WO2022102672A1 - Adhesive film for circuit connection, method for manufacturing same, connection structure body, and method for manufacturing same - Google Patents

Adhesive film for circuit connection, method for manufacturing same, connection structure body, and method for manufacturing same Download PDF

Info

Publication number
WO2022102672A1
WO2022102672A1 PCT/JP2021/041394 JP2021041394W WO2022102672A1 WO 2022102672 A1 WO2022102672 A1 WO 2022102672A1 JP 2021041394 W JP2021041394 W JP 2021041394W WO 2022102672 A1 WO2022102672 A1 WO 2022102672A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
conductive particles
adhesive film
mass
circuit
Prior art date
Application number
PCT/JP2021/041394
Other languages
French (fr)
Japanese (ja)
Inventor
敏光 森谷
邦彦 赤井
剛幸 市村
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2022561971A priority Critical patent/JPWO2022102672A1/ja
Priority to KR1020237018643A priority patent/KR20230107273A/en
Priority to CN202180089778.2A priority patent/CN116685652A/en
Publication of WO2022102672A1 publication Critical patent/WO2022102672A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/10Esters
    • C08F22/1006Esters of polyhydric alcohols or polyhydric phenols, e.g. ethylene glycol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors

Definitions

  • the present invention relates to an adhesive film for circuit connection and a method for manufacturing the same, and a connection structure and a method for manufacturing the same.
  • the method of mounting a liquid crystal drive IC on a liquid crystal display glass panel can be roughly divided into two types: COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting.
  • COG mounting the liquid crystal drive IC is directly bonded onto the glass panel using an adhesive containing conductive particles (for example, a circuit connection adhesive).
  • COF mounting a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and they are bonded to a glass panel using an adhesive containing conductive particles (for example, an adhesive for circuit connection).
  • the metal bumps which are the circuit electrodes of liquid crystal drive ICs, have become narrower in pitch and area. Therefore, the conductive particles in the adhesive may flow out between the adjacent circuit electrodes and cause a short circuit. This tendency is particularly remarkable in COG mounting.
  • the number of conductive particles captured between the metal bump and the glass panel decreases, and the connection resistance between the opposing circuit electrodes increases, which may cause connection failure.
  • Patent Document 1 proposes a method of adhering spherical resin particles to the surface of conductive particles.
  • the present inventors previously placed the conductive particles in the recesses of the substrate on which the recesses were formed, and then formed the recesses of the substrate.
  • the conductive particles can be arranged so as to be arranged in a predetermined region in the film in a separated state. Therefore, for example, by manufacturing a circuit connection adhesive film using a substrate having a recess pattern corresponding to the pattern of electrodes to be connected (circuit pattern), the position and number of conductive particles in the circuit connection adhesive film can be obtained. Can be sufficiently controlled.
  • the resin constituting the adhesive layer flows at the time of connection, and at the same time, the conductive particles also flow, so that the conductive particles are excluded from the opposing circuit electrodes. It may end up. It is also conceivable to suppress the flow of the conductive particles by transferring the conductive particles to the adhesive layer and then curing the adhesive layer. In this case, the resin existing between the electrode and the conductive particles at the time of connection is present. It is difficult to eliminate the particles and the connection resistance is likely to increase.
  • the main purpose is to provide a method for producing an adhesive film for circuit connection that can be used.
  • One aspect of the present invention relates to a method for manufacturing an adhesive film for circuit connection shown in the following [1] to [18].
  • a photocurable component and a first first To prepare a substrate having a plurality of recesses on the surface and having conductive particles arranged in at least a part of the plurality of recesses, and on the surface of the substrate, a photocurable component and a first first.
  • the composition layer containing a thermosetting component By providing the composition layer containing a thermosetting component, the conductive particles are transferred to the composition layer, and by irradiating the composition layer with light, a plurality of the conductive particles and the photocurable are obtained.
  • a method for producing an adhesive film for circuit connection comprising providing a second adhesive layer to be contained.
  • the photocurable component contains a radical polymerizable compound and a photoradical polymerization initiator
  • the first thermocurable component contains a cationically polymerizable compound and a thermally cationic polymerization initiator.
  • thermosetting component contains a compound having a cyclic ether group as the cationically polymerizable compound.
  • thermosetting component contains at least one selected from the group consisting of an oxetane compound and an alicyclic epoxy compound as the cationically polymerizable compound.
  • the first thermosetting component contains, as the thermal cationic polymerization initiator, a salt compound having a cation represented by the following formula (II) or the following formula (III), [2] to [6]. ].
  • the method for manufacturing an adhesive film for circuit connection according to any one of. [In formula (II), R 5 and R 6 each independently contain a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an organic group containing a substituent or an unsubstituted aromatic hydrocarbon group. Shown, R 7 represents an alkyl group having 1 to 6 carbon atoms.
  • R 8 and R 9 each independently contain a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an organic group containing a substituent or an unsubstituted aromatic hydrocarbon group. As shown, R 10 and R 11 each independently represent an alkyl group having 1 to 6 carbon atoms.
  • the average particle size of the conductive particles is 1 to 30 ⁇ m, and the particle size of the conductive particles is C.I. V.
  • solder particles contain at least one selected from the group consisting of tin, tin alloys, indium and indium alloys.
  • solder particles are In—Bi alloy, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi—Ag alloy, Sn—Ag—Cu alloy and Sn.
  • the method for producing an adhesive film for circuit connection according to [10] which comprises at least one selected from the group consisting of Cu alloys.
  • a composition containing a photocurable component and a thermosetting component is used, and the composition is photocured after the conductive particles are transferred to the layer (composition layer) composed of the composition. .. Therefore, it is possible to suppress the resin flow at the time of connection without impairing the transferability. Therefore, according to the manufacturing method of the above-mentioned aspect, it is possible to improve the capture rate of the conductive particles between the facing circuit electrodes while sufficiently controlling the position and the number of the conductive particles in the adhesive film for circuit connection. Adhesive film for use can be obtained. Further, in the manufacturing method of the above-mentioned side surface, it is possible to sufficiently secure the conduction between the electrodes.
  • the photocurable component can be contained in the photocurable layer (first adhesive layer) of the composition layer after the photocuring by using the photocurable component and the thermosetting component in combination. Since it is possible to impart resin fluidity to the layer to the extent that the conductive particles are not excluded at the time of connection, it is difficult to remove the resin existing between the electrode and the conductive particles at the time of connection, which causes a problem that the connection resistance increases. Is presumed to be suppressed.
  • Another aspect of the present invention relates to the adhesive film for circuit connection shown in the following [16].
  • An adhesive film for circuit connection containing conductive particles, which comprises a plurality of the conductive particles, a cured product of a photocurable component, and a first adhesive layer containing a first thermosetting component.
  • a second adhesive layer containing a second thermosetting component provided on the first adhesive layer is provided, and at least a part of the plurality of conductive particles is the adhesive film for circuit connection.
  • the adhesive film for circuit connection is arranged in a predetermined pattern, and in the vertical cross section of the adhesive film for circuit connection, adjacent conductive particles are arranged in the horizontal direction while being separated from each other.
  • Another aspect of the present invention relates to the connection structure shown in the following [17].
  • connection structure comprising a connection portion for electrically connecting the electrode and the second electrode to each other via the conductive particles and adhering the first circuit member and the second circuit member. ..
  • Another aspect of the present invention relates to a method for manufacturing a connection structure shown in the following [18].
  • the present invention it is possible to improve the capture rate of the conductive particles between the facing circuit electrodes while sufficiently controlling the position and the number of the conductive particles, and to sufficiently secure the continuity between the electrodes. It is possible to provide a method for producing an adhesive film for circuit connection.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an adhesive film for circuit connection.
  • FIG. 2 is a schematic plan view showing an example of arrangement of conductive particles in the circuit connection adhesive film of FIG.
  • FIG. 3 is a schematic plan view showing an example of arrangement of conductive particles in the circuit connection adhesive film of FIG. 1.
  • FIG. 4 is a schematic cross-sectional view showing another embodiment of the adhesive film for circuit connection.
  • FIG. 5 is a schematic cross-sectional view of a substrate used for manufacturing the circuit connection adhesive film of FIG.
  • FIG. 6 is a diagram showing a modified example of the cross-sectional shape of the recess of the substrate of FIG.
  • FIG. 7 is a diagram showing a state in which conductive particles are arranged in the recesses of the substrate of FIG.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an adhesive film for circuit connection.
  • FIG. 2 is a schematic plan view showing an example of arrangement of conductive particles in the circuit connection adhesive film of FIG.
  • FIG. 8 is a schematic cross-sectional view showing one step of a method for manufacturing an adhesive film for circuit connection according to an embodiment.
  • FIG. 9 is a schematic cross-sectional view showing one step of the method for manufacturing the adhesive film for circuit connection of FIG.
  • FIG. 10 is a schematic cross-sectional view showing one step of the method for manufacturing the adhesive film for circuit connection of FIG.
  • FIG. 11 is a schematic cross-sectional view showing an embodiment of the connection structure.
  • FIG. 12 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a connection structure.
  • each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the term "(meth) acrylate” means at least one of an acrylate and a corresponding methacrylate. The same applies to other similar expressions such as "(meth) acryloyl”.
  • FIG. 1 is a diagram schematically showing a vertical cross section of an adhesive film for circuit connection according to an embodiment.
  • the circuit connection adhesive film 10A shown in FIG. 1 is a first adhesive containing a plurality of conductive particles 4, a cured product of a photocurable component, and an adhesive component 3 containing a first thermosetting component.
  • a film-like adhesive (adhesive film) comprising a layer 1 and a second adhesive layer 2 containing a second thermosetting component provided on the first adhesive layer 1.
  • the "longitudinal cross section” means a cross section (cross section in the thickness direction) substantially orthogonal to the main surface (for example, the main surface of the adhesive film 10A for circuit connection).
  • the first thermosetting component and the second thermosetting component mean the thermosetting components contained in the first adhesive layer and the second adhesive layer, respectively.
  • the circuit connection adhesive film 10A has a central region 10a in which conductive particles 4 in a state of being separated from adjacent conductive particles are arranged in a horizontal direction and conductive particles 4 in the vertical cross section thereof. It is composed of surface side regions 10b and 10c that do not.
  • the "horizontal direction” means a direction substantially parallel to the main surface of the circuit connection adhesive film (horizontal direction in FIG. 1).
  • the adjacent conductive particles are arranged in the horizontal direction in a state of being separated from each other by observing the vertical cross section of the adhesive film for circuit connection with, for example, a scanning electron microscope or the like.
  • a part of the conductive particles 4 is exposed from the surface of the first adhesive layer 1 (for example, protruding toward the second adhesive layer 2), but the conductive particles 4 are the first.
  • the entire conductive particles 4 may be embedded in the first adhesive layer 1 so as not to be exposed from the surface of the adhesive layer 1.
  • FIGS. 2 and 3 are plan views schematically showing an arrangement example of the conductive particles 4 in the circuit connection adhesive film 10A.
  • the conductive particles 4 are arranged in a predetermined pattern in a plan view of the circuit connection adhesive film.
  • FIG. 2 in the plan view of the circuit connecting adhesive film, the conductive particles 4 are arranged at regular and substantially even intervals with respect to the entire region of the circuit connecting adhesive film 10A.
  • a region 10d in which a plurality of conductive particles 4 are regularly arranged and a region 10e in which the conductive particles 4 do not exist are regularly formed.
  • the conductive particles 4 may be arranged.
  • the position and number of the conductive particles 4 can be set, for example, according to the shape, size, pattern, and the like of the electrodes to be connected.
  • the fact that at least a part of the plurality of conductive particles are lined up in a predetermined pattern means that the circuit connection adhesive film is observed from above the main surface of the circuit connection adhesive film using, for example, an electron microscope. Can be confirmed by.
  • the first adhesive layer 1 is a cured product of conductive particles 4 (hereinafter, may be referred to as "(A) component”) and a photocurable component (hereinafter, may be referred to as “(B) component”). And a first thermosetting component (hereinafter, may be referred to as “(C) component”).
  • the cured product of the component (B) may be a cured product obtained by completely curing the component (B), or may be a cured product obtained by curing a part of the component (B).
  • the component (C) is a component that can flow at the time of connection, and is, for example, an uncured curable component (for example, a resin component).
  • the components other than the conductive particles 4 constituting the first adhesive layer 1 are, for example, non-conductive components (for example, an insulating resin component).
  • the component (A) is not particularly limited as long as it is a conductive particle, and is a metal particle made of a metal such as Au, Ag, Pd, Ni, Cu, or solder, or a conductive carbon made of conductive carbon. It may be a particle or the like.
  • the component (A) may be a coated conductive particle containing a nucleus containing non-conductive glass, ceramic, plastic (polystyrene, etc.) and the like, and a coating layer containing the metal or conductive carbon and covering the nucleus. good.
  • one kind of conductive particles can be used alone or two or more kinds of conductive particles can be used in combination.
  • the cured product of the thermosetting component can be easily deformed by heating or pressurizing. Therefore, when the electrodes are electrically connected to each other, the electrode and (A) are used.
  • the contact area with the components can be increased, and the conductivity between the electrodes can be further improved.
  • the connection between the electrodes tends to be stronger. This tendency is remarkable when solder particles are used as the component (A).
  • the solder particles may contain at least one selected from the group consisting of tin, tin alloys, indium and indium alloys from the viewpoint of achieving both connection strength and low melting point.
  • tin alloy for example, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi—Ag alloy, Sn—Ag—Cu alloy, Sn—Cu alloy and the like are used. be able to. Specific examples of these tin alloys include the following examples.
  • the indium alloy for example, an In—Bi alloy, an In—Ag alloy, or the like can be used. Specific examples of these indium alloys include the following examples. -In-Bi (In66.3% by mass, Bi33.7% by mass, melting point 72 ° C.) -In-Bi (In33.0% by mass, Bi67.0% by mass, melting point 109 ° C) In-Ag (In97.0% by mass, Ag3.0% by mass, melting point 145 ° C) The above-mentioned indium alloy containing tin shall be classified as a tin alloy.
  • the solder particles are In—Bi alloys, In—Sn alloys, In—Sn—Ag alloys, Sn—Au alloys, Sn—Bi alloys from the viewpoint of obtaining higher reliability during high temperature and high humidity tests and thermal shock tests.
  • Sn-Bi-Ag alloy, Sn-Ag-Cu alloy and Sn-Cu alloy may contain at least one selected from the group.
  • the tin alloy or indium alloy may be selected according to the intended use (temperature at the time of use) of the solder particles. For example, when solder particles are used for fusion at a low temperature, if an In—Sn alloy or a Sn—Bi alloy is used, the solder particles can be fused at 150 ° C. or lower. When a material having a high melting point such as a Sn—Ag—Cu alloy or a Sn—Cu alloy is used, high reliability can be maintained even after being left at a high temperature.
  • the solder particles may contain one or more selected from Ag, Cu, Ni, Bi, Zn, Pd, Pb, Au, P and B.
  • the melting point of the solder particles can be lowered to about 220 ° C., and the bonding strength with the electrode is further improved, so that better conduction reliability can be easily obtained.
  • the Cu content of the solder particles is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass.
  • the Cu content is 0.05% by mass or more, it becomes easy to achieve better solder connection reliability.
  • the Cu content is 10% by mass or less, the melting point is low and the solder particles tend to have excellent wettability, and as a result, the connection reliability of the joint portion by the solder particles tends to be good.
  • the Ag content of the solder particles is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass.
  • the Ag content is 0.05% by mass or more, it becomes easy to achieve better solder connection reliability.
  • the Ag content is 10% by mass or less, the solder particles have a low melting point and excellent wettability, and as a result, the connection reliability of the joint portion by the solder particles tends to be good.
  • the solder particles may have a flat surface on a part of the surface.
  • a wide contact area can be secured between the flat surface portion and the electrode by contacting the flat surface portion of the solder particles with the electrode.
  • adjustment is made so that a flat portion of solder particles is arranged on the latter electrode side. By doing so, the connection between the two electrodes can be suitably performed.
  • the surface of the solder particles other than the flat surface portion may be spherical crown-shaped.
  • the solder particles may have a flat surface portion and a spherical crown-shaped curved surface portion.
  • the solder particles may have a shape in which a flat surface portion having a diameter B is formed on a part of the surface of a sphere having a diameter A.
  • the solder particles When the solder particles have a shape in which a flat portion having a diameter B is formed on a part of the surface of a sphere having a diameter A, the solder particles have a diameter A with respect to the diameter A from the viewpoint of achieving better conduction reliability and insulation reliability.
  • the ratio (B / A) of the diameter B of the flat surface portion may be, for example, more than 0.01 and less than 1.0 (0.01 ⁇ B / A ⁇ 1.0), and may be 0.1 to 0.9. You may.
  • the diameter A of the solder particles and the diameter B of the flat surface portion can be observed by, for example, a scanning electron microscope or the like. Specifically, arbitrary solder particles are observed with a scanning electron microscope, and an image is taken.
  • the diameter A of the solder particles and the diameter B of the flat surface portion are measured, and the B / A of the particles is obtained. This operation is performed on 300 solder particles to calculate an average value, which is used as the B / A of the solder particles.
  • the ratio of Y to X (Y / X). ) May be more than 0.8 and 1.0 or less (0.8 ⁇ Y / X ⁇ 1.0).
  • Such conductive particles can be said to be particles closer to a true sphere.
  • the solder particles tend to be easily accommodated in the recesses of the substrate in the manufacturing method described later.
  • solder particles when solder particles are used among the conductive particles, the solder particles have a shape close to a true sphere, so that when the solder particles and the electrodes are electrically connected to each other via solder, the solder particles and the electrodes are connected to each other. The contact is less likely to be uneven, and a stable connection tends to be obtained.
  • the ratio of Y to X (Y / X) may be greater than 0.8 and less than 1.0 (0.8 ⁇ Y / X ⁇ 1.0) and may be 0.81 to 0.99. ..
  • the projected image of the conductive particles can be obtained, for example, by observing any conductive particles with a scanning electron microscope.
  • the component (A) may be an insulating coated conductive particle containing the above-mentioned metal particles, conductive carbon particles or coated conductive particles, and an insulating material such as a resin, and having an insulating layer covering the surface of the particles. ..
  • the component (A) is an insulating coated conductive particle, even when the content of the component (A) is large, the insulating layer is provided on the surface of the particle, so that the component (A) is short-circuited due to contact with each other. The generation can be suppressed, and the insulation between adjacent electrode circuits can be improved.
  • the average particle size of the component (A) may be 1 ⁇ m or more, 2 ⁇ m or more, or 4 ⁇ m or more from the viewpoint that excellent conductivity can be easily obtained.
  • the average particle size of the component (A) may be 30 ⁇ m or less, 25 ⁇ m or less, or 20 ⁇ m or less from the viewpoint that better connection reliability to a minute-sized electrode can be easily obtained. From these viewpoints, the average particle size of the component (A) may be 1 to 30 ⁇ m, 2 to 25 ⁇ m, or 4 to 20 ⁇ m.
  • the average particle size of the component (A) can be measured by using various methods according to the size. For example, a dynamic light scattering method, a laser diffraction method, a centrifugal sedimentation method, an electrical detection band method, a resonance type mass measurement method, or the like can be used. Further, a method of measuring the particle size from an image obtained by an optical microscope, an electron microscope, or the like can be used. Specific examples include a flow type particle image analyzer, a microtrack, a Coulter counter, and the like.
  • the particle size of the non-spherical component (A) may be the diameter of a circle circumscribing the conductive particles in the SEM image.
  • the value may be 20% or less, 10% or less, 7% or less, or 5% or less from the viewpoint of achieving better conductivity reliability and insulation reliability.
  • the lower limit of the value is not particularly limited, and may be, for example, 0.1% or more, 1% or more, or 2% or more.
  • V. The value is calculated by dividing the standard deviation of the particle size of the conductive particles by the average particle size and multiplying by 100.
  • the standard deviation of the particle size of the conductive particles can be measured by the same method as the above-mentioned method for measuring the average particle size of the conductive particles.
  • the component (A) has an average particle size of 1 to 30 ⁇ m and has a particle size of C.I. V. It may be conductive particles having a value of 20% or less. Such conductive particles have both a small average particle diameter and a narrow particle size distribution, and can be suitably used as conductive particles applied to an anisotropic conductive material having high conductivity reliability and insulation reliability.
  • the content of the component (A) is, for example, 1% by mass or more, 5% by mass or more, or 10% by mass or more, based on the total mass of the first adhesive layer from the viewpoint of further improving the conductivity. May be.
  • the content of the component (A) may be, for example, 80% by mass or less, 70% by mass or less, or 60% by mass or less based on the total mass of the first adhesive layer from the viewpoint of easily suppressing a short circuit. .. From these viewpoints, the content of the component (A) may be, for example, 1 to 80% by mass, 5 to 70% by mass, or 10 to 60% by mass, based on the total mass of the first adhesive layer. ..
  • the particle density of the component (A) in the first adhesive layer 1 is 100 / mm 2 or more, 1000 / mm 2 or more, 3000 / mm 2 or more or 5000 from the viewpoint of obtaining stable connection resistance. It may be / mm 2 or more.
  • the particle density of the component (A) in the first adhesive layer 1 is 100,000 pieces / mm 2 or less, 70,000 pieces / mm 2 or less, 50,000 pieces / mm 2 or less from the viewpoint of improving the insulating property between adjacent electrodes. Alternatively, it may be 30,000 pieces / mm 2 or less.
  • the component (B) is not particularly limited as long as it is a component that is cured by light irradiation (for example, a resin component), but may be a component having radical curability from the viewpoint of better connection resistance.
  • the component (B) contains, for example, a radically polymerizable compound (hereinafter, may be referred to as “(B1) component”) and a photoradical polymerization initiator (hereinafter, may be referred to as “(B2) component”). You may be.
  • the component (B) can be a component composed of the component (B1) and the component (B2).
  • Component (B1) Radical polymerizable compound
  • the component (B1) is a compound (radical polymerizable compound) having a polymerizable group (radical polymerizable group) that reacts with a radical.
  • the radically polymerizable group include a (meth) acryloyl group, a vinyl group, an allyl group, a styryl group, an alkenyl group, an alkenylene group, a maleimide group and the like.
  • the number of radically polymerizable groups (number of functional groups) of the component (B1) is 2 or more from the viewpoint that the desired melt viscosity can be easily obtained after polymerization, the effect of reducing the connection resistance is further improved, and the connection reliability is superior.
  • the component (B1) may contain, for example, a polyfunctional (bifunctional or higher) (meth) acrylate from the viewpoint of suppressing the flow of conductive particles.
  • the polyfunctional (bifunctional or higher) (meth) acrylate may be a bifunctional (meth) acrylate, and the bifunctional (meth) acrylate may be a bifunctional aromatic (meth) acrylate.
  • polyfunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate.
  • Aromatic (meth) acrylates such as acrylates and ethoxylated propoxylated fluorene-type di (meth) acrylates; Aromatic epoxy (meth) acrylates; examples include isocyanurate (meth) acrylates such as caprolactone-modified tris- (2-acryloxyethyl) isocyanurate.
  • the content of the polyfunctional (bifunctional or higher) (meth) acrylate is, for example, 40 to 100, based on the total mass of the component (B1), from the viewpoint of achieving both the effect of reducing the connection resistance and the suppression of particle flow. It may be% by mass, 50 to 100% by mass, or 60 to 100% by mass.
  • the component (B1) may further contain a monofunctional (meth) acrylate in addition to the polyfunctional (bifunctional or higher) (meth) acrylate.
  • a monofunctional (meth) acrylate examples include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl (meth) acrylate.
  • Examples thereof include (meth) acrylate having an alicyclic epoxy group, (meth) acrylate having an oxetanyl group such as (3-ethyloxetane-3-yl) methyl (meth) acrylate, and the like.
  • the content of the monofunctional (meth) acrylate may be, for example, 0 to 60% by mass, 0 to 50% by mass, or 0 to 40% by mass based on the total mass of the component (B1).
  • the cured product of the component (B) may have, for example, a polymerizable group that reacts with a substance other than a radical.
  • the polymerizable group that reacts with a non-radical substance may be, for example, a cationically polymerizable group that reacts with a cation.
  • the cationically polymerizable group include an epoxy group such as a glycidyl group, an alicyclic epoxy group such as an epoxycyclohexylmethyl group, and an oxetanyl group such as an ethyloxetanylmethyl group.
  • the cured product of the component (B) having a polymerizable group that reacts by other than radicals is, for example, a (meth) acrylate having an epoxy group, a (meth) acrylate having an alicyclic epoxy group, and a (meth) acrylate having an oxetanyl group. It can be introduced by using a (meth) acrylate having a polymerizable group that reacts with a non-radical substance such as (B) as a component (B).
  • the (meth) acrylate having a polymerizable group that reacts with a substance other than a radical is represented by the following formula (1) from the viewpoint of cross-linking a radically polymerizable compound with a thermosetting component described later to form a stronger connection portion at the time of connection. ) May be used.
  • R 1 represents a hydrogen atom or a methyl group
  • X represents an alkanediyl group having 1 to 3 carbon atoms.
  • alkanediyl group having 1 to 3 carbon atoms include a methylene group, an ethylene group and a propylene group.
  • Specific examples of the compound represented by the above formula (1) include 3,4-epoxycyclohexylmethyl (meth) acrylate.
  • a radically polymerizable compound having a polymerizable group that reacts with a non-radical substance is a radically polymerizable compound having no polymerizable group that reacts with a non-radical substance from the viewpoint of suppressing curing shrinkage during polymerization.
  • a non-radical substance for example, (meth) acrylate
  • it may be used in combination with (meth) acrylate).
  • the total mass (charged amount) of the components may be, for example, 0 or more, 0.1 or more, 0.2 or more, or 0.3 or more, and 0.7 or less, 0.6. Hereinafter, it may be 0.5 or less or 0.4 or less, and may be 0 to 0.7, 0.1 to 0.6, 0.2 to 0.5 or 0.3 to 0.4.
  • the mass ratio of the (meth) acrylate having a polymerizable group reacting with other than radicals to the (meth) acrylate having no polymerizable group reacting with other than radicals is in the above range. There may be.
  • the component (B1) may contain other radically polymerizable compounds in addition to polyfunctional (bifunctional or higher) and monofunctional (meth) acrylates.
  • examples of other radically polymerizable compounds include maleimide compounds, vinyl ether compounds, allyl compounds, styrene derivatives, acrylamide derivatives, nadiimide derivatives and the like.
  • the content of the other radically polymerizable compound may be, for example, 0 to 40% by mass based on the total mass of the component (B1).
  • Component (B2) Photoradical Polymerization Initiator
  • the component (B2) comprises light containing a wavelength in the range of 150 to 750 nm, preferably light containing a wavelength in the range of 254 to 405 nm, and more preferably a wavelength in the range of 365 nm. It is a photopolymerization initiator (photolatent radical radical generator) that generates a radical by irradiation with light (for example, ultraviolet light).
  • photopolymerization initiator photolatent radical radical generator
  • light for example, ultraviolet light
  • one type may be used alone, or a plurality of them may be used in combination.
  • the component (B2) is decomposed by light to generate free radicals. That is, the component (B2) is a compound that generates radicals by applying light energy from the outside.
  • the component (B2) includes an oxime ester structure, a bisimidazole structure, an acrydin structure, an ⁇ -aminoalkylphenone structure, an aminobenzophenone structure, an N-phenylglycine structure, an acylphosphine oxide structure, a benzyldimethylketal structure, and an ⁇ -hydroxyalkylphenone structure. It may be a compound having a structure such as. As the component (B2), one type may be used alone, or a plurality of them may be used in combination.
  • the component (B2) has an oxime ester structure from the viewpoint of further suppressing the flow of conductive particles and further improving the capture rate, and further suppressing peeling after connection and further suppressing an increase in connection resistance. It may be a compound. From the same viewpoint, the compound having an oxime ester structure may be a compound represented by the following formula (I).
  • R 2 , R 3 and R 4 each independently represent an organic group containing a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aromatic hydrocarbon group.
  • the compound having an oxime ester structure examples include 1-phenyl-1,2-butandion-2- (o-methoxycarbonyl) oxime and 1-phenyl-1,2-propanedione-2- (o-methoxycarbonyl).
  • the content of the component (B2) is, for example, 0.1 to 10 parts by mass, 0.3 to 7 parts by mass, or 0.5 with respect to 100 parts by mass of the component (B1) from the viewpoint of suppressing the flow of conductive particles. It may be up to 5 parts by mass.
  • the content of the cured product of the component (B) is, for example, 1 with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer from the viewpoint of suppressing the flow of the conductive particles. It may be 5 parts by mass or more or 10 parts by mass or more.
  • the content of the cured product of the component (B) is, for example, with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer from the viewpoint of developing low resistance in low-pressure mounting. It may be 30 parts by mass or less, 25 parts by mass or less, or 20 parts by mass or less.
  • the content of the cured product of the component (B) is, for example, 1 to 30 parts by mass with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer. It may be 5 to 25 parts by mass or 10 to 20 parts by mass.
  • the content of the component (B) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the component (C) is not particularly limited as long as it is a component that cures by heat (for example, a resin component), but if the component (B) is a component having radical curability, the component (C) is (C) from the viewpoint of storage stability and the like.
  • the component may be a component having no radical curability.
  • the thermosetting component is composed of radicals remaining in the first adhesive layer during storage. Curing may proceed.
  • non-radical curable component examples include a cationically curable component (for example, a cationically polymerizable compound and a thermally cationic polymerization initiator) and a component having an anionic curable property (anionic polymerizable compound and a thermally anionic polymerization initiator).
  • a cationically curable component for example, a cationically polymerizable compound and a thermally cationic polymerization initiator
  • anionic curable property anionic polymerizable compound and a thermally anionic polymerization initiator
  • the component (C) may be a cationically curable component from the viewpoint of being superior in connection resistance, and for example, a cationically polymerizable compound (hereinafter, may be referred to as “(C1) component”) and thermal cationic polymerization initiation. It may contain an agent (hereinafter, may be referred to as "(C2) component”).
  • the component (C) can be a component consisting only of the component (C1) and the component (C2).
  • Component (C1) Cationicly polymerizable compound
  • the component (C1) is a compound that crosslinks by reacting with the component (C2) by heat.
  • the component (C1) means a compound having no radically polymerizable group, and the component (C1) is not included in the component (B1).
  • the component (C1) may be used alone or in combination of two or more.
  • the component (C1) may be a compound having a cyclic ether group from the viewpoint of further improving the effect of reducing the connection resistance and improving the connection reliability.
  • the effect of reducing the connection resistance tends to be further improved.
  • the component (C1) may contain both at least one oxetane compound and at least one alicyclic epoxy compound from the viewpoint that the desired melt viscosity can be easily obtained.
  • the oxetane compound as the component (C1) can be used without particular limitation as long as it is a compound having an oxetane group and no radically polymerizable group.
  • examples of commercially available oxetane compounds include ETERNACOLL OXBP (trade name, 4,4'-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, manufactured by Ube Kosan Co., Ltd.), OXSQ, OXT-121, and the like. Examples thereof include OXT-221, OXT-101, and OXT-212 (trade name, manufactured by Toagosei Co., Ltd.). These may use one kind of compound alone or may use a plurality of compounds in combination.
  • the alicyclic epoxy compound as the component (C1) can be used without particular limitation as long as it is a compound having an alicyclic epoxy group (for example, an epoxycyclohexyl group) and no radical polymerizable group.
  • Commercially available alicyclic epoxy compounds include seroxide 8010 (trade name, B-7-oxavicyclo [4.1.0] heptane, manufactured by Daicel Corporation), for example, EHPE3150, EHPE3150CE, seroxide 2021P, and seroxide. 2081 (trade name, manufactured by Daicel Corporation) and the like can be mentioned. These may use one kind of compound alone or may use a plurality of compounds in combination.
  • an epoxy compound having an aromatic hydrocarbon group such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin (for example, trade names "jER1010” and "YL983U” manufactured by Mitsubishi Chemical Corporation). Can also be used.
  • the epoxy compound having an aromatic hydrocarbon group may be used in combination with the alicyclic epoxy compound from the viewpoint of further improving the effect of reducing the connection resistance and improving the connection reliability.
  • Component (C2) Thermal cation polymerization initiator
  • the component (C2) is a thermal polymerization initiator (thermal latent cation generator) that initiates polymerization by generating an acid or the like by heating.
  • the component (C2) may be a salt compound composed of a cation and an anion.
  • the component (C2) is, for example, BF 4- , BR 4- ( R indicates a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups) , PF 6- , SbF 6- .
  • sulfonium salt phosphonium salt, ammonium salt, diazonium salt, iodonium salt, anilinium salt, onium salt such as pyridinium salt and the like.
  • phosphonium salt ammonium salt
  • diazonium salt diazonium salt
  • iodonium salt anilinium salt
  • onium salt such as pyridinium salt and the like.
  • the component (C2) may be, for example, a salt compound having an anion containing boron as a constituent element from the viewpoint of quick curing.
  • a salt compound include salt compounds having BF 4- or BR 4- ( R indicates a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups). Be done.
  • the anion containing boron as a constituent element may be BR 4- , and more specifically, tetrakis (pentafluorophenyl) borate.
  • the component (C2) may be a salt compound having a cation represented by the following formula (II) or the following formula (III) from the viewpoint of storage stability.
  • R 5 and R 6 each independently represent an organic group containing a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aromatic hydrocarbon group having or not substituted.
  • R 7 represent an alkyl group having 1 to 6 carbon atoms.
  • the salt compound having a cation represented by the formula (II) may be an aromatic sulfonium salt compound (aromatic sulfonium salt type thermoacid generator) from the viewpoint of achieving both storage stability and low temperature activity. That is, at least one of R5 and R6 in the formula (II) may be an organic group having a substituent or containing an unsubstituted aromatic hydrocarbon group.
  • the anion in the salt compound having a cation represented by the formula (II) may be an anion containing antimony as a constituent element, and may be, for example, hexafluoroantimonate (hexafluoroantimonic acid).
  • Specific examples of the compound having a cation represented by the formula (II) include 1-naphthylmethyl-p-hydroxyphenylsulfonium hexafluoroantimonate (manufactured by Sanshin Chemical Co., Ltd., SI-60 main agent) and the like.
  • R 8 and R 9 each independently represent an organic group containing a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aromatic hydrocarbon group having or not substituted.
  • R 10 and R 11 each independently represent an alkyl group having 1 to 6 carbon atoms.
  • the salt compound having a cation represented by the formula (III) is, for example, an anilinium salt compound because it has resistance to a substance that can cause curing inhibition to cation curing. It's okay. That is, at least one of R 8 and R 9 in the formula (III) may be an organic group having a substituent or containing an unsubstituted aromatic hydrocarbon group.
  • the anilinium salt compound include N, N-dialkylanilinium salts such as N, N-dimethylanilinium salt and N, N-diethylanilinium salt.
  • the anion in the salt compound having a cation represented by the formula (III) may be an anion containing boron as a constituent element, and may be, for example, tetrakis (pentafluorophenyl) borate.
  • the compound having a cation represented by the formula (III) may be an anilinium salt having an anion containing boron as a constituent element.
  • examples of commercially available products of such salt compounds include CXC-1821 (trade name, manufactured by King Industries) and the like.
  • the content of the component (C2) is, for example, 0. It may be 1 to 20 parts by mass, 1 to 18 parts by mass, 3 to 15 parts by mass, or 5 to 12 parts by mass.
  • the content of the component (C) is the total amount of the components other than the component (A) in the first adhesive layer from the viewpoint of ensuring the curability of the adhesive film for forming the first adhesive layer. It may be, for example, 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, or 20 parts by mass or more with respect to 100 parts by mass.
  • the content of the component (C) is the total amount of the components other than the component (A) in the first adhesive layer from the viewpoint of ensuring the formability of the adhesive film for forming the first adhesive layer. For example, it may be 70 parts by mass or less, 60 parts by mass or less, 50 parts by mass or less, or 40 parts by mass or less with respect to 100 parts by mass.
  • the content of the component (C) is, for example, 5 to 70 parts by mass and 10 to 60 parts by mass with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer. It may be parts by mass, 15 to 50 parts by mass, or 20 to 40 parts by mass.
  • the content of the component (C) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the first adhesive layer 1 may further contain other components in addition to the component (A), the cured product of the component (B), and the component (C).
  • other components include a thermoplastic resin (hereinafter, may be referred to as “(D) component”), a coupling agent (hereinafter, may be referred to as “(E) component”), and a filler. (Hereinafter, it may be referred to as "(F) component”.) And the like.
  • the component (D) examples include phenoxy resin, polyester resin, polyamide resin, polyurethane resin, polyester urethane resin, acrylic rubber, epoxy resin (solid at 25 ° C.) and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • the composition layer can be easily formed from the composition. Can be done.
  • the phenoxy resin include a fluorene type phenoxy resin, a bisphenol A / bisphenol F copolymer type phenoxy resin, and the like.
  • the weight average molecular weight (Mw) of the component (D) may be, for example, 5000 to 200,000, 10000 to 100,000, 20000 to 80000 or 40,000 to 60000 from the viewpoint of resin exclusion during mounting.
  • Mw means a value measured by gel permeation chromatography (GPC) and converted using the calibration curve by standard polystyrene.
  • the content of the component (D) is, for example, 1 part by mass or more, 5 parts by mass or more, and 10 parts by mass or more with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer. Alternatively, it may be 20 parts by mass or more, 70 parts by mass or less, 60 parts by mass or less, 50 parts by mass or less, or 40 parts by mass or less, and may be 1 to 70 parts by mass, 5 to 60 parts by mass, or 10 to 50 parts by mass. It may be parts or 20 to 40 parts by mass.
  • the content of the component (D) in the composition or the composition layer for forming the first adhesive layer may be the same as the above range.
  • the component (E) examples include a silane coupling agent having an organic functional group such as a (meth) acryloyl group, a mercapto group, an amino group, an imidazole group, and an epoxy group ( ⁇ -glycidoxypropyltrimethoxysilane, etc.).
  • a silane compound such as tetraalkoxysilane, a tetraalkoxy titanate derivative, and a polydialkyl titanate derivative. These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • the component (E) may be, for example, a silane coupling agent.
  • the content of the component (E) may be, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer.
  • the content of the component (E) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the component (F) include non-conductive fillers (for example, non-conductive particles).
  • the component (F) may be either an inorganic filler or an organic filler.
  • the inorganic filler include metal oxide fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles; and inorganic fine particles such as metal nitride fine particles.
  • the organic filler include organic fine particles such as silicone fine particles, methacrylate / butadiene / styrene fine particles, acrylic / silicone fine particles, polyamide fine particles, and polyimide fine particles. These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • the component (F) may be, for example, silica fine particles.
  • the content of the component (F) may be, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer.
  • the content of the component (F) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the first adhesive layer 1 may further contain other additives such as a softener, an accelerator, a deterioration inhibitor, a colorant, a flame retardant, and a thixotropic agent as other components.
  • the content of the other additives may be, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer.
  • the content of the composition for forming the first adhesive layer or other additives in the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
  • the thickness d1 of the first adhesive layer 1 is, for example, 0.5 ⁇ m or more, 1.0 ⁇ m or more, or 2.0 ⁇ m or more from the viewpoint of transferability of the conductive particles 4 at the time of manufacturing the adhesive film for circuit connection. It may be there.
  • the thickness d1 of the first adhesive layer 1 is, for example, 5.0 ⁇ m or less, 4.0 ⁇ m or less, or 3.0 ⁇ m or less from the viewpoint of being able to capture conductive particles more efficiently at the time of connection. good. From these viewpoints, the thickness d1 of the first adhesive layer 1 may be, for example, 0.5 to 5.0 ⁇ m, 1.0 to 4.0 ⁇ m, or 2.0 to 3.0 ⁇ m. As shown in FIG.
  • the first adhesive layer 1 and the second adhesive layer 2 located at the separated portions of the adjacent conductive particles 4 and 4 from the surface 1a of the adhesive layer 1 opposite to the second adhesive layer 2 side.
  • the distance to the boundary S with and is the thickness of the first adhesive layer 1, and the exposed portion of the conductive particles 4 is included in the thickness of the first adhesive layer 1. I can't.
  • the thickness d1 of the first adhesive layer 1 is, for example, a bisphenol A type epoxy resin (trade name: jER811, manufactured by Mitsubishi Chemical Co., Ltd.) in which an adhesive film is sandwiched between two sheets of glass (thickness: about 1 mm).
  • a resin composition consisting of 100 g and 10 g of a curing agent (trade name: Epomount curing agent, manufactured by Refine Tech Co., Ltd.)
  • the cross section is polished using a polishing machine, and a scanning electron microscope (SEM, product) is used.
  • SEM scanning electron microscope
  • SE-8020 manufactured by Hitachi High-Tech Science Co., Ltd.
  • the second adhesive layer 2 is, for example, an insulating adhesive layer composed of a component having no conductivity (insulating resin component).
  • the second adhesive layer 2 contains at least the component (C).
  • thermosetting component may be the same as or different from the first thermosetting component.
  • the content of the component (C) is, for example, 5% by mass or more, 10% by mass or more, 15% by mass or more, or 20% by mass, based on the total mass of the second adhesive layer from the viewpoint of maintaining reliability. That may be the above.
  • the content of the component (C) is, for example, 70% by mass or less, 60% by mass, based on the total mass of the second adhesive layer, from the viewpoint of preventing the resin seepage defect in the reel, which is one aspect of the supply form. % Or less, 50% by mass or less, or 40% by mass or less. From these viewpoints, the content of the component (C) is, for example, 5 to 70% by mass, 10 to 15% by mass, 15 to 50% by mass, or 20 to 40, based on the total mass of the second adhesive layer. It may be% by mass.
  • the second adhesive layer 2 may further contain other components ((D) component, (E) component, (F) component, other additives, etc.) in the first adhesive layer 1. .. Preferred embodiments of the other components are the same as the preferred embodiments of the first adhesive layer 1.
  • the content of the component (D) may be, for example, 1% by mass or more, 5% by mass or more, or 10% by mass or more, and 80% by mass or less, 60% by mass, based on the total mass of the second adhesive layer. % Or less or 40% by mass or less, and may be 1 to 80% by mass, 5 to 60% by mass, or 10 to 40% by mass.
  • the content of the component (E) may be, for example, 0.1 to 10% by mass based on the total mass of the second adhesive layer.
  • the content of the component (F) may be, for example, 1% by mass or more, 10% by mass or more, or 30% by mass or more, and 90% by mass or less, 70% by mass, based on the total mass of the second adhesive layer. % Or less or 50% by mass or less, and may be 1 to 90% by mass or less, 10 to 70% by mass or less, or 30 to 50% by mass.
  • the content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the second adhesive layer.
  • the thickness d2 of the second adhesive layer 2 may be appropriately set according to the height of the electrodes of the circuit member to be connected and the like.
  • the thickness d2 of the second adhesive layer 2 can sufficiently fill the space between the electrodes to seal the electrodes, and from the viewpoint of obtaining better connection reliability, for example, 2 ⁇ m or more and 5 ⁇ m. It may be more than or equal to 10 ⁇ m, may be 30 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less, and may be 2 to 30 ⁇ m, 5 to 20 ⁇ m, or 10 to 15 ⁇ m. As shown in FIG.
  • the second adhesive layer 2 when a part of the conductive particles 4 is exposed from the surface of the first adhesive layer 1 (for example, protruding toward the second adhesive layer 2), the second adhesive layer 2 is exposed.
  • the first adhesive layer 1 and the second adhesive layer 2 located at the separated portions of the adjacent conductive particles 4 and 4 from the surface 2a of the adhesive layer 2 opposite to the first adhesive layer 1 side.
  • the distance to the boundary S with and (the distance indicated by d2 in FIG. 1) is the thickness of the second adhesive layer 2.
  • the thickness d2 of the second adhesive layer 2 can be obtained, for example, in the same manner as the method for measuring the thickness d1 of the first adhesive layer 1 described above.
  • the thickness of the circuit connection adhesive film 10A (the total thickness of all the layers constituting the circuit connection adhesive film 10A) may be, for example, 2.5 ⁇ m or more, 6 ⁇ m or more, or 12 ⁇ m or more, and may be 35 ⁇ m. Hereinafter, it may be 24 ⁇ m or less or 18 ⁇ m or less, and may be 2.5 to 35 ⁇ m, 6 to 24 ⁇ m, or 12 to 24 ⁇ m.
  • the circuit connection adhesive film 10A is an adhesive film used for circuit connection.
  • the circuit connection adhesive film 10A may or may not have anisotropic conductivity. That is, the adhesive film for circuit connection may be an anisotropically conductive adhesive film or a non-anisotropically conductive (for example, isotropically conductive) adhesive film.
  • the circuit connection adhesive film 10A is formed on the surface of the first circuit member having the first electrode on which the first electrode is provided and the second circuit member of the second circuit member having the second electrode. A state in which the laminate including the first circuit member, the circuit connection adhesive film 10A, and the second circuit member is pressed between the surfaces provided with the electrodes in the thickness direction of the laminate.
  • the first electrode and the second electrode are electrically connected to each other via conductive particles (or molten solidified of conductive particles), and the first circuit member and the second circuit member are connected to each other. It may be used for bonding.
  • anisotropic conductivity means that the material conducts in the pressurized direction and maintains the insulating property in the non-pressurized direction.
  • thermosetting component ensures the removal of the resin at the time of connection, while the cured product of the photocurable component suppresses the fluidity of the conductive particles at the time of connection and is connected. It is possible to improve the capture rate of conductive particles between the electrodes. Therefore, according to the circuit connection adhesive film 10A, it is possible to obtain a connection structure in which short circuits are less likely to occur and the conductivity between the electrodes is also excellent.
  • circuit connection adhesive film of one embodiment has been described above, the present invention is not limited to the above embodiment.
  • the circuit connection adhesive film has a component (C) on the opposite side of the first adhesive layer 1 from the second adhesive layer 2, as in the circuit connection adhesive film 10B shown in FIG. 4, for example.
  • a third adhesive layer 5 containing (thermosetting component) may be provided.
  • the third adhesive layer 5 is, for example, an insulating adhesive layer composed of a component having no conductivity (insulating resin component).
  • the circuit connection adhesive film 10B has the same configuration as the circuit connection adhesive film 10A except that the third adhesive layer 5 is laminated.
  • the third thermosetting component may contain a component (C1) (ie, a cationically polymerizable compound) and a component (C2) (ie, a thermally cationic polymerization initiator). Since the (C1) component and the (C2) component used in the third thermosetting component are the same as the (C1) component and the (C2) component used in the first thermosetting component, here. Then, detailed explanation is omitted.
  • the third thermosetting component may be the same as or different from the first thermosetting component.
  • the third thermosetting component may be the same as or different from the second thermosetting component.
  • the content of the component (C) is, for example, 5% by mass or more, 10% by mass or more, and 15% by mass based on the total mass of the third adhesive layer from the viewpoint of imparting good transferability and peeling resistance. % Or more or 20% by mass or more.
  • the content of the component (C) is, for example, 70% by mass based on the total mass of the third adhesive layer from the viewpoint of imparting good half-cut property and blocking resistance (suppression of resin seepage of the reel). Hereinafter, it may be 60% by mass or less, 50% by mass or less, or 40% by mass or less. From these viewpoints, the content of the component (C) is, for example, 5 to 70% by mass, 10 to 60% by mass, 15 to 50% by mass, or 20 to 40, based on the total mass of the third adhesive layer. It may be% by mass.
  • the third adhesive layer 5 may further contain other components in the first adhesive layer 1. Preferred embodiments of the other components are the same as the preferred embodiments of the first adhesive layer 1.
  • the content of the component (D) may be, for example, 10% by mass or more, 20% by mass or more, or 30% by mass or more, and 80% by mass or less, 70% by mass, based on the total mass of the third adhesive layer. It may be% or less or 60% by mass or less, and may be 10 to 80% by mass, 20 to 70% by mass or 30 to 60% by mass.
  • the content of the component (E) may be, for example, 0.1 to 10% by mass based on the total mass of the third adhesive layer.
  • the content of the component (F) may be, for example, 1% by mass or more, 3% by mass or more, or 5% by mass or more, and 50% by mass or less, 40% by mass, based on the total mass of the third adhesive layer. % Or less or 30% by mass or less, and may be 1 to 50% by mass, 3 to 40% by mass, or 5 to 30% by mass.
  • the content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the third adhesive layer.
  • the thickness d3 of the third adhesive layer 5 may be appropriately set according to the height of the electrodes of the circuit member to be adhered.
  • the thickness d3 of the third adhesive layer 5 can sufficiently fill the space between the electrodes to seal the electrodes, and from the viewpoint of obtaining better connection reliability, for example, 0.1 ⁇ m or more. , 0.5 ⁇ m or more or 1.0 ⁇ m or more, 10 ⁇ m or less, 5.0 ⁇ m or less or 2.5 ⁇ m or less, 0.1 to 10 ⁇ m, 0.5 to 5.0 ⁇ m or 1.0 to It may be 2.5 ⁇ m.
  • the thickness d3 of the third adhesive layer 5 is the second adhesion in the first adhesive layer 1 from the surface 5a of the third adhesive layer 5 opposite to the side of the first adhesive layer 1.
  • the thickness of the circuit connection adhesive film (for circuit connection).
  • the total thickness of all the layers constituting the adhesive film may be the same as the thickness of the circuit connection adhesive film 10A described above can be taken.
  • the method for manufacturing an adhesive film for circuit connection is to prepare a substrate having a plurality of recesses on the surface and having conductive particles arranged in at least a part of the plurality of recesses (preparation step) and the surface of the substrate (preparation step).
  • a composition layer containing a photocurable component and a first thermosetting component on the surface on which the recess is formed
  • the conductive particles are transferred to the composition layer (transfer step).
  • a first adhesive layer containing a plurality of conductive particles, a cured product of a photocurable component, and a first thermosetting component is formed (light irradiation step).
  • a second adhesive layer containing a second thermosetting component is provided on one surface of the first adhesive layer (lamination step).
  • FIG. 5 is a diagram schematically showing a vertical cross section of a substrate used in a method for manufacturing an adhesive film 10A for circuit connection.
  • FIG. 6 is a diagram showing a modified example of the cross-sectional shape of the recess of the substrate of FIG.
  • FIG. 7 is a cross-sectional view schematically showing a state in which the conductive particles 4 are arranged in the recesses of the substrate of FIG.
  • FIG. 8 is a cross-sectional view schematically showing an example of the preparation process.
  • FIG. 9 is a cross-sectional view schematically showing an example of the transfer process.
  • FIG. 10 is a cross-sectional view schematically showing an example of a light irradiation process.
  • a substrate 6 having a plurality of recesses 7 on the surface is prepared (see FIG. 5).
  • the substrate 6 has a plurality of recesses 7.
  • the plurality of recesses 7 are regularly arranged, for example, in a predetermined pattern (for example, a pattern corresponding to an electrode pattern of a circuit member).
  • a predetermined pattern for example, a pattern corresponding to an electrode pattern of a circuit member.
  • the conductive particles 4 are transferred to the composition layer in a predetermined pattern. Therefore, a circuit connection adhesive film 10A in which the conductive particles 4 are regularly arranged in a predetermined pattern (a pattern as shown in FIGS. 2 and 3) can be obtained.
  • the recess 7 of the substrate 6 may be formed in a tapered shape in which the opening area expands from the bottom 7a side of the recess 7 toward the surface 6a side of the substrate 6. That is, the width of the bottom portion 7a of the recess 7 (width a in FIG. 5) may be narrower than the width of the opening of the recess 7 (width b in FIG. 5).
  • the size of the recess 7 can be set according to the size of the target conductive particles and the position of the conductive particles in the circuit connection adhesive film.
  • the width (width b) of the opening of the recess 7 may be larger than the maximum particle diameter of the conductive particles 4 and may be less than twice the maximum particle diameter of the conductive particles.
  • the shape of the recess 7 (the cross-sectional shape of the recess 7) in the vertical cross section of the substrate 6 may be, for example, the shape shown in FIGS. 6A to 6H.
  • the width (width b) of the opening of the recess 7 is the maximum width in the cross-sectional shape.
  • the shape of the opening of the recess 7 may be a circle, an ellipse, a triangle, a quadrangle, a polygon, or the like.
  • the recess 7 of the substrate 6 can be formed by a known method such as lithography or machining. In these methods, the size and shape of the recess can be freely designed.
  • the material constituting the substrate 6 for example, an inorganic material such as a metal such as silicon, various ceramics, glass, and stainless steel, and an organic material such as various resins can be used.
  • the conductive particles 4 can be arranged in the recesses 7 of the substrate 6 by forming the conductive particles 4 in the recesses 7 of the substrate 6.
  • the substrate 6 can be arranged. May have heat resistance that does not deteriorate at the melting temperature of the fine particles (for example, solder fine particles) used for forming the conductive particles 4.
  • the conductive particles 4 (component (A) above) are arranged (accommodated) in at least a part (part or all) of the plurality of recesses 7 of the substrate 6 (see FIG. 7).
  • the method of arranging the conductive particles 4 is not particularly limited.
  • the arrangement method may be either dry type or wet type.
  • the conductive particles 4 are placed on the surface 6a of the substrate 6, and the surface 6a of the substrate 6 is rubbed with a squeegee or a fine adhesive roller to remove the excess conductive particles 4 while removing the conductive particles in the recess 7. 4 can be arranged.
  • a squeegee When the width b of the opening of the recess 7 is larger than the depth of the recess 7, conductive particles may pop out from the opening of the recess 7.
  • a squeegee is used, conductive particles protruding from the opening of the recess 7 are removed.
  • a method for removing excess conductive particles there is also a method of rubbing the surface 6a of the substrate 6 with a non-woven fabric or a bundle of fibers by blowing compressed air. Since these methods have a weaker physical force than squeegees, they are preferable in handling easily deformable particles (for example, solder particles) as conductive particles.
  • the conductive particles 4 may be arranged in the recesses 7 by forming the conductive particles 4 (solder particles) in the recesses 7 of the substrate 6.
  • fine particles 8 (solder fine particles) for forming conductive particles 4 are housed in the recesses 7 and then housed in the recesses 7.
  • the conductive particles 4 can be formed in the recess 7.
  • the fine particles 8 housed in the recess 7 are united by melting and spheroidized by surface tension.
  • the molten metal has a shape that follows the bottom portion 7a. Therefore, for example, when the bottom portion 7a of the recess 7 has a flat shape as shown in FIG. 8A, the conductive particles 4 are flat on a part of the surface as shown in FIG. 8B. It has a part 4a.
  • the fine particles 8 may be accommodated in the recesses 7, and the particle size distribution may vary widely or the shape may be distorted.
  • Examples of the method of melting the fine particles 8 contained in the recess 7 include a method of heating the fine particles 8 to a temperature higher than the melting point of the material forming the fine particles.
  • the fine particles 8 may not melt, do not spread, or do not coalesce even when heated at a temperature equal to or higher than the melting point due to the influence of the oxide film. Therefore, the fine particles 8 may be exposed to a reducing atmosphere to remove the surface oxide film of the fine particles 8, and then heated to a temperature equal to or higher than the melting point of the fine particles 8. This facilitates melting, wetting and spreading the fine particles 8 and unifying them. From the same viewpoint, the fine particles 8 may be melted in a reducing atmosphere.
  • the method for creating a reducing atmosphere is not particularly limited as long as the above effect can be obtained, and for example, there is a method using hydrogen gas, hydrogen radical, formic acid gas and the like.
  • a hydrogen reduction furnace, a hydrogen radical reduction furnace, a formic acid reduction furnace, or a conveyor furnace or a continuous furnace thereof the fine particles 8 can be melted in a reducing atmosphere.
  • These devices may be equipped with a heating device, a chamber filled with an inert gas (nitrogen, argon, etc.), a mechanism for evacuating the inside of the chamber, etc., which makes it easier to control the reduced gas. Become. Further, if the inside of the chamber can be evacuated, the voids can be removed by reducing the pressure after the fine particles 8 are melted and united, and the conductive particles 4 having further excellent connection stability can be obtained.
  • the profile of the reduction of the fine particles 8, the melting conditions, the temperature, the adjustment of the atmosphere in the furnace, etc. may be appropriately set in consideration of the melting point of the fine particles 8, the particle size, the size of the recess, the material of the substrate 6, and the like.
  • conductive particles 4 having a substantially uniform size can be formed regardless of the material and shape of the fine particles 8. Further, since the size and shape of the conductive particles 4 depend on the amount of fine particles 8 accommodated in the recesses 7, the shape of the recesses 7, and the like, the conductive particles 4 are designed by designing the recesses 7 (adjusting the size, shape, etc. of the recesses). Conductive particles that can be freely designed in size and shape and have a desired particle size distribution (for example, conductive particles having an average particle size of 1 to 30 ⁇ m and a CV value of the particle size of 20% or less). Can be easily prepared.
  • the above method is particularly suitable when the conductive particles 4 are indium-based solder particles.
  • Indium-based solder can be deposited by plating, but it is difficult to precipitate it in the form of particles, and it is a soft and difficult material to handle.
  • indium-based solder fine particles as a raw material, indium-based solder particles having a substantially uniform particle size can be easily produced.
  • the substrate 6 can be handled with the conductive particles 4 arranged (accommodated) in the recesses 7.
  • the conductive particles 4 can be easily taken out, so that deformation when the conductive particles 4 are collected, surface-treated, or the like can be easily prevented.
  • a photocurable component (component (B) above) and a first thermosetting component (component (C) above) are contained on the surface of the substrate 6 (the surface on which the recess 7 is formed).
  • the composition layer 9 containing the component (B) and the component (C) is formed on the support 11 to obtain the laminated film 12, and then the recess 7 of the substrate 6 is formed.
  • the surface (surface of the substrate 6) 6a and the surface of the laminated film 12 on the composition layer 9 side (surface 9a on the side opposite to the support 11 of the composition layer 9) are opposed to the substrate 6 and the composition. Bring it closer to layer 9 (see (a) in FIG. 9).
  • the composition layer 9 is brought into contact with the surface (the surface on which the recess 7 is formed) 6a of the substrate 6, and the conductive particles 4 are transferred to the composition layer 9. do.
  • a particle transfer layer 13 including the composition layer 9 and the conductive particles 4 having at least a part embedded in the composition layer 9 is obtained (see (b) of FIG. 9).
  • the conductive particles 4 have a flat surface portion 4a corresponding to the shape of the bottom portion of the concave portion 7, and the flat surface portion 4a faces the opposite side to the support 11. In the state, it is arranged in the composition layer 9.
  • the composition layer 9 is prepared by dissolving or dispersing the component (B) and the component (C), and other components added as necessary by stirring and mixing, kneading, etc. in an organic medium.
  • Can be formed using a varnish composition (a varnish-like first adhesive composition).
  • the varnish composition is applied onto the support 11 (for example, a base material that has been subjected to a mold release treatment) using a knife coater, a roll coater, an applicator, a comma coater, a die coater, or the like, and then heated.
  • the composition layer 9 can be formed by volatilizing the organic medium.
  • the thickness of the finally obtained first adhesive layer (first adhesive film) can be adjusted by adjusting the coating amount of the varnish composition.
  • the organic medium used in the preparation of the varnish composition is not particularly limited as long as it has the property of being able to dissolve or disperse each component substantially uniformly.
  • examples of such an organic medium include toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate and the like. These organic media can be used alone or in combination of two or more.
  • Stirring and mixing or kneading in the preparation of the varnish composition can be carried out by using, for example, a stirrer, a raider, a three-roll, a ball mill, a bead mill, a homodisper or the like.
  • the support 11 is not particularly limited as long as it has heat resistance that can withstand the heating conditions when volatilizing the organic medium.
  • the support 11 may be a plastic film or a metal foil.
  • Examples of the support 11 include stretched polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polyvinylidene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, polyimide, cellulose, and ethylene.
  • a substrate for example, a film
  • a substrate made of a vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, a synthetic rubber, a liquid crystal polymer, or the like may be used.
  • the heating conditions for volatilizing the organic medium from the varnish composition applied to the base material can be appropriately set according to the organic medium to be used and the like.
  • the heating conditions may be, for example, 40 to 120 ° C. for 0.1 to 10 minutes.
  • Examples of the method of laminating the laminated film 12 and the substrate 6 include a heat press, a roll laminating, and a vacuum laminating method. Lamination can be performed, for example, under temperature conditions of 0 to 80 ° C.
  • the composition layer 9 may be formed by directly applying the varnish composition to the substrate 6, but by using the laminated film 12 as in the above method, the support 11 and the composition layer 9 may be formed. It becomes easy to obtain a particle transfer layer 13 in which the conductive particles 4 and the conductive particles 4 are integrated, and there is a tendency that the light irradiation step described later can be easily carried out.
  • the composition layer 9 (particle transfer layer 13) is irradiated with light (active light rays) to cure the component (B) in the composition layer 9 to form the first adhesive layer 1. (See FIG. 10).
  • irradiation light for example, ultraviolet light
  • Light irradiation can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, an LED light source, or the like.
  • the integrated amount of light to be irradiated can be appropriately set, and may be, for example, 500 to 3000 mJ / cm 2 .
  • FIG. 10A As shown by the arrow in FIG. 10A, in FIG. 10A, light is irradiated from the side opposite to the support 11 (the side in which the conductive particles 4 are transferred in the composition layer 9). However, when the support 11 transmits light, the light may be irradiated from the support 11 side. Further, in FIG. 10A, light irradiation is performed after the substrate 6 and the particle transfer layer 13 are separated, but light irradiation may be performed before the separation of the substrate 6. In this case, light may be irradiated after the support 11 is peeled off.
  • the second adhesive layer 2 is provided on the surface of the first adhesive layer 1 opposite to the support 11 (the side in which the conductive particles 4 are transferred in the composition layer 9).
  • the circuit connection adhesive film 10A shown in FIG. 1 is obtained.
  • the second adhesive layer 2 replaces the varnish-like first adhesive composition with a second thermosetting component (component (C) above) and other components added as needed.
  • the composition layer 9 is used as a substrate, except that a varnish composition (a varnish-like second adhesive composition) prepared by dissolving or dispersing by stirring and mixing, kneading, etc. in an organic medium is used. It can be provided on the first adhesive layer 1 in the same manner as the method provided on 6. That is, the second adhesive layer is placed on the first adhesive layer 1 by adhering the laminated film obtained by forming the second adhesive layer 2 on the support and the first adhesive layer 1. 2 may be provided, and the second adhesive layer 2 may be provided on the first adhesive layer 1 by directly applying the varnish-like second adhesive composition to the first adhesive layer 1. good.
  • the laminating step by providing the second adhesive layer 2 on the surface opposite to the support 11 as in the above method, the adhesive film for circuit connection to the circuit member is improved and connected. It can be expected to suppress peeling at times.
  • the second adhesive layer 2 may be provided on the surface on the side where the support 11 is provided after the support 11 is peeled off. In this case, the laminating step may be performed before the light irradiation step or may be performed before the transfer step.
  • a third adhesive layer is provided on a surface of the first adhesive layer opposite to the second adhesive layer (second laminating step). ) May be further included.
  • a circuit connection adhesive film (for example, the circuit connection adhesive film 10B shown in FIG. 4) further including a third adhesive layer is obtained.
  • a composition containing a third thermosetting component (the above component (C)) and other components added as needed (the above-mentioned component (C)).
  • a third adhesive layer is provided on the first adhesive layer in the same manner as in the above-mentioned laminating step (first laminating step) for providing the second adhesive layer, except that the third adhesive composition) is provided.
  • An adhesive layer can be provided.
  • the second laminating step may be carried out before the first laminating step.
  • connection structure circuit connection structure
  • method for manufacturing the same will be described by taking as an example an embodiment in which the above-mentioned adhesive film 10A for circuit connection is used as the circuit connection material.
  • FIG. 11 is a schematic cross-sectional view showing an embodiment of the connection structure.
  • the connection structure 100 includes a first circuit member 23 having a first electrode 22 formed on the main surface 21a of the first circuit board 21 and the first circuit board 21.
  • a second circuit member 26 having a second electrode 25 formed on the main surface 24a of the second circuit board 24 and the second circuit board 24, and a cured body of the circuit connection adhesive film 10A are included.
  • the first electrode 22 and the second electrode 25 are electrically connected to each other via the conductive particles 4 (or the molten solidified product of the conductive particles 4), and the first circuit member 23 and the second circuit member 26 It is provided with a connection portion 27 for adhering the above.
  • the first circuit member 23 and the second circuit member 26 may be the same or different from each other.
  • the first circuit member 23 and the second circuit member 26 are a glass substrate or a plastic substrate on which a circuit electrode is formed; a printed wiring board; a ceramic wiring board; a flexible wiring board; an IC chip such as a drive IC, or the like. It's okay.
  • the first circuit board 21 and the second circuit board 24 may be made of an inorganic substance such as semiconductor, glass, or ceramic, an organic substance such as polyimide or polycarbonate, or a composite such as glass / epoxy.
  • the first circuit board 21 may be a plastic substrate.
  • the first circuit member 23 may be, for example, a plastic substrate (a plastic substrate made of an organic substance such as polyimide, polycarbonate, polyethylene terephthalate, or cycloolefin polymer) on which a circuit electrode is formed, and may be a second circuit.
  • the member 26 may be, for example, an IC chip such as a drive IC.
  • a display region is formed by regularly arranging a pixel drive circuit such as an organic TFT or a plurality of organic EL elements R, G, and B on the plastic substrate in a matrix. It may be the one.
  • the first electrode 22 and the second electrode 25 are gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, aluminum, molybdenum, titanium and other metals, indium tin oxide (ITO), and the like. It may be an electrode containing an oxide such as indium zinc oxide (IZO) or indium gallium zinc oxide (IGZO).
  • the first electrode 22 and the second electrode 25 may be electrodes formed by laminating two or more of these metals, oxides, and the like. The electrode formed by stacking two or more types may have two or more layers, and may have three or more layers.
  • the first electrode 22 and the second electrode 25 may be circuit electrodes or bump electrodes. In FIG. 11, the first electrode 22 is a circuit electrode and the second electrode 25 is a bump electrode.
  • the connecting portion 27 is located, for example, on the side of the first circuit member 23 in the direction in which the first circuit member 23 and the second circuit member 26 face each other (hereinafter referred to as “opposing direction”), and the above-mentioned first circuit member 27 is located. It is located on the second circuit member 26 side in the opposite direction to the first region 28 containing the cured product of the component (B) and the cured product of the component (C) other than the conductive particles 4 in the adhesive layer, and is described above.
  • the first electrode 22 and the second electrode 25 are interposed between the second region 29 containing the cured product such as the component (C) in the second adhesive layer and at least the first electrode 22 and the second electrode 25.
  • connection portion 27 does not have to have two distinct regions between the first region 28 and the second region 29, and the cured product derived from the first adhesive layer and the second region 27.
  • a cured product derived from the adhesive layer may be mixed to form one region.
  • connection structure for example, a flexible organic electric field light emitting color display (organic EL display) in which a plastic substrate in which organic EL elements are regularly arranged and a drive circuit element which is a driver for image display are connected.
  • organic EL display in which a plastic substrate in which organic EL elements are regularly arranged and a drive circuit element which is a driver for image display are connected.
  • Examples thereof include a touch panel in which a plastic substrate on which organic EL elements are regularly arranged and a position input element such as a touch pad are connected.
  • the connection structure can be applied to various monitors such as smart phones, tablets, televisions, vehicle navigation systems, wearable terminals, furniture; home appliances; daily necessities and the like.
  • FIG. 12 is a schematic cross-sectional view showing an embodiment of a method for manufacturing the connection structure 100.
  • 12A and 12B are schematic cross-sectional views showing each step.
  • a surface provided with the first electrode 22 of the first circuit member 23 and a second electrode 25 of the second circuit member 26 are provided in the method of manufacturing the connection structure 100.
  • a laminated body including the above-mentioned circuit connection adhesive film 10A and the first circuit member 23, the circuit connection adhesive film 10A, and the second circuit member 26. Is heated in a state of being pressed in the thickness direction of the laminated body, so that the first electrode 22 and the second electrode 25 are electrically connected to each other via the conductive particles 4 (or the molten solidified product of the conductive particles 4).
  • the first circuit board 23 including the first electrode 22 formed on the main surface 21a of the first circuit board 21 and the first circuit board 21, and the second circuit board 24.
  • a second circuit member 26 having a second electrode 25 formed on the main surface 24a of the second circuit board 24 are prepared.
  • the first circuit member 23 and the second circuit member 26 are arranged so that the first electrode 22 and the second electrode 25 face each other, and the first circuit member 23 and the second circuit member are arranged.
  • a circuit connection adhesive film 10A is placed between the 26 and the 26.
  • the circuit connection adhesive film 10A is placed on the first circuit member so that the first adhesive layer 1 side faces the main surface 21a of the first circuit board 21. Laminate on 23.
  • the circuit connection adhesive film 10A was laminated so that the first electrode 22 on the first circuit board 21 and the second electrode 25 on the second circuit board 24 face each other.
  • the second circuit member 26 is arranged on the first circuit member 23.
  • the laminated body in which the first circuit member 23, the circuit connection adhesive film 10A, and the second circuit member 26 are laminated in this order is the laminated body.
  • the first circuit member 23 and the second circuit member 26 are thermocompression-bonded to each other.
  • the fluidable uncured thermosetting components contained in the first adhesive layer 1 and the second adhesive layer 2 are adjacent to each other. It flows so as to fill the voids between the electrodes (the voids between the first electrodes 22 and the voids between the second electrodes 25), and is cured by the above heating.
  • the first electrode 22 and the second electrode 25 are electrically connected to each other via the conductive particles 4, and the first circuit member 23 and the second circuit member 26 are adhered to each other.
  • the connection structure 100 shown in 11 is obtained.
  • connection structure 100 since a part of the first adhesive layer 1 is cured by light irradiation, the flow of conductive particles in the first adhesive layer 1 is suppressed, so that it is conductive. Particles are efficiently trapped between opposing electrodes. Further, since the thermosetting component contained in the first adhesive layer 1 and the second adhesive layer 2 flows during thermocompression bonding, the conductive particles 4 and the electrodes (the first electrode and the second electrode) are connected after the connection. It becomes difficult for the resin to intervene between the electrodes), and the connection resistance between the first electrode 22 and the second electrode 25 facing each other is reduced.
  • solder particles When solder particles are used as conductive particles, the solder particles are melted and gathered together between the first electrode 22 and the second electrode 25 to form a solder layer, which is then cooled to form the first electrode. A solder layer is fixed between the 22 and the second electrode 25, and the first electrode 22 and the second electrode 25 are electrically connected to each other.
  • the heating temperature at the time of connection can be appropriately set, but may be, for example, 50 to 190 ° C.
  • the temperature may be any temperature at which the solder particles can be melted (for example, a temperature higher than the melting point of the solder particles), and may be, for example, 130 to 260 ° C.
  • the pressurization is not particularly limited as long as it does not damage the adherend, but in the case of COP mounting, for example, the area conversion pressure at the bump electrode may be 0.1 to 50 MPa, and may be 40 MPa or less. It may be 0.1 to 40 MPa. Further, in the case of COG mounting, for example, the area conversion pressure at the bump electrode may be 10 to 100 MPa.
  • Step (a): Preparation step) [Step (a1): Preparation of substrate]
  • a substrate (PET film, thickness: 55 ⁇ m) having a plurality of recesses on the surface was prepared.
  • the concave portion has a truncated cone shape in which the opening area expands toward the surface side of the substrate (when viewed from the upper surface of the opening, the center of the bottom and the center of the opening are the same), the opening diameter is 4.3 ⁇ m ⁇ , and the bottom diameter is 4.
  • the diameter was 0.0 ⁇ m ⁇ and the depth was 4.0 ⁇ m.
  • the plurality of recesses were regularly formed in a three-way arrangement at an interval of 6.2 ⁇ m (distance between the centers of the bottoms) so as to be 29,000 per 1 mm square.
  • Step (a2): Arrangement of conductive particles As a component (A), conductive particles (average particle diameter: 3.3 ⁇ m, particle diameter C.I.) in which a nickel layer having a thickness of 0.15 ⁇ m is formed on the surface of a nucleus (particle) made of plastic (crosslinked polystyrene). A V. value: 2.8% and a specific gravity: 2.9) were prepared and placed on the surface on which the recesses of the substrate were formed. Next, excess conductive particles were removed by rubbing the surface of the substrate on which the recesses were formed with a fine adhesive roller, and the conductive particles were arranged only in the recesses. The average particle diameter of the conductive particles and the C.I. V.
  • the value is 300 pieces after the first adhesive layer prepared through the steps (b) and (c) described later is cut out to a size of 10 cm ⁇ 10 cm, and Pt sputtering is applied to the surface on which the conductive particles are arranged. It is a value measured by SEM observation of conductive particles.
  • the blending amounts (unit: mass) of the (B1) component, (B2) component, (C1) component, (C2) component, (D) component, (E) component and (F) component shown in Table 1 are shown in Table 1.
  • a resin solution was obtained by mixing with an organic solvent (2-butanone). Next, this resin solution was applied to a 38 ⁇ m-thick PET film that had been mold-released with silicone, and dried with hot air at 60 ° C. for 3 minutes to prepare a composition layer having a thickness of 1.5 ⁇ m on the PET film.
  • Step (b2): Transfer of conductive particles The composition layer formed on the PET film produced in the step (b1) and the substrate prepared in the step (a) in which the conductive particles are arranged in the recesses are arranged facing each other on the composition layer. Conductive particles were transferred.
  • Step (c): Light irradiation step A UV curing furnace (UVC-2534 / 1MNLC3-XJ01 manufactured by Ushio Electric Co., Ltd.) was used from the side where the conductive particles were transferred to the composition layer on which the conductive particles were transferred using a metal halide lamp, and the integrated light intensity was 1700 mJ.
  • the component (B2) was activated and the component (B1) was polymerized by irradiating with ultraviolet rays of / cm 2 (wavelength: 365 nm).
  • the photocurable components ((B1) component and (B2) component) in the composition layer were cured to form the first adhesive layer.
  • this resin solution was applied to a 50 ⁇ m-thick PET film that had been mold-released with silicone, and dried with hot air at 60 ° C. for 3 minutes to form a second adhesive layer with a thickness of 12.5 ⁇ m on the PET film. Made.
  • the first adhesive layer prepared in the step (c) and the second adhesive layer prepared in the step (d1) were bonded together while applying a temperature of 50 ° C.
  • a two-layered anisotropic conductive adhesive film (thickness: 14 ⁇ m) was obtained.
  • Example 2 An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the following steps (e) were performed in addition to the steps (a) to (d).
  • Step (e1): Preparation of third adhesive layer The organic solvent (2) of the component (C1), the component (C2), the component (D), the component (E) and the component (F) shown in Table 3 in the blending amount (unit: parts by mass, solid content) shown in Table 3. -Mixed with butanone) to obtain a resin solution.
  • this resin solution was applied to a 50 ⁇ m-thick PET film that had been mold-released from silicone, and dried with hot air at 60 ° C. for 3 minutes to form a second 2.0 ⁇ m-thick adhesive layer on the PET film. Made.
  • Step (e2): Laminating a third adhesive layer The first adhesive layer exposed by peeling off the PET film on the first adhesive layer side of the anisotropic conductive adhesive film prepared in the step (d2), and the third adhesive layer prepared in the step (e1). The adhesive layer was bonded while applying a temperature of 50 ° C. As a result, an anisotropic conductive adhesive film (thickness: 16 ⁇ m) having a three-layer structure was obtained.
  • Example 1 An anisotropic conductive adhesive film having a three-layer structure was produced in the same manner as in Example 2 except that the types and / or blending amounts of the components to be blended were changed as shown in Table 4 in the step (b1). bottom.
  • Example 11 An anisotropic conductive adhesive film having a three-layer structure was produced in the same manner as in Example 10 except that the integrated light amount of the irradiated light was changed to 2000 mJ / cm 2 in the step (c).
  • Example 12 An anisotropic conductive adhesive film having a three-layer structure was produced in the same manner as in Example 10 except that the integrated light amount of the irradiated light was changed to 2300 mJ / cm 2 in the step (c).
  • step (b1) except that 1.0 part by mass of Omnirad 907 was used instead of Irgacure OXE-02 as the component (B2) and the integrated light amount was changed to 2000 mJ / cm 2 .
  • step (b2) except that 1.0 part by mass of Omnirad 907 was used instead of Irgacure OXE-02 as the component (B2) and the integrated light amount was changed to 2000 mJ / cm 2 .
  • a three-layered anisotropic conductive adhesive film was produced.
  • step (b1) and step (d1) 40 parts by mass of YL983U was used as the component (C1) instead of ETENRNACOLL OXBP and seroxide 8010, and instead of CXC-1821 as the component (C2).
  • An anisotropic conductive adhesive film having a two-layer structure was produced in the same manner as in Example 1 except that 7 parts by mass of SI-60L was used.
  • Example 15 In the step (b1) and the step (d1), 10 parts by mass of HP-4032D was used as the component (C3) instead of the component (C1), and the component (C4) was replaced with the component (C2). As a result, an anisotropic conductive adhesive film having a two-layer structure was produced in the same manner as in Example 1 except that 40 parts by mass of HX-3941HP was used.
  • Example 16> instead of the step (a2), the following step (a2') is performed, and the substrate obtained in the following step (a2') is used as the substrate in which the conductive particles are arranged in the recesses, which is used in the step (b2).
  • An anisotropic conductive adhesive film having a two-layer structure was produced in the same manner as in Example 1 except that it was used.
  • solder fine particles were removed by rubbing the surface of the substrate on which the concave portions were formed with a fine adhesive roller, and the solder fine particles were arranged only in the concave portions.
  • the substrate in which the solder fine particles are arranged in the recesses is put into a hydrogen radical reduction furnace (hydrogen plasma reflow device manufactured by Shinko Seiki Co., Ltd.), and after evacuation, hydrogen gas is introduced into the furnace to introduce the inside of the furnace. Was filled with hydrogen gas. Then, the temperature inside the furnace was adjusted to 120 ° C., and hydrogen radicals were irradiated for 5 minutes.
  • hydrogen radical reduction furnace hydrogen plasma reflow device manufactured by Shinko Seiki Co., Ltd.
  • solder particles were separately prepared by the same operation, and the obtained solder particles were recovered from the recesses by tapping the back side of the recesses of the substrate. It was confirmed that the solder particles had a flat surface portion on a part of the surface, and the ratio (B / A) of the diameter B of the flat surface portion to the diameter A of the solder particles was 0.15. Further, when a quadrangle circumscribing the projected image of the solder particles was created by two pairs of parallel lines, Y / X was 0.93 when the distance between the opposite sides was X and Y (however, Y ⁇ X). I confirmed that. In addition, the average particle diameter of the solder particles and the C.I. V.
  • the average particle size was 3.8 ⁇ m, and the particle size C.I. V. The value was 7.9%.
  • the first adhesive layer produced through the steps (b) and (c) was cut out to a size of 10 cm ⁇ 10 cm, and the solder particles were arranged. It is a value measured by SEM observation of 300 solder particles after applying Pt sputtering to the surface.
  • Example 17 An anisotropic conductive adhesive film having a three-layer structure was produced in the same manner as in Example 2 except that the above step (a2') was performed instead of the step (a2).
  • Transfer rate of the conductive particles is 95% or more, it is judged as “S”, when the transfer rate of the conductive particles is 90% or more and less than 95%, it is judged as “A”, and the transfer rate of the conductive particles is 80% or more. When it was less than 90%, it was evaluated as “B”, and when the transfer rate of the conductive particles was less than 80%, it was evaluated as “C”.
  • Transfer rate of conductive particles (%) (average density of the number of conductive particles in the anisotropic conductive adhesive film / density of recesses formed in the substrate) ⁇ 100
  • circuit members As the first circuit member (a), on the surface of a non-alkali glass substrate (OA-11, manufactured by Nippon Electric Glass Co., Ltd., outer shape: 38 mm ⁇ 28 mm, thickness: 0.3 mm), AlNd (100 nm) / Mo ( A wiring pattern (pattern width: 19 ⁇ m, space between electrodes: 5 ⁇ m) having a 50 nm) / ITO (100 nm) wiring pattern was prepared.
  • OA-11 non-alkali glass substrate
  • OA-11 manufactured by Nippon Electric Glass Co., Ltd., outer shape: 38 mm ⁇ 28 mm, thickness: 0.3 mm
  • AlNd (100 nm) / Mo A wiring pattern (pattern width: 19 ⁇ m, space between electrodes: 5 ⁇ m) having a 50 nm) / ITO (100 nm) wiring pattern was prepared.
  • the first circuit member (b) on the surface of a non-alkali glass substrate (OA-11, manufactured by Nippon Electric Glass Co., Ltd., outer shape: 38 mm ⁇ 28 mm, thickness: 0.3 mm), Cr (20 nm) / Au ( A wiring pattern (pattern width: 19 ⁇ m, space between electrodes: 5 ⁇ m) having a wiring pattern of 200 nm) was prepared.
  • OA-11 non-alkali glass substrate
  • OA-11 manufactured by Nippon Electric Glass Co., Ltd., outer shape: 38 mm ⁇ 28 mm, thickness: 0.3 mm
  • Cr (20 nm) / Au A wiring pattern (pattern width: 19 ⁇ m, space between electrodes: 5 ⁇ m) having a wiring pattern of 200 nm) was prepared.
  • an IC chip in which bump electrodes are arranged in two rows in a staggered pattern (outer shape: 0.9 mm ⁇ 20.3 mm, thickness: 0.3 mm, bump electrode size: 70 ⁇ m ⁇ 12 ⁇ m, bump electrode Spacing space: 12 ⁇ m, bump electrode thickness: 8 ⁇ m) was prepared.
  • connection structure (a) was produced by using the anisotropic conductive adhesive films of Examples 1 to 13 and Comparative Examples 1 and 2, respectively.
  • the anisotropic conductive adhesive film was placed on the first circuit member (a) so that the first adhesive layer or the third adhesive layer and the first circuit member (a) were in contact with each other.
  • a thermocompression bonding device (BS-17U, manufactured by Ohashi Seisakusho Co., Ltd.) consisting of a stage consisting of a ceramic heater and a tool (8 mm x 50 mm), under the conditions of 70 ° C. and 0.98 MPa (10 kgf / cm 2 ).
  • the anisotropic conductive adhesive film is attached to the first circuit member (a), and the anisotropic conductive adhesive film is separated from the first circuit member (a) on the opposite side.
  • the mold film was peeled off.
  • the mixture is heated and pressurized at 130 ° C. for 5 seconds at 40 MPa to conduct anisotropic conductivity.
  • the second adhesive layer of the sex adhesive film was attached to the second circuit member to prepare the connection structure (a).
  • the temperature is the measured maximum temperature of the anisotropic conductive adhesive film
  • the pressure is the value calculated with respect to the total area of the surfaces of the bump electrodes of the second circuit member facing the first circuit member (a). show.
  • connection structure (b) The connection structure (a) except that the anisotropic conductive adhesive film of Example 14 was used as the anisotropic conductive adhesive film and that the film was heated and pressurized at 60 MPa for 5 seconds at 140 ° C. ) was produced, and the connection structure (b) was produced.
  • connection structure (c) The connection structure (a) except that the anisotropic conductive adhesive film of Example 15 was used as the anisotropic conductive adhesive film and that the film was heated and pressurized at 60 MPa for 5 seconds at 230 ° C. ) was produced, and the connection structure (c) was produced.
  • connection structure (d) The anisotropic conductive adhesive films of Examples 16 to 17 were used as the anisotropic conductive adhesive films, respectively, and the first circuit member (b) was used instead of the first circuit member (a).
  • the connection structure (d) was prepared in the same manner as the connection structure (a) except that the connection structure (a) was heated and pressurized at 160 ° C. for 5 seconds at 30 MPa.
  • connection structure connection structures (a) to (d) using the anisotropic conductive adhesive films of Examples 1 to 17 and Comparative Examples 1 and 2, between the bump electrode and the circuit electrode.
  • the capture rate of conductive particles was evaluated.
  • the capture rate of the conductive particles means the ratio of the density of the conductive particles on the bump electrode to the density of the conductive particles in the anisotropic conductive adhesive film, and was calculated from the following formula.
  • the average number of conductive particles on the bump electrode was obtained by observing the mounted circuit member from the glass substrate side using a differential interference microscope and measuring the number of captured conductive particles per bump.
  • Capturing rate of conductive particles (%) (average number of conductive particles on bump electrode / (bump electrode area x density of conductive particles in anisotropic conductive adhesive film)) x 100
  • connection resistance Immediately after the production of the connection structure and after the high temperature and high humidity test, the connection resistance at 14 points was measured by the four-terminal measurement method, and the maximum value of the measured connection resistance values was used in Examples 1 to 17 and. The connection resistance of Comparative Examples 1 and 2 was evaluated.
  • the high temperature and high humidity test was carried out by treating the connected structure in a high temperature and high humidity tank having a temperature of 85 ° C. and a humidity of 85% RH for 500 hours. A multimeter (MLR21, manufactured by Kusumoto Kasei Co., Ltd.) was used to measure the connection resistance.
  • connection resistance value When the connection resistance value is less than 1.0 ⁇ , it is judged as "S”, when the connection resistance value is 1.0 ⁇ or more and less than 2.5 ⁇ , it is judged as "A”, and the connection resistance value is 2.5 ⁇ or more. If it is less than 0 ⁇ , it is judged as "B”, if the connection resistance value is 5.0 ⁇ or more and less than 10.0 ⁇ , it is judged as "C”, and if the connection resistance value is 10.0 ⁇ or more, it is judged as "D”. Evaluated as. The results are shown in Tables 5 to 7.

Abstract

A method of manufacturing an adhesive film for circuit connection, the method comprising: preparing a substrate having a plurality of recesses on a surface thereof and having conductive particles in at least a portion of the plurality of recesses; providing, on the surface of the substrate, a composition layer containing a photosetting component and a first thermosetting component to transfer the conductive particles to the composition layer; irradiating the composition layer with light to form a first adhesive layer containing the conductive particles, a cured product of the photosetting component, and the first thermosetting component; and providing, on one surface of the first adhesive layer, a second adhesive layer containing a second thermosetting component.

Description

回路接続用接着剤フィルム及びその製造方法、並びに、接続構造体及びその製造方法Adhesive film for circuit connection and its manufacturing method, and connection structure and its manufacturing method
 本発明は、回路接続用接着剤フィルム及びその製造方法、並びに、接続構造体及びその製造方法に関する。 The present invention relates to an adhesive film for circuit connection and a method for manufacturing the same, and a connection structure and a method for manufacturing the same.
 液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip-on-Glass)実装と、COF(Chip-on-Flex)実装との二種に大別することができる。COG実装では、導電粒子を含む接着剤(例えば回路接続用接着剤)を用いて液晶駆動用ICを直接ガラスパネル上に接合する。一方、COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、導電粒子を含む接着剤(例えば回路接続用接着剤)を用いてそれらをガラスパネルに接合する。 The method of mounting a liquid crystal drive IC on a liquid crystal display glass panel can be roughly divided into two types: COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting. In COG mounting, the liquid crystal drive IC is directly bonded onto the glass panel using an adhesive containing conductive particles (for example, a circuit connection adhesive). On the other hand, in COF mounting, a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and they are bonded to a glass panel using an adhesive containing conductive particles (for example, an adhesive for circuit connection).
 ところで、近年の液晶表示の高精細化に伴い、液晶駆動用ICの回路電極である金属バンプは狭ピッチ化及び狭面積化している。そのため、接着剤中の導電粒子が隣接する回路電極間に流出してショートを発生させるおそれがある。特にCOG実装ではその傾向が顕著である。隣接する回路電極間に導電粒子が流出すると、金属バンプとガラスパネルとの間に捕捉される導電粒子数が減少し、対向する回路電極間の接続抵抗が上昇する接続不良を起こすおそれがある。 By the way, with the recent increase in the definition of liquid crystal displays, the metal bumps, which are the circuit electrodes of liquid crystal drive ICs, have become narrower in pitch and area. Therefore, the conductive particles in the adhesive may flow out between the adjacent circuit electrodes and cause a short circuit. This tendency is particularly remarkable in COG mounting. When conductive particles flow out between adjacent circuit electrodes, the number of conductive particles captured between the metal bump and the glass panel decreases, and the connection resistance between the opposing circuit electrodes increases, which may cause connection failure.
 これらの問題を解決する方法として、導電粒子(母粒子)の表面に複数の絶縁粒子(子粒子)を付着させ、複合粒子(絶縁被覆導電粒子)を形成させる方法が提案されている。例えば、特許文献1では導電粒子の表面に球状の樹脂粒子を付着させる方法が提案されている。 As a method for solving these problems, a method has been proposed in which a plurality of insulating particles (child particles) are attached to the surface of conductive particles (mother particles) to form composite particles (insulation-coated conductive particles). For example, Patent Document 1 proposes a method of adhering spherical resin particles to the surface of conductive particles.
特許第4773685号公報Japanese Patent No. 4773685
 本発明者らは、上記絶縁被覆導電粒子を用いずとも上述した問題を解決すべく、予め、凹部が形成された基体の当該凹部に導電粒子を配置した後、当該基体の凹部が形成されている面に接着剤層を設け、当該接着剤層に導電粒子を転写する方法によって回路接続用接着剤フィルムを製造することを検討している。この方法によれば、導電粒子をフィルム内の所定の領域に離隔した状態で並ぶように配置することができる。そのため、例えば、接続すべき電極のパターン(回路パターン)に応じた凹部パターンを有する基体を用いて回路接続用接着剤フィルムを製造することで、回路接続用接着剤フィルムにおける導電粒子の位置及び個数を充分に制御することができる。 In order to solve the above-mentioned problem without using the insulating coated conductive particles, the present inventors previously placed the conductive particles in the recesses of the substrate on which the recesses were formed, and then formed the recesses of the substrate. We are considering manufacturing an adhesive film for circuit connection by providing an adhesive layer on the surface of the surface and transferring conductive particles to the adhesive layer. According to this method, the conductive particles can be arranged so as to be arranged in a predetermined region in the film in a separated state. Therefore, for example, by manufacturing a circuit connection adhesive film using a substrate having a recess pattern corresponding to the pattern of electrodes to be connected (circuit pattern), the position and number of conductive particles in the circuit connection adhesive film can be obtained. Can be sufficiently controlled.
 しかしながら、上記の方法では、導電粒子を接着剤層へ転写するために、接着剤層に適度な流動性を持たせる必要がある。そのため、上記の方法で得られる回路接続用接着剤フィルムでは、接続時に接着剤層を構成する樹脂が流動し、同時に導電粒子も流動することで、対向する回路電極間から導電粒子が排除されてしまう場合がある。また、導電粒子を接着剤層に転写した後に接着剤層を硬化させることで導電粒子の流動を抑制することも考えられるが、この場合、接続時に電極と導電粒子との間に存在する樹脂が排除され難くなり接続抵抗が上昇する不具合が生じやすい。 However, in the above method, in order to transfer the conductive particles to the adhesive layer, it is necessary to give the adhesive layer an appropriate fluidity. Therefore, in the circuit connection adhesive film obtained by the above method, the resin constituting the adhesive layer flows at the time of connection, and at the same time, the conductive particles also flow, so that the conductive particles are excluded from the opposing circuit electrodes. It may end up. It is also conceivable to suppress the flow of the conductive particles by transferring the conductive particles to the adhesive layer and then curing the adhesive layer. In this case, the resin existing between the electrode and the conductive particles at the time of connection is present. It is difficult to eliminate the particles and the connection resistance is likely to increase.
 そこで、本発明は、導電粒子の位置及び個数を充分に制御しながら、対向する回路電極間における導電粒子の捕捉率を向上させることができ、且つ、電極間の導通を充分に確保することができる回路接続用接着剤フィルムを製造する方法を提供することを主な目的とする。 Therefore, according to the present invention, it is possible to improve the capture rate of the conductive particles between the facing circuit electrodes while sufficiently controlling the position and the number of the conductive particles, and to sufficiently secure the continuity between the electrodes. The main purpose is to provide a method for producing an adhesive film for circuit connection that can be used.
 本発明の一側面は、下記[1]~[18]に示す回路接続用接着剤フィルムの製造方法に関する。 One aspect of the present invention relates to a method for manufacturing an adhesive film for circuit connection shown in the following [1] to [18].
[1]表面に複数の凹部を有し、当該複数の凹部の少なくとも一部に導電粒子が配置された基体を用意することと、前記基体の前記表面上に、光硬化性成分及び第1の熱硬化性成分を含有する組成物層を設けることにより、前記組成物層に前記導電粒子を転写することと、前記組成物層に光を照射することにより、複数の前記導電粒子、前記光硬化性成分の硬化物及び前記第1の熱硬化性成分を含有する第1の接着剤層を形成することと、前記第1の接着剤層の一方面上に、第2の熱硬化性成分を含有する第2の接着剤層を設けることと、を含む、回路接続用接着剤フィルムの製造方法。 [1] To prepare a substrate having a plurality of recesses on the surface and having conductive particles arranged in at least a part of the plurality of recesses, and on the surface of the substrate, a photocurable component and a first first. By providing the composition layer containing a thermosetting component, the conductive particles are transferred to the composition layer, and by irradiating the composition layer with light, a plurality of the conductive particles and the photocurable are obtained. Forming a first adhesive layer containing a cured product of a sex component and the first thermosetting component, and forming a second thermosetting component on one surface of the first adhesive layer. A method for producing an adhesive film for circuit connection, comprising providing a second adhesive layer to be contained.
[2]前記光硬化性成分が、ラジカル重合性化合物及び光ラジカル重合開始剤を含み、前記第1の熱硬化性成分が、カチオン重合性化合物及び熱カチオン重合開始剤を含む、[1]に記載の回路接続用接着剤フィルムの製造方法。 [2] In [1], the photocurable component contains a radical polymerizable compound and a photoradical polymerization initiator, and the first thermocurable component contains a cationically polymerizable compound and a thermally cationic polymerization initiator. The method for manufacturing an adhesive film for circuit connection described.
[3]前記第1の熱硬化性成分が、前記カチオン重合性化合物として、環状エーテル基を有する化合物を含む、[2]に記載の回路接続用接着剤フィルムの製造方法。 [3] The method for producing an adhesive film for circuit connection according to [2], wherein the first thermosetting component contains a compound having a cyclic ether group as the cationically polymerizable compound.
[4]前記第1の熱硬化性成分が、前記カチオン重合性化合物として、オキセタン化合物及び脂環式エポキシ化合物からなる群より選ばれる少なくとも1種を含む、[3]に記載の回路接続用接着剤フィルムの製造方法。 [4] The circuit connection adhesive according to [3], wherein the first thermosetting component contains at least one selected from the group consisting of an oxetane compound and an alicyclic epoxy compound as the cationically polymerizable compound. Method for manufacturing agent film.
[5]前記光硬化性成分が、前記ラジカル重合性化合物として、下記式(1)で表される化合物を含む、[2]~[4]のいずれかに記載の回路接続用接着剤フィルムの製造方法。
Figure JPOXMLDOC01-appb-C000005
[式(1)中、Rは、水素原子又はメチル基を示し、Xは炭素数1~3のアルカンジイル基を示す。]
[5] The adhesive film for circuit connection according to any one of [2] to [4], wherein the photocurable component contains a compound represented by the following formula (1) as the radically polymerizable compound. Production method.
Figure JPOXMLDOC01-appb-C000005
[In the formula (1), R 1 represents a hydrogen atom or a methyl group, and X represents an alkanediyl group having 1 to 3 carbon atoms. ]
[6]前記光硬化性成分が、前記光ラジカル重合開始剤として、下記式(I)で表される化合物を含む、[2]~[5]のいずれかに記載の回路接続用接着剤フィルムの製造方法。
Figure JPOXMLDOC01-appb-C000006
[式(I)中、R、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は芳香族系炭化水素基を含む有機基を示す。]
[6] The adhesive film for circuit connection according to any one of [2] to [5], wherein the photocurable component contains a compound represented by the following formula (I) as the photoradical polymerization initiator. Manufacturing method.
Figure JPOXMLDOC01-appb-C000006
[In formula (I), R 2 , R 3 and R 4 each independently represent an organic group containing a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aromatic hydrocarbon group. ]
[7]前記第1の熱硬化性成分が、前記熱カチオン重合開始剤として、下記式(II)又は下記式(III)で表されるカチオンを有する塩化合物を含む、[2]~[6]のいずれかに記載の回路接続用接着剤フィルムの製造方法。
Figure JPOXMLDOC01-appb-C000007
[式(II)中、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基を示し、Rは、炭素数1~6のアルキル基を示す。]
Figure JPOXMLDOC01-appb-C000008
[式(III)中、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基を示し、R10及びR11は、それぞれ独立して、炭素数1~6のアルキル基を示す。]
[7] The first thermosetting component contains, as the thermal cationic polymerization initiator, a salt compound having a cation represented by the following formula (II) or the following formula (III), [2] to [6]. ]. The method for manufacturing an adhesive film for circuit connection according to any one of.
Figure JPOXMLDOC01-appb-C000007
[In formula (II), R 5 and R 6 each independently contain a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an organic group containing a substituent or an unsubstituted aromatic hydrocarbon group. Shown, R 7 represents an alkyl group having 1 to 6 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000008
[In formula (III), R 8 and R 9 each independently contain a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an organic group containing a substituent or an unsubstituted aromatic hydrocarbon group. As shown, R 10 and R 11 each independently represent an alkyl group having 1 to 6 carbon atoms. ]
[8]前記導電粒子の平均粒子径が1~30μmであり、前記導電粒子の粒子径のC.V.値が20%以下である、[1]~[7]のいずれかに記載の回路接続用接着剤フィルムの製造方法。 [8] The average particle size of the conductive particles is 1 to 30 μm, and the particle size of the conductive particles is C.I. V. The method for producing an adhesive film for circuit connection according to any one of [1] to [7], wherein the value is 20% or less.
[9]前記導電粒子がはんだ粒子である、[1]~[8]のいずれかに記載の回路接続用接着剤フィルムの製造方法。 [9] The method for producing an adhesive film for circuit connection according to any one of [1] to [8], wherein the conductive particles are solder particles.
[10]前記はんだ粒子が、スズ、スズ合金、インジウム及びインジウム合金からなる群より選択される少なくとも一種を含む、[9]に記載の回路接続用接着剤フィルムの製造方法。 [10] The method for producing an adhesive film for circuit connection according to [9], wherein the solder particles contain at least one selected from the group consisting of tin, tin alloys, indium and indium alloys.
[11]前記はんだ粒子が、In-Bi合金、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金及びSn-Cu合金からなる群より選択される少なくとも一種を含む、[10]に記載の回路接続用接着剤フィルムの製造方法。 [11] The solder particles are In—Bi alloy, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi—Ag alloy, Sn—Ag—Cu alloy and Sn. -The method for producing an adhesive film for circuit connection according to [10], which comprises at least one selected from the group consisting of Cu alloys.
[12]前記はんだ粒子が、表面の一部に平面部を有する、[9]~[11]のいずれかに記載の回路接続用接着剤フィルムの製造方法。 [12] The method for producing an adhesive film for circuit connection according to any one of [9] to [11], wherein the solder particles have a flat surface portion on a part of the surface.
[13]前記はんだ粒子の直径Aに対する前記平面部の直径Bの比(B/A)が下記式を満たす、[12]に記載の回路接続用接着剤フィルムの製造方法。
 0.01<B/A<1.0
[13] The method for producing an adhesive film for circuit connection according to [12], wherein the ratio (B / A) of the diameter B of the flat surface portion to the diameter A of the solder particles satisfies the following formula.
0.01 <B / A <1.0
[14]前記導電粒子の投影像に外接する四角形を二対の平行線により作成した場合において、対向する辺間の距離をX及びY(但しY<X)としたときに、X及びYが下記式を満たす、[1]~[13]のいずれかに記載の回路接続用接着剤フィルムの製造方法。
 0.8<Y/X≦1.0
[14] When a quadrangle circumscribing the projected image of the conductive particles is created by two pairs of parallel lines, and the distances between the opposing sides are X and Y (where Y <X), X and Y are The method for producing an adhesive film for circuit connection according to any one of [1] to [13], which satisfies the following formula.
0.8 <Y / X ≦ 1.0
[15]前記複数の凹部が所定のパターンで形成されている、[1]~[14]のいずれかに記載の回路接続用接着剤フィルムの製造方法。 [15] The method for manufacturing an adhesive film for circuit connection according to any one of [1] to [14], wherein the plurality of recesses are formed in a predetermined pattern.
 上記側面の製造方法では、光硬化性成分と熱硬化性成分を含有する組成物を用い、当該組成物からなる層(組成物層)に導電粒子を転写した後で当該組成物を光硬化させる。そのため、転写性を損なうことなく、接続時の樹脂流動を抑制することができる。そのため、上記側面の製造方法によれば、回路接続用接着剤フィルムにおける導電粒子の位置及び個数を充分に制御しながら、対向する回路電極間における導電粒子の捕捉率を向上させることができる回路接続用接着剤フィルムを得ることができる。また、上記側面の製造方法では、電極間の導通を充分に確保することができる。これは、光硬化性成分と熱硬化性成分との併用により上記組成物層の光硬化後の層(第1の接着剤層)に熱硬化性成分を含有させることができ、光硬化後の層に、接続時に導電粒子が排除されない程度に樹脂流動性を与えることができるため、接続時に電極と導電粒子との間に存在する樹脂が排除され難いことで接続抵抗が上昇するといった不具合の発生が抑制されるためと推察される。 In the production method of the above aspect, a composition containing a photocurable component and a thermosetting component is used, and the composition is photocured after the conductive particles are transferred to the layer (composition layer) composed of the composition. .. Therefore, it is possible to suppress the resin flow at the time of connection without impairing the transferability. Therefore, according to the manufacturing method of the above-mentioned aspect, it is possible to improve the capture rate of the conductive particles between the facing circuit electrodes while sufficiently controlling the position and the number of the conductive particles in the adhesive film for circuit connection. Adhesive film for use can be obtained. Further, in the manufacturing method of the above-mentioned side surface, it is possible to sufficiently secure the conduction between the electrodes. This is because the photocurable component can be contained in the photocurable layer (first adhesive layer) of the composition layer after the photocuring by using the photocurable component and the thermosetting component in combination. Since it is possible to impart resin fluidity to the layer to the extent that the conductive particles are not excluded at the time of connection, it is difficult to remove the resin existing between the electrode and the conductive particles at the time of connection, which causes a problem that the connection resistance increases. Is presumed to be suppressed.
 本発明の他の一側面は、下記[16]に示す回路接続用接着剤フィルムに関する。 Another aspect of the present invention relates to the adhesive film for circuit connection shown in the following [16].
[16]導電粒子を含有する回路接続用接着剤フィルムであって、複数の前記導電粒子、光硬化性成分の硬化物及び第1の熱硬化性成分を含有する第1の接着剤層と、第1の接着剤層上に設けられた、第2の熱硬化性成分を含有する第2の接着剤層とを備え、前記複数の導電粒子の少なくとも一部が、前記回路接続用接着剤フィルムの平面視において、所定のパターンで並び、且つ、前記回路接続用接着剤フィルムの縦断面において、隣り合う導電粒子同士が互いに離隔した状態で横方向に並んでいる、回路接続用接着剤フィルム。 [16] An adhesive film for circuit connection containing conductive particles, which comprises a plurality of the conductive particles, a cured product of a photocurable component, and a first adhesive layer containing a first thermosetting component. A second adhesive layer containing a second thermosetting component provided on the first adhesive layer is provided, and at least a part of the plurality of conductive particles is the adhesive film for circuit connection. In the plan view of the above, the adhesive film for circuit connection is arranged in a predetermined pattern, and in the vertical cross section of the adhesive film for circuit connection, adjacent conductive particles are arranged in the horizontal direction while being separated from each other.
 本発明の他の一側面は、下記[17]に示す接続構造体に関する。 Another aspect of the present invention relates to the connection structure shown in the following [17].
[17]第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材と、[16]に記載の回路接続用接着剤フィルムの硬化体を含み、前記第1の電極と前記第2の電極とを前記導電粒子を介して互いに電気的に接続し且つ前記第1の回路部材と前記第2の回路部材とを接着する接続部と、を備える、接続構造体。 [17] The first circuit member having the first electrode, the second circuit member having the second electrode, and the cured body of the adhesive film for circuit connection according to [16]. A connection structure comprising a connection portion for electrically connecting the electrode and the second electrode to each other via the conductive particles and adhering the first circuit member and the second circuit member. ..
 本発明の他の一側面は、下記[18]に示す接続構造体の製造方法に関する。 Another aspect of the present invention relates to a method for manufacturing a connection structure shown in the following [18].
[18]第1の電極を有する第1の回路部材の前記第1の電極が設けられている面と、第2の電極を有する第2の回路部材の前記第2の電極が設けられている面との間に、[16]に記載の回路接続用接着剤フィルムを配置することと、前記第1の回路部材と前記回路接続用接着剤フィルムと前記第2の回路部材とを含む積層体を前記積層体の厚さ方向に押圧した状態で加熱することにより、前記第1の電極と前記第2の電極とを前記導電粒子を介して互いに電気的に接続し且つ前記第1の回路部材と前記第2の回路部材とを接着することと、を含む、接続構造体の製造方法。 [18] The surface of the first circuit member having the first electrode on which the first electrode is provided and the second electrode of the second circuit member having the second electrode are provided. A laminate including the circuit connection adhesive film according to [16], the first circuit member, the circuit connection adhesive film, and the second circuit member. Is heated in a state of being pressed in the thickness direction of the laminated body, whereby the first electrode and the second electrode are electrically connected to each other via the conductive particles, and the first circuit member. A method for manufacturing a connection structure, which comprises bonding the second circuit member to the second circuit member.
 本発明によれば、導電粒子の位置及び個数を充分に制御しながら、対向する回路電極間における導電粒子の捕捉率を向上させることができ、且つ、電極間の導通を充分に確保することができる回路接続用接着剤フィルムを製造する方法を提供することができる。 According to the present invention, it is possible to improve the capture rate of the conductive particles between the facing circuit electrodes while sufficiently controlling the position and the number of the conductive particles, and to sufficiently secure the continuity between the electrodes. It is possible to provide a method for producing an adhesive film for circuit connection.
図1は、回路接続用接着剤フィルムの一実施形態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of an adhesive film for circuit connection. 図2は、図1の回路接続用接着剤フィルムにおける導電粒子の配置例を示す模式平面図である。FIG. 2 is a schematic plan view showing an example of arrangement of conductive particles in the circuit connection adhesive film of FIG. 図3は、図1の回路接続用接着剤フィルムにおける導電粒子の配置例を示す模式平面図である。FIG. 3 is a schematic plan view showing an example of arrangement of conductive particles in the circuit connection adhesive film of FIG. 1. 図4は、回路接続用接着剤フィルムの他の一実施形態を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing another embodiment of the adhesive film for circuit connection. 図5は、図1の回路接続用接着剤フィルムの製造に用いられる基体の模式断面図である。FIG. 5 is a schematic cross-sectional view of a substrate used for manufacturing the circuit connection adhesive film of FIG. 図6は、図5の基体の凹部の断面形状の変形例を示す図である。FIG. 6 is a diagram showing a modified example of the cross-sectional shape of the recess of the substrate of FIG. 図7は、図5の基体の凹部に導電粒子が配置された状態を示す図である。FIG. 7 is a diagram showing a state in which conductive particles are arranged in the recesses of the substrate of FIG. 図8は、一実施形態の回路接続用接着剤フィルムの製造方法の一工程を示す模式断面図である。FIG. 8 is a schematic cross-sectional view showing one step of a method for manufacturing an adhesive film for circuit connection according to an embodiment. 図9は、図1の回路接続用接着剤フィルムの製造方法の一工程を示す模式断面図である。FIG. 9 is a schematic cross-sectional view showing one step of the method for manufacturing the adhesive film for circuit connection of FIG. 図10は、図1の回路接続用接着剤フィルムの製造方法の一工程を示す模式断面図である。FIG. 10 is a schematic cross-sectional view showing one step of the method for manufacturing the adhesive film for circuit connection of FIG. 図11は、接続構造体の一実施形態を示す模式断面図である。FIG. 11 is a schematic cross-sectional view showing an embodiment of the connection structure. 図12は、接続構造体の製造方法の一実施形態を示す模式断面図である。FIG. 12 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a connection structure.
 以下、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、以下で例示する材料は、特に断らない限り、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書において、「(メタ)アクリレート」とは、アクリレート、及び、それに対応するメタクリレートの少なくとも一方を意味する。「(メタ)アクリロイル」等の他の類似の表現においても同様である。 Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments. Unless otherwise specified, the materials exemplified below may be used alone or in combination of two or more. The content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. The numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. As used herein, the term "(meth) acrylate" means at least one of an acrylate and a corresponding methacrylate. The same applies to other similar expressions such as "(meth) acryloyl".
<回路接続用接着剤フィルム>
 図1は、一実施形態の回路接続用接着剤フィルムの縦断面を模式的に示す図である。図1に示される回路接続用接着剤フィルム10Aは、複数の導電粒子4と、光硬化性成分の硬化物及び第1の熱硬化性成分を含む接着剤成分3を含有する第1の接着剤層1と、第1の接着剤層1上に設けられた、第2の熱硬化性成分を含有する第2の接着剤層2と、を備えるフィルム状の接着剤(接着剤フィルム)である。本明細書において、「縦断面」とは、主面(例えば回路接続用接着剤フィルム10Aの主面)に対して略直交する断面(厚さ方向の断面)を意味する。また、第1の熱硬化性成分及び第2の熱硬化性成分は、それぞれ第1の接着剤層及び第2の接着剤層に含有される熱硬化性成分を意味する。
<Adhesive film for circuit connection>
FIG. 1 is a diagram schematically showing a vertical cross section of an adhesive film for circuit connection according to an embodiment. The circuit connection adhesive film 10A shown in FIG. 1 is a first adhesive containing a plurality of conductive particles 4, a cured product of a photocurable component, and an adhesive component 3 containing a first thermosetting component. A film-like adhesive (adhesive film) comprising a layer 1 and a second adhesive layer 2 containing a second thermosetting component provided on the first adhesive layer 1. .. In the present specification, the "longitudinal cross section" means a cross section (cross section in the thickness direction) substantially orthogonal to the main surface (for example, the main surface of the adhesive film 10A for circuit connection). Further, the first thermosetting component and the second thermosetting component mean the thermosetting components contained in the first adhesive layer and the second adhesive layer, respectively.
 複数の導電粒子4の少なくとも一部は、回路接続用接着剤フィルム10Aの縦断面において、隣り合う導電粒子同士が互いに離隔した状態で横方向に並んでいる。換言すると、回路接続用接着剤フィルム10Aは、その縦断面において、隣りに位置する導電粒子と離隔した状態の導電粒子4が横方向に列をなしている中央領域10aと、導電粒子4が存在しない表面側領域10b,10cとによって構成されている。ここで、「横方向」とは回路接続用接着剤フィルムの主面と略平行な方向(図1における左右方向)を意味する。隣り合う導電粒子同士が互いに離隔した状態で横方向に並んでいることは、例えば、走査型電子顕微鏡等により回路接続用接着剤フィルムの縦断面を観察することにより確認することができる。なお、図1では、導電粒子4の一部が第1の接着剤層1の表面から露出(例えば、第2の接着剤層2側に突出)しているが、導電粒子4が第1の接着剤層1の表面から露出しないように、導電粒子4の全体が第1の接着剤層1中に埋め込まれていてもよい。 At least a part of the plurality of conductive particles 4 is arranged in the horizontal direction in a state in which adjacent conductive particles are separated from each other in the vertical cross section of the circuit connection adhesive film 10A. In other words, the circuit connection adhesive film 10A has a central region 10a in which conductive particles 4 in a state of being separated from adjacent conductive particles are arranged in a horizontal direction and conductive particles 4 in the vertical cross section thereof. It is composed of surface side regions 10b and 10c that do not. Here, the "horizontal direction" means a direction substantially parallel to the main surface of the circuit connection adhesive film (horizontal direction in FIG. 1). It can be confirmed that the adjacent conductive particles are arranged in the horizontal direction in a state of being separated from each other by observing the vertical cross section of the adhesive film for circuit connection with, for example, a scanning electron microscope or the like. In FIG. 1, a part of the conductive particles 4 is exposed from the surface of the first adhesive layer 1 (for example, protruding toward the second adhesive layer 2), but the conductive particles 4 are the first. The entire conductive particles 4 may be embedded in the first adhesive layer 1 so as not to be exposed from the surface of the adhesive layer 1.
 図2及び図3は、回路接続用接着剤フィルム10Aにおける導電粒子4の配置例を模式的に示す平面図である。図2及び図3に示されるように、複数の導電粒子4の少なくとも一部は、回路接続用接着剤フィルムの平面視において、所定のパターンで並んでいる。図2では、回路接続用接着剤フィルムの平面視において、導電粒子4が回路接続用接着剤フィルム10Aの全体の領域に対して規則的且つ略均等の間隔で配置されているが、例えば、図3に示されるように、回路接続用接着剤フィルムの平面視において、複数の導電粒子4が規則的に配置されている領域10dと、導電粒子4が存在しない領域10eとが規則的に形成されるように、導電粒子4が配置されていてもよい。導電粒子4の位置及び個数は、例えば、接続すべき電極の形状、サイズ及びパターン等に応じて、設定することができる。複数の導電粒子の少なくとも一部が所定のパターンで並んでいることは、例えば、電子顕微鏡等を用いて、回路接続用接着剤フィルムの主面上方より該回路接続用接着剤フィルムを観察することにより確認することができる。 2 and 3 are plan views schematically showing an arrangement example of the conductive particles 4 in the circuit connection adhesive film 10A. As shown in FIGS. 2 and 3, at least a part of the plurality of conductive particles 4 are arranged in a predetermined pattern in a plan view of the circuit connection adhesive film. In FIG. 2, in the plan view of the circuit connecting adhesive film, the conductive particles 4 are arranged at regular and substantially even intervals with respect to the entire region of the circuit connecting adhesive film 10A. As shown in 3, in the plan view of the circuit connection adhesive film, a region 10d in which a plurality of conductive particles 4 are regularly arranged and a region 10e in which the conductive particles 4 do not exist are regularly formed. As such, the conductive particles 4 may be arranged. The position and number of the conductive particles 4 can be set, for example, according to the shape, size, pattern, and the like of the electrodes to be connected. The fact that at least a part of the plurality of conductive particles are lined up in a predetermined pattern means that the circuit connection adhesive film is observed from above the main surface of the circuit connection adhesive film using, for example, an electron microscope. Can be confirmed by.
(第1の接着剤層)
 第1の接着剤層1は、導電粒子4(以下、「(A)成分」という場合がある。)、光硬化性成分(以下、「(B)成分」という場合がある。)の硬化物及び第1の熱硬化性成分(以下、「(C)成分」という場合がある。)を含有する。(B)成分の硬化物は、(B)成分を完全に硬化させた硬化物であってもよく、(B)成分の一部を硬化させた硬化物であってもよい。(C)成分は、接続時に流動可能な成分であり、例えば、未硬化の硬化性成分(例えば樹脂成分)である。第1の接着剤層1を構成する導電粒子4以外の成分は、例えば、導電性を有しない成分(例えば、絶縁性樹脂成分)である。
(First adhesive layer)
The first adhesive layer 1 is a cured product of conductive particles 4 (hereinafter, may be referred to as "(A) component") and a photocurable component (hereinafter, may be referred to as "(B) component"). And a first thermosetting component (hereinafter, may be referred to as “(C) component”). The cured product of the component (B) may be a cured product obtained by completely curing the component (B), or may be a cured product obtained by curing a part of the component (B). The component (C) is a component that can flow at the time of connection, and is, for example, an uncured curable component (for example, a resin component). The components other than the conductive particles 4 constituting the first adhesive layer 1 are, for example, non-conductive components (for example, an insulating resin component).
[(A)成分:導電粒子]
 (A)成分は、導電性を有する粒子であれば特に制限されず、Au、Ag、Pd、Ni、Cu、はんだ等の金属で構成された金属粒子、導電性カーボンで構成された導電性カーボン粒子などであってよい。(A)成分は、非導電性のガラス、セラミック、プラスチック(ポリスチレン等)などを含む核と、上記金属又は導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子であってもよい。(A)成分は、1種の導電粒子を単独で又は2種以上の導電粒子を組み合わせて用いることができる。
[(A) component: conductive particles]
The component (A) is not particularly limited as long as it is a conductive particle, and is a metal particle made of a metal such as Au, Ag, Pd, Ni, Cu, or solder, or a conductive carbon made of conductive carbon. It may be a particle or the like. The component (A) may be a coated conductive particle containing a nucleus containing non-conductive glass, ceramic, plastic (polystyrene, etc.) and the like, and a coating layer containing the metal or conductive carbon and covering the nucleus. good. As the component (A), one kind of conductive particles can be used alone or two or more kinds of conductive particles can be used in combination.
 (A)成分として被覆導電粒子を用いる場合、熱硬化性成分の硬化物を加熱又は加圧により変形させることが容易となるため、電極同士を電気的に接続する際に、電極と(A)成分との接触面積を増加させ、電極間の導電性をより向上させることができる。 When coated conductive particles are used as the component (A), the cured product of the thermosetting component can be easily deformed by heating or pressurizing. Therefore, when the electrodes are electrically connected to each other, the electrode and (A) are used. The contact area with the components can be increased, and the conductivity between the electrodes can be further improved.
 (A)成分として熱溶融性の金属で形成された金属粒子を用いる場合、電極間の接続がより強固となる傾向がある。この傾向は、(A)成分としてはんだ粒子を用いる場合に顕著である。 When metal particles formed of a heat-meltable metal are used as the component (A), the connection between the electrodes tends to be stronger. This tendency is remarkable when solder particles are used as the component (A).
 はんだ粒子は、接続強度と低融点の両立の観点から、スズ、スズ合金、インジウム及びインジウム合金からなる群より選択される少なくとも一種を含んでいてよい。 The solder particles may contain at least one selected from the group consisting of tin, tin alloys, indium and indium alloys from the viewpoint of achieving both connection strength and low melting point.
 スズ合金としては、例えば、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金、Sn-Cu合金等を用いることができる。これらのスズ合金の具体例としては、下記の例が挙げられる。
・In-Sn(In52質量%、Sn48質量% 融点118℃)
・In-Sn-Ag(In20質量%、Sn77.2質量%、Ag2.8質量% 融点175℃)
・Sn-Bi(Sn43質量%、Bi57質量% 融点138℃)
・Sn-Bi-Ag(Sn42質量%、Bi57質量%、Ag1質量% 融点139℃)
・Sn-Ag-Cu(Sn96.5質量%、Ag3質量%、Cu0.5質量% 融点217℃)
・Sn-Cu(Sn99.3質量%、Cu0.7質量% 融点227℃)
・Sn-Au(Sn21.0質量%、Au79.0質量% 融点278℃)
As the tin alloy, for example, In—Sn alloy, In—Sn—Ag alloy, Sn—Au alloy, Sn—Bi alloy, Sn—Bi—Ag alloy, Sn—Ag—Cu alloy, Sn—Cu alloy and the like are used. be able to. Specific examples of these tin alloys include the following examples.
-In-Sn (In 52% by mass, Sn 48% by mass, melting point 118 ° C)
In-Sn-Ag (In 20% by mass, Sn77.2% by mass, Ag 2.8% by mass, melting point 175 ° C.)
-Sn-Bi (Sn43% by mass, Bi57% by mass, melting point 138 ° C.)
-Sn-Bi-Ag (Sn42 mass%, Bi57 mass%, Ag1 mass% melting point 139 ° C.)
-Sn-Ag-Cu (Sn96.5% by mass, Ag3% by mass, Cu0.5% by mass, melting point 217 ° C)
-Sn-Cu (Sn99.3% by mass, Cu0.7% by mass, melting point 227 ° C)
-Sn-Au (Sn21.0% by mass, Au79.0% by mass, melting point 278 ° C.)
 インジウム合金としては、例えば、In-Bi合金、In-Ag合金等を用いることができる。これらのインジウム合金の具体例としては、下記の例が挙げられる。
・In-Bi(In66.3質量%、Bi33.7質量% 融点72℃)
・In-Bi(In33.0質量%、Bi67.0質量% 融点109℃)
・In-Ag(In97.0質量%、Ag3.0質量% 融点145℃)
 なお、上述したスズを含むインジウム合金は、スズ合金に分類されるものとする。
As the indium alloy, for example, an In—Bi alloy, an In—Ag alloy, or the like can be used. Specific examples of these indium alloys include the following examples.
-In-Bi (In66.3% by mass, Bi33.7% by mass, melting point 72 ° C.)
-In-Bi (In33.0% by mass, Bi67.0% by mass, melting point 109 ° C)
In-Ag (In97.0% by mass, Ag3.0% by mass, melting point 145 ° C)
The above-mentioned indium alloy containing tin shall be classified as a tin alloy.
 はんだ粒子は、高温高湿試験時及び熱衝撃試験時により高い信頼性が得られる観点から、In-Bi合金、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金及びSn-Cu合金からなる群より選択される少なくとも一種を含んでよい。 The solder particles are In—Bi alloys, In—Sn alloys, In—Sn—Ag alloys, Sn—Au alloys, Sn—Bi alloys from the viewpoint of obtaining higher reliability during high temperature and high humidity tests and thermal shock tests. , Sn-Bi-Ag alloy, Sn-Ag-Cu alloy and Sn-Cu alloy may contain at least one selected from the group.
 上記スズ合金又はインジウム合金は、はんだ粒子の用途(使用時の温度)等に応じて選択してもよい。例えば、低温での融着にはんだ粒子を用いる場合、In-Sn合金、Sn-Bi合金を採用すれば、150℃以下で融着させることができる。Sn-Ag-Cu合金、Sn-Cu合金等の融点の高い材料を採用した場合、高温放置後においても高い信頼性を維持することができる。 The tin alloy or indium alloy may be selected according to the intended use (temperature at the time of use) of the solder particles. For example, when solder particles are used for fusion at a low temperature, if an In—Sn alloy or a Sn—Bi alloy is used, the solder particles can be fused at 150 ° C. or lower. When a material having a high melting point such as a Sn—Ag—Cu alloy or a Sn—Cu alloy is used, high reliability can be maintained even after being left at a high temperature.
 はんだ粒子は、Ag、Cu、Ni、Bi、Zn、Pd、Pb、Au、P及びBから選ばれる一種以上を含んでもよい。はんだ粒子がAg又はCuを含む場合、はんだ粒子の融点を220℃程度まで低下させることができ、且つ、電極との接合強度がより向上するため、より良好な導通信頼性が得られ易くなる。 The solder particles may contain one or more selected from Ag, Cu, Ni, Bi, Zn, Pd, Pb, Au, P and B. When the solder particles contain Ag or Cu, the melting point of the solder particles can be lowered to about 220 ° C., and the bonding strength with the electrode is further improved, so that better conduction reliability can be easily obtained.
 はんだ粒子のCu含有率は、例えば0.05~10質量%であり、0.1~5質量%又は0.2~3質量%であってもよい。Cu含有率が0.05質量%以上であると、より良好なはんだ接続信頼性を達成し易くなる。また、Cu含有率が10質量%以下であると、融点が低く、濡れ性に優れたはんだ粒子となり易く、結果としてはんだ粒子による接合部の接続信頼性が良好となり易い。 The Cu content of the solder particles is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass. When the Cu content is 0.05% by mass or more, it becomes easy to achieve better solder connection reliability. Further, when the Cu content is 10% by mass or less, the melting point is low and the solder particles tend to have excellent wettability, and as a result, the connection reliability of the joint portion by the solder particles tends to be good.
 はんだ粒子のAg含有率は、例えば0.05~10質量%であり、0.1~5質量%又は0.2~3質量%であってもよい。Ag含有率が0.05質量%以上であると、より良好なはんだ接続信頼性を達成し易くなる。また、Ag含有率が10質量%以下であると、融点が低く、濡れ性に優れたはんだ粒子となり易く、結果としてはんだ粒子による接合部の接続信頼性が良好となり易い。 The Ag content of the solder particles is, for example, 0.05 to 10% by mass, and may be 0.1 to 5% by mass or 0.2 to 3% by mass. When the Ag content is 0.05% by mass or more, it becomes easy to achieve better solder connection reliability. Further, when the Ag content is 10% by mass or less, the solder particles have a low melting point and excellent wettability, and as a result, the connection reliability of the joint portion by the solder particles tends to be good.
 はんだ粒子は、表面の一部に平面部を有してよい。このようなはんだ粒子を用いる場合、はんだ粒子が有する平面部が電極と接することで、当該平面部と電極との間で広い接触面積を確保することができる。また、はんだが濡れ広がり易い材料から形成された電極と、はんだが濡れ広がり難い材料から形成された電極とを接続する際に、後者の電極側にはんだ粒子の平面部が配置されるように調整することで、両電極間の接続を好適に行うことができる。はんだ粒子における上記平面部以外の表面は、球冠状であってよい。すなわち、はんだ粒子は、平面部と、球冠状の曲面部と、を有するものであってよい。具体的には、はんだ粒子は、直径Aを有する球の表面の一部に直径Bの平面部が形成された形状を有していてよい。このようなはんだ粒子を用いる場合、より優れた導通信頼性と絶縁信頼性が得られやすい。 The solder particles may have a flat surface on a part of the surface. When such solder particles are used, a wide contact area can be secured between the flat surface portion and the electrode by contacting the flat surface portion of the solder particles with the electrode. Further, when connecting an electrode made of a material in which solder easily wets and spreads and an electrode made of a material in which solder does not easily wet and spread, adjustment is made so that a flat portion of solder particles is arranged on the latter electrode side. By doing so, the connection between the two electrodes can be suitably performed. The surface of the solder particles other than the flat surface portion may be spherical crown-shaped. That is, the solder particles may have a flat surface portion and a spherical crown-shaped curved surface portion. Specifically, the solder particles may have a shape in which a flat surface portion having a diameter B is formed on a part of the surface of a sphere having a diameter A. When such solder particles are used, more excellent conduction reliability and insulation reliability can be easily obtained.
 はんだ粒子が直径Aを有する球の表面の一部に直径Bの平面部が形成された形状を有する場合、より優れた導通信頼性及び絶縁信頼性を実現する観点から、はんだ粒子の直径Aに対する平面部の直径Bの比(B/A)は、例えば0.01超1.0未満(0.01<B/A<1.0)であってよく、0.1~0.9であってもよい。はんだ粒子の直径A及び平面部の直径Bは、例えば走査型電子顕微鏡等により観察することができる。具体的には、任意のはんだ粒子を走査型電子顕微鏡により観察し、画像を撮影する。得られた画像からはんだ粒子の直径A及び平面部の直径Bを測定し、その粒子のB/Aを求める。この作業を300個のはんだ粒子に対して行って平均値を算出し、はんだ粒子のB/Aとする。 When the solder particles have a shape in which a flat portion having a diameter B is formed on a part of the surface of a sphere having a diameter A, the solder particles have a diameter A with respect to the diameter A from the viewpoint of achieving better conduction reliability and insulation reliability. The ratio (B / A) of the diameter B of the flat surface portion may be, for example, more than 0.01 and less than 1.0 (0.01 <B / A <1.0), and may be 0.1 to 0.9. You may. The diameter A of the solder particles and the diameter B of the flat surface portion can be observed by, for example, a scanning electron microscope or the like. Specifically, arbitrary solder particles are observed with a scanning electron microscope, and an image is taken. From the obtained image, the diameter A of the solder particles and the diameter B of the flat surface portion are measured, and the B / A of the particles is obtained. This operation is performed on 300 solder particles to calculate an average value, which is used as the B / A of the solder particles.
 導電粒子の投影像に外接する四角形を二対の平行線により作成した場合において、対向する辺間の距離をそれぞれX及びY(但しY<X)とすると、Xに対するYの比(Y/X)は、0.8超1.0以下(0.8<Y/X≦1.0)であってよい。このような導電粒子はより真球に近い粒子ということができる。導電粒子が真球に近い形状を有すると、後述する製造方法においてはんだ粒子を基体の凹部に収容し易い傾向がある。また、導電粒子の中でもはんだ粒子を用いる場合、はんだ粒子が真球に近い形状を有することで、対向する複数の電極間をはんだを介して電気的に接続させるときに、はんだ粒子と電極との接触にムラが生じ難く、安定した接続が得られる傾向がある。Xに対するYの比(Y/X)は、0.8超1.0未満(0.8<Y/X<1.0)であってよく、0.81~0.99であってもよい。導電粒子の投影像は、例えば、任意の導電粒子を走査型電子顕微鏡により観察して得ることができる。Y/Xを求める際は、得られた投影像に対し二対の平行線を描画し、一対の平行線は平行線の距離が最小となる位置に、もう一対の平行線は平行線の距離が最大となる位置に配する。この作業を300個の導電粒子に対して行ってY/Xの平均値を算出し、これを導電粒子のY/Xとする。 When a quadrangle circumscribing the projected image of conductive particles is created by two pairs of parallel lines, and the distances between the opposite sides are X and Y (where Y <X), respectively, the ratio of Y to X (Y / X). ) May be more than 0.8 and 1.0 or less (0.8 <Y / X ≦ 1.0). Such conductive particles can be said to be particles closer to a true sphere. When the conductive particles have a shape close to a true sphere, the solder particles tend to be easily accommodated in the recesses of the substrate in the manufacturing method described later. Further, when solder particles are used among the conductive particles, the solder particles have a shape close to a true sphere, so that when the solder particles and the electrodes are electrically connected to each other via solder, the solder particles and the electrodes are connected to each other. The contact is less likely to be uneven, and a stable connection tends to be obtained. The ratio of Y to X (Y / X) may be greater than 0.8 and less than 1.0 (0.8 <Y / X <1.0) and may be 0.81 to 0.99. .. The projected image of the conductive particles can be obtained, for example, by observing any conductive particles with a scanning electron microscope. When calculating Y / X, draw two pairs of parallel lines on the obtained projected image, one pair of parallel lines is at the position where the distance between the parallel lines is the minimum, and the other pair of parallel lines is the distance between the parallel lines. Place in the position where is the maximum. This operation is performed on 300 conductive particles to calculate the average value of Y / X, which is used as the Y / X of the conductive particles.
 (A)成分は、上記の金属粒子、導電性カーボン粒子又は被覆導電粒子と、樹脂等の絶縁材料を含み、該粒子の表面を被覆する絶縁層とを備える絶縁被覆導電粒子であってもよい。(A)成分が絶縁被覆導電粒子であると、(A)成分の含有量が多い場合であっても、粒子の表面に絶縁層を備えているため、(A)成分同士の接触による短絡の発生を抑制でき、また、隣り合う電極回路間の絶縁性を向上させることもできる。 The component (A) may be an insulating coated conductive particle containing the above-mentioned metal particles, conductive carbon particles or coated conductive particles, and an insulating material such as a resin, and having an insulating layer covering the surface of the particles. .. When the component (A) is an insulating coated conductive particle, even when the content of the component (A) is large, the insulating layer is provided on the surface of the particle, so that the component (A) is short-circuited due to contact with each other. The generation can be suppressed, and the insulation between adjacent electrode circuits can be improved.
 (A)成分の平均粒子径は、優れた導電性が得られやすい観点から、1μm以上、2μm以上又は4μm以上であってよい。(A)成分の平均粒子径は、微小サイズの電極へのより良好な接続信頼性が得られやすい観点から、30μm以下、25μm以下又は20μm以下であってよい。これらの観点から、(A)成分の平均粒子径は、1~30μm、2~25μm又は4~20μmであってよい。 The average particle size of the component (A) may be 1 μm or more, 2 μm or more, or 4 μm or more from the viewpoint that excellent conductivity can be easily obtained. The average particle size of the component (A) may be 30 μm or less, 25 μm or less, or 20 μm or less from the viewpoint that better connection reliability to a minute-sized electrode can be easily obtained. From these viewpoints, the average particle size of the component (A) may be 1 to 30 μm, 2 to 25 μm, or 4 to 20 μm.
 (A)成分の平均粒子径は、サイズに合わせた各種方法を用いて測定することができる。例えば、動的光散乱法、レーザ回折法、遠心沈降法、電気的検知帯法、共振式質量測定法等の方法を利用できる。さらに、光学顕微鏡、電子顕微鏡等によって得られる画像から、粒子サイズを測定する方法を利用できる。具体的な装置としては、フロー式粒子像分析装置、マイクロトラック、コールターカウンター等が挙げられる。なお、真球形ではない(A)成分の粒径は、SEMの画像における導電粒子に外接する円の直径であってよい。 The average particle size of the component (A) can be measured by using various methods according to the size. For example, a dynamic light scattering method, a laser diffraction method, a centrifugal sedimentation method, an electrical detection band method, a resonance type mass measurement method, or the like can be used. Further, a method of measuring the particle size from an image obtained by an optical microscope, an electron microscope, or the like can be used. Specific examples include a flow type particle image analyzer, a microtrack, a Coulter counter, and the like. The particle size of the non-spherical component (A) may be the diameter of a circle circumscribing the conductive particles in the SEM image.
 (A)成分の粒子径のC.V.値は、より優れた導電信頼性及び絶縁信頼性を実現できる観点から、20%以下、10%以下、7%以下又は5%以下であってよい。(A)成分の粒子径のC.V.値の下限は特に限定されず、例えば、0.1%以上、1%以上又は2%以上であってもよい。 (A) C. of the particle size of the component. V. The value may be 20% or less, 10% or less, 7% or less, or 5% or less from the viewpoint of achieving better conductivity reliability and insulation reliability. (A) C.I. V. The lower limit of the value is not particularly limited, and may be, for example, 0.1% or more, 1% or more, or 2% or more.
 (A)成分の粒子径のC.V.値は、導電粒子の粒子径の標準偏差を平均粒子径で割った値に100を掛けることで算出される。導電粒子の粒子径の標準偏差は、上述した導電粒子の平均粒子径の測定方法と同じ方法で測定することができる。 (A) C. of the particle size of the component. V. The value is calculated by dividing the standard deviation of the particle size of the conductive particles by the average particle size and multiplying by 100. The standard deviation of the particle size of the conductive particles can be measured by the same method as the above-mentioned method for measuring the average particle size of the conductive particles.
 (A)成分は、平均粒子径が1~30μmであり、且つ、粒子径のC.V.値が20%以下である導電粒子であってもよい。このような導電粒子は小さい平均粒子径と狭い粒度分布とが両立されており、導電信頼性及び絶縁信頼性の高い異方導電性材料に適用する導電粒子として好適に用いることができる。 The component (A) has an average particle size of 1 to 30 μm and has a particle size of C.I. V. It may be conductive particles having a value of 20% or less. Such conductive particles have both a small average particle diameter and a narrow particle size distribution, and can be suitably used as conductive particles applied to an anisotropic conductive material having high conductivity reliability and insulation reliability.
 (A)成分の含有量は、導電性をより向上させることができる観点から、第1の接着剤層の全質量を基準として、例えば、1質量%以上、5質量%以上又は10質量%以上であってよい。(A)成分の含有量は、短絡を抑制し易い観点から、第1の接着剤層の全質量を基準として、例えば、80質量%以下、70質量%以下又は60質量%以下であってよい。これらの観点から、(A)成分の含有量は、第1の接着剤層の全質量を基準として、例えば、1~80質量%、5~70質量%又は10~60質量%であってよい。 The content of the component (A) is, for example, 1% by mass or more, 5% by mass or more, or 10% by mass or more, based on the total mass of the first adhesive layer from the viewpoint of further improving the conductivity. May be. The content of the component (A) may be, for example, 80% by mass or less, 70% by mass or less, or 60% by mass or less based on the total mass of the first adhesive layer from the viewpoint of easily suppressing a short circuit. .. From these viewpoints, the content of the component (A) may be, for example, 1 to 80% by mass, 5 to 70% by mass, or 10 to 60% by mass, based on the total mass of the first adhesive layer. ..
 第1の接着剤層1における(A)成分の粒子密度は、安定した接続抵抗が得られる観点から、100個/mm以上、1000個/mm以上、3000個/mm以上又は5000個/mm以上であってよい。第1の接着剤層1における(A)成分の粒子密度は、隣り合う電極間の絶縁性を向上する観点から、100000個/mm以下、70000個/mm以下、50000個/mm以下又は30000個/mm以下であってよい。 The particle density of the component (A) in the first adhesive layer 1 is 100 / mm 2 or more, 1000 / mm 2 or more, 3000 / mm 2 or more or 5000 from the viewpoint of obtaining stable connection resistance. It may be / mm 2 or more. The particle density of the component (A) in the first adhesive layer 1 is 100,000 pieces / mm 2 or less, 70,000 pieces / mm 2 or less, 50,000 pieces / mm 2 or less from the viewpoint of improving the insulating property between adjacent electrodes. Alternatively, it may be 30,000 pieces / mm 2 or less.
[(B)成分:光硬化性成分]
 (B)成分は、光照射によって硬化する成分(例えば樹脂成分)であれば特に制限されないが、接続抵抗がより優れる観点から、ラジカル硬化性を有する成分であってよい。(B)成分は、例えば、ラジカル重合性化合物(以下、「(B1)成分」という場合がある。)及び光ラジカル重合開始剤(以下、「(B2)成分」という場合がある。)を含んでいてもよい。(B)成分は、(B1)成分及び(B2)成分からなる成分であり得る。
[(B) component: photocurable component]
The component (B) is not particularly limited as long as it is a component that is cured by light irradiation (for example, a resin component), but may be a component having radical curability from the viewpoint of better connection resistance. The component (B) contains, for example, a radically polymerizable compound (hereinafter, may be referred to as “(B1) component”) and a photoradical polymerization initiator (hereinafter, may be referred to as “(B2) component”). You may be. The component (B) can be a component composed of the component (B1) and the component (B2).
(B1)成分:ラジカル重合性化合物
 (B1)成分は、ラジカルによって反応する重合性基(ラジカル重合性基)を有する化合物(ラジカル重合性化合物)である。ラジカル重合性基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基、スチリル基、アルケニル基、アルケニレン基、マレイミド基等が挙げられる。(B1)成分が有するラジカル重合性基の数(官能基数)は、重合後、所望の溶融粘度が得られ易く、接続抵抗の低減効果がより向上し、接続信頼性により優れる観点から、2以上であってよく、重合時の硬化収縮を抑制する観点から、10以下であってよい。また、架橋密度と硬化収縮とのバランスをとるために、ラジカル重合性基の数が上記範囲内にある化合物に加えて、ラジカル重合性基の数が上記範囲外にある化合物を使用してもよい。
Component (B1): Radical polymerizable compound The component (B1) is a compound (radical polymerizable compound) having a polymerizable group (radical polymerizable group) that reacts with a radical. Examples of the radically polymerizable group include a (meth) acryloyl group, a vinyl group, an allyl group, a styryl group, an alkenyl group, an alkenylene group, a maleimide group and the like. The number of radically polymerizable groups (number of functional groups) of the component (B1) is 2 or more from the viewpoint that the desired melt viscosity can be easily obtained after polymerization, the effect of reducing the connection resistance is further improved, and the connection reliability is superior. It may be 10 or less from the viewpoint of suppressing curing shrinkage during polymerization. Further, in order to balance the crosslink density and the curing shrinkage, in addition to the compound having the number of radically polymerizable groups within the above range, a compound having the number of radically polymerizable groups outside the above range may be used. good.
 (B1)成分は、導電粒子の流動を抑制する観点から、例えば、多官能(2官能以上)の(メタ)アクリレートを含んでいてもよい。多官能(2官能以上)の(メタ)アクリレートは、2官能の(メタ)アクリレートであってよく、2官能の(メタ)アクリレートは、2官能の芳香族(メタ)アクリレートであってよい。 The component (B1) may contain, for example, a polyfunctional (bifunctional or higher) (meth) acrylate from the viewpoint of suppressing the flow of conductive particles. The polyfunctional (bifunctional or higher) (meth) acrylate may be a bifunctional (meth) acrylate, and the bifunctional (meth) acrylate may be a bifunctional aromatic (meth) acrylate.
 多官能の(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化2-メチル-1,3-プロパンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族(メタ)アクリレート;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、エトキシ化ビスフェノールF型ジ(メタ)アクリレート、プロポキシ化ビスフェノールF型ジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールF型ジ(メタ)アクリレート、エトキシ化フルオレン型ジ(メタ)アクリレート(例えば、9,9-ビ[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン)、プロポキシ化フルオレン型ジ(メタ)アクリレート、エトキシ化プロポキシ化フルオレン型ジ(メタ)アクリレート等の芳香族(メタ)アクリレート;ビスフェノール型エポキシ(メタ)アクリレート、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレート;カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート等のイソシアヌレート(メタ)アクリレートなどが挙げられる。 Examples of the polyfunctional (meth) acrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate. ) Acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethoxylated polypropylene glycol Di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, neopentylglycoldi (meth) acrylate, 3-methyl-1,5-pentanediol di (Meta) acrylate, 1,6-hexanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1 , 10-decanediol di (meth) acrylate, glycerindi (meth) acrylate, tricyclodecanedimethanol (meth) acrylate, 2-methyl-1,3-propanediol di (meth) acrylate ethoxylated, trimethylolpropane tri (Meta) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated Pentaerythritol tri (meth) acrylate, propoxylated pentaerythritol tri (meth) acrylate, ethoxylated propoxylated pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxydated Fat group (meth) acrylates such as pentaerythritol tetra (meth) acrylate, ethoxylated propoxylated pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexa (meth) acrylate; ethoxylated bisphenol A type di ( Meta) Acrylate Relate, propoxylated bisphenol A type di (meth) acrylate, ethoxylated propoxylated bisphenol A type di (meth) acrylate, ethoxylated bisphenol F type di (meth) acrylate, propoxylated bisphenol F type di (meth) acrylate, ethoxylated Propoxylated bisphenol F-type di (meth) acrylate, ethoxylated fluorene-type di (meth) acrylate (eg, 9,9-bi [4- (2-acryloyloxyethoxy) phenyl] fluorene), propoxylated fluorene-type di (meth). ) Aromatic (meth) acrylates such as acrylates and ethoxylated propoxylated fluorene-type di (meth) acrylates; Aromatic epoxy (meth) acrylates; examples include isocyanurate (meth) acrylates such as caprolactone-modified tris- (2-acryloxyethyl) isocyanurate.
 多官能(2官能以上)の(メタ)アクリレートの含有量は、接続抵抗の低減効果と粒子流動の抑制とを両立させる観点から、(B1)成分の全質量を基準として、例えば、40~100質量%、50~100質量%又は60~100質量%であってよい。 The content of the polyfunctional (bifunctional or higher) (meth) acrylate is, for example, 40 to 100, based on the total mass of the component (B1), from the viewpoint of achieving both the effect of reducing the connection resistance and the suppression of particle flow. It may be% by mass, 50 to 100% by mass, or 60 to 100% by mass.
 (B1)成分は、多官能(2官能以上)の(メタ)アクリレートに加えて、単官能の(メタ)アクリレートを更に含んでいてもよい。単官能の(メタ)アクリレートとしては、例えば、(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)スクシネート等の脂肪族(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、1-ナフトキシエチル(メタ)アクリレート、2-ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート等の芳香族(メタ)アクリレート;グリシジル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等の脂環式エポキシ基を有する(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート等のオキセタニル基を有する(メタ)アクリレートなどが挙げられる。 The component (B1) may further contain a monofunctional (meth) acrylate in addition to the polyfunctional (bifunctional or higher) (meth) acrylate. Examples of the monofunctional (meth) acrylate include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl (meth) acrylate. Butoxyethyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octylheptyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) Acrylate 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, ethoxy Acrylate (meth) acrylates such as polyethylene glycol (meth) acrylates, methoxypolypropylene glycol (meth) acrylates, ethoxypolypropylene glycol (meth) acrylates, and mono (2- (meth) acryloyloxyethyl) succinates; benzyl (meth) acrylates. , Phenyl (meth) acrylate, o-biphenyl (meth) acrylate, 1-naphthyl (meth) acrylate, 2-naphthyl (meth) acrylate, phenoxyethyl (meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, o -Phenylphenoxyethyl (meth) acrylate, 1-naphthoxyethyl (meth) acrylate, 2-naphthoxyethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, phenoxypolypropylene glycol (meth) acrylate, 2-Hydroxy-3-phenoxypropyl (meth) acrylate, 2-hydroxy-3- (o-phenylphenoxy) propyl (meth) acrylate, 2-hydroxy-3- (1-naphthoxy) propyl (meth) acrylate, 2- Aromatic (meth) acrylates such as hydroxy-3- (2-naphthoxy) propyl (meth) acrylates and bisphenol A type epoxy (meth) acrylates; (meth) acrylates having epoxy groups such as glycidyl (meth) acrylates, 3, 4-Epoxycyclohexylmethyl (meth) acrylate, etc. Examples thereof include (meth) acrylate having an alicyclic epoxy group, (meth) acrylate having an oxetanyl group such as (3-ethyloxetane-3-yl) methyl (meth) acrylate, and the like.
 単官能の(メタ)アクリレートの含有量は、(B1)成分の全質量を基準として、例えば、0~60質量%、0~50質量%又は0~40質量%であってよい。 The content of the monofunctional (meth) acrylate may be, for example, 0 to 60% by mass, 0 to 50% by mass, or 0 to 40% by mass based on the total mass of the component (B1).
 (B)成分の硬化物は、例えば、ラジカル以外によって反応する重合性基を有していてもよい。ラジカル以外によって反応する重合性基は、例えば、カチオンによって反応するカチオン重合性基であってよい。カチオン重合性基としては、例えば、グリシジル基等のエポキシ基、エポキシシクロヘキシルメチル基等の脂環式エポキシ基、エチルオキセタニルメチル基等のオキセタニル基等が挙げられる。ラジカル以外によって反応する重合性基を有する(B)成分の硬化物は、例えば、エポキシ基を有する(メタ)アクリレート、脂環式エポキシ基を有する(メタ)アクリレート、オキセタニル基を有する(メタ)アクリレート等のラジカル以外によって反応する重合性基を有する(メタ)アクリレートを(B)成分として使用することによって導入することができる。 The cured product of the component (B) may have, for example, a polymerizable group that reacts with a substance other than a radical. The polymerizable group that reacts with a non-radical substance may be, for example, a cationically polymerizable group that reacts with a cation. Examples of the cationically polymerizable group include an epoxy group such as a glycidyl group, an alicyclic epoxy group such as an epoxycyclohexylmethyl group, and an oxetanyl group such as an ethyloxetanylmethyl group. The cured product of the component (B) having a polymerizable group that reacts by other than radicals is, for example, a (meth) acrylate having an epoxy group, a (meth) acrylate having an alicyclic epoxy group, and a (meth) acrylate having an oxetanyl group. It can be introduced by using a (meth) acrylate having a polymerizable group that reacts with a non-radical substance such as (B) as a component (B).
 ラジカル以外によって反応する重合性基を有する(メタ)アクリレートとしては、ラジカル重合性化合物と後述する熱硬化性成分を架橋して、接続時により強固な接続部を形成する観点では、下記式(1)で表される化合物を用いてよい。
Figure JPOXMLDOC01-appb-C000009
The (meth) acrylate having a polymerizable group that reacts with a substance other than a radical is represented by the following formula (1) from the viewpoint of cross-linking a radically polymerizable compound with a thermosetting component described later to form a stronger connection portion at the time of connection. ) May be used.
Figure JPOXMLDOC01-appb-C000009
 式(1)中、Rは、水素原子又はメチル基を示し、Xは炭素数1~3のアルカンジイル基を示す。炭素数1~3のアルカンジイル基としては、例えば、メチレン基、エチレン基、プロピレン基等が挙げられる。上記式(1)で表される化合物の具体例としては、3,4-エポキシシクロヘキシルメチル(メタ)アクリレートが挙げられる。 In the formula (1), R 1 represents a hydrogen atom or a methyl group, and X represents an alkanediyl group having 1 to 3 carbon atoms. Examples of the alkanediyl group having 1 to 3 carbon atoms include a methylene group, an ethylene group and a propylene group. Specific examples of the compound represented by the above formula (1) include 3,4-epoxycyclohexylmethyl (meth) acrylate.
 ラジカル以外によって反応する重合性基を有するラジカル重合性化合物(例えば(メタ)アクリレート)は、重合時の硬化収縮を抑制する観点では、ラジカル以外によって反応する重合性基を有しないラジカル重合性化合物(例えば(メタ)アクリレート)と併用してよい。(B1)成分の全質量に対するラジカル以外によって反応する重合性基を有するラジカル重合性化合物の質量比(ラジカル以外によって反応する重合性基を有するラジカル重合性化合物の質量(仕込み量)/(B1)成分の全質量(仕込み量))は、信頼性向上の観点から、例えば、0以上、0.1以上、0.2以上又は0.3以上であってよく、0.7以下、0.6以下、0.5以下又は0.4以下であってよく、0~0.7、0.1~0.6、0.2~0.5又は0.3~0.4であってよい。重合時の硬化収縮をより抑制する観点では、ラジカル以外によって反応する重合性基を有しない(メタ)アクリレートに対する、ラジカル以外によって反応する重合性基を有する(メタ)アクリレートの質量比が上記範囲であってもよい。 A radically polymerizable compound having a polymerizable group that reacts with a non-radical substance (for example, (meth) acrylate) is a radically polymerizable compound having no polymerizable group that reacts with a non-radical substance from the viewpoint of suppressing curing shrinkage during polymerization. For example, it may be used in combination with (meth) acrylate). (B1) Mass ratio of radically polymerizable compound having a polymerizable group that reacts with other than radicals to the total mass of the component (mass (charged amount) of radically polymerizable compound having a polymerizable group that reacts with other than radicals) / (B1) From the viewpoint of improving reliability, the total mass (charged amount) of the components may be, for example, 0 or more, 0.1 or more, 0.2 or more, or 0.3 or more, and 0.7 or less, 0.6. Hereinafter, it may be 0.5 or less or 0.4 or less, and may be 0 to 0.7, 0.1 to 0.6, 0.2 to 0.5 or 0.3 to 0.4. From the viewpoint of further suppressing the curing shrinkage during polymerization, the mass ratio of the (meth) acrylate having a polymerizable group reacting with other than radicals to the (meth) acrylate having no polymerizable group reacting with other than radicals is in the above range. There may be.
 (B1)成分は、多官能(2官能以上)及び単官能の(メタ)アクリレートに加えて、その他のラジカル重合性化合物を含んでいてもよい。その他のラジカル重合性化合物としては、例えば、マレイミド化合物、ビニルエーテル化合物、アリル化合物、スチレン誘導体、アクリルアミド誘導体、ナジイミド誘導体等が挙げられる。その他のラジカル重合性化合物の含有量は、(B1)成分の全質量を基準として、例えば、0~40質量%であってよい。 The component (B1) may contain other radically polymerizable compounds in addition to polyfunctional (bifunctional or higher) and monofunctional (meth) acrylates. Examples of other radically polymerizable compounds include maleimide compounds, vinyl ether compounds, allyl compounds, styrene derivatives, acrylamide derivatives, nadiimide derivatives and the like. The content of the other radically polymerizable compound may be, for example, 0 to 40% by mass based on the total mass of the component (B1).
(B2)成分:光ラジカル重合開始剤
 (B2)成分は、150~750nmの範囲内の波長を含む光、好ましくは254~405nmの範囲内の波長を含む光、更に好ましくは365nmの波長を含む光(例えば紫外光)の照射によってラジカルを発生する光重合開始剤(光潜在性ラジカル発生剤)である。(B2)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。
Component (B2): Photoradical Polymerization Initiator The component (B2) comprises light containing a wavelength in the range of 150 to 750 nm, preferably light containing a wavelength in the range of 254 to 405 nm, and more preferably a wavelength in the range of 365 nm. It is a photopolymerization initiator (photolatent radical radical generator) that generates a radical by irradiation with light (for example, ultraviolet light). As the component (B2), one type may be used alone, or a plurality of them may be used in combination.
 (B2)成分は、光により分解して遊離ラジカルを発生する。つまり、(B2)成分は、外部からの光エネルギーの付与によりラジカルを発生する化合物である。(B2)成分は、オキシムエステル構造、ビスイミダゾール構造、アクリジン構造、α-アミノアルキルフェノン構造、アミノベンゾフェノン構造、N-フェニルグリシン構造、アシルホスフィンオキサイド構造、ベンジルジメチルケタール構造、α-ヒドロキシアルキルフェノン構造等の構造を有する化合物であってよい。(B2)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。 The component (B2) is decomposed by light to generate free radicals. That is, the component (B2) is a compound that generates radicals by applying light energy from the outside. The component (B2) includes an oxime ester structure, a bisimidazole structure, an acrydin structure, an α-aminoalkylphenone structure, an aminobenzophenone structure, an N-phenylglycine structure, an acylphosphine oxide structure, a benzyldimethylketal structure, and an α-hydroxyalkylphenone structure. It may be a compound having a structure such as. As the component (B2), one type may be used alone, or a plurality of them may be used in combination.
 (B2)成分は、導電粒子の流動を更に抑制し、捕捉率を更に向上させる観点、及び、接続後の剥離を更に抑制し、接続抵抗の上昇を更に抑制する観点では、オキシムエステル構造を有する化合物であってよい。同様の観点から、オキシムエステル構造を有する化合物は、下記式(I)で表される化合物であってよい。
Figure JPOXMLDOC01-appb-C000010
The component (B2) has an oxime ester structure from the viewpoint of further suppressing the flow of conductive particles and further improving the capture rate, and further suppressing peeling after connection and further suppressing an increase in connection resistance. It may be a compound. From the same viewpoint, the compound having an oxime ester structure may be a compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000010
 式(I)中、R、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は芳香族系炭化水素基を含む有機基を示す。 In formula (I), R 2 , R 3 and R 4 each independently represent an organic group containing a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aromatic hydrocarbon group.
 オキシムエステル構造を有する化合物の具体例としては、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-o-ベンゾイルオキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)等が挙げられる。このような高活性なオキシムエステル系の光ラジカル重合開始剤を用いる場合、(B1)成分物の配合量が少ない場合にも充分に架橋を進行させることができる。 Specific examples of the compound having an oxime ester structure include 1-phenyl-1,2-butandion-2- (o-methoxycarbonyl) oxime and 1-phenyl-1,2-propanedione-2- (o-methoxycarbonyl). ) Oxime, 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2-o-benzoyloxime, 1,3-diphenylpropantrione- 2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxypropanetrione-2- (o-benzoyl) oxime, 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2-( o-benzoyloxime)], etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (o-acetyloxime) and the like. When such a highly active oxime ester-based photoradical polymerization initiator is used, cross-linking can be sufficiently promoted even when the blending amount of the component (B1) is small.
 (B2)成分の含有量は、導電粒子の流動抑制の観点から、(B1)成分100質量部に対して、例えば、0.1~10質量部、0.3~7質量部又は0.5~5質量部であってよい。 The content of the component (B2) is, for example, 0.1 to 10 parts by mass, 0.3 to 7 parts by mass, or 0.5 with respect to 100 parts by mass of the component (B1) from the viewpoint of suppressing the flow of conductive particles. It may be up to 5 parts by mass.
 (B)成分の硬化物の含有量は、導電粒子の流動を抑制する観点から、第1の接着剤層中の(A)成分以外の成分の合計量100質量部に対して、例えば、1質量部以上、5質量部以上又は10質量部以上であってよい。(B)成分の硬化物の含有量は、低圧実装において低抵抗を発現させる観点から、第1の接着剤層中の(A)成分以外の成分の合計量100質量部に対して、例えば、30質量部以下、25質量部以下又は20質量部以下であってよい。これらの観点から、(B)成分の硬化物の含有量は、第1の接着剤層中の(A)成分以外の成分の合計量100質量部に対して、例えば、1~30質量部、5~25質量部又は10~20質量部であってよい。なお、第1の接着剤層を形成するための組成物又は組成物層中の(B)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The content of the cured product of the component (B) is, for example, 1 with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer from the viewpoint of suppressing the flow of the conductive particles. It may be 5 parts by mass or more or 10 parts by mass or more. The content of the cured product of the component (B) is, for example, with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer from the viewpoint of developing low resistance in low-pressure mounting. It may be 30 parts by mass or less, 25 parts by mass or less, or 20 parts by mass or less. From these viewpoints, the content of the cured product of the component (B) is, for example, 1 to 30 parts by mass with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer. It may be 5 to 25 parts by mass or 10 to 20 parts by mass. The content of the component (B) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
[(C)成分:熱硬化性成分]
 (C)成分は、熱によって硬化する成分(例えば樹脂成分)であれば特に制限されないが、(B)成分がラジカル硬化性を有する成分である場合、保管安定性等の観点から、(C)成分は、ラジカル硬化性を有しない成分であってよい。(B)成分がラジカル硬化性を有する成分であり、且つ、(C)成分もラジカル硬化性を有する成分である場合、保管時に第1の接着剤層中に残留したラジカルによって熱硬化性成分の硬化が進行する可能性がある。ラジカル硬化性を有しない成分としては、カチオン硬化性を有する成分(例えば、カチオン重合性化合物及び熱カチオン重合開始剤)及びアニオン硬化性を有する成分(アニオン重合性化合物及び熱アニオン重合開始剤)が挙げられる。
[(C) component: thermosetting component]
The component (C) is not particularly limited as long as it is a component that cures by heat (for example, a resin component), but if the component (B) is a component having radical curability, the component (C) is (C) from the viewpoint of storage stability and the like. The component may be a component having no radical curability. When the component (B) is a component having radical curability and the component (C) is also a component having radical curability, the thermosetting component is composed of radicals remaining in the first adhesive layer during storage. Curing may proceed. Examples of the non-radical curable component include a cationically curable component (for example, a cationically polymerizable compound and a thermally cationic polymerization initiator) and a component having an anionic curable property (anionic polymerizable compound and a thermally anionic polymerization initiator). Can be mentioned.
 (C)成分は、接続抵抗により優れる観点では、カチオン硬化性を有する成分であってよく、例えば、カチオン重合性化合物(以下、「(C1)成分」という場合がある。)及び熱カチオン重合開始剤(以下、「(C2)成分」という場合がある。)を含んでいてよい。(C)成分は、(C1)成分及び(C2)成分のみからなる成分であり得る。 The component (C) may be a cationically curable component from the viewpoint of being superior in connection resistance, and for example, a cationically polymerizable compound (hereinafter, may be referred to as “(C1) component”) and thermal cationic polymerization initiation. It may contain an agent (hereinafter, may be referred to as "(C2) component"). The component (C) can be a component consisting only of the component (C1) and the component (C2).
(C1)成分:カチオン重合性化合物
 (C1)成分は、熱によって(C2)成分と反応することによって架橋する化合物である。なお、(C1)成分は、ラジカル重合性基を有しない化合物を意味し、(C1)成分は、(B1)成分に包含されない。(C1)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。
Component (C1): Cationicly polymerizable compound The component (C1) is a compound that crosslinks by reacting with the component (C2) by heat. The component (C1) means a compound having no radically polymerizable group, and the component (C1) is not included in the component (B1). The component (C1) may be used alone or in combination of two or more.
 (C1)成分は、接続抵抗の低減効果が更に向上し、接続信頼性により優れる観点から、環状エーテル基を有する化合物であってよい。環状エーテル基を有する化合物の中でも、オキセタン化合物及び脂環式エポキシ化合物からなる群より選ばれる少なくとも1種を用いる場合、接続抵抗の低減効果が一層向上する傾向がある。(C1)成分は、所望の溶融粘度が得られ易い観点から、オキセタン化合物の少なくとも1種及び脂環式エポキシ化合物の少なくとも1種の両方を含んでいてよい。 The component (C1) may be a compound having a cyclic ether group from the viewpoint of further improving the effect of reducing the connection resistance and improving the connection reliability. When at least one compound selected from the group consisting of an oxetane compound and an alicyclic epoxy compound is used among the compounds having a cyclic ether group, the effect of reducing the connection resistance tends to be further improved. The component (C1) may contain both at least one oxetane compound and at least one alicyclic epoxy compound from the viewpoint that the desired melt viscosity can be easily obtained.
 (C1)成分としてのオキセタン化合物は、オキセタニル基を有し、かつラジカル重合性基を有しない化合物であれば特に制限なく使用することができる。オキセタン化合物の市販品としては、例えば、ETERNACOLL OXBP(商品名、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、宇部興産株式会社製)、OXSQ、OXT-121、OXT-221、OXT-101、OXT-212(商品名、東亜合成株式会社製)等が挙げられる。これらは、1種の化合物を単独で用いてもよく、複数を組み合わせて用いてもよい。 The oxetane compound as the component (C1) can be used without particular limitation as long as it is a compound having an oxetane group and no radically polymerizable group. Examples of commercially available oxetane compounds include ETERNACOLL OXBP (trade name, 4,4'-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, manufactured by Ube Kosan Co., Ltd.), OXSQ, OXT-121, and the like. Examples thereof include OXT-221, OXT-101, and OXT-212 (trade name, manufactured by Toagosei Co., Ltd.). These may use one kind of compound alone or may use a plurality of compounds in combination.
 (C1)成分としての脂環式エポキシ化合物は、脂環式エポキシ基(例えば、エポキシシクロヘキシル基)を有し、かつラジカル重合性基を有しない化合物であれば特に制限なく使用することができる。脂環式エポキシ化合物の市販品としては、セロキサイド8010(商品名、ビ-7-オキサビシクロ[4.1.0]ヘプタン、株式会社ダイセル製)の他、例えば、EHPE3150、EHPE3150CE、セロキサイド2021P、セロキサイド2081(商品名、株式会社ダイセル製)等が挙げられる。これらは、1種の化合物を単独で用いてもよく、複数を組み合わせて用いてもよい。(C1)成分としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等の芳香族系炭化水素基を有するエポキシ化合物(例えば、三菱化学株式会社製の商品名「jER1010」、「YL983U」等)を用いることもできる。芳香族系炭化水素基を有するエポキシ化合物は、接続抵抗の低減効果が更に向上し、接続信頼性により優れる観点から、脂環式エポキシ化合物と組み合わせて用いてよい。 The alicyclic epoxy compound as the component (C1) can be used without particular limitation as long as it is a compound having an alicyclic epoxy group (for example, an epoxycyclohexyl group) and no radical polymerizable group. Commercially available alicyclic epoxy compounds include seroxide 8010 (trade name, B-7-oxavicyclo [4.1.0] heptane, manufactured by Daicel Corporation), for example, EHPE3150, EHPE3150CE, seroxide 2021P, and seroxide. 2081 (trade name, manufactured by Daicel Corporation) and the like can be mentioned. These may use one kind of compound alone or may use a plurality of compounds in combination. As the component (C1), an epoxy compound having an aromatic hydrocarbon group such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin (for example, trade names "jER1010" and "YL983U" manufactured by Mitsubishi Chemical Corporation). Can also be used. The epoxy compound having an aromatic hydrocarbon group may be used in combination with the alicyclic epoxy compound from the viewpoint of further improving the effect of reducing the connection resistance and improving the connection reliability.
(C2)成分:熱カチオン重合開始剤
 (C2)成分は、加熱により酸等を発生して重合を開始する熱重合開始剤(熱潜在性カチオン発生剤)である。(C2)成分はカチオンとアニオンとから構成される塩化合物であってよい。(C2)成分は、例えば、BF 、BR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)、PF 、SbF 、AsF 等のアニオンを有する、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ジアゾニウム塩、ヨードニウム塩、アニリニウム塩、ピリジニウム塩等のオニウム塩などが挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。
Component (C2): Thermal cation polymerization initiator The component (C2) is a thermal polymerization initiator (thermal latent cation generator) that initiates polymerization by generating an acid or the like by heating. The component (C2) may be a salt compound composed of a cation and an anion. The component (C2) is, for example, BF 4- , BR 4- ( R indicates a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups) , PF 6- , SbF 6- . , AsF 6 − and the like, sulfonium salt, phosphonium salt, ammonium salt, diazonium salt, iodonium salt, anilinium salt, onium salt such as pyridinium salt and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types.
 (C2)成分は、速硬化性の観点から、例えば、構成元素としてホウ素を含むアニオンを有する塩化合物であってよい。このような塩化合物としては、例えば、BF 又はBR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)を有する塩化合物が挙げられる。構成元素としてホウ素を含むアニオンは、BR であってよく、より具体的には、テトラキス(ペンタフルオロフェニル)ボレートであってもよい。 The component (C2) may be, for example, a salt compound having an anion containing boron as a constituent element from the viewpoint of quick curing. Examples of such a salt compound include salt compounds having BF 4- or BR 4- ( R indicates a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups). Be done. The anion containing boron as a constituent element may be BR 4- , and more specifically, tetrakis (pentafluorophenyl) borate.
 (C2)成分は、保存安定性の観点から、下記式(II)又は下記式(III)で表されるカチオンを有する塩化合物であってよい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
The component (C2) may be a salt compound having a cation represented by the following formula (II) or the following formula (III) from the viewpoint of storage stability.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 式(II)中、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基を示し、Rは、炭素数1~6のアルキル基を示す。 In formula (II), R 5 and R 6 each independently represent an organic group containing a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aromatic hydrocarbon group having or not substituted. , R 7 represent an alkyl group having 1 to 6 carbon atoms.
 式(II)で表されるカチオンを有する塩化合物は、保存安定性と低温活性の両立観点から、芳香族スルホニウム塩化合物(芳香族スルホニウム塩型熱酸発生剤)であってよい。すなわち、式(II)におけるR及びRの少なくとも一方が置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基であってよい。式(II)で表されるカチオンを有する塩化合物におけるアニオンは、構成元素としてアンチモンを含むアニオンであってよく、例えば、ヘキサフルオロアンチモネート(ヘキサフルオロアンチモン酸)であってよい。 The salt compound having a cation represented by the formula (II) may be an aromatic sulfonium salt compound (aromatic sulfonium salt type thermoacid generator) from the viewpoint of achieving both storage stability and low temperature activity. That is, at least one of R5 and R6 in the formula (II) may be an organic group having a substituent or containing an unsubstituted aromatic hydrocarbon group. The anion in the salt compound having a cation represented by the formula (II) may be an anion containing antimony as a constituent element, and may be, for example, hexafluoroantimonate (hexafluoroantimonic acid).
 式(II)で表されるカチオンを有する化合物の具体例としては、1-ナフチルメチル-p-ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート(三新化学株式会社製、SI-60主剤)等が挙げられる。 Specific examples of the compound having a cation represented by the formula (II) include 1-naphthylmethyl-p-hydroxyphenylsulfonium hexafluoroantimonate (manufactured by Sanshin Chemical Co., Ltd., SI-60 main agent) and the like.
 式(III)中、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基を示し、R10及びR11は、それぞれ独立して、炭素数1~6のアルキル基を示す。 In formula (III), R 8 and R 9 each independently represent an organic group containing a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aromatic hydrocarbon group having or not substituted. , R 10 and R 11 each independently represent an alkyl group having 1 to 6 carbon atoms.
 式(III)で表されるカチオンを有する塩化合物(第4級アンモニウム塩型熱酸発生剤)は、カチオン硬化に対する硬化阻害を起こし得る物質に対する耐性を有することから、例えば、アニリニウム塩化合物であってよい。すなわち、式(III)におけるR及びRの少なくとも一方が置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基であってよい。アニリニウム塩化合物としては、例えば、N,N-ジメチルアニリニウム塩、N,N-ジエチルアニリニウム塩等のN,N-ジアルキルアニリニウム塩などが挙げられる。式(III)で表されるカチオンを有する塩化合物におけるアニオンは、構成元素としてホウ素を含むアニオンであってよく、例えば、テトラキス(ペンタフルオロフェニル)ボレートであってよい。 The salt compound having a cation represented by the formula (III) (quaternary ammonium salt type thermoacid generator) is, for example, an anilinium salt compound because it has resistance to a substance that can cause curing inhibition to cation curing. It's okay. That is, at least one of R 8 and R 9 in the formula (III) may be an organic group having a substituent or containing an unsubstituted aromatic hydrocarbon group. Examples of the anilinium salt compound include N, N-dialkylanilinium salts such as N, N-dimethylanilinium salt and N, N-diethylanilinium salt. The anion in the salt compound having a cation represented by the formula (III) may be an anion containing boron as a constituent element, and may be, for example, tetrakis (pentafluorophenyl) borate.
 式(III)で表されるカチオンを有する化合物は、構成元素としてホウ素を含むアニオンを有するアニリニウム塩であってよい。このような塩化合物の市販品としては、例えば、CXC-1821(商品名、King Industries社製)等が挙げられる。 The compound having a cation represented by the formula (III) may be an anilinium salt having an anion containing boron as a constituent element. Examples of commercially available products of such salt compounds include CXC-1821 (trade name, manufactured by King Industries) and the like.
 (C2)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの形成性及び硬化性を担保する観点から、(C1)成分100質量部に対して、例えば、0.1~20質量部、1~18質量部、3~15質量部又は5~12質量部であってよい。 The content of the component (C2) is, for example, 0. It may be 1 to 20 parts by mass, 1 to 18 parts by mass, 3 to 15 parts by mass, or 5 to 12 parts by mass.
 (C)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの硬化性を担保する観点から、第1の接着剤層中の(A)成分以外の成分の合計量100質量部に対して、例えば、5質量部以上、10質量部以上、15質量部以上又は20質量部以上であってよい。(C)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの形成性を担保する観点から、第1の接着剤層中の(A)成分以外の成分の合計量100質量部に対して、例えば、70質量部以下、60質量部以下、50質量部以下又は40質量部以下であってよい。これらの観点から、(C)成分の含有量は、第1の接着剤層中の(A)成分以外の成分の合計量100質量部に対して、例えば、5~70質量部、10~60質量部、15~50質量部又は20~40質量部であってよい。なお、組成物又は組成物層中の(C)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The content of the component (C) is the total amount of the components other than the component (A) in the first adhesive layer from the viewpoint of ensuring the curability of the adhesive film for forming the first adhesive layer. It may be, for example, 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, or 20 parts by mass or more with respect to 100 parts by mass. The content of the component (C) is the total amount of the components other than the component (A) in the first adhesive layer from the viewpoint of ensuring the formability of the adhesive film for forming the first adhesive layer. For example, it may be 70 parts by mass or less, 60 parts by mass or less, 50 parts by mass or less, or 40 parts by mass or less with respect to 100 parts by mass. From these viewpoints, the content of the component (C) is, for example, 5 to 70 parts by mass and 10 to 60 parts by mass with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer. It may be parts by mass, 15 to 50 parts by mass, or 20 to 40 parts by mass. The content of the component (C) in the composition or the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
[その他の成分]
 第1の接着剤層1は、(A)成分、(B)成分の硬化物、及び(C)成分以外にその他の成分を更に含有していてもよい。その他の成分としては、例えば、熱可塑性樹脂(以下、「(D)成分」という場合がある。)、カップリング剤(以下、「(E)成分」という場合がある。)、及び、充填材(以下、「(F)成分」という場合がある。)等が挙げられる。
[Other ingredients]
The first adhesive layer 1 may further contain other components in addition to the component (A), the cured product of the component (B), and the component (C). Examples of other components include a thermoplastic resin (hereinafter, may be referred to as “(D) component”), a coupling agent (hereinafter, may be referred to as “(E) component”), and a filler. (Hereinafter, it may be referred to as "(F) component".) And the like.
 (D)成分としては、例えば、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリルゴム、エポキシ樹脂(25℃で固形)等が挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。(B)成分及び(C)成分を含有する組成物が(D)成分を更に含有することによって、当該組成物から組成物層(更には第1の接着剤層1)を容易に形成することができる。上記フェノキシ樹脂としては、例えば、フルオレン型フェノキシ樹脂、ビスフェノールA・ビスフェノールF共重合型フェノキシ樹脂等が挙げられる。 Examples of the component (D) include phenoxy resin, polyester resin, polyamide resin, polyurethane resin, polyester urethane resin, acrylic rubber, epoxy resin (solid at 25 ° C.) and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types. By further containing the component (D) in the composition containing the component (B) and the component (C), the composition layer (further, the first adhesive layer 1) can be easily formed from the composition. Can be done. Examples of the phenoxy resin include a fluorene type phenoxy resin, a bisphenol A / bisphenol F copolymer type phenoxy resin, and the like.
 (D)成分の重量平均分子量(Mw)は、実装時の樹脂排除性の観点から、例えば、5000~200000、10000~100000、20000~80000又は40000~60000であってよい。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。 The weight average molecular weight (Mw) of the component (D) may be, for example, 5000 to 200,000, 10000 to 100,000, 20000 to 80000 or 40,000 to 60000 from the viewpoint of resin exclusion during mounting. In addition, Mw means a value measured by gel permeation chromatography (GPC) and converted using the calibration curve by standard polystyrene.
 (D)成分の含有量は、第1の接着剤層中の(A)成分以外の成分の合計量100質量部に対して、例えば、1質量部以上、5質量部以上、10質量部以上又は20質量部以上であってよく、70質量部以下、60質量部以下、50質量部以下又は40質量部以下であってよく、1~70質量部、5~60質量部、10~50質量部又は20~40質量部であってよい。なお、第1の接着剤層を形成するための組成物又は組成物層中の(D)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The content of the component (D) is, for example, 1 part by mass or more, 5 parts by mass or more, and 10 parts by mass or more with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer. Alternatively, it may be 20 parts by mass or more, 70 parts by mass or less, 60 parts by mass or less, 50 parts by mass or less, or 40 parts by mass or less, and may be 1 to 70 parts by mass, 5 to 60 parts by mass, or 10 to 50 parts by mass. It may be parts or 20 to 40 parts by mass. The content of the component (D) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
 (E)成分としては、例えば、(メタ)アクリロイル基、メルカプト基、アミノ基、イミダゾール基、エポキシ基等の有機官能基を有するシランカップリング剤(γ―グリシドキシプロピルトリメトキシシラン等)、テトラアルコキシシラン等のシラン化合物、テトラアルコキシチタネート誘導体、ポリジアルキルチタネート誘導体などが挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。第1の接着剤層1が(E)成分を含有することによって、接着性を更に向上させることができる。(E)成分は、例えば、シランカップリング剤であってよい。 Examples of the component (E) include a silane coupling agent having an organic functional group such as a (meth) acryloyl group, a mercapto group, an amino group, an imidazole group, and an epoxy group (γ-glycidoxypropyltrimethoxysilane, etc.). Examples thereof include a silane compound such as tetraalkoxysilane, a tetraalkoxy titanate derivative, and a polydialkyl titanate derivative. These may be used individually by 1 type, and may be used in combination of a plurality of types. When the first adhesive layer 1 contains the component (E), the adhesiveness can be further improved. The component (E) may be, for example, a silane coupling agent.
 (E)成分の含有量は、第1の接着剤層中の(A)成分以外の成分の合計量100質量部に対して、例えば、0.1~10質量部であってよい。なお、第1の接着剤層を形成するための組成物又は組成物層中の(E)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The content of the component (E) may be, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer. The content of the component (E) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
 (F)成分としては、例えば、非導電性のフィラー(例えば、非導電粒子)が挙げられる。(F)成分は、無機フィラー及び有機フィラーのいずれであってもよい。無機フィラーとしては、例えば、シリカ微粒子、アルミナ微粒子、シリカ-アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等の金属酸化物微粒子;金属窒化物微粒子などの無機微粒子が挙げられる。有機フィラーとしては、例えば、シリコーン微粒子、メタアクリレート・ブタジエン・スチレン微粒子、アクリル・シリコーン微粒子、ポリアミド微粒子、ポリイミド微粒子等の有機微粒子が挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。(F)成分は、例えば、シリカ微粒子であってよい。(F)成分の含有量は、第1の接着剤層中の(A)成分以外の成分の合計量100質量部に対して、例えば、0.1~10質量部であってよい。なお、第1の接着剤層を形成するための組成物又は組成物層中の(F)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 Examples of the component (F) include non-conductive fillers (for example, non-conductive particles). The component (F) may be either an inorganic filler or an organic filler. Examples of the inorganic filler include metal oxide fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles; and inorganic fine particles such as metal nitride fine particles. Examples of the organic filler include organic fine particles such as silicone fine particles, methacrylate / butadiene / styrene fine particles, acrylic / silicone fine particles, polyamide fine particles, and polyimide fine particles. These may be used individually by 1 type, and may be used in combination of a plurality of types. The component (F) may be, for example, silica fine particles. The content of the component (F) may be, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer. The content of the component (F) in the composition or the composition layer for forming the first adhesive layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
 第1の接着剤層1は、その他の成分として、軟化剤、促進剤、劣化防止剤、着色剤、難燃化剤、チキソトロピック剤等のその他の添加剤を更に含有していてもよい。その他の添加剤の含有量は、第1の接着剤層中の(A)成分以外の成分の合計量100質量部に対して、例えば、0.1~10質量部であってよい。なお、第1の接着剤層を形成するための組成物又は組成物層中のその他の添加剤の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。 The first adhesive layer 1 may further contain other additives such as a softener, an accelerator, a deterioration inhibitor, a colorant, a flame retardant, and a thixotropic agent as other components. The content of the other additives may be, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components other than the component (A) in the first adhesive layer. The content of the composition for forming the first adhesive layer or other additives in the composition layer (based on the total mass of the composition or the composition layer) may be the same as the above range.
 第1の接着剤層1の厚さd1は、回路接続用接着剤フィルムの製造時における導電粒子4の転写性の観点から、例えば、0.5μm以上、1.0μm以上又は2.0μm以上であってよい。第1の接着剤層1の厚さd1は、接続時に導電粒子をより一層効率的に捕捉することができる観点から、例えば、5.0μm以下、4.0μm以下又は3.0μm以下であってよい。これらの観点から、第1の接着剤層1の厚さd1は、例えば、0.5~5.0μm、1.0~4.0μm又は2.0~3.0μmであってよい。なお、図1に示されるように、導電粒子4の一部が第1の接着剤層1の表面から露出(例えば、第2の接着剤層2側に突出)している場合、第1の接着剤層1における第2の接着剤層2側とは反対側の面1aから、隣り合う導電粒子4,4の離間部分に位置する第1の接着剤層1と第2の接着剤層2との境界Sまでの距離(図1においてd1で示す距離)が第1の接着剤層1の厚さであり、導電粒子4の露出部分は第1の接着剤層1の厚さには含まれない。 The thickness d1 of the first adhesive layer 1 is, for example, 0.5 μm or more, 1.0 μm or more, or 2.0 μm or more from the viewpoint of transferability of the conductive particles 4 at the time of manufacturing the adhesive film for circuit connection. It may be there. The thickness d1 of the first adhesive layer 1 is, for example, 5.0 μm or less, 4.0 μm or less, or 3.0 μm or less from the viewpoint of being able to capture conductive particles more efficiently at the time of connection. good. From these viewpoints, the thickness d1 of the first adhesive layer 1 may be, for example, 0.5 to 5.0 μm, 1.0 to 4.0 μm, or 2.0 to 3.0 μm. As shown in FIG. 1, when a part of the conductive particles 4 is exposed from the surface of the first adhesive layer 1 (for example, protruding toward the second adhesive layer 2), the first The first adhesive layer 1 and the second adhesive layer 2 located at the separated portions of the adjacent conductive particles 4 and 4 from the surface 1a of the adhesive layer 1 opposite to the second adhesive layer 2 side. The distance to the boundary S with and (the distance indicated by d1 in FIG. 1) is the thickness of the first adhesive layer 1, and the exposed portion of the conductive particles 4 is included in the thickness of the first adhesive layer 1. I can't.
 第1の接着剤層1の厚さd1は、例えば、接着剤フィルムを2枚のガラス(厚さ:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:jER811、三菱ケミカル株式会社製)100gと、硬化剤(商品名:エポマウント硬化剤、リファインテック株式会社製)10gとからなる樹脂組成物で注型後に、研磨機を用いて断面研磨を行い、走査型電子顕微鏡(SEM、商品名:SE-8020、株式会社日立ハイテクサイエンス製)を用いて測定することによって求めることができる。 The thickness d1 of the first adhesive layer 1 is, for example, a bisphenol A type epoxy resin (trade name: jER811, manufactured by Mitsubishi Chemical Co., Ltd.) in which an adhesive film is sandwiched between two sheets of glass (thickness: about 1 mm). After casting with a resin composition consisting of 100 g and 10 g of a curing agent (trade name: Epomount curing agent, manufactured by Refine Tech Co., Ltd.), the cross section is polished using a polishing machine, and a scanning electron microscope (SEM, product) is used. Name: SE-8020, manufactured by Hitachi High-Tech Science Co., Ltd.) can be used for measurement.
<第2の接着剤層>
 第2の接着剤層2は、例えば、導電性を有しない成分(絶縁性樹脂成分)で構成されている絶縁性接着剤層である。第2の接着剤層2は、少なくとも(C)成分を含有する。
<Second adhesive layer>
The second adhesive layer 2 is, for example, an insulating adhesive layer composed of a component having no conductivity (insulating resin component). The second adhesive layer 2 contains at least the component (C).
 第2の接着剤層2における(C)成分(すなわち、第2の熱硬化性成分)に含まれる成分(例えば、(C1)成分、(C2)成分等)の詳細(種類、組み合わせ等)は、第1の接着剤層1における(C)成分(すなわち、第1の熱硬化性成分)に含まれる成分の詳細と同様であることから、ここでは詳細な説明は省略する。第2の熱硬化性成分は、第1の熱硬化性成分と同一であってもよく、異なっていてもよい。 Details (types, combinations, etc.) of the components (for example, (C1) component, (C2) component, etc.) contained in the (C) component (that is, the second thermosetting component) in the second adhesive layer 2 are , Since the details of the component contained in the component (C) (that is, the first thermosetting component) in the first adhesive layer 1 are the same, detailed description thereof will be omitted here. The second thermosetting component may be the same as or different from the first thermosetting component.
 (C)成分の含有量は、信頼性を維持する観点から、第2の接着剤層の全質量を基準として、例えば、5質量%以上、10質量%以上、15質量%以上又は20質量%以上であってよい。(C)成分の含有量は、供給形態の一態様であるリールにおける樹脂染み出し不具合を防止する観点から、第2の接着剤層の全質量を基準として、例えば、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってよい。これらの観点から、(C)成分の含有量は、第2の接着剤層の全質量を基準として、例えば、5~70質量%、10~15質量%、15~50質量%又は20~40質量%であってよい。 The content of the component (C) is, for example, 5% by mass or more, 10% by mass or more, 15% by mass or more, or 20% by mass, based on the total mass of the second adhesive layer from the viewpoint of maintaining reliability. That may be the above. The content of the component (C) is, for example, 70% by mass or less, 60% by mass, based on the total mass of the second adhesive layer, from the viewpoint of preventing the resin seepage defect in the reel, which is one aspect of the supply form. % Or less, 50% by mass or less, or 40% by mass or less. From these viewpoints, the content of the component (C) is, for example, 5 to 70% by mass, 10 to 15% by mass, 15 to 50% by mass, or 20 to 40, based on the total mass of the second adhesive layer. It may be% by mass.
 第2の接着剤層2は、第1の接着剤層1におけるその他の成分((D)成分、(E)成分、(F)成分及びその他の添加剤等)を更に含有していてもよい。その他の成分の好ましい態様は、第1の接着剤層1の好ましい態様と同様である。 The second adhesive layer 2 may further contain other components ((D) component, (E) component, (F) component, other additives, etc.) in the first adhesive layer 1. .. Preferred embodiments of the other components are the same as the preferred embodiments of the first adhesive layer 1.
 (D)成分の含有量は、第2の接着剤層の全質量を基準として、例えば、1質量%以上、5質量%以上又は10質量%以上であってよく、80質量%以下、60質量%以下又は40質量%以下であってよく、1~80質量%、5~60質量%又は10~40質量%であってよい。 The content of the component (D) may be, for example, 1% by mass or more, 5% by mass or more, or 10% by mass or more, and 80% by mass or less, 60% by mass, based on the total mass of the second adhesive layer. % Or less or 40% by mass or less, and may be 1 to 80% by mass, 5 to 60% by mass, or 10 to 40% by mass.
 (E)成分の含有量は、第2の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。 The content of the component (E) may be, for example, 0.1 to 10% by mass based on the total mass of the second adhesive layer.
 (F)成分の含有量は、第2の接着剤層の全質量を基準として、例えば、1質量%以上、10質量%以上又は30質量%以上であってよく、90質量%以下、70質量%以下又は50質量%以下であってよく、1~90質量%以下、10~70質量%以下又は30~50質量%であってよい。 The content of the component (F) may be, for example, 1% by mass or more, 10% by mass or more, or 30% by mass or more, and 90% by mass or less, 70% by mass, based on the total mass of the second adhesive layer. % Or less or 50% by mass or less, and may be 1 to 90% by mass or less, 10 to 70% by mass or less, or 30 to 50% by mass.
 その他の添加剤の含有量は、第2の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。 The content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the second adhesive layer.
 第2の接着剤層2の厚さd2は、接続する回路部材の電極の高さ等に応じて適宜設定してよい。第2の接着剤層2の厚さd2は、電極間のスペースを充分に充填して電極を封止することができ、より良好な接続信頼性が得られる観点から、例えば、2μm以上、5μm以上又は10μm以上であってよく、30μm以下、20μm以下又は15μm以下であってよく、2~30μm、5~20μm又は10~15μmであってよい。なお、図1に示されるように、導電粒子4の一部が第1の接着剤層1の表面から露出(例えば、第2の接着剤層2側に突出)している場合、第2の接着剤層2における第1の接着剤層1側とは反対側の面2aから、隣り合う導電粒子4,4の離間部分に位置する第1の接着剤層1と第2の接着剤層2との境界Sまでの距離(図1においてd2で示す距離)が第2の接着剤層2の厚さである。第2の接着剤層2の厚さd2は、例えば、上述した第1の接着剤層1の厚さd1の測定方法と同様にして求めることができる。 The thickness d2 of the second adhesive layer 2 may be appropriately set according to the height of the electrodes of the circuit member to be connected and the like. The thickness d2 of the second adhesive layer 2 can sufficiently fill the space between the electrodes to seal the electrodes, and from the viewpoint of obtaining better connection reliability, for example, 2 μm or more and 5 μm. It may be more than or equal to 10 μm, may be 30 μm or less, 20 μm or less, or 15 μm or less, and may be 2 to 30 μm, 5 to 20 μm, or 10 to 15 μm. As shown in FIG. 1, when a part of the conductive particles 4 is exposed from the surface of the first adhesive layer 1 (for example, protruding toward the second adhesive layer 2), the second adhesive layer 2 is exposed. The first adhesive layer 1 and the second adhesive layer 2 located at the separated portions of the adjacent conductive particles 4 and 4 from the surface 2a of the adhesive layer 2 opposite to the first adhesive layer 1 side. The distance to the boundary S with and (the distance indicated by d2 in FIG. 1) is the thickness of the second adhesive layer 2. The thickness d2 of the second adhesive layer 2 can be obtained, for example, in the same manner as the method for measuring the thickness d1 of the first adhesive layer 1 described above.
 回路接続用接着剤フィルム10Aの厚さ(回路接続用接着剤フィルム10Aを構成するすべての層の厚さの合計)は、例えば、2.5μm以上、6μm以上又は12μm以上であってよく、35μm以下、24μm以下又は18μm以下であってよく、2.5~35μm、6~24μm又は12~24μmであってよい。 The thickness of the circuit connection adhesive film 10A (the total thickness of all the layers constituting the circuit connection adhesive film 10A) may be, for example, 2.5 μm or more, 6 μm or more, or 12 μm or more, and may be 35 μm. Hereinafter, it may be 24 μm or less or 18 μm or less, and may be 2.5 to 35 μm, 6 to 24 μm, or 12 to 24 μm.
 回路接続用接着剤フィルム10Aは、回路の接続に用いられる接着剤フィルムである。回路接続用接着剤フィルム10Aは、異方導電性を有していてもよいし、異方導電性を有していなくてもよい。すなわち、回路接続用接着剤フィルムは、異方導電性の接着剤フィルムであっても、非異方導電性(例えば等方導電性)の接着剤フィルムであってもよい。回路接続用接着剤フィルム10Aは、第1の電極を有する第1の回路部材の当該第1の電極が設けられている面と、第2の電極を有する第2の回路部材の当該第2の電極が設けられている面との間に配置され、第1の回路部材と回路接続用接着剤フィルム10Aと第2の回路部材とを含む積層体を積層体の厚さ方向に押圧した状態で加熱することにより、第1の電極と第2の電極とを導電粒子(或いは導電粒子の溶融固化物)を介して互いに電気的に接続し且つ第1の回路部材と第2の回路部材とを接着するために用いられてよい。なお、上述した「異方導電性」とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。 The circuit connection adhesive film 10A is an adhesive film used for circuit connection. The circuit connection adhesive film 10A may or may not have anisotropic conductivity. That is, the adhesive film for circuit connection may be an anisotropically conductive adhesive film or a non-anisotropically conductive (for example, isotropically conductive) adhesive film. The circuit connection adhesive film 10A is formed on the surface of the first circuit member having the first electrode on which the first electrode is provided and the second circuit member of the second circuit member having the second electrode. A state in which the laminate including the first circuit member, the circuit connection adhesive film 10A, and the second circuit member is pressed between the surfaces provided with the electrodes in the thickness direction of the laminate. By heating, the first electrode and the second electrode are electrically connected to each other via conductive particles (or molten solidified of conductive particles), and the first circuit member and the second circuit member are connected to each other. It may be used for bonding. The above-mentioned "anisotropic conductivity" means that the material conducts in the pressurized direction and maintains the insulating property in the non-pressurized direction.
 回路接続用接着剤フィルム10Aによれば、熱硬化性成分によって接続時の樹脂の排除性を確保しながら、光硬化性成分の硬化物によって接続時の導電粒子の流動性を抑え、接続される電極間における導電粒子の捕捉率を向上させることができる。そのため、回路接続用接着剤フィルム10Aによれば、ショートの発生が少なく、また、電極間の導通性にも優れる接続構造体を得ることができる。 According to the circuit connection adhesive film 10A, the thermosetting component ensures the removal of the resin at the time of connection, while the cured product of the photocurable component suppresses the fluidity of the conductive particles at the time of connection and is connected. It is possible to improve the capture rate of conductive particles between the electrodes. Therefore, according to the circuit connection adhesive film 10A, it is possible to obtain a connection structure in which short circuits are less likely to occur and the conductivity between the electrodes is also excellent.
 以上、一実施形態の回路接続用接着剤フィルムについて説明したが、本発明は上記実施形態に限定されない。 Although the circuit connection adhesive film of one embodiment has been described above, the present invention is not limited to the above embodiment.
 回路接続用接着剤フィルムは、例えば、図4に示される回路接続用接着剤フィルム10Bのように、第1の接着剤層1の第2の接着剤層2とは反対側に(C)成分(熱硬化性成分)を含有する第3の接着剤層5を備えていてもよい。第3の接着剤層5は、例えば、導電性を有しない成分(絶縁性樹脂成分)で構成されている絶縁性接着剤層である。回路接続用接着剤フィルム10Bは、第3の接着剤層5が積層されていること以外は、回路接続用接着剤フィルム10Aと同様の構成を有する。 The circuit connection adhesive film has a component (C) on the opposite side of the first adhesive layer 1 from the second adhesive layer 2, as in the circuit connection adhesive film 10B shown in FIG. 4, for example. A third adhesive layer 5 containing (thermosetting component) may be provided. The third adhesive layer 5 is, for example, an insulating adhesive layer composed of a component having no conductivity (insulating resin component). The circuit connection adhesive film 10B has the same configuration as the circuit connection adhesive film 10A except that the third adhesive layer 5 is laminated.
 第3の接着剤層5に含有される(C)成分(以下、「第3の熱硬化性成分」ともいう。)の詳細は、上述した熱硬化性成分と同じである。例えば、第3の熱硬化性成分は、(C1)成分(すなわち、カチオン重合性化合物)及び(C2)成分(すなわち、熱カチオン重合開始剤)を含んでいてよい。第3の熱硬化性成分で使用される(C1)成分及び(C2)成分は、第1の熱硬化性成分で使用される(C1)成分及び(C2)成分と同様であることから、ここでは詳細な説明は省略する。第3の熱硬化性成分は、第1の熱硬化性成分と同一であっても、異なっていてもよい。第3の熱硬化性成分は、第2の熱硬化性成分と同一であっても、異なっていてもよい。 The details of the component (C) contained in the third adhesive layer 5 (hereinafter, also referred to as “third thermosetting component”) are the same as those described above. For example, the third thermosetting component may contain a component (C1) (ie, a cationically polymerizable compound) and a component (C2) (ie, a thermally cationic polymerization initiator). Since the (C1) component and the (C2) component used in the third thermosetting component are the same as the (C1) component and the (C2) component used in the first thermosetting component, here. Then, detailed explanation is omitted. The third thermosetting component may be the same as or different from the first thermosetting component. The third thermosetting component may be the same as or different from the second thermosetting component.
 (C)成分の含有量は、良好な転写性及び耐剥離性を付与する観点から、第3の接着剤層の全質量を基準として、例えば、5質量%以上、10質量%以上、15質量%以上又は20質量%以上であってよい。(C)成分の含有量は、良好なハーフカット性及び耐ブロッキング性(リールの樹脂染み出し抑制)を付与する観点から、第3の接着剤層の全質量を基準として、例えば、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってよい。これらの観点から、(C)成分の含有量は、第3の接着剤層の全質量を基準として、例えば、5~70質量%、10~60質量%、15~50質量%又は20~40質量%であってよい。 The content of the component (C) is, for example, 5% by mass or more, 10% by mass or more, and 15% by mass based on the total mass of the third adhesive layer from the viewpoint of imparting good transferability and peeling resistance. % Or more or 20% by mass or more. The content of the component (C) is, for example, 70% by mass based on the total mass of the third adhesive layer from the viewpoint of imparting good half-cut property and blocking resistance (suppression of resin seepage of the reel). Hereinafter, it may be 60% by mass or less, 50% by mass or less, or 40% by mass or less. From these viewpoints, the content of the component (C) is, for example, 5 to 70% by mass, 10 to 60% by mass, 15 to 50% by mass, or 20 to 40, based on the total mass of the third adhesive layer. It may be% by mass.
 第3の接着剤層5は、第1の接着剤層1におけるその他の成分を更に含有していてもよい。その他の成分の好ましい態様は、第1の接着剤層1の好ましい態様と同様である。 The third adhesive layer 5 may further contain other components in the first adhesive layer 1. Preferred embodiments of the other components are the same as the preferred embodiments of the first adhesive layer 1.
 (D)成分の含有量は、第3の接着剤層の全質量を基準として、例えば、10質量%以上、20質量%以上又は30質量%以上であってよく、80質量%以下、70質量%以下又は60質量%以下であってよく、10~80質量%、20~70質量%又は30~60質量%であってよい。 The content of the component (D) may be, for example, 10% by mass or more, 20% by mass or more, or 30% by mass or more, and 80% by mass or less, 70% by mass, based on the total mass of the third adhesive layer. It may be% or less or 60% by mass or less, and may be 10 to 80% by mass, 20 to 70% by mass or 30 to 60% by mass.
 (E)成分の含有量は、第3の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。 The content of the component (E) may be, for example, 0.1 to 10% by mass based on the total mass of the third adhesive layer.
 (F)成分の含有量は、第3の接着剤層の全質量を基準として、例えば、1質量%以上、3質量%以上又は5質量%以上であってよく、50質量%以下、40質量%以下又は30質量%以下であってよく、1~50質量%、3~40質量%又は5~30質量%であってよい。 The content of the component (F) may be, for example, 1% by mass or more, 3% by mass or more, or 5% by mass or more, and 50% by mass or less, 40% by mass, based on the total mass of the third adhesive layer. % Or less or 30% by mass or less, and may be 1 to 50% by mass, 3 to 40% by mass, or 5 to 30% by mass.
 その他の添加剤の含有量は、第3の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。 The content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the third adhesive layer.
 第3の接着剤層5の厚さd3は、接着する回路部材の電極の高さ等に応じて適宜設定してよい。第3の接着剤層5の厚さd3は、電極間のスペースを充分に充填して電極を封止することができ、より良好な接続信頼性が得られる観点から、例えば、0.1μm以上、0.5μm以上又は1.0μm以上であってよく、10μm以下、5.0μm以下又は2.5μm以下であってよく、0.1~10μm、0.5~5.0μm又は1.0~2.5μmであってよい。第3の接着剤層5の厚さd3は、第3の接着剤層5における第1の接着剤層1側とは反対側の面5aから、第1の接着剤層1における第2の接着剤層2側とは反対側の面1aまでの距離(図4においてd3で示す距離)であり、例えば、上述した第1の接着剤層1の厚さd1の測定方法と同様にして求めることができる。 The thickness d3 of the third adhesive layer 5 may be appropriately set according to the height of the electrodes of the circuit member to be adhered. The thickness d3 of the third adhesive layer 5 can sufficiently fill the space between the electrodes to seal the electrodes, and from the viewpoint of obtaining better connection reliability, for example, 0.1 μm or more. , 0.5 μm or more or 1.0 μm or more, 10 μm or less, 5.0 μm or less or 2.5 μm or less, 0.1 to 10 μm, 0.5 to 5.0 μm or 1.0 to It may be 2.5 μm. The thickness d3 of the third adhesive layer 5 is the second adhesion in the first adhesive layer 1 from the surface 5a of the third adhesive layer 5 opposite to the side of the first adhesive layer 1. It is a distance to the surface 1a on the side opposite to the agent layer 2 side (distance indicated by d3 in FIG. 4), and is obtained, for example, in the same manner as the above-mentioned method for measuring the thickness d1 of the first adhesive layer 1. Can be done.
 回路接続用接着剤フィルムが第1の接着剤層及び第2の接着剤層以外の層(例えば、第3の接着剤層)を有する場合、回路接続用接着剤フィルムの厚さ(回路接続用接着剤フィルムを構成するすべての層の厚さの合計)は、上述した回路接続用接着剤フィルム10Aの厚さが取り得る範囲と同じであってよい。 When the circuit connection adhesive film has a layer other than the first adhesive layer and the second adhesive layer (for example, a third adhesive layer), the thickness of the circuit connection adhesive film (for circuit connection). The total thickness of all the layers constituting the adhesive film) may be the same as the thickness of the circuit connection adhesive film 10A described above can be taken.
<回路接続用接着剤フィルムの製造方法>
 回路接続用接着剤フィルムの製造方法は、表面に複数の凹部を有し、当該複数の凹部の少なくとも一部に導電粒子が配置された基体を用意すること(準備工程)と、基体の表面(凹部が形成されている面)上に、光硬化性成分及び第1の熱硬化性成分を含有する組成物層を設けることにより、組成物層に導電粒子を転写すること(転写工程)と、組成物層に光を照射することにより、複数の導電粒子、光硬化性成分の硬化物及び第1の熱硬化性成分を含有する第1の接着剤層を形成すること(光照射工程)と、第1の接着剤層の一方面上に、第2の熱硬化性成分を含有する第2の接着剤層を設けること(積層工程)と、を含む。
<Manufacturing method of adhesive film for circuit connection>
The method for manufacturing an adhesive film for circuit connection is to prepare a substrate having a plurality of recesses on the surface and having conductive particles arranged in at least a part of the plurality of recesses (preparation step) and the surface of the substrate (preparation step). By providing a composition layer containing a photocurable component and a first thermosetting component on the surface on which the recess is formed), the conductive particles are transferred to the composition layer (transfer step). By irradiating the composition layer with light, a first adhesive layer containing a plurality of conductive particles, a cured product of a photocurable component, and a first thermosetting component is formed (light irradiation step). A second adhesive layer containing a second thermosetting component is provided on one surface of the first adhesive layer (lamination step).
 以下、上述した回路接続用接着剤フィルム10Aの製造方法を例に挙げて、図5~図10を参照しながら、回路接続用接着剤フィルムの製造方法について説明する。 Hereinafter, the method for manufacturing the circuit connection adhesive film will be described with reference to FIGS. 5 to 10 by taking the above-mentioned method for manufacturing the circuit connection adhesive film 10A as an example.
 図5は、回路接続用接着剤フィルム10Aの製造方法に用いられる基体の縦断面を模式的に示す図である。図6は、図5の基体の凹部の断面形状の変形例を示す図である。図7は、図5の基体の凹部に導電粒子4が配置された状態を模式的に示す断面図である。図8は、準備工程の一例を模式的に示す断面図である。図9は、転写工程の一例を模式的に示す断面図である。図10は、光照射工程の一例を模式的に示す断面図である。 FIG. 5 is a diagram schematically showing a vertical cross section of a substrate used in a method for manufacturing an adhesive film 10A for circuit connection. FIG. 6 is a diagram showing a modified example of the cross-sectional shape of the recess of the substrate of FIG. FIG. 7 is a cross-sectional view schematically showing a state in which the conductive particles 4 are arranged in the recesses of the substrate of FIG. FIG. 8 is a cross-sectional view schematically showing an example of the preparation process. FIG. 9 is a cross-sectional view schematically showing an example of the transfer process. FIG. 10 is a cross-sectional view schematically showing an example of a light irradiation process.
(準備工程)
 準備工程では、まず、表面に複数の凹部7を有する基体6を用意する(図5参照)。基体6は、複数の凹部7を有している。複数の凹部7は、例えば、所定のパターン(例えば、回路部材の電極パターンに対応するパターン)で規則的に配置されている。凹部7が所定のパターンで配置されている場合、導電粒子4が所定のパターンで組成物層に転写されることとなる。そのため、導電粒子4が所定のパターン(図2及び図3に示されるようなパターン)で規則的に配置された回路接続用接着剤フィルム10Aが得られる。
(Preparation process)
In the preparation step, first, a substrate 6 having a plurality of recesses 7 on the surface is prepared (see FIG. 5). The substrate 6 has a plurality of recesses 7. The plurality of recesses 7 are regularly arranged, for example, in a predetermined pattern (for example, a pattern corresponding to an electrode pattern of a circuit member). When the recesses 7 are arranged in a predetermined pattern, the conductive particles 4 are transferred to the composition layer in a predetermined pattern. Therefore, a circuit connection adhesive film 10A in which the conductive particles 4 are regularly arranged in a predetermined pattern (a pattern as shown in FIGS. 2 and 3) can be obtained.
 基体6の凹部7は、例えば、図5に示されるように、凹部7の底部7a側から基体6の表面6a側に向けて開口面積が拡大するテーパ状に形成されていてよい。すなわち、凹部7の底部7aの幅(図5における幅a)は、凹部7の開口の幅(図5における幅b)よりも狭くてよい。凹部7のサイズ(幅a、幅b、容積、テーパ角度及び深さ等)は、目的とする導電粒子のサイズ、回路接続用接着剤フィルムにおける導電粒子の位置に応じて設定することができる。例えば、凹部7の開口の幅(幅b)は、導電粒子4の最大粒子径よりも大きくてよく、導電粒子の最大粒子径の2倍未満であってよい。 As shown in FIG. 5, for example, the recess 7 of the substrate 6 may be formed in a tapered shape in which the opening area expands from the bottom 7a side of the recess 7 toward the surface 6a side of the substrate 6. That is, the width of the bottom portion 7a of the recess 7 (width a in FIG. 5) may be narrower than the width of the opening of the recess 7 (width b in FIG. 5). The size of the recess 7 (width a, width b, volume, taper angle, depth, etc.) can be set according to the size of the target conductive particles and the position of the conductive particles in the circuit connection adhesive film. For example, the width (width b) of the opening of the recess 7 may be larger than the maximum particle diameter of the conductive particles 4 and may be less than twice the maximum particle diameter of the conductive particles.
 基体6の縦断面における凹部7の形状(凹部7の断面形状)は、例えば、図6の(a)~(h)に示されるような形状であってもよい。図6(a)~(h)に示されるいずれの断面形状も、凹部7の開口の幅(幅b)が、断面形状における最大幅となっている。これにより、凹部7に配置された導電粒子が取り出しやすくなり、作業性が向上する。 The shape of the recess 7 (the cross-sectional shape of the recess 7) in the vertical cross section of the substrate 6 may be, for example, the shape shown in FIGS. 6A to 6H. In any of the cross-sectional shapes shown in FIGS. 6A to 6H, the width (width b) of the opening of the recess 7 is the maximum width in the cross-sectional shape. As a result, the conductive particles arranged in the recess 7 can be easily taken out, and workability is improved.
 凹部7の開口の形状は、円形、楕円形、三角形、四角形、多角形等であってよい。 The shape of the opening of the recess 7 may be a circle, an ellipse, a triangle, a quadrangle, a polygon, or the like.
 基体6の凹部7は、リソグラフィー、機械加工等の公知の方法によって形成することができる。これらの方法では、凹部のサイズ及び形状を自在に設計可能である。 The recess 7 of the substrate 6 can be formed by a known method such as lithography or machining. In these methods, the size and shape of the recess can be freely designed.
 基体6を構成する材料としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチール等の金属等の無機材料、並びに、各種樹脂等の有機材料を使用することができる。後述するように、本実施形態の製造方法では、導電粒子4を基体6の凹部7内で形成することにより基体6の凹部7に導電粒子4を配置することができるが、この場合、基体6は、導電粒子4の形成に使用する微粒子(例えばはんだ微粒子)の溶融温度で変質しない耐熱性を有していてよい。 As the material constituting the substrate 6, for example, an inorganic material such as a metal such as silicon, various ceramics, glass, and stainless steel, and an organic material such as various resins can be used. As will be described later, in the manufacturing method of the present embodiment, the conductive particles 4 can be arranged in the recesses 7 of the substrate 6 by forming the conductive particles 4 in the recesses 7 of the substrate 6. In this case, the substrate 6 can be arranged. May have heat resistance that does not deteriorate at the melting temperature of the fine particles (for example, solder fine particles) used for forming the conductive particles 4.
 次に、基体6の複数の凹部7の少なくとも一部(一部又は全部)に導電粒子4(上記(A)成分)を配置(収容)する(図7参照)。 Next, the conductive particles 4 (component (A) above) are arranged (accommodated) in at least a part (part or all) of the plurality of recesses 7 of the substrate 6 (see FIG. 7).
 導電粒子4の配置方法は特に限定されない。配置方法は、乾式、湿式のいずれであってもよい。例えば、導電粒子4を基体6の表面6a上に配置し、スキージ又は微粘着ローラーを用いて、基体6の表面6aを擦ることで、余分な導電粒子4を除去しつつ、凹部7に導電粒子4を配置することができる。凹部7の開口の幅bが凹部7の深さより大きい場合、凹部7の開口から導電粒子が飛び出す場合がある。スキージを用いると、凹部7の開口から飛び出ている導電粒子は除去される。余分な導電粒子を除去する方法として、圧縮空気を吹き付ける、不織布又は繊維の束で基体6の表面6aを擦る方法も挙げられる。これらの方法は、スキージと比べて物理的な力が弱いため、導電粒子として、変形しやすい粒子(例えばはんだ粒子)を扱う上で好ましい。 The method of arranging the conductive particles 4 is not particularly limited. The arrangement method may be either dry type or wet type. For example, the conductive particles 4 are placed on the surface 6a of the substrate 6, and the surface 6a of the substrate 6 is rubbed with a squeegee or a fine adhesive roller to remove the excess conductive particles 4 while removing the conductive particles in the recess 7. 4 can be arranged. When the width b of the opening of the recess 7 is larger than the depth of the recess 7, conductive particles may pop out from the opening of the recess 7. When a squeegee is used, conductive particles protruding from the opening of the recess 7 are removed. As a method for removing excess conductive particles, there is also a method of rubbing the surface 6a of the substrate 6 with a non-woven fabric or a bundle of fibers by blowing compressed air. Since these methods have a weaker physical force than squeegees, they are preferable in handling easily deformable particles (for example, solder particles) as conductive particles.
 導電粒子4としてはんだ粒子を用いる場合、基体6の凹部7内で導電粒子4(はんだ粒子)を形成することにより、導電粒子4を凹部7に配置してもよい。具体的には、例えば、図8の(a)~(b)に示されるように、導電粒子4を形成するための微粒子8(はんだ微粒子)を凹部7内に収容した後、凹部7に収容された微粒子8を溶融させることで、凹部7内で導電粒子4を形成することができる。凹部7内に収容された微粒子8は、溶融することで合一化し、表面張力によって球状化する。このとき、凹部7の底部7aとの接触部では、溶融した金属が底部7aに追従した形状となる。そのため、例えば、凹部7の底部7aが図8の(a)に示されるような平坦な形状である場合、導電粒子4は、図8の(b)に示されるような表面の一部に平面部4aを有するものとなる。 When solder particles are used as the conductive particles 4, the conductive particles 4 may be arranged in the recesses 7 by forming the conductive particles 4 (solder particles) in the recesses 7 of the substrate 6. Specifically, for example, as shown in FIGS. 8A to 8B, fine particles 8 (solder fine particles) for forming conductive particles 4 are housed in the recesses 7 and then housed in the recesses 7. By melting the formed fine particles 8, the conductive particles 4 can be formed in the recess 7. The fine particles 8 housed in the recess 7 are united by melting and spheroidized by surface tension. At this time, at the contact portion of the recess 7 with the bottom portion 7a, the molten metal has a shape that follows the bottom portion 7a. Therefore, for example, when the bottom portion 7a of the recess 7 has a flat shape as shown in FIG. 8A, the conductive particles 4 are flat on a part of the surface as shown in FIG. 8B. It has a part 4a.
 微粒子8は、凹部7内に収容することができればよく、粒度分布にばらつきが大きくても、形状がいびつであってもよい。 The fine particles 8 may be accommodated in the recesses 7, and the particle size distribution may vary widely or the shape may be distorted.
 凹部7に収容された微粒子8を溶融させる方法としては、微粒子8を当該微粒子を形成する材料の融点以上に加熱する方法が挙げられる。微粒子8は、酸化被膜の影響で融点以上の温度で加熱しても溶融しない、濡れ拡がらない、又は合一化しない場合がある。このため、微粒子8を還元雰囲気下に晒し、微粒子8の表面酸化皮膜を除去した後に、微粒子8の融点以上の温度に加熱してもよい。これにより、微粒子8を溶融させ、濡れ拡がり、合一化させることが容易になる。同様の観点から、微粒子8の溶融は、還元雰囲気下で行ってよい。 Examples of the method of melting the fine particles 8 contained in the recess 7 include a method of heating the fine particles 8 to a temperature higher than the melting point of the material forming the fine particles. The fine particles 8 may not melt, do not spread, or do not coalesce even when heated at a temperature equal to or higher than the melting point due to the influence of the oxide film. Therefore, the fine particles 8 may be exposed to a reducing atmosphere to remove the surface oxide film of the fine particles 8, and then heated to a temperature equal to or higher than the melting point of the fine particles 8. This facilitates melting, wetting and spreading the fine particles 8 and unifying them. From the same viewpoint, the fine particles 8 may be melted in a reducing atmosphere.
 還元雰囲気にする方法は、上述の効果が得られる方法であれば特に限定されず、例えば水素ガス、水素ラジカル、ギ酸ガス等を用いる方法がある。例えば、水素還元炉、水素ラジカル還元炉、ギ酸還元炉、又はこれらのコンベアー炉若しくは連続炉を用いることで、還元雰囲気下で微粒子8を溶融させることができる。これらの装置は、炉内に、加熱装置、不活性ガス(窒素、アルゴン等)を充填するチャンバー、チャンバー内を真空にする機構等を備えていてよく、これにより還元ガスの制御がより容易となる。また、チャンバー内を真空にできると、微粒子8の溶融及び合一化の後に、減圧によってボイドの除去を行うことができ、接続安定性に一層優れる導電粒子4を得ることができる。 The method for creating a reducing atmosphere is not particularly limited as long as the above effect can be obtained, and for example, there is a method using hydrogen gas, hydrogen radical, formic acid gas and the like. For example, by using a hydrogen reduction furnace, a hydrogen radical reduction furnace, a formic acid reduction furnace, or a conveyor furnace or a continuous furnace thereof, the fine particles 8 can be melted in a reducing atmosphere. These devices may be equipped with a heating device, a chamber filled with an inert gas (nitrogen, argon, etc.), a mechanism for evacuating the inside of the chamber, etc., which makes it easier to control the reduced gas. Become. Further, if the inside of the chamber can be evacuated, the voids can be removed by reducing the pressure after the fine particles 8 are melted and united, and the conductive particles 4 having further excellent connection stability can be obtained.
 微粒子8の還元、溶解条件、温度、炉内雰囲気調整などのプロファイルは、微粒子8の融点、粒度、凹部のサイズ、基体6の材質などを勘案して適宜設定されてよい。 The profile of the reduction of the fine particles 8, the melting conditions, the temperature, the adjustment of the atmosphere in the furnace, etc. may be appropriately set in consideration of the melting point of the fine particles 8, the particle size, the size of the recess, the material of the substrate 6, and the like.
 上記方法によれば、微粒子8の材質及び形状によらず、略均一なサイズの導電粒子4を形成することができる。また、導電粒子4のサイズ及び形状は凹部7に収容される微粒子8の量、凹部7の形状等に依存するため、凹部7の設計(凹部のサイズ、形状等の調整)により導電粒子4のサイズ及び形状を自在に設計でき、目的の粒度分布を有する導電粒子(例えば、平均粒子径が1~30μmであり、且つ、粒子径のC.V.値が20%以下である導電粒子)を容易に準備することができる。 According to the above method, conductive particles 4 having a substantially uniform size can be formed regardless of the material and shape of the fine particles 8. Further, since the size and shape of the conductive particles 4 depend on the amount of fine particles 8 accommodated in the recesses 7, the shape of the recesses 7, and the like, the conductive particles 4 are designed by designing the recesses 7 (adjusting the size, shape, etc. of the recesses). Conductive particles that can be freely designed in size and shape and have a desired particle size distribution (for example, conductive particles having an average particle size of 1 to 30 μm and a CV value of the particle size of 20% or less). Can be easily prepared.
 上記方法は、特に、導電粒子4が、インジウム系はんだ粒子である場合に好適である。インジウム系はんだは、めっきによる析出が可能であるが、粒子状に析出させることは難しく、柔らかくて扱いが難しい材料である。しかし、上記方法では、インジウム系はんだ微粒子を原料として用いることで、略均一な粒子径を有するインジウム系はんだ粒子を容易に製造することができる。 The above method is particularly suitable when the conductive particles 4 are indium-based solder particles. Indium-based solder can be deposited by plating, but it is difficult to precipitate it in the form of particles, and it is a soft and difficult material to handle. However, in the above method, by using indium-based solder fine particles as a raw material, indium-based solder particles having a substantially uniform particle size can be easily produced.
 導電粒子4を凹部7に配置した後は、導電粒子4が凹部7に配置(収容)された状態で基体6を取り扱うことができる。例えば、基体6を導電粒子4が凹部7に配置(収容)された状態で運搬・保管等する場合、導電粒子4(特にはんだ粒子等の柔らかい導電粒子)の変形を防止することができる。また、導電粒子4が凹部7に配置(収容)された状態では、導電粒子4の取り出しが容易であるため、導電粒子4を回収・表面処理等を行う際の変形も防止しやすい。 After the conductive particles 4 are arranged in the recesses 7, the substrate 6 can be handled with the conductive particles 4 arranged (accommodated) in the recesses 7. For example, when the substrate 6 is transported and stored in a state where the conductive particles 4 are arranged (accommodated) in the recess 7, the deformation of the conductive particles 4 (particularly soft conductive particles such as solder particles) can be prevented. Further, in the state where the conductive particles 4 are arranged (accommodated) in the recess 7, the conductive particles 4 can be easily taken out, so that deformation when the conductive particles 4 are collected, surface-treated, or the like can be easily prevented.
(転写工程)
 転写工程では、基体6の表面(凹部7が形成されている面)上に、光硬化性成分(上記(B)成分)及び第1の熱硬化性成分(上記(C)成分)を含有する組成物層9を設けることにより、組成物層9に導電粒子4を転写する(図9参照)。
(Transfer process)
In the transfer step, a photocurable component (component (B) above) and a first thermosetting component (component (C) above) are contained on the surface of the substrate 6 (the surface on which the recess 7 is formed). By providing the composition layer 9, the conductive particles 4 are transferred to the composition layer 9 (see FIG. 9).
 具体的には、まず、支持体11上に、(B)成分及び(C)成分を含有する組成物層9を形成して積層フィルム12を得た後、基体6の凹部7が形成されている面(基体6の表面)6aと、積層フィルム12の組成物層9側の面(組成物層9の支持体11とは反対側の面9a)とを対向させて、基体6と組成物層9とを近づける(図9の(a)参照)。次に、積層フィルム12と基体6とを貼り合わせることで組成物層9を基体6の表面(凹部7が形成されている面)6aに接触させて、組成物層9に導電粒子4を転写する。これにより、組成物層9と、少なくとも一部が組成物層9中に埋め込まれた導電粒子4と、を備える粒子転写層13が得られる(図9の(b)参照)。この際、凹部7の底部が平坦である場合、導電粒子4が凹部7の底部の形状に対応して平面部4aを有することとなり、当該平面部4aが支持体11とは反対側を向いた状態で、組成物層9中に配置される。 Specifically, first, the composition layer 9 containing the component (B) and the component (C) is formed on the support 11 to obtain the laminated film 12, and then the recess 7 of the substrate 6 is formed. The surface (surface of the substrate 6) 6a and the surface of the laminated film 12 on the composition layer 9 side (surface 9a on the side opposite to the support 11 of the composition layer 9) are opposed to the substrate 6 and the composition. Bring it closer to layer 9 (see (a) in FIG. 9). Next, by adhering the laminated film 12 and the substrate 6, the composition layer 9 is brought into contact with the surface (the surface on which the recess 7 is formed) 6a of the substrate 6, and the conductive particles 4 are transferred to the composition layer 9. do. As a result, a particle transfer layer 13 including the composition layer 9 and the conductive particles 4 having at least a part embedded in the composition layer 9 is obtained (see (b) of FIG. 9). At this time, when the bottom portion of the concave portion 7 is flat, the conductive particles 4 have a flat surface portion 4a corresponding to the shape of the bottom portion of the concave portion 7, and the flat surface portion 4a faces the opposite side to the support 11. In the state, it is arranged in the composition layer 9.
 組成物層9は、(B)成分及び(C)成分、並びに必要に応じて添加されるその他の成分を、有機媒体中で撹拌混合、混練等を行うことによって溶解又は分散させて調製される、ワニス組成物(ワニス状の第1の接着剤組成物)を用いて形成することができる。具体的には、例えば、支持体11(例えば離型処理を施した基材)上に、ワニス組成物をナイフコーター、ロールコーター、アプリケーター、コンマコーター、ダイコーター等を用いて塗布した後、加熱によって有機媒体を揮発させることで、組成物層9を形成することができる。このとき、ワニス組成物の塗布量を調整することによって、最終的に得られる第1の接着剤層(第1の接着剤フィルム)の厚さを調整することができる。 The composition layer 9 is prepared by dissolving or dispersing the component (B) and the component (C), and other components added as necessary by stirring and mixing, kneading, etc. in an organic medium. , Can be formed using a varnish composition (a varnish-like first adhesive composition). Specifically, for example, the varnish composition is applied onto the support 11 (for example, a base material that has been subjected to a mold release treatment) using a knife coater, a roll coater, an applicator, a comma coater, a die coater, or the like, and then heated. The composition layer 9 can be formed by volatilizing the organic medium. At this time, the thickness of the finally obtained first adhesive layer (first adhesive film) can be adjusted by adjusting the coating amount of the varnish composition.
 ワニス組成物の調製において使用される有機媒体は、各成分を略均一に溶解又は分散し得る特性を有するものであれば特に制限されない。このような有機媒体としては、例えば、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。これらの有機媒体は、単独で又は2種以上を組み合わせて使用することができる。ワニス組成物の調製の際の撹拌混合又は混練は、例えば、撹拌機、らいかい機、3本ロール、ボールミル、ビーズミル、ホモディスパー等を用いて行うことができる。 The organic medium used in the preparation of the varnish composition is not particularly limited as long as it has the property of being able to dissolve or disperse each component substantially uniformly. Examples of such an organic medium include toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate and the like. These organic media can be used alone or in combination of two or more. Stirring and mixing or kneading in the preparation of the varnish composition can be carried out by using, for example, a stirrer, a raider, a three-roll, a ball mill, a bead mill, a homodisper or the like.
 支持体11は、有機媒体を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限されない。支持体11はプラスチックフィルムであってもよいし、金属箔であってもよい。支持体11としては、例えば、延伸ポリプロピレン(OPP)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリオレフィン、ポリアセテート、ポリカーボネート、ポリフェニレンサルファイド、ポリアミド、ポリイミド、セルロース、エチレン・酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、合成ゴム系、液晶ポリマー等を構成材料とする基材(例えば、フィルム)などを用いてよい。 The support 11 is not particularly limited as long as it has heat resistance that can withstand the heating conditions when volatilizing the organic medium. The support 11 may be a plastic film or a metal foil. Examples of the support 11 include stretched polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polyvinylidene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, polyimide, cellulose, and ethylene. A substrate (for example, a film) made of a vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, a synthetic rubber, a liquid crystal polymer, or the like may be used.
 基材へ塗布したワニス組成物から有機媒体を揮発させる際の加熱条件は、使用する有機媒体等に合わせて適宜設定することができる。加熱条件は、例えば、40~120℃で0.1~10分間であってよい。 The heating conditions for volatilizing the organic medium from the varnish composition applied to the base material can be appropriately set according to the organic medium to be used and the like. The heating conditions may be, for example, 40 to 120 ° C. for 0.1 to 10 minutes.
 積層フィルム12と基体6とを貼り合わせる方法としては、例えば、加熱プレス、ロールラミネート、真空ラミネート等の方法が挙げられる。ラミネートは、例えば、0~80℃の温度条件下で行うことができる。 Examples of the method of laminating the laminated film 12 and the substrate 6 include a heat press, a roll laminating, and a vacuum laminating method. Lamination can be performed, for example, under temperature conditions of 0 to 80 ° C.
 転写工程では、ワニス組成物を基体6に直接塗布することで組成物層9を形成してもよいが、上記の方法のように積層フィルム12を用いることで、支持体11と組成物層9と導電粒子4が一体となった粒子転写層13が得られやすくなり、後述する光照射工程を簡便に実施することができる傾向がある。 In the transfer step, the composition layer 9 may be formed by directly applying the varnish composition to the substrate 6, but by using the laminated film 12 as in the above method, the support 11 and the composition layer 9 may be formed. It becomes easy to obtain a particle transfer layer 13 in which the conductive particles 4 and the conductive particles 4 are integrated, and there is a tendency that the light irradiation step described later can be easily carried out.
(光照射工程)
 光照射工程では、組成物層9(粒子転写層13)に光(活性光線)を照射することにより、組成物層9中の(B)成分を硬化させ、第1の接着剤層1を形成する(図10参照)。
(Light irradiation process)
In the light irradiation step, the composition layer 9 (particle transfer layer 13) is irradiated with light (active light rays) to cure the component (B) in the composition layer 9 to form the first adhesive layer 1. (See FIG. 10).
 光の照射には、150~750nmの範囲内の波長を含む照射光(例えば、紫外光)を用いてよい。光の照射は、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプ、LED光源等を使用して行うことができる。照射する光の積算光量は、適宜設定することができるが、例えば、500~3000mJ/cmであってよい。 For the irradiation of light, irradiation light (for example, ultraviolet light) containing a wavelength in the range of 150 to 750 nm may be used. Light irradiation can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, an LED light source, or the like. The integrated amount of light to be irradiated can be appropriately set, and may be, for example, 500 to 3000 mJ / cm 2 .
 図10の(a)の矢印で示すように、図10の(a)では、支持体11とは反対側(組成物層9における導電粒子4が転写された側)から光を照射しているが、支持体11が光を透過する場合には、支持体11側から光を照射してもよい。また、図10の(a)では、基体6と粒子転写層13とを分離した後に光の照射を行っているが、基体6の分離前に光の照射を行ってもよい。この場合、支持体11を剥離した後に光の照射を行ってもよい。 As shown by the arrow in FIG. 10A, in FIG. 10A, light is irradiated from the side opposite to the support 11 (the side in which the conductive particles 4 are transferred in the composition layer 9). However, when the support 11 transmits light, the light may be irradiated from the support 11 side. Further, in FIG. 10A, light irradiation is performed after the substrate 6 and the particle transfer layer 13 are separated, but light irradiation may be performed before the separation of the substrate 6. In this case, light may be irradiated after the support 11 is peeled off.
(積層工程)
 積層工程では、第1の接着剤層1の支持体11とは反対側(組成物層9における導電粒子4が転写された側)の面上に第2の接着剤層2を設ける。これにより、図1に示される回路接続用接着剤フィルム10Aが得られる。
(Laminating process)
In the laminating step, the second adhesive layer 2 is provided on the surface of the first adhesive layer 1 opposite to the support 11 (the side in which the conductive particles 4 are transferred in the composition layer 9). As a result, the circuit connection adhesive film 10A shown in FIG. 1 is obtained.
 第2の接着剤層2は、ワニス状の第1の接着剤組成物に代えて、第2の熱硬化性成分(上記(C)成分)、並びに必要に応じて添加されるその他の成分を、有機媒体中で撹拌混合、混練等を行うことによって溶解又は分散させて調製される、ワニス組成物(ワニス状の第2の接着剤組成物)を用いること以外は、組成物層9を基体6上に設ける方法と同様にして、第1の接着剤層1上に設けることができる。すなわち、第2の接着剤層2を支持体上に形成して得られる積層フィルムと第1の接着剤層1とを貼り合わせることで第1の接着剤層1上に第2の接着剤層2を設けてよく、ワニス状の第2の接着剤組成物を第1の接着剤層1に直接塗布することで第1の接着剤層1上に第2の接着剤層2を設けてもよい。 The second adhesive layer 2 replaces the varnish-like first adhesive composition with a second thermosetting component (component (C) above) and other components added as needed. The composition layer 9 is used as a substrate, except that a varnish composition (a varnish-like second adhesive composition) prepared by dissolving or dispersing by stirring and mixing, kneading, etc. in an organic medium is used. It can be provided on the first adhesive layer 1 in the same manner as the method provided on 6. That is, the second adhesive layer is placed on the first adhesive layer 1 by adhering the laminated film obtained by forming the second adhesive layer 2 on the support and the first adhesive layer 1. 2 may be provided, and the second adhesive layer 2 may be provided on the first adhesive layer 1 by directly applying the varnish-like second adhesive composition to the first adhesive layer 1. good.
 積層工程では、上記の方法のように支持体11とは反対側の面上に第2の接着剤層2を設けることで、回路部材への回路接続用接着剤フィルムの貼り付け性向上及び接続時の剥離抑制が期待できる。積層工程では、支持体11を剥離した後に当該支持体11が設けられていた側の面上に第2の接着剤層2を設けてもよい。この場合、積層工程は、光照射工程の前に行ってよく、転写工程の前に行ってもよい。 In the laminating step, by providing the second adhesive layer 2 on the surface opposite to the support 11 as in the above method, the adhesive film for circuit connection to the circuit member is improved and connected. It can be expected to suppress peeling at times. In the laminating step, the second adhesive layer 2 may be provided on the surface on the side where the support 11 is provided after the support 11 is peeled off. In this case, the laminating step may be performed before the light irradiation step or may be performed before the transfer step.
 以上、回路接続用接着剤フィルム10Aの製造方法を例に挙げて一実施形態の回路接続用接着剤フィルムの製造方法について説明したが、本発明は上記実施形態に限定されない。 Although the method for producing the circuit connection adhesive film of one embodiment has been described above by taking the method for producing the circuit connection adhesive film 10A as an example, the present invention is not limited to the above embodiment.
 例えば、回路接続用接着剤フィルムの製造方法は、第1の接着剤層の第2の接着剤層とは反対側の面上に、第3の接着剤層を設けること(第2の積層工程)を更に含んでいてもよい。この方法では、第3の接着剤層を更に備える回路接続用接着剤フィルム(例えば、図4に示される回路接続用接着剤フィルム10B)が得られる。 For example, in the method of manufacturing an adhesive film for circuit connection, a third adhesive layer is provided on a surface of the first adhesive layer opposite to the second adhesive layer (second laminating step). ) May be further included. In this method, a circuit connection adhesive film (for example, the circuit connection adhesive film 10B shown in FIG. 4) further including a third adhesive layer is obtained.
 第2の積層工程では、第2の接着剤組成物に代えて、第3の熱硬化性成分(上記(C)成分)、並びに必要に応じて添加されるその他の成分を含有する組成物(第3の接着剤組成物)を設けること以外は、第2の接着剤層を設けるための上記積層工程(第1の積層工程)と同様にして、第1の接着剤層上に第3の接着剤層を設けることができる。第2の積層工程は第1の積層工程の前に実施してもよい。 In the second laminating step, instead of the second adhesive composition, a composition containing a third thermosetting component (the above component (C)) and other components added as needed (the above-mentioned component (C)). A third adhesive layer is provided on the first adhesive layer in the same manner as in the above-mentioned laminating step (first laminating step) for providing the second adhesive layer, except that the third adhesive composition) is provided. An adhesive layer can be provided. The second laminating step may be carried out before the first laminating step.
<接続構造体及びその製造方法>
 以下、回路接続材料として上述の回路接続用接着剤フィルム10Aを用いる態様を例に挙げて、接続構造体(回路接続構造体)及びその製造方法について説明する。
<Connection structure and its manufacturing method>
Hereinafter, a connection structure (circuit connection structure) and a method for manufacturing the same will be described by taking as an example an embodiment in which the above-mentioned adhesive film 10A for circuit connection is used as the circuit connection material.
 図11は、接続構造体の一実施形態を示す模式断面図である。図11に示すように、接続構造体100は、第1の回路基板21及び第1の回路基板21の主面21a上に形成された第1の電極22を有する第1の回路部材23と、第2の回路基板24及び第2の回路基板24の主面24a上に形成された第2の電極25を有する第2の回路部材26と、回路接続用接着剤フィルム10Aの硬化体を含み、第1の電極22と第2の電極25とを導電粒子4(或いは導電粒子4の溶融固化物)を介して互いに電気的に接続し且つ第1の回路部材23と第2の回路部材26とを接着する接続部27と、を備えている。 FIG. 11 is a schematic cross-sectional view showing an embodiment of the connection structure. As shown in FIG. 11, the connection structure 100 includes a first circuit member 23 having a first electrode 22 formed on the main surface 21a of the first circuit board 21 and the first circuit board 21. A second circuit member 26 having a second electrode 25 formed on the main surface 24a of the second circuit board 24 and the second circuit board 24, and a cured body of the circuit connection adhesive film 10A are included. The first electrode 22 and the second electrode 25 are electrically connected to each other via the conductive particles 4 (or the molten solidified product of the conductive particles 4), and the first circuit member 23 and the second circuit member 26 It is provided with a connection portion 27 for adhering the above.
 第1の回路部材23及び第2の回路部材26は、互いに同じであっても異なっていてもよい。第1の回路部材23及び第2の回路部材26は、回路電極が形成されているガラス基板又はプラスチック基板;プリント配線板;セラミック配線板;フレキシブル配線板;駆動用IC等のICチップなどであってよい。第1の回路基板21及び第2の回路基板24は、半導体、ガラス、セラミック等の無機物、ポリイミド、ポリカーボネート等の有機物、ガラス/エポキシ等の複合物などで形成されていてよい。第1の回路基板21は、プラスチック基板であってよい。第1の回路部材23は、例えば、回路電極が形成されているプラスチック基板(ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、シクロオレフィンポリマー等の有機物を構成材料とするプラスチック基板)であってよく、第2の回路部材26は、例えば、駆動用IC等のICチップであってよい。電極が形成されているプラスチック基板は、プラスチック基板上に、例えば、有機TFT等の画素駆動回路又は複数の有機EL素子R、G、Bがマトリクス状に規則配列されることによって表示領域が形成されたものであってもよい。 The first circuit member 23 and the second circuit member 26 may be the same or different from each other. The first circuit member 23 and the second circuit member 26 are a glass substrate or a plastic substrate on which a circuit electrode is formed; a printed wiring board; a ceramic wiring board; a flexible wiring board; an IC chip such as a drive IC, or the like. It's okay. The first circuit board 21 and the second circuit board 24 may be made of an inorganic substance such as semiconductor, glass, or ceramic, an organic substance such as polyimide or polycarbonate, or a composite such as glass / epoxy. The first circuit board 21 may be a plastic substrate. The first circuit member 23 may be, for example, a plastic substrate (a plastic substrate made of an organic substance such as polyimide, polycarbonate, polyethylene terephthalate, or cycloolefin polymer) on which a circuit electrode is formed, and may be a second circuit. The member 26 may be, for example, an IC chip such as a drive IC. In the plastic substrate on which the electrodes are formed, a display region is formed by regularly arranging a pixel drive circuit such as an organic TFT or a plurality of organic EL elements R, G, and B on the plastic substrate in a matrix. It may be the one.
 第1の電極22及び第2の電極25は、金、銀、錫、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銅、アルミ、モリブデン、チタン等の金属、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、インジウムガリウム亜鉛酸化物(IGZO)等の酸化物などを含む電極であってよい。第1の電極22及び第2の電極25は、これら金属、酸化物等の2種以上を積層してなる電極であってもよい。2種以上を積層してなる電極は、2層以上であってよく、3層以上であってよい。第1の電極22及び第2の電極25は回路電極であってよく、バンプ電極であってもよい。図11では、第1の電極22が回路電極であり、第2の電極25がバンプ電極である。 The first electrode 22 and the second electrode 25 are gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, aluminum, molybdenum, titanium and other metals, indium tin oxide (ITO), and the like. It may be an electrode containing an oxide such as indium zinc oxide (IZO) or indium gallium zinc oxide (IGZO). The first electrode 22 and the second electrode 25 may be electrodes formed by laminating two or more of these metals, oxides, and the like. The electrode formed by stacking two or more types may have two or more layers, and may have three or more layers. The first electrode 22 and the second electrode 25 may be circuit electrodes or bump electrodes. In FIG. 11, the first electrode 22 is a circuit electrode and the second electrode 25 is a bump electrode.
 接続部27は、例えば、第1の回路部材23と第2の回路部材26とが互いに対向する方向(以下「対向方向」)における第1の回路部材23側に位置し、上述の第1の接着剤層における導電粒子4以外の、(B)成分の硬化物及び(C)成分等の硬化物を含む第1の領域28と、対向方向における第2の回路部材26側に位置し、上述の第2の接着剤層における(C)成分等の硬化物を含む第2の領域29と、少なくとも第1の電極22及び第2の電極25の間に介在して第1の電極22及び第2の電極25を互いに電気的に接続する導電粒子4(或いは導電粒子4の溶融固化物)とを有している。接続部27は、第1の領域28と第2の領域29との間に、2つの明確な領域を有していなくてもよく、第1の接着剤層に由来する硬化物と第2の接着剤層に由来する硬化物とが混在して1つの領域を形成していてもよい。 The connecting portion 27 is located, for example, on the side of the first circuit member 23 in the direction in which the first circuit member 23 and the second circuit member 26 face each other (hereinafter referred to as “opposing direction”), and the above-mentioned first circuit member 27 is located. It is located on the second circuit member 26 side in the opposite direction to the first region 28 containing the cured product of the component (B) and the cured product of the component (C) other than the conductive particles 4 in the adhesive layer, and is described above. The first electrode 22 and the second electrode 25 are interposed between the second region 29 containing the cured product such as the component (C) in the second adhesive layer and at least the first electrode 22 and the second electrode 25. It has conductive particles 4 (or molten solidified products of conductive particles 4) that electrically connect the electrodes 25 of 2 to each other. The connection portion 27 does not have to have two distinct regions between the first region 28 and the second region 29, and the cured product derived from the first adhesive layer and the second region 27. A cured product derived from the adhesive layer may be mixed to form one region.
 接続構造体としては、例えば、有機EL素子が規則的に配置されたプラスチック基板と、映像表示用のドライバーである駆動回路素子とが接続されたフレキシブルな有機電界発光カラーディスプレイ(有機ELディスプレイ)、有機EL素子が規則的に配置されたプラスチック基板と、タッチパッド等の位置入力素子とが接続されたタッチパネルなどが挙げられる。接続構造体は、スマートホン、タブレット、テレビ、乗り物のナビゲーションシステム、ウェアラブル端末等の各種モニタ;家具;家電;日用品などに適用することができる。 As the connection structure, for example, a flexible organic electric field light emitting color display (organic EL display) in which a plastic substrate in which organic EL elements are regularly arranged and a drive circuit element which is a driver for image display are connected. Examples thereof include a touch panel in which a plastic substrate on which organic EL elements are regularly arranged and a position input element such as a touch pad are connected. The connection structure can be applied to various monitors such as smart phones, tablets, televisions, vehicle navigation systems, wearable terminals, furniture; home appliances; daily necessities and the like.
 図12は、接続構造体100の製造方法の一実施形態を示す模式断面図である。図12の(a)及び図12の(b)は、各工程を示す模式断面図である。図12に示すように、接続構造体100の製造方法は、第1の回路部材23の第1の電極22が設けられている面と、第2の回路部材26の第2の電極25が設けられている面との間に、上述の回路接続用接着剤フィルム10Aを配置することと、第1の回路部材23と回路接続用接着剤フィルム10Aと第2の回路部材26とを含む積層体を当該積層体の厚さ方向に押圧した状態で加熱することにより、第1の電極22と第2の電極25とを導電粒子4(或いは導電粒子4の溶融固化物)を介して互いに電気的に接続し且つ第1の回路部材23と第2の回路部材26とを接着することとを含む。 FIG. 12 is a schematic cross-sectional view showing an embodiment of a method for manufacturing the connection structure 100. 12A and 12B are schematic cross-sectional views showing each step. As shown in FIG. 12, in the method of manufacturing the connection structure 100, a surface provided with the first electrode 22 of the first circuit member 23 and a second electrode 25 of the second circuit member 26 are provided. A laminated body including the above-mentioned circuit connection adhesive film 10A and the first circuit member 23, the circuit connection adhesive film 10A, and the second circuit member 26. Is heated in a state of being pressed in the thickness direction of the laminated body, so that the first electrode 22 and the second electrode 25 are electrically connected to each other via the conductive particles 4 (or the molten solidified product of the conductive particles 4). Including connecting to and bonding the first circuit member 23 and the second circuit member 26.
 具体的には、まず、第1の回路基板21及び第1の回路基板21の主面21a上に形成された第1の電極22を備える第1の回路部材23と、第2の回路基板24及び第2の回路基板24の主面24a上に形成された第2の電極25を備える第2の回路部材26とを準備する。 Specifically, first, the first circuit board 23 including the first electrode 22 formed on the main surface 21a of the first circuit board 21 and the first circuit board 21, and the second circuit board 24. And a second circuit member 26 having a second electrode 25 formed on the main surface 24a of the second circuit board 24 are prepared.
 次に、第1の回路部材23及び第2の回路部材26を、第1の電極22及び第2の電極25が互いに対向するように配置し、第1の回路部材23と第2の回路部材26との間に回路接続用接着剤フィルム10Aを配置する。例えば、図12の(a)に示すように、第1の接着剤層1側が第1の回路基板21の主面21aと対向するようにして回路接続用接着剤フィルム10Aを第1の回路部材23上にラミネートする。次に、第1の回路基板21上の第1の電極22と、第2の回路基板24上の第2の電極25とが互いに対向するように、回路接続用接着剤フィルム10Aがラミネートされた第1の回路部材23上に第2の回路部材26を配置する。 Next, the first circuit member 23 and the second circuit member 26 are arranged so that the first electrode 22 and the second electrode 25 face each other, and the first circuit member 23 and the second circuit member are arranged. A circuit connection adhesive film 10A is placed between the 26 and the 26. For example, as shown in FIG. 12A, the circuit connection adhesive film 10A is placed on the first circuit member so that the first adhesive layer 1 side faces the main surface 21a of the first circuit board 21. Laminate on 23. Next, the circuit connection adhesive film 10A was laminated so that the first electrode 22 on the first circuit board 21 and the second electrode 25 on the second circuit board 24 face each other. The second circuit member 26 is arranged on the first circuit member 23.
 そして、図12の(b)に示すように、第1の回路部材23と、回路接続用接着剤フィルム10Aと、第2の回路部材26とがこの順で積層されてなる積層体を当該積層体の厚さ方向に押圧した状態で加熱することで、第1の回路部材23と第2の回路部材26とを互いに熱圧着する。この際、図12の(b)において矢印で示すように、第1の接着剤層1及び第2の接着剤層2中に含まれる流動可能な未硬化の熱硬化性成分が、互いに隣り合う電極の空隙(第1の電極22同士の間の空隙、及び、第2の電極25同士の間の空隙)を埋めるように流動すると共に、上記加熱によって硬化する。これにより、第1の電極22及び第2の電極25が導電粒子4を介して互いに電気的に接続され、また、第1の回路部材23及び第2の回路部材26が互いに接着されて、図11に示す接続構造体100が得られる。 Then, as shown in FIG. 12 (b), the laminated body in which the first circuit member 23, the circuit connection adhesive film 10A, and the second circuit member 26 are laminated in this order is the laminated body. By heating while pressing in the thickness direction of the body, the first circuit member 23 and the second circuit member 26 are thermocompression-bonded to each other. At this time, as shown by the arrows in FIG. 12B, the fluidable uncured thermosetting components contained in the first adhesive layer 1 and the second adhesive layer 2 are adjacent to each other. It flows so as to fill the voids between the electrodes (the voids between the first electrodes 22 and the voids between the second electrodes 25), and is cured by the above heating. As a result, the first electrode 22 and the second electrode 25 are electrically connected to each other via the conductive particles 4, and the first circuit member 23 and the second circuit member 26 are adhered to each other. The connection structure 100 shown in 11 is obtained.
 上記接続構造体100の製造方法では、光照射によって第1の接着剤層1の一部が硬化されているため、第1の接着剤層1中の導電粒子の流動が抑制されるため、導電粒子が効率的に対向する電極間で効率よく捕捉される。また、第1の接着剤層1及び第2の接着剤層2中に含まれる熱硬化性成分が熱圧着時に流動するため、接続後において導電粒子4と電極(第1の電極及び第2の電極)との間に樹脂が介在し難くなり、対向する第1の電極22及び第2の電極25間の接続抵抗が低減される。 In the method for manufacturing the connection structure 100, since a part of the first adhesive layer 1 is cured by light irradiation, the flow of conductive particles in the first adhesive layer 1 is suppressed, so that it is conductive. Particles are efficiently trapped between opposing electrodes. Further, since the thermosetting component contained in the first adhesive layer 1 and the second adhesive layer 2 flows during thermocompression bonding, the conductive particles 4 and the electrodes (the first electrode and the second electrode) are connected after the connection. It becomes difficult for the resin to intervene between the electrodes), and the connection resistance between the first electrode 22 and the second electrode 25 facing each other is reduced.
 導電粒子としてはんだ粒子を用いる場合、はんだ粒子が溶融し、第1の電極22と第2の電極25との間に寄り集まって、はんだ層が形成され、その後、冷却することで第1の電極22と第2の電極25の間にはんだ層が固着され、第1の電極22と第2の電極25とが互いに電気的に接続される。 When solder particles are used as conductive particles, the solder particles are melted and gathered together between the first electrode 22 and the second electrode 25 to form a solder layer, which is then cooled to form the first electrode. A solder layer is fixed between the 22 and the second electrode 25, and the first electrode 22 and the second electrode 25 are electrically connected to each other.
 接続時の加熱温度は、適宜設定することができるが、例えば、50~190℃あってよい。導電粒子としてはんだ粒子を用いる場合、はんだ粒子が溶融可能な温度(例えば、はんだ粒子の融点よりも高い温度)であればよく、例えば、130~260℃であってよい。加圧は、被着体に損傷を与えない範囲であれば特に制限されないが、COP実装の場合、例えば、バンプ電極での面積換算圧力0.1~50MPaであってよく、40MPa以下であってよく、0.1~40MPaであってよい。また、COG実装の場合は、例えば、バンプ電極での面積換算圧力10~100MPaであってよい。これらの加熱及び加圧の時間は、0.5~120秒間の範囲であってよい。 The heating temperature at the time of connection can be appropriately set, but may be, for example, 50 to 190 ° C. When the solder particles are used as the conductive particles, the temperature may be any temperature at which the solder particles can be melted (for example, a temperature higher than the melting point of the solder particles), and may be, for example, 130 to 260 ° C. The pressurization is not particularly limited as long as it does not damage the adherend, but in the case of COP mounting, for example, the area conversion pressure at the bump electrode may be 0.1 to 50 MPa, and may be 40 MPa or less. It may be 0.1 to 40 MPa. Further, in the case of COG mounting, for example, the area conversion pressure at the bump electrode may be 10 to 100 MPa. These heating and pressurizing times may be in the range of 0.5 to 120 seconds.
 以下、本発明の内容を実施例及び比較例を用いてより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
 実施例及び比較例では、以下に示す材料を、(B1)成分、(B2)成分、(C1)成分、(C2)成分、(C3)成分、(C4)成分、(D)成分、(E)成分及び(F)成分として用いた。
(B1)成分:ラジカル重合性化合物
 ・NKエステルA-BPEF(9,9-ビ[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、新中村化学工業株式会社製)
 ・リポキシVR-90(ビスフェノールA型エポキシメタクリレート、昭和電工株式会社製)
 ・サイクロマー M100(3,4-エポキシシクロヘキシルメチルメタアクリレート、株式会社ダイセル製)
 ・A-1000(ポリエチレングリコールジアクリレート、新中村化学株式会社製)
 ・A9300-1CL(カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、新中村化学工業株式会社製)
(B2)成分:光ラジカル重合開始剤
 ・Irgacure OXE-02(1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-エタノン 1-(O-アセチルオキシム)、BASFジャパン株式会社製)
 ・Omnirad907(2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォニロプロパン-1-オン、IGM RESINS B.V.社製)
(C1)成分:カチオン重合性化合物
 ・ETERNACOLL OXBP(4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、宇部興産株式会社製)
 ・セロキサイド8010(ビ-7-オキサビシクロ[4.1.0]ヘプタン、株式会社ダイセル製)
 ・jER1010(ビスフェノールA型エポキシ樹脂、三菱化学株式会社製)
 ・YL983U(ビスフェノールF型エポキシ樹脂、三菱化学株式会社製)
(C2)成分:熱カチオン重合開始剤(熱潜在性カチオン発生剤)
 ・CXC-1821(第4級アンモニウム塩型熱酸発生剤、King Industries社製)、
 ・SI-60L(芳香族スルホニウム塩型熱酸発生剤、三新化学株式会社製)
(C3)成分:アニオン重合性化合物
 ・HP-4032D(1,6-ビス(オキシラニルメトキシ)ナフタレン、DIC株式会社製)
(C4)成分:熱アニオン重合開始剤(熱潜在性アニオン発生剤)
 ・HX-3941HP(マイクロカプセル型イミダゾール系硬化促進剤、旭化成株式会社製)
(D)成分:熱可塑性樹脂
 ・P-1:後述の方法で合成したフルオレン型フェノキシ樹脂
 ・YP-70(ビスフェノールA・ビスフェノールF共重合型フェノキシ樹脂、日鉄ケミカル&マテリアル株式会社製)
(E)成分:カップリング剤
 ・KBM-403(γ―グリシドキシプロピルトリメトキシシラン、信越化学工業株式会社製)
(F)成分:充填剤
 ・アエロジルR805(トリメトキシオクチルシランとシリカの加水分解生成物(シリカ微粒子)、Evonik Industries AG社製、有機溶媒で不揮発分10質量%に希釈したものを使用)
In the examples and comparative examples, the materials shown below are referred to as (B1) component, (B2) component, (C1) component, (C2) component, (C3) component, (C4) component, (D) component, and (E). ) And component (F).
(B1) Ingredients: Radical Polymerizable Compound-NK Ester A-BPEF (9,9-bi [4- (2-acryloyloxyethoxy) phenyl] fluorene, manufactured by Shin Nakamura Chemical Industry Co., Ltd.)
・ Lipoxy VR-90 (bisphenol A type epoxy methacrylate, manufactured by Showa Denko KK)
・ Cyclomer M100 (3,4-epoxycyclohexylmethylmethacrylate, manufactured by Daicel Corporation)
・ A-1000 (polyethylene glycol diacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.)
-A9300-1CL (caprolactone-modified tris- (2-acryloxyethyl) isocyanurate, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)
(B2) Ingredient: Photo-Radical Polymerization Initiator-Irgacure OXE-02 (1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl] -etanone 1- (O-acetyloxime) , Made by BASF Japan Ltd.)
Omnirad907 (2-methyl-1- [4- (methylthio) phenyl] -2-morphonilopropan-1-one, manufactured by IGM RESINS B.V.)
(C1) Ingredient: Cationic Polymerizable Compound-ETERNACOLL OXBP (4,4'-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, manufactured by Ube Kosan Co., Ltd.)
-Seroxide 8010 (B-7-oxabicyclo [4.1.0] heptane, manufactured by Daicel Corporation)
・ JER1010 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation)
・ YL983U (bisphenol F type epoxy resin, manufactured by Mitsubishi Chemical Corporation)
(C2) Component: Thermal cation polymerization initiator (thermal latent cation generator)
CXC-1821 (quaternary ammonium salt type thermoacid generator, manufactured by King Industries),
・ SI-60L (aromatic sulfonium salt type thermoacid generator, manufactured by Sanshin Chemical Co., Ltd.)
(C3) Component: Anionic polymerizable compound-HP-4032D (1,6-bis (oxylanylmethoxy) naphthalene, manufactured by DIC Corporation)
(C4) Component: Thermal Anionic Polymerization Initiator (Thermal Potential Anion Generator)
・ HX-3941HP (microcapsule type imidazole-based curing accelerator, manufactured by Asahi Kasei Corporation)
(D) Component: Thermoplastic resin ・ P-1: Fluorene type phenoxy resin synthesized by the method described later ・ YP-70 (bisphenol A / bisphenol F copolymer type phenoxy resin, manufactured by Nittetsu Chemical & Materials Co., Ltd.)
(E) Ingredient: Coupling agent-KBM-403 (γ-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.)
(F) Component: Filler-Aerosil R805 (hydrolyzed product of trimethoxyoctylsilane and silica (silica fine particles), manufactured by Evonik Industries AG, diluted to 10% by mass of non-volatile content with an organic solvent)
(P-1の合成)
 4,4’-(9-フルオレニリデン)-ジフェノール45g(シグマアルドリッチジャパン株式会社製)、及び3,3’,5,5’-テトラメチルビフェノールジグリシジルエーテル50g(YX-4000H、三菱化学株式会社製)を、ジムロート冷却管、塩化カルシウム管、及び攪拌モーターに接続されたテフロン攪拌棒(「テフロン」は登録商標)を装着した3000mLの3つ口フラスコ中でN-メチルピロリドン1000mLに溶解して反応液とした。これに炭酸カリウム21gを加え、マントルヒーターで110℃に加熱しながら攪拌した。3時間攪拌後、1000mLのメタノールが入ったビーカーに反応液を滴下し、生成した沈殿物を吸引ろ過することによってろ取した。ろ取した沈殿物をさらに300mLのメタノールで3回洗浄して、フェノキシ樹脂P-1を75g得た。
(Synthesis of P-1)
4,4'-(9-fluorenylidene) -diphenol 45 g (manufactured by Sigma Aldrich Japan Co., Ltd.) and 3,3', 5,5'-tetramethylbiphenol diglycidyl ether 50 g (YX-4000H, Mitsubishi Chemical Corporation) Is dissolved in 1000 mL of N-methylpyrrolidone in a 3000 mL three-necked flask equipped with a Dimroth condenser, a calcium chloride tube, and a Teflon stirring rod (“Teflon” is a registered trademark) connected to a stirring motor. It was used as a reaction solution. 21 g of potassium carbonate was added thereto, and the mixture was stirred while heating to 110 ° C. with a mantle heater. After stirring for 3 hours, the reaction solution was added dropwise to a beaker containing 1000 mL of methanol, and the generated precipitate was collected by suction filtration. The precipitate collected by filtration was further washed 3 times with 300 mL of methanol to obtain 75 g of phenoxy resin P-1.
 その後、フェノキシ樹脂P-1の分子量を東ソー株式会社製高速液体クロマトグラフGP8020を用いて測定した(カラム:日立化成株式会社製GelpakGL-A150S及びGLA160S、溶離液:テトラヒドロフラン、流速:1.0ml/分)。その結果、ポリスチレン換算でMn=15769、Mw=38045、Mw/Mn=2.413であった。 Then, the molecular weight of the phenoxy resin P-1 was measured using a high performance liquid chromatograph GP8020 manufactured by Tosoh Corporation (column: GelpacGL-A150S and GLA160S manufactured by Hitachi Chemical Co., Ltd., eluent: tetrahydrofuran, flow velocity: 1.0 ml / min. ). As a result, it was Mn = 15769, Mw = 38045, and Mw / Mn = 2.413 in terms of polystyrene.
<実施例1>
(工程(a):準備工程)
[工程(a1):基体の準備]
 表面に複数の凹部を有する基体(PETフィルム、厚さ:55μm)を準備した。凹部は、基体の表面側に向けて開口面積が拡大する円錐台状(開口部上面からみると、底部の中心と開口部の中心は同一)とし、開口径は4.3μmφ、底部径は4.0μmφ、深さは4.0μmとした。また、複数の凹部は、6.2μmの間隔(各底部の中心間距離)で三方配列にて規則的に1mm四方辺り29,000個となるように形成した。
<Example 1>
(Step (a): Preparation step)
[Step (a1): Preparation of substrate]
A substrate (PET film, thickness: 55 μm) having a plurality of recesses on the surface was prepared. The concave portion has a truncated cone shape in which the opening area expands toward the surface side of the substrate (when viewed from the upper surface of the opening, the center of the bottom and the center of the opening are the same), the opening diameter is 4.3 μmφ, and the bottom diameter is 4. The diameter was 0.0 μm φ and the depth was 4.0 μm. Further, the plurality of recesses were regularly formed in a three-way arrangement at an interval of 6.2 μm (distance between the centers of the bottoms) so as to be 29,000 per 1 mm square.
[工程(a2):導電粒子の配置]
 (A)成分として、プラスチック(架橋ポリスチレン)からなる核(粒子)の表面に、厚さ0.15μmのニッケル層が形成されてなる導電粒子(平均粒子径:3.3μm、粒子径のC.V.値:2.8%、比重:2.9)を用意し、これを基体の凹部が形成されている面上に配置した。次いで、基体の凹部が形成されている面を微粘着ローラーで擦ることで余分な導電粒子を取り除き、凹部内のみに導電粒子を配置した。なお、導電粒子の平均粒子径及び粒子径のC.V.値は、後述する工程(b)及び(c)を経て作製した第1の接着剤層を、10cm×10cmに切り出し、導電粒子が配置されている面にPtスパッタを施した後、300個の導電粒子をSEM観察して測定された値である。
[Step (a2): Arrangement of conductive particles]
As a component (A), conductive particles (average particle diameter: 3.3 μm, particle diameter C.I.) in which a nickel layer having a thickness of 0.15 μm is formed on the surface of a nucleus (particle) made of plastic (crosslinked polystyrene). A V. value: 2.8% and a specific gravity: 2.9) were prepared and placed on the surface on which the recesses of the substrate were formed. Next, excess conductive particles were removed by rubbing the surface of the substrate on which the recesses were formed with a fine adhesive roller, and the conductive particles were arranged only in the recesses. The average particle diameter of the conductive particles and the C.I. V. The value is 300 pieces after the first adhesive layer prepared through the steps (b) and (c) described later is cut out to a size of 10 cm × 10 cm, and Pt sputtering is applied to the surface on which the conductive particles are arranged. It is a value measured by SEM observation of conductive particles.
(工程(b):転写工程)
[工程(b1):組成物層の作製]
 表1に示す(B1)成分、(B2)成分、(C1)成分、(C2)成分、(D)成分、(E)成分及び(F)成分を、表1に示す配合量(単位:質量部、固形分量)で有機溶媒(2-ブタノン)と共に混合し、樹脂溶液を得た。次いで、この樹脂溶液をシリコーン離型処理された厚さ38μmのPETフィルムに塗布し、60℃で3分間熱風乾燥することによって、厚さ1.5μmの組成物層をPETフィルム上に作製した。
(Step (b): Transfer step)
[Step (b1): Preparation of composition layer]
The blending amounts (unit: mass) of the (B1) component, (B2) component, (C1) component, (C2) component, (D) component, (E) component and (F) component shown in Table 1 are shown in Table 1. A resin solution was obtained by mixing with an organic solvent (2-butanone). Next, this resin solution was applied to a 38 μm-thick PET film that had been mold-released with silicone, and dried with hot air at 60 ° C. for 3 minutes to prepare a composition layer having a thickness of 1.5 μm on the PET film.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
[工程(b2):導電粒子の転写]
 工程(b1)で作製した、PETフィルム上に形成された上記組成物層と、工程(a)で作製した、凹部に導電粒子が配置された基体とを向かい合わせて配置し、組成物層に導電粒子を転写させた。
[Step (b2): Transfer of conductive particles]
The composition layer formed on the PET film produced in the step (b1) and the substrate prepared in the step (a) in which the conductive particles are arranged in the recesses are arranged facing each other on the composition layer. Conductive particles were transferred.
(工程(c):光照射工程)
 導電粒子が転写された組成物層に対して、メタルハライドランプを用いて導電粒子が転写された側からUV硬化炉(ウシオ電機株式会社製、UVC-2534/1MNLC3-XJ01)を用いて積算光量1700mJ/cm(波長:365nm)の紫外線を照射し、(B2)成分を活性化させ、(B1)成分を重合させた。これにより、組成物層中の光硬化性成分((B1)成分及び(B2)成分)を硬化させ、第1の接着剤層を形成した。
(Step (c): Light irradiation step)
A UV curing furnace (UVC-2534 / 1MNLC3-XJ01 manufactured by Ushio Electric Co., Ltd.) was used from the side where the conductive particles were transferred to the composition layer on which the conductive particles were transferred using a metal halide lamp, and the integrated light intensity was 1700 mJ. The component (B2) was activated and the component (B1) was polymerized by irradiating with ultraviolet rays of / cm 2 (wavelength: 365 nm). As a result, the photocurable components ((B1) component and (B2) component) in the composition layer were cured to form the first adhesive layer.
(工程(d):積層工程)
[工程(d1):第2の接着剤層の作製]
 表2に示す(C1)成分、(C2)成分、(D)成分、(E)成分及び(F)成分を、表2に示す配合量(単位:質量部、固形分量)で有機溶媒(2-ブタノン)と共に混合し、樹脂溶液を得た。次いで、この樹脂溶液をシリコーン離型処理された厚さ50μmのPETフィルムに塗布し、60℃で3分間熱風乾燥することによって、厚さ12.5μmの第2の接着剤層をPETフィルム上に作製した。
(Step (d): Laminating step)
[Step (d1): Preparation of second adhesive layer]
The organic solvent (2) of the component (C1), the component (C2), the component (D), the component (E) and the component (F) shown in Table 2 in the blending amount (unit: parts by mass, solid content) shown in Table 2. -Mixed with butanone) to obtain a resin solution. Next, this resin solution was applied to a 50 μm-thick PET film that had been mold-released with silicone, and dried with hot air at 60 ° C. for 3 minutes to form a second adhesive layer with a thickness of 12.5 μm on the PET film. Made.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[工程(d2):第2の接着剤層の積層]
 工程(c)で作製した第1の接着剤層と、工程(d1)で作製した第2の接着剤層とを、50℃の温度をかけながら貼り合わせた。これにより、二層構成の異方導電性接着剤フィルム(厚さ:14μm)を得た。
[Step (d2): Laminating the second adhesive layer]
The first adhesive layer prepared in the step (c) and the second adhesive layer prepared in the step (d1) were bonded together while applying a temperature of 50 ° C. As a result, a two-layered anisotropic conductive adhesive film (thickness: 14 μm) was obtained.
<実施例2>
 工程(a)~工程(d)に加えて、以下の工程(e)を行ったこと以外は、実施例1と同様にして、異方導電性接着剤フィルムを作製した。
<Example 2>
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the following steps (e) were performed in addition to the steps (a) to (d).
(工程(e):第2の積層工程)
[工程(e1):第3の接着剤層の作製]
 表3に示す(C1)成分、(C2)成分、(D)成分、(E)成分及び(F)成分を、表3に示す配合量(単位:質量部、固形分量)で有機溶媒(2-ブタノン)と共に混合し、樹脂溶液を得た。次いで、この樹脂溶液をシリコーン離型処理された厚さ50μmのPETフィルムに塗布し、60℃で3分間熱風乾燥することによって、厚さ2.0μmの第3の接着剤層をPETフィルム上に作製した。
(Step (e): Second laminating step)
[Step (e1): Preparation of third adhesive layer]
The organic solvent (2) of the component (C1), the component (C2), the component (D), the component (E) and the component (F) shown in Table 3 in the blending amount (unit: parts by mass, solid content) shown in Table 3. -Mixed with butanone) to obtain a resin solution. Next, this resin solution was applied to a 50 μm-thick PET film that had been mold-released from silicone, and dried with hot air at 60 ° C. for 3 minutes to form a second 2.0 μm-thick adhesive layer on the PET film. Made.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[工程(e2):第3の接着剤層の積層]
 工程(d2)で作製した異方導電性接着剤フィルムの第1の接着剤層側のPETフィルムを剥離することによって露出した第1の接着剤層と、工程(e1)で作製した第3の接着剤層とを、50℃の温度をかけながら貼り合わせた。これにより、三層構成の異方導電性接着剤フィルム(厚さ:16μm)を得た。
[Step (e2): Laminating a third adhesive layer]
The first adhesive layer exposed by peeling off the PET film on the first adhesive layer side of the anisotropic conductive adhesive film prepared in the step (d2), and the third adhesive layer prepared in the step (e1). The adhesive layer was bonded while applying a temperature of 50 ° C. As a result, an anisotropic conductive adhesive film (thickness: 16 μm) having a three-layer structure was obtained.
<実施例3~10、比較例1>
 工程(b1)において、配合する成分の種類及び/又は配合量を表4に示すように変更したこと以外は、実施例2と同様にして、三層構成の異方導電性接着剤フィルムを作製した。
<Examples 3 to 10, Comparative Example 1>
An anisotropic conductive adhesive film having a three-layer structure was produced in the same manner as in Example 2 except that the types and / or blending amounts of the components to be blended were changed as shown in Table 4 in the step (b1). bottom.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
<実施例11>
 工程(c)において、照射する光の積算光量を2000mJ/cmに変更したこと以外は、実施例10と同様にして、三層構成の異方導電性接着剤フィルムを作製した。
<Example 11>
An anisotropic conductive adhesive film having a three-layer structure was produced in the same manner as in Example 10 except that the integrated light amount of the irradiated light was changed to 2000 mJ / cm 2 in the step (c).
<実施例12>
 工程(c)において、照射する光の積算光量を2300mJ/cmに変更したこと以外は、実施例10と同様にして、三層構成の異方導電性接着剤フィルムを作製した。
<Example 12>
An anisotropic conductive adhesive film having a three-layer structure was produced in the same manner as in Example 10 except that the integrated light amount of the irradiated light was changed to 2300 mJ / cm 2 in the step (c).
<実施例13>
 工程(b1)において、(B2)成分として、Irgacure OXE-02に代えて、Omnirad907を1.0質量部用いたこと、及び、光の積算光量を2000mJ/cmに変更したこと以外は、実施例2と同様にして、三層構成の異方導電性接着剤フィルムを作製した。
<Example 13>
In step (b1), except that 1.0 part by mass of Omnirad 907 was used instead of Irgacure OXE-02 as the component (B2) and the integrated light amount was changed to 2000 mJ / cm 2 . In the same manner as in Example 2, a three-layered anisotropic conductive adhesive film was produced.
<実施例14>
 工程(b1)及び工程(d1)において、(C1)成分として、ETERNACOLL OXBP及びセロキサイド8010に代えて、YL983Uを40質量部用いたこと、及び、(C2)成分として、CXC-1821に代えて、SI-60Lを7質量部用いたこと以外は、実施例1と同様にして、二層構成の異方導電性接着剤フィルムを作製した。
<Example 14>
In step (b1) and step (d1), 40 parts by mass of YL983U was used as the component (C1) instead of ETENRNACOLL OXBP and seroxide 8010, and instead of CXC-1821 as the component (C2). An anisotropic conductive adhesive film having a two-layer structure was produced in the same manner as in Example 1 except that 7 parts by mass of SI-60L was used.
<実施例15>
 工程(b1)及び工程(d1)において、(C1)成分に代えて、(C3)成分として、HP-4032Dを10質量部用いたこと、及び、(C2)成分に代えて、(C4)成分として、HX-3941HPを40質量部用いたこと以外は、実施例1と同様にして、二層構成の異方導電性接着剤フィルムを作製した。
<Example 15>
In the step (b1) and the step (d1), 10 parts by mass of HP-4032D was used as the component (C3) instead of the component (C1), and the component (C4) was replaced with the component (C2). As a result, an anisotropic conductive adhesive film having a two-layer structure was produced in the same manner as in Example 1 except that 40 parts by mass of HX-3941HP was used.
<実施例16>
 工程(a2)に代えて、以下の工程(a2’)を行い、工程(b2)で使用する、凹部に導電粒子が配置された基体として、以下の工程(a2’)で得られた基体を用いたこと以外は、実施例1と同様にして、二層構成の異方導電性接着剤フィルムを作製した。
<Example 16>
Instead of the step (a2), the following step (a2') is performed, and the substrate obtained in the following step (a2') is used as the substrate in which the conductive particles are arranged in the recesses, which is used in the step (b2). An anisotropic conductive adhesive film having a two-layer structure was produced in the same manner as in Example 1 except that it was used.
[工程(a2’):はんだ粒子の作製及び配置]
 Sn-Biはんだ微粒子(5N Plus社製、融点138℃、Type8)100gを、蒸留水に浸漬し、超音波分散させた後、整地し、上澄みに浮遊するはんだ微粒子を回収した。この操作を繰り返して、10gのはんだ微粒子を回収した。得られたはんだ微粒子の平均粒子径は1.0μm、粒子径のC.V.値は42%であった。次いで、得られたはんだ微粒子(平均粒子径:1.0μm、粒子径のC.V.値:42%)を、工程(a1)で準備した基体の、凹部が形成されている面上に配置した。次いで、基体の凹部が形成されている面を微粘着ローラーで擦ることで余分なはんだ微粒子を取り除き、凹部内のみにはんだ微粒子を配置した。次いで、凹部にはんだ微粒子が配置された基体を、水素ラジカル還元炉(神港精機株式会社製、水素プラズマリフロー装置)に投入し、真空引き後、水素ガスを炉内に導入して、炉内を水素ガスで満たした。その後、炉内を120℃に調整し、5分間水素ラジカルを照射した。その後、真空引きにて炉内の水素ガスを除去し、145℃まで加熱した後、窒素を炉内に導入して大気圧に戻してから炉内の温度を室温まで下げることによりはんだ粒子を形成した。これにより、工程(b2)で使用する、凹部に導電粒子(はんだ粒子)が配置された基体を用意した。
[Step (a2'): Preparation and placement of solder particles]
100 g of Sn-Bi solder fine particles (manufactured by 5N Plus, melting point 138 ° C., Type 8) were immersed in distilled water, ultrasonically dispersed, and then leveled to recover the solder fine particles floating in the supernatant. This operation was repeated to recover 10 g of solder fine particles. The average particle size of the obtained solder fine particles was 1.0 μm, and the particle size was C.I. V. The value was 42%. Next, the obtained solder fine particles (average particle diameter: 1.0 μm, CV value of particle diameter: 42%) are placed on the surface of the substrate prepared in the step (a1) where the recesses are formed. bottom. Next, excess solder fine particles were removed by rubbing the surface of the substrate on which the concave portions were formed with a fine adhesive roller, and the solder fine particles were arranged only in the concave portions. Next, the substrate in which the solder fine particles are arranged in the recesses is put into a hydrogen radical reduction furnace (hydrogen plasma reflow device manufactured by Shinko Seiki Co., Ltd.), and after evacuation, hydrogen gas is introduced into the furnace to introduce the inside of the furnace. Was filled with hydrogen gas. Then, the temperature inside the furnace was adjusted to 120 ° C., and hydrogen radicals were irradiated for 5 minutes. After that, hydrogen gas in the furnace is removed by vacuuming, and after heating to 145 ° C, nitrogen is introduced into the furnace to return it to atmospheric pressure, and then the temperature in the furnace is lowered to room temperature to form solder particles. bottom. As a result, a substrate in which conductive particles (solder particles) were arranged in the concave portions, which was used in the step (b2), was prepared.
 別途同様の操作ではんだ粒子を作製し、得られたはんだ粒子を、基体の凹部の裏側をタップすることで凹部より回収した。はんだ粒子は表面の一部に平面部を有し、はんだ粒子の直径Aに対する平面部の直径Bの比(B/A)が0.15であることを確認した。また、はんだ粒子の投影像に外接する四角形を二対の平行線により作成したところ、対向する辺間の距離をX及びY(但しY<X)としたときに、Y/Xが0.93であることを確認した。また、はんだ粒子の平均粒子径及び粒子径のC.V.値を測定したところ、平均粒子径は3.8μmであり、粒子径のC.V.値は7.9%であった。なお、はんだ粒子の平均粒子径、B/A、Y/Xは、工程(b)及び(c)を経て作製した第1の接着剤層を、10cm×10cmに切り出し、はんだ粒子が配置されている面にPtスパッタを施した後、300個のはんだ粒子をSEM観察して測定された値である。 Solder particles were separately prepared by the same operation, and the obtained solder particles were recovered from the recesses by tapping the back side of the recesses of the substrate. It was confirmed that the solder particles had a flat surface portion on a part of the surface, and the ratio (B / A) of the diameter B of the flat surface portion to the diameter A of the solder particles was 0.15. Further, when a quadrangle circumscribing the projected image of the solder particles was created by two pairs of parallel lines, Y / X was 0.93 when the distance between the opposite sides was X and Y (however, Y <X). I confirmed that. In addition, the average particle diameter of the solder particles and the C.I. V. When the value was measured, the average particle size was 3.8 μm, and the particle size C.I. V. The value was 7.9%. For the average particle diameters of the solder particles, B / A and Y / X, the first adhesive layer produced through the steps (b) and (c) was cut out to a size of 10 cm × 10 cm, and the solder particles were arranged. It is a value measured by SEM observation of 300 solder particles after applying Pt sputtering to the surface.
<実施例17>
 工程(a2)に代えて、上記工程(a2’)を行ったこと以外は、実施例2と同様にして、三層構成の異方導電性接着剤フィルムを作製した。
<Example 17>
An anisotropic conductive adhesive film having a three-layer structure was produced in the same manner as in Example 2 except that the above step (a2') was performed instead of the step (a2).
<比較例2>
 工程(c)を実施しなかったこと以外は、実施例2と同様にして三層構成の異方導電性接着剤フィルムを作製した。
<Comparative Example 2>
An anisotropic conductive adhesive film having a three-layer structure was produced in the same manner as in Example 2 except that the step (c) was not carried out.
<評価>
(導電粒子の転写率の評価)
 実施例1~17及び比較例1~2の異方導電性接着剤フィルムについて、顕微鏡及び画像解析ソフト(ImagePro、伯東株式会社製)を用いて、25,000μm当たりの導電粒子数を20か所で実測し、その平均値を1mm当たりの導電粒子数に換算し、その数を基体に形成された凹部数にて除して、導電粒子の転写率を計測した(下記式参照)。導電粒子の転写率が95%以上である場合を「S」判定とし、導電粒子の転写率が90%以上95%未満である場合を「A」判定とし、導電粒子の転写率が80%以上90%未満である場合を「B」判定とし、導電粒子の転写率が80%未満である場合を「C」判定として評価した。結果を表5~表7に示す。
導電粒子の転写率(%)=(異方導電性接着剤フィルム中の導電粒子数の平均密度/基体に形成された凹部の密度)×100
<Evaluation>
(Evaluation of transfer rate of conductive particles)
For the anisotropic conductive adhesive films of Examples 1 to 17 and Comparative Examples 1 and 2, the number of conductive particles per 25,000 μm 2 was set to 20 by using a microscope and image analysis software (ImagePro, manufactured by Hakuto Co., Ltd.). The actual measurement was carried out at the same place, the average value was converted into the number of conductive particles per 1 mm 2 , and the number was divided by the number of recesses formed in the substrate to measure the transfer rate of the conductive particles (see the following formula). When the transfer rate of the conductive particles is 95% or more, it is judged as "S", when the transfer rate of the conductive particles is 90% or more and less than 95%, it is judged as "A", and the transfer rate of the conductive particles is 80% or more. When it was less than 90%, it was evaluated as "B", and when the transfer rate of the conductive particles was less than 80%, it was evaluated as "C". The results are shown in Tables 5 to 7.
Transfer rate of conductive particles (%) = (average density of the number of conductive particles in the anisotropic conductive adhesive film / density of recesses formed in the substrate) × 100
(導電粒子の捕捉率の評価及び接続抵抗の評価)
[回路部材の準備]
 第1の回路部材(a)として、無アルカリガラス基板(OA-11、日本電気硝子株式会社製、外形:38mm×28mm、厚さ:0.3mm)の表面に、AlNd(100nm)/Mo(50nm)/ITO(100nm)の配線パターン(パターン幅:19μm、電極間スペース:5μm)を形成したものを準備した。第1の回路部材(b)として、無アルカリガラス基板(OA-11、日本電気硝子株式会社製、外形:38mm×28mm、厚さ:0.3mm)の表面に、Cr(20nm)/Au(200nm)の配線パターン(パターン幅:19μm、電極間スペース:5μm)を形成したものを準備した。第2の回路部材として、バンプ電極を2列で千鳥状に配列したICチップ(外形:0.9mm×20.3mm、厚さ:0.3mm、バンプ電極の大きさ:70μm×12μm、バンプ電極間スペース:12μm、バンプ電極厚さ:8μm)を準備した。
(Evaluation of capture rate of conductive particles and evaluation of connection resistance)
[Preparation of circuit members]
As the first circuit member (a), on the surface of a non-alkali glass substrate (OA-11, manufactured by Nippon Electric Glass Co., Ltd., outer shape: 38 mm × 28 mm, thickness: 0.3 mm), AlNd (100 nm) / Mo ( A wiring pattern (pattern width: 19 μm, space between electrodes: 5 μm) having a 50 nm) / ITO (100 nm) wiring pattern was prepared. As the first circuit member (b), on the surface of a non-alkali glass substrate (OA-11, manufactured by Nippon Electric Glass Co., Ltd., outer shape: 38 mm × 28 mm, thickness: 0.3 mm), Cr (20 nm) / Au ( A wiring pattern (pattern width: 19 μm, space between electrodes: 5 μm) having a wiring pattern of 200 nm) was prepared. As the second circuit member, an IC chip in which bump electrodes are arranged in two rows in a staggered pattern (outer shape: 0.9 mm × 20.3 mm, thickness: 0.3 mm, bump electrode size: 70 μm × 12 μm, bump electrode Spacing space: 12 μm, bump electrode thickness: 8 μm) was prepared.
[接続構造体(a)の作製]
 実施例1~13及び比較例1~2の異方導電性接着剤フィルムをそれぞれ用いて接続構造体(a)の作製を行った。第1の接着剤層又は第3の接着剤層と第1の回路部材(a)とが接するように、異方導電性接着剤フィルムを第1の回路部材(a)上に配置した。セラミックヒータからなるステージとツール(8mm×50mm)とから構成される熱圧着装置(BS-17U、株式会社大橋製作所製)を用いて、70℃、0.98MPa(10kgf/cm)の条件で2秒間加熱及び加圧して、第1の回路部材(a)に異方導電性接着剤フィルムを貼り付け、異方導電性接着剤フィルムの第1の回路部材(a)とは反対側の離型フィルムを剥離した。次いで、第1の回路部材(a)のバンプ電極と第2の回路部材の回路電極との位置合わせを行った後、130℃にて5秒間、40MPaにて加熱・加圧して、異方導電性接着剤フィルムの第2の接着剤層を第2の回路部材に貼り付けて接続構造体(a)を作製した。なお、温度は異方導電性接着剤フィルムの実測最高到達温度、圧力は第2の回路部材のバンプ電極が第1の回路部材(a)に対向する面の合計面積に対して算出した値を示す。
[Preparation of connection structure (a)]
The connection structure (a) was produced by using the anisotropic conductive adhesive films of Examples 1 to 13 and Comparative Examples 1 and 2, respectively. The anisotropic conductive adhesive film was placed on the first circuit member (a) so that the first adhesive layer or the third adhesive layer and the first circuit member (a) were in contact with each other. Using a thermocompression bonding device (BS-17U, manufactured by Ohashi Seisakusho Co., Ltd.) consisting of a stage consisting of a ceramic heater and a tool (8 mm x 50 mm), under the conditions of 70 ° C. and 0.98 MPa (10 kgf / cm 2 ). By heating and pressurizing for 2 seconds, the anisotropic conductive adhesive film is attached to the first circuit member (a), and the anisotropic conductive adhesive film is separated from the first circuit member (a) on the opposite side. The mold film was peeled off. Next, after aligning the bump electrode of the first circuit member (a) with the circuit electrode of the second circuit member, the mixture is heated and pressurized at 130 ° C. for 5 seconds at 40 MPa to conduct anisotropic conductivity. The second adhesive layer of the sex adhesive film was attached to the second circuit member to prepare the connection structure (a). The temperature is the measured maximum temperature of the anisotropic conductive adhesive film, and the pressure is the value calculated with respect to the total area of the surfaces of the bump electrodes of the second circuit member facing the first circuit member (a). show.
[接続構造体(b)の作製]
 異方導電性接着剤フィルムとして実施例14の異方導電性接着剤フィルムを用いたこと、及び、140℃にて5秒間、60MPaにて加熱・加圧したこと以外は、接続構造体(a)の作製と同様にして、接続構造体(b)を作製した。
[Preparation of connection structure (b)]
The connection structure (a) except that the anisotropic conductive adhesive film of Example 14 was used as the anisotropic conductive adhesive film and that the film was heated and pressurized at 60 MPa for 5 seconds at 140 ° C. ) Was produced, and the connection structure (b) was produced.
[接続構造体(c)の作製]
 異方導電性接着剤フィルムとして実施例15の異方導電性接着剤フィルムを用いたこと、及び、230℃にて5秒間、60MPaにて加熱・加圧したこと以外は、接続構造体(a)の作製と同様にして、接続構造体(c)を作製した。
[Preparation of connection structure (c)]
The connection structure (a) except that the anisotropic conductive adhesive film of Example 15 was used as the anisotropic conductive adhesive film and that the film was heated and pressurized at 60 MPa for 5 seconds at 230 ° C. ) Was produced, and the connection structure (c) was produced.
[接続構造体(d)の作製]
 異方導電性接着剤フィルムとして実施例16~17の異方導電性接着剤フィルムをそれぞれ用いたこと、第1の回路部材(a)に代えて第1の回路部材(b)を用いたこと、及び、160℃にて5秒間、30MPaにて加熱・加圧したこと以外は、接続構造体(a)の作製と同様にして、接続構造体(d)を作製した。
[Preparation of connection structure (d)]
The anisotropic conductive adhesive films of Examples 16 to 17 were used as the anisotropic conductive adhesive films, respectively, and the first circuit member (b) was used instead of the first circuit member (a). The connection structure (d) was prepared in the same manner as the connection structure (a) except that the connection structure (a) was heated and pressurized at 160 ° C. for 5 seconds at 30 MPa.
[導電粒子の捕捉率の評価]
 実施例1~17及び比較例1~2の異方導電性接着剤フィルムを用いた上記接続構造体(接続構造体(a)~(d))の作製において、バンプ電極と回路電極との間の導電粒子の捕捉率を評価した。ここで、導電粒子の捕捉率は、異方導電性接着剤フィルム中の導電粒子密度に対するバンプ電極上の導電粒子密度の比を意味し、以下の計算式から算出した。また、バンプ電極上の導電粒子数の平均は、実装した回路部材をガラス基板側から微分干渉顕微鏡を用いて観察することによって、1バンプ当たりの導電粒子の捕捉数を計測して求めた。導電粒子の捕捉率が90%以上である場合を「S」判定とし、導電粒子の捕捉率が80%以上90%未満である場合を「A」判定とし、導電粒子の捕捉率が70%以上80%未満である場合を「B」判定とし、導電粒子の捕捉率が70%未満である場合を「C」判定として評価した。結果を表5~表7に示す。
 導電粒子の捕捉率(%)=(バンプ電極上の導電粒子数の平均/(バンプ電極面積×異方導電性接着剤フィルム中の導電粒子密度))×100
[Evaluation of capture rate of conductive particles]
In the production of the connection structure (connection structures (a) to (d)) using the anisotropic conductive adhesive films of Examples 1 to 17 and Comparative Examples 1 and 2, between the bump electrode and the circuit electrode. The capture rate of conductive particles was evaluated. Here, the capture rate of the conductive particles means the ratio of the density of the conductive particles on the bump electrode to the density of the conductive particles in the anisotropic conductive adhesive film, and was calculated from the following formula. Further, the average number of conductive particles on the bump electrode was obtained by observing the mounted circuit member from the glass substrate side using a differential interference microscope and measuring the number of captured conductive particles per bump. When the capture rate of the conductive particles is 90% or more, it is judged as "S", when the capture rate of the conductive particles is 80% or more and less than 90%, it is judged as "A", and the capture rate of the conductive particles is 70% or more. When it was less than 80%, it was evaluated as "B", and when the capture rate of conductive particles was less than 70%, it was evaluated as "C". The results are shown in Tables 5 to 7.
Capturing rate of conductive particles (%) = (average number of conductive particles on bump electrode / (bump electrode area x density of conductive particles in anisotropic conductive adhesive film)) x 100
[接続抵抗の評価]
 接続構造体の作製直後、及び、高温高湿試験後、四端子測定法にて、14箇所の接続抵抗を測定し、測定された接続抵抗値の最大値を用いて、実施例1~17及び比較例1~2の接続抵抗を評価した。高温高湿試験は、温度85℃湿度85%RHの高温高湿槽にて接続構造体を500時間処理することにより行った。また、接続抵抗の測定にはマルチメータ(MLR21、楠本化成株式会社製)を用いた。接続抵抗値が1.0Ω未満である場合を「S」判定とし、接続抵抗値が1.0Ω以上2.5Ω未満である場合を「A」判定とし、接続抵抗値が2.5Ω以上5.0Ω未満である場合を「B」判定とし、接続抵抗値が5.0Ω以上10.0Ω未満である場合を「C」判定とし、接続抵抗値が10.0Ω以上である場合を「D」判定として評価した。結果を表5~表7に示す。
[Evaluation of connection resistance]
Immediately after the production of the connection structure and after the high temperature and high humidity test, the connection resistance at 14 points was measured by the four-terminal measurement method, and the maximum value of the measured connection resistance values was used in Examples 1 to 17 and. The connection resistance of Comparative Examples 1 and 2 was evaluated. The high temperature and high humidity test was carried out by treating the connected structure in a high temperature and high humidity tank having a temperature of 85 ° C. and a humidity of 85% RH for 500 hours. A multimeter (MLR21, manufactured by Kusumoto Kasei Co., Ltd.) was used to measure the connection resistance. When the connection resistance value is less than 1.0Ω, it is judged as "S", when the connection resistance value is 1.0Ω or more and less than 2.5Ω, it is judged as "A", and the connection resistance value is 2.5Ω or more. If it is less than 0Ω, it is judged as "B", if the connection resistance value is 5.0Ω or more and less than 10.0Ω, it is judged as "C", and if the connection resistance value is 10.0Ω or more, it is judged as "D". Evaluated as. The results are shown in Tables 5 to 7.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 1…第1の接着剤層、2…第2の接着剤層、3…接着剤成分、4…導電粒子、5…第3の接着剤層、6…基体、7…凹部、9…組成物層、10A,10B…回路接続用接着剤フィルム、21…第1の回路基板、22…第1の電極(回路電極)、23…第1の回路部材、24…第2の回路基板、25…第2の電極(バンプ電極)、26…第2の回路部材、27…接続部、100…接続構造体。 1 ... 1st adhesive layer, 2 ... 2nd adhesive layer, 3 ... adhesive component, 4 ... conductive particles, 5 ... third adhesive layer, 6 ... substrate, 7 ... recesses, 9 ... composition Layers, 10A, 10B ... Adhesive film for circuit connection, 21 ... First circuit board, 22 ... First electrode (circuit electrode), 23 ... First circuit member, 24 ... Second circuit board, 25 ... Second electrode (bump electrode), 26 ... second circuit member, 27 ... connection portion, 100 ... connection structure.

Claims (18)

  1.  表面に複数の凹部を有し、当該複数の凹部の少なくとも一部に導電粒子が配置された基体を用意することと、
     前記基体の前記表面上に、光硬化性成分及び第1の熱硬化性成分を含有する組成物層を設けることにより、前記組成物層に前記導電粒子を転写することと、
     前記組成物層に光を照射することにより、複数の前記導電粒子、前記光硬化性成分の硬化物及び前記第1の熱硬化性成分を含有する第1の接着剤層を形成することと、
     前記第1の接着剤層の一方面上に、第2の熱硬化性成分を含有する第2の接着剤層を設けることと、を含む、回路接続用接着剤フィルムの製造方法。
    To prepare a substrate having a plurality of recesses on the surface and having conductive particles arranged in at least a part of the plurality of recesses.
    By providing a composition layer containing a photocurable component and a first thermosetting component on the surface of the substrate, the conductive particles can be transferred to the composition layer.
    By irradiating the composition layer with light, a first adhesive layer containing the plurality of the conductive particles, the cured product of the photocurable component, and the first thermosetting component is formed.
    A method for producing an adhesive film for circuit connection, comprising providing a second adhesive layer containing a second thermosetting component on one surface of the first adhesive layer.
  2.  前記光硬化性成分が、ラジカル重合性化合物及び光ラジカル重合開始剤を含み、
     前記第1の熱硬化性成分が、カチオン重合性化合物及び熱カチオン重合開始剤を含む、請求項1に記載の回路接続用接着剤フィルムの製造方法。
    The photocurable component contains a radically polymerizable compound and a photoradical polymerization initiator.
    The method for producing an adhesive film for circuit connection according to claim 1, wherein the first thermosetting component contains a cationically polymerizable compound and a thermally cationic polymerization initiator.
  3.  前記第1の熱硬化性成分が、前記カチオン重合性化合物として、環状エーテル基を有する化合物を含む、請求項2に記載の回路接続用接着剤フィルムの製造方法。 The method for producing an adhesive film for circuit connection according to claim 2, wherein the first thermosetting component contains a compound having a cyclic ether group as the cationically polymerizable compound.
  4.  前記第1の熱硬化性成分が、前記カチオン重合性化合物として、オキセタン化合物及び脂環式エポキシ化合物からなる群より選ばれる少なくとも1種を含む、請求項3に記載の回路接続用接着剤フィルムの製造方法。 The circuit connection adhesive film according to claim 3, wherein the first thermosetting component contains at least one selected from the group consisting of an oxetane compound and an alicyclic epoxy compound as the cationically polymerizable compound. Production method.
  5.  前記光硬化性成分が、前記ラジカル重合性化合物として、下記式(1)で表される化合物を含む、請求項2~4のいずれか一項に記載の回路接続用接着剤フィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rは、水素原子又はメチル基を示し、Xは炭素数1~3のアルカンジイル基を示す。
    The method for producing an adhesive film for circuit connection according to any one of claims 2 to 4, wherein the photocurable component contains, as the radically polymerizable compound, a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R 1 represents a hydrogen atom or a methyl group, and X represents an alkanediyl group having 1 to 3 carbon atoms.
  6.  前記光硬化性成分が、前記光ラジカル重合開始剤として、下記式(I)で表される化合物を含む、請求項2~5のいずれか一項に記載の回路接続用接着剤フィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    [式(I)中、R、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は芳香族系炭化水素基を含む有機基を示す。]
    The method for producing an adhesive film for circuit connection according to any one of claims 2 to 5, wherein the photocurable component contains a compound represented by the following formula (I) as the photoradical polymerization initiator. ..
    Figure JPOXMLDOC01-appb-C000002
    [In formula (I), R 2 , R 3 and R 4 each independently represent an organic group containing a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or an aromatic hydrocarbon group. ]
  7.  前記第1の熱硬化性成分が、前記熱カチオン重合開始剤として、下記式(II)又は下記式(III)で表されるカチオンを有する塩化合物を含む、請求項2~6のいずれか一項に記載の回路接続用接着剤フィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [式(II)中、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基を示し、Rは、炭素数1~6のアルキル基を示す。]
    Figure JPOXMLDOC01-appb-C000004
    [式(III)中、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基を示し、R10及びR11は、それぞれ独立して、炭素数1~6のアルキル基を示す。]
    Any one of claims 2 to 6, wherein the first thermosetting component comprises a salt compound having a cation represented by the following formula (II) or the following formula (III) as the thermocation polymerization initiator. The method for manufacturing an adhesive film for circuit connection according to the section.
    Figure JPOXMLDOC01-appb-C000003
    [In formula (II), R 5 and R 6 each independently contain a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an organic group containing a substituent or an unsubstituted aromatic hydrocarbon group. Shown, R 7 represents an alkyl group having 1 to 6 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000004
    [In formula (III), R 8 and R 9 each independently contain a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an organic group containing a substituent or an unsubstituted aromatic hydrocarbon group. As shown, R 10 and R 11 each independently represent an alkyl group having 1 to 6 carbon atoms. ]
  8.  前記導電粒子の平均粒子径が1~30μmであり、
     前記導電粒子の粒子径のC.V.値が20%以下である、請求項1~7のいずれか一項に記載の回路接続用接着剤フィルムの製造方法。
    The average particle diameter of the conductive particles is 1 to 30 μm, and the average particle diameter is 1 to 30 μm.
    C.I. of the particle diameter of the conductive particles. V. The method for manufacturing an adhesive film for circuit connection according to any one of claims 1 to 7, wherein the value is 20% or less.
  9.  前記導電粒子がはんだ粒子である、請求項1~8のいずれか一項に記載の回路接続用接着剤フィルムの製造方法。 The method for manufacturing an adhesive film for circuit connection according to any one of claims 1 to 8, wherein the conductive particles are solder particles.
  10.  前記はんだ粒子が、スズ、スズ合金、インジウム及びインジウム合金からなる群より選択される少なくとも一種を含む、請求項9に記載の回路接続用接着剤フィルムの製造方法。 The method for producing an adhesive film for circuit connection according to claim 9, wherein the solder particles contain at least one selected from the group consisting of tin, tin alloys, indium and indium alloys.
  11.  前記はんだ粒子が、In-Bi合金、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金及びSn-Cu合金からなる群より選択される少なくとも一種を含む、請求項10に記載の回路接続用接着剤フィルムの製造方法。 The solder particles are In-Bi alloy, In-Sn alloy, In-Sn-Ag alloy, Sn-Au alloy, Sn-Bi alloy, Sn-Bi-Ag alloy, Sn-Ag-Cu alloy and Sn-Cu alloy. The method for producing an adhesive film for circuit connection according to claim 10, which comprises at least one selected from the group consisting of.
  12.  前記はんだ粒子が、表面の一部に平面部を有する、請求項9~11のいずれか一項に記載の回路接続用接着剤フィルムの製造方法。 The method for manufacturing an adhesive film for circuit connection according to any one of claims 9 to 11, wherein the solder particles have a flat surface portion on a part of the surface.
  13.  前記はんだ粒子の直径Aに対する前記平面部の直径Bの比(B/A)が下記式を満たす、請求項12に記載の回路接続用接着剤フィルムの製造方法。
     0.01<B/A<1.0
    The method for producing an adhesive film for circuit connection according to claim 12, wherein the ratio (B / A) of the diameter B of the flat surface portion to the diameter A of the solder particles satisfies the following formula.
    0.01 <B / A <1.0
  14.  前記導電粒子の投影像に外接する四角形を二対の平行線により作成した場合において、対向する辺間の距離をX及びY(但しY<X)としたときに、X及びYが下記式を満たす、請求項1~13のいずれか一項に記載の回路接続用接着剤フィルムの製造方法。
     0.8<Y/X≦1.0
    When a quadrangle circumscribing the projected image of the conductive particles is created by two pairs of parallel lines, and the distance between the opposite sides is X and Y (where Y <X), X and Y have the following equations. The method for manufacturing an adhesive film for circuit connection according to any one of claims 1 to 13.
    0.8 <Y / X ≦ 1.0
  15.  前記複数の凹部が所定のパターンで形成されている、請求項1~14のいずれか一項に記載の回路接続用接着剤フィルムの製造方法。 The method for manufacturing an adhesive film for circuit connection according to any one of claims 1 to 14, wherein the plurality of recesses are formed in a predetermined pattern.
  16.  導電粒子を含有する回路接続用接着剤フィルムであって、
     複数の前記導電粒子、光硬化性成分の硬化物及び第1の熱硬化性成分を含有する第1の接着剤層と、第1の接着剤層上に設けられた、第2の熱硬化性成分を含有する第2の接着剤層とを備え、
     前記複数の導電粒子の少なくとも一部が、前記回路接続用接着剤フィルムの平面視において、所定のパターンで並び、且つ、前記回路接続用接着剤フィルムの縦断面において、隣り合う導電粒子同士が互いに離隔した状態で横方向に並んでいる、回路接続用接着剤フィルム。
    An adhesive film for circuit connection containing conductive particles.
    A first adhesive layer containing the plurality of conductive particles, a cured product of a photocurable component, and a first thermosetting component, and a second thermosetting layer provided on the first adhesive layer. With a second adhesive layer containing the ingredients,
    At least a part of the plurality of conductive particles are arranged in a predetermined pattern in the plan view of the circuit connecting adhesive film, and adjacent conductive particles are arranged with each other in the vertical cross section of the circuit connecting adhesive film. Adhesive films for circuit connection that are lined up horizontally in a separated state.
  17.  第1の電極を有する第1の回路部材と、
     第2の電極を有する第2の回路部材と、
     請求項16に記載の回路接続用接着剤フィルムの硬化体を含み、前記第1の電極と前記第2の電極とを前記導電粒子を介して互いに電気的に接続し且つ前記第1の回路部材と前記第2の回路部材とを接着する接続部と、を備える、接続構造体。
    A first circuit member having a first electrode and
    A second circuit member having a second electrode and
    The first circuit member comprising the cured body of the adhesive film for circuit connection according to claim 16 and electrically connecting the first electrode and the second electrode to each other via the conductive particles. A connection structure comprising a connection portion for adhering the second circuit member and the second circuit member.
  18.  第1の電極を有する第1の回路部材の前記第1の電極が設けられている面と、第2の電極を有する第2の回路部材の前記第2の電極が設けられている面との間に、請求項16に記載の回路接続用接着剤フィルムを配置することと、
     前記第1の回路部材と前記回路接続用接着剤フィルムと前記第2の回路部材とを含む積層体を前記積層体の厚さ方向に押圧した状態で加熱することにより、前記第1の電極と前記第2の電極とを前記導電粒子を介して互いに電気的に接続し且つ前記第1の回路部材と前記第2の回路部材とを接着することと、を含む、接続構造体の製造方法。
    A surface of the first circuit member having the first electrode provided with the first electrode and a surface of the second circuit member having the second electrode provided with the second electrode. The circuit connection adhesive film according to claim 16 is placed between them, and
    By heating the laminate including the first circuit member, the adhesive film for connecting the circuit, and the second circuit member in a state of being pressed in the thickness direction of the laminate, the first electrode can be obtained. A method for manufacturing a connection structure, comprising electrically connecting the second electrode to each other via the conductive particles and adhering the first circuit member and the second circuit member to each other.
PCT/JP2021/041394 2020-11-12 2021-11-10 Adhesive film for circuit connection, method for manufacturing same, connection structure body, and method for manufacturing same WO2022102672A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022561971A JPWO2022102672A1 (en) 2020-11-12 2021-11-10
KR1020237018643A KR20230107273A (en) 2020-11-12 2021-11-10 Adhesive film for circuit connection and its manufacturing method, and connection structure and its manufacturing method
CN202180089778.2A CN116685652A (en) 2020-11-12 2021-11-10 Adhesive film for circuit connection, method for producing same, connection structure, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-188669 2020-11-12
JP2020188669 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022102672A1 true WO2022102672A1 (en) 2022-05-19

Family

ID=81601233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041394 WO2022102672A1 (en) 2020-11-12 2021-11-10 Adhesive film for circuit connection, method for manufacturing same, connection structure body, and method for manufacturing same

Country Status (5)

Country Link
JP (1) JPWO2022102672A1 (en)
KR (1) KR20230107273A (en)
CN (1) CN116685652A (en)
TW (1) TW202229487A (en)
WO (1) WO2022102672A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106400A1 (en) * 2021-12-10 2023-06-15 株式会社レゾナック Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2024042720A1 (en) * 2022-08-26 2024-02-29 株式会社レゾナック Adhesive film for circuit connection, connection structure, and methods for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033793A (en) * 2008-07-28 2010-02-12 Tokai Rubber Ind Ltd Method for manufacturing particle transfer film
JP2013124330A (en) * 2011-12-15 2013-06-24 Dexerials Corp Conductive adhesive and connecting method for electronic part
JP2014060150A (en) * 2012-08-24 2014-04-03 Dexerials Corp Anisotropic conductive film and method for manufacturing the same
JP2015149127A (en) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 Anisotropic conductive film and method for manufacturing the same
JP2016131082A (en) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 Anisotropically conductive film, method for manufacturing the same and connection structure
JP2016149393A (en) * 2015-02-10 2016-08-18 昭和電工株式会社 Adhesive for semiconductor, and semiconductor device and manufacturing method thereof
JP2016189334A (en) * 2010-12-29 2016-11-04 チェイル インダストリーズ インコーポレイテッド Anisotropic conductive film, anisotropic conductive film composition contained in the same, and apparatus including the same
WO2020004510A1 (en) * 2018-06-26 2020-01-02 日立化成株式会社 Anisotropic conductive film, method for producing same, and method for producing connection structure
WO2020184583A1 (en) * 2019-03-13 2020-09-17 日立化成株式会社 Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodating set

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW557237B (en) 2001-09-14 2003-10-11 Sekisui Chemical Co Ltd Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033793A (en) * 2008-07-28 2010-02-12 Tokai Rubber Ind Ltd Method for manufacturing particle transfer film
JP2016189334A (en) * 2010-12-29 2016-11-04 チェイル インダストリーズ インコーポレイテッド Anisotropic conductive film, anisotropic conductive film composition contained in the same, and apparatus including the same
JP2013124330A (en) * 2011-12-15 2013-06-24 Dexerials Corp Conductive adhesive and connecting method for electronic part
JP2014060150A (en) * 2012-08-24 2014-04-03 Dexerials Corp Anisotropic conductive film and method for manufacturing the same
JP2015149127A (en) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 Anisotropic conductive film and method for manufacturing the same
JP2016131082A (en) * 2015-01-13 2016-07-21 デクセリアルズ株式会社 Anisotropically conductive film, method for manufacturing the same and connection structure
JP2016149393A (en) * 2015-02-10 2016-08-18 昭和電工株式会社 Adhesive for semiconductor, and semiconductor device and manufacturing method thereof
WO2020004510A1 (en) * 2018-06-26 2020-01-02 日立化成株式会社 Anisotropic conductive film, method for producing same, and method for producing connection structure
WO2020184583A1 (en) * 2019-03-13 2020-09-17 日立化成株式会社 Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodating set

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106400A1 (en) * 2021-12-10 2023-06-15 株式会社レゾナック Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2024042720A1 (en) * 2022-08-26 2024-02-29 株式会社レゾナック Adhesive film for circuit connection, connection structure, and methods for producing same

Also Published As

Publication number Publication date
JPWO2022102672A1 (en) 2022-05-19
CN116685652A (en) 2023-09-01
TW202229487A (en) 2022-08-01
KR20230107273A (en) 2023-07-14

Similar Documents

Publication Publication Date Title
US11787976B2 (en) Method of producing anisotropic conductive film and anisotropic conductive film
WO2022102672A1 (en) Adhesive film for circuit connection, method for manufacturing same, connection structure body, and method for manufacturing same
CN107079589B (en) Method for manufacturing connected body, method for connecting electronic component, and connected body
WO2017010446A1 (en) Anisotropic conductive film and connection structure
JPWO2020004510A1 (en) Anisotropic conductive film and its manufacturing method and manufacturing method of connecting structure
JP6425899B2 (en) ANISOTROPIC CONDUCTIVE ADHESIVE, METHOD FOR MANUFACTURING CONNECTION AND METHOD FOR CONNECTING ELECTRONIC COMPONENTS
WO2022102573A1 (en) Circuit-connection adhesive film and method for producing same, and circuit connection structure and method for producing same
JP2022075723A (en) Filler-containing film
WO2021251386A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2022009846A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2022107800A1 (en) Adhesive film for circuit connection, and connection structure and method for manufacturing same
JP2016031888A (en) Method for manufacturing anisotropic conductive film and connection structure
US10902973B2 (en) Anisotropic conductive film and production method of the same
WO2022025207A1 (en) Adhesive film for circuit connection, adhesive composition for circuit connection, and circuit connection structure and method for manufacturing same
WO2015083809A1 (en) Method for producing connection structure, and anisotropic conductive film
JP6639874B2 (en) Photocurable anisotropic conductive adhesive, method for manufacturing connector, and method for connecting electronic components
WO2023106400A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2023106410A1 (en) Adhesive film for circuit connection, and circuit connection structure and method for producing same
WO2022075370A1 (en) Adhesive film for circuit connection, material for circuit connection, circuit connection structure, and method for manufacturing circuit connection structure
JP2023086476A (en) Adhesive film for circuit connection, and circuit connection structure and method for manufacturing the same
WO2024042720A1 (en) Adhesive film for circuit connection, connection structure, and methods for producing same
JP2022061623A (en) Adhesive film for circuit connection as well as circuit connection structure and manufacturing method thereof
JP2020107511A (en) Anisotropic conductive film, cured product thereof and production method of anisotropic conductive film
JP6705516B2 (en) Method for producing anisotropically conductive film
WO2024034464A1 (en) Adhesive film for circuit connection, circuit connection structure, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561971

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237018643

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202180089778.2

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21891918

Country of ref document: EP

Kind code of ref document: A1