phase transition temperature of the memory material prepared by the process is between 50-80°C; after that, the memory material is added to a solution mixed with aluminum nitride and ethanol, and the mixture is dried after stirring and suction filtration, and the drying temperature is 100 ° C; then the dried material is calcined under the protection of an inert gas, and the calcination temperature is 400 ° C to obtain a solid material covered by aluminum nitride; in this embodiment, the aluminum nitride is mixed with ethanol to form turbidity
  • the weight ratio of aluminum nitride, ethanol and memory material is 3:6:1.
  • the polymer particles and solid materials are mixed and put into a film blowing machine, and the mixed material of the polymer particles and the solid material is blown into a film by the film blowing method, and the obtained film is passed through water and dried. After drying, the first film is obtained; in this step, after the film is watered, it is dried at a temperature of 60° C. for 10 minutes; and the above-mentioned high molecular polymer particles are PET;
  • step S2 when the water is passed through, the water-soluble salt in the memory material dissolves in water to form holes in the memory material.
  • the phase transition temperature of the memory material is generally between 50-80°C, when the temperature rises to this In the interval, the memory material will deform to a certain extent, thereby closing the holes inside the memory material; when the temperature decreases, the memory material will return to its original state, so when the battery is overheated due to improper use or other reasons
  • the temperature When the temperature is high, the memory material will automatically seal the diaphragm, thereby blocking the exchange of lithium ions between the positive and negative electrodes to achieve the purpose of blocking the reaction, and when the temperature reaches the normal level, the shape memory material will automatically recover. At this time, the lithium ion battery can be used normally.
  • the aqueous slurry is coated on the first film 10, and the aqueous slurry layer 30 is formed on the surface of the first film 10, thereby forming the first composite film 40, the structure of which is shown in FIG. 2
  • the water-based slurry is coated on the second film 20, and the water-based slurry layer 30 is formed on the surface of the second film 20, thereby forming a second composite film 50, the structure of which is shown in FIG. 3; the first composite film 40
  • the thickness of the aqueous slurry layer 30 and the aqueous slurry layer 30 of the second composite film 50 are both 500 nm;
  • the aqueous slurry layer 30 on the first composite film 40 and the aqueous slurry layer 30 of the second composite film 50 are combined together to obtain a lithium ion battery separator , and its structure is shown in Figure 4.
  • the drying temperature of the first composite film 40 and the second composite film 50 is 100° C., and the drying time is 1 h.
  • the present invention also provides a safety lithium-ion battery separator, comprising a first film 10 , a second film 20 and an aqueous slurry layer 30 , and the first film 10 passes through the aqueous slurry
  • the layer 30 is attached to the second film 20; as shown in FIG. 5, a plurality of solid materials 101 are embedded inside the first film 10, and the outside of the solid material 101 is an aluminum nitride shell 102, an aluminum nitride shell
  • the inside of the body 102 is a memory material 103, and a hole is formed on the memory material 103.
  • the first film 10 has a first through hole that communicates with the hole on the memory material 103; the second film 20 There is a second through hole passing through.
  • the memory material 103 is made of 58 parts of trans-1,4-polyisoprene, 28 parts of cis-butadiene rubber, 10 parts of conductive carbon black, and 10 parts of water-soluble salt.
  • the particle size of the memory material 103 is 10-20 nm.
  • the memory material 103 is mixed into a solution of aluminum nitride and ethanol, and the mixture is dried after stirring and suction filtration, and then the dried material is protected by an inert gas. Made by calcination.
  • the aqueous slurry layer 30 is made by stirring 32 parts of ⁇ -spodumene powder, 35 parts of magnesium oxide, 10 parts of conductive carbon black and 30 parts of water-based glue.
  • the ⁇ -spodumene powder is a ceramic material, which increases the strength of the separator and avoids the risk of short circuit caused by lithium dendrites generated on the positive and negative electrodes piercing the separator.
  • the first film 10 is covered with spherical particles (that is, the solid material 101 ), the first film 10 has first through holes communicating with the spherical particles, and, The memory material 103 in the solid material 101 has holes therein.
  • the holes on the memory material 103 can be automatically closed to prevent the electrolyte from reacting further, thereby achieving the function of protecting the battery, and when the temperature decreases, the channels are opened.
  • the pores of the diaphragm are automatically closed, preventing the further reaction of the lithium ion electrolyte, and preventing the lithium dendrites on the positive and negative pole pieces from piercing the diaphragm and causing a short circuit.
  • the safety lithium-ion battery separator prepared by the present invention is compared with the separator purchased in the prior art.
  • the diaphragm of the comparative example a commercially available common diaphragm is used, the porosity of the diaphragm is 85%, the pore size is 50%, and the material is PP membrane.
  • Preparation of lithium-ion battery with comparative example diaphragm: graphite, PVDF, and n-butyl acetate are mixed in a ratio of 2:1:2 to make a negative electrode active slurry, which is coated on a conductive film plated with metallic copper.
  • the thickness is 3um, and both sides are plated with a 1um copper layer to obtain a negative pole piece, and lithium iron phosphate, PVDF, and ethyl acetate are made into a positive electrode active material in a ratio of 5:2:3, and the positive electrode active material is coated.
  • the thickness of the film here is also 3um, and the aluminum layer plated on both sides of the film is also 1um.
  • EC+DMC+EMC solution of M LiPF6, all assembly was performed in a glove box.
  • the preparation of the example is exactly the same as that of the comparative example, the only difference is that the separator used is the separator provided by the present invention.
  • the present invention also provides a lithium ion battery, and the separator of the lithium ion battery is obtained by the method for preparing a safe lithium ion battery separator.
  • the first film Since the first film is covered with spherical particles, the first film has first through holes connected with the spherical particles, and the memory material in the solid material has holes. In this way, when the temperature increases, the holes on the memory material can be automatically closed to prevent the electrolyte from reacting further, so as to protect the lithium ion battery, and when the temperature decreases, the channel is opened to improve the safety of the lithium ion battery. Therefore, the safety lithium ion battery separator, the preparation method and the lithium ion battery of the present invention are practical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种安全锂离子电池隔膜、制备方法及锂离子电池,涉及锂离子电池技术领域;该制备方法包括以下的步骤:S1、水性浆料的制备,将陶瓷材料、氧化镁、导电炭黑以及水性胶混合后搅拌均匀,得到水性浆料;S2、第一薄膜(10)的制备,将反式-1,4-聚异戊二烯、顺丁橡胶、导电炭黑以及水溶性盐投入混炼造粒机中,进行混炼,制成记忆材料;将高分子聚合物颗粒与固体材料混合后放入吹膜机中,采用薄膜吹制法将高分子聚合物颗粒和固体材料的混合材料吹制成薄膜,将得到的薄膜过水并烘干后,得到第一薄膜(10);S3、第二薄膜(20)的制备;S4、锂离子电池隔膜的制备;所述隔膜有能够在温度升高时阻断电解液的反应,达到保护电池的作用。

Description

一种安全锂离子电池隔膜、制备方法及锂离子电池 技术领域
本发明涉及锂离子电池技术领域,更具体的说,本发明涉及一种安全锂离子电池隔膜、制备方法及锂离子电池。
背景技术
锂离子电池因其比能量大、循环寿命长广泛应用于各种电子产品中,但是随着使用锂离子电池使用量加大,锂离子电池的缺点也渐渐显露出来,最近几年,经常有电池着火的事件被报道出来,给人们的生命财产造成了巨大损害。
因此,锂离子电池在使用过程中发生产生较高热量甚至爆炸一般有两方面原因,其中之一便是正负电极上面产生的锂枝晶刺破隔膜从而导致内部短路,另一方面主要在于当不正确的使用电池时,电池内部产生的反应无法及时阻断,从而导致连续反应,造成危险结果的发生。
发明内容
为了克服现有技术的不足,本发明提供一种安全锂离子电池隔膜、制备方法及锂离子电池,能够在温度升高时阻止电解液的反应,达到保护电池的作用。
本发明解决其技术问题所采用的技术方案是:一种安全锂离子电池隔膜的制备方法,其改进之处在于,该制备方法包括以下的步骤:
S1、水性浆料的制备,将陶瓷材料、氧化镁、导电炭黑以及水性胶混合后搅拌均匀,得到水性浆料;
S2、第一薄膜的制备,将50-60份反式-1,4-聚异戊二烯、20-30份顺丁橡胶、5-10份导电炭黑以及5-10份水溶性盐投入混炼造粒机中,进行混炼,制成粒径为10-20nm的记忆材料;
将记忆材料加入氮化铝和乙醇混合的溶液中,搅拌、抽滤后将混合物烘干,再将烘干后的物质在惰性气体的保护下进行煅烧,得到由氮化铝包覆的固体材料;
将高分子聚合物颗粒与固体材料混合后放入吹膜机中,采用薄膜吹制法将高分子聚合物颗粒和固体材料的混合材料吹制成薄膜,将得到的薄膜过水并烘干后,得到第一薄膜;
S3、第二薄膜的制备,将含卤化合物混合水溶性盐熔融后,吹塑形成薄膜,过水烘干后,得到第二薄膜;
S4、锂离子电池隔膜的制备,将水性浆料涂覆在第一薄膜上,在第一薄膜的表面形成水性浆料层,从而形成第一复合薄膜;将水性浆料涂覆在第二薄膜上,在第二薄膜的表面形成水性浆料层,从而形成第二复合薄膜;
将第一复合薄膜和第二复合薄膜烘干后,将第一复合薄膜上的水性浆料层与第二复合薄膜的水性浆料层复合在一起,得到锂离子电池隔膜。
进一步的,步骤S1中,陶瓷材料为β-锂辉石粉末,其中β-锂辉石粉末为30-40份,氧化镁为20-35份,导电炭黑为5-10份,水性胶为25-45份。
进一步的,所述的水性胶为聚乙烯醇类水性胶黏剂或者水性聚氨酯;所述水性浆料的粘度范围为500-1000cps/25℃。
进一步的,步骤S2中,混炼时的温度为100-130℃,混炼时间为30-60min;混合物烘干的温度为80-100℃,煅烧温度为300-400℃;所述的记忆材料的相变温度为50-80℃。
进一步的,步骤S2和步骤S3中,薄膜过水后,在50-60℃的温度下烘干10-20min。
进一步的,步骤S2中,所述的高分子聚合物颗粒为PP或PET。
进一步的,步骤S2中,氮化铝与乙醇混合后形成浑浊液,氮化铝、乙醇以及记忆材料的重量比为3:6:1
进一步的,步骤S4中,第一复合薄膜和第二复合薄膜的烘干温度为50-100℃,且烘干时间为1-2h。
进一步的,步骤S4中,第一复合薄膜的水性浆料层和第二复合薄膜的水性浆料层的厚度均为250-500nm。
另一方面,本发明还提供了一种安全锂离子电池隔膜,其改进之处在于,包括第一薄膜、第二薄膜以及水性浆料层,所述的第一薄膜通过水性浆料层与第二薄膜相贴合;
所述第一薄膜的内部嵌入有若干固体材料,该固体材料的外部为氮化铝壳体,氮化铝壳体的内部为记忆材料,且记忆材料上形成有孔洞,所述的第一薄膜上具有与记忆材料上的孔洞相连通的第一通孔;所述的第二薄膜上具有贯穿的第二通孔。
在上述的结构中,所述的记忆材料采用50-60份反式-1,4-聚异戊二烯、20-30份顺丁橡胶、5-10份导电炭黑以及5-10份水溶性盐投入混炼造粒机中混炼制成,且记忆材料的粒径为10-20nm。
在上述的结构中,所述的固体材料,采用将记忆材料将入氮化铝和乙醇混合的溶液中,搅拌、抽滤后将混合物烘干,再将烘干后的物质在惰性气体的保护下进行煅烧制成。
在上述的结构中,所述的水性浆料层采用30-40份的β-锂辉石粉末、20-35份的氧化镁、5-10份的导电炭黑以及25-45份水性胶搅拌制成。
另一方面,本发明还提供了一种锂离子电池,其改进之处在于,该锂离子电池的隔膜由所述的安全锂离子电池隔膜的制备方法得到。
本发明的有益效果是:第一薄膜上布满了球状颗粒(即固体材料),第一薄膜上具有与球状颗粒相连通的第一通孔,并且,固体材料中的记忆材料中具有孔洞。在温度升高时,记忆材料上的孔洞能够自动闭合,阻止电解液进一步反应,从而达到保护电池的作用,而当温度降低时,则打开通道。当温度到达一定温度时,隔膜孔洞自动闭合,阻止锂离子电解液的进一步反应,提高锂离子电池使用的安全性。
附图说明
图1为本发明的一种安全锂离子电池隔膜的制备方法的流程示意图。
图2为本发明的一种安全锂离子电池隔膜的第一复合薄膜的横截面示意图。
图3为本发明的一种安全锂离子电池隔膜的第二复合薄膜的横截面示意图。
图4为本发明的一种安全锂离子电池隔膜的截面示意图。
图5为本发明的一种安全锂离子电池隔膜的固体材料的结构示意图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。另外,专利中涉及到的所有联接/连接关系,并非单指构件直接相接,而是指可根据具体实施情况,通过添加或减少联接辅件,来组成更优的联接结构。本发明创造中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合。
实施例1
参照图1所示,本发明揭示了一种安全锂离子电池隔膜的制备方法,具体的,该方法包括以下的步骤:
S1、水性浆料的制备,将陶瓷材料、氧化镁、导电炭黑以及水性胶混合后搅拌均匀,得到水性浆料;
本实施例中,陶瓷材料为β-锂辉石粉末,其中β-锂辉石粉末为30份,氧化镁为20份,导电炭黑为5份,水性胶为25份;并且,所述的水性胶为聚乙烯醇类水性胶黏剂,采用水作为溶剂,得到的水性浆料的粘度范围为500-1000cps/25℃;
S2、第一薄膜的制备,将50份反式-1,4-聚异戊二烯、20份顺丁橡胶、5份导电炭黑以及5份水溶性盐投入混炼造粒机中,进行混炼,混炼时的温度为100℃,混炼时间为60min,制成粒径为10-20nm的记忆材料,此时,记忆材料的相变温度为60℃,一般情况下,通过此种工艺所制得的记忆材料的相变温度在50-80℃之间;此后,将记忆材料加入氮化铝和乙醇混合的溶液中,搅拌、抽滤后将混合物烘干,烘干的温度为80℃;再将烘干后的物质在惰性气体的保护下进行煅烧,煅烧温度为300℃,得到由氮化铝包覆的固体材料;本实施例中,氮化铝与乙醇混合后形成浑浊液,氮化铝、乙醇以及记忆材料的重量比为3:6:1。
最后,将高分子聚合物颗粒与固体材料混合后放入吹膜机中,采用薄膜吹制法将高分子聚合物颗粒和固体材料的混合材料吹制成薄膜,将得到的薄膜过水并烘干后,得到第一薄膜;在该步骤中,薄膜过水后,在50℃的温度下烘干20min;并且,上述的高分子聚合物颗粒为PP;
在步骤S2中,过水时,记忆材料中的水溶性盐溶于水后,在记忆材料内形成孔洞,由于记忆材料的相变温度一般在50-80℃之间,当温度升高到这个区间时,记忆材料会发生一定的形变,从而将记忆材料内部的孔洞闭合;当温度降低时,记忆材料则会返回至原来的状态,因此当电池由于不正确的使用或者其他原因导致电池温度过高时,记忆材料会自动将隔膜封闭,从而阻断正负极的锂离子交换,达到阻断反应的目的,而待温度到达正常水平时,形状记忆材料又会自动恢复,此时锂离子电池能够正常使用。
S3、第二薄膜的制备,将含卤化合物混合水溶性盐熔融后,吹塑形成薄膜,过水烘干后,得到第二薄膜,在该步骤中,薄膜过水后,在50℃的温度下烘干20min,并且,过水后,水溶性盐溶解,从而在第二薄膜上形成细小的通孔;
S4、锂离子电池隔膜的制备,将水性浆料涂覆在第一薄膜10上,在第一薄膜10的表面形成水性浆料层30,从而形成第一复合薄膜40,其结构如图2所示;将水性浆料涂覆在第二薄膜20上,在第二薄膜20的表面形成水性浆料层30,从而 形成第二复合薄膜50,其结构如图3所示;第一复合薄膜40的水性浆料层30和第二复合薄膜50的水性浆料层30的厚度均为250nm;
将第一复合薄膜40和第二复合薄膜50烘干后,将第一复合薄膜40上的水性浆料层30与第二复合薄膜50的水性浆料层30复合在一起,得到锂离子电池隔膜,其结构如图4所示。在该步骤中,第一复合薄膜40和第二复合薄膜50的烘干温度为50℃,且烘干时间为2h。
如图4、图5所示,本发明还提供了一种安全锂离子电池隔膜,包括第一薄膜10、第二薄膜20以及水性浆料层30,所述的第一薄膜10通过水性浆料层30与第二薄膜20相贴合;如图5所示,所述第一薄膜10的内部嵌入有若干固体材料101,该固体材料101的外部为氮化铝壳体102,氮化铝壳体102的内部为记忆材料103,且记忆材料103上形成有孔洞,所述的第一薄膜10上具有与记忆材料103上的孔洞相连通的第一通孔;所述的第二薄膜20上具有贯穿的第二通孔。
其中,本实施例中,所述的记忆材料103采用50份反式-1,4-聚异戊二烯、20份顺丁橡胶、5份导电炭黑以及5份水溶性盐投入混炼造粒机中混炼制成,且记忆材料103的粒径为10-20nm。进一步的,所述的固体材料101,采用将记忆材料103将入氮化铝和乙醇混合的溶液中,搅拌、抽滤后将混合物烘干,再将烘干后的物质在惰性气体的保护下进行煅烧制成。上述的实施例中,所述的水性浆料层30采用30份的β-锂辉石粉末、20份的氧化镁、5份的导电炭黑以及25份水性胶搅拌制成。通过设置的水性浆料层30,其中的β-锂辉石粉末为陶瓷材料,增加了隔膜的强度,避免了正负极上面产生的锂枝晶刺破隔膜所产生的的短路危险。
基于此,本发明的一种安全锂离子电池隔膜,第一薄膜10上布满了球状颗粒(即固体材料101),第一薄膜10上具有与球状颗粒相连通的第一通孔,并且,固体材料101中的记忆材料103中具有孔洞。在温度升高时,记忆材料103上的孔洞能够自动闭合,阻止电解液进一步反应,从而达到保护电池的作用,而当温度降低时,则打开通道。当温度到达一定温度时,隔膜孔洞自动闭合,阻止锂离子电解液的进一步反应,同时防止正负极极片上面的锂枝晶刺破隔膜从而造成短路。
另外,本发明还提供了一种锂离子电池,该锂离子电池的隔膜由所述的安全锂离子电池隔膜的制备方法得到。
实施例2
参照图1所示,本发明揭示了一种安全锂离子电池隔膜的制备方法,具体的, 该方法包括以下的步骤:
S1、水性浆料的制备,将陶瓷材料、氧化镁、导电炭黑以及水性胶混合后搅拌均匀,得到水性浆料;
本实施例中,陶瓷材料为β-锂辉石粉末,其中β-锂辉石粉末为40份,氧化镁为35份,导电炭黑为10份,水性胶为45份;并且,所述的水性胶为水性聚氨酯,采用水作为溶剂,得到的水性浆料的粘度范围为500-1000cps/25℃;
S2、第一薄膜的制备,将60份反式-1,4-聚异戊二烯、30份顺丁橡胶、10份导电炭黑以及10份水溶性盐投入混炼造粒机中,进行混炼,混炼时的温度为130℃,混炼时间为30min,制成粒径为10-20nm的记忆材料,此时,记忆材料的相变温度为51℃,一般情况下,通过此种工艺所制得的记忆材料的相变温度在50-80℃之间;此后,将记忆材料加入氮化铝和乙醇混合的溶液中,搅拌、抽滤后将混合物烘干,烘干的温度为100℃;再将烘干后的物质在惰性气体的保护下进行煅烧,煅烧温度为400℃,得到由氮化铝包覆的固体材料;本实施例中,氮化铝与乙醇混合后形成浑浊液,氮化铝、乙醇以及记忆材料的重量比为3:6:1。
最后,将高分子聚合物颗粒与固体材料混合后放入吹膜机中,采用薄膜吹制法将高分子聚合物颗粒和固体材料的混合材料吹制成薄膜,将得到的薄膜过水并烘干后,得到第一薄膜;在该步骤中,薄膜过水后,在60℃的温度下烘干10min;并且,上述的高分子聚合物颗粒为PET;
在步骤S2中,过水时,记忆材料中的水溶性盐溶于水后,在记忆材料内形成孔洞,由于记忆材料的相变温度一般在50-80℃之间,当温度升高到这个区间时,记忆材料会发生一定的形变,从而将记忆材料内部的孔洞闭合;当温度降低时,记忆材料则会返回至原来的状态,因此当电池由于不正确的使用或者其他原因导致电池温度过高时,记忆材料会自动将隔膜封闭,从而阻断正负极的锂离子交换,达到阻断反应的目的,而待温度到达正常水平时,形状记忆材料又会自动恢复,此时锂离子电池能够正常使用。
S3、第二薄膜的制备,将含卤化合物混合水溶性盐熔融后,吹塑形成薄膜,过水烘干后,得到第二薄膜,在该步骤中,薄膜过水后,在60℃的温度下烘干10min;
S4、锂离子电池隔膜的制备,将水性浆料涂覆在第一薄膜10上,在第一薄膜10的表面形成水性浆料层30,从而形成第一复合薄膜40,其结构如图2所示;将水性浆料涂覆在第二薄膜20上,在第二薄膜20的表面形成水性浆料层30,从而 形成第二复合薄膜50,其结构如图3所示;第一复合薄膜40的水性浆料层30和第二复合薄膜50的水性浆料层30的厚度均为500nm;
将第一复合薄膜40和第二复合薄膜50烘干后,将第一复合薄膜40上的水性浆料层30与第二复合薄膜50的水性浆料层30复合在一起,得到锂离子电池隔膜,其结构如图4所示。在该步骤中,第一复合薄膜40和第二复合薄膜50的烘干温度为100℃,且烘干时间为1h。
如图4、图5所示,本发明还提供了一种安全锂离子电池隔膜,包括第一薄膜10、第二薄膜20以及水性浆料层30,所述的第一薄膜10通过水性浆料层30与第二薄膜20相贴合;如图5所示,所述第一薄膜10的内部嵌入有若干固体材料101,该固体材料101的外部为氮化铝壳体102,氮化铝壳体102的内部为记忆材料103,且记忆材料103上形成有孔洞,所述的第一薄膜10上具有与记忆材料103上的孔洞相连通的第一通孔;所述的第二薄膜20上具有贯穿的第二通孔。
其中,本实施例中,所述的记忆材料103采用60份反式-1,4-聚异戊二烯、30份顺丁橡胶、10份导电炭黑以及10份水溶性盐投入混炼造粒机中混炼制成,且记忆材料103的粒径为10-20nm。进一步的,所述的固体材料101,采用将记忆材料103将入氮化铝和乙醇混合的溶液中,搅拌、抽滤后将混合物烘干,再将烘干后的物质在惰性气体的保护下进行煅烧制成。上述的实施例中,所述的水性浆料层30采用40份的β-锂辉石粉末、35份的氧化镁、10份的导电炭黑以及45份水性胶搅拌制成。通过设置的水性浆料层30,其中的β-锂辉石粉末为陶瓷材料,增加了隔膜的强度,避免了正负极上面产生的锂枝晶刺破隔膜所产生的的短路危险。
基于此,本发明的一种安全锂离子电池隔膜,第一薄膜10上布满了球状颗粒(即固体材料101),第一薄膜10上具有与球状颗粒相连通的第一通孔,并且,固体材料101中的记忆材料103中具有孔洞。在温度升高时,记忆材料103上的孔洞能够自动闭合,阻止电解液进一步反应,从而达到保护电池的作用,而当温度降低时,则打开通道。当温度到达一定温度时,隔膜孔洞自动闭合,阻止锂离子电解液的进一步反应,同时防止正负极极片上面的锂枝晶刺破隔膜从而造成短路。
另外,本发明还提供了一种锂离子电池,该锂离子电池的隔膜由所述的安全锂离子电池隔膜的制备方法得到。
实施例3
参照图1所示,本发明揭示了一种安全锂离子电池隔膜的制备方法,具体的, 该方法包括以下的步骤:
S1、水性浆料的制备,将陶瓷材料、氧化镁、导电炭黑以及水性胶混合后搅拌均匀,得到水性浆料;
本实施例中,陶瓷材料为β-锂辉石粉末,其中β-锂辉石粉末为35份,氧化镁为30份,导电炭黑为7份,水性胶为35份;并且,所述的水性胶为聚乙烯醇类水性胶黏剂,采用水作为溶剂,得到的水性浆料的粘度范围为500-1000cps/25℃;
S2、第一薄膜的制备,将55份反式-1,4-聚异戊二烯、25份顺丁橡胶、7份导电炭黑以及7份水溶性盐投入混炼造粒机中,进行混炼,混炼时的温度为120℃,混炼时间为45min,制成粒径为10-20nm的记忆材料,此时,记忆材料的相变温度为70℃,一般情况下,通过此种工艺所制得的记忆材料的相变温度在50-80℃之间;此后,将记忆材料加入氮化铝和乙醇混合的溶液中,搅拌、抽滤后将混合物烘干,烘干的温度为90℃;再将烘干后的物质在惰性气体的保护下进行煅烧,煅烧温度为350℃,得到由氮化铝包覆的固体材料;本实施例中,氮化铝与乙醇混合后形成浑浊液,氮化铝、乙醇以及记忆材料的重量比为3:6:1。
最后,将高分子聚合物颗粒与固体材料混合后放入吹膜机中,采用薄膜吹制法将高分子聚合物颗粒和固体材料的混合材料吹制成薄膜,将得到的薄膜过水并烘干后,得到第一薄膜;在该步骤中,薄膜过水后,在55℃的温度下烘30min;并且,上述的高分子聚合物颗粒为PP;
在步骤S2中,过水时,记忆材料中的水溶性盐溶于水后,在记忆材料内形成孔洞,由于记忆材料的相变温度一般在50-80℃之间,当温度升高到这个区间时,记忆材料会发生一定的形变,从而将记忆材料内部的孔洞闭合;当温度降低时,记忆材料则会返回至原来的状态,因此当电池由于不正确的使用或者其他原因导致电池温度过高时,记忆材料会自动将隔膜封闭,从而阻断正负极的锂离子交换,达到阻断反应的目的,而待温度到达正常水平时,形状记忆材料又会自动恢复,此时锂离子电池能够正常使用。
S3、第二薄膜的制备,将含卤化合物混合水溶性盐熔融后,吹塑形成薄膜,过水烘干后,得到第二薄膜,在该步骤中,薄膜过水后,在55℃的温度下烘干15min;
S4、锂离子电池隔膜的制备,将水性浆料涂覆在第一薄膜10上,在第一薄膜10的表面形成水性浆料层30,从而形成第一复合薄膜40,其结构如图2所示;将水性浆料涂覆在第二薄膜20上,在第二薄膜20的表面形成水性浆料层30,从而 形成第二复合薄膜50,其结构如图3所示;第一复合薄膜40的水性浆料层30和第二复合薄膜50的水性浆料层30的厚度均为375nm;
将第一复合薄膜40和第二复合薄膜50烘干后,将第一复合薄膜40上的水性浆料层30与第二复合薄膜50的水性浆料层30复合在一起,得到锂离子电池隔膜,其结构如图4所示。在该步骤中,第一复合薄膜40和第二复合薄膜50的烘干温度为75℃,且烘干时间为1.5h。
如图4、图5所示,本发明还提供了一种安全锂离子电池隔膜,包括第一薄膜10、第二薄膜20以及水性浆料层30,所述的第一薄膜10通过水性浆料层30与第二薄膜20相贴合;如图5所示,所述第一薄膜10的内部嵌入有若干固体材料101,该固体材料101的外部为氮化铝壳体102,氮化铝壳体102的内部为记忆材料103,且记忆材料103上形成有孔洞,所述的第一薄膜10上具有与记忆材料103上的孔洞相连通的第一通孔;所述的第二薄膜20上具有贯穿的第二通孔。
其中,本实施例中,所述的记忆材料103采用55份反式-1,4-聚异戊二烯、25份顺丁橡胶、7份导电炭黑以及7份水溶性盐投入混炼造粒机中混炼制成,且记忆材料103的粒径为10-20nm。进一步的,所述的固体材料101,采用将记忆材料103将入氮化铝和乙醇混合的溶液中,搅拌、抽滤后将混合物烘干,再将烘干后的物质在惰性气体的保护下进行煅烧制成。上述的实施例中,所述的水性浆料层30采用35份的β-锂辉石粉末、30份的氧化镁、7份的导电炭黑以及35份水性胶搅拌制成。通过设置的水性浆料层30,其中的β-锂辉石粉末为陶瓷材料,增加了隔膜的强度,避免了正负极上面产生的锂枝晶刺破隔膜所产生的的短路危险,且不影响锂离子自由从较薄的水性浆料层通过。
基于此,本发明的一种安全锂离子电池隔膜,第一薄膜10上布满了球状颗粒(即固体材料101),第一薄膜10上具有与球状颗粒相连通的第一通孔,并且,固体材料101中的记忆材料103中具有孔洞。在温度升高时,记忆材料103上的孔洞能够自动闭合,阻止电解液进一步反应,从而达到保护电池的作用,而当温度降低时,则打开通道。当温度到达一定温度时,隔膜孔洞自动闭合,阻止锂离子电解液的进一步反应,同时防止正负极极片上面的锂枝晶刺破隔膜从而造成短路。
另外,本发明还提供了一种锂离子电池,该锂离子电池的隔膜由所述的安全锂离子电池隔膜的制备方法得到。
实施例4
参照图1所示,本发明揭示了一种安全锂离子电池隔膜的制备方法,具体的,该方法包括以下的步骤:
S1、水性浆料的制备,将陶瓷材料、氧化镁、导电炭黑以及水性胶混合后搅拌均匀,得到水性浆料;
本实施例中,陶瓷材料为β-锂辉石粉末,其中β-锂辉石粉末为32份,氧化镁为35份,导电炭黑为10份,水性胶为30份;并且,所述的水性胶为水性聚氨酯,采用水作为溶剂,得到的水性浆料的粘度范围为500-1000cps/25℃;
S2、第一薄膜的制备,将58份反式-1,4-聚异戊二烯、28份顺丁橡胶、10份导电炭黑以及10份水溶性盐投入混炼造粒机中,进行混炼,混炼时的温度为130℃,混炼时间为30min,制成粒径为10-20nm的记忆材料,此时,记忆材料的相变温度为53℃,一般情况下,通过此种工艺所制得的记忆材料的相变温度在50-80℃之间;此后,将记忆材料加入氮化铝和乙醇混合的溶液中,搅拌、抽滤后将混合物烘干,烘干的温度为100℃;再将烘干后的物质在惰性气体的保护下进行煅烧,煅烧温度为400℃,得到由氮化铝包覆的固体材料;本实施例中,氮化铝与乙醇混合后形成浑浊液,氮化铝、乙醇以及记忆材料的重量比为3:6:1。
最后,将高分子聚合物颗粒与固体材料混合后放入吹膜机中,采用薄膜吹制法将高分子聚合物颗粒和固体材料的混合材料吹制成薄膜,将得到的薄膜过水并烘干后,得到第一薄膜;在该步骤中,薄膜过水后,在60℃的温度下烘干10min;并且,上述的高分子聚合物颗粒为PET;
在步骤S2中,过水时,记忆材料中的水溶性盐溶于水后,在记忆材料内形成孔洞,由于记忆材料的相变温度一般在50-80℃之间,当温度升高到这个区间时,记忆材料会发生一定的形变,从而将记忆材料内部的孔洞闭合;当温度降低时,记忆材料则会返回至原来的状态,因此当电池由于不正确的使用或者其他原因导致电池温度过高时,记忆材料会自动将隔膜封闭,从而阻断正负极的锂离子交换,达到阻断反应的目的,而待温度到达正常水平时,形状记忆材料又会自动恢复,此时锂离子电池能够正常使用。
S3、第二薄膜的制备,将含卤化合物混合水溶性盐熔融后,吹塑形成薄膜,过水烘干后,得到第二薄膜,在该步骤中,薄膜过水后,在60℃的温度下烘干10min;
S4、锂离子电池隔膜的制备,将水性浆料涂覆在第一薄膜10上,在第一薄膜10的表面形成水性浆料层30,从而形成第一复合薄膜40,其结构如图2所示;将 水性浆料涂覆在第二薄膜20上,在第二薄膜20的表面形成水性浆料层30,从而形成第二复合薄膜50,其结构如图3所示;第一复合薄膜40的水性浆料层30和第二复合薄膜50的水性浆料层30的厚度均为500nm;
将第一复合薄膜40和第二复合薄膜50烘干后,将第一复合薄膜40上的水性浆料层30与第二复合薄膜50的水性浆料层30复合在一起,得到锂离子电池隔膜,其结构如图4所示。在该步骤中,第一复合薄膜40和第二复合薄膜50的烘干温度为100℃,且烘干时间为1h。
如图4、图5所示,本发明还提供了一种安全锂离子电池隔膜,包括第一薄膜10、第二薄膜20以及水性浆料层30,所述的第一薄膜10通过水性浆料层30与第二薄膜20相贴合;如图5所示,所述第一薄膜10的内部嵌入有若干固体材料101,该固体材料101的外部为氮化铝壳体102,氮化铝壳体102的内部为记忆材料103,且记忆材料103上形成有孔洞,所述的第一薄膜10上具有与记忆材料103上的孔洞相连通的第一通孔;所述的第二薄膜20上具有贯穿的第二通孔。
其中,本实施例中,所述的记忆材料103采用58份反式-1,4-聚异戊二烯、28份顺丁橡胶、10份导电炭黑以及10份水溶性盐投入混炼造粒机中混炼制成,且记忆材料103的粒径为10-20nm。进一步的,所述的固体材料101,采用将记忆材料103将入氮化铝和乙醇混合的溶液中,搅拌、抽滤后将混合物烘干,再将烘干后的物质在惰性气体的保护下进行煅烧制成。上述的实施例中,所述的水性浆料层30采用32份的β-锂辉石粉末、35份的氧化镁、10份的导电炭黑以及30份水性胶搅拌制成。通过设置的水性浆料层30,其中的β-锂辉石粉末为陶瓷材料,增加了隔膜的强度,避免了正负极上面产生的锂枝晶刺破隔膜所产生的的短路危险。
基于此,本发明的一种安全锂离子电池隔膜,第一薄膜10上布满了球状颗粒(即固体材料101),第一薄膜10上具有与球状颗粒相连通的第一通孔,并且,固体材料101中的记忆材料103中具有孔洞。在温度升高时,记忆材料103上的孔洞能够自动闭合,阻止电解液进一步反应,从而达到保护电池的作用,而当温度降低时,则打开通道。当温度到达一定温度时,隔膜孔洞自动闭合,阻止锂离子电解液的进一步反应,同时防止正负极极片上面的锂枝晶刺破隔膜从而造成短路。
另外,结合上述的实施例1-4,将本发明制得的安全锂离子电池隔膜与现有技术中采购的隔膜进行对比。
对比例的隔膜:采用市售的普通隔膜,隔膜的孔隙率为85%,孔径为50%,材质 为PP膜。
实施例的隔膜:采用实施例1-4中提供的锂离子电池隔膜。
对比例隔膜的锂离子电池的制备:将石墨、PVDF、乙酸正丁酯按照配比2:1:2混合制成负极活性浆料,涂覆在镀有金属铜的导电薄膜上,该导电薄膜厚度为3um,其两面均镀有1um的铜层,得到负极极片,将磷酸铁锂、PVDF、以及乙酸乙酯按照5:2:3配比制成正极活性材料,将正极活性材料涂覆在镀有金属铝的薄膜上面,此处的薄膜厚度也为3um,镀覆在薄膜双面的铝层也为1um,隔膜采用孔隙率在85%,孔径为50nm的聚乙烯膜,电解质由1.0M LiPF6的EC+DMC+EMC溶液,所有组装均在手套箱里进行。
实施例的锂离子电池的制备:实施例的制备与对比例其他完全相同,唯一不同之处在于所使用的隔膜为本发明所提供的隔膜。
过冲测试:将上述实施例和对比例所得电池以3C倍率恒流充电到5V记录电池状态。实验结果如下:
样品 3C—5C过充测试
对比例1 冒烟
对比例2 冒烟
对比例3 着火
对比例4 冒烟
实施例1 无着火、冒烟等现象
实施例2 无着火、冒烟等现象
实施例3 无着火、冒烟等现象
实施例4 无着火、冒烟等现象
另外,本发明还提供了一种锂离子电池,该锂离子电池的隔膜由所述的安全锂离子电池隔膜的制备方法得到。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。
由于第一薄膜上布满了球状颗粒,第一薄膜上具有与球状颗粒相连通的第一通孔,且固体材料中的记忆材料中具有孔洞。这样在温度升高时,记忆材料上的孔洞能够自动闭合,阻止电解液进一步反应,从而达到保护锂离子电池的作用,而当温 度降低时,则打开通道,以提高锂离子电池使用的安全性,由此,本发明的安全锂离子电池隔膜、制备方法及锂离子电池具有实用性。

Claims (14)

  1. 一种安全锂离子电池隔膜的制备方法,其特征在于,该制备方法包括以下的步骤:
    S1、水性浆料的制备,将陶瓷材料、氧化镁、导电炭黑以及水性胶混合后搅拌均匀,得到水性浆料;
    S2、第一薄膜的制备,将50-60份反式-1,4-聚异戊二烯、20-30份顺丁橡胶、5-10份导电炭黑以及5-10份水溶性盐投入混炼造粒机中,进行混炼,制成粒径为10-20nm的记忆材料;
    将记忆材料加入氮化铝和乙醇混合的溶液中,搅拌、抽滤后将混合物烘干,再将烘干后的物质在惰性气体的保护下进行煅烧,得到由氮化铝包覆的固体材料;
    将高分子聚合物颗粒与固体材料混合后放入吹膜机中,采用薄膜吹制法将高分子聚合物颗粒和固体材料的混合材料吹制成薄膜,将得到的薄膜过水并烘干后,得到第一薄膜;
    S3、第二薄膜的制备,将含卤化合物混合水溶性盐熔融后,吹塑形成薄膜,过水烘干后,得到第二薄膜;
    S4、锂离子电池隔膜的制备,将水性浆料涂覆在第一薄膜上,在第一薄膜的表面形成水性浆料层,从而形成第一复合薄膜;将水性浆料涂覆在第二薄膜上,在第二薄膜的表面形成水性浆料层,从而形成第二复合薄膜;
    将第一复合薄膜和第二复合薄膜烘干后,将第一复合薄膜上的水性浆料层与第二复合薄膜的水性浆料层复合在一起,得到锂离子电池隔膜。
  2. 根据权利要求1所述的一种安全锂离子电池隔膜的制备方法,其特征在于,步骤S1中,陶瓷材料为β-锂辉石粉末,其中β-锂辉石粉末为30-40份,氧化镁为20-35份,导电炭黑为5-10份,水性胶为25-45份。
  3. 根据权利要求2所述的一种安全锂离子电池隔膜的制备方法,其特征在于,所述的水性胶为聚乙烯醇类水性胶黏剂或者水性聚氨酯;所述水性浆料的粘度范围为500-1000cps/25℃。
  4. 根据权利要求1所述的一种安全锂离子电池隔膜的制备方法,其特征在于,步骤S2中,混炼时的温度为100-130℃,混炼时间为30-60min;混合物烘干的温度为80-100℃,煅烧温度为300-400℃;所述的记忆材料的相变温度为50-80℃。
  5. 根据权利要求1所述的一种安全锂离子电池隔膜的制备方法,其特征在于,步骤S2和步骤S3中,薄膜过水后,在50-60℃的温度下烘干10-20min。
  6. 根据权利要求1所述的一种安全锂离子电池隔膜的制备方法,其特征在于,步骤S2中,所述的高分子聚合物颗粒为PP或PET。
  7. 根据权利要求1所述的一种安全锂离子电池隔膜的制备方法,其特征在于,步骤S2中,氮化铝与乙醇混合后形成浑浊液,氮化铝、乙醇以及记忆材料的重量比为3:6:1。
  8. 根据权利要求1所述的一种安全锂离子电池隔膜的制备方法,其特征在于,步骤S4中,第一复合薄膜和第二复合薄膜的烘干温度为50-100℃,且烘干时间为1-2h。
  9. 根据权利要求1所述的一种安全锂离子电池隔膜的制备方法,其特征在于,步骤S4中,第一复合薄膜的水性浆料层和第二复合薄膜的水性浆料层的厚度均为250-500nm。
  10. 一种安全锂离子电池隔膜,其特征在于,包括第一薄膜、第二薄膜以及水性浆料层,所述的第一薄膜通过水性浆料层与第二薄膜相贴合;
    所述第一薄膜的内部嵌入有若干固体材料,该固体材料的外部为氮化铝壳体,氮化铝壳体的内部为记忆材料,且记忆材料上形成有孔洞,所述的第一薄膜上具有与记忆材料上的孔洞相连通的第一通孔;所述的第二薄膜上具有贯穿的第二通孔。
  11. 根据权利要求10所述的一种安全锂离子电池隔膜,其特征在于,所述的记忆材料采用50-60份反式-1,4-聚异戊二烯、20-30份顺丁橡胶、5-10份导电炭黑以及5-10份水溶性盐投入混炼造粒机中混炼制成,且记忆材料的粒径为10-20nm。
  12. 根据权利要求11所述的一种安全锂离子电池隔膜,其特征在于,所述的固体材料,采用将记忆材料将入氮化铝和乙醇混合的溶液中,搅拌、抽滤后将混合物烘干,再将烘干后的物质在惰性气体的保护下进行煅烧制成。
  13. 根据权利要求10所述的一种安全锂离子电池隔膜,其特征在于,所述的水性浆料层采用30-40份的β-锂辉石粉末、20-35份的氧化镁、5-10份的导电炭黑以及25-45份水性胶搅拌制成。
  14. 一种锂离子电池,其特征在于,该锂离子电池的隔膜由权利要求1-9任一项所述的安全锂离子电池隔膜的制备方法得到。
PCT/CN2021/099441 2020-12-11 2021-06-10 一种安全锂离子电池隔膜、制备方法及锂离子电池 WO2022121265A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022519384A JP7365754B2 (ja) 2020-12-11 2021-06-10 高安全性リチウムイオン電池用セパレータの製造方法
US17/766,223 US20230198093A1 (en) 2020-12-11 2021-06-10 Safe lithium-ion battery (lib) separator, fabrication method thereof, and lib
EP21870539.0A EP4040588B1 (en) 2020-12-11 2021-06-10 Safe lithium-ion battery (lib) separator, fabrication method thereof, and lib

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011463207.4A CN112582749B (zh) 2020-12-11 2020-12-11 一种安全锂离子电池隔膜、制备方法及锂离子电池
CN202011463207.4 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022121265A1 true WO2022121265A1 (zh) 2022-06-16

Family

ID=75131828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099441 WO2022121265A1 (zh) 2020-12-11 2021-06-10 一种安全锂离子电池隔膜、制备方法及锂离子电池

Country Status (5)

Country Link
US (1) US20230198093A1 (zh)
EP (1) EP4040588B1 (zh)
JP (1) JP7365754B2 (zh)
CN (1) CN112582749B (zh)
WO (1) WO2022121265A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582749B (zh) * 2020-12-11 2022-09-13 重庆金美新材料科技有限公司 一种安全锂离子电池隔膜、制备方法及锂离子电池
CN114512706B (zh) * 2021-12-24 2023-08-04 合肥国轩高科动力能源有限公司 一种锂离子电池隔膜浆料及锂离子电池隔膜
CN114824649A (zh) * 2022-05-07 2022-07-29 浙江南都电源动力股份有限公司 一种大孔pet膜骨架复合隔膜的制备方法
CN115303841A (zh) * 2022-07-11 2022-11-08 杭州环申新材料科技股份有限公司 一种锂离子粉末专用超净薄膜及其生产设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470898B2 (en) * 2011-05-31 2013-06-25 GM Global Technology Operations LLC Methods of making lithium ion battery separators
CN205194767U (zh) * 2015-11-06 2016-04-27 东莞市亿顺新材料有限公司 一种耐高温锂电池隔膜
CN106953050A (zh) * 2017-02-13 2017-07-14 河北金力新能源科技股份有限公司 一种耐高温多层隔膜复合锂离子电池隔膜及其制备方法
CN111769239A (zh) * 2019-04-02 2020-10-13 河北金力新能源科技股份有限公司 耐热高强复合锂电隔膜及其制备方法和应用
CN111785893A (zh) * 2020-07-09 2020-10-16 合肥国轩高科动力能源有限公司 一种低闭孔温度的涂覆聚丙烯隔膜及其制备方法
CN112582749A (zh) * 2020-12-11 2021-03-30 重庆金美新材料科技有限公司 一种安全锂离子电池隔膜、制备方法及锂离子电池

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348280A (ja) * 2005-05-20 2006-12-28 Sumitomo Chemical Co Ltd 多孔質フィルムおよび積層多孔質フィルム
CN101127392A (zh) * 2006-08-17 2008-02-20 李鑫 一种安全锂离子电芯及其制造方法
US9190649B2 (en) * 2011-05-04 2015-11-17 Cornell University Shape memory polymer material compositions, methods and applications
CN103035864B (zh) * 2011-09-30 2017-06-06 天津东皋膜技术有限公司 具有压缩弹性热关断耐高温的涂层隔膜
CN102437302A (zh) * 2011-11-25 2012-05-02 东莞市比比克电子科技有限公司 一种锂离子电池隔膜及高温热稳定型锂离子电池
CN102394282B (zh) * 2011-11-25 2014-12-10 佛山市金辉高科光电材料有限公司 一种锂离子二次电池多孔多层隔膜及其制造方法
WO2014002701A1 (ja) * 2012-06-29 2014-01-03 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
CN104157811A (zh) * 2013-12-11 2014-11-19 中航锂电(洛阳)有限公司 一种锂离子电池复合隔膜、制备方法和应用
US20170098857A1 (en) * 2015-04-15 2017-04-06 Optodot Corporation Coated stacks for batteries and related manufacturing methods
CN106784539A (zh) * 2017-01-24 2017-05-31 厦门大学 一种无纺布陶瓷隔膜及其制备方法和应用
CN106910860B (zh) * 2017-03-28 2020-11-06 欣旺达电子股份有限公司 锂电池隔膜涂层、隔膜及隔膜制备方法
CN106887559A (zh) * 2017-03-28 2017-06-23 旭成(福建)科技股份有限公司 锂电池隔膜及其制备方法
CN106941146A (zh) * 2017-05-04 2017-07-11 南通中航泛能新材料有限公司 一种用于锂离子电池的复合隔膜
CN107369804A (zh) * 2017-08-06 2017-11-21 长沙小新新能源科技有限公司 一种锂电池安全性隔膜材料的制备方法
KR102501467B1 (ko) * 2017-11-16 2023-02-20 삼성전자주식회사 복합분리막, 그 제조방법 및 이를 포함하는 이차전지
KR102414896B1 (ko) * 2017-11-29 2022-07-01 에스케이이노베이션 주식회사 이차전지용 복합분리막 및 이를 포함하는 리튬이차전지
CN108735953B (zh) * 2018-06-28 2021-07-23 广东美联隔膜有限公司 一种SiO2-PS核壳结构陶瓷涂层隔膜及其制备方法和应用
US20220094019A1 (en) * 2019-01-04 2022-03-24 Ceigard, LLC Coated microporous membranes, and battery separators, batteries, vehicles, and devices comprising the same
CN112018305A (zh) * 2019-05-30 2020-12-01 财团法人工业技术研究院 复合膜及其制作方法与应用
CN111477816A (zh) * 2020-04-13 2020-07-31 华鼎国联四川动力电池有限公司 一种锂离子电池隔膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470898B2 (en) * 2011-05-31 2013-06-25 GM Global Technology Operations LLC Methods of making lithium ion battery separators
CN205194767U (zh) * 2015-11-06 2016-04-27 东莞市亿顺新材料有限公司 一种耐高温锂电池隔膜
CN106953050A (zh) * 2017-02-13 2017-07-14 河北金力新能源科技股份有限公司 一种耐高温多层隔膜复合锂离子电池隔膜及其制备方法
CN111769239A (zh) * 2019-04-02 2020-10-13 河北金力新能源科技股份有限公司 耐热高强复合锂电隔膜及其制备方法和应用
CN111785893A (zh) * 2020-07-09 2020-10-16 合肥国轩高科动力能源有限公司 一种低闭孔温度的涂覆聚丙烯隔膜及其制备方法
CN112582749A (zh) * 2020-12-11 2021-03-30 重庆金美新材料科技有限公司 一种安全锂离子电池隔膜、制备方法及锂离子电池

Also Published As

Publication number Publication date
US20230198093A1 (en) 2023-06-22
EP4040588C0 (en) 2024-05-08
CN112582749A (zh) 2021-03-30
CN112582749B (zh) 2022-09-13
EP4040588A4 (en) 2023-03-08
JP7365754B2 (ja) 2023-10-20
EP4040588B1 (en) 2024-05-08
EP4040588A1 (en) 2022-08-10
JP2023509563A (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2022121265A1 (zh) 一种安全锂离子电池隔膜、制备方法及锂离子电池
CN109148789B (zh) 隔膜及其制备方法以及使用隔膜的锂离子电池
CN105958008B (zh) 一种锂离子电池用复合正极片、制备方法及锂离子电池
CN106887556B (zh) 一种有机无机复合改性隔膜及其制备方法和应用
WO2016188477A2 (zh) 碳包覆三元正极材料及其制备方法、锂离子电池
US20140322587A1 (en) Separator of lithium-ion-battery preparation and method thereof
CN102544599B (zh) 镍锌电池及其制造方法
WO2018233269A1 (zh) 一种陶瓷和聚合物复合涂覆锂离子隔膜及其制备方法
WO2017032304A1 (zh) 一种改性陶瓷复合隔膜及制造方法
CN106654125A (zh) 通过多巴胺复合粘结剂制备改性陶瓷隔膜的方法及其应用
CN109755448A (zh) 一种带有补锂涂层的锂电池隔膜及其制备方法
CN104157810A (zh) 一种隔膜、其制备方法及一种锂离子电池
CN105330751A (zh) 锂电池用羧甲基纤维素锂的连续化生产方法
CN103594683B (zh) 一种制备高温锂离子电池锰酸锂正极材料的包覆改性方法
CN107507950A (zh) 含多巴胺复合粘结剂的陶瓷隔膜及在锂离子电池中的应用
WO2023155604A1 (zh) 复合隔膜及电化学装置
CN101000971A (zh) 高安全性、高动力性锂离子动力电池
CN108461842B (zh) 一种提高圆柱型钛酸锂储能电芯短路通过率的方法
CN114552122A (zh) 一种隔膜及其制备方法以及二次电池
CN112421037A (zh) 一种锂电池疏水型nca正极材料及制备方法
CN111883765A (zh) 锂电池正极活性材料及其制备方法和锂电池
CN114267821A (zh) 一种高安全锂离子电池用正极极片及其制备方法和应用
CN104752660A (zh) 一种电池隔膜及其制备方法
WO2023246704A1 (zh) 一种锂离子电池极片及其制备方法
CN102324553B (zh) 一种安全锂离子电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022519384

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021870539

Country of ref document: EP

Effective date: 20220330

NENP Non-entry into the national phase

Ref country code: DE