WO2022102573A1 - Circuit-connection adhesive film and method for producing same, and circuit connection structure and method for producing same - Google Patents

Circuit-connection adhesive film and method for producing same, and circuit connection structure and method for producing same Download PDF

Info

Publication number
WO2022102573A1
WO2022102573A1 PCT/JP2021/040989 JP2021040989W WO2022102573A1 WO 2022102573 A1 WO2022102573 A1 WO 2022102573A1 JP 2021040989 W JP2021040989 W JP 2021040989W WO 2022102573 A1 WO2022102573 A1 WO 2022102573A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
adhesive layer
adhesive film
circuit connection
circuit
Prior art date
Application number
PCT/JP2021/040989
Other languages
French (fr)
Japanese (ja)
Inventor
智陽 山崎
剛幸 市村
亮太 小林
華世 稗島
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2022561905A priority Critical patent/JPWO2022102573A1/ja
Publication of WO2022102573A1 publication Critical patent/WO2022102573A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Definitions

  • the present disclosure relates to an adhesive film for circuit connection, a circuit connection structure, and a method for manufacturing the same.
  • conductive particles are used in an adhesive film.
  • a dispersed anisotropic conductive film is used.
  • the circuit members are bonded to each other by the circuit connection portion formed of the circuit connection adhesive film, and the electrodes on the circuit members are electrically connected to each other via the conductive particles in the circuit connection portion.
  • COG chip on glass
  • the density of circuits is increasing, and the electrode spacing is extremely narrow, for example, 15 ⁇ m or less. Further, the bump electrode of the connecting member is also becoming smaller in area. In such a small-area electrode, in order to obtain a stable electrical connection, it is necessary that a sufficient number of conductive particles are interposed between the bump electrode and the circuit electrode on the substrate side.
  • Patent Document 1 proposes a method in which conductive particles are unevenly distributed on one side of an anisotropic conductive adhesive sheet to separate the conductive particles from each other.
  • the conductive particles may flow out from between the opposing electrode circuits due to the flow of the conductive particles at the time of circuit connection, and there is still room for improvement in terms of the capture rate of the conductive particles.
  • the adhesive of the adhesive film for circuit connection by heat or light to suppress the fluidity of the conductive particles and improve the capture rate of the conductive particles.
  • the connection resistance is increased.
  • the main object of the present disclosure is to provide an adhesive film for circuit connection capable of improving the capture rate of conductive particles between facing electrodes of a circuit connection structure and reducing the connection resistance. do.
  • the circuit connection adhesive film is provided on a first adhesive layer containing conductive particles, a cured product of a curable resin component, and a first thermosetting resin component, and a first adhesive layer. Further, it includes a second adhesive layer containing a second thermosetting resin component.
  • the circuit connection adhesive film is formed by placing a first adhesive layer of the circuit connection adhesive film on a glass substrate having indium tin oxide (ITO) wiring at a temperature of 60 ° C. and an area of the first adhesive layer.
  • ITO indium tin oxide
  • the peel strength is 60 N / m or less
  • the hardness of the resin is sufficient from the viewpoint of the fluidity of the resin, so that the fluidity of the resin at the time of mounting becomes small, and as a result, the capture rate of conductive particles is reduced. Can be improved.
  • the peel strength exceeds 60 N / m
  • the hardness of the resin is too soft from the viewpoint of the fluidity of the resin, so that the fluidity of the resin at the time of mounting is large and the capture rate of conductive particles tends to be insufficient. be.
  • the peel strength is 20 N / m or more
  • the hardness of the resin is sufficient from the viewpoint of the fluidity of the resin, so that the resin in the adhesive at the time of mounting is sufficiently eliminated, and as a result, the connection is made. It is possible to reduce the resistance.
  • the peel strength is less than 20 N / m
  • the hardness of the resin is too hard from the viewpoint of the fluidity of the resin, so that the resin in the adhesive at the time of mounting is not sufficiently eliminated and the connection resistance is increased. It tends to rise.
  • the peel strength is 20 N / m or more, preferably 20 to 60 N / m, the transferability to the glass substrate is excellent, and it is possible to obtain sufficient indentation strength in the circuit connection structure.
  • the curable resin component has photocurability. In another aspect of the circuit connection adhesive film, the curable resin component has thermosetting property.
  • the thickness of the first adhesive layer may be 5 ⁇ m or less. When the thickness of the first adhesive layer is 5 ⁇ m or less, conductive particles at the time of circuit connection can be captured more efficiently.
  • the method for producing an adhesive film for circuit connection is to cure a curable resin component on a layer composed of a composition containing conductive particles, a curable resin component, and a first thermosetting resin component.
  • the process of forming the first adhesive layer and the second adhesive layer containing the second thermosetting resin component are provided on the first adhesive layer to form an adhesive film for circuit connection.
  • the circuit connection adhesive film is formed by placing a first adhesive layer of the circuit connection adhesive film on a glass substrate having indium tin oxide (ITO) wiring at a temperature of 60 ° C. and an area of the first adhesive layer.
  • ITO indium tin oxide
  • the peel strength at 40 ° C. is 20 to 60 N / m.
  • a circuit connection adhesive capable of improving the capture rate of conductive particles between the facing electrodes of the circuit connection structure and reducing the connection resistance. Films can be manufactured.
  • Another aspect of this disclosure relates to a method of manufacturing a circuit connection structure.
  • the above-mentioned circuit connection adhesive film is interposed between the first circuit member having the first electrode and the second circuit member having the second electrode.
  • the circuit connection structure is arranged between a first circuit member having a first electrode, a second circuit member having a second electrode, and a first circuit member and a second circuit member.
  • a circuit connection portion for electrically connecting the first electrode and the second electrode to each other is provided.
  • the circuit connection portion includes a cured product of the above-mentioned circuit connection adhesive film.
  • a circuit connection adhesive film capable of improving the capture rate of conductive particles between facing electrodes of a circuit connection structure and reducing the connection resistance.
  • the circuit-connecting adhesive film according to some forms has excellent transferability to a glass substrate, and it is possible to obtain sufficient indentation strength in the circuit connection structure. Further, the present disclosure discloses a method for producing such an adhesive film for circuit connection. Further, the present disclosure discloses a circuit connection structure using such a circuit connection adhesive film and a method for manufacturing the same.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an adhesive film for circuit connection.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of a circuit connection structure.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a circuit connection structure. 3 (a) and 3 (b) are schematic cross-sectional views showing each process.
  • FIG. 4 is a schematic top view showing the laminated body in the peel strength measurement of the embodiment.
  • the (meth) acryloyl group means an acryloyl group or a methacryloyl group, as well as other similar expressions such as (meth) acrylate.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the lower and upper limits of the numerical range described herein are optionally combined with the lower and upper limits of the other numerical ranges, respectively.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the upper limit value and the lower limit value described individually can be arbitrarily combined.
  • the numerical values A and B at both ends are included in the numerical range as the lower limit value and the upper limit value, respectively.
  • the description of "10 or more” means “10” and “a numerical value exceeding 10", and the same applies when the numerical values are different.
  • the description “10 or less” means “10” and “a numerical value less than 10", and the same applies when the numerical values are different.
  • each component and material exemplified in the present specification may be used alone or in combination of two or more.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an adhesive film for circuit connection.
  • the circuit connection adhesive film 10 (hereinafter, may be simply referred to as “adhesive film 10”) shown in FIG. 1 includes the conductive particles 4, the cured product of the curable resin component, and the first thermosetting property.
  • the adhesive film 10 the conductive particles 4 are dispersed in the first adhesive layer 1. Therefore, the adhesive film 10 can be a circuit-connecting adhesive film (anisotropic adhesive film) having anisotropic conductivity.
  • the adhesive film 10 is interposed between the first circuit member having the first electrode and the second circuit member having the second electrode, and heats the first circuit member and the second circuit member. It may be crimped and used to electrically connect the first electrode and the second electrode to each other.
  • the first adhesive layer 1 is a cured product of conductive particles 4 (hereinafter, may be referred to as "(A) component”) and a curable resin component (hereinafter, may be referred to as “(B) component”).
  • a (first) thermosetting resin component hereinafter, may be referred to as “(C) component”.
  • the first adhesive layer 1 is formed by, for example, light, heat, moisture, or the like with respect to a composition layer composed of a composition containing the component (A), the component (B), and the component (C). It can be obtained by polymerizing the component contained in the component and curing the component (B).
  • the first adhesive layer 1 contains the component (A), the cured product of the component (B), and the adhesive component 5 containing the component (C).
  • the cured product of the component (B) may be a cured product obtained by completely curing the component (B), or may be a cured product obtained by curing a part of the component (B).
  • the component (C) is a component that can flow when connected to a circuit, and is, for example, an uncured curable resin component.
  • Component (A) Conductive particles
  • the component (A) is not particularly limited as long as it is a particle having conductivity, and is a metal particle composed of a metal such as Au, Ag, Pd, Ni, Cu, or solder, or conductive carbon. It may be conductive carbon particles composed of.
  • the component (A) may be a coated conductive particle containing a nucleus containing non-conductive glass, ceramic, plastic (polystyrene, etc.) and the like, and a coating layer containing the metal or conductive carbon and covering the nucleus. good.
  • the component (A) preferably contains metal particles formed of a heat-meltable metal or a core containing plastic, and contains a metal or conductive carbon and has a coating layer covering the core.
  • Such coated conductive particles can easily deform the cured product of the thermosetting resin component by heating or pressurizing, when the electrodes are electrically connected to each other, the electrode and the component (A) are connected to each other.
  • the contact area can be increased and the conductivity between the electrodes can be further improved.
  • the component (A) may be an insulating coated conductive particle containing the above-mentioned metal particles, conductive carbon particles, or coated conductive particles and an insulating material such as a resin and having an insulating layer covering the surface of the particles. good.
  • the component (A) is an insulating coated conductive particle, even when the content of the component (A) is large, the insulating layer is provided on the surface of the particle, so that the component (A) is short-circuited due to contact with each other. The generation can be suppressed, and the insulation between adjacent electrode circuits can be improved.
  • one of the above-mentioned various conductive particles may be used alone or in combination of two or more.
  • the maximum particle size of the component (A) needs to be smaller than the minimum distance between the electrodes (the shortest distance between adjacent electrodes).
  • the maximum particle size of the component (A) may be 1.0 ⁇ m or more, 2.0 ⁇ m or more, or 2.5 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity.
  • the maximum particle size of the component (A) may be 20 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less from the viewpoint of excellent dispersibility and conductivity.
  • the particle size of any 300 conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the largest value obtained is the maximum particle size of the component (A).
  • SEM scanning electron microscope
  • the particle size of the component (A) is the diameter of a circle circumscribing the conductive particles in the SEM image.
  • the average particle size of the component (A) may be 1.0 ⁇ m or more, 2.0 ⁇ m or more, or 2.5 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity.
  • the average particle size of the component (A) may be 20 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less from the viewpoint of excellent dispersibility and conductivity.
  • the particle size of any 300 conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the average value of the obtained particle sizes is taken as the average particle size.
  • the component (A) is preferably uniformly dispersed.
  • the particle density of the component (A) in the adhesive film 10 is 100 pieces / mm 2 or more, 1000 pieces / mm 2 or more, 3000 pieces / mm 2 or more, or 5000 pieces / mm from the viewpoint of obtaining stable connection resistance. It may be 2 or more.
  • the particle density of the component (A) in the adhesive film 10 is 100,000 pieces / mm 2 or less, 70,000 pieces / mm 2 or less, 50,000 pieces / mm 2 or less, or 30,000 from the viewpoint of improving the insulating property between adjacent electrodes. Pieces / mm 2 or less may be used.
  • the content of the component (A) is 1% by mass or more, 10% by mass or more, or 20% by mass or more based on the total mass of the first adhesive layer from the viewpoint of further improving the conductivity. It may be there.
  • the content of the component (A) may be 80% by mass or less, 60% by mass or less, or 50% by mass or less based on the total mass of the first adhesive layer from the viewpoint of easily suppressing a short circuit.
  • the content of the component (A) is in the above range, the effect of the present disclosure tends to be remarkably exhibited.
  • the content of the component (A) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • a photocurable resin component photocurable resin component
  • a thermosetting resin component thermosetting resin component
  • examples thereof include a curable resin component having a moisture-curable property (moisture-curable resin component).
  • the thermosetting resin component may be different from the component (C) described later in, for example, a curing system (for example, a radical curing system, a cationic curing system, etc.), a polymerization start temperature, and the like.
  • the polymerization start temperature can be adjusted depending on the type of the polymerization initiator and the like.
  • the thermosetting resin component of the component (B) may have a lower polymerization initiation temperature than the thermosetting resin component of the component (C).
  • the component (B) may be a photocurable resin component or a thermosetting resin component, and more preferably a photocurable resin component.
  • the component (B) may be referred to as a polymerizable compound (hereinafter, “MA component”). )
  • MA component polymerizable compound
  • MB component the polymerization initiator
  • the photocurable resin component may be a resin component having radical curability or a resin component having cation curability.
  • the resin component having radical curability in the photocurable resin component is, for example, a radically polymerizable compound (hereinafter, may be referred to as “(MA-R) component”) and a photoradical polymerization initiator (hereinafter, “(MB)”. -RL) component "may be combined with.).
  • the cationically curable resin component in the photocurable resin component is, for example, a cationically polymerizable compound (hereinafter, may be referred to as “(MA-C) component”) and a photocationic polymerization initiator (hereinafter, “(MB)”. -C-L) component "may be combined with.).
  • the thermosetting resin component may be a resin component having radical curability or a resin component having cation curability.
  • the resin component having radical curability in the thermosetting resin component is, for example, a (MA-R) component and a thermo-radical polymerization initiator (hereinafter, may be referred to as “(MB-RH) component”). It can be a combination.
  • the cationically curable resin component in the thermosetting resin component is, for example, a (MA-C) component and a thermocationic polymerization initiator (hereinafter, may be referred to as "(MB-CH) component"). It can be a combination.
  • the component (B) and the component (C) described later have different curing systems (for example, radical curing system, cationic curing system, etc.). Since the curing system of the component (B) and the curing system of the component (C) are different, it is possible to selectively and efficiently cure only the component (B). More specifically, when a thermosetting resin component having cation curability (for example, a combination of (MA-C) component and (MB-CH) component) is used as the component (C), (B)
  • the component is a photocurable resin component having radical curability (for example, a combination of (MA-R) component and (MB-RL) component) or a thermosetting resin component having radical curability (for example, (for example,).
  • thermosetting resin component having radical curability for example, a combination of (MA-R) component and (MB-RH) component
  • the component (B) is cationically curable.
  • a photocurable resin component having for example, a combination of (MA-C) component and (MB-C-L) component
  • a thermosetting resin component having cationic curability for example, (MA-C) component
  • It may be (combination with (MB—CH) component), and more preferably a photocurable resin component having cation curability.
  • the radically polymerizable compound (MA-R) component is polymerized by radicals generated from a radical polymerization initiator ((MB-RL) component, (MB-RH) component, etc.). It is a compound.
  • the (MA-R) component may be either a monomer or a polymer (or oligomer) obtained by polymerizing one or more kinds of monomers.
  • the (MA-R) component may be used alone or in combination of two or more.
  • the (MA-R) component is a compound having a radically polymerizable group that reacts with a radical.
  • the radically polymerizable group include (meth) acryloyl group, vinyl group, allyl group, styryl group, alkenyl group, alkenylene group, maleimide group and the like.
  • the number of radically polymerizable groups (number of functional groups) contained in the (MA-R) component is such that the desired melt viscosity can be easily obtained after polymerization, the effect of reducing the connection resistance is further improved, and the connection reliability is improved. It may be 2 or more, and may be 10 or less from the viewpoint of suppressing curing shrinkage during polymerization. Further, in order to balance the crosslink density and the curing shrinkage, in addition to the compound having the number of radically polymerizable groups within the above range, a compound having the number of radically polymerizable groups outside the above range may be used. good.
  • the (MA-R) component may contain, for example, a polyfunctional (bifunctional or higher) (meth) acrylate from the viewpoint of suppressing the flow of conductive particles.
  • the polyfunctional (bifunctional or higher) (meth) acrylate may be a bifunctional (meth) acrylate, and the bifunctional (meth) acrylate may be a bifunctional aromatic (meth) acrylate.
  • polyfunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate.
  • the content of the polyfunctional (bifunctional or higher) (meth) acrylate is, for example, 40, based on the total mass of the (MA-R) component, from the viewpoint of achieving both the effect of reducing the connection resistance and the suppression of particle flow. It may be up to 100% by mass, 50 to 100% by mass, or 60 to 100% by mass.
  • the (MA-R) component may further contain a monofunctional (meth) acrylate in addition to the polyfunctional (bifunctional or higher) (meth) acrylate.
  • a monofunctional (meth) acrylate examples include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl (meth) acrylate.
  • (Meta) acrylates having an alicyclic epoxy group such as, ( Examples thereof include (meth) acrylate having an oxetanyl group such as 3-ethyloxetane-3-yl) methyl (meth) acrylate.
  • the content of the monofunctional (meth) acrylate may be, for example, 0 to 60% by mass, 0 to 50% by mass, or 0 to 40% by mass based on the total mass of the (MA-R) component.
  • the cured product of the component (B) may have, for example, a polymerizable group that reacts with a substance other than a radical.
  • the polymerizable group that reacts with a non-radical substance may be, for example, a cationically polymerizable group that reacts with a cation.
  • the cationically polymerizable group include an epoxy group such as a glycidyl group, an alicyclic epoxy group such as an epoxycyclohexylmethyl group, and an oxetanyl group such as an ethyloxetanylmethyl group.
  • the cured product of the component (B) having a polymerizable group that reacts by other than radicals is, for example, a (meth) acrylate having an epoxy group, a (meth) acrylate having an alicyclic epoxy group, and a (meth) acrylate having an oxetanyl group. It can be introduced by using a (meth) acrylate having a polymerizable group that reacts with a non-radical substance such as (B) as a component (B).
  • Mass ratio of (meth) acrylate having a polymerizable group that reacts with other than radicals to the total mass of the (MA-R) component (mass ratio of (meth) acrylate having a polymerizable group that reacts with other than radicals (charged amount) / ( The total mass (charged amount) of the MA-R) component may be, for example, 0 to 0.7, 0 to 0.5, or 0 to 0.3 from the viewpoint of improving reliability.
  • the (MA-R) component may contain other radically polymerizable compounds in addition to polyfunctional (bifunctional or higher) and monofunctional (meth) acrylates.
  • examples of other radically polymerizable compounds include maleimide compounds, vinyl ether compounds, allyl compounds, styrene derivatives, acrylamide derivatives, nadiimide derivatives and the like.
  • the content of the other radically polymerizable compound may be, for example, 0 to 40% by mass based on the total mass of the (MA-R) component.
  • Photoradical polymerization initiator (MB-RL) component is light containing a wavelength in the range of 150 to 750 nm, preferably light containing a wavelength in the range of 254 to 405 nm. More preferably, it is a polymerization initiator that generates radicals by irradiation with light having a wavelength of 365 nm (for example, ultraviolet light).
  • the (MB-RL) component may be used alone or in combination of two or more.
  • the (MB-RL) component is decomposed by light to generate free radicals. That is, the (MB-RL) component is a compound that generates radicals by applying light energy from the outside.
  • the (MB-RL) component includes an oxime ester structure, a bisimidazole structure, an acrydin structure, an ⁇ -aminoalkylphenone structure, an aminobenzophenone structure, an N-phenylglycine structure, an acylphosphine oxide structure, a benzyldimethylketal structure, and ⁇ -. It may be a compound having a structure such as a hydroxyalkylphenone structure.
  • the (MB-RL) component may be used alone or in combination of two or more.
  • the (MB-RL) component is composed of an oxime ester structure, an ⁇ -aminoalkylphenone structure, and an acylphosphine oxide structure from the viewpoint that the desired melt viscosity can be easily obtained and the effect of reducing the connection resistance is superior. It may be a compound having at least one structure selected from the group.
  • the compound having an oxime ester structure examples include 1-phenyl-1,2-butandion-2- (o-methoxycarbonyl) oxime and 1-phenyl-1,2-propanedione-2- (o-methoxycarbonyl).
  • the compound having an ⁇ -aminoalkylphenone structure include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-benzyl-2-dimethylamino-1. -Morphorinophenyl) -butanone-1 and the like.
  • the compound having an acylphosphine oxide structure include bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide and bis (2,4,6, -trimethylbenzoyl) -phenylphosphine.
  • Examples thereof include oxide, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide and the like.
  • the content of the (MB-RL) component is, for example, 0.1 to 10 parts by mass and 0.3 to 0.3 to 100 parts by mass with respect to 100 parts by mass of the (MA-R) component from the viewpoint of suppressing the flow of conductive particles. It may be 7 parts by mass or 0.5 to 5 parts by mass.
  • (MB-RH) component Thermal radical polymerization initiator (MB-RH) component is a polymerization initiator that generates radicals by heat.
  • the 1-hour half-life temperature of the (MB-RH) component may be, for example, 50-100 ° C.
  • the (MB-RH) component may be used alone or in combination of two or more.
  • Examples of the (MB-RH) component include diacyl peroxides such as octanoyl peroxide, lauroyl peroxide, stearyl peroxide, and benzoyl peroxide; t-butylperoxypivalate and t-hexylperoxypivalate.
  • the content of the (MB-RH) component is, for example, 0.1 to 15 parts by mass and 0.3 to 0.3 to 100 parts by mass with respect to 100 parts by mass of the (MA-R) component from the viewpoint of suppressing the flow of conductive particles. It may be 12 parts by mass or 0.5 to 10 parts by mass.
  • (MA-C) component Cationic polymerizable compound (MA-C) component is crosslinked by reacting with a cationic polymerization initiator ((MB-C-L) component, (MB-C-H) component, etc.). It is a compound.
  • the (MA-C) component means a compound having no radically polymerizable group that reacts with a radical, and the (MA-C) component is not included in the (MA-R) component.
  • Examples of the (MA-C) component include an epoxy compound, an oxetane compound, an alicyclic epoxy compound and the like.
  • the (MA-C) component may contain at least one selected from the group consisting of, for example, an oxetane compound and an alicyclic epoxy compound from the viewpoint of further improving the effect of reducing the connection resistance and improving the connection reliability. It may contain an alicyclic epoxy compound.
  • the (MA-C) component may be used alone or in combination of two or more.
  • the epoxy compound examples include a bisphenol type epoxy resin derived from epichlorohydrin and a bisphenol compound such as bisphenol A, bisphenol F or bisphenol AD; an epoxy derived from epichlorohydrin and a novolak resin such as phenol novolac or cresol novolak.
  • Novolak resin various epoxy compounds having two or more glycidyl groups in one molecule such as glycidylamine, glycidyl ether, biphenyl, and alicyclic type can be mentioned. These may use one kind of compound alone or may use a plurality of compounds in combination.
  • the oxetane compound can be used without particular limitation as long as it has an oxetaneyl group and does not have a radically polymerizable group.
  • Commercially available oxetane compounds include, for example, ETERNCOLL OXBP (trade name, manufactured by Ube Kosan Co., Ltd.), OXSQ, OXT-121, OXT-221, OXT-101, OXT-212 (trade name, manufactured by Toagosei Corporation). And so on. These may use one kind of compound alone or may use a plurality of compounds in combination.
  • the alicyclic epoxy compound can be used without particular limitation as long as it is a compound having an alicyclic epoxy group (for example, an epoxycyclohexyl group) and no radical polymerizable group.
  • Examples of commercially available alicyclic epoxy compounds include CEL8010, CEL2021P, and CEL2081 (trade name, manufactured by Daicel Corporation). These may use one kind of compound alone or may use a plurality of compounds in combination.
  • Photocationic polymerization initiator (MB-CL) component is light containing a wavelength in the range of 150 to 750 nm, preferably light containing a wavelength in the range of 254 to 405 nm. More preferably, it is a polymerization initiator that generates a substance that initiates cationic polymerization by irradiation with light having a wavelength of 365 nm (for example, ultraviolet light).
  • the (MB-C-L) component may act as the (MB-C-H) component described later.
  • (MB-C-L) is, for example, BF 4- , BR 4- ( R indicates a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups ) , PF 6- ,.
  • onium salts such as sulfonium salts, phosphonium salts, ammonium salts, diazonium salts, iodonium salts and anilinium salts having anions such as SbF 6 ⁇ and AsF 6 ⁇ . These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • (MB-C-L) component Commercially available products of the (MB-C-L) component include, for example, CPI-100P, CPI-110P, CPI-101A, CPI-200K, CPI-210S (all manufactured by Sun Appro Co., Ltd.), UVI-6990, UVI-. 6992, UVI-6976 (all manufactured by Dow Chemical Japan Co., Ltd.), SP-150, SP-152, SP-170, SP-172, SP-300 (all manufactured by ADEKA Corporation) and the like can be mentioned.
  • the content of the (MB-C-L) component is 100 parts by mass of the (MA-C) component from the viewpoint of ensuring the formability and curability of the adhesive film for forming the first adhesive layer.
  • it may be, for example, 0.1 to 15 parts by mass, 0.3 to 12 parts by mass, 0.5 to 10 parts by mass, or 1 to 5 parts by mass.
  • (MB-CH) component Thermal cationic polymerization initiator (MB-CH) component is a polymerization initiator that generates a substance that initiates cationic polymerization by heat (for example, 40 to 150 ° C.).
  • the (MB-C-H) component may act as the above-mentioned (MB-C-L) component.
  • the (MB-C—H) component is similarly substituted with, for example, BF 4- , BR 4- ( R is replaced with 2 or more fluorine atoms or 2 or more trifluoromethyl groups) in the same manner as the (MB-C—L) component. ), PF 6- , SbF 6- , AsF 6- , and other onium salts such as sulfonium salt, phosphonium salt, ammonium salt, diazonium salt, iodonium salt, anilinium salt, etc. Be done. These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • the content of the (MB-C-H) component is 100 parts by mass of the (MA-C) component from the viewpoint of ensuring the formability and curability of the adhesive film for forming the first adhesive layer.
  • it may be, for example, 0.1 to 50 parts by mass, 1 to 45 parts by mass, 10 to 40 parts by mass, or 20 to 35 parts by mass.
  • the content of the cured product (component (B)) of the component (B) is 1% by mass or more and 5% by mass or more based on the total mass of the first adhesive layer from the viewpoint of suppressing the flow of conductive particles. , Or 10% by mass or more.
  • the content of the cured product of the component (B) is 50% by mass or less, 40% by mass or less, or 30% by mass based on the total mass of the first adhesive layer from the viewpoint of developing low resistance in low-pressure mounting. It may be as follows. When the content of the cured product of the component (B) is in the above range, the effect of the present disclosure tends to be remarkably exhibited.
  • the content of the component (B) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • Component (C) Thermosetting resin component
  • the component (C) is not particularly limited as long as it is a thermosetting resin component, but is the same as the above-mentioned resin component having radical curability ((MA-R) component). (Combination with (MB-RH) component), and the above-mentioned resin component having cation curability (combination of (MA-C) component and (MB-CH) component). May be good.
  • the component (C) may be a resin component having cationic curability (combination of (MA-C) component and (MB-C-H) component).
  • the (MA-R) component, the (MB-RH) component, the (MA-C) component, and the (MB-CH) component used in the (C) component are used in the (B) component. Since it is the same as the (MA-R) component, the (MB-RH) component, the (MA-C) component, and the (MB-CH) component, detailed description thereof will be omitted here. Further, the content of the (MB-RH) component with respect to the (MA-R) component in the component (C) and the content of the (MB-CH) component with respect to the (MA-C) component are the components (B). It may be the same as the range in the case of.
  • the first thermosetting resin component and the second thermosetting resin component mean the thermosetting resin components contained in the first adhesive layer and the second adhesive layer, respectively.
  • the components contained in the first thermosetting resin component and the second thermosetting resin component for example, (MA-R) component, (MB-RH) component, (MA-C) component, (MB-).
  • the types, combinations, and contents of CH) components, etc. may be the same or different from each other.
  • the content of the component (C) is 3% by mass or more based on the total mass of the first adhesive layer from the viewpoint of ensuring the curability of the adhesive film for forming the first adhesive layer. It may be 5% by mass or more, 10% by mass or more, or 15% by mass or more.
  • the content of the component (C) is 70% by mass or less based on the total mass of the first adhesive layer from the viewpoint of ensuring the formability of the adhesive film for forming the first adhesive layer. It may be 60% by mass or less, 50% by mass or less, or 40% by mass or less.
  • the content of the component (C) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the first adhesive layer 1 may further contain other components in addition to the component (A), the cured product of the component (B), and the component (C).
  • other components include a thermoplastic resin (hereinafter, may be referred to as “(D) component”), a filler (hereinafter, may be referred to as “(E) component”), and a coupling agent (hereinafter, may be referred to as “component”).
  • component a thermoplastic resin
  • component hereinafter, may be referred to as “(E) component”
  • component a coupling agent
  • component may be mentioned.
  • the component (D) examples include phenoxy resin, polyester resin, polyamide resin, polyurethane resin, polyester urethane resin, acrylic rubber, epoxy resin (solid at 25 ° C.) and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • the composition layer further, the first adhesive layer 1 from the composition. Can be easily formed.
  • the component (D) may be, for example, a phenoxy resin.
  • the content of the component (D) may be 1% by mass or more, 5% by mass or more, 10% by mass or more, or 15% by mass or more, 60% by mass, based on the total mass of the first adhesive layer. Hereinafter, it may be 50% by mass or less, 40% by mass or less, or 30% by mass or less.
  • the content of the component (D) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • Examples of the component (E) include non-conductive fillers (for example, non-conductive particles).
  • the component (E) may be either an inorganic filler or an organic filler.
  • Examples of the inorganic filler include metal oxide fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles; and inorganic fine particles such as metal nitride fine particles.
  • Examples of the organic filler include organic fine particles such as silicone fine particles, methacrylate / butadiene / styrene fine particles, acrylic / silicone fine particles, polyamide fine particles, and polyimide fine particles. These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • the component (E) may be, for example, silica fine particles.
  • the content of the component (E) may be 0.1 to 10% by mass based on the total mass of the first adhesive layer.
  • the content of the component (E) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the component (F) examples include a silane coupling agent having an organic functional group such as a (meth) acryloyl group, a mercapto group, an amino group, an imidazole group and an epoxy group, a silane compound such as tetraalkoxysilane, and a tetraalkoxy titanate derivative. , Polydialkyl titanate derivatives and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types. When the first adhesive layer 1 contains the component (F), the adhesiveness can be further improved.
  • the component (F) may be, for example, a silane coupling agent.
  • the content of the component (F) may be 0.1 to 10% by mass based on the total mass of the first adhesive layer.
  • the content of the component (F) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the first adhesive layer 1 may further contain other additives such as a softening agent, an accelerator, a deterioration inhibitor, a coloring agent, a flame retardant, and a thixotropic agent.
  • the content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the first adhesive layer.
  • the content of other additives in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the thickness d1 of the first adhesive layer 1 may be, for example, 5 ⁇ m or less.
  • the thickness d1 of the first adhesive layer 1 may be 4.5 ⁇ m or less or 4.0 ⁇ m or less.
  • the thickness d1 of the first adhesive layer 1 may be, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, or 0.7 ⁇ m or more.
  • the thickness d1 of the first adhesive layer 1 is determined by, for example, sandwiching an adhesive film between two sheets of glass (thickness: about 1 mm) and bisphenol A type epoxy resin (trade name: JER811, Mitsubishi Chemical Co., Ltd.).
  • the distance to the boundary S with and (the distance indicated by d1 in FIG. 1) is the thickness of the first adhesive layer 1, and the exposed portion of the conductive particles 4 is included in the thickness of the first adhesive layer 1. I can't.
  • the length of the exposed portion of the conductive particles 4 may be, for example, 0.1 ⁇ m or more, and may be 5 ⁇ m or less.
  • the second adhesive layer 2 contains the component (C).
  • the (MB-CH) component are the (MA-R) components, (MB-R) used in the (C) component in the first adhesive layer 1 (that is, the first thermosetting resin component). Since it is the same as the RH) component, the (MA-C) component, and the (MB-CH) component, detailed description thereof will be omitted here.
  • the second thermosetting resin component may be the same as or different from the first thermosetting resin component.
  • the second thermosetting resin component may be a combination of the (MA-C) component and the (MB-CH) component.
  • the content of the component (C) is 5% by mass or more, 10% by mass or more, 15% by mass or more, or 20% by mass or more based on the total mass of the second adhesive layer from the viewpoint of maintaining reliability. May be.
  • the content of the component (C) is 70% by mass or less and 60% by mass or less based on the total mass of the second adhesive layer from the viewpoint of preventing the resin seepage problem in the reel, which is one aspect of the supply form. , 50% by mass or less, or 40% by mass or less.
  • the second adhesive layer 2 may further contain other components and other additives in the first adhesive layer 1. Preferred embodiments of the other components and other additives are the same as the preferred embodiments of the first adhesive layer 1.
  • the content of the component (D) may be 1% by mass or more, 5% by mass or more, or 10% by mass or more, and is 80% by mass or less and 60% by mass, based on the total mass of the second adhesive layer. It may be less than or equal to 40% by mass or less.
  • the content of the component (E) may be 1% by mass or more, 5% by mass or more, or 10% by mass or more, and 70% by mass or less, 60% by mass, based on the total mass of the second adhesive layer. It may be less than or equal to 50% by mass or less.
  • the content of the component (F) may be 0.1 to 10% by mass based on the total mass of the second adhesive layer.
  • the content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the second adhesive layer.
  • the thickness d2 of the second adhesive layer 2 may be appropriately set according to the height of the electrodes of the circuit member to be adhered.
  • the thickness d2 of the second adhesive layer 2 is 5 ⁇ m or more or 7 ⁇ m or more from the viewpoint that the space between the electrodes can be sufficiently filled to seal the electrodes and better connection reliability can be obtained. It may be 20 ⁇ m or less or 15 ⁇ m or less.
  • the thickness d2 of the second adhesive layer 2 can be obtained, for example, by the same method as the method for measuring the thickness d1 of the first adhesive layer 1.
  • the first in the second adhesive layer 2 The distance from the surface 3a on the side opposite to the adhesive layer 1 side to the boundary S between the first adhesive layer 1 and the second adhesive layer 2 located at the separated portions of the adjacent conductive particles 4 and 4 ( The distance (d2) in FIG. 1 is the thickness of the second adhesive layer 2.
  • the thickness of the adhesive film 10 (the total thickness of all the layers constituting the adhesive film 10, in FIG. 1, the thickness d1 of the first adhesive layer 1 and the thickness of the second adhesive layer 2).
  • the total of d2) may be, for example, 5 ⁇ m or more or 8 ⁇ m or more, and may be 30 ⁇ m or less or 20 ⁇ m or less.
  • the first adhesive layer 1 of the adhesive film 10 is placed on a glass substrate having indium tin oxide (ITO) wiring at a temperature of 60 ° C., an area-converted pressure of the first adhesive layer 1 of 1 MPa, and a time of 1 second.
  • ITO indium tin oxide
  • the peel strength between the glass substrate and the first adhesive layer 1 at 40 ° C. after the glass substrate and the first adhesive layer 1 after being pasted is 20 to 60 N / m.
  • the peel strength is a peel strength measured at a peel angle of 90 ° and a peel speed of 50 mm / min.
  • the peel strength is 60 N / m or less
  • the hardness of the resin is sufficient from the viewpoint of the fluidity of the resin, so that the fluidity of the resin at the time of mounting becomes small, and as a result, the capture rate of conductive particles is reduced. Can be improved.
  • the peel strength exceeds 60 N / m
  • the hardness of the resin is too soft from the viewpoint of the fluidity of the resin, so that the fluidity of the resin at the time of mounting is large and the capture rate of conductive particles tends to be insufficient. be.
  • the peel strength is 20 N / m or more
  • the hardness of the resin is sufficient from the viewpoint of the fluidity of the resin, so that the resin in the adhesive at the time of mounting is sufficiently eliminated, and as a result, the connection is made. It is possible to reduce the resistance.
  • the peel strength is less than 20 N / m
  • the hardness of the resin is too hard from the viewpoint of the fluidity of the resin, so that the resin in the adhesive at the time of mounting is not sufficiently eliminated and the connection resistance is increased. It tends to rise.
  • the fluidity of the resin at the time of mounting is large, the conductive particles are easily connected and the insulating property tends to be deteriorated.
  • the peel strength is 20 to 60 N / m
  • the fluidity of the resin at the time of mounting tends to be appropriate, and the insulating property tends to be good.
  • the peel strength is 20 N / m or more, preferably 20 to 60 N / m
  • the transferability to the glass substrate is excellent, and it is possible to obtain sufficient indentation strength in the circuit connection structure.
  • the peel strength may be 25 N / m or more, 30 N / m or more, 35 N / m or more, or 40 N / m or more, and may be 55 N / m or less or 50 N / m or less.
  • the peel strength can be obtained by, for example, the following method. First, a glass substrate having ITO wiring (glass substrate size: 2.5 mm ⁇ 28 mm, glass substrate thickness: 300 ⁇ m, ITO wiring size: 2500 ⁇ m (2.5 mm) ⁇ 300 ⁇ m, ITO wiring thickness: Prepare 0.2 ⁇ m, the number of ITO wirings: 28, and the space between ITO wirings: 300 ⁇ m). Next, the adhesive film is cut out to a size of 2 mm ⁇ 23 mm, and the first adhesive layer of the cut out adhesive film is arranged on the glass substrate having the ITO wiring so as to be perpendicular to the ITO wiring.
  • the adhesive film is attached by a thermocompression bonding machine under the conditions of a temperature of 60 ° C., an area conversion pressure of the first adhesive layer of 1 MPa, and a time of 1 second to obtain a laminate (see FIG. 4).
  • the PET film of the second adhesive film (second adhesive layer) is peeled off, and a polyimide tape cut out to a size of 1.8 mm ⁇ 35 mm is attached onto the second adhesive layer to prepare a sample for measurement. obtain.
  • the glass substrate side of the measurement sample is placed on a hot plate set at 40 ° C., the tip of the polyimide tape is set in a tensile strength measuring device (Tensilon), and the glass substrate is fixed horizontally.
  • the peel strength of the adhesive film 10 tends to fluctuate depending on the first adhesive layer 1.
  • the peel strength of the adhesive film 10 can be adjusted, for example, by adjusting the type, content, and the like of the constituent components contained in the first adhesive layer 1. More specifically, by changing the content of the liquid component as the component (B) and the component (C), changing the glass transition point (Tg) of the component (D), changing the content of the component (E), and the like. It can be carried out.
  • the flow rate of the conductive particles in the adhesive film 10 may be, for example, 160% or more, 170% or more, or 180% or more, and may be 250% or less, 230% or less, 220% or less, or 200% or less. May be good.
  • the flow rate of the conductive particles can be obtained by the following method.
  • the adhesive film 10 is punched to a diameter of 1 mm using a trepanning device to prepare a sample.
  • the surface of the punched sample on the first adhesive film (first adhesive layer) side was heated and pressed for 1 second under the conditions of a maximum ultimate temperature of 90 ° C. and a film area conversion pressure of 1 MPa, and attached to the cover glass. This is used as a test body (test body before crimping) for measuring the area of the first adhesive layer before crimping.
  • the PET film on the second adhesive film (second adhesive layer) side is peeled off, and then the cover glass is placed.
  • the film is heated and pressurized for 5 seconds under the conditions of a maximum ultimate temperature of 170 ° C. and a film area conversion pressure of 80 MPa to attach a second adhesive film (second adhesive layer) and a cover glass, and the pressure is applied.
  • a test piece (test piece after crimping) for measuring the area of the first adhesive layer.
  • the area of the first adhesive layer of the test piece before crimping and the area of the first adhesive layer of the test piece after crimping can be measured with a microscope, and the flow rate of the conductive particles can be calculated from the following formula. can.
  • Flow rate of conductive particles (%) (Area of first adhesive layer of test piece after crimping / Area of first adhesive layer of test piece before crimping) ⁇ 100
  • the flow rate of the conductive particles can be adjusted by adjusting the type, content, etc. of the constituent components contained in the first adhesive layer 1. More specifically, by adjusting the curing rate of the first adhesive layer 1, the first adhesive layer having the flow rate of the conductive particles in the above range can be obtained.
  • the adhesive film 10 is an anisotropically conductive adhesive film having an anisotropic conductivity.
  • the adhesive film 10 is interposed between the first circuit member having the first electrode and the second circuit member having the second electrode, and heats the first circuit member and the second circuit member. It is crimped and used to electrically connect the first electrode and the second electrode to each other.
  • the adhesive film 10 it is possible to improve the capture rate of conductive particles between the facing electrodes of the circuit connection structure and reduce the connection resistance.
  • the adhesive film may be composed of, for example, two layers of a first adhesive layer and a second adhesive layer, and the two layers of the first adhesive layer and the second adhesive layer may be formed. It may be composed of three or more layers including.
  • the adhesive film may be configured to further include, for example, a third adhesive layer provided on the opposite side of the first adhesive layer from the second adhesive layer.
  • the third adhesive layer contains the component (C).
  • the (MB-C-H) component are the (MA-R) component, (MB-R) used in the (C) component (that is, the first thermosetting resin component) in the first adhesive layer 1. Since it is the same as the —H) component, the (MA—C) component, and the (MB—C—H) component, detailed description thereof will be omitted here.
  • the third thermosetting resin component may be the same as or different from the first thermosetting resin component.
  • the third thermosetting resin component may be the same as or different from the second thermosetting resin component.
  • the content of the component (C) is 5% by mass or more, 10% by mass or more, and 15% by mass or more based on the total mass of the third adhesive layer from the viewpoint of imparting good transferability and peeling resistance. , Or 20% by mass or more.
  • the content of the component (C) is 70% by mass or less based on the total mass of the third adhesive layer from the viewpoint of imparting good half-cut property and blocking resistance (suppression of resin seepage of the reel). It may be 60% by mass or less, 50% by mass or less, or 40% by mass or less.
  • the third adhesive layer may further contain other components and other additives in the first adhesive layer 1. Preferred embodiments of the other components and other additives are the same as the preferred embodiments of the first adhesive layer 1.
  • the content of the component (D) may be 10% by mass or more, 20% by mass or more, or 30% by mass or more, and is 80% by mass or less and 70% by mass, based on the total mass of the third adhesive layer. It may be less than or equal to 60% by mass or less.
  • the content of the component (E) may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, and is 50% by mass or less and 40% by mass, based on the total mass of the third adhesive layer. It may be less than or equal to 30% by mass or less.
  • the content of the component (F) may be 0.1 to 10% by mass based on the total mass of the third adhesive layer.
  • the content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the third adhesive layer.
  • the thickness of the third adhesive layer may be appropriately set according to the minimum melt viscosity of the adhesive film, the height of the electrodes of the circuit members to be adhered, and the like.
  • the thickness of the third adhesive layer is preferably smaller than the thickness d2 of the second adhesive layer 2.
  • the thickness of the third adhesive layer may be 0.2 ⁇ m or more from the viewpoint that the space between the electrodes can be sufficiently filled to seal the electrodes and better connection reliability can be obtained. , 3.0 ⁇ m or less.
  • the thickness of the third adhesive layer can be obtained, for example, by the same method as the method for measuring the thickness d1 of the first adhesive layer 1.
  • circuit connection adhesive film of the above embodiment is an anisotropic conductive adhesive film having anisotropic conductivity, but the circuit connection adhesive film is a conductive adhesive having no anisotropic conductivity. It may be a film.
  • the method for producing an adhesive film for circuit connection is, for example, a composition comprising a composition containing (A) component, (B) component, and (C) component (first thermosetting resin component).
  • a step (second step) of laminating a second adhesive layer containing a curable resin component) is provided.
  • a third adhesive layer containing a component (C) (third thermosetting resin component) is placed on a layer of the first adhesive layer opposite to the second adhesive layer. May be further provided with a step of laminating (third step).
  • a composition containing (A) component, (B) component, and (C) component, and other components and other additives added as needed are organically prepared.
  • a varnish composition is prepared by dissolving or dispersing by stirring and mixing in a solvent, kneading and the like. Then, the varnish composition is applied onto the demolding-treated substrate using a knife coater, roll coater, applicator, comma coater, die coater, etc., and then the organic solvent is volatilized by heating to form the substrate. Form a composition layer composed of the composition. At this time, the thickness of the finally obtained first adhesive layer (first adhesive film) can be adjusted by adjusting the coating amount of the varnish composition.
  • the component (B) in the composition layer is cured by light, heat, humidity, etc. (preferably light or heat, more preferably light) with respect to the composition layer made of the composition, and the component (B) in the composition layer is cured on the substrate.
  • a first adhesive layer is formed on the surface.
  • the first adhesive layer can be said to be the first adhesive film.
  • the organic solvent used in the preparation of the varnish composition is not particularly limited as long as it has the property of uniformly dissolving or dispersing each component.
  • examples of such an organic solvent include toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate and the like. These organic solvents can be used alone or in combination of two or more.
  • Stirring and mixing or kneading in the preparation of the varnish composition can be carried out by using, for example, a stirrer, a raider, a three-roll, a ball mill, a bead mill, a homodisper or the like.
  • the base material is not particularly limited as long as it has heat resistance that can withstand the heating conditions when volatilizing the organic solvent.
  • a substrate examples include stretched polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polyvinylidene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, polyimide, cellulose, and the like.
  • a substrate (for example, a film) made of an ethylene / vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, a synthetic rubber system, a liquid crystal polymer or the like can be used.
  • the heating conditions for volatilizing the organic solvent from the varnish composition applied to the base material can be appropriately set according to the organic solvent to be used and the like.
  • the heating conditions may be, for example, 40 to 120 ° C. for 0.1 to 10 minutes.
  • irradiation light for example, ultraviolet light
  • Light irradiation can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, an LED light source, or the like.
  • the integrated light amount of light irradiation can be appropriately set, but may be, for example, 500 to 3000 mJ / cm 2 .
  • the second step is a step of laminating the second adhesive layer on the first adhesive layer.
  • the second step is the same as the first step except that, for example, the component (C) and other components and other additives added as needed are used and no light irradiation is performed.
  • a second adhesive layer is formed on the substrate to obtain a second adhesive film.
  • the second adhesive layer can be laminated on the first adhesive layer by adhering the first adhesive film and the second adhesive film.
  • a varnish composition obtained by using the component (C) and other components and other additives added as needed is applied onto the first adhesive layer.
  • the second adhesive layer can also be laminated on the first adhesive layer by volatilizing the organic solvent.
  • Examples of the method of adhering the first adhesive film and the second adhesive film include a method of heat pressing, roll laminating, vacuum laminating and the like. Lamination can be performed, for example, under temperature conditions of 0 to 80 ° C.
  • the third step is a step of laminating the third adhesive layer on the layer of the first adhesive layer opposite to the second adhesive layer.
  • a third adhesive layer is formed on the substrate to obtain a third adhesive film.
  • the varnish composition is applied onto the layer of the first adhesive layer opposite to the second adhesive layer, and an organic solvent is applied.
  • the second adhesive layer can be laminated on the first adhesive layer by volatilizing the above. The method of bonding and the conditions thereof are the same as in the second step.
  • Circuit connection structure and its manufacturing method> a circuit connection structure using the above-mentioned circuit connection adhesive film 10 as a circuit connection material and a method for manufacturing the same will be described.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of a circuit connection structure.
  • the circuit connection structure 20 includes a first circuit member 13 having a first electrode 12 formed on a main surface 11a of the first circuit board 11 and the first circuit board 11.
  • a second circuit member 16 having a second electrode 15 formed on the main surface 14a of the second circuit board 14 and the second circuit board 14, and the first circuit member 13 and the second circuit member. It is arranged between 16 and includes a circuit connection portion 17 that electrically connects the first electrode 12 and the second electrode 15 to each other.
  • the first circuit member 13 and the second circuit member 16 may be the same or different from each other.
  • the first circuit member 13 and the second circuit member 16 are a glass substrate or a plastic substrate on which a circuit electrode is formed; a printed wiring board; a ceramic wiring board; a flexible wiring board; an IC chip such as a drive IC, or the like. It's okay.
  • the first circuit board 11 and the second circuit board 14 may be formed of an inorganic substance such as semiconductor, glass, or ceramic, an organic substance such as polyimide or polycarbonate, or a composite such as glass / epoxy.
  • the first circuit board 11 may be a glass substrate.
  • the first circuit member 13 may be, for example, a glass substrate on which a circuit electrode is formed
  • the second circuit member 16 may be, for example, an IC chip such as a drive IC.
  • the first electrode 12 and the second electrode 15 are gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, aluminum, molybdenum, titanium and other metals, indium tin oxide (ITO), and the like. It may be an electrode containing an oxide such as indium zinc oxide (IZO) or indium gallium zinc oxide (IGZO).
  • the first electrode 12 and the second electrode 15 may be electrodes formed by laminating two or more of these metals, oxides, and the like.
  • the electrode formed by stacking two or more types may have two or more layers, and may have three or more layers.
  • the first electrode 12 When the first circuit member 13 is a plastic substrate, the first electrode 12 may be an electrode having a titanium layer on the outermost surface.
  • the first electrode 12 and the second electrode 15 may be circuit electrodes or bump electrodes. At least one of the first electrode 12 and the second electrode 15 may be a bump electrode.
  • the first electrode 12 is a circuit electrode and the second electrode 15 is a bump electrode.
  • the circuit connection portion 17 contains a cured product of the above-mentioned adhesive film 10.
  • the circuit connection portion 17 may be made of a cured product of the adhesive film 10 described above.
  • the circuit connection portion 17 is located, for example, on the side of the first circuit member 13 in the direction in which the first circuit member 13 and the second circuit member 16 face each other (hereinafter referred to as “opposite direction”), and the above-mentioned first circuit member 17 is located. It is located on the side of the first region 18 composed of the cured product of the component (B) and the cured product of the component (C) other than the conductive particles 4 in the adhesive layer of No. 1 and the second circuit member 16 in the opposite direction.
  • the first electrode 12 and the first electrode 12 are interposed between the second region 19 made of a cured product such as the component (C) in the second adhesive layer and at least the first electrode 12 and the second electrode 15. It has conductive particles 4 that electrically connect the second electrodes 15 to each other. As shown in FIG. 2, the circuit connection portion 17 does not have to have two distinct regions between the first region 18 and the second region 19, and the first adhesive layer The cured product derived from the above and the cured product derived from the second adhesive layer may be mixed to form one region.
  • the circuit connection structure is, for example, a flexible organic electric field light emitting color display (organic EL display) in which a plastic substrate on which organic EL elements are regularly arranged and a drive circuit element which is a driver for displaying an image are connected.
  • organic EL display organic electric field light emitting color display
  • Examples thereof include a touch panel in which a plastic substrate on which organic EL elements are regularly arranged and a position input element such as a touch pad are connected.
  • the circuit connection structure can be applied to various monitors such as smart phones, tablets, televisions, vehicle navigation systems, wearable terminals, furniture; home appliances; daily necessities and the like.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a circuit connection structure.
  • 3 (a) and 3 (b) are schematic cross-sectional views showing each process.
  • a method of manufacturing the circuit connection structure 20 is performed between a first circuit member 13 having a first electrode 12 and a second circuit member 16 having a second electrode 15.
  • the above-mentioned adhesive film 10 is interposed, the first circuit member 13 and the second circuit member 16 are thermocompression bonded, and the first electrode 12 and the second electrode 15 are electrically connected to each other. ..
  • a first circuit including a first electrode 12 formed on a main surface 11a of a first circuit board 11 and a first circuit board 11.
  • a member 13 and a second circuit member 16 provided with a second electrode 15 formed on the main surface 14a of the second circuit board 14 and the second circuit board 14 are prepared.
  • the first circuit member 13 and the second circuit member 16 are arranged so that the first electrode 12 and the second electrode 15 face each other, and the first circuit member 13 and the second circuit member 12 are arranged.
  • the adhesive film 10 is placed between the 16 and 16.
  • the adhesive film 10 is laminated on the first circuit member 13 so that the first adhesive layer 1 side faces the main surface 11a of the first circuit board 11. do.
  • the adhesive film 10 is laminated so that the first electrode 12 on the first circuit board 11 and the second electrode 15 on the second circuit board 14 face each other.
  • the second circuit member 16 is arranged on the circuit member 13.
  • the first circuit member 13 and the second circuit member 16 are thermocompression bonded to each other.
  • the second adhesive layer 2 has a flowable uncured thermosetting component, the second electrodes 15 are connected to each other. It flows so as to fill the voids and is cured by the above heating. As a result, the first electrode 12 and the second electrode 15 are electrically connected to each other via the conductive particles 4, and the first circuit member 13 and the second circuit member 16 are adhered to each other.
  • the circuit connection structure 20 shown in 2 can be obtained.
  • the method for manufacturing the circuit connection structure 20 of the present embodiment it can be said that a part of the first adhesive layer 1 is cured by light, heat, moisture, or the like, so that the first adhesive layer 1 is the heat. Since it hardly flows during crimping and the conductive particles are efficiently captured between the facing electrodes, the connection resistance between the facing first electrode 12 and the second electrode 15 is reduced. Further, when the thickness of the first adhesive layer is 5 ⁇ m or less, the conductive particles at the time of circuit connection tend to be captured more efficiently.
  • the heating temperature for thermocompression bonding can be set as appropriate, but may be, for example, 50 to 190 ° C.
  • the pressurization is not particularly limited as long as it does not damage the adherend, but in the case of COG mounting, the area conversion pressure at the bump electrode may be, for example, 10 to 100 MPa. These heating and pressurizing times may be in the range of 0.5 to 120 seconds. Further, in the case of COP (chip on plastic) mounting, for example, the area conversion pressure at the bump electrode may be 0.1 to 50 MPa.
  • Conductive particles A-1 Insulation-coated conductive particles having an average particle size of 3.2 ⁇ m, in which the surface of a plastic core is Ni-plated and the outermost surface is insulated and coated, are used.
  • thermosetting resin component (B) component: curable resin component and (C) component: thermosetting resin component
  • (B) component and (C) component are the following (MA) polymerizable compound and (MB) polymerization initiation as shown in Table 1. The agent was selected and used. By combining the (MA-R) radically polymerizable compound and the (MB-RL) photoradical polymerization initiator, it can act as a photocurable resin component. On the other hand, by combining the (MA-R) radically polymerizable compound and the (MB-RH) thermal radical polymerization initiator, it can act as a thermosetting component.
  • thermosetting component by combining the (MA-C) cationically polymerizable compound and the (MB-C-L) photocationic polymerization initiator, it can act as a photocurable component.
  • thermosetting component by combining the (MA-C) cationically polymerizable compound and the (MB-C-H) thermally cationic polymerization initiator, it can act as a thermosetting component.
  • Thermoplastic resin D-1 PKHC (phenoxy resin, manufactured by Union Carbide)
  • ⁇ Preparation of the first adhesive film (first adhesive layer)> A composition was obtained by mixing the materials shown in Table 1 with the composition ratio shown in Table 1 (the numerical value in Table 1 means the amount of solid content). Then, on a PET (polyethylene terephthalate) film (manufactured by Mitsui Chemicals Tohcello Co., Ltd.) with a thickness of 38 ⁇ m, the film was applied so that the thickness after drying was 3 ⁇ m and the number of conductive particles was 22,000 / mm 2 . The composition layers 1a to 1e composed of the composition containing each component were obtained by drying at 60 ° C./1 minute.
  • composition layers 1a, 1b, and 1e were irradiated with ultraviolet rays (irradiation amount: 1500 mJ / cm 2 ) using an ultraviolet irradiation device to obtain first adhesive films 1A, 1B, and 1E.
  • the composition layer 1c was further dried in an oven at 70 ° C./4 min to obtain a first adhesive film 1C.
  • the composition layer 1d was used as it was as the first adhesive film 1D.
  • Second adhesive film (second adhesive layer)> After mixing the materials shown in Table 2 at the composition ratio shown in Table 2 (the numerical value in Table 2 means the amount of solid content), on a PET (polyethylene terephthalate) film (manufactured by Toyobo Film Solution Co., Ltd.) having a thickness of 38 ⁇ m.
  • the second adhesive film 2A was obtained by coating the film so that the thickness after drying was 12 ⁇ m and drying in an oven at 60 ° C./3 minutes.
  • Examples 1 to 3 and Comparative Examples 1 and 2 [Preparation of adhesive film] Using the first adhesive film and the second adhesive film prepared above, an adhesive film having the constitution shown in Table 3 was prepared. Regarding the adhesive films of Examples 1 to 3 and Comparative Examples 1 and 2, the first adhesive film is bonded to the second adhesive film while applying a temperature of 50 to 60 ° C., and the configurations shown in Table 3 are attached. Adhesive film was prepared.
  • a glass substrate having ITO wiring (glass substrate size: 2.5 mm ⁇ 28 mm, glass substrate thickness: 300 ⁇ m, ITO wiring size: 2500 ⁇ m (2.5 mm) ⁇ 300 ⁇ m, ITO wiring thickness: 0.2 ⁇ m, number of ITO wirings: 28, space between ITO wirings: 300 ⁇ m) were prepared.
  • the adhesive films of Examples 1 to 3 and Comparative Examples 1 and 2 are cut out to a size of 2 mm ⁇ 23 mm, and the first adhesive film (first adhesive layer) of the cut out adhesive film is a glass substrate having ITO wiring. It was arranged on the top so as to be perpendicular to the ITO wiring.
  • FIG. 4 is a schematic top view showing the laminated body in the peel strength measurement of the embodiment.
  • the laminate 30 shown in FIG. 4 is arranged on a glass substrate 33 having ITO wiring (a substrate including the glass substrate 31 and the ITO wiring 32 provided on the glass substrate 31) and a glass substrate 33 having ITO wiring. It is provided with an adhesive film 10A.
  • the PET film of the second adhesive film (second adhesive layer) is peeled off, and a polyimide tape cut out to a size of 1.8 mm ⁇ 35 mm is attached onto the second adhesive layer to prepare a sample for measurement. Obtained.
  • the glass substrate side of the measurement sample was placed on a hot plate set at 40 ° C., and the tip of the polyimide tape was set in a tensile strength measuring device (Tensilon). By fixing the glass substrate horizontally and pulling the polyimide tape in the vertical direction at a peeling speed of 50 mm / min, the peeling angle is 90 °. The peel strength in was measured. The results are shown in Table 3.
  • an IC chip having a gold bump electrode (IC chip size: 0.9 mm ⁇ 20.3 mm, IC chip thickness: 0.3 mm, gold bump electrode size: 12 ⁇ m ⁇ 100 ⁇ m, The thickness of the gold bump electrode: 12 ⁇ m, the space between the gold bump electrodes: 24 ⁇ m) was prepared.
  • the circuit connection structure was carried out using the adhesive films of Examples 1 to 3 and Comparative Examples 1 and 2.
  • the adhesive film was cut out to a size of 2 mm ⁇ 23 mm, and the first adhesive layer of the cut out adhesive film was placed on the first circuit member so as to be in contact with the circuit electrode of the first circuit member.
  • a thermocompression bonding device (BS-17U, manufactured by Ohashi Seisakusho Co., Ltd.) consisting of a stage consisting of a ceramic heater and a tool (8 mm x 50 mm), heat and pressurize for 5 seconds at 130 ° C. and 40 MPa.
  • An adhesive film was attached to the first circuit member.
  • the PET film on the side opposite to the first circuit member of the adhesive film is peeled off, the circuit electrode of the first circuit member and the bump electrode of the second circuit member are aligned, and then the adhesive is applied.
  • the second adhesive layer of the adhesive film is attached to the second circuit member by heating and pressurizing for 5 seconds under the conditions of the maximum measured maximum temperature of the film of 130 ° C. and the area conversion pressure of 40 MPa at the bump electrode.
  • a connection structure was prepared.
  • connection resistance of the obtained circuit connection structure was evaluated.
  • the evaluation of the connection resistance was carried out by the four-terminal measurement method, and the evaluation was made using the average value of the connection resistance values measured at 14 points.
  • a multimeter (MLR21, manufactured by Kusumoto Kasei Co., Ltd.) was used for the measurement. The results are shown in Table 3.
  • the indentation strength of the obtained circuit connection structure was evaluated. Electrodes were observed from the glass substrate of the obtained circuit connection structure using a differential interference microscope, and indentations were observed at the portions where the ends and the center of the IC chip were connected. The observed indentations were photographed and used as image data, and the intensities were evaluated in five stages of 1, 2, 3, 4, and 5 using indentation analysis software. The larger the evaluation value, the higher the indentation strength. When the indentation strength is high, the connection stability tends to be excellent. The results are shown in Table 3.
  • the film is heated and pressurized for 5 seconds under the conditions of a maximum ultimate temperature of 170 ° C. and a film area conversion pressure of 80 MPa to attach a second adhesive film (second adhesive layer) and a cover glass, and the pressure is applied.
  • a test body test body after pressure bonding
  • the adhesive films of Examples 1 to 3 were excellent in all items.
  • the adhesive film of Comparative Example 1 having a predetermined peel strength of more than 60 N / m did not have a sufficient capture rate of conductive particles. It is considered that this is because the hardness of the resin is too soft in terms of the fluidity of the resin.
  • the adhesive film of Comparative Example 2 having a predetermined peel strength of less than 20 N / m did not have sufficient connection resistance, and was not sufficient in terms of transferability and indentation strength. It is considered that this is because the hardness of the resin is too hard in terms of the fluidity of the resin. From these results, it was confirmed that the adhesive film of the present disclosure can improve the capture rate of conductive particles between the facing electrodes of the circuit connection structure and reduce the connection resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Disclosed is a circuit-connection adhesive film. The circuit-connection adhesive film comprises: a first adhesive layer that contains electroconductive particles, a cured product from a curable resin component, and a first thermosetting resin component; and a second adhesive layer that is provided on the first adhesive layer and contains a second thermosetting resin component. When the first adhesive layer of the circuit-connection adhesive film is bonded by treatment using conditions of a temperature of 60°C, an areawise pressure for the first adhesive layer of 1 MPa, and a time of 1 second to a glass substrate that has indium tin oxide (ITO) wiring, the post-bonding peel strength at 40°C between the glass substrate and the first adhesive layer is 20-60 N/m.

Description

回路接続用接着剤フィルム及びその製造方法、並びに回路接続構造体及びその製造方法Adhesive film for circuit connection and its manufacturing method, and circuit connection structure and its manufacturing method
 本開示は、回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法に関する。 The present disclosure relates to an adhesive film for circuit connection, a circuit connection structure, and a method for manufacturing the same.
 従来、例えば、液晶ディスプレイとテープキャリアパッケージ(TCP)との接続、フレキシブルプリント基板(FPC)とTCPとの接続、又はFPCとプリント配線板との接続等には、接着剤フィルム中に導電粒子を分散させた異方導電性フィルムが用いられている。具体的には、回路接続用接着剤フィルムにより形成される回路接続部によって、回路部材同士が接着されるとともに、回路部材上の電極同士が回路接続部中の導電粒子を介して電気的に接続されることで、回路接続構造体を得ることができる。また、半導体シリコンチップを基板に実装する場合にも、従来のワイヤーボンディングに代えて、半導体シリコンチップを基板に直接実装する、いわゆるchip on glass(COG)実装が行われており、COG実装においても異方導電性フィルムが用いられている。 Conventionally, for example, in the connection between a liquid crystal display and a tape carrier package (TCP), the connection between a flexible printed circuit board (FPC) and TCP, or the connection between an FPC and a printed wiring board, conductive particles are used in an adhesive film. A dispersed anisotropic conductive film is used. Specifically, the circuit members are bonded to each other by the circuit connection portion formed of the circuit connection adhesive film, and the electrodes on the circuit members are electrically connected to each other via the conductive particles in the circuit connection portion. By doing so, a circuit connection structure can be obtained. Also, when mounting a semiconductor silicon chip on a substrate, so-called chip on glass (COG) mounting, in which the semiconductor silicon chip is directly mounted on the board, is performed instead of the conventional wire bonding, and COG mounting is also performed. An anisotropic conductive film is used.
 異方導電性を有する回路接続用接着剤フィルムが使用される精密電子機器の分野では、回路の高密度化が進んでおり、電極間隔は、例えば、15μm以下と極めて狭くなっている。また、接続部材のバンプ電極も小面積化されつつある。このような小面積化された電極において、安定した電気的接続を得るためには、充分な数の導電粒子がバンプ電極と基板側の回路電極との間に介在している必要がある。 In the field of precision electronic devices in which an adhesive film for circuit connection having anisotropic conductivity is used, the density of circuits is increasing, and the electrode spacing is extremely narrow, for example, 15 μm or less. Further, the bump electrode of the connecting member is also becoming smaller in area. In such a small-area electrode, in order to obtain a stable electrical connection, it is necessary that a sufficient number of conductive particles are interposed between the bump electrode and the circuit electrode on the substrate side.
 これに対して、例えば、特許文献1では、導電粒子を異方導電性接着シートの片側に偏在させ、導電粒子同士を離間させる手法が提案されている。 On the other hand, for example, Patent Document 1 proposes a method in which conductive particles are unevenly distributed on one side of an anisotropic conductive adhesive sheet to separate the conductive particles from each other.
国際公開第2005/054388号International Publication No. 2005/054388
 しかしながら、特許文献1の手法では、回路接続時に導電粒子が流動することにより、対向する電極回路間から導電粒子が流出する場合があり、導電粒子の捕捉率の点で未だ改良の余地がある。 However, in the method of Patent Document 1, the conductive particles may flow out from between the opposing electrode circuits due to the flow of the conductive particles at the time of circuit connection, and there is still room for improvement in terms of the capture rate of the conductive particles.
 一方で、例えば、回路接続用接着剤フィルムの接着剤を熱又は光によって硬化させて、導電粒子の流動性を抑制し、導電粒子の捕捉率を向上させることも検討されている。しかし、この場合、接着剤中の樹脂の排除性も低下してしまうことから、接続抵抗が上昇することが推測される。 On the other hand, for example, it is also considered to cure the adhesive of the adhesive film for circuit connection by heat or light to suppress the fluidity of the conductive particles and improve the capture rate of the conductive particles. However, in this case, since the removability of the resin in the adhesive is also lowered, it is presumed that the connection resistance is increased.
 そこで、本開示は、回路接続構造体の対向する電極間における導電粒子の捕捉率を向上させ、かつ接続抵抗を低減させることが可能な回路接続用接着剤フィルムを提供することを主な目的とする。 Therefore, the main object of the present disclosure is to provide an adhesive film for circuit connection capable of improving the capture rate of conductive particles between facing electrodes of a circuit connection structure and reducing the connection resistance. do.
 本開示の一側面は、回路接続用接着剤フィルムに関する。当該回路接続用接着剤フィルムは、導電粒子、硬化性樹脂成分の硬化物、及び第1の熱硬化性樹脂成分を含有する第1の接着剤層と、第1の接着剤層上に設けられた、第2の熱硬化性樹脂成分を含有する第2の接着剤層とを備える。当該回路接続用接着剤フィルムは、インジウム錫酸化物(ITO)配線を有するガラス基板に、回路接続用接着剤フィルムの第1の接着剤層を、温度60℃、第1の接着剤層の面積換算圧力1MPa、時間1秒間の条件で処理して貼り付けたときに、貼り付けた後のガラス基板と第1の接着剤層との40℃における剥離強度が20~60N/mである。当該剥離強度が60N/m以下であると、樹脂の硬さが樹脂の流動性の観点において充分であることから、実装時の樹脂の流動性が小さくなり、結果として、導電粒子の捕捉率を向上させることができる。他方、当該剥離強度が60N/mを超えると、樹脂の硬さが樹脂の流動性の観点において柔らか過ぎることから、実装時の樹脂の流動性が大きく、導電粒子の捕捉率が充分でない傾向にある。当該剥離強度が20N/m以上であると、樹脂の硬さが樹脂の流動性の観点において充分であることから、実装時の接着剤中の樹脂の排除性が充分であり、結果として、接続抵抗を低減させることが可能となる。他方、当該剥離強度が20N/m未満であると、樹脂の硬さが樹脂の流動性の観点において硬過ぎることから、実装時の接着剤中の樹脂の排除性が充分でなく、接続抵抗が上昇する傾向にある。さらに、当該剥離強度が20N/m以上、好ましくは20~60N/mであると、ガラス基板への転写性にも優れ、回路接続構造体において、充分な圧痕強度を得ることも可能となる。 One aspect of this disclosure relates to an adhesive film for circuit connection. The circuit connection adhesive film is provided on a first adhesive layer containing conductive particles, a cured product of a curable resin component, and a first thermosetting resin component, and a first adhesive layer. Further, it includes a second adhesive layer containing a second thermosetting resin component. The circuit connection adhesive film is formed by placing a first adhesive layer of the circuit connection adhesive film on a glass substrate having indium tin oxide (ITO) wiring at a temperature of 60 ° C. and an area of the first adhesive layer. When the glass substrate and the first adhesive layer are pasted after being treated under the conditions of a converted pressure of 1 MPa and a time of 1 second, the peel strength at 40 ° C. is 20 to 60 N / m. When the peel strength is 60 N / m or less, the hardness of the resin is sufficient from the viewpoint of the fluidity of the resin, so that the fluidity of the resin at the time of mounting becomes small, and as a result, the capture rate of conductive particles is reduced. Can be improved. On the other hand, when the peel strength exceeds 60 N / m, the hardness of the resin is too soft from the viewpoint of the fluidity of the resin, so that the fluidity of the resin at the time of mounting is large and the capture rate of conductive particles tends to be insufficient. be. When the peel strength is 20 N / m or more, the hardness of the resin is sufficient from the viewpoint of the fluidity of the resin, so that the resin in the adhesive at the time of mounting is sufficiently eliminated, and as a result, the connection is made. It is possible to reduce the resistance. On the other hand, if the peel strength is less than 20 N / m, the hardness of the resin is too hard from the viewpoint of the fluidity of the resin, so that the resin in the adhesive at the time of mounting is not sufficiently eliminated and the connection resistance is increased. It tends to rise. Further, when the peel strength is 20 N / m or more, preferably 20 to 60 N / m, the transferability to the glass substrate is excellent, and it is possible to obtain sufficient indentation strength in the circuit connection structure.
 回路接続用接着剤フィルムの一態様において、硬化性樹脂成分は、光硬化性を有している。回路接続用接着剤フィルムの他の一態様において、硬化性樹脂成分は、熱硬化性を有している。 In one aspect of the circuit connection adhesive film, the curable resin component has photocurability. In another aspect of the circuit connection adhesive film, the curable resin component has thermosetting property.
 第1の接着剤層の厚さは5μm以下であってよい。第1の接着剤層の厚さが5μm以下であることによって、回路接続時の導電粒子をより一層効率的に捕捉することができる。 The thickness of the first adhesive layer may be 5 μm or less. When the thickness of the first adhesive layer is 5 μm or less, conductive particles at the time of circuit connection can be captured more efficiently.
 本開示の他の一側面は、回路接続用接着剤フィルムの製造方法に関する。当該回路接続用接着剤フィルムの製造方法は、導電粒子と、硬化性樹脂成分と、第1の熱硬化性樹脂成分とを含有する組成物からなる層に対して、硬化性樹脂成分を硬化させて、第1の接着剤層を形成する工程と、第1の接着剤層上に、第2の熱硬化性樹脂成分を含有する第2の接着剤層を設け、回路接続用接着剤フィルムを得る工程とを備える。当該回路接続用接着剤フィルムは、インジウム錫酸化物(ITO)配線を有するガラス基板に、回路接続用接着剤フィルムの第1の接着剤層を、温度60℃、第1の接着剤層の面積換算圧力1MPa、時間1秒間の条件で処理して貼り付けたときに、貼り付けた後のガラス基板と第1の接着剤層との40℃における剥離強度が20~60N/mである。このような回路接続用接着剤フィルムの製造方法によれば、回路接続構造体の対向する電極間における導電粒子の捕捉率を向上させ、かつ接続抵抗を低減させることが可能な回路接続用接着剤フィルムを製造することができる。 Another aspect of the present disclosure relates to a method for manufacturing an adhesive film for circuit connection. The method for producing an adhesive film for circuit connection is to cure a curable resin component on a layer composed of a composition containing conductive particles, a curable resin component, and a first thermosetting resin component. The process of forming the first adhesive layer and the second adhesive layer containing the second thermosetting resin component are provided on the first adhesive layer to form an adhesive film for circuit connection. Provided with the process of obtaining. The circuit connection adhesive film is formed by placing a first adhesive layer of the circuit connection adhesive film on a glass substrate having indium tin oxide (ITO) wiring at a temperature of 60 ° C. and an area of the first adhesive layer. When the glass substrate and the first adhesive layer are pasted after being treated under the conditions of a converted pressure of 1 MPa and a time of 1 second, the peel strength at 40 ° C. is 20 to 60 N / m. According to the method for manufacturing such a circuit connection adhesive film, a circuit connection adhesive capable of improving the capture rate of conductive particles between the facing electrodes of the circuit connection structure and reducing the connection resistance. Films can be manufactured.
 本開示の他の一側面は、回路接続構造体の製造方法に関する。当該回路接続構造体の製造方法は、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に、上記の回路接続用接着剤フィルムを介在させ、第1の回路部材及び第2の回路部材を熱圧着して、第1の電極及び第2の電極を互いに電気的に接続する工程を備える。 Another aspect of this disclosure relates to a method of manufacturing a circuit connection structure. In the method for manufacturing the circuit connection structure, the above-mentioned circuit connection adhesive film is interposed between the first circuit member having the first electrode and the second circuit member having the second electrode. , A step of thermocompression-bonding a first circuit member and a second circuit member to electrically connect the first electrode and the second electrode to each other.
 本開示の他の一側面は、回路接続構造体に関する。当該回路接続構造体は、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材と、第1の回路部材及び第2の回路部材の間に配置され、第1の電極及び第2の電極を互いに電気的に接続する回路接続部とを備える。回路接続部は、上記の回路接続用接着剤フィルムの硬化物を含む。 Another aspect of this disclosure relates to circuit connection structures. The circuit connection structure is arranged between a first circuit member having a first electrode, a second circuit member having a second electrode, and a first circuit member and a second circuit member. A circuit connection portion for electrically connecting the first electrode and the second electrode to each other is provided. The circuit connection portion includes a cured product of the above-mentioned circuit connection adhesive film.
 本開示によれば、回路接続構造体の対向する電極間における導電粒子の捕捉率を向上させ、かつ接続抵抗を低減させることが可能な回路接続用接着剤フィルムが開示される。いくつかの形態に係る回路接続用接着剤フィルムは、ガラス基板への転写性に優れ、回路接続構造体において、充分な圧痕強度を得ることが可能となる。また、本開示によれば、このような回路接続用接着剤フィルムを製造する方法が開示される。さらに、本開示によれば、このような回路接続用接着剤フィルムを用いた回路接続構造体及びその製造方法が開示される。 According to the present disclosure, a circuit connection adhesive film capable of improving the capture rate of conductive particles between facing electrodes of a circuit connection structure and reducing the connection resistance is disclosed. The circuit-connecting adhesive film according to some forms has excellent transferability to a glass substrate, and it is possible to obtain sufficient indentation strength in the circuit connection structure. Further, the present disclosure discloses a method for producing such an adhesive film for circuit connection. Further, the present disclosure discloses a circuit connection structure using such a circuit connection adhesive film and a method for manufacturing the same.
図1は、回路接続用接着剤フィルムの一実施形態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of an adhesive film for circuit connection. 図2は、回路接続構造体の一実施形態を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an embodiment of a circuit connection structure. 図3は、回路接続構造体の製造方法の一実施形態を示す模式断面図である。図3(a)及び図3(b)は、各工程を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a circuit connection structure. 3 (a) and 3 (b) are schematic cross-sectional views showing each process. 図4は、実施例の剥離強度測定における積層体を示す模式上面図である。FIG. 4 is a schematic top view showing the laminated body in the peel strength measurement of the embodiment.
 以下、図面を参照しながら本開示の実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。なお、本開示は以下の実施形態に限定されるものではない。本明細書において、(メタ)アクリロイル基とは、アクリロイル基又はメタクリロイル基を意味し、(メタ)アクリレート等の他の類似表現も同様である。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に記載されている数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値又は上限値と任意に組み合わせられる。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、個別に記載した上限値及び下限値は任意に組み合わせ可能である。数値範囲「A~B」という表記においては、両端の数値A及びBがそれぞれ下限値及び上限値として数値範囲に含まれる。本明細書において、例えば、「10以上」という記載は、「10」と「10を超える数値」とを意味し、数値が異なる場合もこれに準ずる。また、例えば、「10以下」という記載は、「10」と「10未満の数値」とを意味し、数値が異なる場合もこれに準ずる。本明細書に例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the following description, the same or corresponding parts will be designated by the same reference numerals, and duplicate description will be omitted. The present disclosure is not limited to the following embodiments. As used herein, the (meth) acryloyl group means an acryloyl group or a methacryloyl group, as well as other similar expressions such as (meth) acrylate. In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. The lower and upper limits of the numerical range described herein are optionally combined with the lower and upper limits of the other numerical ranges, respectively. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. In addition, the upper limit value and the lower limit value described individually can be arbitrarily combined. In the notation of the numerical range "A to B", the numerical values A and B at both ends are included in the numerical range as the lower limit value and the upper limit value, respectively. In the present specification, for example, the description of "10 or more" means "10" and "a numerical value exceeding 10", and the same applies when the numerical values are different. Further, for example, the description "10 or less" means "10" and "a numerical value less than 10", and the same applies when the numerical values are different. Unless otherwise specified, each component and material exemplified in the present specification may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
[回路接続用接着剤フィルム]
 図1は、回路接続用接着剤フィルムの一実施形態を示す模式断面図である。図1に示される回路接続用接着剤フィルム10(以下、単に「接着剤フィルム10」という場合がある。)は、導電粒子4、並びに、硬化性樹脂成分の硬化物及び第1の熱硬化性樹脂成分を含む接着剤成分5を含有する第1の接着剤層1と、第1の接着剤層1上に設けられた、第2の熱硬化性樹脂成分を含有する第2の接着剤層2とを備える。
[Adhesive film for circuit connection]
FIG. 1 is a schematic cross-sectional view showing an embodiment of an adhesive film for circuit connection. The circuit connection adhesive film 10 (hereinafter, may be simply referred to as “adhesive film 10”) shown in FIG. 1 includes the conductive particles 4, the cured product of the curable resin component, and the first thermosetting property. A first adhesive layer 1 containing an adhesive component 5 containing a resin component, and a second adhesive layer provided on the first adhesive layer 1 containing a second thermosetting resin component. 2 and.
 接着剤フィルム10は、導電粒子4が第1の接着剤層1中に分散されている。そのため、接着剤フィルム10は、異方導電性を有する回路接続用接着剤フィルム(異方導電性接着剤フィルム)であり得る。接着剤フィルム10は、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に介在させ、第1の回路部材及び第2の回路部材を熱圧着して、第1の電極及び第2の電極を互いに電気的に接続するために用いられるものであってよい。 In the adhesive film 10, the conductive particles 4 are dispersed in the first adhesive layer 1. Therefore, the adhesive film 10 can be a circuit-connecting adhesive film (anisotropic adhesive film) having anisotropic conductivity. The adhesive film 10 is interposed between the first circuit member having the first electrode and the second circuit member having the second electrode, and heats the first circuit member and the second circuit member. It may be crimped and used to electrically connect the first electrode and the second electrode to each other.
<第1の接着剤層>
 第1の接着剤層1は、導電粒子4(以下、「(A)成分」という場合がある。)、硬化性樹脂成分(以下、「(B)成分」という場合がある。)の硬化物、及び(第1の)熱硬化性樹脂成分(以下、「(C)成分」という場合がある。)を含有する。第1の接着剤層1は、例えば、(A)成分、(B)成分、及び(C)成分を含有する組成物からなる組成物層に対して光、熱、湿気等によって、(B)成分に含まれる成分を重合させ、(B)成分を硬化させることによって得ることができる。第1の接着剤層1は、(A)成分と、(B)成分の硬化物及び(C)成分を含む接着剤成分5とを含有する。(B)成分の硬化物は、(B)成分を完全に硬化させた硬化物であってもよく、(B)成分の一部を硬化させた硬化物であってもよい。(C)成分は、回路接続時に流動可能な成分であり、例えば、未硬化の硬化性樹脂成分である。
<First adhesive layer>
The first adhesive layer 1 is a cured product of conductive particles 4 (hereinafter, may be referred to as "(A) component") and a curable resin component (hereinafter, may be referred to as "(B) component"). , And a (first) thermosetting resin component (hereinafter, may be referred to as “(C) component”). The first adhesive layer 1 is formed by, for example, light, heat, moisture, or the like with respect to a composition layer composed of a composition containing the component (A), the component (B), and the component (C). It can be obtained by polymerizing the component contained in the component and curing the component (B). The first adhesive layer 1 contains the component (A), the cured product of the component (B), and the adhesive component 5 containing the component (C). The cured product of the component (B) may be a cured product obtained by completely curing the component (B), or may be a cured product obtained by curing a part of the component (B). The component (C) is a component that can flow when connected to a circuit, and is, for example, an uncured curable resin component.
(A)成分:導電粒子
 (A)成分は、導電性を有する粒子であれば特に制限されず、Au、Ag、Pd、Ni、Cu、はんだ等の金属で構成された金属粒子、導電性カーボンで構成された導電性カーボン粒子などであってよい。(A)成分は、非導電性のガラス、セラミック、プラスチック(ポリスチレン等)などを含む核と、上記金属又は導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子であってもよい。これらの中でも、(A)成分は、好ましくは熱溶融性の金属で形成された金属粒子、又はプラスチックを含む核と、金属又は導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子である。このような被覆導電粒子は、熱硬化性樹脂成分の硬化物を加熱又は加圧により変形させることが容易であるため、電極同士を電気的に接続する際に、電極と(A)成分との接触面積を増加させ、電極間の導電性をより向上させることができる。
Component (A): Conductive particles The component (A) is not particularly limited as long as it is a particle having conductivity, and is a metal particle composed of a metal such as Au, Ag, Pd, Ni, Cu, or solder, or conductive carbon. It may be conductive carbon particles composed of. The component (A) may be a coated conductive particle containing a nucleus containing non-conductive glass, ceramic, plastic (polystyrene, etc.) and the like, and a coating layer containing the metal or conductive carbon and covering the nucleus. good. Among these, the component (A) preferably contains metal particles formed of a heat-meltable metal or a core containing plastic, and contains a metal or conductive carbon and has a coating layer covering the core. It is a particle. Since such coated conductive particles can easily deform the cured product of the thermosetting resin component by heating or pressurizing, when the electrodes are electrically connected to each other, the electrode and the component (A) are connected to each other. The contact area can be increased and the conductivity between the electrodes can be further improved.
 (A)成分は、上記の金属粒子、導電性カーボン粒子、又は被覆導電粒子と、樹脂等の絶縁材料を含み、該粒子の表面を被覆する絶縁層とを備える絶縁被覆導電粒子であってもよい。(A)成分が絶縁被覆導電粒子であると、(A)成分の含有量が多い場合であっても、粒子の表面に絶縁層を備えているため、(A)成分同士の接触による短絡の発生を抑制でき、また、隣り合う電極回路間の絶縁性を向上させることもできる。(A)成分は、上述の各種導電粒子の1種を単独で又は2種以上を組み合わせて用いられる。 The component (A) may be an insulating coated conductive particle containing the above-mentioned metal particles, conductive carbon particles, or coated conductive particles and an insulating material such as a resin and having an insulating layer covering the surface of the particles. good. When the component (A) is an insulating coated conductive particle, even when the content of the component (A) is large, the insulating layer is provided on the surface of the particle, so that the component (A) is short-circuited due to contact with each other. The generation can be suppressed, and the insulation between adjacent electrode circuits can be improved. As the component (A), one of the above-mentioned various conductive particles may be used alone or in combination of two or more.
 (A)成分の最大粒径は、電極の最小間隔(隣り合う電極間の最短距離)よりも小さいことが必要である。(A)成分の最大粒径は、分散性及び導電性に優れる観点から、1.0μm以上、2.0μm以上、又は2.5μm以上であってよい。(A)成分の最大粒径は、分散性及び導電性に優れる観点から、20μm以下、10μm以下、又は5μm以下であってよい。本明細書では、任意の導電粒子300個(pcs)について、走査型電子顕微鏡(SEM)を用いた観察により粒径の測定を行い、得られた最も大きい値を(A)成分の最大粒径とする。なお、(A)成分が突起を有する場合等、(A)成分が球形ではない場合、(A)成分の粒径は、SEMの画像における導電粒子に外接する円の直径とする。 The maximum particle size of the component (A) needs to be smaller than the minimum distance between the electrodes (the shortest distance between adjacent electrodes). The maximum particle size of the component (A) may be 1.0 μm or more, 2.0 μm or more, or 2.5 μm or more from the viewpoint of excellent dispersibility and conductivity. The maximum particle size of the component (A) may be 20 μm or less, 10 μm or less, or 5 μm or less from the viewpoint of excellent dispersibility and conductivity. In the present specification, the particle size of any 300 conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the largest value obtained is the maximum particle size of the component (A). And. When the component (A) is not spherical, such as when the component (A) has protrusions, the particle size of the component (A) is the diameter of a circle circumscribing the conductive particles in the SEM image.
 (A)成分の平均粒径は、分散性及び導電性に優れる観点から、1.0μm以上、2.0μm以上、又は2.5μm以上であってよい。(A)成分の平均粒径は、分散性及び導電性に優れる観点から、20μm以下、10μm以下、又は5μm以下であってよい。本明細書では、任意の導電粒子300個(pcs)について、走査型電子顕微鏡(SEM)を用いた観察により粒径の測定を行い、得られた粒径の平均値を平均粒径とする。 The average particle size of the component (A) may be 1.0 μm or more, 2.0 μm or more, or 2.5 μm or more from the viewpoint of excellent dispersibility and conductivity. The average particle size of the component (A) may be 20 μm or less, 10 μm or less, or 5 μm or less from the viewpoint of excellent dispersibility and conductivity. In the present specification, the particle size of any 300 conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the average value of the obtained particle sizes is taken as the average particle size.
 第1の接着剤層1において、(A)成分は均一に分散されていることが好ましい。接着剤フィルム10における(A)成分の粒子密度は、安定した接続抵抗が得られる観点から、100個/mm以上、1000個/mm以上、3000個/mm以上、又は5000個/mm以上、であってよい。接着剤フィルム10における(A)成分の粒子密度は、隣り合う電極間の絶縁性を向上する観点から、100000個/mm以下、70000個/mm以下、50000個/mm以下、又は30000個/mm以下であってよい。 In the first adhesive layer 1, the component (A) is preferably uniformly dispersed. The particle density of the component (A) in the adhesive film 10 is 100 pieces / mm 2 or more, 1000 pieces / mm 2 or more, 3000 pieces / mm 2 or more, or 5000 pieces / mm from the viewpoint of obtaining stable connection resistance. It may be 2 or more. The particle density of the component (A) in the adhesive film 10 is 100,000 pieces / mm 2 or less, 70,000 pieces / mm 2 or less, 50,000 pieces / mm 2 or less, or 30,000 from the viewpoint of improving the insulating property between adjacent electrodes. Pieces / mm 2 or less may be used.
 (A)成分の含有量は、導電性をより向上させることができる観点から、第1の接着剤層の全質量を基準として、1質量%以上、10質量%以上、又は20質量%以上であってよい。(A)成分の含有量は、短絡を抑制し易い観点から、第1の接着剤層の全質量を基準として、80質量%以下、60質量%以下、又は50質量%以下であってよい。(A)成分の含有量が上記範囲であると、本開示の効果が顕著に奏される傾向にある。なお、組成物又は組成物層中の(A)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The content of the component (A) is 1% by mass or more, 10% by mass or more, or 20% by mass or more based on the total mass of the first adhesive layer from the viewpoint of further improving the conductivity. It may be there. The content of the component (A) may be 80% by mass or less, 60% by mass or less, or 50% by mass or less based on the total mass of the first adhesive layer from the viewpoint of easily suppressing a short circuit. When the content of the component (A) is in the above range, the effect of the present disclosure tends to be remarkably exhibited. The content of the component (A) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
(B)成分:硬化性樹脂成分
 (B)成分としては、光硬化性を有する硬化性樹脂成分(光硬化性樹脂成分)、熱硬化性を有する硬化性樹脂成分(熱硬化性樹脂成分)、湿気硬化性を有する硬化性樹脂成分(湿気硬化性樹脂成分)等が挙げられる。ここで、熱硬化性樹脂成分は、例えば、硬化系(例えば、ラジカル硬化系、カチオン硬化系等)、重合開始温度等の点で後述の(C)成分と異なるものであり得る。重合開始温度は、重合開始剤の種類等によって調整することができる。(B)成分の熱硬化性樹脂成分は、(C)成分の熱硬化性樹脂成分よりも重合開始温度が低いものであり得る。(B)成分は、光硬化性樹脂成分又は熱硬化性樹脂成分であってよく、より好ましくは光硬化性樹脂成分である。(B)成分は、重合性化合物(以下、「MA成分)」という場合がある。)と重合開始剤(以下、「MB成分)」という場合がある。)との組み合わせであってよい。
Component (B): Curable resin component As the component (B), a photocurable resin component (photocurable resin component), a thermosetting resin component (thermosetting resin component), and the like. Examples thereof include a curable resin component having a moisture-curable property (moisture-curable resin component). Here, the thermosetting resin component may be different from the component (C) described later in, for example, a curing system (for example, a radical curing system, a cationic curing system, etc.), a polymerization start temperature, and the like. The polymerization start temperature can be adjusted depending on the type of the polymerization initiator and the like. The thermosetting resin component of the component (B) may have a lower polymerization initiation temperature than the thermosetting resin component of the component (C). The component (B) may be a photocurable resin component or a thermosetting resin component, and more preferably a photocurable resin component. The component (B) may be referred to as a polymerizable compound (hereinafter, “MA component”). ) And the polymerization initiator (hereinafter, "MB component"). ) May be combined.
 光硬化性樹脂成分は、ラジカル硬化性を有する樹脂成分であってもよく、カチオン硬化性を有する樹脂成分であってもよい。光硬化性樹脂成分におけるラジカル硬化性を有する樹脂成分は、例えば、ラジカル重合性化合物(以下、「(MA-R)成分」という場合がある。)と光ラジカル重合開始剤(以下、「(MB-R-L)成分」という場合がある。)との組み合わせであり得る。光硬化性樹脂成分におけるカチオン硬化性を有する樹脂成分は、例えば、カチオン重合性化合物(以下、「(MA-C)成分」という場合がある。)と光カチオン重合開始剤(以下、「(MB-C-L)成分」という場合がある。)との組み合わせであり得る。 The photocurable resin component may be a resin component having radical curability or a resin component having cation curability. The resin component having radical curability in the photocurable resin component is, for example, a radically polymerizable compound (hereinafter, may be referred to as “(MA-R) component”) and a photoradical polymerization initiator (hereinafter, “(MB)”. -RL) component "may be combined with.). The cationically curable resin component in the photocurable resin component is, for example, a cationically polymerizable compound (hereinafter, may be referred to as “(MA-C) component”) and a photocationic polymerization initiator (hereinafter, “(MB)”. -C-L) component "may be combined with.).
 熱硬化性樹脂成分は、ラジカル硬化性を有する樹脂成分であってもよく、カチオン硬化性を有する樹脂成分であってもよい。熱硬化性樹脂成分におけるラジカル硬化性を有する樹脂成分は、例えば、(MA-R)成分と熱ラジカル重合開始剤(以下、「(MB-R-H)成分」という場合がある。)との組み合わせであり得る。熱硬化性樹脂成分におけるカチオン硬化性を有する樹脂成分は、例えば、(MA-C)成分と熱カチオン重合開始剤(以下、「(MB-C-H)成分」という場合がある。)との組み合わせであり得る。 The thermosetting resin component may be a resin component having radical curability or a resin component having cation curability. The resin component having radical curability in the thermosetting resin component is, for example, a (MA-R) component and a thermo-radical polymerization initiator (hereinafter, may be referred to as “(MB-RH) component”). It can be a combination. The cationically curable resin component in the thermosetting resin component is, for example, a (MA-C) component and a thermocationic polymerization initiator (hereinafter, may be referred to as "(MB-CH) component"). It can be a combination.
 (B)成分と後述の(C)成分とは、硬化系(例えば、ラジカル硬化系、カチオン硬化系等)が異なっていることが好ましい。(B)成分の硬化系と(C)成分の硬化系とが異なっていることによって、(B)成分のみを選択的に効率よく硬化させることが可能となる。より具体的には、(C)成分としてカチオン硬化性を有する熱硬化性樹脂成分(例えば、(MA-C)成分と(MB-C-H)成分との組み合わせ)を用いる場合、(B)成分は、ラジカル硬化性を有する光硬化性樹脂成分(例えば、(MA-R)成分と(MB-R-L)成分との組み合わせ)又はラジカル硬化性を有する熱硬化性樹脂成分(例えば、(MA-R)成分と(MB-R-H)成分との組み合わせ)であってよく、より好ましくはラジカル硬化性を有する光硬化性樹脂成分である。(C)成分としてラジカル硬化性を有する熱硬化性樹脂成分(例えば、(MA-R)成分と(MB-R-H)成分との組み合わせ)を用いる場合、(B)成分は、カチオン硬化性を有する光硬化性樹脂成分(例えば、(MA-C)成分と(MB-C-L)成分との組み合わせ)又はカチオン硬化性を有する熱硬化性樹脂成分(例えば、(MA-C)成分と(MB-C-H)成分との組み合わせ)であってよく、より好ましくはカチオン硬化性を有する光硬化性樹脂成分である。 It is preferable that the component (B) and the component (C) described later have different curing systems (for example, radical curing system, cationic curing system, etc.). Since the curing system of the component (B) and the curing system of the component (C) are different, it is possible to selectively and efficiently cure only the component (B). More specifically, when a thermosetting resin component having cation curability (for example, a combination of (MA-C) component and (MB-CH) component) is used as the component (C), (B) The component is a photocurable resin component having radical curability (for example, a combination of (MA-R) component and (MB-RL) component) or a thermosetting resin component having radical curability (for example, (for example,). It may be a combination of the MA-R) component and the (MB-RH) component), and more preferably a photocurable resin component having radical curability. When a thermosetting resin component having radical curability (for example, a combination of (MA-R) component and (MB-RH) component) is used as the component (C), the component (B) is cationically curable. With a photocurable resin component having (for example, a combination of (MA-C) component and (MB-C-L) component) or a thermosetting resin component having cationic curability (for example, (MA-C) component). It may be (combination with (MB—CH) component), and more preferably a photocurable resin component having cation curability.
(MA-R)成分:ラジカル重合性化合物
 (MA-R)成分は、ラジカル重合開始剤((MB-R-L)成分、(MB-R-H)成分等)から発生したラジカルによって重合する化合物である。(MA-R)成分は、モノマー、又は、1種若しくは2種以上のモノマーが重合してなるポリマー(又はオリゴマー)のいずれであってもよい。(MA-R)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。
(MA-R) component: The radically polymerizable compound (MA-R) component is polymerized by radicals generated from a radical polymerization initiator ((MB-RL) component, (MB-RH) component, etc.). It is a compound. The (MA-R) component may be either a monomer or a polymer (or oligomer) obtained by polymerizing one or more kinds of monomers. The (MA-R) component may be used alone or in combination of two or more.
 (MA-R)成分は、ラジカルによって反応するラジカル重合性基を有する化合物である。ラジカル重合性基としては、例えば、例えば、(メタ)アクリロイル基、ビニル基、アリル基、スチリル基、アルケニル基、アルケニレン基、マレイミド基等が挙げられる。(MA-R)成分が有するラジカル重合性基の数(官能基数)は、重合後、所望の溶融粘度が得られ易く、接続抵抗の低減効果がより向上し、接続信頼性により優れる観点から、2以上であってよく、重合時の硬化収縮を抑制する観点から、10以下であってよい。また、架橋密度と硬化収縮とのバランスをとるために、ラジカル重合性基の数が上記範囲内にある化合物に加えて、ラジカル重合性基の数が上記範囲外にある化合物を使用してもよい。 The (MA-R) component is a compound having a radically polymerizable group that reacts with a radical. Examples of the radically polymerizable group include (meth) acryloyl group, vinyl group, allyl group, styryl group, alkenyl group, alkenylene group, maleimide group and the like. The number of radically polymerizable groups (number of functional groups) contained in the (MA-R) component is such that the desired melt viscosity can be easily obtained after polymerization, the effect of reducing the connection resistance is further improved, and the connection reliability is improved. It may be 2 or more, and may be 10 or less from the viewpoint of suppressing curing shrinkage during polymerization. Further, in order to balance the crosslink density and the curing shrinkage, in addition to the compound having the number of radically polymerizable groups within the above range, a compound having the number of radically polymerizable groups outside the above range may be used. good.
 (MA-R)成分は、導電粒子の流動を抑制する観点から、例えば、多官能(2官能以上)の(メタ)アクリレートを含んでいてもよい。多官能(2官能以上)の(メタ)アクリレートは、2官能の(メタ)アクリレートであってよく、2官能の(メタ)アクリレートは、2官能の芳香族(メタ)アクリレートであってよい。 The (MA-R) component may contain, for example, a polyfunctional (bifunctional or higher) (meth) acrylate from the viewpoint of suppressing the flow of conductive particles. The polyfunctional (bifunctional or higher) (meth) acrylate may be a bifunctional (meth) acrylate, and the bifunctional (meth) acrylate may be a bifunctional aromatic (meth) acrylate.
 多官能の(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化2-メチル-1,3-プロパンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族(メタ)アクリレート;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、エトキシ化ビスフェノールF型ジ(メタ)アクリレート、プロポキシ化ビスフェノールF型ジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールF型ジ(メタ)アクリレート、エトキシ化フルオレン型ジ(メタ)アクリレート、プロポキシ化フルオレン型ジ(メタ)アクリレート、エトキシ化プロポキシ化フルオレン型ジ(メタ)アクリレート等の芳香族(メタ)アクリレート;ビスフェノール型エポキシ(メタ)アクリレート、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレートなどが挙げられる。 Examples of the polyfunctional (meth) acrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate. ) Acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethoxylated polypropylene glycol Di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, neopentylglycoldi (meth) acrylate, 3-methyl-1,5-pentanediol di (Meta) acrylate, 1,6-hexanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1 , 10-decanediol di (meth) acrylate, glycerindi (meth) acrylate, tricyclodecanedimethanol (meth) acrylate, 2-methyl-1,3-propanediol di (meth) acrylate ethoxylated, trimethylolpropane tri (Meta) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated Pentaerythritol tri (meth) acrylate, propoxylated pentaerythritol tri (meth) acrylate, ethoxylated propoxylated pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxydated Fat group (meth) acrylates such as pentaerythritol tetra (meth) acrylate, ethoxylated propoxylated pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexa (meth) acrylate; ethoxylated bisphenol A type di ( Meta) Acrylate Relate, propoxylated bisphenol A type di (meth) acrylate, ethoxylated propoxylated bisphenol A type di (meth) acrylate, ethoxylated bisphenol F type di (meth) acrylate, propoxylated bisphenol F type di (meth) acrylate, ethoxylated Aromatic (meth) acrylates such as propoxylated bisphenol F-type di (meth) acrylates, ethoxylated fluorene-type di (meth) acrylates, propoxylated fluorene-type di (meth) acrylates, and ethoxylated propoxylated fluorene-type di (meth) acrylates. Examples thereof include aromatic epoxy (meth) acrylates such as bisphenol type epoxy (meth) acrylate, phenol novolac type epoxy (meth) acrylate, and cresol novolac type epoxy (meth) acrylate.
 多官能(2官能以上)の(メタ)アクリレートの含有量は、接続抵抗の低減効果と粒子流動の抑制とを両立させる観点から、(MA-R)成分の全質量を基準として、例えば、40~100質量%、50~100質量%、又は60~100質量%であってよい。 The content of the polyfunctional (bifunctional or higher) (meth) acrylate is, for example, 40, based on the total mass of the (MA-R) component, from the viewpoint of achieving both the effect of reducing the connection resistance and the suppression of particle flow. It may be up to 100% by mass, 50 to 100% by mass, or 60 to 100% by mass.
 (MA-R)成分は、多官能(2官能以上)の(メタ)アクリレートに加えて、単官能の(メタ)アクリレートをさらに含んでいてもよい。単官能の(メタ)アクリレートとしては、例えば、(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)スクシネート等の脂肪族(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、1-ナフトキシエチル(メタ)アクリレート、2-ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレート等の芳香族(メタ)アクリレート;グリシジル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等の脂環式エポキシ基を有する(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート等のオキセタニル基を有する(メタ)アクリレートなどが挙げられる。 The (MA-R) component may further contain a monofunctional (meth) acrylate in addition to the polyfunctional (bifunctional or higher) (meth) acrylate. Examples of the monofunctional (meth) acrylate include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl (meth) acrylate. Butoxyethyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octylheptyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) Acrylate 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, ethoxy Acrylate (meth) acrylates such as polyethylene glycol (meth) acrylates, methoxypolypropylene glycol (meth) acrylates, ethoxypolypropylene glycol (meth) acrylates, and mono (2- (meth) acryloyloxyethyl) succinates; benzyl (meth) acrylates. , Phenyl (meth) acrylate, o-biphenyl (meth) acrylate, 1-naphthyl (meth) acrylate, 2-naphthyl (meth) acrylate, phenoxyethyl (meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, o -Phenylphenoxyethyl (meth) acrylate, 1-naphthoxyethyl (meth) acrylate, 2-naphthoxyethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, phenoxypolypropylene glycol (meth) acrylate, 2-Hydroxy-3-phenoxypropyl (meth) acrylate, 2-hydroxy-3- (o-phenylphenoxy) propyl (meth) acrylate, 2-hydroxy-3- (1-naphthoxy) propyl (meth) acrylate, 2- Aromatic (meth) acrylates such as hydroxy-3- (2-naphthoxy) propyl (meth) acrylates; (meth) acrylates having an epoxy group such as glycidyl (meth) acrylates, 3,4-epoxycyclohexylmethyl (meth) acrylates. (Meta) acrylates having an alicyclic epoxy group such as, ( Examples thereof include (meth) acrylate having an oxetanyl group such as 3-ethyloxetane-3-yl) methyl (meth) acrylate.
 単官能の(メタ)アクリレートの含有量は、(MA-R)成分の全質量を基準として、例えば、0~60質量%、0~50質量%、又は0~40質量%であってよい。 The content of the monofunctional (meth) acrylate may be, for example, 0 to 60% by mass, 0 to 50% by mass, or 0 to 40% by mass based on the total mass of the (MA-R) component.
 (B)成分の硬化物は、例えば、ラジカル以外によって反応する重合性基を有していてもよい。ラジカル以外によって反応する重合性基は、例えば、カチオンによって反応するカチオン重合性基であってよい。カチオン重合性基としては、例えば、グリシジル基等のエポキシ基、エポキシシクロヘキシルメチル基等の脂環式エポキシ基、エチルオキセタニルメチル基等のオキセタニル基等が挙げられる。ラジカル以外によって反応する重合性基を有する(B)成分の硬化物は、例えば、エポキシ基を有する(メタ)アクリレート、脂環式エポキシ基を有する(メタ)アクリレート、オキセタニル基を有する(メタ)アクリレート等のラジカル以外によって反応する重合性基を有する(メタ)アクリレートを(B)成分として使用することによって導入することができる。(MA-R)成分の全質量に対するラジカル以外によって反応する重合性基を有する(メタ)アクリレートの質量比(ラジカル以外によって反応する重合性基を有する(メタ)アクリレートの質量(仕込み量)/(MA-R)成分の全質量(仕込み量))は、信頼性向上の観点から、例えば、0~0.7、0~0.5、又は0~0.3であってよい。 The cured product of the component (B) may have, for example, a polymerizable group that reacts with a substance other than a radical. The polymerizable group that reacts with a non-radical substance may be, for example, a cationically polymerizable group that reacts with a cation. Examples of the cationically polymerizable group include an epoxy group such as a glycidyl group, an alicyclic epoxy group such as an epoxycyclohexylmethyl group, and an oxetanyl group such as an ethyloxetanylmethyl group. The cured product of the component (B) having a polymerizable group that reacts by other than radicals is, for example, a (meth) acrylate having an epoxy group, a (meth) acrylate having an alicyclic epoxy group, and a (meth) acrylate having an oxetanyl group. It can be introduced by using a (meth) acrylate having a polymerizable group that reacts with a non-radical substance such as (B) as a component (B). Mass ratio of (meth) acrylate having a polymerizable group that reacts with other than radicals to the total mass of the (MA-R) component (mass ratio of (meth) acrylate having a polymerizable group that reacts with other than radicals (charged amount) / ( The total mass (charged amount) of the MA-R) component may be, for example, 0 to 0.7, 0 to 0.5, or 0 to 0.3 from the viewpoint of improving reliability.
 (MA-R)成分は、多官能(2官能以上)及び単官能の(メタ)アクリレートに加えて、その他のラジカル重合性化合物を含んでいてもよい。その他のラジカル重合性化合物としては、例えば、マレイミド化合物、ビニルエーテル化合物、アリル化合物、スチレン誘導体、アクリルアミド誘導体、ナジイミド誘導体等が挙げられる。その他のラジカル重合性化合物の含有量は、(MA-R)成分の全質量を基準として、例えば、0~40質量%であってよい。 The (MA-R) component may contain other radically polymerizable compounds in addition to polyfunctional (bifunctional or higher) and monofunctional (meth) acrylates. Examples of other radically polymerizable compounds include maleimide compounds, vinyl ether compounds, allyl compounds, styrene derivatives, acrylamide derivatives, nadiimide derivatives and the like. The content of the other radically polymerizable compound may be, for example, 0 to 40% by mass based on the total mass of the (MA-R) component.
(MB-R-L)成分:光ラジカル重合開始剤
 (MB-R-L)成分は、150~750nmの範囲内の波長を含む光、好ましくは254~405nmの範囲内の波長を含む光、さらに好ましくは365nmの波長を含む光(例えば紫外光)の照射によってラジカルを発生する重合開始剤である。(MB-R-L)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。
(MB-RL) component: Photoradical polymerization initiator (MB-RL) component is light containing a wavelength in the range of 150 to 750 nm, preferably light containing a wavelength in the range of 254 to 405 nm. More preferably, it is a polymerization initiator that generates radicals by irradiation with light having a wavelength of 365 nm (for example, ultraviolet light). The (MB-RL) component may be used alone or in combination of two or more.
 (MB-R-L)成分は、光により分解して遊離ラジカルを発生する。つまり、(MB-R-L)成分は、外部からの光エネルギーの付与によりラジカルを発生する化合物である。(MB-R-L)成分は、オキシムエステル構造、ビスイミダゾール構造、アクリジン構造、α-アミノアルキルフェノン構造、アミノベンゾフェノン構造、N-フェニルグリシン構造、アシルホスフィンオキサイド構造、ベンジルジメチルケタール構造、α-ヒドロキシアルキルフェノン構造等の構造を有する化合物であってよい。(MB-R-L)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。(MB-R-L)成分は、所望の溶融粘度が得られ易い観点、及び、接続抵抗の低減効果により優れる観点から、オキシムエステル構造、α-アミノアルキルフェノン構造、及びアシルホスフィンオキサイド構造からなる群より選択される少なくとも1種の構造を有する化合物であってもよい。 The (MB-RL) component is decomposed by light to generate free radicals. That is, the (MB-RL) component is a compound that generates radicals by applying light energy from the outside. The (MB-RL) component includes an oxime ester structure, a bisimidazole structure, an acrydin structure, an α-aminoalkylphenone structure, an aminobenzophenone structure, an N-phenylglycine structure, an acylphosphine oxide structure, a benzyldimethylketal structure, and α-. It may be a compound having a structure such as a hydroxyalkylphenone structure. The (MB-RL) component may be used alone or in combination of two or more. The (MB-RL) component is composed of an oxime ester structure, an α-aminoalkylphenone structure, and an acylphosphine oxide structure from the viewpoint that the desired melt viscosity can be easily obtained and the effect of reducing the connection resistance is superior. It may be a compound having at least one structure selected from the group.
 オキシムエステル構造を有する化合物の具体例としては、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-o-ベンゾイルオキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)等が挙げられる。 Specific examples of the compound having an oxime ester structure include 1-phenyl-1,2-butandion-2- (o-methoxycarbonyl) oxime and 1-phenyl-1,2-propanedione-2- (o-methoxycarbonyl). ) Oxime, 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2-o-benzoyloxime, 1,3-diphenylpropantrione- 2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxypropanetrione-2- (o-benzoyl) oxime, 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2-( o-benzoyloxime)], etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (o-acetyloxime) and the like.
 α-アミノアルキルフェノン構造を有する化合物の具体例としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-モルフォリノフェニル)-ブタノン-1等が挙げられる。 Specific examples of the compound having an α-aminoalkylphenone structure include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-benzyl-2-dimethylamino-1. -Morphorinophenyl) -butanone-1 and the like.
 アシルホスフィンオキサイド構造を有する化合物の具体例としては、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド、ビス(2,4,6,-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド等が挙げられる。 Specific examples of the compound having an acylphosphine oxide structure include bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide and bis (2,4,6, -trimethylbenzoyl) -phenylphosphine. Examples thereof include oxide, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide and the like.
 (MB-R-L)成分の含有量は、導電粒子の流動抑制の観点から、(MA-R)成分の100質量部に対して、例えば、0.1~10質量部、0.3~7質量部、又は0.5~5質量部であってよい。 The content of the (MB-RL) component is, for example, 0.1 to 10 parts by mass and 0.3 to 0.3 to 100 parts by mass with respect to 100 parts by mass of the (MA-R) component from the viewpoint of suppressing the flow of conductive particles. It may be 7 parts by mass or 0.5 to 5 parts by mass.
(MB-R-H)成分:熱ラジカル重合開始剤
 (MB-R-H)成分は、熱によってラジカルを発生する重合開始剤である。(MB-R-H)成分の1時間半減期温度は、例えば、50~100℃であってよい。(MB-R-H)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。
(MB-RH) component: Thermal radical polymerization initiator (MB-RH) component is a polymerization initiator that generates radicals by heat. The 1-hour half-life temperature of the (MB-RH) component may be, for example, 50-100 ° C. The (MB-RH) component may be used alone or in combination of two or more.
 (MB-R-H)成分としては、例えば、オクタノイルパーオキシド、ラウロイルパーオキシド、ステアリルパーオキシド、ベンゾイルパーオキシド等のジアシルパーオキシド;t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウリレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート等のパーオキシエステル;並びに、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2’-ジメチルバレロニトリル)等のアゾ化合物などが挙げられる。 Examples of the (MB-RH) component include diacyl peroxides such as octanoyl peroxide, lauroyl peroxide, stearyl peroxide, and benzoyl peroxide; t-butylperoxypivalate and t-hexylperoxypivalate. , 1,1,3,3-Tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, t-hexylperoxy- 2-Ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-hexylperoxyisopropylmonocarbonate, t-butylperoxy-3,5,5- Trimethylhexanoate, t-butylperoxylaurylate, t-butylperoxyisopropylmonocarbonate, t-butylperoxy-2-ethylhexylmonocarbonate, t-butylperoxybenzoate, t-hexylperoxybenzoate, 2, Peroxy esters such as 5-dimethyl-2,5-bis (benzoylperoxy) hexane, t-butylperoxyacetate; and 2,2'-azobisisobutyronitrile, 2,2'-azobis (2). , 4-Dimethylvaleronitrile), azo compounds such as 2,2'-azobis (4-methoxy-2'-dimethylvaleronitrile) and the like.
 (MB-R-H)成分の含有量は、導電粒子の流動抑制の観点から、(MA-R)成分の100質量部に対して、例えば、0.1~15質量部、0.3~12質量部、又は0.5~10質量部であってよい。 The content of the (MB-RH) component is, for example, 0.1 to 15 parts by mass and 0.3 to 0.3 to 100 parts by mass with respect to 100 parts by mass of the (MA-R) component from the viewpoint of suppressing the flow of conductive particles. It may be 12 parts by mass or 0.5 to 10 parts by mass.
(MA-C)成分:カチオン重合性化合物
 (MA-C)成分は、カチオン重合開始剤((MB-C-L)成分、(MB-C-H)成分等)と反応することによって架橋する化合物である。なお、(MA-C)成分は、ラジカルによって反応するラジカル重合性基を有しない化合物を意味し、(MA-C)成分は、(MA-R)成分に包含されない。(MA-C)成分としては、例えば、エポキシ化合物、オキセタン化合物、脂環式エポキシ化合物等が挙げられる。(MA-C)成分は、接続抵抗の低減効果がさらに向上し、接続信頼性により優れる観点から、例えば、オキセタン化合物及び脂環式エポキシ化合物からなる群より選ばれる少なくとも1種を含んでいてもよく、脂環式エポキシ化合物を含んでいてもよい。(MA-C)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。
(MA-C) component: Cationic polymerizable compound (MA-C) component is crosslinked by reacting with a cationic polymerization initiator ((MB-C-L) component, (MB-C-H) component, etc.). It is a compound. The (MA-C) component means a compound having no radically polymerizable group that reacts with a radical, and the (MA-C) component is not included in the (MA-R) component. Examples of the (MA-C) component include an epoxy compound, an oxetane compound, an alicyclic epoxy compound and the like. The (MA-C) component may contain at least one selected from the group consisting of, for example, an oxetane compound and an alicyclic epoxy compound from the viewpoint of further improving the effect of reducing the connection resistance and improving the connection reliability. It may contain an alicyclic epoxy compound. The (MA-C) component may be used alone or in combination of two or more.
 エポキシ化合物としては、例えば、エピクロルヒドリンと、ビスフェノールA、ビスフェノールF又はビスフェノールAD等のビスフェノール化合物とから誘導されるビスフェノール型エポキシ樹脂;エピクロルヒドリンと、フェノールノボラック又はクレゾールノボラック等のノボラック樹脂とから誘導されるエポキシノボラック樹脂;グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物などが挙げられる。これらは、1種の化合物を単独で用いてもよく、複数を組み合わせて用いてもよい。 Examples of the epoxy compound include a bisphenol type epoxy resin derived from epichlorohydrin and a bisphenol compound such as bisphenol A, bisphenol F or bisphenol AD; an epoxy derived from epichlorohydrin and a novolak resin such as phenol novolac or cresol novolak. Novolak resin; various epoxy compounds having two or more glycidyl groups in one molecule such as glycidylamine, glycidyl ether, biphenyl, and alicyclic type can be mentioned. These may use one kind of compound alone or may use a plurality of compounds in combination.
 オキセタン化合物は、オキセタニル基を有し、かつラジカル重合性基を有しない化合物であれば特に制限なく使用することができる。オキセタン化合物の市販品としては、例えば、ETERNACOLL OXBP(商品名、宇部興産株式会社製)、OXSQ、OXT-121、OXT-221、OXT-101、OXT-212(商品名、東亜合成株式会社製)等が挙げられる。これらは、1種の化合物を単独で用いてもよく、複数を組み合わせて用いてもよい。 The oxetane compound can be used without particular limitation as long as it has an oxetaneyl group and does not have a radically polymerizable group. Commercially available oxetane compounds include, for example, ETERNCOLL OXBP (trade name, manufactured by Ube Kosan Co., Ltd.), OXSQ, OXT-121, OXT-221, OXT-101, OXT-212 (trade name, manufactured by Toagosei Corporation). And so on. These may use one kind of compound alone or may use a plurality of compounds in combination.
 脂環式エポキシ化合物は、脂環式エポキシ基(例えば、エポキシシクロヘキシル基)を有し、かつラジカル重合性基を有しない化合物であれば特に制限なく使用することができる。脂環式エポキシ化合物の市販品としては、例えば、CEL8010、CEL2021P、CEL2081(商品名、株式会社ダイセル株式会社製)等が挙げられる。これらは、1種の化合物を単独で用いてもよく、複数を組み合わせて用いてもよい。 The alicyclic epoxy compound can be used without particular limitation as long as it is a compound having an alicyclic epoxy group (for example, an epoxycyclohexyl group) and no radical polymerizable group. Examples of commercially available alicyclic epoxy compounds include CEL8010, CEL2021P, and CEL2081 (trade name, manufactured by Daicel Corporation). These may use one kind of compound alone or may use a plurality of compounds in combination.
(MB-C-L)成分:光カチオン重合開始剤
 (MB-C-L)成分は、150~750nmの範囲内の波長を含む光、好ましくは254~405nmの範囲内の波長を含む光、さらに好ましくは365nmの波長を含む光(例えば紫外光)の照射によってカチオン重合を開始させる物質を発生する重合開始剤である。なお、(MB-C-L)成分は、後述の(MB-C-H)成分として作用するものがあり得る。
(MB-CL) component: Photocationic polymerization initiator (MB-CL) component is light containing a wavelength in the range of 150 to 750 nm, preferably light containing a wavelength in the range of 254 to 405 nm. More preferably, it is a polymerization initiator that generates a substance that initiates cationic polymerization by irradiation with light having a wavelength of 365 nm (for example, ultraviolet light). The (MB-C-L) component may act as the (MB-C-H) component described later.
 (MB-C-L)は、例えば、BF 、BR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)、PF 、SbF 、AsF 等のアニオンを有する、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ジアゾニウム塩、ヨードニウム塩、アニリニウム塩等のオニウム塩などが挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。 (MB-C-L) is, for example, BF 4- , BR 4- ( R indicates a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups ) , PF 6- ,. Examples thereof include onium salts such as sulfonium salts, phosphonium salts, ammonium salts, diazonium salts, iodonium salts and anilinium salts having anions such as SbF 6 and AsF 6 . These may be used individually by 1 type, and may be used in combination of a plurality of types.
 (MB-C-L)成分の市販品としては、例えば、CPI-100P、CPI-110P、CPI-101A、CPI-200K、CPI-210S(いずれもサンアプロ株式会社製)、UVI-6990、UVI-6992、UVI-6976(いずれもダウ・ケミカル日本株式会社製)、SP-150、SP-152、SP-170、SP-172、SP-300(いずれも株式会社ADEKA製)等が挙げられる。 Commercially available products of the (MB-C-L) component include, for example, CPI-100P, CPI-110P, CPI-101A, CPI-200K, CPI-210S (all manufactured by Sun Appro Co., Ltd.), UVI-6990, UVI-. 6992, UVI-6976 (all manufactured by Dow Chemical Japan Co., Ltd.), SP-150, SP-152, SP-170, SP-172, SP-300 (all manufactured by ADEKA Corporation) and the like can be mentioned.
 (MB-C-L)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの形成性及び硬化性を担保する観点から、(MA-C)成分の100質量部に対して、例えば、0.1~15質量部、0.3~12質量部、0.5~10質量部、又は1~5質量部であってよい。 The content of the (MB-C-L) component is 100 parts by mass of the (MA-C) component from the viewpoint of ensuring the formability and curability of the adhesive film for forming the first adhesive layer. On the other hand, it may be, for example, 0.1 to 15 parts by mass, 0.3 to 12 parts by mass, 0.5 to 10 parts by mass, or 1 to 5 parts by mass.
(MB-C-H)成分:熱カチオン重合開始剤
 (MB-C-H)成分は、熱(例えば、40~150℃)によってカチオン重合を開始させる物質を発生する重合開始剤である。なお、(MB-C-H)成分は、上記の(MB-C-L)成分として作用するものがあり得る。
(MB-CH) component: Thermal cationic polymerization initiator (MB-CH) component is a polymerization initiator that generates a substance that initiates cationic polymerization by heat (for example, 40 to 150 ° C.). The (MB-C-H) component may act as the above-mentioned (MB-C-L) component.
 (MB-C-H)成分は、(MB-C-L)成分と同様に、例えば、BF 、BR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)、PF 、SbF 、AsF 等のアニオンを有する、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ジアゾニウム塩、ヨードニウム塩、アニリニウム塩等のオニウム塩などが挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。 The (MB-C—H) component is similarly substituted with, for example, BF 4- , BR 4- ( R is replaced with 2 or more fluorine atoms or 2 or more trifluoromethyl groups) in the same manner as the (MB-C—L) component. ), PF 6- , SbF 6- , AsF 6- , and other onium salts such as sulfonium salt, phosphonium salt, ammonium salt, diazonium salt, iodonium salt, anilinium salt, etc. Be done. These may be used individually by 1 type, and may be used in combination of a plurality of types.
 (MB-C-H)成分の市販品としては、例えば、CP-66、CP-77(いずれも株式会社ADEKA製)、SI-25、SI-45、SI-60、SI-60L、SI-60LA、SI-60B、SI-80L、SI-100L、SI-110L、SI-180L(いずれも三新化学工業株式会社製)、CI-2855(日本曹達株式会社製)、PI-2074(ローディア・ジャパン株式会社製)等が挙げられる。 Commercially available products of the (MB-CH) component include, for example, CP-66, CP-77 (all manufactured by ADEKA CORPORATION), SI-25, SI-45, SI-60, SI-60L, SI- 60LA, SI-60B, SI-80L, SI-100L, SI-110L, SI-180L (all manufactured by Sanshin Chemical Industry Co., Ltd.), CI-2855 (manufactured by Nippon Soda Corporation), PI-2074 (Rhodia Japan Co., Ltd.) and the like.
 (MB-C-H)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの形成性及び硬化性を担保する観点から、(MA-C)成分の100質量部に対して、例えば、0.1~50質量部、1~45質量部、10~40質量部、又は20~35質量部であってよい。 The content of the (MB-C-H) component is 100 parts by mass of the (MA-C) component from the viewpoint of ensuring the formability and curability of the adhesive film for forming the first adhesive layer. On the other hand, it may be, for example, 0.1 to 50 parts by mass, 1 to 45 parts by mass, 10 to 40 parts by mass, or 20 to 35 parts by mass.
 (B)成分の硬化物((B)成分)の含有量は、導電粒子の流動を抑制する観点から、第1の接着剤層の全質量を基準として、1質量%以上、5質量%以上、又は10質量%以上であってよい。(B)成分の硬化物の含有量は、低圧実装において低抵抗を発現させる観点から、第1の接着剤層の全質量を基準として、50質量%以下、40質量%以下、又は30質量%以下であってよい。(B)成分の硬化物の含有量が上記範囲であると、本開示の効果が顕著に奏される傾向にある。なお、組成物又は組成物層中の(B)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The content of the cured product (component (B)) of the component (B) is 1% by mass or more and 5% by mass or more based on the total mass of the first adhesive layer from the viewpoint of suppressing the flow of conductive particles. , Or 10% by mass or more. The content of the cured product of the component (B) is 50% by mass or less, 40% by mass or less, or 30% by mass based on the total mass of the first adhesive layer from the viewpoint of developing low resistance in low-pressure mounting. It may be as follows. When the content of the cured product of the component (B) is in the above range, the effect of the present disclosure tends to be remarkably exhibited. The content of the component (B) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
(C)成分:熱硬化性樹脂成分
 (C)成分は、熱硬化性を有する硬化性樹脂成分であれば特に制限されないが、上述のラジカル硬化性を有する樹脂成分((MA-R)成分と(MB-R-H)成分との組み合わせ)であってもよく、上述のカチオン硬化性を有する樹脂成分((MA-C)成分と(MB-C-H)成分との組み合わせ)であってもよい。(C)成分は、カチオン硬化性を有する樹脂成分((MA-C)成分と(MB-C-H)成分との組み合わせ)であってよい。
Component (C): Thermosetting resin component The component (C) is not particularly limited as long as it is a thermosetting resin component, but is the same as the above-mentioned resin component having radical curability ((MA-R) component). (Combination with (MB-RH) component), and the above-mentioned resin component having cation curability (combination of (MA-C) component and (MB-CH) component). May be good. The component (C) may be a resin component having cationic curability (combination of (MA-C) component and (MB-C-H) component).
 (C)成分で使用される(MA-R)成分、(MB-R-H)成分、(MA-C)成分、及び(MB-C-H)成分は、(B)成分で使用される(MA-R)成分、(MB-R-H)成分、(MA-C)成分、及び(MB-C-H)成分と同様であることから、ここでは詳細な説明は省略する。また、(C)成分における(MA-R)成分に対する(MB-R-H)成分の含有量及び(MA-C)成分に対する(MB-C-H)成分の含有量は、(B)成分の場合の範囲と同様であってよい。 The (MA-R) component, the (MB-RH) component, the (MA-C) component, and the (MB-CH) component used in the (C) component are used in the (B) component. Since it is the same as the (MA-R) component, the (MB-RH) component, the (MA-C) component, and the (MB-CH) component, detailed description thereof will be omitted here. Further, the content of the (MB-RH) component with respect to the (MA-R) component in the component (C) and the content of the (MB-CH) component with respect to the (MA-C) component are the components (B). It may be the same as the range in the case of.
 第1の熱硬化性樹脂成分及び第2の熱硬化性樹脂成分は、それぞれ第1の接着剤層及び第2の接着剤層に含有される熱硬化性樹脂成分を意味する。第1の熱硬化性樹脂成分及び第2の熱硬化性樹脂成分に含まれる成分(例えば、(MA-R)成分、(MB-R-H)成分、(MA-C)成分、(MB-C-H)成分等)の種類、組み合わせ、及び含有量は、互いに同一であってもよく、異なっていてもよい。 The first thermosetting resin component and the second thermosetting resin component mean the thermosetting resin components contained in the first adhesive layer and the second adhesive layer, respectively. The components contained in the first thermosetting resin component and the second thermosetting resin component (for example, (MA-R) component, (MB-RH) component, (MA-C) component, (MB-). The types, combinations, and contents of CH) components, etc.) may be the same or different from each other.
 (C)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの硬化性を担保する観点から、第1の接着剤層の全質量を基準として、3質量%以上、5質量%以上、10質量%以上、又は15質量%以上であってよい。(C)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの形成性を担保する観点から、第1の接着剤層の全質量を基準として、70質量%以下、60質量%以下、50質量%以下、又は40質量%以下であってよい。(C)成分の含有量が上記範囲であると、本開示の効果が顕著に奏される傾向にある。なお、組成物又は組成物層中の(C)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The content of the component (C) is 3% by mass or more based on the total mass of the first adhesive layer from the viewpoint of ensuring the curability of the adhesive film for forming the first adhesive layer. It may be 5% by mass or more, 10% by mass or more, or 15% by mass or more. The content of the component (C) is 70% by mass or less based on the total mass of the first adhesive layer from the viewpoint of ensuring the formability of the adhesive film for forming the first adhesive layer. It may be 60% by mass or less, 50% by mass or less, or 40% by mass or less. When the content of the component (C) is in the above range, the effect of the present disclosure tends to be remarkably exhibited. The content of the component (C) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
[その他の成分]
 第1の接着剤層1は、(A)成分、(B)成分の硬化物、及び(C)成分以外にその他の成分をさらに含有していてもよい。その他の成分としては、例えば、熱可塑性樹脂(以下、「(D)成分」という場合がある。)、充填材(以下、「(E)成分」という場合がある。)、カップリング剤(以下、「(F)成分」という場合がある。)等が挙げられる。
[Other ingredients]
The first adhesive layer 1 may further contain other components in addition to the component (A), the cured product of the component (B), and the component (C). Examples of other components include a thermoplastic resin (hereinafter, may be referred to as “(D) component”), a filler (hereinafter, may be referred to as “(E) component”), and a coupling agent (hereinafter, may be referred to as “component”). , "(F) component" may be mentioned.) And the like.
 (D)成分としては、例えば、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリルゴム、エポキシ樹脂(25℃で固形)等が挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。(A)成分、(B)成分、及び(C)成分を含有する組成物が(D)成分をさらに含有することによって、当該組成物から組成物層(さらには第1の接着剤層1)を容易に形成することができる。これらの中でも、(D)成分は、例えば、フェノキシ樹脂であってよい。 Examples of the component (D) include phenoxy resin, polyester resin, polyamide resin, polyurethane resin, polyester urethane resin, acrylic rubber, epoxy resin (solid at 25 ° C.) and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types. By further containing the component (D) in the composition containing the component (A), the component (B), and the component (C), the composition layer (further, the first adhesive layer 1) from the composition. Can be easily formed. Among these, the component (D) may be, for example, a phenoxy resin.
 (D)成分の含有量は、第1の接着剤層の全質量を基準として、1質量%以上、5質量%以上、10質量%以上、又は15質量%以上であってよく、60質量%以下、50質量%以下、40質量%以下、又は30質量%以下であってよい。なお、組成物又は組成物層中の(D)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The content of the component (D) may be 1% by mass or more, 5% by mass or more, 10% by mass or more, or 15% by mass or more, 60% by mass, based on the total mass of the first adhesive layer. Hereinafter, it may be 50% by mass or less, 40% by mass or less, or 30% by mass or less. The content of the component (D) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
 (E)成分としては、例えば、非導電性のフィラー(例えば、非導電粒子)が挙げられる。(E)成分は、無機フィラー及び有機フィラーのいずれであってもよい。無機フィラーとしては、例えば、シリカ微粒子、アルミナ微粒子、シリカ-アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等の金属酸化物微粒子;金属窒化物微粒子などの無機微粒子が挙げられる。有機フィラーとしては、例えば、シリコーン微粒子、メタアクリレート・ブタジエン・スチレン微粒子、アクリル・シリコーン微粒子、ポリアミド微粒子、ポリイミド微粒子等の有機微粒子が挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。(E)成分は、例えば、シリカ微粒子であってよい。(E)成分の含有量は、第1の接着剤層の全質量を基準として、0.1~10質量%であってよい。なお、組成物又は組成物層中の(E)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 Examples of the component (E) include non-conductive fillers (for example, non-conductive particles). The component (E) may be either an inorganic filler or an organic filler. Examples of the inorganic filler include metal oxide fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles; and inorganic fine particles such as metal nitride fine particles. Examples of the organic filler include organic fine particles such as silicone fine particles, methacrylate / butadiene / styrene fine particles, acrylic / silicone fine particles, polyamide fine particles, and polyimide fine particles. These may be used individually by 1 type, and may be used in combination of a plurality of types. The component (E) may be, for example, silica fine particles. The content of the component (E) may be 0.1 to 10% by mass based on the total mass of the first adhesive layer. The content of the component (E) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
 (F)成分としては、例えば、(メタ)アクリロイル基、メルカプト基、アミノ基、イミダゾール基、エポキシ基等の有機官能基を有するシランカップリング剤、テトラアルコキシシラン等のシラン化合物、テトラアルコキシチタネート誘導体、ポリジアルキルチタネート誘導体などが挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。第1の接着剤層1が(F)成分を含有することによって、接着性をさらに向上させることができる。(F)成分は、例えば、シランカップリング剤であってよい。(F)成分の含有量は、第1の接着剤層の全質量を基準として、0.1~10質量%であってよい。なお、組成物又は組成物層中の(F)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 Examples of the component (F) include a silane coupling agent having an organic functional group such as a (meth) acryloyl group, a mercapto group, an amino group, an imidazole group and an epoxy group, a silane compound such as tetraalkoxysilane, and a tetraalkoxy titanate derivative. , Polydialkyl titanate derivatives and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types. When the first adhesive layer 1 contains the component (F), the adhesiveness can be further improved. The component (F) may be, for example, a silane coupling agent. The content of the component (F) may be 0.1 to 10% by mass based on the total mass of the first adhesive layer. The content of the component (F) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
[その他の添加剤]
 第1の接着剤層1は、軟化剤、促進剤、劣化防止剤、着色剤、難燃化剤、チキソトロピック剤等のその他の添加剤をさらに含有していてもよい。その他の添加剤の含有量は、第1の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。なお、組成物又は組成物層中のその他の添加剤の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。
[Other additives]
The first adhesive layer 1 may further contain other additives such as a softening agent, an accelerator, a deterioration inhibitor, a coloring agent, a flame retardant, and a thixotropic agent. The content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the first adhesive layer. The content of other additives in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
 第1の接着剤層1の厚さd1は、例えば、5μm以下であってよい。第1の接着剤層1の厚さd1は、4.5μm以下又は4.0μm以下であってもよい。第1の接着剤層1の厚さd1が5μm以下であることによって、回路接続時の導電粒子をより一層効率的に捕捉することができる。第1の接着剤層1の厚さd1は、例えば、0.1μm以上、0.5μm以上、又は0.7μm以上であってよい。なお、第1の接着剤層1の厚さd1は、例えば、接着剤フィルムを2枚のガラス(厚さ:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:JER811、三菱ケミカル株式会社製)100gと、硬化剤(商品名:エポマウント硬化剤、リファインテック株式会社製)10gとからなる樹脂組成物で注型後に、研磨機を用いて断面研磨を行い、走査型電子顕微鏡(SEM、商品名:SU-8000、株式会社日立ハイテクサイエンス製)を用いて測定することによって求めることができる。また、図1に示されるように、導電粒子4の一部が第1の接着剤層1の表面から露出(例えば、第2の接着剤層2側に突出)している場合、第1の接着剤層1における第2の接着剤層2側とは反対側の面2aから、隣り合う導電粒子4,4の離間部分に位置する第1の接着剤層1と第2の接着剤層2との境界Sまでの距離(図1においてd1で示す距離)が第1の接着剤層1の厚さであり、導電粒子4の露出部分は第1の接着剤層1の厚さには含まれない。導電粒子4の露出部分の長さは、例えば、0.1μm以上であってよく、5μm以下であってよい。 The thickness d1 of the first adhesive layer 1 may be, for example, 5 μm or less. The thickness d1 of the first adhesive layer 1 may be 4.5 μm or less or 4.0 μm or less. When the thickness d1 of the first adhesive layer 1 is 5 μm or less, conductive particles at the time of circuit connection can be captured more efficiently. The thickness d1 of the first adhesive layer 1 may be, for example, 0.1 μm or more, 0.5 μm or more, or 0.7 μm or more. The thickness d1 of the first adhesive layer 1 is determined by, for example, sandwiching an adhesive film between two sheets of glass (thickness: about 1 mm) and bisphenol A type epoxy resin (trade name: JER811, Mitsubishi Chemical Co., Ltd.). (Manufactured by) 100 g and a curing agent (trade name: Epomount Hardener, manufactured by Refine Tech Co., Ltd.) after casting with a resin composition, the cross section is polished using a polishing machine, and a scanning electron microscope (SEM) is performed. , Product name: SU-8000, manufactured by Hitachi High-Tech Science Co., Ltd.). Further, as shown in FIG. 1, when a part of the conductive particles 4 is exposed from the surface of the first adhesive layer 1 (for example, protruding toward the second adhesive layer 2), the first The first adhesive layer 1 and the second adhesive layer 2 located at the separated portions of the adjacent conductive particles 4 and 4 from the surface 2a of the adhesive layer 1 opposite to the second adhesive layer 2 side. The distance to the boundary S with and (the distance indicated by d1 in FIG. 1) is the thickness of the first adhesive layer 1, and the exposed portion of the conductive particles 4 is included in the thickness of the first adhesive layer 1. I can't. The length of the exposed portion of the conductive particles 4 may be, for example, 0.1 μm or more, and may be 5 μm or less.
<第2の接着剤層>
 第2の接着剤層2は、(C)成分を含有する。第2の接着剤層2における(C)成分(すなわち、第2の熱硬化性樹脂成分)で使用される(MA-R)成分、(MB-R-H)成分、(MA-C)成分、及び(MB-C-H)成分は、第1の接着剤層1における(C)成分(すなわち、第1の熱硬化性樹脂成分)で使用される(MA-R)成分、(MB-R-H)成分、(MA-C)成分、及び(MB-C-H)成分と同様であることから、ここでは詳細な説明は省略する。第2の熱硬化性樹脂成分は、第1の熱硬化性樹脂成分と同一であっても、異なっていてもよい。第2の熱硬化性樹脂成分は、(MA-C)成分と(MB-C-H)成分との組み合わせであってよい。
<Second adhesive layer>
The second adhesive layer 2 contains the component (C). The (MA-R) component, the (MB-RH) component, and the (MA-C) component used in the (C) component (that is, the second thermosetting resin component) in the second adhesive layer 2. , And the (MB-CH) component are the (MA-R) components, (MB-R) used in the (C) component in the first adhesive layer 1 (that is, the first thermosetting resin component). Since it is the same as the RH) component, the (MA-C) component, and the (MB-CH) component, detailed description thereof will be omitted here. The second thermosetting resin component may be the same as or different from the first thermosetting resin component. The second thermosetting resin component may be a combination of the (MA-C) component and the (MB-CH) component.
 (C)成分の含有量は、信頼性を維持する観点から、第2の接着剤層の全質量を基準として、5質量%以上、10質量%以上、15質量%以上、又は20質量%以上であってよい。(C)成分の含有量は、供給形態の一態様であるリールにおける樹脂染み出し不具合を防止する観点から、第2の接着剤層の全質量を基準として、70質量%以下、60質量%以下、50質量%以下、又は40質量%以下であってよい。 The content of the component (C) is 5% by mass or more, 10% by mass or more, 15% by mass or more, or 20% by mass or more based on the total mass of the second adhesive layer from the viewpoint of maintaining reliability. May be. The content of the component (C) is 70% by mass or less and 60% by mass or less based on the total mass of the second adhesive layer from the viewpoint of preventing the resin seepage problem in the reel, which is one aspect of the supply form. , 50% by mass or less, or 40% by mass or less.
 第2の接着剤層2は、第1の接着剤層1におけるその他の成分及びその他の添加剤をさらに含有していてもよい。その他の成分及びその他の添加剤の好ましい態様は、第1の接着剤層1の好ましい態様と同様である。 The second adhesive layer 2 may further contain other components and other additives in the first adhesive layer 1. Preferred embodiments of the other components and other additives are the same as the preferred embodiments of the first adhesive layer 1.
 (D)成分の含有量は、第2の接着剤層の全質量を基準として、1質量%以上、5質量%以上、又は10質量%以上であってよく、80質量%以下、60質量%以下、又は40質量%以下であってよい。 The content of the component (D) may be 1% by mass or more, 5% by mass or more, or 10% by mass or more, and is 80% by mass or less and 60% by mass, based on the total mass of the second adhesive layer. It may be less than or equal to 40% by mass or less.
 (E)成分の含有量は、第2の接着剤層の全質量を基準として、1質量%以上、5質量%以上、又は10質量%以上であってよく、70質量%以下、60質量%以下、又は50質量%以下であってよい。 The content of the component (E) may be 1% by mass or more, 5% by mass or more, or 10% by mass or more, and 70% by mass or less, 60% by mass, based on the total mass of the second adhesive layer. It may be less than or equal to 50% by mass or less.
 (F)成分の含有量は、第2の接着剤層の全質量を基準として、0.1~10質量%であってよい。 The content of the component (F) may be 0.1 to 10% by mass based on the total mass of the second adhesive layer.
 その他の添加剤の含有量は、第2の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。 The content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the second adhesive layer.
 第2の接着剤層2の厚さd2は、接着する回路部材の電極の高さ等に応じて適宜設定してよい。第2の接着剤層2の厚さd2は、電極間のスペースを充分に充填して電極を封止することができ、より良好な接続信頼性が得られる観点から、5μm以上又は7μm以上であってよく、20μm以下又は15μm以下であってよい。なお、第2の接着剤層2の厚さd2は、例えば、第1の接着剤層1の厚さd1の測定方法と同様の方法で求めることができる。また、導電粒子4の一部が第1の接着剤層1の表面から露出(例えば、第2の接着剤層2側に突出)している場合、第2の接着剤層2における第1の接着剤層1側とは反対側の面3aから、隣り合う導電粒子4,4の離間部分に位置する第1の接着剤層1と第2の接着剤層2との境界Sまでの距離(図1においてd2で示す距離)が第2の接着剤層2の厚さである。 The thickness d2 of the second adhesive layer 2 may be appropriately set according to the height of the electrodes of the circuit member to be adhered. The thickness d2 of the second adhesive layer 2 is 5 μm or more or 7 μm or more from the viewpoint that the space between the electrodes can be sufficiently filled to seal the electrodes and better connection reliability can be obtained. It may be 20 μm or less or 15 μm or less. The thickness d2 of the second adhesive layer 2 can be obtained, for example, by the same method as the method for measuring the thickness d1 of the first adhesive layer 1. Further, when a part of the conductive particles 4 is exposed from the surface of the first adhesive layer 1 (for example, protruding toward the second adhesive layer 2), the first in the second adhesive layer 2 The distance from the surface 3a on the side opposite to the adhesive layer 1 side to the boundary S between the first adhesive layer 1 and the second adhesive layer 2 located at the separated portions of the adjacent conductive particles 4 and 4 ( The distance (d2) in FIG. 1 is the thickness of the second adhesive layer 2.
 接着剤フィルム10の厚さ(接着剤フィルム10を構成するすべての層の厚さの合計、図1においては、第1の接着剤層1の厚さd1及び第2の接着剤層2の厚さd2の合計)は、例えば、5μm以上又は8μm以上であってよく、30μm以下又は20μm以下であってよい。 The thickness of the adhesive film 10 (the total thickness of all the layers constituting the adhesive film 10, in FIG. 1, the thickness d1 of the first adhesive layer 1 and the thickness of the second adhesive layer 2). The total of d2) may be, for example, 5 μm or more or 8 μm or more, and may be 30 μm or less or 20 μm or less.
 インジウム錫酸化物(ITO)配線を有するガラス基板に、接着剤フィルム10の第1の接着剤層1を、温度60℃、第1の接着剤層1の面積換算圧力1MPa、時間1秒間の条件で処理して貼り付けたときに、貼り付けた後のガラス基板と第1の接着剤層1との40℃における剥離強度は、20~60N/mである。なお、当該剥離強度は、剥離角度90°、剥離速度50mm/分で測定される剥離強度である。当該剥離強度が60N/m以下であると、樹脂の硬さが樹脂の流動性の観点において充分であることから、実装時の樹脂の流動性が小さくなり、結果として、導電粒子の捕捉率を向上させることができる。他方、当該剥離強度が60N/mを超えると、樹脂の硬さが樹脂の流動性の観点において柔らか過ぎることから、実装時の樹脂の流動性が大きく、導電粒子の捕捉率が充分でない傾向にある。当該剥離強度が20N/m以上であると、樹脂の硬さが樹脂の流動性の観点において充分であることから、実装時の接着剤中の樹脂の排除性が充分であり、結果として、接続抵抗を低減させることが可能となる。他方、当該剥離強度が20N/m未満であると、樹脂の硬さが樹脂の流動性の観点において硬過ぎることから、実装時の接着剤中の樹脂の排除性が充分でなく、接続抵抗が上昇する傾向にある。また、実装時の樹脂の流動性が大きいと、導電粒子が連結し易し易く、絶縁性が悪化する傾向にある。当該剥離強度が20~60N/mであると、実装時の樹脂の流動性が適度となり、絶縁性も良好となる傾向にある。さらに、当該剥離強度が20N/m以上、好ましくは20~60N/mであると、ガラス基板への転写性にも優れ、回路接続構造体において、充分な圧痕強度を得ることも可能となる。当該剥離強度は、25N/m以上、30N/m以上、35N/m以上、又は40N/m以上であってもよく、55N/m以下又は50N/m以下であってもよい。 The first adhesive layer 1 of the adhesive film 10 is placed on a glass substrate having indium tin oxide (ITO) wiring at a temperature of 60 ° C., an area-converted pressure of the first adhesive layer 1 of 1 MPa, and a time of 1 second. The peel strength between the glass substrate and the first adhesive layer 1 at 40 ° C. after the glass substrate and the first adhesive layer 1 after being pasted is 20 to 60 N / m. The peel strength is a peel strength measured at a peel angle of 90 ° and a peel speed of 50 mm / min. When the peel strength is 60 N / m or less, the hardness of the resin is sufficient from the viewpoint of the fluidity of the resin, so that the fluidity of the resin at the time of mounting becomes small, and as a result, the capture rate of conductive particles is reduced. Can be improved. On the other hand, when the peel strength exceeds 60 N / m, the hardness of the resin is too soft from the viewpoint of the fluidity of the resin, so that the fluidity of the resin at the time of mounting is large and the capture rate of conductive particles tends to be insufficient. be. When the peel strength is 20 N / m or more, the hardness of the resin is sufficient from the viewpoint of the fluidity of the resin, so that the resin in the adhesive at the time of mounting is sufficiently eliminated, and as a result, the connection is made. It is possible to reduce the resistance. On the other hand, if the peel strength is less than 20 N / m, the hardness of the resin is too hard from the viewpoint of the fluidity of the resin, so that the resin in the adhesive at the time of mounting is not sufficiently eliminated and the connection resistance is increased. It tends to rise. Further, when the fluidity of the resin at the time of mounting is large, the conductive particles are easily connected and the insulating property tends to be deteriorated. When the peel strength is 20 to 60 N / m, the fluidity of the resin at the time of mounting tends to be appropriate, and the insulating property tends to be good. Further, when the peel strength is 20 N / m or more, preferably 20 to 60 N / m, the transferability to the glass substrate is excellent, and it is possible to obtain sufficient indentation strength in the circuit connection structure. The peel strength may be 25 N / m or more, 30 N / m or more, 35 N / m or more, or 40 N / m or more, and may be 55 N / m or less or 50 N / m or less.
 当該剥離強度は、例えば、以下の方法によって求めることができる。まず、ITO配線を有するガラス基板(ガラス基板の大きさ:2.5mm×28mm、ガラス基板の厚さ:300μm、ITO配線の大きさ:2500μm(2.5mm)×300μm、ITO配線の厚さ:0.2μm、ITO配線の本数:28本、ITO配線間のスペース:300μm)を用意する。次いで、接着剤フィルムを2mm×23mmに切り出し、切り出した接着剤フィルムの第1の接着剤層を、ITO配線を有するガラス基板上にITO配線に対して垂直になるように配置する。その後、接着剤フィルムを熱圧着機で温度60℃、第1の接着剤層の面積換算圧力1MPa、時間1秒間の条件で貼り付けて積層体を得る(図4参照)。次いで、第2の接着剤フィルム(第2の接着剤層)のPETフィルムを剥がし、第2の接着剤層上に、1.8mm×35mmに切り出したポリイミドテープを貼り付けて、測定用サンプルを得る。測定用サンプルのガラス基板側を40℃に設定したホットプレート上に配置し、ポリイミドテープの先端を引張強度測定装置(テンシロン)にセットし、ガラス基板を水平に固定する。次いで、貼り付けたポリイミドテープを、剥離角度90°、剥離速度50mm/分の条件で引っ張ることによって、貼り付けた後のガラス基板と第1の接着剤層1との40℃における剥離強度を求めることができる。 The peel strength can be obtained by, for example, the following method. First, a glass substrate having ITO wiring (glass substrate size: 2.5 mm × 28 mm, glass substrate thickness: 300 μm, ITO wiring size: 2500 μm (2.5 mm) × 300 μm, ITO wiring thickness: Prepare 0.2 μm, the number of ITO wirings: 28, and the space between ITO wirings: 300 μm). Next, the adhesive film is cut out to a size of 2 mm × 23 mm, and the first adhesive layer of the cut out adhesive film is arranged on the glass substrate having the ITO wiring so as to be perpendicular to the ITO wiring. Then, the adhesive film is attached by a thermocompression bonding machine under the conditions of a temperature of 60 ° C., an area conversion pressure of the first adhesive layer of 1 MPa, and a time of 1 second to obtain a laminate (see FIG. 4). Next, the PET film of the second adhesive film (second adhesive layer) is peeled off, and a polyimide tape cut out to a size of 1.8 mm × 35 mm is attached onto the second adhesive layer to prepare a sample for measurement. obtain. The glass substrate side of the measurement sample is placed on a hot plate set at 40 ° C., the tip of the polyimide tape is set in a tensile strength measuring device (Tensilon), and the glass substrate is fixed horizontally. Next, by pulling the attached polyimide tape under the conditions of a peeling angle of 90 ° and a peeling speed of 50 mm / min, the peeling strength between the glass substrate after the sticking and the first adhesive layer 1 at 40 ° C. is obtained. be able to.
 接着剤フィルム10における上記剥離強度は、第1の接着剤層1に依存して変動する傾向にある。接着剤フィルム10における上記剥離強度の調整は、例えば、第1の接着剤層1に含まれる構成成分の種類、含有量等の調整によって行うことができる。より具体的には、(B)成分及び(C)成分としての液状成分の含有量の変更、(D)成分のガラス転移点(Tg)の変更、(E)成分の含有量の変更等によって行うことができる。 The peel strength of the adhesive film 10 tends to fluctuate depending on the first adhesive layer 1. The peel strength of the adhesive film 10 can be adjusted, for example, by adjusting the type, content, and the like of the constituent components contained in the first adhesive layer 1. More specifically, by changing the content of the liquid component as the component (B) and the component (C), changing the glass transition point (Tg) of the component (D), changing the content of the component (E), and the like. It can be carried out.
 接着剤フィルム10における導電粒子の流動率は、例えば、160%以上、170%以上、又は180%以上であってよく、250%以下、230%以下、220%以下、又は200%以下であってもよい。 The flow rate of the conductive particles in the adhesive film 10 may be, for example, 160% or more, 170% or more, or 180% or more, and may be 250% or less, 230% or less, 220% or less, or 200% or less. May be good.
 なお、導電粒子の流動率は、以下の方法によって求めることができる。接着剤フィルム10を、トレパニング装置を用いて1mm径に打ち抜いてサンプルを作製する。打ち抜いたサンプルの第1の接着剤フィルム(第1の接着剤層)側の面を、最高到達温度90℃、フィルム面積換算圧力1MPaの条件で1秒間加熱及び加圧してカバーガラスに貼り付け、これを圧着前の第1の接着剤層の面積を測定するための試験体(圧着前の試験体)とする。次いで、第2の接着剤フィルム(第2の接着剤層)側のPETフィルムを剥離してからカバーガラスを配置する。その後、最高到達温度170℃、フィルム面積換算圧力80MPaの条件で5秒間加熱及び加圧し、第2の接着剤フィルム(第2の接着剤層)とカバーガラスとを貼り付け、これを圧着後の第1の接着剤層の面積を測定するための試験体(圧着後の試験体)とする。圧着前の試験体の第1の接着剤層の面積及び圧着後の試験体の第1の接着剤層の面積を顕微鏡で測定し、以下の計算式から導電粒子の流動率を算出することができる。
 導電粒子の流動率(%)=(圧着後の試験体の第1の接着剤層の面積/圧着前の試験体の第1の接着剤層の面積)×100
The flow rate of the conductive particles can be obtained by the following method. The adhesive film 10 is punched to a diameter of 1 mm using a trepanning device to prepare a sample. The surface of the punched sample on the first adhesive film (first adhesive layer) side was heated and pressed for 1 second under the conditions of a maximum ultimate temperature of 90 ° C. and a film area conversion pressure of 1 MPa, and attached to the cover glass. This is used as a test body (test body before crimping) for measuring the area of the first adhesive layer before crimping. Next, the PET film on the second adhesive film (second adhesive layer) side is peeled off, and then the cover glass is placed. After that, the film is heated and pressurized for 5 seconds under the conditions of a maximum ultimate temperature of 170 ° C. and a film area conversion pressure of 80 MPa to attach a second adhesive film (second adhesive layer) and a cover glass, and the pressure is applied. A test piece (test piece after crimping) for measuring the area of the first adhesive layer. The area of the first adhesive layer of the test piece before crimping and the area of the first adhesive layer of the test piece after crimping can be measured with a microscope, and the flow rate of the conductive particles can be calculated from the following formula. can.
Flow rate of conductive particles (%) = (Area of first adhesive layer of test piece after crimping / Area of first adhesive layer of test piece before crimping) × 100
 導電粒子の流動率は、第1の接着剤層1に含まれる構成成分の種類、含有量等の調整によって行うことができる。より具体的に、第1の接着剤層1の硬化率を調整することで、上記範囲の導電粒子の流動率を有する第1の接着剤層を得ることができる。 The flow rate of the conductive particles can be adjusted by adjusting the type, content, etc. of the constituent components contained in the first adhesive layer 1. More specifically, by adjusting the curing rate of the first adhesive layer 1, the first adhesive layer having the flow rate of the conductive particles in the above range can be obtained.
 接着剤フィルム10では、導電粒子4が第1の接着剤層1中に分散されている。そのため、接着剤フィルム10は、異方導電性を有する異方導電性接着剤フィルムである。接着剤フィルム10は、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に介在させ、第1の回路部材及び第2の回路部材を熱圧着して、第1の電極及び第2の電極を互いに電気的に接続するために用いられる。 In the adhesive film 10, the conductive particles 4 are dispersed in the first adhesive layer 1. Therefore, the adhesive film 10 is an anisotropically conductive adhesive film having an anisotropic conductivity. The adhesive film 10 is interposed between the first circuit member having the first electrode and the second circuit member having the second electrode, and heats the first circuit member and the second circuit member. It is crimped and used to electrically connect the first electrode and the second electrode to each other.
 接着剤フィルム10によれば、回路接続構造体の対向する電極間における導電粒子の捕捉率を向上させ、かつ接続抵抗を低減させることが可能となる。 According to the adhesive film 10, it is possible to improve the capture rate of conductive particles between the facing electrodes of the circuit connection structure and reduce the connection resistance.
 以上、本実施形態の接着剤フィルムについて説明したが、本開示は上記実施形態に限定されない。 Although the adhesive film of the present embodiment has been described above, the present disclosure is not limited to the above embodiment.
 接着剤フィルムは、例えば、第1の接着剤層及び第2の接着剤層の二層から構成されるものであってよく、第1の接着剤層及び第2の接着剤層の二層を含む三層以上から構成されるものであってもよい。接着剤フィルムは、例えば、第1の接着剤層の第2の接着剤層とは反対側に設けられた、第3の接着剤層をさらに備える構成のものであってよい。 The adhesive film may be composed of, for example, two layers of a first adhesive layer and a second adhesive layer, and the two layers of the first adhesive layer and the second adhesive layer may be formed. It may be composed of three or more layers including. The adhesive film may be configured to further include, for example, a third adhesive layer provided on the opposite side of the first adhesive layer from the second adhesive layer.
 第3の接着剤層は、(C)成分を含有する。第3の接着剤層における(C)成分(すなわち、第3の熱硬化性樹脂成分)で使用される(MA-R)成分、(MB-R-H)成分、(MA-C)成分、及び(MB-C-H)成分は、第1の接着剤層1における(C)成分(すなわち、第1の熱硬化性樹脂成分)で使用される(MA-R)成分、(MB-R-H)成分、(MA-C)成分、及び(MB-C-H)成分と同様であることから、ここでは詳細な説明は省略する。第3の熱硬化性樹脂成分は、第1の熱硬化性樹脂成分と同一であっても、異なっていてもよい。第3の熱硬化性樹脂成分は、第2の熱硬化性樹脂成分と同一であっても、異なっていてもよい。 The third adhesive layer contains the component (C). The (MA-R) component, the (MB-RH) component, and the (MA-C) component used in the (C) component (that is, the third thermosetting resin component) in the third adhesive layer. And the (MB-C-H) component are the (MA-R) component, (MB-R) used in the (C) component (that is, the first thermosetting resin component) in the first adhesive layer 1. Since it is the same as the —H) component, the (MA—C) component, and the (MB—C—H) component, detailed description thereof will be omitted here. The third thermosetting resin component may be the same as or different from the first thermosetting resin component. The third thermosetting resin component may be the same as or different from the second thermosetting resin component.
 (C)成分の含有量は、良好な転写性及び耐剥離性を付与する観点から、第3の接着剤層の全質量を基準として、5質量%以上、10質量%以上、15質量%以上、又は20質量%以上であってよい。(C)成分の含有量は、良好なハーフカット性及び耐ブロッキング性(リールの樹脂染み出し抑制)を付与する観点から、第3の接着剤層の全質量を基準として、70質量%以下、60質量%以下、50質量%以下、又は40質量%以下であってよい。 The content of the component (C) is 5% by mass or more, 10% by mass or more, and 15% by mass or more based on the total mass of the third adhesive layer from the viewpoint of imparting good transferability and peeling resistance. , Or 20% by mass or more. The content of the component (C) is 70% by mass or less based on the total mass of the third adhesive layer from the viewpoint of imparting good half-cut property and blocking resistance (suppression of resin seepage of the reel). It may be 60% by mass or less, 50% by mass or less, or 40% by mass or less.
 第3の接着剤層は、第1の接着剤層1におけるその他の成分及びその他の添加剤をさらに含有していてもよい。その他の成分及びその他の添加剤の好ましい態様は、第1の接着剤層1の好ましい態様と同様である。 The third adhesive layer may further contain other components and other additives in the first adhesive layer 1. Preferred embodiments of the other components and other additives are the same as the preferred embodiments of the first adhesive layer 1.
 (D)成分の含有量は、第3の接着剤層の全質量を基準として、10質量%以上、20質量%以上、又は30質量%以上であってよく、80質量%以下、70質量%以下、又は60質量%以下であってよい。 The content of the component (D) may be 10% by mass or more, 20% by mass or more, or 30% by mass or more, and is 80% by mass or less and 70% by mass, based on the total mass of the third adhesive layer. It may be less than or equal to 60% by mass or less.
 (E)成分の含有量は、第3の接着剤層の全質量を基準として、1質量%以上、3質量%以上、又は5質量%以上であってよく、50質量%以下、40質量%以下、又は30質量%以下であってよい。 The content of the component (E) may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, and is 50% by mass or less and 40% by mass, based on the total mass of the third adhesive layer. It may be less than or equal to 30% by mass or less.
 (F)成分の含有量は、第3の接着剤層の全質量を基準として、0.1~10質量%であってよい。 The content of the component (F) may be 0.1 to 10% by mass based on the total mass of the third adhesive layer.
 その他の添加剤の含有量は、第3の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。 The content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the third adhesive layer.
 第3の接着剤層の厚さは、接着剤フィルムの最低溶融粘度、接着する回路部材の電極の高さ等に応じて適宜設定してよい。第3の接着剤層の厚さは、第2の接着剤層2の厚さd2よりも小さいことが好ましい。第3の接着剤層の厚さは、電極間のスペースを充分に充填して電極を封止することができ、より良好な接続信頼性が得られる観点から、0.2μm以上であってよく、3.0μm以下であってよい。なお、第3の接着剤層の厚さは、例えば、第1の接着剤層1の厚さd1の測定方法と同様の方法で求めることができる。 The thickness of the third adhesive layer may be appropriately set according to the minimum melt viscosity of the adhesive film, the height of the electrodes of the circuit members to be adhered, and the like. The thickness of the third adhesive layer is preferably smaller than the thickness d2 of the second adhesive layer 2. The thickness of the third adhesive layer may be 0.2 μm or more from the viewpoint that the space between the electrodes can be sufficiently filled to seal the electrodes and better connection reliability can be obtained. , 3.0 μm or less. The thickness of the third adhesive layer can be obtained, for example, by the same method as the method for measuring the thickness d1 of the first adhesive layer 1.
 また、上記実施形態の回路接続用接着剤フィルムは、異方導電性を有する異方導電性接着剤フィルムであるが、回路接続用接着剤フィルムは、異方導電性を有しない導電性接着剤フィルムであってもよい。 Further, the circuit connection adhesive film of the above embodiment is an anisotropic conductive adhesive film having anisotropic conductivity, but the circuit connection adhesive film is a conductive adhesive having no anisotropic conductivity. It may be a film.
<回路接続用接着剤フィルムの製造方法>
 一実施形態の回路接続用接着剤フィルムの製造方法は、例えば、(A)成分、(B)成分、及び(C)成分(第1の熱硬化性樹脂成分)を含有する組成物からなる組成物層に対して、(B)成分を硬化させ、第1の接着剤層を形成する工程(第1の工程)と、第1の接着剤層上に、(C)成分(第2の熱硬化性樹脂成分)を含有する第2の接着剤層を積層する工程(第2の工程)とを備える。当該製造方法は、第1の接着剤層の第2の接着剤層とは反対側の層上に、(C)成分(第3の熱硬化性樹脂成分)を含有する第3の接着剤層を積層する工程(第3の工程)をさらに備えていてもよい。
<Manufacturing method of adhesive film for circuit connection>
The method for producing an adhesive film for circuit connection according to one embodiment is, for example, a composition comprising a composition containing (A) component, (B) component, and (C) component (first thermosetting resin component). The step (first step) of curing the component (B) on the material layer to form the first adhesive layer, and the component (C) component (second heat) on the first adhesive layer. A step (second step) of laminating a second adhesive layer containing a curable resin component) is provided. In the manufacturing method, a third adhesive layer containing a component (C) (third thermosetting resin component) is placed on a layer of the first adhesive layer opposite to the second adhesive layer. May be further provided with a step of laminating (third step).
 第1の工程では、例えば、まず、(A)成分、(B)成分、及び(C)成分、並びに必要に応じて添加されるその他の成分及びその他の添加剤を含有する組成物を、有機溶媒中で撹拌混合、混錬等を行うことによって、溶解又は分散させ、ワニス組成物を調製する。その後、離型処理を施した基材上に、ワニス組成物をナイフコーター、ロールコーター、アプリケーター、コンマコーター、ダイコーター等を用いて塗布した後、加熱によって有機溶媒を揮発させて、基材上に組成物からなる組成物層を形成する。このとき、ワニス組成物の塗布量を調整することによって、最終的に得られる第1の接着剤層(第1の接着剤フィルム)の厚さを調整することができる。続いて、組成物からなる組成物層に対して、光、熱、湿気等(好ましくは光又は熱、より好ましくは光)によって、組成物層中の(B)成分を硬化させ、基材上に第1の接着剤層を形成する。第1の接着剤層は、第1の接着剤フィルムということができる。 In the first step, for example, a composition containing (A) component, (B) component, and (C) component, and other components and other additives added as needed are organically prepared. A varnish composition is prepared by dissolving or dispersing by stirring and mixing in a solvent, kneading and the like. Then, the varnish composition is applied onto the demolding-treated substrate using a knife coater, roll coater, applicator, comma coater, die coater, etc., and then the organic solvent is volatilized by heating to form the substrate. Form a composition layer composed of the composition. At this time, the thickness of the finally obtained first adhesive layer (first adhesive film) can be adjusted by adjusting the coating amount of the varnish composition. Subsequently, the component (B) in the composition layer is cured by light, heat, humidity, etc. (preferably light or heat, more preferably light) with respect to the composition layer made of the composition, and the component (B) in the composition layer is cured on the substrate. A first adhesive layer is formed on the surface. The first adhesive layer can be said to be the first adhesive film.
 ワニス組成物の調製において使用される有機溶媒は、各成分を均一に溶解又は分散し得る特性を有するものであれば特に制限されない。このような有機溶媒としては、例えば、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。これらの有機溶媒は、単独で又は2種以上を組み合わせて使用することができる。ワニス組成物の調製の際の撹拌混合又は混錬は、例えば、撹拌機、らいかい機、3本ロール、ボールミル、ビーズミル、ホモディスパー等を用いて行うことができる。 The organic solvent used in the preparation of the varnish composition is not particularly limited as long as it has the property of uniformly dissolving or dispersing each component. Examples of such an organic solvent include toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate and the like. These organic solvents can be used alone or in combination of two or more. Stirring and mixing or kneading in the preparation of the varnish composition can be carried out by using, for example, a stirrer, a raider, a three-roll, a ball mill, a bead mill, a homodisper or the like.
 基材は、有機溶媒を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限されない。このような基材としては、例えば、延伸ポリプロピレン(OPP)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリオレフィン、ポリアセテート、ポリカーボネート、ポリフェニレンサルファイド、ポリアミド、ポリイミド、セルロース、エチレン・酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、合成ゴム系、液晶ポリマー等からなる基材(例えば、フィルム)を用いることができる。 The base material is not particularly limited as long as it has heat resistance that can withstand the heating conditions when volatilizing the organic solvent. Examples of such a substrate include stretched polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polyvinylidene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, polyimide, cellulose, and the like. A substrate (for example, a film) made of an ethylene / vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, a synthetic rubber system, a liquid crystal polymer or the like can be used.
 基材へ塗布したワニス組成物から有機溶媒を揮発させる際の加熱条件は、使用する有機溶媒等に合わせて適宜設定することができる。加熱条件は、例えば、40~120℃で0.1~10分間であってよい。 The heating conditions for volatilizing the organic solvent from the varnish composition applied to the base material can be appropriately set according to the organic solvent to be used and the like. The heating conditions may be, for example, 40 to 120 ° C. for 0.1 to 10 minutes.
 硬化工程において光を用いる場合、光照射には、150~750nmの範囲内の波長を含む照射光(例えば、紫外光)を用いることが好ましい。光の照射は、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプ、LED光源等を使用して行うことができる。光照射の積算光量は、適宜設定することができるが、例えば、500~3000mJ/cmであってよい。 When light is used in the curing step, it is preferable to use irradiation light (for example, ultraviolet light) having a wavelength in the range of 150 to 750 nm for light irradiation. Light irradiation can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, an LED light source, or the like. The integrated light amount of light irradiation can be appropriately set, but may be, for example, 500 to 3000 mJ / cm 2 .
 第2の工程は、第1の接着剤層上に第2の接着剤層を積層する工程である。第2の工程では、例えば、まず、(C)成分、並びに必要に応じて添加されるその他の成分及びその他の添加剤を用いること及び光照射を行わないこと以外は、第1の工程と同様にして、基材上に第2の接着剤層を形成し、第2の接着剤フィルムを得る。次いで、第1の接着剤フィルムと第2の接着剤フィルムとを貼り合わせることによって第1の接着剤層上に第2の接着剤層を積層することができる。また、第2の工程では、例えば、第1の接着剤層上に、(C)成分、並びに必要に応じて添加されるその他の成分及びその他の添加剤を用いて得られるワニス組成物を塗布し、有機溶媒を揮発させることによっても、第1の接着剤層上に第2の接着剤層を積層することができる。 The second step is a step of laminating the second adhesive layer on the first adhesive layer. The second step is the same as the first step except that, for example, the component (C) and other components and other additives added as needed are used and no light irradiation is performed. A second adhesive layer is formed on the substrate to obtain a second adhesive film. Next, the second adhesive layer can be laminated on the first adhesive layer by adhering the first adhesive film and the second adhesive film. Further, in the second step, for example, a varnish composition obtained by using the component (C) and other components and other additives added as needed is applied onto the first adhesive layer. The second adhesive layer can also be laminated on the first adhesive layer by volatilizing the organic solvent.
 第1の接着剤フィルムと第2の接着剤フィルムとを貼り合わせる方法としては、例えば、加熱プレス、ロールラミネート、真空ラミネート等の方法が挙げられる。ラミネートは、例えば、0~80℃の温度条件下で行うことができる。 Examples of the method of adhering the first adhesive film and the second adhesive film include a method of heat pressing, roll laminating, vacuum laminating and the like. Lamination can be performed, for example, under temperature conditions of 0 to 80 ° C.
 第3の工程は、第1の接着剤層の第2の接着剤層とは反対側の層上に、第3の接着剤層を積層する工程である。第3の工程では、例えば、まず、第2の工程と同様にして、基材上に第3の接着剤層を形成し、第3の接着剤フィルムを得る。次いで、第1の接着剤フィルムの第2の接着剤フィルムとは反対側に、第3の接着剤フィルムを貼り合わせることによって、第1の接着剤層の第2の接着剤層とは反対側の層上に第3の接着剤層を積層することができる。また、第3の工程では、例えば、第2の工程と同様にして、第1の接着剤層の第2の接着剤層とは反対側の層上に、ワニス組成物を塗布し、有機溶媒を揮発させることによっても、第1の接着剤層上に第2の接着剤層を積層することができる。貼り合わせる方法及びその条件は、第2の工程と同様である。 The third step is a step of laminating the third adhesive layer on the layer of the first adhesive layer opposite to the second adhesive layer. In the third step, for example, first, in the same manner as in the second step, a third adhesive layer is formed on the substrate to obtain a third adhesive film. Next, by adhering the third adhesive film to the side of the first adhesive film opposite to the second adhesive film, the side of the first adhesive layer opposite to the second adhesive layer A third adhesive layer can be laminated on the layer of. Further, in the third step, for example, in the same manner as in the second step, the varnish composition is applied onto the layer of the first adhesive layer opposite to the second adhesive layer, and an organic solvent is applied. The second adhesive layer can be laminated on the first adhesive layer by volatilizing the above. The method of bonding and the conditions thereof are the same as in the second step.
<回路接続構造体及びその製造方法>
 以下、回路接続材料として上述の回路接続用接着剤フィルム10を用いた回路接続構造体及びその製造方法について説明する。
<Circuit connection structure and its manufacturing method>
Hereinafter, a circuit connection structure using the above-mentioned circuit connection adhesive film 10 as a circuit connection material and a method for manufacturing the same will be described.
 図2は、回路接続構造体の一実施形態を示す模式断面図である。図2に示すように、回路接続構造体20は、第1の回路基板11及び第1の回路基板11の主面11a上に形成された第1の電極12を有する第1の回路部材13と、第2の回路基板14及び第2の回路基板14の主面14a上に形成された第2の電極15を有する第2の回路部材16と、第1の回路部材13及び第2の回路部材16の間に配置され、第1の電極12及び第2の電極15を互いに電気的に接続する回路接続部17とを備えている。 FIG. 2 is a schematic cross-sectional view showing an embodiment of a circuit connection structure. As shown in FIG. 2, the circuit connection structure 20 includes a first circuit member 13 having a first electrode 12 formed on a main surface 11a of the first circuit board 11 and the first circuit board 11. , A second circuit member 16 having a second electrode 15 formed on the main surface 14a of the second circuit board 14 and the second circuit board 14, and the first circuit member 13 and the second circuit member. It is arranged between 16 and includes a circuit connection portion 17 that electrically connects the first electrode 12 and the second electrode 15 to each other.
 第1の回路部材13及び第2の回路部材16は、互いに同じであっても異なっていてもよい。第1の回路部材13及び第2の回路部材16は、回路電極が形成されているガラス基板又はプラスチック基板;プリント配線板;セラミック配線板;フレキシブル配線板;駆動用IC等のICチップなどであってよい。第1の回路基板11及び第2の回路基板14は、半導体、ガラス、セラミック等の無機物、ポリイミド、ポリカーボネート等の有機物、ガラス/エポキシ等の複合物などで形成されていてよい。第1の回路基板11は、ガラス基板であってよい。第1の回路部材13は、例えば、回路電極が形成されているガラス基板であってよく、第2の回路部材16は、例えば、駆動用IC等のICチップであってよい。 The first circuit member 13 and the second circuit member 16 may be the same or different from each other. The first circuit member 13 and the second circuit member 16 are a glass substrate or a plastic substrate on which a circuit electrode is formed; a printed wiring board; a ceramic wiring board; a flexible wiring board; an IC chip such as a drive IC, or the like. It's okay. The first circuit board 11 and the second circuit board 14 may be formed of an inorganic substance such as semiconductor, glass, or ceramic, an organic substance such as polyimide or polycarbonate, or a composite such as glass / epoxy. The first circuit board 11 may be a glass substrate. The first circuit member 13 may be, for example, a glass substrate on which a circuit electrode is formed, and the second circuit member 16 may be, for example, an IC chip such as a drive IC.
 第1の電極12及び第2の電極15は、金、銀、錫、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銅、アルミ、モリブデン、チタン等の金属、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、インジウムガリウム亜鉛酸化物(IGZO)等の酸化物などを含む電極であってよい。第1の電極12及び第2の電極15は、これら金属、酸化物等の2種以上を積層してなる電極であってもよい。2種以上を積層してなる電極は、2層以上であってよく、3層以上であってよい。第1の回路部材13がプラスチック基板である場合、第1の電極12は、最表面にチタン層を有する電極であってよい。第1の電極12及び第2の電極15は回路電極であってよく、バンプ電極であってもよい。第1の電極12及び第2の電極15の少なくとも一方は、バンプ電極であってよい。図2では、第1の電極12が回路電極であり、第2の電極15がバンプ電極である態様である。 The first electrode 12 and the second electrode 15 are gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, aluminum, molybdenum, titanium and other metals, indium tin oxide (ITO), and the like. It may be an electrode containing an oxide such as indium zinc oxide (IZO) or indium gallium zinc oxide (IGZO). The first electrode 12 and the second electrode 15 may be electrodes formed by laminating two or more of these metals, oxides, and the like. The electrode formed by stacking two or more types may have two or more layers, and may have three or more layers. When the first circuit member 13 is a plastic substrate, the first electrode 12 may be an electrode having a titanium layer on the outermost surface. The first electrode 12 and the second electrode 15 may be circuit electrodes or bump electrodes. At least one of the first electrode 12 and the second electrode 15 may be a bump electrode. In FIG. 2, the first electrode 12 is a circuit electrode and the second electrode 15 is a bump electrode.
 回路接続部17は、上述の接着剤フィルム10の硬化物を含む。回路接続部17は、上述の接着剤フィルム10の硬化物からなっていてもよい。回路接続部17は、例えば、第1の回路部材13と第2の回路部材16とが互いに対向する方向(以下「対向方向」)における第1の回路部材13側に位置し、上述の第1の接着剤層における導電粒子4以外の、(B)成分の硬化物及び(C)成分等の硬化物からなる第1の領域18と、対向方向における第2の回路部材16側に位置し、上述の第2の接着剤層における(C)成分等の硬化物からなる第2の領域19と、少なくとも第1の電極12及び第2の電極15の間に介在して第1の電極12及び第2の電極15を互いに電気的に接続する導電粒子4とを有している。回路接続部17は、図2に示されるように、第1の領域18と第2の領域19との間に、2つの明確な領域を有していなくてもよく、第1の接着剤層に由来する硬化物と第2の接着剤層に由来する硬化物とが混在して1つの領域を形成していてもよい。 The circuit connection portion 17 contains a cured product of the above-mentioned adhesive film 10. The circuit connection portion 17 may be made of a cured product of the adhesive film 10 described above. The circuit connection portion 17 is located, for example, on the side of the first circuit member 13 in the direction in which the first circuit member 13 and the second circuit member 16 face each other (hereinafter referred to as “opposite direction”), and the above-mentioned first circuit member 17 is located. It is located on the side of the first region 18 composed of the cured product of the component (B) and the cured product of the component (C) other than the conductive particles 4 in the adhesive layer of No. 1 and the second circuit member 16 in the opposite direction. The first electrode 12 and the first electrode 12 are interposed between the second region 19 made of a cured product such as the component (C) in the second adhesive layer and at least the first electrode 12 and the second electrode 15. It has conductive particles 4 that electrically connect the second electrodes 15 to each other. As shown in FIG. 2, the circuit connection portion 17 does not have to have two distinct regions between the first region 18 and the second region 19, and the first adhesive layer The cured product derived from the above and the cured product derived from the second adhesive layer may be mixed to form one region.
 回路接続構造体は、例えば、有機EL素子が規則的に配置されたプラスチック基板と、映像表示用のドライバーである駆動回路素子とが接続されたフレキシブルな有機電界発光カラーディスプレイ(有機ELディスプレイ)、有機EL素子が規則的に配置されたプラスチック基板と、タッチパッド等の位置入力素子とが接続されたタッチパネルなどが挙げられる。回路接続構造体は、スマートホン、タブレット、テレビ、乗り物のナビゲーションシステム、ウェアラブル端末等の各種モニタ;家具;家電;日用品などに適用することができる。 The circuit connection structure is, for example, a flexible organic electric field light emitting color display (organic EL display) in which a plastic substrate on which organic EL elements are regularly arranged and a drive circuit element which is a driver for displaying an image are connected. Examples thereof include a touch panel in which a plastic substrate on which organic EL elements are regularly arranged and a position input element such as a touch pad are connected. The circuit connection structure can be applied to various monitors such as smart phones, tablets, televisions, vehicle navigation systems, wearable terminals, furniture; home appliances; daily necessities and the like.
 図3は、回路接続構造体の製造方法の一実施形態を示す模式断面図である。図3(a)及び図3(b)は、各工程を示す模式断面図である。図3に示すように、回路接続構造体20の製造方法は、第1の電極12を有する第1の回路部材13と、第2の電極15を有する第2の回路部材16との間に、上述の接着剤フィルム10を介在させ、第1の回路部材13及び第2の回路部材16を熱圧着して、第1の電極12及び第2の電極15を互いに電気的に接続する工程を備える。 FIG. 3 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a circuit connection structure. 3 (a) and 3 (b) are schematic cross-sectional views showing each process. As shown in FIG. 3, a method of manufacturing the circuit connection structure 20 is performed between a first circuit member 13 having a first electrode 12 and a second circuit member 16 having a second electrode 15. The above-mentioned adhesive film 10 is interposed, the first circuit member 13 and the second circuit member 16 are thermocompression bonded, and the first electrode 12 and the second electrode 15 are electrically connected to each other. ..
 具体的には、図3(a)に示すように、まず、第1の回路基板11及び第1の回路基板11の主面11a上に形成された第1の電極12を備える第1の回路部材13と、第2の回路基板14及び第2の回路基板14の主面14a上に形成された第2の電極15を備える第2の回路部材16とを準備する。 Specifically, as shown in FIG. 3A, first, a first circuit including a first electrode 12 formed on a main surface 11a of a first circuit board 11 and a first circuit board 11. A member 13 and a second circuit member 16 provided with a second electrode 15 formed on the main surface 14a of the second circuit board 14 and the second circuit board 14 are prepared.
 次に、第1の回路部材13及び第2の回路部材16を、第1の電極12及び第2の電極15が互いに対向するように配置し、第1の回路部材13と第2の回路部材16との間に接着剤フィルム10を配置する。例えば、図3(a)に示すように、第1の接着剤層1側が第1の回路基板11の主面11aと対向するようにして接着剤フィルム10を第1の回路部材13上にラミネートする。次に、第1の回路基板11上の第1の電極12と、第2の回路基板14上の第2の電極15とが互いに対向するように、接着剤フィルム10がラミネートされた第1の回路部材13上に第2の回路部材16を配置する。 Next, the first circuit member 13 and the second circuit member 16 are arranged so that the first electrode 12 and the second electrode 15 face each other, and the first circuit member 13 and the second circuit member 12 are arranged. The adhesive film 10 is placed between the 16 and 16. For example, as shown in FIG. 3A, the adhesive film 10 is laminated on the first circuit member 13 so that the first adhesive layer 1 side faces the main surface 11a of the first circuit board 11. do. Next, the adhesive film 10 is laminated so that the first electrode 12 on the first circuit board 11 and the second electrode 15 on the second circuit board 14 face each other. The second circuit member 16 is arranged on the circuit member 13.
 そして、図3(b)に示すように、第1の回路部材13、接着剤フィルム10、及び第2の回路部材16を加熱しながら、第1の回路部材13と第2の回路部材16とを厚さ方向に加圧することで、第1の回路部材13と第2の回路部材16とを互いに熱圧着する。この際、図3(b)において矢印で示すように、第2の接着剤層2は、流動可能な未硬化の熱硬化性成分を有していることから、第2の電極15間同士の空隙を埋めるように流動すると共に、上記加熱によって硬化する。これにより、第1の電極12及び第2の電極15が導電粒子4を介して互いに電気的に接続され、また、第1の回路部材13及び第2の回路部材16が互いに接着されて、図2に示す回路接続構造体20を得ることができる。本実施形態の回路接続構造体20の製造方法では、光、熱、湿気等によって第1の接着剤層1の一部が硬化された層といえるため、第1の接着剤層1が上記熱圧着時にほとんど流動せず、導電粒子が効率的に対向する電極間で捕捉されるため、対向する第1の電極12及び第2の電極15間の接続抵抗が低減される。また、第1の接着剤層の厚さが5μm以下であると、回路接続時の導電粒子をより一層効率的に捕捉することができる傾向にある。 Then, as shown in FIG. 3B, while heating the first circuit member 13, the adhesive film 10, and the second circuit member 16, the first circuit member 13 and the second circuit member 16 By pressurizing in the thickness direction, the first circuit member 13 and the second circuit member 16 are thermocompression bonded to each other. At this time, as shown by an arrow in FIG. 3B, since the second adhesive layer 2 has a flowable uncured thermosetting component, the second electrodes 15 are connected to each other. It flows so as to fill the voids and is cured by the above heating. As a result, the first electrode 12 and the second electrode 15 are electrically connected to each other via the conductive particles 4, and the first circuit member 13 and the second circuit member 16 are adhered to each other. The circuit connection structure 20 shown in 2 can be obtained. In the method for manufacturing the circuit connection structure 20 of the present embodiment, it can be said that a part of the first adhesive layer 1 is cured by light, heat, moisture, or the like, so that the first adhesive layer 1 is the heat. Since it hardly flows during crimping and the conductive particles are efficiently captured between the facing electrodes, the connection resistance between the facing first electrode 12 and the second electrode 15 is reduced. Further, when the thickness of the first adhesive layer is 5 μm or less, the conductive particles at the time of circuit connection tend to be captured more efficiently.
 熱圧着する場合の加熱温度は、適宜設定することができるが、例えば、50~190℃あってよい。加圧は、被着体に損傷を与えない範囲であれば特に制限されないが、COG実装の場合は、例えば、バンプ電極での面積換算圧力10~100MPaであってよい。これらの加熱及び加圧の時間は、0.5~120秒間の範囲であってよい。また、COP(chip on plastic)実装の場合、例えば、バンプ電極での面積換算圧力0.1~50MPaであってよい。 The heating temperature for thermocompression bonding can be set as appropriate, but may be, for example, 50 to 190 ° C. The pressurization is not particularly limited as long as it does not damage the adherend, but in the case of COG mounting, the area conversion pressure at the bump electrode may be, for example, 10 to 100 MPa. These heating and pressurizing times may be in the range of 0.5 to 120 seconds. Further, in the case of COP (chip on plastic) mounting, for example, the area conversion pressure at the bump electrode may be 0.1 to 50 MPa.
 以下、本開示について実施例を挙げてより具体的に説明する。ただし、本開示はこれら実施例に限定されるものではない。 Hereinafter, this disclosure will be described more specifically with reference to examples. However, the present disclosure is not limited to these examples.
[第1の接着剤層及び第2の接着剤層の作製]
 第1の接着剤層及び第2の接着剤層の作製においては、下記に示す材料を用いた。
[Preparation of First Adhesive Layer and Second Adhesive Layer]
In the preparation of the first adhesive layer and the second adhesive layer, the materials shown below were used.
(A)成分:導電粒子
 導電粒子A-1:プラスチック核体の表面にNiめっきを施し、最表面を絶縁被覆した、平均粒径3.2μmの絶縁被覆導電粒子を使用
(A) Component: Conductive particles Conductive particles A-1: Insulation-coated conductive particles having an average particle size of 3.2 μm, in which the surface of a plastic core is Ni-plated and the outermost surface is insulated and coated, are used.
(B)成分:硬化性樹脂成分及び(C)成分:熱硬化性樹脂成分
 (B)成分及び(C)成分は、表1のとおり、以下の(MA)重合性化合物及び(MB)重合開始剤を選択して用いた。(MA-R)ラジカル重合性化合物と(MB-R-L)光ラジカル重合開始剤とを組み合わせることによって、光硬化性樹脂成分として作用させることができる。一方、(MA-R)ラジカル重合性化合物と(MB-R-H)熱ラジカル重合開始剤とを組み合わせることによって、熱硬化性成分として作用させることができる。また、(MA-C)カチオン重合性化合物と(MB-C-L)光カチオン重合開始剤とを組み合わせることによって、光硬化性成分として作用させることができる。一方、(MA-C)カチオン重合性化合物と(MB-C-H)熱カチオン重合開始剤とを組み合わせることによって、熱硬化性成分として作用させることができる。
(B) component: curable resin component and (C) component: thermosetting resin component (B) component and (C) component are the following (MA) polymerizable compound and (MB) polymerization initiation as shown in Table 1. The agent was selected and used. By combining the (MA-R) radically polymerizable compound and the (MB-RL) photoradical polymerization initiator, it can act as a photocurable resin component. On the other hand, by combining the (MA-R) radically polymerizable compound and the (MB-RH) thermal radical polymerization initiator, it can act as a thermosetting component. Further, by combining the (MA-C) cationically polymerizable compound and the (MB-C-L) photocationic polymerization initiator, it can act as a photocurable component. On the other hand, by combining the (MA-C) cationically polymerizable compound and the (MB-C-H) thermally cationic polymerization initiator, it can act as a thermosetting component.
(MA)重合性化合物
(MA-R)ラジカル重合性化合物
 ラジカル重合性化合物MA-R-1:HA7663(フェノールノボラック型エポキシ(メタ)アクリレート(多官能)、昭和電工マテリアルズ株式会社製)
 ラジカル重合性化合物MA-R-2:VR-90(ビスフェノールA型エポキシ(メタ)アクリレート(2官能)(ビニルエステル樹脂)、昭和電工株式会社製)
 ラジカル重合性化合物MA-R-3:DCP-A(ジメチロール-トリシクロデカンジアクリレート(2官能)、共栄社化学株式会社製)
(MA-C)カチオン重合性化合物
 カチオン重合性化合物MA-C-1:CEL2021P(3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(脂環式エポキシ化合物)、株式会社ダイセル株式会社製)
 カチオン重合性化合物MA-C-2:YL980(ビスフェノールA型エポキシ樹脂、三菱ケミカル株式会社製)
(MB)重合開始剤
(MB-R-L)光ラジカル重合開始剤
 光ラジカル重合開始剤MB-R-L-1:DAROCURE-TPO(ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド、BASF社製)
(MB-R-H)熱ラジカル重合開始剤
 熱ラジカル重合開始剤MB-R-H-1:パーヘキサ25O(2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、日油株式会社製)
(MB-C-L)光カチオン重合開始剤
 光カチオン重合開始剤MB-C-L-1:CPI-101A(トリアリールスルホニウム・SbF塩、サンアプロ株式会社製)
(MB-C-H)熱カチオン重合開始剤
 熱カチオン重合開始剤MB-C-H-1:SI-60(芳香族スルホニウム・SbF塩、三新化学工業株式会社製)
(MA) Polymerizable compound (MA-R) Radical polymerizable compound Radical polymerizable compound MA-R-1: HA7663 (phenol novolac type epoxy (meth) acrylate (polyfunctional), manufactured by Showa Denko Materials Co., Ltd.)
Radical polymerizable compound MA-R-2: VR-90 (bisphenol A type epoxy (meth) acrylate (bifunctional) (vinyl ester resin), manufactured by Showa Denko KK)
Radical Polymerizable Compound MA-R-3: DCP-A (Dimethylol-Tricyclodecane Diacrylate (bifunctional), manufactured by Kyoeisha Chemical Co., Ltd.)
(MA-C) Cationicly polymerizable compound MA-C-1: CEL2021P (3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (aliphatic epoxy compound), Daicel Co., Ltd. Made by Co., Ltd.)
Cationic polymerizable compound MA-C-2: YL980 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation)
(MB) Polymerization Initiator (MB-RL) Photoradical Polymerization Initiator Photoradical Polymerization Initiator MB-RL-1: DAROCURE-TPO (diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, BASF Made by the company)
(MB-RH) Thermal Radical Polymerization Initiator MB-RH-1: Perhexa 25O (2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, Made by NOF Corporation)
(MB-C-L) Photocationic Polymerization Initiator Photocationic Polymerization Initiator MB-C-L-1: CPI-101A (Triarylsulfonium SbF 6 Salt, manufactured by San-Apro Co., Ltd.)
(MB-C-H) Thermal Cationic Polymerization Initiator MB-C-H-1: SI-60 (Aromatic Sulfonium / SbF 6 Salt, manufactured by Sanshin Chemical Industry Co., Ltd.)
(D)成分:熱可塑性樹脂
 熱可塑性樹脂D-1:PKHC(フェノキシ樹脂、ユニオンカーバイド社製)
(D) Component: Thermoplastic resin Thermoplastic resin D-1: PKHC (phenoxy resin, manufactured by Union Carbide)
(E)成分:充填材
 フィラーE-1:SE2050(シリカ微粒子、株式会社アドマテックス製、平均粒径:0.5μm)
(E) Component: Filler Filler E-1: SE2050 (Silica fine particles, manufactured by Admatex Co., Ltd., average particle size: 0.5 μm)
<第1の接着剤フィルム(第1の接着剤層)の作製>
 表1に示す材料を表1に示す組成比(表1の数値は固形分量を意味する。)で混合した組成物を得た。その後、厚さ38μmのPET(ポリエチレンテレフタレート)フィルム(三井化学東セロ株式会社製)の上に、乾燥後の厚さが3μm、導電粒子数が22000個/mmとなるように塗工し、オーブンで60℃/1分の条件で乾燥することによって各成分を含有する組成物からなる組成物層1a~1eを得た。組成物層1a、1b、1eに関しては、紫外線照射装置を用いて紫外線を照射(照射量:1500mJ/cm)することによって、第1の接着剤フィルム1A、1B、1Eを得た。組成物層1cに関しては、オーブンで70℃/4分の条件でさらに乾燥することによって、第1の接着剤フィルム1Cを得た。組成物層1dに関しては、そのまま第1の接着剤フィルム1Dとして用いた。
<Preparation of the first adhesive film (first adhesive layer)>
A composition was obtained by mixing the materials shown in Table 1 with the composition ratio shown in Table 1 (the numerical value in Table 1 means the amount of solid content). Then, on a PET (polyethylene terephthalate) film (manufactured by Mitsui Chemicals Tohcello Co., Ltd.) with a thickness of 38 μm, the film was applied so that the thickness after drying was 3 μm and the number of conductive particles was 22,000 / mm 2 . The composition layers 1a to 1e composed of the composition containing each component were obtained by drying at 60 ° C./1 minute. The composition layers 1a, 1b, and 1e were irradiated with ultraviolet rays (irradiation amount: 1500 mJ / cm 2 ) using an ultraviolet irradiation device to obtain first adhesive films 1A, 1B, and 1E. The composition layer 1c was further dried in an oven at 70 ° C./4 min to obtain a first adhesive film 1C. The composition layer 1d was used as it was as the first adhesive film 1D.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<第2の接着剤フィルム(第2の接着剤層)の作製>
 表2に示す材料を表2に示す組成比(表2の数値は固形分量を意味する。)で混合した後、厚さ38μmのPET(ポリエチレンテレフタレート)フィルム(東洋紡フイルムソリューション株式会社製)の上に、乾燥後の厚さが12μmとなるように塗工し、オーブンで60℃/3分の条件で乾燥することによって第2の接着剤フィルム2Aを得た。
<Preparation of second adhesive film (second adhesive layer)>
After mixing the materials shown in Table 2 at the composition ratio shown in Table 2 (the numerical value in Table 2 means the amount of solid content), on a PET (polyethylene terephthalate) film (manufactured by Toyobo Film Solution Co., Ltd.) having a thickness of 38 μm. The second adhesive film 2A was obtained by coating the film so that the thickness after drying was 12 μm and drying in an oven at 60 ° C./3 minutes.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例1~3及び比較例1、2)
[接着剤フィルムの作製]
 上記で作製した第1の接着剤フィルム及び第2の接着剤フィルムを用いて、表3に示す構成の接着剤フィルムを作製した。実施例1~3及び比較例1、2の接着剤フィルムについては、第2の接着剤フィルムに、第1の接着剤フィルムを50~60℃の温度をかけながら張り合わせて、表3に示す構成の接着剤フィルムを作製した。
(Examples 1 to 3 and Comparative Examples 1 and 2)
[Preparation of adhesive film]
Using the first adhesive film and the second adhesive film prepared above, an adhesive film having the constitution shown in Table 3 was prepared. Regarding the adhesive films of Examples 1 to 3 and Comparative Examples 1 and 2, the first adhesive film is bonded to the second adhesive film while applying a temperature of 50 to 60 ° C., and the configurations shown in Table 3 are attached. Adhesive film was prepared.
[転写性の評価]
 実施例1~3及び比較例1、2の接着剤フィルムを2.5mm×25mmに切り出し、第1の接着剤フィルム(第1の接着剤層)側の面を、ガラス基板に最高到達温度90℃、バンプ電極での面積換算圧力1MPaの条件で1秒間加熱及び加圧して仮圧着した。仮圧着した後に、第2の接着剤フィルム(第2の接着剤層)のPETフィルムをピンセットでつまみ、第2の接着剤層から剥離した。このとき、接着剤フィルムがガラス基板に張り付いていた場合を、転写性に優れるとして「A」と評価し、接着剤フィルムがガラス基板から浮いた場合、又は完全にガラス基板から剥離した場合を「B」と評価した。結果を表3に示す。
[Evaluation of transferability]
The adhesive films of Examples 1 to 3 and Comparative Examples 1 and 2 were cut into 2.5 mm × 25 mm, and the surface on the side of the first adhesive film (first adhesive layer) was brought to the glass substrate at a maximum temperature of 90. Temporarily crimped by heating and pressurizing for 1 second under the conditions of ° C. and an area conversion pressure of 1 MPa at the bump electrode. After the temporary crimping, the PET film of the second adhesive film (second adhesive layer) was pinched with tweezers and peeled off from the second adhesive layer. At this time, the case where the adhesive film is attached to the glass substrate is evaluated as "A" as having excellent transferability, and the case where the adhesive film floats from the glass substrate or is completely peeled off from the glass substrate. It was evaluated as "B". The results are shown in Table 3.
[剥離強度の測定]
 まず、ITO配線を有するガラス基板(ガラス基板の大きさ:2.5mm×28mm、ガラス基板の厚さ:300μm、ITO配線の大きさ:2500μm(2.5mm)×300μm、ITO配線の厚さ:0.2μm、ITO配線の本数:28本、ITO配線間のスペース:300μm)を用意した。実施例1~3及び比較例1、2の接着剤フィルムを2mm×23mmに切り出し、切り出した接着剤フィルムの第1の接着剤フィルム(第1の接着剤層)を、ITO配線を有するガラス基板上にITO配線に対して垂直になるように配置した。その後、接着剤フィルムを熱圧着機で温度60℃、第1の接着剤層の面積換算圧力1MPa、時間1秒間の条件で貼り付けて積層体を得た。図4は、実施例の剥離強度測定における積層体を示す模式上面図である。図4に示される積層体30は、ITO配線を有するガラス基板33(ガラス基板31及びガラス基板31上に設けられたITO配線32を含む基板)と、ITO配線を有するガラス基板33上に配置された接着剤フィルム10Aとを備えている。次いで、第2の接着剤フィルム(第2の接着剤層)のPETフィルムを剥がし、第2の接着剤層上に、1.8mm×35mmに切り出したポリイミドテープを貼り付けて、測定用サンプルを得た。測定用サンプルのガラス基板側を40℃に設定したホットプレート上に配置し、ポリイミドテープの先端を引張強度測定装置(テンシロン)にセットした。ガラス基板を水平に固定し、ポリイミドテープを垂直方向に剥離速度を50mm/分で引っ張ることで、剥離角度が90°である貼り付けた後のガラス基板と第1の接着剤層との40℃における剥離強度を測定した。結果を表3に示す。
[Measurement of peel strength]
First, a glass substrate having ITO wiring (glass substrate size: 2.5 mm × 28 mm, glass substrate thickness: 300 μm, ITO wiring size: 2500 μm (2.5 mm) × 300 μm, ITO wiring thickness: 0.2 μm, number of ITO wirings: 28, space between ITO wirings: 300 μm) were prepared. The adhesive films of Examples 1 to 3 and Comparative Examples 1 and 2 are cut out to a size of 2 mm × 23 mm, and the first adhesive film (first adhesive layer) of the cut out adhesive film is a glass substrate having ITO wiring. It was arranged on the top so as to be perpendicular to the ITO wiring. Then, the adhesive film was attached by a thermocompression bonding machine under the conditions of a temperature of 60 ° C., an area conversion pressure of the first adhesive layer of 1 MPa, and a time of 1 second to obtain a laminate. FIG. 4 is a schematic top view showing the laminated body in the peel strength measurement of the embodiment. The laminate 30 shown in FIG. 4 is arranged on a glass substrate 33 having ITO wiring (a substrate including the glass substrate 31 and the ITO wiring 32 provided on the glass substrate 31) and a glass substrate 33 having ITO wiring. It is provided with an adhesive film 10A. Next, the PET film of the second adhesive film (second adhesive layer) is peeled off, and a polyimide tape cut out to a size of 1.8 mm × 35 mm is attached onto the second adhesive layer to prepare a sample for measurement. Obtained. The glass substrate side of the measurement sample was placed on a hot plate set at 40 ° C., and the tip of the polyimide tape was set in a tensile strength measuring device (Tensilon). By fixing the glass substrate horizontally and pulling the polyimide tape in the vertical direction at a peeling speed of 50 mm / min, the peeling angle is 90 °. The peel strength in was measured. The results are shown in Table 3.
[接続抵抗、圧痕強度、及び導電粒子の捕捉率の評価]
(回路部材の準備)
 第1の回路部材として、ITO配線を有するガラス基板(ガラス基板の大きさ:3.8mm×28mm、ガラス基板の厚さ:300μm、ITO配線の大きさ:105μm×18μm、ITO配線の厚さ:0.2μm、ITO配線間のスペース:6μm)を準備した。第2の回路部材として、金バンプ電極を有するICチップ(ICチップの大きさ:0.9mm×20.3mm、ICチップの厚さ:0.3mm、金バンプ電極の大きさ:12μm×100μm、金バンプ電極の厚さ:12μm、金バンプ電極間のスペース:24μm)を準備した。
[Evaluation of connection resistance, indentation strength, and capture rate of conductive particles]
(Preparation of circuit members)
As the first circuit member, a glass substrate having ITO wiring (glass substrate size: 3.8 mm × 28 mm, glass substrate thickness: 300 μm, ITO wiring size: 105 μm × 18 μm, ITO wiring thickness: 0.2 μm, space between ITO wiring: 6 μm) was prepared. As the second circuit member, an IC chip having a gold bump electrode (IC chip size: 0.9 mm × 20.3 mm, IC chip thickness: 0.3 mm, gold bump electrode size: 12 μm × 100 μm, The thickness of the gold bump electrode: 12 μm, the space between the gold bump electrodes: 24 μm) was prepared.
(回路接続構造体の作製)
 実施例1~3及び比較例1、2の接着剤フィルムを用いて回路接続構造体を行った。接着剤フィルムを2mm×23mmに切り出し、切り出した接着剤フィルムの第1の接着剤層が第1の回路部材の回路電極と接するように第1の回路部材上に配置した。セラミックヒータからなるステージとツール(8mm×50mm)とから構成される熱圧着装置(BS-17U、株式会社大橋製作所製)を用いて、130℃、40MPaの条件で5秒間加熱及び加圧して、第1の回路部材に接着剤フィルムを貼り付けた。次いで、接着剤フィルムの第1の回路部材とは反対側のPETフィルムを剥離し、第1の回路部材の回路電極と第2の回路部材のバンプ電極との位置合わせを行った後、接着剤フィルムの実測最高到達温度130℃、バンプ電極での面積換算圧力40MPaの条件で5秒間加熱及び加圧して、接着剤フィルムの第2の接着剤層を第2の回路部材に貼り付けて、回路接続構造体を作製した。
(Making a circuit connection structure)
The circuit connection structure was carried out using the adhesive films of Examples 1 to 3 and Comparative Examples 1 and 2. The adhesive film was cut out to a size of 2 mm × 23 mm, and the first adhesive layer of the cut out adhesive film was placed on the first circuit member so as to be in contact with the circuit electrode of the first circuit member. Using a thermocompression bonding device (BS-17U, manufactured by Ohashi Seisakusho Co., Ltd.) consisting of a stage consisting of a ceramic heater and a tool (8 mm x 50 mm), heat and pressurize for 5 seconds at 130 ° C. and 40 MPa. An adhesive film was attached to the first circuit member. Next, the PET film on the side opposite to the first circuit member of the adhesive film is peeled off, the circuit electrode of the first circuit member and the bump electrode of the second circuit member are aligned, and then the adhesive is applied. The second adhesive layer of the adhesive film is attached to the second circuit member by heating and pressurizing for 5 seconds under the conditions of the maximum measured maximum temperature of the film of 130 ° C. and the area conversion pressure of 40 MPa at the bump electrode. A connection structure was prepared.
(接続抵抗の評価)
 得られた回路接続構造体について接続抵抗を評価した。接続抵抗の評価は、四端子測定法にて実施し、14箇所の測定の接続抵抗値の平均値を用いて評価した。測定にはマルチメータ(MLR21、楠本化成株式会社製)を用いた。結果を表3に示す。
(Evaluation of connection resistance)
The connection resistance of the obtained circuit connection structure was evaluated. The evaluation of the connection resistance was carried out by the four-terminal measurement method, and the evaluation was made using the average value of the connection resistance values measured at 14 points. A multimeter (MLR21, manufactured by Kusumoto Kasei Co., Ltd.) was used for the measurement. The results are shown in Table 3.
(圧痕強度の評価)
 得られた回路接続構造体について圧痕強度を評価した。得られた回路接続構造体について微分干渉顕微鏡を用いてガラス基板から電極を観察し、ICチップの端部及び中央部それぞれが接続される部分の圧痕を観察した。観察した圧痕を撮影して画像データとし、圧痕解析ソフトを用いてその強度を1、2、3、4、5の5段階で評価した。評価の数値が大きくなるほど、圧痕強度が高いことを意味する。圧痕強度が高いと、接続安定性に優れる傾向にある。結果を表3に示す。
(Evaluation of indentation strength)
The indentation strength of the obtained circuit connection structure was evaluated. Electrodes were observed from the glass substrate of the obtained circuit connection structure using a differential interference microscope, and indentations were observed at the portions where the ends and the center of the IC chip were connected. The observed indentations were photographed and used as image data, and the intensities were evaluated in five stages of 1, 2, 3, 4, and 5 using indentation analysis software. The larger the evaluation value, the higher the indentation strength. When the indentation strength is high, the connection stability tends to be excellent. The results are shown in Table 3.
(導電粒子の捕捉率の評価)
 得られた回路接続構造体を微分干渉顕微鏡で観察し、電極間に捕捉された導電粒子の個数を計測し、電極面積当たりの電極間の導電粒子の捕捉数を算出した。このとき、100個の電極を観察対象とし、その平均値を、電極面積当たりの電極間の導電粒子の捕捉数とした。導電粒子の捕捉率は、以下の計算式から算出した。結果を表3に示す。
 導電粒子の捕捉率(%)=(電極面積当たりの電極間の導電粒子の捕捉数(個/mm)/接着剤フィルムの単位面積当たりの導電粒子数(個/mm))×100
(Evaluation of capture rate of conductive particles)
The obtained circuit connection structure was observed with a differential interference microscope, the number of conductive particles captured between the electrodes was measured, and the number of conductive particles captured between the electrodes per electrode area was calculated. At this time, 100 electrodes were observed, and the average value thereof was taken as the number of captured conductive particles between the electrodes per electrode area. The capture rate of conductive particles was calculated from the following formula. The results are shown in Table 3.
Capturing rate of conductive particles (%) = (Number of trapped conductive particles between electrodes per electrode area (pieces / mm 2 ) / Number of conductive particles per unit area of adhesive film (pieces / mm 2 )) x 100
[導電粒子の流動率の評価]
 実施例1~3及び比較例1、2の接着剤フィルムを、トレパニング装置を用いて1mm径に打ち抜いてサンプルを作製した。打ち抜いたサンプルの第1の接着剤フィルム(第1の接着剤層)側の面を、最高到達温度90℃、フィルム面積換算圧力1MPaの条件で1秒間加熱及び加圧してカバーガラスに貼り付け、これを圧着前の第1の接着剤層の面積を測定するための試験体(圧着前の試験体)とした。次いで、第2の接着剤フィルム(第2の接着剤層)側のPETフィルムを剥離してからカバーガラスを配置した。その後、最高到達温度170℃、フィルム面積換算圧力80MPaの条件で5秒間加熱及び加圧し、第2の接着剤フィルム(第2の接着剤層)とカバーガラスとを貼り付け、これを圧着後の第1の接着剤層の面積を測定するための試験体(圧着後の試験体)とした。圧着前の試験体の第1の接着剤層の面積及び圧着後の試験体の第1の接着剤層の面積を顕微鏡で測定し、以下の計算式から導電粒子の流動率を算出した。結果を表3に示す。
 導電粒子の流動率(%)=(圧着後の試験体の第1の接着剤層の面積/圧着前の試験体の第1の接着剤層の面積)×100
[Evaluation of flow rate of conductive particles]
The adhesive films of Examples 1 to 3 and Comparative Examples 1 and 2 were punched to a diameter of 1 mm using a trepanning device to prepare a sample. The surface of the punched sample on the first adhesive film (first adhesive layer) side was heated and pressed for 1 second under the conditions of a maximum ultimate temperature of 90 ° C. and a film area conversion pressure of 1 MPa, and attached to the cover glass. This was used as a test body (test body before crimping) for measuring the area of the first adhesive layer before crimping. Next, the PET film on the second adhesive film (second adhesive layer) side was peeled off, and then the cover glass was placed. After that, the film is heated and pressurized for 5 seconds under the conditions of a maximum ultimate temperature of 170 ° C. and a film area conversion pressure of 80 MPa to attach a second adhesive film (second adhesive layer) and a cover glass, and the pressure is applied. A test body (test body after pressure bonding) for measuring the area of the first adhesive layer was used. The area of the first adhesive layer of the test piece before crimping and the area of the first adhesive layer of the test piece after crimping were measured with a microscope, and the flow rate of the conductive particles was calculated from the following formula. The results are shown in Table 3.
Flow rate of conductive particles (%) = (Area of first adhesive layer of test piece after crimping / Area of first adhesive layer of test piece before crimping) × 100
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、実施例1~3の接着剤フィルムは、全ての項目において優れていた。一方、所定の剥離強度が60N/mを超える比較例1の接着剤フィルムは、導電粒子の捕捉率が充分ではなかった。これは、樹脂の硬さが樹脂の流動性の観点において柔らか過ぎるためであると考えられる。また、所定の剥離強度が20N/m未満である比較例2の接着剤フィルムは、接続抵抗が充分でなく、転写性及び圧痕強度の点でも充分でなかった。これは、樹脂の硬さが樹脂の流動性の観点において硬過ぎるためであると考えられる。これらの結果から、本開示の接着剤フィルムが、回路接続構造体の対向する電極間における導電粒子の捕捉率を向上させ、かつ接続抵抗を低減させることが可能であることが確認された。 As shown in Table 3, the adhesive films of Examples 1 to 3 were excellent in all items. On the other hand, the adhesive film of Comparative Example 1 having a predetermined peel strength of more than 60 N / m did not have a sufficient capture rate of conductive particles. It is considered that this is because the hardness of the resin is too soft in terms of the fluidity of the resin. Further, the adhesive film of Comparative Example 2 having a predetermined peel strength of less than 20 N / m did not have sufficient connection resistance, and was not sufficient in terms of transferability and indentation strength. It is considered that this is because the hardness of the resin is too hard in terms of the fluidity of the resin. From these results, it was confirmed that the adhesive film of the present disclosure can improve the capture rate of conductive particles between the facing electrodes of the circuit connection structure and reduce the connection resistance.
 1…第1の接着剤層、2…第2の接着剤層、4…導電粒子、5…接着剤成分、10…回路接続用接着剤フィルム(接着剤フィルム)、10A…接着剤フィルム、11…第1の回路基板、12…第1の電極(回路電極)、13…第1の回路部材、14…第2の回路基板、15…第2の電極(バンプ電極)、16…第2の回路部材、17…回路接続部、20…回路接続構造体、30…積層体、31…ガラス基板、32…ITO配線、33…ITO配線を有するガラス基板。 1 ... 1st adhesive layer, 2 ... 2nd adhesive layer, 4 ... conductive particles, 5 ... adhesive component, 10 ... circuit connection adhesive film (adhesive film), 10A ... adhesive film, 11 ... 1st circuit board, 12 ... 1st electrode (circuit electrode), 13 ... 1st circuit member, 14 ... 2nd circuit board, 15 ... 2nd electrode (bump electrode), 16 ... 2nd A glass substrate having a circuit member, 17 ... circuit connection portion, 20 ... circuit connection structure, 30 ... laminate, 31 ... glass substrate, 32 ... ITO wiring, 33 ... ITO wiring.

Claims (10)

  1.  導電粒子、硬化性樹脂成分の硬化物、及び第1の熱硬化性樹脂成分を含有する第1の接着剤層と、
     前記第1の接着剤層上に設けられた、第2の熱硬化性樹脂成分を含有する第2の接着剤層と、
    を備える回路接続用接着剤フィルムであって、
     インジウム錫酸化物(ITO)配線を有するガラス基板に、前記回路接続用接着剤フィルムの前記第1の接着剤層を、温度60℃、前記第1の接着剤層の面積換算圧力1MPa、時間1秒間の条件で処理して貼り付けたときに、貼り付けた後の前記ガラス基板と前記第1の接着剤層との40℃における剥離強度が20~60N/mである、回路接続用接着剤フィルム。
    A first adhesive layer containing conductive particles, a cured product of a curable resin component, and a first thermosetting resin component,
    A second adhesive layer containing a second thermosetting resin component provided on the first adhesive layer, and a second adhesive layer.
    An adhesive film for circuit connection
    The first adhesive layer of the circuit connection adhesive film is placed on a glass substrate having indium tin oxide (ITO) wiring at a temperature of 60 ° C., an area-converted pressure of the first adhesive layer of 1 MPa, and a time of 1. A circuit connection adhesive having a peeling strength of 20 to 60 N / m between the glass substrate and the first adhesive layer at 40 ° C. after being treated and pasted under the condition of seconds. the film.
  2.  前記硬化性樹脂成分が光硬化性を有する、請求項1に記載の回路接続用接着剤フィルム。 The circuit connection adhesive film according to claim 1, wherein the curable resin component has photocurability.
  3.  前記硬化性樹脂成分が熱硬化性を有する、請求項1に記載の回路接続用接着剤フィルム。 The circuit connection adhesive film according to claim 1, wherein the curable resin component has thermosetting property.
  4.  前記第1の接着剤層の厚さが5μm以下である、請求項1~3のいずれか一項に記載の回路接続用接着剤フィルム。 The circuit connection adhesive film according to any one of claims 1 to 3, wherein the thickness of the first adhesive layer is 5 μm or less.
  5.  導電粒子と、硬化性樹脂成分と、第1の熱硬化性樹脂成分とを含有する組成物からなる層に対して、前記硬化性樹脂成分を硬化させて、第1の接着剤層を形成する工程と、
     前記第1の接着剤層上に、第2の熱硬化性樹脂成分を含有する第2の接着剤層を設け、回路接続用接着剤フィルムを得る工程と、
    を備え、
     インジウム錫酸化物(ITO)配線を有するガラス基板に、前記回路接続用接着剤フィルムの前記第1の接着剤層を、温度60℃、前記第1の接着剤層の面積換算圧力1MPa、時間1秒間の条件で処理して貼り付けたときに、貼り付けた後の前記ガラス基板と前記第1の接着剤層との40℃における剥離強度が20~60N/mである、回路接続用接着剤フィルムの製造方法。
    The curable resin component is cured on a layer composed of a composition containing conductive particles, a curable resin component, and a first thermosetting resin component to form a first adhesive layer. Process and
    A step of providing a second adhesive layer containing a second thermosetting resin component on the first adhesive layer to obtain an adhesive film for circuit connection.
    Equipped with
    The first adhesive layer of the circuit connection adhesive film is placed on a glass substrate having indium tin oxide (ITO) wiring at a temperature of 60 ° C., an area-converted pressure of the first adhesive layer of 1 MPa, and a time of 1. A circuit connection adhesive having a peeling strength of 20 to 60 N / m between the glass substrate and the first adhesive layer at 40 ° C. after being treated and pasted under the condition of seconds. How to make a film.
  6.  前記硬化性樹脂成分が光硬化性を有する、請求項5に記載の回路接続用接着剤フィルムの製造方法。 The method for manufacturing an adhesive film for circuit connection according to claim 5, wherein the curable resin component has photocurability.
  7.  前記硬化性樹脂成分が熱硬化性を有する、請求項5に記載の回路接続用接着剤フィルムの製造方法。 The method for manufacturing an adhesive film for circuit connection according to claim 5, wherein the curable resin component has thermosetting property.
  8.  前記第1の接着剤層の厚さが5μm以下である、請求項5~7のいずれか一項に記載の回路接続用接着剤フィルムの製造方法。 The method for producing an adhesive film for circuit connection according to any one of claims 5 to 7, wherein the thickness of the first adhesive layer is 5 μm or less.
  9.  第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に、請求項1~4のいずれか一項に記載の回路接続用接着剤フィルムを介在させ、前記第1の回路部材及び前記第2の回路部材を熱圧着して、前記第1の電極及び前記第2の電極を互いに電気的に接続する工程を備える、回路接続構造体の製造方法。 The circuit connection adhesive film according to any one of claims 1 to 4 is interposed between a first circuit member having a first electrode and a second circuit member having a second electrode. A method for manufacturing a circuit connection structure, comprising a step of thermally crimping the first circuit member and the second circuit member to electrically connect the first electrode and the second electrode to each other. ..
  10.  第1の電極を有する第1の回路部材と、
     第2の電極を有する第2の回路部材と、
     前記第1の回路部材及び前記第2の回路部材の間に配置され、前記第1の電極及び前記第2の電極を互いに電気的に接続する回路接続部と、
    を備え、
     前記回路接続部が、請求項1~4のいずれか一項に記載の回路接続用接着剤フィルムの硬化物を含む、回路接続構造体。
    A first circuit member having a first electrode and
    A second circuit member having a second electrode and
    A circuit connection portion that is arranged between the first circuit member and the second circuit member and electrically connects the first electrode and the second electrode to each other.
    Equipped with
    A circuit connection structure in which the circuit connection portion contains a cured product of the adhesive film for circuit connection according to any one of claims 1 to 4.
PCT/JP2021/040989 2020-11-10 2021-11-08 Circuit-connection adhesive film and method for producing same, and circuit connection structure and method for producing same WO2022102573A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022561905A JPWO2022102573A1 (en) 2020-11-10 2021-11-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020187267 2020-11-10
JP2020-187267 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102573A1 true WO2022102573A1 (en) 2022-05-19

Family

ID=81601320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040989 WO2022102573A1 (en) 2020-11-10 2021-11-08 Circuit-connection adhesive film and method for producing same, and circuit connection structure and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2022102573A1 (en)
TW (1) TW202224942A (en)
WO (1) WO2022102573A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106400A1 (en) * 2021-12-10 2023-06-15 株式会社レゾナック Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2024042720A1 (en) * 2022-08-26 2024-02-29 株式会社レゾナック Adhesive film for circuit connection, connection structure, and methods for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013968A1 (en) * 2007-07-26 2009-01-29 Sony Chemical & Information Device Corporation Adhesive film, connecting method and connected body
JP2013110110A (en) * 2011-11-18 2013-06-06 Cheil Industries Inc Anisotropic conductive film with easy pre-bonding process and semiconductor device
JP2015149125A (en) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 Anisotropic conductive film and method for manufacturing the same
JP2015149127A (en) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 Anisotropic conductive film and method for manufacturing the same
WO2019050012A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film for circuit connections and manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
JP2019214714A (en) * 2018-06-06 2019-12-19 デクセリアルズ株式会社 Filler-containing film
WO2020184583A1 (en) * 2019-03-13 2020-09-17 日立化成株式会社 Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodating set

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013968A1 (en) * 2007-07-26 2009-01-29 Sony Chemical & Information Device Corporation Adhesive film, connecting method and connected body
JP2013110110A (en) * 2011-11-18 2013-06-06 Cheil Industries Inc Anisotropic conductive film with easy pre-bonding process and semiconductor device
JP2015149125A (en) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 Anisotropic conductive film and method for manufacturing the same
JP2015149127A (en) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 Anisotropic conductive film and method for manufacturing the same
WO2019050012A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film for circuit connections and manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
JP2019214714A (en) * 2018-06-06 2019-12-19 デクセリアルズ株式会社 Filler-containing film
WO2020184583A1 (en) * 2019-03-13 2020-09-17 日立化成株式会社 Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodating set

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106400A1 (en) * 2021-12-10 2023-06-15 株式会社レゾナック Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2024042720A1 (en) * 2022-08-26 2024-02-29 株式会社レゾナック Adhesive film for circuit connection, connection structure, and methods for producing same

Also Published As

Publication number Publication date
TW202224942A (en) 2022-07-01
JPWO2022102573A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
WO2022102573A1 (en) Circuit-connection adhesive film and method for producing same, and circuit connection structure and method for producing same
WO2020184636A1 (en) Adhesive film for circuit connection, method for producing circuit connected structure, and adhesive film housing set
WO2022009846A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2021251386A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2022102672A1 (en) Adhesive film for circuit connection, method for manufacturing same, connection structure body, and method for manufacturing same
JP2021134262A (en) Adhesive film for circuit connection, circuit connection structure and manufacturing method thereof
KR102569980B1 (en) Adhesive film for circuit connection and manufacturing method thereof, manufacturing method for circuit connection structure, and adhesive film accommodating set
WO2022025207A1 (en) Adhesive film for circuit connection, adhesive composition for circuit connection, and circuit connection structure and method for manufacturing same
KR102533475B1 (en) Adhesive film for circuit connection and manufacturing method thereof, manufacturing method for circuit connection structure, and adhesive film accommodating set
WO2022107800A1 (en) Adhesive film for circuit connection, and connection structure and method for manufacturing same
WO2022075370A1 (en) Adhesive film for circuit connection, material for circuit connection, circuit connection structure, and method for manufacturing circuit connection structure
JP2022061623A (en) Adhesive film for circuit connection as well as circuit connection structure and manufacturing method thereof
WO2022065496A1 (en) Adhesive film for circuit connection, composition containing inorganic filler, circuit connection structure and method of manufacturing same
JP2023063770A (en) Adhesive film for circuit connection, and circuit connection structure and method for producing the same
WO2022138747A1 (en) Adhesive film for circuit connection, and circuit connection structure and method for manufacturing same
JP2022158554A (en) Adhesive film for circuit connection, and circuit connection structure and method for producing the same
WO2023106400A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2023106410A1 (en) Adhesive film for circuit connection, and circuit connection structure and method for producing same
JP2022112210A (en) Circuit connection adhesive agent, and method of manufacturing connection structure
WO2020184584A1 (en) Circuit-connecting adhesive film and method for manufacturing same, circuit-connecting structure manufacturing method, and adhesive film housing set
JP7234032B2 (en) Method for manufacturing adhesive film, method for manufacturing adhesive film, and connected body
JP6142612B2 (en) Anisotropic conductive film
WO2024070436A1 (en) Anisotropic conductive material, anisotropic conductive sheet, anisotropic conductive paste, connection structure, and method for producing connection structure
JP2022048791A (en) Circuit connection adhesive film, as well as, circuit connection structure and manufacturing method thereof
JP2023086476A (en) Adhesive film for circuit connection, and circuit connection structure and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561905

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891819

Country of ref document: EP

Kind code of ref document: A1