WO2022121125A1 - 一种高首效多元包覆硅基复合材料、其制备方法及其应用 - Google Patents

一种高首效多元包覆硅基复合材料、其制备方法及其应用 Download PDF

Info

Publication number
WO2022121125A1
WO2022121125A1 PCT/CN2021/078849 CN2021078849W WO2022121125A1 WO 2022121125 A1 WO2022121125 A1 WO 2022121125A1 CN 2021078849 W CN2021078849 W CN 2021078849W WO 2022121125 A1 WO2022121125 A1 WO 2022121125A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
composite material
based composite
precursor
efficiency multi
Prior art date
Application number
PCT/CN2021/078849
Other languages
English (en)
French (fr)
Inventor
郑安华
余德馨
仰永军
Original Assignee
广东凯金新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东凯金新能源科技股份有限公司 filed Critical 广东凯金新能源科技股份有限公司
Publication of WO2022121125A1 publication Critical patent/WO2022121125A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of silicon materials, in particular to a high first-effect multi-component clad silicon-based composite material, a preparation method and application thereof.
  • anode materials are mainly natural graphite, artificial graphite and intermediate graphite-like materials, but due to their low theoretical capacity, they cannot meet the market demand.
  • people's attention has been aimed at new high specific capacity anode materials: lithium storage metals and their oxides and lithium transition metal phosphides.
  • silicon has become one of the most potential alternative graphite materials due to its high theoretical specific capacity. pulverization, thereby losing contact with the current collector, resulting in a sharp decline in cycle performance; in addition, silicon-based materials have low intrinsic conductivity and poor rate performance. Therefore, reducing the volume expansion effect and improving the cycle performance and rate performance are of great significance for the application of silicon-based materials in lithium-ion batteries.
  • Nanometerization mainly includes silane pyrolysis and physical ball milling.
  • the harsh conditions of chemical synthesis make it difficult to prepare nano-silicon in batches by this method.
  • In the process of preparing nano-silicon by physical ball milling it is inevitable that there is a thick oxide layer on the surface of nano-silicon, which affects the first efficiency of the material.
  • a high first-efficiency multi-component clad silicon-based composite material, a preparation method thereof, and an application thereof are provided.
  • the process is simple and feasible, the product performance is stable, and has a good application prospect.
  • a preparation method of a high first-efficiency multi-component coated silicon-based composite material comprising the following steps: (1) mixing and dispersing nano-silicon, a dispersant, a metal powder and a binder in an organic solvent uniformly to obtain a precursor A; ( 2) Precursor A is subjected to high temperature treatment to obtain Precursor B; (3) Precursor B is subjected to pickling, filtration and drying treatment to obtain Precursor C; (4) Precursor C is carbon-coated to obtain the The above-mentioned high first-efficiency multi-component clad silicon matrix composite material.
  • the high first-efficiency multi-component clad silicon-based composite material sequentially includes a first nano-silicon layer, a nano-silicon oxide layer, a second nano-silicon layer, and a carbon cladding layer from inside to outside.
  • a high-first-efficiency multi-component coated silicon-based composite material the high-first-efficiency multi-component coated silicon-based composite material prepared by the above preparation method.
  • the high first-efficiency multi-component coated silicon-based composite material of the present invention is a silicon-carbon negative electrode material for lithium ion batteries with the advantages of high first-efficiency, low expansion and long cycle, and the nano-silicon oxide layer in the middle of the multi-component coated silicon-based composite material can effectively It can alleviate the volume effect during the charging and discharging process, and effectively avoid the pulverization of the material during the cycle.
  • the nano-silicon layer of the sub-outer layer can reduce the consumption of irreversible lithium and improve its first effect.
  • the outermost carbon coating layer can It can effectively improve the conductivity of silicon-based materials, and at the same time, it can effectively alleviate the volume effect in the process of charging and discharging, effectively avoid the pulverization of materials in the cycle process, alleviate the volume expansion effect of silicon-based materials, and improve the cycle performance. , which can improve the conductivity and rate performance of the material.
  • FIG. 1 is a schematic structural diagram of the high first-efficiency multi-component clad silicon-based composite material of the first embodiment
  • FIG. 2 is an electron microscope image of the high-first-efficiency multi-component clad silicon-based composite material of FIG. 1
  • FIG. 1 to FIG. 3 are the high first-efficiency multi-component coated silicon-based composite material according to the first embodiment of the present invention, which is a silicon-carbon negative electrode material for lithium ion batteries with the advantages of high first-efficiency, low expansion and long cycle, etc.
  • the nano-silicon oxide layer in the middle of the multi-coated silicon-based composite material can effectively alleviate the volume effect during the charging and discharging process, and effectively avoid the pulverization of the material during the cycle process.
  • the outermost carbon coating layer can effectively improve the conductivity of silicon-based materials, at the same time can effectively alleviate the volume effect during the charging and discharging process, and effectively avoid the pulverization of the material during the cycle process , which alleviates the volume expansion effect of silicon-based materials, improves the cycle performance, and can improve the electrical conductivity and rate performance of the material.
  • a method for preparing a high first-effect multi-component coated silicon-based composite material includes the following steps: (1) mixing nano-silicon, dispersant, The metal powder and the binder are uniformly mixed and dispersed in an organic solvent to obtain the precursor A; (2) the precursor A is subjected to high temperature treatment to obtain the precursor B; (3) the precursor B is subjected to pickling, filtration and drying treatment , to obtain a precursor C; (4) carbon-coated the precursor C to obtain the high first-efficiency multi-component coated silicon-based composite material.
  • the high first-efficiency multi-component clad silicon-based composite material sequentially includes a first nano-silicon layer 10 , a nano-silicon oxide layer 20 , a second nano-silicon layer 30 and a carbon cladding layer 40 from the inside to the outside.
  • a high first-efficiency multi-component clad silicon-based composite material is obtained by using the above-mentioned preparation method.
  • an application of a high first-efficiency multi-component coated silicon-based composite material is used in a lithium-ion battery negative electrode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及硅基材料领域,特别是涉及一种高首效多元包覆硅基复合材料的制备方法,包括如下步骤:(1)将纳米硅、分散剂、金属粉和粘结剂在有机溶剂中混合分散均匀,得到前驱体A;(2)将前驱体A进行高温处理,得到前驱体B;(3)将前驱体B进行酸洗、过滤和干燥处理,得到前驱体C;(4)将前驱体C进行碳包覆,得到所述的高首效多元包覆硅基复合材料。本发明提供一种高首效多元包覆硅基复合材料、其制备方法及其应用,其工艺简单易行,产品性能稳定,具有良好的应用前景。

Description

一种高首效多元包覆硅基复合材料、其制备方法及其应用
相关申请的交叉引用。
本申请要求于2020年12月7提交中国专利局,申请号为202011417888.0,发明名称为“一种高首效多元包覆硅基复合材料、其制备方法及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉硅材料领域,特别是涉及一种高首效多元包覆硅基复合材料、其制备方法及其应用。
背景技术
目前商业化负极材料主要为天然石墨、人造石墨和中间相等石墨类材料,但因其理论容量较低,无法满足于市场的需求。近年来,人们的目光瞄准新型高比容量负极材料:储锂金属及其氧化物和锂过渡金属磷化物。在众多新型高比容量负极材料中,硅因具有高的理论比容量而成为最具潜力的可替代石墨类材料之一,但是硅基在充放电过程中存在巨大的体积效应,易发生破裂和粉化,从而丧失与集流体的接触,造成循环性能急剧下降;此外硅基材料的本征电导率低,倍率性能差。因此降低体积膨胀效应、提升循环性能和倍率性能对硅基材料在锂离子电池中的应用有重大意义。
技术问题
目前改善硅材料的体积效应最热门的方法之一是将硅纳米化,纳米化主要有硅烷热解和物理球磨这两种方法。化学法合成的条件苛刻,使得该方法难以批量规模化制备纳米硅。物理球磨制备纳米硅的过程中不可避免使得纳米硅表面有一层很厚的氧化层,这样影响材料的首次效率。
技术解决方案
根据本申请的各种实施例,提供一种高首效多元包覆硅基复合材料、其制备方法及其应用,其工艺简单易行,产品性能稳定,具有良好的应用前景。
一种高首效多元包覆硅基复合材料的制备方法,包括如下步骤:(1)将纳米硅、分散剂、金属粉和粘结剂在有机溶剂中混合分散均匀,得到前驱体A;(2)将前驱体A进行高温处理,得到前驱体B;(3)将前驱体B进行酸洗、过滤和干燥处理,得到前驱体C;(4)将前驱体C进行碳包覆,得到所述的高首效多元包覆硅基复合材料。
在其中一个实施例中,所述高首效多元包覆硅基复合材料从内至外依次包括第一纳米硅层、纳米硅氧化层、第二纳米硅层及碳包覆层。
一种高首效多元包覆硅基复合材料,使用上述制备方法制得的高首效多元包覆硅基复合材料。
一种高首效多元包覆硅基复合材料的应用,使用所述高首效多元包覆硅基复合材料应用于锂离子电池负极材料。
有益效果
本发明的高首效多元包覆硅基复合材料是具有高首效、低膨胀和长循环等优点的锂离子电池硅碳负极材料,多元包覆硅基复合材料中间的纳米硅氧化层能有效的缓解充放电过程中的体积效应,有效的避免了材料在循环过程中的粉化,次外层的纳米硅层能降低不可逆锂的消耗,提高其首效,最外层碳包覆层能有效的提高硅基材料的导电性,同时能有效的缓解充放电过程中的体积效应,有效的避免了材料在循环过程中的粉化,缓解了硅基材料的体积膨胀效应、提升了循环性能,能提高材料的导电性和倍率性能。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。图1为第一实施例的高首效多元包覆硅基复合材料的结构示意图;图2为图1的高首效多元包覆硅基复合材料的电镜图;图3为图1的高首效多元包覆硅基复合材料的电压-比容量图。
本发明的实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参考图1至图3,为本发明的第一实施例的高首效多元包覆硅基复合材料,是具有高首效、低膨胀和长循环等优点的锂离子电池硅碳负极材料,多元包覆硅基复合材料中间的纳米硅氧化层能有效的缓解充放电过程中的体积效应,有效的避免了材料在循环过程中的粉化,次外层的纳米硅层能降低不可逆锂的消耗,提高其首效,最外层碳包覆层能有效的提高硅基材料的导电性,同时能有效的缓解充放电过程中的体积效应,有效的避免了材料在循环过程中的粉化,缓解了硅基材料的体积膨胀效应、提升了循环性能,能提高材料的导电性和倍率性能。
具体地,如图1至图3所示,本发明的第一实施例的一种高首效多元包覆硅基复合材料的制备方法,包括如下步骤:(1)将纳米硅、分散剂、金属粉和粘结剂在有机溶剂中混合分散均匀,得到前驱体A;(2)将前驱体A进行高温处理,得到前驱体B;(3)将前驱体B进行酸洗、过滤和干燥处理,得到前驱体C;(4)将前驱体C进行碳包覆,得到所述的高首效多元包覆硅基复合材料。
在本实施例中,所述高首效多元包覆硅基复合材料从内至外依次包括第一纳米硅层10、纳米硅氧化层20、第二纳米硅层30及碳包覆层40。
在本实施例中,一种高首效多元包覆硅基复合材料,使用上述制备方法制得的高首效多元包覆硅基复合材料。
在本实施例中,一种高首效多元包覆硅基复合材料的应用,使用所述高首效多元包覆硅基复合材料应用于锂离子电池负极材料。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (4)

  1. 一种高首效多元包覆硅基复合材料的制备方法,其特征在于,包括如下步骤:
    (1)将纳米硅、分散剂、金属粉和粘结剂在有机溶剂中混合分散均匀,得到前驱体A;(2)将前驱体A进行高温处理,得到前驱体B;(3)将前驱体B进行酸洗、过滤和干燥处理,得到前驱体C;(4)将前驱体C进行碳包覆,得到所述的高首效多元包覆硅基复合材料。
  2. 根据权利要求1所述的高首效多元包覆硅基复合材料的制备方法,其特征在于,所述高首效多元包覆硅基复合材料从内至外依次包括第一纳米硅层、纳米硅氧化层、第二纳米硅层及碳包覆层。
  3. 一种高首效多元包覆硅基复合材料,其特征在于,使用如权利要求1或2所述制备方法制得的高首效多元包覆硅基复合材料。
  4. 一种高首效多元包覆硅基复合材料的应用,其特征在于,使用如权利要求3所述高首效多元包覆硅基复合材料应用于锂离子电池负极材料。
PCT/CN2021/078849 2020-12-07 2021-03-03 一种高首效多元包覆硅基复合材料、其制备方法及其应用 WO2022121125A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011417888.0A CN112563502A (zh) 2020-12-07 2020-12-07 一种高首效多元包覆硅基复合材料、其制备方法及其应用
CN202011417888.0 2020-12-07

Publications (1)

Publication Number Publication Date
WO2022121125A1 true WO2022121125A1 (zh) 2022-06-16

Family

ID=75059306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078849 WO2022121125A1 (zh) 2020-12-07 2021-03-03 一种高首效多元包覆硅基复合材料、其制备方法及其应用

Country Status (6)

Country Link
US (1) US20220177317A1 (zh)
JP (1) JP7284803B2 (zh)
KR (1) KR20220080690A (zh)
CN (2) CN112563502A (zh)
DE (1) DE102021005822A1 (zh)
WO (1) WO2022121125A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105409035A (zh) * 2013-04-27 2016-03-16 罗伯特·博世有限公司 SiOx/Si/C复合材料、制备该复合材料的方法及包含该复合材料的锂离子电池负极
CN106159229A (zh) * 2016-07-28 2016-11-23 深圳市贝特瑞新能源材料股份有限公司 硅基复合材料、制备方法及包含该复合材料的锂离子电池
CN107735888A (zh) * 2015-09-24 2018-02-23 株式会社Lg化学 锂二次电池用负极活性材料及其制备方法
CN107887587A (zh) * 2017-11-09 2018-04-06 中南大学 锂离子电池复合负极材料及其制备方法
CN111438364A (zh) * 2020-04-07 2020-07-24 广东凯金新能源科技股份有限公司 一种高首效硅基复合材料及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936102B1 (fr) * 2008-09-12 2010-10-29 Commissariat Energie Atomique Procede de preparation d'un materiau composite silicium/ carbone, materiau ainsi prepare et electrode notamment electrode negative, comprenant ce materiau.
DE112014006301T5 (de) * 2014-01-31 2016-10-27 Kabushiki Kaisha Toyota Jidoshokki Negativelektrode für nicht-wässrige Sekundärbatterien; nicht-wässrige Sekundärbatterie; Negativelektrodenaktivmaterial; Verfahren zum Herstellen eines Negativelektrodenaktivmaterials; Kompositkörper, der Nanosilicium, Kohlenstoffschicht und kationische Polymerschicht umfasst; und Verfahren zum Herstellen eines Kompositkörpers, der aus Nanosilicium und Kohlenstoffschicht aufgebaut ist
KR101724196B1 (ko) * 2014-05-09 2017-04-06 주식회사 엘지화학 그래핀 피복된 다공성 실리콘-탄소 복합체 및 이의 제조방법
CN104577084A (zh) * 2015-01-20 2015-04-29 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用纳米硅复合负极材料、制备方法及锂离子电池
KR101826391B1 (ko) * 2015-03-31 2018-02-06 주식회사 엘지화학 다공성 실리콘-실리콘옥사이드-탄소 복합체, 및 이의 제조방법
CN106328909B (zh) * 2016-11-18 2020-01-24 深圳市贝特瑞新能源材料股份有限公司 纳米二氧化硅-硅基复合材料、制备方法及包含该复合材料的锂离子电池
CN107464926B (zh) * 2017-09-27 2023-09-15 杨小旭 一种纳米硅储能材料的核壳结构及包含其的锂离子电池
CN109449385B (zh) * 2018-09-26 2021-05-18 桑顿新能源科技(长沙)有限公司 碳包覆的无定型硅/石墨烯复合负极材料及其制备方法与锂离子电池
CN111755669A (zh) * 2019-03-27 2020-10-09 贝特瑞新材料集团股份有限公司 一种复合材料、其制备方法及用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105409035A (zh) * 2013-04-27 2016-03-16 罗伯特·博世有限公司 SiOx/Si/C复合材料、制备该复合材料的方法及包含该复合材料的锂离子电池负极
CN107735888A (zh) * 2015-09-24 2018-02-23 株式会社Lg化学 锂二次电池用负极活性材料及其制备方法
CN106159229A (zh) * 2016-07-28 2016-11-23 深圳市贝特瑞新能源材料股份有限公司 硅基复合材料、制备方法及包含该复合材料的锂离子电池
CN107887587A (zh) * 2017-11-09 2018-04-06 中南大学 锂离子电池复合负极材料及其制备方法
CN111438364A (zh) * 2020-04-07 2020-07-24 广东凯金新能源科技股份有限公司 一种高首效硅基复合材料及其制备方法

Also Published As

Publication number Publication date
JP7284803B2 (ja) 2023-05-31
JP2022090647A (ja) 2022-06-17
CN113241442A (zh) 2021-08-10
CN112563502A (zh) 2021-03-26
DE102021005822A1 (de) 2022-06-09
KR20220080690A (ko) 2022-06-14
CN113241442B (zh) 2022-10-28
US20220177317A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
CN106711461A (zh) 一种球形多孔硅碳复合材料及其制备方法与用途
CN107482182B (zh) 碳包覆离子掺杂磷酸锰锂电极材料及其制备方法
JP2022553657A (ja) コバルトフリー正極材料およびその調製方法、並びにリチウムイオン電池正極およびリチウム電池
CN110752356B (zh) 一种双金属硒化物的钠离子电池负极材料的制备方法
CN107959027B (zh) 一种锂离子电池硅基负极粘结剂及含有该粘结剂的负极片的制备方法
CN104332616A (zh) 石墨烯包覆石墨复合锂离子电池负极材料及其制备方法
CN108899550B (zh) 复合包覆正极活性材料及其制备方法、锂离子电池正极材料和固态锂离子电池
CN111293288B (zh) 一种NaF/金属复合补钠正极活性材料、正极材料、正极及其制备和在钠电中的应用
CN111106337B (zh) 一种碳纳米管改性富锂锰基正极材料及其制备方法
CN110416522B (zh) 一种含锂复合负极材料、其制备方法和其在锂二次电池中的应用
WO2023142666A1 (zh) 锂离子电池预锂化剂及其制备方法和应用
CN102983317A (zh) 硅基复合材料及其制备方法、硅碳复合材料、锂离子电池
CN110492077B (zh) 一种亚铁氰化物碳复合正极材料及其制备方法、钾离子电池、钠离子电池
CN113594412A (zh) 一种三明治结构的锂电池正极片及锂离子电池
WO2022205667A1 (zh) 一种硅基负极材料及其制备方法、应用
CN114388767B (zh) 一种纳米硅复合材料、电池负极和固体电池及其制备方法和用途
CN112968173A (zh) 多孔碳包覆硫空位复合电极材料、其制备方法及采用该材料的圆形电极
CN102285685A (zh) 纳米棒状金红石TiO2介晶及其制备方法和应用
CN111326721B (zh) 一种复合负极预嵌锂材料的制备方法
CN108281627A (zh) 一种锂离子电池用锗碳复合负极材料及其制备方法
CN112216831B (zh) 一种合成锂离子动力电池高容量负极材料的方法
CN114497508A (zh) 一种功率型人造石墨复合材料及其制备方法
CN109638231B (zh) 氧化亚硅复合负极材料及其制备方法和锂离子电池
JP2023528650A (ja) ハイブリットキャパシタの正極、その調製方法および使用
CN108899543B (zh) 一种锂离子电池复合石墨负极的合浆工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21901842

Country of ref document: EP

Kind code of ref document: A1