JP6639874B2 - Photocurable anisotropic conductive adhesive, method for manufacturing connector, and method for connecting electronic components - Google Patents

Photocurable anisotropic conductive adhesive, method for manufacturing connector, and method for connecting electronic components Download PDF

Info

Publication number
JP6639874B2
JP6639874B2 JP2015222241A JP2015222241A JP6639874B2 JP 6639874 B2 JP6639874 B2 JP 6639874B2 JP 2015222241 A JP2015222241 A JP 2015222241A JP 2015222241 A JP2015222241 A JP 2015222241A JP 6639874 B2 JP6639874 B2 JP 6639874B2
Authority
JP
Japan
Prior art keywords
adhesive layer
light
conductive adhesive
anisotropic conductive
absorption peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015222241A
Other languages
Japanese (ja)
Other versions
JP2016103634A (en
Inventor
圭亮 稲瀬
圭亮 稲瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Publication of JP2016103634A publication Critical patent/JP2016103634A/en
Application granted granted Critical
Publication of JP6639874B2 publication Critical patent/JP6639874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Description

本発明は、光重合性化合物と、光重合開始剤と、光吸収剤とを含有した光硬化系異方性導電接着剤、これを用いた接続体の製造方法、及び電子部品の接続方法に関する。   The present invention relates to a photocurable anisotropic conductive adhesive containing a photopolymerizable compound, a photopolymerization initiator, and a light absorber, a method for manufacturing a connector using the same, and a method for connecting electronic components. .

近年、大画面テレビに代表されるように液晶画面の大型化、薄型化に伴い、各種ICチップやフレキシブル基板等の電子部品が接続される透明基板の薄型化、狭額縁化が進んでいる。そのため、熱硬化型の異方性導電フィルム(ACF:Anisotropic Conductive Film)を用いた透明基板と電子部品との接続においては、高い熱加圧温度による透明基板や電子部品に対する熱応力の影響が懸念される。また、異方性導電フィルムによる接続が行われた後、常温まで温度が低下する際に、その熱圧着ツールと当接する電子部品と透明基板との温度差に起因して透明基板に反りが生じ、接続部周辺の液晶画面に発生する表示ムラや電子部品の接続不良等の不具合を引き起こすおそれがあった。   2. Description of the Related Art In recent years, as liquid crystal screens have become larger and thinner, as represented by large-screen televisions, transparent substrates to which electronic components such as various IC chips and flexible substrates are connected have become thinner and narrower. Therefore, when connecting a transparent substrate and an electronic component using an anisotropic conductive film (ACF) of a thermosetting type, there is a concern that an influence of thermal stress on the transparent substrate and the electronic component due to a high heat-pressing temperature. Is done. Also, when the temperature is lowered to room temperature after the connection using the anisotropic conductive film is performed, the transparent substrate is warped due to the temperature difference between the electronic component in contact with the thermocompression bonding tool and the transparent substrate. In addition, there is a risk of causing problems such as display unevenness occurring on the liquid crystal screen around the connection portion and poor connection of electronic components.

このような影響に加え、生産性の向上を図るためにタクトタイムの短縮化といった要求を満たすために、近年では紫外光によってバインダー樹脂を硬化させることにより低温、短時間での接続が可能な光硬化系異方性導電接着剤が用いられている。   In addition to these effects, in recent years, in order to meet the demand for shortening the tact time in order to improve productivity, in recent years, by curing the binder resin with ultraviolet light, light that can be connected at a low temperature and in a short time is used. A curable anisotropic conductive adhesive is used.

特開平7−1751号公報JP-A-7-1751 特開平8−292517号公報JP-A-8-292517

光硬化系異方性導電接着剤を用いた接続方法においては、光照射によって発生するカチオンやラジカルの発生領域波長以外の波長域の光は、特に利用されずフィルターによってカットされ、利用されていない。   In the connection method using the photocurable anisotropic conductive adhesive, light in a wavelength region other than the generation region wavelength of cations and radicals generated by light irradiation is not particularly used and is cut by a filter and is not used. .

また、光硬化系異方性導電接着剤を軟化させて流動させるために、高熱の熱圧着ツールを当接させているため、バインダー樹脂の電子部品側の部分において熱膨張や熱変形が大きくなり、基板や電子部品に反りが発生しやすい。また、熱圧着ツールの熱を電子部品を介してバインダー樹脂に伝えるため、バインダー樹脂を十分に溶融、流動させ、導電性粒子を十分に押し込み導通性を確保するためには、熱圧着ツールによって相当の時間熱加圧しなければならず、タクトタイムの短縮を図るにも限界があった。   Also, in order to soften and flow the photo-curing anisotropic conductive adhesive, a high-temperature thermocompression bonding tool is abutted, so that the thermal expansion and deformation of the binder resin on the electronic component side increases. In addition, the substrate and the electronic component are likely to be warped. In addition, in order to transfer the heat of the thermocompression bonding tool to the binder resin via the electronic components, the binder resin is sufficiently melted and fluidized, and the conductive particles are sufficiently pressed in to ensure conductivity. And pressurizing for a long time, there is a limit to shortening the tact time.

本発明は、上述した課題を解決するものであり、光硬化型の接着剤を用いることで、低温、短時間で電子部品の接続を行うと共に、バインダー樹脂の流動性を高め、導通性を向上することができる光硬化系異方性導電接着剤、接続体の製造方法及び電子部品の接続方法を提供することを目的とする。   The present invention is to solve the above-mentioned problem, and by using a photo-curable adhesive, it is possible to connect electronic components at a low temperature and in a short time, to enhance fluidity of a binder resin, and to improve conductivity. It is an object of the present invention to provide a photocurable anisotropic conductive adhesive, a method for manufacturing a connector, and a method for connecting an electronic component.

上述した課題を解決するために、本発明に係る異方性導電接着剤は、紫外線の照射により硬化する光硬化系異方性導電接着剤であって、導電性接着剤層及び絶縁性接着剤層を有し、上記導電性接着剤層は、膜形成樹脂と、光重合性化合物と、光重合開始剤と、導電性粒子とを含有し、上記絶縁性接着剤層は、膜形成樹脂と、光重合性化合物と、光重合開始剤と、光吸収剤とを含有し、上記光吸収剤の光吸収ピーク波長が、上記光重合開始剤の光吸収ピーク波長より20nm以上大きく、かつ、上記光吸収剤の光吸収ピーク波長が、320nm〜360nmであり、上記光重合開始剤の光吸収ピーク波長が、290nm〜330nmである光硬化系異方性導電接着剤である。
本発明では、上記導電性接着剤層は、上記絶縁性接着剤層が含有する光吸収剤の量より少ない量の光吸収剤を更に含有する場合にも効果的である
発明では、上記絶縁性接着剤層の厚さは、上記導電性接着剤層の厚さよりも薄い場合にも効果的である。
また、本発明は、接続体の製造方法であって、ステージ上に載置された透明基板上に、紫外線の照射により硬化する光硬化系異方性導電接着剤を介して電子部品を配置する工程と、圧着ツールにより上記電子部品を上記透明基板に対して押圧しながら、光照射器により上記光硬化系異方性導電接着剤に対して光照射を行う工程とを有し、上記光硬化系異方性導電接着剤は、膜形成樹脂と、光重合性化合物と、光重合開始剤と、導電性粒子とを含有する導電性接着剤層と、膜形成樹脂と、光重合性化合物と、光重合開始剤と、光吸収剤とを含有する絶縁性接着剤層とを備え、上記光吸収剤の光吸収ピーク波長が、上記光重合開始剤の光吸収ピーク波長より20nm以上大きく、かつ、上記光吸収剤の光吸収ピーク波長が、320nm〜360nmであり、上記光重合開始剤の光吸収ピーク波長が、290nm〜330nmである接続体の製造方法である。
本発明では、上記導電性接着剤層は、上記絶縁性接着剤層が含有する光吸収剤の量より少ない量の光吸収剤を更に含有する場合にも効果的である。
本発明では、上記光硬化系異方性導電接着剤は、上記電子部品の接続端子の高さより厚い厚さを有する場合にも効果的である。
さらに、本発明は、電子部品の接続方法であって、ステージ上に載置された透明基板上に、光硬化系異方性導電接着剤を介して電子部品を配置する工程と、圧着ツールにより上記電子部品を上記透明基板に対して押圧しながら、光照射器により上記光硬化系異方性導電接着剤に対して光照射を行う工程とを有し、上記光硬化系異方性導電接着剤は、膜形成樹脂と、光重合性化合物と、光重合開始剤と、導電性粒子とを含有する導電性接着剤層と、膜形成樹脂と、光重合性化合物と、光重合開始剤と、光吸収剤とを含有する絶縁性接着剤層とを備え、上記光吸収剤の光吸収ピーク波長が、上記光重合開始剤の光吸収ピーク波長より20nm以上大きく、かつ、上記光吸収剤の光吸収ピーク波長が、320nm〜360nmであり、上記光重合開始剤の光吸収ピーク波長が、290nm〜330nmである電子部品の接続方法である。
本発明では、上記導電性接着剤層は、上記絶縁性接着剤層が含有する光吸収剤の量より少ない量の光吸収剤を更に含有する場合にも効果的である。
本発明では、上記光硬化系異方性導電接着剤は、上記電子部品の接続端子の高さより厚い厚さを有する場合にも効果的である。
In order to solve the above-mentioned problems, an anisotropic conductive adhesive according to the present invention is a photocurable anisotropic conductive adhesive that is cured by irradiation with ultraviolet light, and includes a conductive adhesive layer and an insulating adhesive. Having a layer, the conductive adhesive layer contains a film-forming resin, a photopolymerizable compound, a photopolymerization initiator, and conductive particles, and the insulating adhesive layer contains a film-forming resin. A photopolymerizable compound, a photopolymerization initiator, and a light absorber, wherein the light absorption peak wavelength of the light absorber is at least 20 nm larger than the light absorption peak wavelength of the photopolymerization initiator, and The photocurable anisotropic conductive adhesive has a light absorption peak wavelength of the light absorber of 320 nm to 360 nm and a light absorption peak wavelength of the photopolymerization initiator of 290 nm to 330 nm .
In the present invention, the conductive adhesive layer is also effective when the insulating adhesive layer further contains a light absorber in an amount smaller than the light absorber contained in the insulating adhesive layer .
In the present invention, the thickness of the insulating adhesive layer is also effective when the thickness is smaller than the thickness of the conductive adhesive layer.
The present invention is also a method for manufacturing a connector, wherein electronic components are arranged on a transparent substrate placed on a stage via a photocurable anisotropic conductive adhesive that is cured by irradiation with ultraviolet light. And a step of irradiating the photocurable anisotropic conductive adhesive with light with a light irradiator while pressing the electronic component against the transparent substrate with a pressure bonding tool. The system anisotropic conductive adhesive is a film-forming resin, a photopolymerizable compound, a photopolymerization initiator, a conductive adhesive layer containing conductive particles, a film-forming resin, and a photopolymerizable compound. A photopolymerization initiator and an insulating adhesive layer containing a light absorber, wherein the light absorption peak wavelength of the light absorber is at least 20 nm larger than the light absorption peak wavelength of the photopolymerization initiator, and The light absorption peak wavelength of the light absorber is from 320 nm to 360 n. , And the light absorption peak wavelength of the photopolymerization initiator, a method of manufacturing a 290nm~330nm connector.
In the present invention, the conductive adhesive layer is also effective when the insulating adhesive layer further contains a light absorber in an amount smaller than the light absorber contained in the insulating adhesive layer.
In the present invention, the photocurable anisotropic conductive adhesive is also effective when it has a thickness greater than the height of the connection terminal of the electronic component.
Furthermore, the present invention is a method for connecting electronic components, wherein a step of arranging the electronic components via a photo-curing anisotropic conductive adhesive on a transparent substrate mounted on a stage, Performing a light irradiation on the photocurable anisotropic conductive adhesive with a light irradiator while pressing the electronic component against the transparent substrate; The agent is a film-forming resin, a photopolymerizable compound, a photopolymerization initiator, a conductive adhesive layer containing conductive particles, a film-forming resin, a photopolymerizable compound, and a photopolymerization initiator. An insulating adhesive layer containing a light absorbing agent, wherein the light absorbing peak wavelength of the light absorbing agent is at least 20 nm larger than the light absorbing peak wavelength of the photopolymerization initiator, and The light absorption peak wavelength is from 320 nm to 360 nm, Light absorption peak wavelength of agent is a method of connecting an electronic component is 290Nm~330nm.
In the present invention, the conductive adhesive layer is also effective when the insulating adhesive layer further contains a light absorber in an amount smaller than the light absorber contained in the insulating adhesive layer.
In the present invention, the photocurable anisotropic conductive adhesive is also effective when it has a thickness greater than the height of the connection terminal of the electronic component.

本発明によれば、光硬化系異方性導電接着剤の絶縁性接着剤層に例えば紫外光等の光が照射されると、光吸収剤が発熱し、そのバインダー樹脂が軟化して流動しやすくなる。これにより、絶縁性接着剤層のバインダー樹脂を溶融させながら電子部品の接続端子を絶縁性接着剤層中に押し込むことができる。また、導電性接着剤層に紫外光等の光を照射することによって、そのバインダー樹脂を硬化させながら電子部品の接続端子を導電性接着剤層中に押し込むことができる。このとき、導電性接着剤層は、バインダー樹脂の流動性が低く導電性粒子が移動しにくいため、電子部品の接続端子の頂部の接続部分から導電性粒子が流出せず、多くの導電性粒子を捕捉することができる。すなわち、本発明によれば、低温、短時間で電子部品の接続を行うと共に、バインダー樹脂の流動性を高め、導通性を向上することができる。   According to the present invention, when the insulating adhesive layer of the photocurable anisotropic conductive adhesive is irradiated with light such as ultraviolet light, the light absorber generates heat, and the binder resin softens and flows. It will be easier. This allows the connection terminals of the electronic component to be pushed into the insulating adhesive layer while melting the binder resin of the insulating adhesive layer. In addition, by irradiating the conductive adhesive layer with light such as ultraviolet light, the connection terminals of the electronic component can be pushed into the conductive adhesive layer while the binder resin is being cured. At this time, since the conductive adhesive layer has low fluidity of the binder resin and the conductive particles are hard to move, the conductive particles do not flow out of the connection portion at the top of the connection terminal of the electronic component, and many conductive particles Can be captured. That is, according to the present invention, the electronic components can be connected in a short time at a low temperature, the fluidity of the binder resin can be increased, and the conductivity can be improved.

本発明に係る接続体の一例として示す液晶表示パネルの断面図である。FIG. 1 is a cross-sectional view of a liquid crystal display panel shown as an example of a connector according to the present invention. 液晶駆動用ICと透明基板と異方性導電フィルムとを示す断面図である。FIG. 3 is a cross-sectional view illustrating a liquid crystal driving IC, a transparent substrate, and an anisotropic conductive film. 本発明の一例としての異方性導電フィルムを示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the anisotropic conductive film as an example of this invention. (a)(b):本発明に係る接続体の接続方法の一例を示す断面図である。(A) (b): It is sectional drawing which shows an example of the connection method of the connection body which concerns on this invention. 本発明に係る光硬化系異方性導電接着剤の光重合開始剤と光吸収剤の光吸収ピーク波長の関係を示すグラフである。4 is a graph showing a relationship between a photopolymerization initiator of a photocurable anisotropic conductive adhesive according to the present invention and a light absorption peak wavelength of a light absorber. 実施例及び比較例に係る接続体サンプルの接続抵抗を測定する工程を示す斜視図である。It is a perspective view which shows the process of measuring the connection resistance of the connection body sample which concerns on an Example and a comparative example.

以下、本発明が適用された光硬化系異方性導電接着剤、接続体の製造方法及び電子部品の接続方法について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, a photocurable anisotropic conductive adhesive to which the present invention is applied, a method of manufacturing a connector, and a method of connecting an electronic component will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to only the following embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present invention. Further, the drawings are schematic, and the ratios of the respective dimensions may be different from actual ones. Specific dimensions and the like should be determined in consideration of the following description. In addition, it is needless to say that dimensional relationships and ratios are different between drawings.

以下では、液晶表示パネルのガラス基板上に、電子部品として液晶駆動用のICチップを実装するいわゆるCOG(chip on glass)方式を例にとって説明する。この液晶表示パネル10は、例えば図1に示すように、ガラス基板等からなる二枚の平板状の透明基板11,12が対向配置され、これら透明基板11,12が枠状のシール13によって互いに貼り合わされている。そして、液晶表示パネル10は、透明基板11,12及びシール13によって囲まれた空間内に液晶材料14が封入されることによりパネル表示部15が形成されている。   Hereinafter, a so-called COG (chip on glass) system in which an IC chip for driving a liquid crystal is mounted as an electronic component on a glass substrate of a liquid crystal display panel will be described as an example. In this liquid crystal display panel 10, for example, as shown in FIG. 1, two flat transparent substrates 11, 12 made of a glass substrate or the like are arranged to face each other. It is stuck. The liquid crystal display panel 10 has a panel display section 15 formed by enclosing a liquid crystal material 14 in a space surrounded by the transparent substrates 11 and 12 and the seal 13.

透明基板11,12は、互いに対向する両内側表面に、ITO(酸化インジウムスズ)等からなる縞状の一対の透明電極16,17が、互いに交差するように形成されている。そして、両透明電極16,17は、これら両透明電極16,17の当該交差部位によって液晶表示の最小単位としての画素が構成されるようになっている。   The transparent substrates 11 and 12 have a pair of striped transparent electrodes 16 and 17 made of ITO (indium tin oxide) or the like formed on both inner surfaces facing each other so as to cross each other. The transparent electrodes 16 and 17 are configured such that a pixel as a minimum unit of a liquid crystal display is formed by the intersection of the transparent electrodes 16 and 17.

両透明基板11,12のうち、一方の透明基板12は、他方の透明基板11よりも平面寸法が大きく形成されており、この大きく形成された部分を、パネル表示部15から側方に突出させ、これにより縁部12aが設けられている。
透明基板12の縁部12aの透明基板11側の表面には、液晶駆動用IC18(電子部品)が実装されるCOG実装部20がパネル表示部15の近傍に設けられ、またこのCOG実装部20の透明基板12の縁部12aの先端部側の近傍には、液晶駆動回路が形成されたフレキシブル基板21(電子部品)が実装されるFOG実装部22が設けられている。
これらCOG実装部20,FOG実装部22上には、それぞれ透明電極17の端子部17aが例えば複数形成されている(図2参照)。
なお、COG実装部20には、透明電極17の端子部17a、及び基板側アライメントマーク23が形成されている(図2参照)。
One of the transparent substrates 11 and 12 is formed to have a larger planar dimension than the other transparent substrate 11, and the large formed portion is made to protrude laterally from the panel display unit 15. Thus, an edge 12a is provided.
On the surface of the edge 12a of the transparent substrate 12 on the side of the transparent substrate 11, a COG mounting section 20 on which a liquid crystal driving IC 18 (electronic component) is mounted is provided near the panel display section 15. In the vicinity of the front end side of the edge portion 12a of the transparent substrate 12, an FOG mounting portion 22 on which a flexible substrate 21 (electronic component) on which a liquid crystal drive circuit is formed is mounted.
On the COG mounting portion 20 and the FOG mounting portion 22, for example, a plurality of terminal portions 17a of the transparent electrode 17 are formed (see FIG. 2).
Note that the COG mounting portion 20 has the terminal portion 17a of the transparent electrode 17 and the substrate-side alignment mark 23 formed thereon (see FIG. 2).

なお、液晶駆動用IC18は、画素に対して液晶駆動電圧を選択的に印加することにより、液晶の配向を部分的に変化させて所定の液晶表示を行うことができるようになっている。また、図2に示すように、液晶駆動用IC18の一方の面に設けられた実装面18aには、後述する異方性導電フィルム1を介して透明電極17の端子部17aと導通接続される電極端子19が複数形成されている。電極端子19は、例えば銅バンプや金バンプ、あるいは銅バンプに金メッキを施したもの等が好適に用いられる。   The liquid crystal driving IC 18 can perform a predetermined liquid crystal display by selectively applying a liquid crystal driving voltage to the pixels to partially change the orientation of the liquid crystal. As shown in FIG. 2, a mounting surface 18a provided on one surface of the liquid crystal driving IC 18 is electrically connected to a terminal portion 17a of the transparent electrode 17 via an anisotropic conductive film 1 described later. A plurality of electrode terminals 19 are formed. As the electrode terminal 19, for example, a copper bump, a gold bump, or a copper bump plated with gold is preferably used.

また、液晶駆動用IC18の実装面18aには、上述した基板側アライメントマーク23と重畳させることにより、透明基板12に対するアライメントを行うIC側アライメントマーク24が形成されている。なお、透明基板12の透明電極17の配線ピッチや液晶駆動用IC18の電極端子19のファインピッチ化が進んでいることから、液晶駆動用IC18と透明基板12とは、高精度のアライメント調整が求められている。   Further, on the mounting surface 18a of the liquid crystal driving IC 18, an IC alignment mark 24 for performing alignment with the transparent substrate 12 is formed by overlapping with the substrate alignment mark 23 described above. Since the wiring pitch of the transparent electrodes 17 on the transparent substrate 12 and the fine pitch of the electrode terminals 19 of the liquid crystal driving IC 18 have been advanced, high-precision alignment adjustment between the liquid crystal driving IC 18 and the transparent substrate 12 is required. Have been.

図1に示すように、透明基板12の縁部12aの各実装部20,22であって、透明電極17の端子部17a上には、本発明に係る光硬化系異方性導電接着剤である異方性導電フィルム1を用いて液晶駆動用IC18やフレキシブル基板21が接続される。
異方性導電フィルム1は、後述するように導電性粒子4を含有しており、液晶駆動用IC18やフレキシブル基板21の電極と、透明基板12の縁部12aに形成された透明電極17の端子部17aとを、導電性粒子4を介して電気的に接続させるものである。
この異方性導電フィルム1は、紫外線硬化型のフィルム状の接着剤であり、後述する紫外線照射器35により紫外光が照射されるとともに熱圧着ツール33により押圧されることにより、流動化したバインダー樹脂中において導電性粒子4が端子部17aと液晶駆動用IC18やフレキシブル基板21の各電極との間で押し潰され、導電性粒子4が押し潰された状態で硬化する。これにより、異方性導電フィルム1は、透明基板12と液晶駆動用IC18やフレキシブル基板21とを電気的、機械的に接続する。
As shown in FIG. 1, the photocurable anisotropic conductive adhesive according to the present invention is provided on the mounting portions 20 and 22 of the edge 12 a of the transparent substrate 12 and on the terminal portions 17 a of the transparent electrode 17. The liquid crystal driving IC 18 and the flexible substrate 21 are connected using a certain anisotropic conductive film 1.
The anisotropic conductive film 1 contains conductive particles 4 as described later, and is connected to the electrodes of the liquid crystal driving IC 18 and the flexible substrate 21 and the terminals of the transparent electrode 17 formed on the edge 12 a of the transparent substrate 12. The portion 17 a is electrically connected to the portion 17 a via the conductive particles 4.
The anisotropic conductive film 1 is an ultraviolet-curable film-like adhesive, and is irradiated with ultraviolet light by an ultraviolet irradiator 35 to be described later and is pressed by a thermocompression bonding tool 33 to be a fluidized binder. In the resin, the conductive particles 4 are crushed between the terminal portion 17a and each electrode of the liquid crystal driving IC 18 and the flexible substrate 21, and the conductive particles 4 are cured in a crushed state. Thus, the anisotropic conductive film 1 electrically and mechanically connects the transparent substrate 12 with the liquid crystal driving IC 18 and the flexible substrate 21.

また、上述した両透明電極16,17上には、それぞれ所定のラビング処理が施された配向膜27が形成されており、これらの配向膜27によって液晶材料14の液晶分子の初期配向が規制されるようになっている。さらに、両透明基板11,12の外側には、一対の偏光板25,26が配設されており、これら両偏光板25,26によってバックライト等の光源(図示せず)からの透過光の振動方向が規制されるようになっている。   An alignment film 27 that has been subjected to a predetermined rubbing process is formed on each of the above-mentioned transparent electrodes 16 and 17, and the initial alignment of the liquid crystal molecules of the liquid crystal material 14 is regulated by these alignment films 27. It has become so. Further, a pair of polarizers 25 and 26 are provided outside the transparent substrates 11 and 12, and the transmitted light from a light source (not shown) such as a backlight is provided by the polarizers 25 and 26. The direction of vibration is regulated.

[光硬化系異方性導電フィルム]
本発明では、光硬化系の異方性導電フィルム(ACF:Anisotropic Conductive Film)1が用いられる。異方性導電フィルム1は、光カチオン系、又は光ラジカル系のいずれのものであってもよく、目的に応じて適宜選択することができる。
[Photocurable anisotropic conductive film]
In the present invention, a photocurable anisotropic conductive film (ACF) 1 is used. The anisotropic conductive film 1 may be of a photocationic type or a photoradical type, and can be appropriately selected depending on the purpose.

異方性導電フィルム1は、例えば図3に示すように、導電性接着剤層5と、絶縁性接着剤層6とを備える。異方性導電フィルム1は、基材となる剥離フィルム2上に導電性接着剤層5が支持され、導電性接着剤層5上に絶縁性接着剤層6が積層されている。   The anisotropic conductive film 1 includes a conductive adhesive layer 5 and an insulating adhesive layer 6, for example, as shown in FIG. The anisotropic conductive film 1 has a conductive adhesive layer 5 supported on a release film 2 serving as a base material, and an insulating adhesive layer 6 laminated on the conductive adhesive layer 5.

剥離フィルム2としては、公知の異方性導電フィルムにおいて一般に用いられている例えばポリエチレンテレフタレートフィルム等からなる基材を使用することができる。   As the release film 2, a base material such as a polyethylene terephthalate film generally used in known anisotropic conductive films can be used.

異方性導電フィルム1は、例えば図2に示すように、液晶表示パネル10の透明基板12上に形成された透明電極17の端子部17aと液晶駆動用IC18の電極端子19との間に介在される。このとき、異方性導電フィルム1は、透明基板12側に絶縁性接着剤層6が配置され、液晶駆動用IC18側に導電性接着剤層5が配置される。   As shown in FIG. 2, for example, the anisotropic conductive film 1 is interposed between a terminal portion 17a of a transparent electrode 17 formed on a transparent substrate 12 of a liquid crystal display panel 10 and an electrode terminal 19 of a liquid crystal driving IC 18. Is done. At this time, in the anisotropic conductive film 1, the insulating adhesive layer 6 is disposed on the transparent substrate 12 side, and the conductive adhesive layer 5 is disposed on the liquid crystal driving IC 18 side.

そして、異方性導電フィルム1は、後述するように、図1に示す熱圧着ツール33によって液晶駆動用IC18側から押圧されるとともに、紫外線照射器35によって透明基板12側から紫外光が照射される。このとき、熱圧着ツール33によって、室温下で押圧され、あるいは導電性接着剤層5及び絶縁性接着剤層6のバインダー樹脂(以下適宜「樹脂」という。)が流動性を示す程度の低温で加熱押圧されることで液晶駆動用IC18や透明基板12への熱衝撃が緩和されるように構成されている。これにより、導電性接着剤層5及び絶縁性接着剤層6のバインダー樹脂が溶融し、透明電極17の端子部17aと液晶駆動用IC18の電極端子19との間で導電性粒子4が挟まれて保持された状態で硬化され、これにより液晶表示パネル10の透明電極17と液晶駆動用IC18とが電気的、機械的に接続される。   Then, as described later, the anisotropic conductive film 1 is pressed from the liquid crystal driving IC 18 side by the thermocompression bonding tool 33 shown in FIG. 1 and is irradiated with ultraviolet light from the transparent substrate 12 side by the ultraviolet irradiator 35. You. At this time, it is pressed at room temperature by the thermocompression bonding tool 33 or at such a low temperature that the binder resin of the conductive adhesive layer 5 and the insulating adhesive layer 6 (hereinafter referred to as “resin” as appropriate) shows fluidity. The configuration is such that the thermal shock applied to the liquid crystal driving IC 18 and the transparent substrate 12 is reduced by being heated and pressed. As a result, the binder resin of the conductive adhesive layer 5 and the insulating adhesive layer 6 is melted, and the conductive particles 4 are sandwiched between the terminal 17a of the transparent electrode 17 and the electrode terminal 19 of the liquid crystal driving IC 18. The transparent electrode 17 of the liquid crystal display panel 10 and the liquid crystal driving IC 18 are electrically and mechanically connected.

本発明に係る異方性導電フィルム1は、絶縁性接着剤層6中に、膜形成樹脂、光重合開始剤、光重合性化合物、及び光吸収剤を含有する。絶縁性接着剤層6は、光吸収剤を含有することにより、後述する液晶駆動用IC18の接続工程において、熱圧着ツール33による加熱押圧に加えて、透明基板12側から紫外光が照射されると、光吸収剤が発熱し、軟化流動しやすくなる。これにより、絶縁性接着剤層6のバインダー樹脂を溶融させながら液晶駆動用IC18の電極端子19を絶縁性接着剤層6中にその厚さ分押し込むことができる。   The anisotropic conductive film 1 according to the present invention contains a film-forming resin, a photopolymerization initiator, a photopolymerizable compound, and a light absorber in the insulating adhesive layer 6. Since the insulating adhesive layer 6 contains a light absorbing agent, ultraviolet light is irradiated from the transparent substrate 12 side in addition to the heating and pressing by the thermocompression bonding tool 33 in the later-described connection step of the liquid crystal driving IC 18. Then, the light absorbing agent generates heat, and is likely to soften and flow. Thus, the electrode terminals 19 of the liquid crystal driving IC 18 can be pressed into the insulating adhesive layer 6 by the thickness thereof while the binder resin of the insulating adhesive layer 6 is melted.

なお、光吸収剤の発熱温度は、導電性粒子4を絶縁性接着剤層6中に押し込むのに十分な程度にバインダー樹脂を軟化させるとともに、透明基板12や液晶駆動用IC18に対して熱衝撃の影響もない所定の温度、例えば80〜90℃程度が好ましく、光吸収剤の材料選択によって適宜設定することができる。   The heat generation temperature of the light absorbing agent is such that the binder resin is softened enough to push the conductive particles 4 into the insulating adhesive layer 6, and the heat shock is applied to the transparent substrate 12 and the liquid crystal driving IC 18. The temperature is preferably a predetermined temperature, for example, about 80 to 90 [deg.] C., and can be appropriately set by selecting the material of the light absorber.

また、導電性接着剤層5が熱圧着ツール33によって加熱押圧されるとともに紫外光が照射されると、バインダー樹脂を硬化させながら液晶駆動用IC18の電極端子19を導電性接着剤層5の厚さ分押し込むことができる。このとき、導電性接着剤層5は、バインダー樹脂の流動性が低く導電性粒子4が移動しにくいため、液晶駆動用IC18の電極端子19と透明基板12の端子部17aとの間から導電性粒子4が流出せず、多くの導電性粒子4を捕捉することができる。   When the conductive adhesive layer 5 is heated and pressed by the thermocompression bonding tool 33 and is irradiated with ultraviolet light, the electrode terminals 19 of the liquid crystal driving IC 18 are cured while the binder resin is cured. You can push it in. At this time, since the conductive adhesive layer 5 has low fluidity of the binder resin and the conductive particles 4 are hard to move, the conductive adhesive layer 5 has a conductive property between the electrode terminal 19 of the liquid crystal driving IC 18 and the terminal portion 17 a of the transparent substrate 12. The particles 4 do not flow out, and many conductive particles 4 can be captured.

[光カチオン系異方性導電フィルム]
光カチオン系の異方性導電フィルム1は、導電性接着剤層5中に膜形成樹脂、光カチオン重合開始剤、及び光カチオン重合性化合物を含有し、絶縁性接着剤層6中に膜形成樹脂、光カチオン重合開始剤、光カチオン重合性化合物、及び光吸収剤を含有する。
[Photocationic anisotropic conductive film]
The photocationic anisotropic conductive film 1 contains a film-forming resin, a photocationic polymerization initiator, and a photocationic polymerizable compound in the conductive adhesive layer 5, and forms a film in the insulating adhesive layer 6. It contains a resin, a cationic photopolymerization initiator, a cationic photopolymerizable compound, and a light absorber.

膜形成樹脂としては、平均分子量が10000〜80000程度の樹脂が好ましい。このような膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、変形エポキシ樹脂、ウレタン樹脂、等の各種の樹脂が挙げられる。中でも、均一な膜形成状態、高い接続信頼性を確保する観点からフェノキシ樹脂が特に好ましい。   As the film-forming resin, a resin having an average molecular weight of about 10,000 to 80,000 is preferable. Examples of such a film-forming resin include various resins such as a phenoxy resin, an epoxy resin, a modified epoxy resin, and a urethane resin. Among them, a phenoxy resin is particularly preferable from the viewpoint of ensuring a uniform film formation state and high connection reliability.

光カチオン重合開始剤としては、例えば、ヨードニウム塩、スルホニウム塩、芳香族ジアゾニウム塩、ホスホニウム塩、セレノニウム塩等のオニウム塩や、金属アレーン錯体、シラノール/アルミニウム錯体等の錯体化合物、ベンゾイントシレート、o−ニトロベンジルトシレート等を用いることができる。また、塩を形成する際の対アニオンとしては、プロピレンカーボネート、ヘキサフルオロアンチモネート、ヘキサフルオロホスフェート、テトラフルオロボレート、テトラキス(ぺンタフルオロフェニル)ボレート等が用いられる。   Examples of the cationic photopolymerization initiator include onium salts such as iodonium salts, sulfonium salts, aromatic diazonium salts, phosphonium salts and selenonium salts, complex compounds such as metal arene complexes and silanol / aluminum complexes, benzoin tosylate, o -Nitrobenzyl tosylate and the like can be used. In addition, as a counter anion when forming a salt, propylene carbonate, hexafluoroantimonate, hexafluorophosphate, tetrafluoroborate, tetrakis (pentafluorophenyl) borate and the like are used.

光カチオン重合開始剤は、1種のみを単独で使用してもよいし2種以上を混合して使用してもよい。中でも、芳香族スルホニウム塩は、300nm以上の波長領域でも紫外線吸収特性を有し、硬化性に優れることから好適に用いることができる。   As the cationic photopolymerization initiator, only one kind may be used alone, or two or more kinds may be used in combination. Among them, an aromatic sulfonium salt can be suitably used because it has an ultraviolet absorbing property even in a wavelength region of 300 nm or more and has excellent curability.

光カチオン重合性化合物は、カチオン種によって重合する官能基を有する化合物であり、このような化合物としては、エポキシ化合物、ビニルエーテル化合物、環状エーテル化合物等が挙げられる。   The photocationically polymerizable compound is a compound having a functional group that is polymerized by a cationic species, and examples of such a compound include an epoxy compound, a vinyl ether compound, and a cyclic ether compound.

エポキシ化合物は、1分子中に2個以上のエポキシ基を有する化合物であり、このような化合物としては、例えば、エピクロルヒドリンとビスフェノールAやビスフェノールF等から誘導されるビスフェノール型エポキシ樹脂や、ポリグリシジルエーテル、ポリグリシジルエステル、芳香族エポキシ化合物、脂環式エポキシ化合物、ノボラック型エポキシ化合物、グリシジルアミン系エポキシ化合物、グリシジルエステル系エポキシ化合物等が挙げられる。   The epoxy compound is a compound having two or more epoxy groups in one molecule. Examples of such a compound include a bisphenol-type epoxy resin derived from epichlorohydrin and bisphenol A or bisphenol F, or a polyglycidyl ether. Glycidyl ester, aromatic epoxy compound, alicyclic epoxy compound, novolak type epoxy compound, glycidylamine type epoxy compound, glycidyl ester type epoxy compound and the like.

光吸収剤は、液晶駆動用IC18の接続工程において紫外線光が照射されることにより発熱し、絶縁性接着剤層6のバインダー樹脂を溶融させるものである。光吸収剤は、光重合開始剤として光カチオン重合開始剤を用いる場合には、例えば、ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系等の紫外線吸収剤を好適に用いることができ、光カチオン重合開始剤の吸収ピーク波長や、紫外線照射器35の分光分布、バインダー樹脂の他の成分との相溶性、紫外線吸収能等に応じて適宜選択される。なお、光重合開始剤としてカチオン系重合開始剤を用いる場合には、紫外光を吸収することにより発熱する光吸収剤として、光ラジカル重合開始剤を用いてもよい。   The light absorber generates heat when irradiated with ultraviolet light in the connection step of the liquid crystal driving IC 18 to melt the binder resin of the insulating adhesive layer 6. When the photoabsorber uses a photocationic polymerization initiator as a photopolymerization initiator, for example, a benzotriazole-based, triazine-based, benzophenone-based ultraviolet absorber can be suitably used, and a photocationic polymerization initiator can be used. Is appropriately selected according to the absorption peak wavelength, the spectral distribution of the ultraviolet irradiator 35, the compatibility with other components of the binder resin, the ultraviolet absorbing ability, and the like. When a cationic polymerization initiator is used as the photopolymerization initiator, a photoradical polymerization initiator may be used as a light absorber that generates heat by absorbing ultraviolet light.

[光ラジカル系異方性導電フィルム]
光ラジカル系の異方性導電フィルム1は、導電性接着剤層5中に膜形成樹脂、光ラジカル重合開始剤、及び光ラジカル重合性化合物を含有し、絶縁性接着剤層6中に膜形成樹脂、光ラジカル重合開始剤、光ラジカル重合性化合物、及び光吸収剤を含有する。
[Photo-radical anisotropic conductive film]
The photo-radical anisotropic conductive film 1 contains a film-forming resin, a photo-radical polymerization initiator, and a photo-radical polymerizable compound in the conductive adhesive layer 5, and forms a film in the insulating adhesive layer 6. It contains a resin, a photoradical polymerization initiator, a photoradical polymerizable compound, and a light absorber.

膜形成樹脂としては、上述した光カチオン系異方性導電フィルムと同様のものを用いることができる。   As the film-forming resin, the same resin as the above-described photocationic anisotropic conductive film can be used.

光ラジカル重合開始剤としては、ベンゾインエチルエーテル、イソプロピルベンゾインエーテル等のベンゾインエーテル、ベンジル、ヒドロキシシクロヘキシルフェニルケトン等のベンジルケタール、ベンゾフェノン、アセトフェノン等のケトン類およびその誘導体、チオキサントン類、ビスイミダゾール類等が挙げられる。これらの光重合開始剤に必要に応じてアミン類、イオウ化合物、リン化合物等の増感剤を任意の比で添加してもよい。この際、用いる光源の波長や所望の硬化特性等に応じて最適な光開始剤を選択する必要がある。   Examples of the photoradical polymerization initiator include benzoin ethers such as benzoin ethyl ether and isopropyl benzoin ether, benzyl ketals such as benzyl and hydroxycyclohexyl phenyl ketone, ketones such as benzophenone and acetophenone and derivatives thereof, thioxanthones, and bisimidazoles. No. If necessary, sensitizers such as amines, sulfur compounds, and phosphorus compounds may be added to these photopolymerization initiators in any ratio. At this time, it is necessary to select an optimal photoinitiator according to the wavelength of the light source used, the desired curing characteristics, and the like.

また、光照射によって活性ラジカルを発生する化合物として有機過酸化物系硬化剤を用いることができる。有機過酸化物としては、ジアシルパーオキサイド、ジアルキルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ハイドロパーオキサイド、シリルパーオキサイド等から1種または2種以上を用いることができる。   In addition, an organic peroxide-based curing agent can be used as a compound that generates active radicals by light irradiation. As the organic peroxide, one or more of diacyl peroxide, dialkyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, hydroperoxide, silyl peroxide and the like can be used.

光ラジカル重合性化合物は、活性ラジカルによって重合する官能基を有する物質であり、このような化合物としては、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物等が挙げられる。   The photo-radical polymerizable compound is a substance having a functional group that is polymerized by an active radical, and examples of such a compound include an acrylate compound, a methacrylate compound, and a maleimide compound.

光ラジカル重合性化合物は、モノマー、オリゴマーいずれの状態で用いることが可能であり、モノマーとオリゴマーを併用することも可能である。   The photo-radical polymerizable compound can be used in any state of a monomer and an oligomer, and a monomer and an oligomer can be used in combination.

アクリル酸エステル化合物、メタクリル酸エステル化合物としては、エポキシアクリレートオリゴマ一、ウレタンアクリレートオリゴマー、ポリエーテルアクリレートオリゴマー、ポリエステルアクリレートオリゴマー等の光重合性オリゴマー;トリメチロールプロパントリアクリレート、ポリエチレングリコールジアクリレート、ポリアルキレングリコールジアクリレート、ぺンタエリスリトールアクリレート、2−シアノエチルアクリレート、シクロヘキシルアクリレート、ジシクロぺンテニルアクリレート、ジシクロベンテニロキシエチルアクリレート、2−(2−エトキシエトキシ)エチルアクリレート、2−エトキシエチルアクリレート、2−エチルヘキシルアクリレート、n−ヘキシルアクリレート、2−ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、イソボルニルアクリレート、イソデシルアクリレート、イソオクチルアクリレート、n−ラウリルアクリレート、2−メトキシエチルアクリレート、2−フェノキシエチルアクリレート、テトラヒドロフルフリールアクリレート、ネオぺンチルグリコールジアクリレート、ジぺンタエリスリトールヘキサアクリレート等の光重合性単官能および多官能アクリレートモノマー等が挙げられる。これらは1種あるいは2種類以上を混合して用いてもよい。   Examples of the acrylate compound and the methacrylate compound include photopolymerizable oligomers such as epoxy acrylate oligomer, urethane acrylate oligomer, polyether acrylate oligomer, and polyester acrylate oligomer; trimethylolpropane triacrylate, polyethylene glycol diacrylate, and polyalkylene glycol. Diacrylate, pentaerythritol acrylate, 2-cyanoethyl acrylate, cyclohexyl acrylate, dicyclopentenyl acrylate, dicycloventenyloxyethyl acrylate, 2- (2-ethoxyethoxy) ethyl acrylate, 2-ethoxyethyl acrylate, 2-ethylhexyl Acrylate, n-hexyl acrylate, 2-hydroxyethyl Rate, hydroxypropyl acrylate, isobornyl acrylate, isodecyl acrylate, isooctyl acrylate, n-lauryl acrylate, 2-methoxyethyl acrylate, 2-phenoxyethyl acrylate, tetrahydrofurfuryl acrylate, neopentyl glycol diacrylate, Examples thereof include photopolymerizable monofunctional and polyfunctional acrylate monomers such as dipentaerythritol hexaacrylate. These may be used alone or in combination of two or more.

光吸収剤は、例えば、ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系等の紫外線吸収剤を好適に用いることができ、光ラジカル重合開始剤の吸収ピーク波長や、紫外線照射器35の分光分布、絶縁性接着剤層6の他の成分との相溶性、紫外線吸収能等に応じて適宜選択される。   As the light absorber, for example, a benzotriazole-based, triazine-based, benzophenone-based ultraviolet absorber can be suitably used, and the absorption peak wavelength of the photoradical polymerization initiator, the spectral distribution of the ultraviolet irradiator 35, the insulating property It is appropriately selected according to the compatibility with other components of the adhesive layer 6 and the ultraviolet absorbing ability.

その他、導電性接着剤層5及び絶縁性接着剤層6は、シランカップリング剤等の添加剤や無機フィラーを含有させてもよい。シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。シランカップリング剤を添加することにより、有機材料と無機材料との界面における接着性が向上する。   In addition, the conductive adhesive layer 5 and the insulating adhesive layer 6 may contain an additive such as a silane coupling agent or an inorganic filler. Examples of the silane coupling agent include an epoxy type, an amino type, a mercapto sulfide type, and a ureide type. By adding the silane coupling agent, the adhesiveness at the interface between the organic material and the inorganic material is improved.

導電性粒子4としては、一般の異方性導電フィルムにおいて使用されている公知の何れの導電性粒子を用いることができる。導電性粒子4としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、或いは、これらの粒子の表面に更に絶縁薄膜をコートしたもの等が挙げられる。樹脂粒子の表面に金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を挙げることができる。   As the conductive particles 4, any known conductive particles used in a general anisotropic conductive film can be used. Examples of the conductive particles 4 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, and gold, metal oxides, carbon, graphite, glass, ceramics, and the like. Examples thereof include particles obtained by coating the surface of particles of plastic or the like with a metal, or particles obtained by further coating the surface of these particles with an insulating thin film. When the surface of the resin particles is coated with a metal, examples of the resin particles include an epoxy resin, a phenol resin, an acrylic resin, an acrylonitrile / styrene (AS) resin, a benzoguanamine resin, a divinylbenzene resin, and a styrene resin. Can be mentioned.

なお、上述した異方性導電フィルム1は、導電性接着剤層5に光吸収剤を含有させていないが、導電性接着剤層5にも光吸収剤を含有させ、紫外光の照射により軟化を促進させてもよい。但し、導電性接着剤層5に含有させる光吸収剤の量(バインダー樹脂の質量に対する比率)は、絶縁性接着剤層6に含有させた光吸収剤の量(バインダー樹脂の質量に対する比率)よりも少なくし、相対的に絶縁性接着剤層6の流動性を高めることが好ましい。   In the anisotropic conductive film 1 described above, the conductive adhesive layer 5 does not contain a light absorber, but the conductive adhesive layer 5 also contains a light absorber and is softened by irradiation with ultraviolet light. May be promoted. However, the amount of the light absorbing agent contained in the conductive adhesive layer 5 (ratio to the mass of the binder resin) is based on the amount of the light absorbing agent contained in the insulating adhesive layer 6 (the ratio to the mass of the binder resin). It is preferable that the fluidity of the insulating adhesive layer 6 is relatively increased.

また、異方性導電フィルム1は、光吸収剤の光吸収ピーク波長が光重合開始剤の光吸収ピーク波長と異なることが好ましい。光吸収剤と光重合開始剤の各光吸収ピーク波長が異なることで、紫外線照射器35によって紫外光が照射されると、光吸収剤と光重合開始剤とが共に効率よく紫外光と反応し、発熱反応と硬化反応とを同時に進行させることができる。   Further, in the anisotropic conductive film 1, it is preferable that the light absorption peak wavelength of the light absorber is different from the light absorption peak wavelength of the photopolymerization initiator. Since the light absorption peak wavelengths of the light absorber and the photopolymerization initiator are different, when ultraviolet light is irradiated by the ultraviolet irradiator 35, both the light absorber and the photopolymerization initiator efficiently react with the ultraviolet light. The exothermic reaction and the curing reaction can proceed simultaneously.

[光重合開始剤と光吸収剤の光吸収ピーク波長]
本発明に係る光硬化系の異方性導電フィルム1は、光吸収剤の光吸収ピーク波長が光重合開始剤の光吸収ピーク波長よりも大きく、かつ、20nm以上離れていることが好ましい。このような異方性導電フィルム1は、紫外線照射器35から紫外光が照射されると、光重合開始剤は紫外光を吸収して酸やラジカルを発生させる。また、光吸収剤も同様に紫外光を吸収し、発熱する。
[Light absorption peak wavelength of photopolymerization initiator and light absorber]
In the photocurable anisotropic conductive film 1 according to the present invention, the light absorption peak wavelength of the light absorber is preferably larger than the light absorption peak wavelength of the photopolymerization initiator, and is preferably separated by 20 nm or more. When the anisotropic conductive film 1 is irradiated with ultraviolet light from the ultraviolet irradiator 35, the photopolymerization initiator absorbs the ultraviolet light and generates an acid or a radical. The light absorber also absorbs ultraviolet light and generates heat.

ここで、光重合開始剤の光吸収ピークと光吸収剤の光吸収ピークとが近接していると、紫外光の吸収が相互に阻害され、硬化反応や発熱が不十分となる。その結果、バインダー樹脂が溶融せずに、導電性粒子4の押し込み不足の状態でバインダー樹脂の硬化が進行し、また接続後の経時変化や環境変化によって導通抵抗が上昇するおそれがある。   Here, if the light absorption peak of the photopolymerization initiator and the light absorption peak of the light absorber are close to each other, the absorption of ultraviolet light is mutually inhibited, and the curing reaction and heat generation become insufficient. As a result, the binder resin is not melted, and the curing of the binder resin proceeds in a state where the conductive particles 4 are insufficiently pushed, and the conduction resistance may increase due to a change with time or an environmental change after connection.

また、光吸収剤及び光重合開始剤の各光吸収ピーク波長は、一般に図5に示すように、光吸収剤の光吸収ピーク波長が複数の極大値を呈し所定の幅を持つのに対し、光重合開始剤の光吸収ピーク波長は一つの極大値を呈するようなプロファイルを有することから、光吸収剤の光吸収ピーク波長が光重合開始剤の光吸収ピーク波長よりも小さいと、20nm以上離れていても、ピーク以外における吸収波長の重複範囲が大きくなり、紫外光の吸収が相互に阻害され、硬化反応や発熱が不十分となる。   In addition, the light absorption peak wavelengths of the light absorber and the photopolymerization initiator generally have a predetermined width, as shown in FIG. 5, whereas the light absorption peak wavelength of the light absorber exhibits a plurality of maximum values. Since the light absorption peak wavelength of the photopolymerization initiator has a profile exhibiting one maximum value, when the light absorption peak wavelength of the light absorption agent is smaller than the light absorption peak wavelength of the photopolymerization initiator, the distance is 20 nm or more. However, the overlapping range of absorption wavelengths other than the peak becomes large, absorption of ultraviolet light is mutually inhibited, and curing reaction and heat generation become insufficient.

一方、光吸収剤及び光重合開始剤として、光吸収剤の光吸収ピーク波長が光重合開始剤の光吸収ピーク波長よりも20nm以上大きいものを用いることにより、光重合開始剤と光吸収剤の各紫外光の吸収を阻害することなく、それぞれバインダー樹脂の硬化反応の進行と、発熱によるバインダー樹脂の溶融を行うことができる。   On the other hand, by using, as the light absorber and the photopolymerization initiator, those having a light absorption peak wavelength of the light absorber that is 20 nm or more larger than the light absorption peak wavelength of the photopolymerization initiator, The progress of the curing reaction of the binder resin and the melting of the binder resin due to heat generation can be performed without inhibiting absorption of each ultraviolet light.

また、本発明に用いる光重合開始剤の光吸収ピーク波長は、具体的には、290nm〜330nmであり、光吸収剤の光吸収ピーク波長は、320nm〜360nmであることが好ましい。   The light absorption peak wavelength of the photopolymerization initiator used in the present invention is specifically from 290 nm to 330 nm, and the light absorption peak wavelength of the light absorber is preferably from 320 nm to 360 nm.

例えば、紫外光の光吸収ピーク波長が310nmの光カチオン重合開始剤を用い、紫外光の光吸収ピーク波長が340〜360nmの紫外線吸収剤を用いることにより、光カチオン重合開始剤と紫外線吸収剤とが互いに紫外光の吸収を相互に阻害することなく、硬化反応や発熱を促進することができる。   For example, by using a cationic photopolymerization initiator having a light absorption peak wavelength of ultraviolet light of 310 nm and an ultraviolet light absorber having a light absorption peak wavelength of ultraviolet light of 340 to 360 nm, the cationic photopolymerization initiator and the ultraviolet light absorber can be used. Can promote the curing reaction and heat generation without mutually inhibiting the absorption of ultraviolet light.

[異方性導電フィルムの厚さ]
本発明に係る異方性導電フィルム1は、液晶駆動用IC18の電極端子19等の電子部品の接続端子の高さよりも厚い厚さを有することが好ましい。異方性導電フィルム1は、熱圧着ツール33によって押圧されるとともに紫外光が照射されると、溶融した樹脂が流動することから、液晶駆動用IC18の電極端子19の高さよりも厚い厚さを備えることで、液晶駆動用IC18と透明基板12との間に電極端子19の高さ分の十分な樹脂を充填させることができる。これにより、液晶表示パネル10は、液晶駆動用IC18と透明基板12との接続信頼性を確保することができる。
[Thickness of anisotropic conductive film]
The anisotropic conductive film 1 according to the present invention preferably has a thickness greater than the height of connection terminals of electronic components such as the electrode terminals 19 of the liquid crystal driving IC 18. When the anisotropic conductive film 1 is pressed by the thermocompression bonding tool 33 and is irradiated with ultraviolet light, the molten resin flows, so that the thickness of the anisotropic conductive film 1 is greater than the height of the electrode terminals 19 of the liquid crystal driving IC 18. With this arrangement, a sufficient amount of resin corresponding to the height of the electrode terminals 19 can be filled between the liquid crystal driving IC 18 and the transparent substrate 12. Thereby, the liquid crystal display panel 10 can ensure the connection reliability between the liquid crystal driving IC 18 and the transparent substrate 12.

上述したような2層構造の異方性導電フィルム1は、次のように形成することができる。先ず、導電性接着剤層5を構成する接着剤樹脂組成物を剥離フィルム2上に塗布、乾燥させ、絶縁性接着剤層6を構成する接着剤組成物を他の剥離フィルム上に塗布、乾燥させる。次いで、剥離フィルム2上に支持された導電性接着剤層5と他の剥離フィルム上に支持された絶縁性接着剤層6とを貼り合わせることにより、2層構造の異方性導電フィルム1を形成することができる。   The anisotropic conductive film 1 having a two-layer structure as described above can be formed as follows. First, the adhesive resin composition forming the conductive adhesive layer 5 is applied on the release film 2 and dried, and the adhesive composition forming the insulating adhesive layer 6 is applied on another release film and dried. Let it. Next, by bonding the conductive adhesive layer 5 supported on the release film 2 and the insulating adhesive layer 6 supported on another release film, the anisotropic conductive film 1 having a two-layer structure is formed. Can be formed.

なお、異方性導電フィルム1の形状は、特に限定されないが、例えば、図3に示すように、巻取リール8に巻回可能な剥離フィルム2付きの長尺テープ形状とすることにより、この接着テープ1Aを所定の長さだけカットして使用することができる。   The shape of the anisotropic conductive film 1 is not particularly limited. For example, as shown in FIG. 3, the anisotropic conductive film 1 is formed into a long tape shape with a release film 2 that can be wound around a take-up reel 8. The adhesive tape 1A can be cut and used for a predetermined length.

[接続装置]
次いで、上述した異方性導電フィルム1を介して液晶駆動用IC18が透明基板12に接続された接続体を製造する工程に用いる接続装置30について説明する。
[Connection device]
Next, a connection device 30 used in a process of manufacturing a connection body in which the liquid crystal driving IC 18 is connected to the transparent substrate 12 via the above-described anisotropic conductive film 1 will be described.

図1に示すように、この接続装置30は、ステージ31と、熱圧着ツール(圧着ツール)33と、紫外線照射器35とを有する。   As shown in FIG. 1, the connection device 30 includes a stage 31, a thermocompression tool (compression tool) 33, and an ultraviolet irradiator 35.

ステージ31は、例えば石英等の光透過性を有する材料により形成される。また、ステージ31は、その表面に上述した透明基板12の縁部12aが載置されるように配置されるとともに、その表面の上方に熱圧着ツール33が配置され、その裏面の下方には紫外線照射器35が配置されている。   The stage 31 is formed of a material having a light transmitting property, such as quartz. The stage 31 is arranged such that the edge 12a of the transparent substrate 12 is placed on the surface thereof, a thermocompression bonding tool 33 is arranged above the surface, and ultraviolet rays are arranged below the back surface. An irradiator 35 is provided.

熱圧着ツール33は、透明基板12の縁部12aに異方性導電フィルム1を介して搭載された液晶駆動用IC18を押圧するものであり、図示しないヘッド移動機構に保持されることにより、ステージ31に対して近接及び離間自在とされている。   The thermocompression bonding tool 33 presses the liquid crystal driving IC 18 mounted on the edge 12 a of the transparent substrate 12 via the anisotropic conductive film 1, and is held by a head moving mechanism (not shown). It is allowed to approach and separate from 31.

紫外線照射器35は、ステージ31の裏面側から透明電極17の端子部17a上に設けられた異方性導電フィルム1に対して紫外光を照射することにより、光吸収剤を発熱させるとともに、透明電極17の端子部17aと液晶駆動用IC18の電極端子19とで導電性粒子4を挟んで保持した状態で異方性導電フィルム1を硬化させ、液晶駆動用IC18を透明電極17の端子部17aに導通接続するものである。   The ultraviolet irradiator 35 irradiates the anisotropic conductive film 1 provided on the terminal portion 17a of the transparent electrode 17 with ultraviolet light from the back side of the stage 31 to generate heat in the light absorber and to increase the transparency. The anisotropic conductive film 1 is cured while the conductive particles 4 are held between the terminal 17a of the electrode 17 and the electrode terminal 19 of the liquid crystal driving IC 18, and the liquid crystal driving IC 18 is connected to the terminal 17a of the transparent electrode 17. Are electrically connected to each other.

紫外線照射器35は、光重合開始剤の吸収ピーク波長域に最大発光波長を持つ紫外線ランプを用いることができる。また、紫外線照射器35は、光重合開始剤の吸収ピーク波長域及び光吸収剤の吸収ピーク波長域にピークを有する分光分布を持つ水銀ランプや、光重合開始剤及び光吸収剤の両吸収ピーク波長を含む波長域にわたって紫外光を照射するメタルハライドランプ等を用いることができる。また、紫外線照射器35は、光重合開始剤の吸収ピーク波長域にピークを有するLEDランプと光吸収剤の吸収ピーク波長域にピークを有するLEDランプを併用してもよい。   As the ultraviolet irradiator 35, an ultraviolet lamp having a maximum emission wavelength in the absorption peak wavelength region of the photopolymerization initiator can be used. The ultraviolet irradiator 35 is a mercury lamp having a spectral distribution having peaks in the absorption peak wavelength range of the photopolymerization initiator and the absorption peak wavelength range of the light absorber, and both absorption peaks of the photopolymerization initiator and the light absorber. A metal halide lamp or the like that emits ultraviolet light over a wavelength range including the wavelength can be used. The UV irradiator 35 may use both an LED lamp having a peak in the absorption peak wavelength region of the photopolymerization initiator and an LED lamp having a peak in the absorption peak wavelength region of the light absorber.

[接続工程]
次いで、上述した接続装置30を用いた液晶駆動用IC18の接続工程について説明する。
先ず、透明基板12を仮貼り用のステージ(図示せず)上に載置し、異方性導電フィルム1を透明電極17の端子部17a上に仮圧着する。異方性導電フィルム1を仮圧着する方法は、透明基板12の透明電極17の端子部17a上に、絶縁性接着剤層6が透明電極17側となるように、異方性導電フィルム1を配置する。
[Connection process]
Next, a connection process of the liquid crystal driving IC 18 using the connection device 30 described above will be described.
First, the transparent substrate 12 is placed on a stage for temporary bonding (not shown), and the anisotropic conductive film 1 is temporarily pressure-bonded onto the terminal portion 17 a of the transparent electrode 17. The method of temporarily pressing the anisotropic conductive film 1 is such that the anisotropic conductive film 1 is placed on the terminal 17 a of the transparent electrode 17 of the transparent substrate 12 such that the insulating adhesive layer 6 is on the transparent electrode 17 side. Deploy.

そして、異方性導電フィルム1を透明電極17の端子部17a上に配置した後、剥離フィルム2側から異方性導電フィルム1を仮貼り用の熱圧着ヘッド(図示せず)で加熱及び加圧し、剥離フィルム2を導電性接着剤層5から剥離することによって、導電性接着剤層5及び絶縁性接着剤層6のみが透明電極17の端子部17a上に仮貼りされる。仮貼り用の熱圧着ヘッドによる仮圧着は、剥離フィルム2の上面を僅かな圧力(例えば0.1MPa〜2MPa程度)で透明電極17側に押圧しながら加熱(例えば70〜100℃程度)する。   After arranging the anisotropic conductive film 1 on the terminal portion 17a of the transparent electrode 17, the anisotropic conductive film 1 is heated and heated by a temporary pressure bonding head (not shown) from the release film 2 side. By pressing and peeling the release film 2 from the conductive adhesive layer 5, only the conductive adhesive layer 5 and the insulating adhesive layer 6 are temporarily attached on the terminal portion 17 a of the transparent electrode 17. In the temporary compression bonding by the thermal bonding head for temporary bonding, the upper surface of the release film 2 is heated (for example, about 70 to 100 ° C.) while being pressed against the transparent electrode 17 side with a slight pressure (for example, about 0.1 MPa to 2 MPa).

次に、図1に示すように、透明基板12の縁部12aをステージ31上に載置し、図4(a)に示すように、透明基板12上の透明電極17の端子部17aと液晶駆動用IC18の電極端子19とが導電性接着剤層5及び絶縁性接着剤層6を介して対向するように、液晶駆動用IC18を配置する。   Next, as shown in FIG. 1, the edge 12a of the transparent substrate 12 is placed on the stage 31, and as shown in FIG. The liquid crystal driving IC 18 is arranged so that the electrode terminals 19 of the driving IC 18 face each other via the conductive adhesive layer 5 and the insulating adhesive layer 6.

次に、図1及び図4(b)に示すように、ステージ31の裏面側から紫外線照射器35によって所定の紫外光UVを照射するとともに、液晶駆動用IC18の上面を熱圧着ツール33によって、所定の圧力で押圧する。
このとき、熱圧着ツール33は、室温(加熱なし)又は異方性導電フィルム1の導電性接着剤層5及び絶縁性接着剤層6が流動性を示す程度の低温(例えば70℃〜100℃程度)で押圧する。
紫外線照射器35によって照射された紫外光UVは、ステージ31、透明基板12を透過して異方性導電フィルム1の導電性接着剤層5及び絶縁性接着剤層6に入射し、光重合開始剤及び光吸収剤に吸収される。
ここで、光重合開始剤は、紫外光UVを吸収することにより、酸又はラジカルを発生し、これにより導電性接着剤層5及び絶縁性接着剤層6の硬化反応が進行する。また、光吸収剤は、紫外光UVを吸収することにより所定の温度で発熱し(例えば80〜90℃)、絶縁性接着剤層6を溶融させる。
Next, as shown in FIG. 1 and FIG. 4B, predetermined ultraviolet light UV is irradiated from the back surface side of the stage 31 by the ultraviolet irradiation device 35, and the upper surface of the liquid crystal driving IC 18 is pressed by the thermocompression tool 33. Press with a predetermined pressure.
At this time, the thermocompression bonding tool 33 is at room temperature (without heating) or at a low temperature (for example, 70 ° C. to 100 ° C.) at which the conductive adhesive layer 5 and the insulating adhesive layer 6 of the anisotropic conductive film 1 show fluidity. About).
The ultraviolet light UV irradiated by the ultraviolet irradiator 35 passes through the stage 31 and the transparent substrate 12 and enters the conductive adhesive layer 5 and the insulating adhesive layer 6 of the anisotropic conductive film 1 to start photopolymerization. Is absorbed by the agent and the light absorber.
Here, the photopolymerization initiator generates an acid or a radical by absorbing ultraviolet light UV, whereby the curing reaction of the conductive adhesive layer 5 and the insulating adhesive layer 6 proceeds. The light absorber generates heat at a predetermined temperature (for example, 80 to 90 ° C.) by absorbing ultraviolet light UV, and melts the insulating adhesive layer 6.

すなわち、本接続工程では、光吸収剤の発熱により異方性導電フィルム1の絶縁性接着剤層6のバインダー樹脂を溶融させ、この状態で、熱圧着ツール33によって異方性導電フィルム1を押圧することにより、透明電極17の端子部17aと液晶駆動用IC18の電極端子19との間から絶縁性接着剤層6の溶融した樹脂を流出させることができ、これにより電極端子19と透明電極17の端子部17aとの間で導電性粒子4を端子部17a側に十分に押し込むことができる。   That is, in this connection step, the binder resin of the insulating adhesive layer 6 of the anisotropic conductive film 1 is melted by the heat generated by the light absorber, and in this state, the anisotropic conductive film 1 is pressed by the thermocompression bonding tool 33. Thereby, the molten resin of the insulating adhesive layer 6 can flow out from between the terminal portion 17a of the transparent electrode 17 and the electrode terminal 19 of the liquid crystal driving IC 18, whereby the electrode terminal 19 and the transparent electrode 17 can be discharged. The conductive particles 4 can be sufficiently pushed into the terminal portion 17a side between the terminal portion 17a and the terminal portion 17a.

また、本接続工程では、光重合開始剤の反応により異方性導電フィルム1の導電性接着剤層5の硬化反応を進行させながら、液晶駆動用IC18の電極端子19を透明電極17の端子部17aに向って押し込む。このとき、導電性接着剤層5のバインダー樹脂の流動性が低いことから、導電性粒子4が液晶駆動用IC18の電極端子19の接続部分である例えば下部(頂部)から流出されず、電極端子19と透明電極17の端子部17aとの間で多くの導電性粒子4を捕捉することができる。   In this connection step, the electrode terminal 19 of the liquid crystal driving IC 18 is connected to the terminal of the transparent electrode 17 while the curing reaction of the conductive adhesive layer 5 of the anisotropic conductive film 1 is advanced by the reaction of the photopolymerization initiator. Push toward 17a. At this time, since the fluidity of the binder resin of the conductive adhesive layer 5 is low, the conductive particles 4 do not flow out of, for example, a lower portion (top), which is a connection portion of the electrode terminal 19 of the liquid crystal driving IC 18, and the electrode terminal Many conductive particles 4 can be captured between 19 and the terminal portion 17 a of the transparent electrode 17.

そして、透明電極17の端子部17aと液晶駆動用IC18の電極端子19との間に導電性粒子4が挟まれて保持された状態で導電性接着剤層5及び絶縁性接着剤層6のバインダー樹脂が硬化される。したがって、本接続工程では、室温又は導電性接着剤層5及び絶縁性接着剤層6のバインダー樹脂が流動性を示す程度の低温で液晶駆動用IC18を押圧することにより、反りの影響や液晶駆動用IC18等の電子部品に対する熱衝撃の影響を抑えながら、液晶駆動用IC18との電気的導通性及び機械的接続性が良好な接続体を製造することができる。   The binder of the conductive adhesive layer 5 and the insulating adhesive layer 6 is held in a state where the conductive particles 4 are sandwiched and held between the terminal portion 17 a of the transparent electrode 17 and the electrode terminal 19 of the liquid crystal driving IC 18. The resin is cured. Therefore, in this connection step, the liquid crystal driving IC 18 is pressed at room temperature or at a low temperature at which the binder resin of the conductive adhesive layer 5 and the insulating adhesive layer 6 exhibits fluidity, thereby causing the influence of warpage and liquid crystal driving. It is possible to manufacture a connector having good electrical conductivity and mechanical connectivity with the liquid crystal drive IC 18 while suppressing the influence of thermal shock on electronic components such as the IC 18 for use.

このとき、上述したように、異方性導電フィルム1は、光重合開始剤及び光吸収剤として、光吸収剤の光吸収ピーク波長が光重合開始剤の光吸収ピーク波長よりも20nm以上大きいものを用いることが好ましく、これにより、光重合開始剤と光吸収剤の各紫外光の吸収を互いに阻害することなく、それぞれバインダー樹脂の硬化反応の進行と、発熱によるバインダー樹脂の溶融を行うことかできる。   At this time, as described above, the anisotropic conductive film 1 has, as a photopolymerization initiator and a light absorber, a light absorption peak wavelength of the light absorption agent that is 20 nm or more larger than the light absorption peak wavelength of the photopolymerization initiator. It is preferable to use, thereby, the progress of the curing reaction of the binder resin and the melting of the binder resin due to heat generation, respectively, without obstructing the absorption of each ultraviolet light of the photopolymerization initiator and the light absorber. it can.

また、光吸収剤の発熱は、透明基板12と液晶駆動用IC18に等しく伝達するため、熱圧着ツール33によって加熱溶融させる場合と異なり、透明基板12と液晶駆動用IC18との間に熱勾配が発生することもなく、加熱温度差に起因する反りの発生、反りに伴う表示ムラや電子部品の接続不良等の問題が大幅に改善される。   Further, since the heat generated by the light absorber is transmitted equally to the transparent substrate 12 and the liquid crystal driving IC 18, a heat gradient is generated between the transparent substrate 12 and the liquid crystal driving IC 18, unlike the case where the heat absorption is performed by the thermocompression bonding tool 33. Without such occurrence, problems such as generation of warpage due to a difference in heating temperature, display unevenness due to the warpage, and poor connection of electronic components are greatly improved.

なお、紫外線照射器35による照射時間や、照度、総照射量は、バインダー樹脂の組成や、熱圧着ツール33による圧力及び時間を考慮し、バインダー樹脂の硬化反応の進行と熱圧着ツール33による押し込みによる接続信頼性、接着強度の向上を図ることができる条件を適宜設定する。   The irradiation time, the illuminance, and the total irradiation amount by the ultraviolet irradiator 35 are determined in consideration of the composition of the binder resin, the pressure and the time by the thermocompression bonding tool 33, and the progress of the curing reaction of the binder resin and the pressing by the thermocompression tool 33. Conditions for improving the connection reliability and the adhesive strength by the method are set as appropriate.

その後、接続装置30の熱圧着ツール33をステージ31の上方へ移動させることにより、液晶駆動用IC18の本圧着工程が終了する。   Thereafter, the thermocompression bonding tool 33 of the connection device 30 is moved above the stage 31 to complete the main pressure bonding step of the liquid crystal driving IC 18.

液晶駆動用IC18を透明基板12の透明電極17の端子部17aに接続した後、上記液晶駆動用IC18の接続工程と同様の工程により、フレキシブル基板21を透明基板12の透明電極17上に実装するいわゆるFOG(film on glass)方式の接続工程を行う。このときも、上記同様に本発明に係る異方性導電フィルム1を用いることにより、紫外線照射器35からの紫外光UVを吸収して、光吸収剤の発熱によってバインダー樹脂の溶融と、酸又はラジカルの発生による硬化反応とを進行させることができる。   After connecting the liquid crystal driving IC 18 to the terminal portion 17a of the transparent electrode 17 of the transparent substrate 12, the flexible substrate 21 is mounted on the transparent electrode 17 of the transparent substrate 12 by the same process as the connection process of the liquid crystal driving IC 18. A so-called FOG (film on glass) connection process is performed. Also at this time, similarly to the above, by using the anisotropic conductive film 1 according to the present invention, the ultraviolet light UV from the ultraviolet irradiator 35 is absorbed, and the heat generated by the light absorber melts the binder resin and causes the acid or The curing reaction due to the generation of radicals can proceed.

これにより、異方性導電フィルム1を介して透明基板12と液晶駆動用IC18やフレキシブル基板21とが接続された接続体を製造することができる。なお、これらCOG方式とFOG方式による接続工程は、同時に行ってもよい。   Thereby, it is possible to manufacture a connection body in which the transparent substrate 12 is connected to the liquid crystal driving IC 18 and the flexible substrate 21 via the anisotropic conductive film 1. Note that the connection steps by the COG method and the FOG method may be performed simultaneously.

以上、液晶駆動用ICを直接液晶表示パネルのガラス基板上に実装するCOG方式、及びフレキシブル基板を直接液晶表示パネルの基板上に実装するFOG方式を例にとって説明したが、本発明は、光硬化型の接着剤を用いた接続体の製造工程であれば、透明基板上に電子部品を実装する以外の各種接続にも適用することができる。   The COG method in which the liquid crystal driving IC is directly mounted on the glass substrate of the liquid crystal display panel and the FOG method in which the flexible substrate is directly mounted on the liquid crystal display panel substrate have been described above as examples. If it is a manufacturing process of a connector using a mold adhesive, it can be applied to various connections other than mounting electronic components on a transparent substrate.

[その他]
また、本発明は、上述した紫外線硬化型の導電性接着剤を用いる他、例えば赤外光等の他の波長の光線によって硬化する光硬化型の導電性接着剤を用いることもできる。
[Others]
Further, in the present invention, in addition to using the above-described ultraviolet-curable conductive adhesive, a light-curable conductive adhesive that is cured by a light beam having another wavelength such as infrared light can also be used.

なお、本接続工程では、ステージ31にヒータ等の加熱機構を設け光吸収剤による発熱温度以下の温度で透明基板12を加熱してもよい。これにより、光吸収剤の発熱と相まって導電性接着剤層5及び絶縁性接着剤層6のバインダー樹脂を溶融させ、透明電極17の端子部17aと液晶駆動用IC18の電極端子19とで確実に導電性粒子4を挟んで保持し、接続体の接続性を向上させることができる。   In this connection step, a heating mechanism such as a heater may be provided on the stage 31 to heat the transparent substrate 12 at a temperature lower than the heat generation temperature of the light absorber. Thereby, the binder resin of the conductive adhesive layer 5 and the insulating adhesive layer 6 is melted in combination with the heat generation of the light absorber, and the terminal portion 17a of the transparent electrode 17 and the electrode terminal 19 of the liquid crystal driving IC 18 are surely connected. By holding the conductive particles 4 therebetween, the connectivity of the connection body can be improved.

次いで、本発明の実施例について説明する。本実施例では、異方性導電フィルムの層構造及び各層の配合条件を異ならせて製造した透明基板とICチップとの接続体サンプルについて、導電性粒子の平均捕捉数(pcs)及び導通抵抗値(Ω)によってICチップと透明基板との接続状態を評価した。   Next, examples of the present invention will be described. In this example, the average number of trapped conductive particles (pcs) and the conductive resistance value of a sample of a connection body between a transparent substrate and an IC chip manufactured by changing the layer structure of the anisotropic conductive film and the compounding conditions of each layer were different. The connection state between the IC chip and the transparent substrate was evaluated by (Ω).

接続に用いる接着剤として、光カチオン重合開始剤とカチオン重合性化合物を含有するバインダー樹脂層からなる、幅4.0mm×長さ40.0mmのフィルム状に成形した異方性導電フィルムを用意した。   As an adhesive used for connection, an anisotropic conductive film formed into a film having a width of 4.0 mm and a length of 40.0 mm, comprising a binder resin layer containing a cationic photopolymerization initiator and a cationically polymerizable compound, was prepared. .

導電性粒子捕捉数確認用の評価用素子として、高さ15μmのICバンプを形成した厚さ0.5mmの評価用IC(A)を用意した。また、導通抵抗測定用の評価素子として、外形;1.8mm×34mm、厚さ0.5mmで、導通測定用配線及び高さ10μmのICバンプを形成した評価用IC(B)を用意した。   As an evaluation element for checking the number of captured conductive particles, an evaluation IC (A) having a thickness of 0.5 mm and having an IC bump having a height of 15 μm was prepared. In addition, as an evaluation element for measuring the conduction resistance, an evaluation IC (B) having an outer shape of 1.8 mm × 34 mm, a thickness of 0.5 mm, and a wiring for measurement of conduction and an IC bump having a height of 10 μm was prepared.

評価用IC(A)が接続される評価基材(A)として、厚さ0.5mmの素ガラスを用意した。また、評価用IC(B)が接続される評価基材(b)として、導通測定用配線を形成した厚さ0.5mmの測定用ITOコーティングラスを用いた。   As the evaluation substrate (A) to which the evaluation IC (A) is connected, a 0.5 mm-thick elementary glass was prepared. In addition, as the evaluation base material (b) to which the evaluation IC (B) was connected, a measurement ITO coating lath having a thickness of 0.5 mm on which continuity measurement wiring was formed was used.

この評価基材(A)(B)に異方性導電フィルムを介して評価用IC(A)(B)を配置し、熱圧着ツール(10.0mm×40.0mm)により加圧するとともに、紫外線照射によって接続することにより、接続体のサンプルを形成した。熱圧着ツールは加圧面に厚さ0.05mmのフッ素樹脂加工が施されている。熱圧着ツールの押圧条件は、室温下で、70MPa、5秒である。また、紫外線照射器(SP−9:ウシオ電機株式会社製)による紫外光の照射は熱圧着ツールの押圧と同時に開始し、照射時間は5秒である。紫外線照射器の照度は、365nmで300mW/cm2、紫外光の照射領域の大きさは、幅約4.0mm×長さ約44.0mmとした。 The evaluation ICs (A) and (B) are arranged on the evaluation base materials (A) and (B) via an anisotropic conductive film, and are pressurized by a thermocompression bonding tool (10.0 mm × 40.0 mm) and irradiated with ultraviolet rays. By connecting by irradiation, a sample of the connected body was formed. The thermocompression bonding tool has a pressing surface subjected to a fluorine resin processing with a thickness of 0.05 mm. The pressing conditions of the thermocompression bonding tool are 70 MPa and 5 seconds at room temperature. Irradiation of ultraviolet light by an ultraviolet irradiator (SP-9: manufactured by Ushio Inc.) is started simultaneously with the pressing of the thermocompression bonding tool, and the irradiation time is 5 seconds. The illuminance of the ultraviolet irradiator was 300 mW / cm 2 at 365 nm, and the size of the ultraviolet light irradiation area was about 4.0 mm in width × about 44.0 mm in length.

[実施例1]
実施例1では、10μm厚の導電性接着剤層(ACF層)及び10μm厚の絶縁性接着剤層(NCF層)が積層された20μm厚のバインダー樹脂層を備えた異方性導電フィルムを用いた。
実施例1に係る導電性接着剤層は、以下の配合の成分を混合させた樹脂溶液を作成し、この樹脂溶液をPETフィルム上に塗布、乾燥させることにより形成した。
[Example 1]
In Example 1, an anisotropic conductive film having a 20 μm thick binder resin layer in which a 10 μm thick conductive adhesive layer (ACF layer) and a 10 μm thick insulating adhesive layer (NCF layer) were laminated was used. Was.
The conductive adhesive layer according to Example 1 was formed by preparing a resin solution in which the following components were mixed, applying the resin solution on a PET film, and drying.

フェノキシ樹脂(YP−70:新日鉄住金化学株式会社製);20質量部
液状エポキシ樹脂(EP828:三菱化学株式会社製);30質量部
固形エポキシ樹脂(YD014:新日鉄住金化学株式会社製);20質量部
導電性粒子(AUL704:積水化学工業株式会社製);30質量部
光カチオン重合開始剤(SP−170:ADEKA株式会社製);5質量部
Phenoxy resin (YP-70: Nippon Steel & Sumitomo Chemical Co., Ltd.); 20 parts by mass liquid epoxy resin (EP828: Mitsubishi Chemical Co., Ltd.); 30 parts by mass solid epoxy resin (YD014: Nippon Steel & Sumitomo Chemical Co., Ltd.); 20 mass Part conductive particles (AUL704: manufactured by Sekisui Chemical Co., Ltd.); 30 parts by mass photocationic polymerization initiator (SP-170: manufactured by ADEKA Corporation); 5 parts by mass

実施例1における絶縁性接着剤層は、以下の配合の成分を混合させた樹脂溶液を作成し、この樹脂溶液をPETフィルム上に塗布、乾燥させることにより形成した。   The insulating adhesive layer in Example 1 was formed by preparing a resin solution in which the following components were mixed, coating the resin solution on a PET film, and drying.

フェノキシ樹脂(YP−70:新日鉄住金化学株式会社製);20質量部
液状エポキシ樹脂(EP828:三菱化学株式会社製);30質量部
固形エポキシ樹脂(YD014:新日鉄住金化学株式会社製);20質量部
光カチオン重合開始剤(SP−170:ADEKA株式会社製);5質量部
光吸収剤(LA−31:ADEKA株式会社製);5質量部
Phenoxy resin (YP-70: Nippon Steel & Sumitomo Chemical Co., Ltd.); 20 parts by mass liquid epoxy resin (EP828: Mitsubishi Chemical Co., Ltd.); 30 parts by mass solid epoxy resin (YD014: Nippon Steel & Sumitomo Chemical Co., Ltd.); 20 mass Part photo cationic polymerization initiator (SP-170: manufactured by ADEKA Corporation); 5 parts by mass Light absorber (LA-31: manufactured by ADEKA Corporation); 5 parts by mass

そして、これら導電性接着剤層及び絶縁性接着剤層をラミネートすることにより、幅4.0mm×長さ40.0mmのフィルム状に成形された実施例1に係る異方性導電フィルムを得た。   Then, by laminating the conductive adhesive layer and the insulating adhesive layer, an anisotropic conductive film according to Example 1 formed into a film having a width of 4.0 mm and a length of 40.0 mm was obtained. .

実施例1における光カチオン重合開始剤(SP−170)の吸収ピーク波長は約310nm、光吸収剤(LA−31)の吸収ピーク波長は約340nmで、その差は30nmである。   The absorption peak wavelength of the photocationic polymerization initiator (SP-170) in Example 1 is about 310 nm, and the absorption peak wavelength of the light absorber (LA-31) is about 340 nm, and the difference is 30 nm.

[実施例2]
実施例2では、10μm厚の導電性接着剤層及び5μm厚の絶縁性接着剤層が積層された15μm厚のバインダー樹脂層を備えた異方性導電フィルムを用いた。実施例2における導電性接着剤層及び絶縁性接着剤層の配合は実施例1と同じである。
[Example 2]
In Example 2, an anisotropic conductive film including a 15 μm thick binder resin layer in which a 10 μm thick conductive adhesive layer and a 5 μm thick insulating adhesive layer were laminated was used. The composition of the conductive adhesive layer and the insulating adhesive layer in the second embodiment is the same as in the first embodiment.

[実施例3]
実施例3では、10μm厚の導電性接着剤層及び5μm厚の絶縁性接着剤層が積層された15μm厚のバインダー樹脂層を備えた異方性導電フィルムを用いた。実施例3では、導電性接着剤層に光吸収剤(LA−31:ADEKA株式会社製)を1質量部配合した。その他は、導電性接着剤層及び絶縁性接着剤層とも実施例2と同じ層厚、同じ配合とした。
[Example 3]
In Example 3, an anisotropic conductive film provided with a 15 μm thick binder resin layer in which a 10 μm thick conductive adhesive layer and a 5 μm thick insulating adhesive layer were laminated was used. In Example 3, 1 part by mass of a light absorber (LA-31: manufactured by ADEKA Corporation) was mixed into the conductive adhesive layer. Otherwise, the conductive adhesive layer and the insulating adhesive layer had the same layer thickness and the same composition as in Example 2.

[比較例1]
比較例1では、20μm厚の導電性接着剤層からなる20μm厚のバインダー樹脂層を備えた異方性導電フィルムを用いた。導電性接着剤層の配合は実施例1の導電性接着剤層と同じである。
[Comparative Example 1]
In Comparative Example 1, an anisotropic conductive film provided with a 20 μm thick binder resin layer composed of a 20 μm thick conductive adhesive layer was used. The composition of the conductive adhesive layer is the same as that of the conductive adhesive layer of Example 1.

[比較例2]
比較例2では、20μm厚の導電性接着剤層からなる20μm厚のバインダー樹脂層を備えた異方性導電フィルムを用いた。比較例2では、導電性接着剤層に光吸収剤(LA−31:ADEKA株式会社製)を5質量部配合した。その他の配合は、実施例1の導電性接着剤層と同じである。
[Comparative Example 2]
In Comparative Example 2, an anisotropic conductive film provided with a 20 μm thick binder resin layer composed of a 20 μm thick conductive adhesive layer was used. In Comparative Example 2, 5 parts by mass of a light absorber (LA-31: manufactured by ADEKA Corporation) was mixed in the conductive adhesive layer. The other composition is the same as that of the conductive adhesive layer of Example 1.

[比較例3]
比較例3では、10μm厚の導電性接着剤層及び10μm厚の絶縁性接着剤層が積層された20μm厚のバインダー樹脂層を備えた異方性導電フィルムを用いた。導電性接着剤層の配合は実施例1の導電性接着剤層と同じである。また、絶縁性接着剤層には、光カチオン重合開始剤を含有させていない。絶縁性接着剤層のその他の配合は、実施例1の絶縁性接着剤層と同じである。
[Comparative Example 3]
In Comparative Example 3, an anisotropic conductive film provided with a 20 μm-thick binder resin layer in which a 10 μm-thick conductive adhesive layer and a 10 μm-thick insulating adhesive layer were laminated. The composition of the conductive adhesive layer is the same as that of the conductive adhesive layer of Example 1. The insulating adhesive layer does not contain a cationic photopolymerization initiator. Other composition of the insulating adhesive layer is the same as that of the insulating adhesive layer of Example 1.

[比較例4]
比較例4では、10μm厚の導電性接着剤層及び10μm厚の絶縁性接着剤層が積層された20μm厚のバインダー樹脂層を備えた異方性導電フィルムを用いた。導電性接着剤層は、光カチオン重合開始剤を含有させず、光吸収剤(LA−31:ADEKA株式会社製)を5質量部配合した。導電性接着剤層のその他の配合は、実施例1の導電性接着剤層と同じである。また、絶縁性接着剤層には光吸収剤を含有させていない。絶縁性接着剤層のその他の配合は、実施例1の絶縁性接着剤層と同じである。
[Comparative Example 4]
In Comparative Example 4, an anisotropic conductive film including a 20 μm thick binder resin layer in which a 10 μm thick conductive adhesive layer and a 10 μm thick insulating adhesive layer were laminated was used. The conductive adhesive layer did not contain a photocationic polymerization initiator, and 5 parts by mass of a light absorber (LA-31: manufactured by ADEKA Corporation) was blended. Other formulations of the conductive adhesive layer are the same as those of the conductive adhesive layer of Example 1. The insulating adhesive layer does not contain a light absorbing agent. Other composition of the insulating adhesive layer is the same as that of the insulating adhesive layer of Example 1.

[比較例5]
比較例5では、10μm厚の導電性接着剤層及び10μm厚の絶縁性接着剤層が積層された20μm厚のバインダー樹脂層を備えた異方性導電フィルムを用いた。導電性接着剤層は、光吸収剤(LA−31:ADEKA株式会社製)を5質量部配合した。導電性接着剤層のその他の配合は、実施例1の導電性接着剤層と同じである。また、絶縁性接着剤層には光吸収剤を含有させていない。絶縁性接着剤層のその他の配合は、実施例1の絶縁性接着剤層と同じである。
[Comparative Example 5]
In Comparative Example 5, an anisotropic conductive film including a 20 μm thick binder resin layer in which a 10 μm thick conductive adhesive layer and a 10 μm thick insulating adhesive layer were laminated was used. The conductive adhesive layer was blended with 5 parts by mass of a light absorber (LA-31: manufactured by ADEKA Corporation). Other formulations of the conductive adhesive layer are the same as those of the conductive adhesive layer of Example 1. The insulating adhesive layer does not contain a light absorbing agent. Other composition of the insulating adhesive layer is the same as that of the insulating adhesive layer of Example 1.

[比較例6]
比較例6では、10μm厚の導電性接着剤層及び1μm厚の絶縁性接着剤層が積層された11μm厚のバインダー樹脂層を備えた異方性導電フィルムを用いた。比較例6における導電性接着剤層及び絶縁性接着剤層の配合は実施例1と同じである。
[Comparative Example 6]
In Comparative Example 6, an anisotropic conductive film provided with a 11 μm thick binder resin layer on which a 10 μm thick conductive adhesive layer and a 1 μm thick insulating adhesive layer were laminated was used. The composition of the conductive adhesive layer and the insulating adhesive layer in Comparative Example 6 is the same as in Example 1.

[平均粒子捕捉数の測定]
上記各実施例及び各比較例に係る接続体サンプルのICバンプ上における潰れた導電性粒子の補足数を、顕微鏡を使って確認した。そして、バンプ数30(N=30)の平均粒子捕捉数を算出した。
[Measurement of average number of captured particles]
The supplementary number of the crushed conductive particles on the IC bumps of the connection body samples according to the above Examples and Comparative Examples was confirmed using a microscope. Then, the average number of trapped particles of the number of bumps 30 (N = 30) was calculated.

[導通抵抗の測定]
上記各実施例及び各比較例に係る接続体サンプルについて、デジタルマルチメータを使用して、接続初期及び信頼性試験後における導通抵抗(Ω)を測定した。導通抵抗値の測定は、図6に示すように、評価用IC(B)のバンプ42と接続された評価基材(B)の導通測定用配線43にデジタルマルチメータを接続し、いわゆる4端子法にて導通抵抗値を測定した(設定電圧:50V)。また、信頼性試験の条件は、85℃85%RH500hrとした。
[Measurement of conduction resistance]
With respect to the connection sample according to each of the above Examples and Comparative Examples, the conduction resistance (Ω) was measured at the initial connection and after the reliability test using a digital multimeter. As shown in FIG. 6, the measurement of the continuity resistance is performed by connecting a digital multimeter to the continuity measurement wiring 43 of the evaluation base material (B) connected to the bumps 42 of the evaluation IC (B), so-called four terminals. The conduction resistance was measured by a method (set voltage: 50 V). The conditions for the reliability test were 85 ° C. and 85% RH 500 hr.

Figure 0006639874
Figure 0006639874

[平均粒子捕捉数]
表1に示すように、実施例1〜3、比較例3,6では、平均粒子補足数が40個を超え、良好な結果となった。これは、絶縁性接着剤層に光吸収剤を含有させるとともに、導電性接着剤層には光吸収剤を配合せず、あるいは絶縁性接着剤層に含有させた光吸収剤の量よりも少ない量の光吸収剤を配合したことから、評価用ICの押圧と共に紫外光を照射したことにより、絶縁性接着剤層の光吸収剤が反応し、発熱したことで絶縁性接着剤層のバインダー樹脂が溶融したこと、及び導電性接着剤層の光重合開始剤が反応し、そのバインダー樹脂が硬化しながら押圧されたことによる。
すなわち、実施例1〜3、比較例3,6では、ICバンプを溶融した絶縁性接着剤層の厚さ(5μm、10μm又は1μm)分、押し込むことができ、かつ硬化反応が進行する導電性接着剤層では樹脂の流動が抑えられ、導電性粒子がICバンプの接続部分である下部から流出することが抑制される。これにより、実施例1〜3、比較例3,6に係る接続体サンプルでは、多くの導電性粒子がICバンプによって捕捉することができた。
[Average number of captured particles]
As shown in Table 1, in Examples 1 to 3 and Comparative Examples 3 and 6, the average number of supplemented particles exceeded 40, and good results were obtained. This is because the light-absorbing agent is contained in the insulating adhesive layer, and the light-absorbing agent is not contained in the conductive adhesive layer or is smaller than the light absorbing agent contained in the insulating adhesive layer. Since the amount of light absorber was mixed, the light absorber of the insulating adhesive layer was reacted by pressing the IC for evaluation and irradiating with ultraviolet light, and the binder resin of the insulating adhesive layer was generated by generating heat. Is melted, and the photopolymerization initiator of the conductive adhesive layer reacts and the binder resin is pressed while being cured.
That is, in Examples 1 to 3 and Comparative Examples 3 and 6, the thickness of the insulating adhesive layer (5 μm, 10 μm, or 1 μm) in which the IC bump was melted can be pushed in, and the conductivity at which the curing reaction proceeds In the adhesive layer, the flow of the resin is suppressed, and the conductive particles are prevented from flowing out from the lower portion, which is the connection portion of the IC bump. Thereby, in the connection body samples according to Examples 1 to 3 and Comparative Examples 3 and 6, many conductive particles could be captured by the IC bumps.

なお、樹脂溶融した絶縁性接着剤層のバインダー樹脂が流動する際に、流動する絶縁性接着剤層の樹脂の影響によって導電性接着剤層のバインダー樹脂も流動し導電性粒子が流出するおそれ、すなわち、導電性粒子がICバンプの側方に移動してICバンプに捕捉されないおそれがある。しかし、実施例2,3及び比較例6では、絶縁性接着剤層の厚さが導電性接着剤層の厚さよりも薄く形成されているため、絶縁性接着剤層の樹脂の流動に伴う導電性粒子の流出も起きにくく、導電性粒子の平均捕捉数の低下を防止することができる。   In addition, when the binder resin of the insulating adhesive layer in which the resin is melted flows, the binder resin of the conductive adhesive layer also flows due to the effect of the flowing resin of the insulating adhesive layer, and the conductive particles may flow out. That is, the conductive particles may move to the side of the IC bump and may not be captured by the IC bump. However, in Examples 2 and 3 and Comparative Example 6, since the thickness of the insulating adhesive layer was formed smaller than the thickness of the conductive adhesive layer, the conductivity of the insulating adhesive layer caused by the flow of the resin was reduced. Outflow of the conductive particles hardly occurs, and it is possible to prevent a decrease in the average trapped number of the conductive particles.

一方、比較例1では、ICバンプが厚さ20μmの導電性接着剤層中を押し進む必要があるため、厚さ10μmの導電性接着剤層中を押し進む実施例1〜3に比して、バインダー樹脂の移動が多くなり、導電性粒子がICバンプの下部から流出する。このため、実施例1〜3に比してICバンプによる粒子捕捉数が30個程度まで下がった。   On the other hand, in Comparative Example 1, since the IC bumps need to push through the conductive adhesive layer having a thickness of 20 μm, compared to Examples 1 to 3 which push through the conductive adhesive layer having a thickness of 10 μm. Then, the movement of the binder resin increases, and the conductive particles flow out from the lower part of the IC bump. For this reason, the number of particles captured by the IC bumps was reduced to about 30 as compared with Examples 1 to 3.

また、比較例2では、比較例1と同様の現象に加え、導電性接着剤層に光吸収剤を配合したことから、紫外光の照射によって光吸収剤が発熱し、導電性接着剤層のバインダー樹脂の溶融が促進された。このため、比較例1よりもさらに導電性接着剤層のバインダー樹脂が大きく流動し、ICバンプの下部からの導電性粒子の流出が更に進み、ICバンプによる粒子捕捉数が15個程度まで下がった。   In Comparative Example 2, in addition to the same phenomenon as in Comparative Example 1, the light absorbing agent was added to the conductive adhesive layer. Melting of the binder resin was promoted. For this reason, the binder resin of the conductive adhesive layer flows more greatly than in Comparative Example 1, and the outflow of the conductive particles from the lower part of the IC bump further proceeds, and the number of particles captured by the IC bump drops to about 15 particles. .

また、比較例4では、導電性接着剤層に光吸収剤を配合したことによる発熱に加え、光重合開始剤を配合していないため紫外光の照射によっても硬化反応せず、導電性接着剤層のバインダー樹脂の溶融に伴う樹脂の流動が大きくなった。このため、ICバンプの下部からの導電性粒子の流出が進み、ICバンプによる粒子捕捉数が20個未満まで下がった。   In Comparative Example 4, in addition to the heat generated by blending the light-absorbing agent in the conductive adhesive layer, no curing reaction was caused by irradiation with ultraviolet light because no photopolymerization initiator was blended. The flow of the resin accompanying the melting of the binder resin in the layer increased. For this reason, the outflow of the conductive particles from the lower part of the IC bump progressed, and the number of particles captured by the IC bump dropped to less than 20.

比較例5でも、導電性接着剤層に光吸収剤を配合したことから、紫外光の照射によって光吸収剤が発熱し、導電性接着剤層のバインダー樹脂の溶融が促進された。このため、ICバンプの押し込みにより導電性接着剤層のバインダー樹脂が大きく流動し、これに伴いICバンプの下部からの導電性粒子の流出が進み、ICバンプによる粒子捕捉数が20個程度まで下がった。   Also in Comparative Example 5, since the light absorbing agent was added to the conductive adhesive layer, the light absorbing agent generated heat by irradiation with ultraviolet light, and the melting of the binder resin of the conductive adhesive layer was promoted. For this reason, the binder resin of the conductive adhesive layer flows greatly due to the pushing of the IC bumps, and the outflow of the conductive particles from the lower part of the IC bumps proceeds, and the number of particles captured by the IC bumps drops to about 20. Was.

[導通抵抗値]
表1に示すように、実施例1〜3に係る接続体サンプルでは、初期及び信頼性試験後の導通抵抗値ともに良好な結果となった(初期:1Ω程度、信頼性試験後:10Ω未満)。これは、ICバンプによって導電性粒子が多く補足できることに加え、ICバンプの高さ(10μm)分の樹脂が評価用ICと評価基板との間に充填されて硬化されたことから、良好な接続信頼性が得られたことによる。
[Conduction resistance value]
As shown in Table 1, in the connection body samples according to Examples 1 to 3, good results were obtained both in the initial stage and in the conduction resistance value after the reliability test (initial: about 1Ω, after the reliability test: less than 10Ω). . This is because a large amount of conductive particles can be captured by the IC bump, and a resin equivalent to the height of the IC bump (10 μm) is filled between the evaluation IC and the evaluation substrate and cured, so that good connection is achieved. Because reliability was obtained.

これに対し、比較例1,2,5に係る接続体サンプルでは、実施例1〜3に比べて若干接続信頼性に劣る結果となった(初期:1.5〜1.9Ω、信頼性試験後:11Ω程度)。これは、ICバンプによる導電性粒子の捕捉数が実施例1〜3に比べて若干減少し(15〜30個程度)、ICバンプの高さ分の樹脂が評価用ICと評価基板との間に充填されて硬化されたことによる。   On the other hand, in the connection body samples according to Comparative Examples 1, 2, and 5, the connection reliability was slightly inferior to Examples 1 to 3 (initial: 1.5 to 1.9Ω, reliability test). After: about 11Ω). This is because the number of conductive particles captured by the IC bumps is slightly reduced as compared with Examples 1 to 3 (about 15 to 30), and the resin corresponding to the height of the IC bumps is located between the evaluation IC and the evaluation substrate. And cured.

比較例3及び比較例4に係る接続体サンプルは、比較例1,2,5に比べてさらに接続信頼性が悪化した(初期:1.2〜3.5Ω、信頼性試験後:20Ω程度)。これは、比較例3では絶縁性接着剤層に光重合開始剤が配合されていないことから硬化せずに流出し、ICバンプの高さ分の樹脂が評価用ICと評価基板との間に充填されなかったことによる。同様に、比較例4では、導電性接着剤層に光重合開始剤が配合されていないことからバインダー樹脂が硬化せずに流出し、ICバンプの高さ分の樹脂が評価用ICと評価基板との間に充填されなかったことによる。   In the connection body samples according to Comparative Examples 3 and 4, the connection reliability was further deteriorated as compared with Comparative Examples 1, 2, and 5 (initial: 1.2 to 3.5Ω, after the reliability test: about 20Ω). . This is because in Comparative Example 3, the photopolymerization initiator was not added to the insulating adhesive layer, and the resin flowed out without curing, and the resin corresponding to the height of the IC bumps was placed between the evaluation IC and the evaluation substrate. Because it was not filled. Similarly, in Comparative Example 4, since the photopolymerization initiator was not blended in the conductive adhesive layer, the binder resin flowed out without being cured, and the resin equivalent to the height of the IC bumps was used as the evaluation IC and the evaluation substrate. Because it was not filled in between.

比較例6に係る接続体サンプルは、絶縁性接着剤層の厚さが1μm、導電性接着剤層の厚さを加えても11μmと薄く、バインダー樹脂の流動による流出分を加味すると、ICバンプの高さ分のバインダー樹脂を評価用ICと評価基板との間に充填して硬化させるには厚さが不足し、導通信頼性が悪化した(初期:1.9Ω、信頼性試験後:15.8Ω程度)。   The connector sample according to Comparative Example 6 has a thickness of the insulating adhesive layer of 1 μm and a thin thickness of 11 μm even when the thickness of the conductive adhesive layer is added. Insufficient thickness to fill and cure the binder resin between the evaluation IC and the evaluation substrate for a height equal to the height and the conduction reliability deteriorated (initial: 1.9Ω, after reliability test: 15) .8Ω).

1 異方性導電フィルム(光硬化系異方性導電接着剤)、2 剥離フィルム、4 導電性粒子、5 導電性接着剤層、6 絶縁性接着剤層、10 液晶表示パネル、11,12 透明基板、13 シール、14 液晶材料、15 パネル表示部、16,17 透明電極、17a 端子部、18 液晶駆動用IC(電子部品)、19 電極端子、20 COG実装部、21 フレキシブル基板(電子部品)、22 FOG実装部、25,26 偏光板、27 配厚膜、30 接続装置、31 ステージ、33 熱圧着ツール(圧着ツール)、35 紫外線照射器 Reference Signs List 1 anisotropic conductive film (photo-curing anisotropic conductive adhesive), 2 release film, 4 conductive particles, 5 conductive adhesive layer, 6 insulating adhesive layer, 10 liquid crystal display panel, 11, 12 transparent Substrate, 13 seal, 14 liquid crystal material, 15 panel display part, 16, 17 transparent electrode, 17a terminal part, 18 liquid crystal drive IC (electronic part), 19 electrode terminal, 20 COG mounting part, 21 flexible substrate (electronic part) , 22 FOG mounting part, 25, 26 polarizing plate, 27 thick film, 30 connecting device, 31 stage, 33 thermocompression bonding tool (crimping tool), 35 UV irradiator

Claims (9)

紫外線の照射により硬化する光硬化系異方性導電接着剤であって、
導電性接着剤層及び絶縁性接着剤層を有し、
上記導電性接着剤層は、膜形成樹脂と、光重合性化合物と、光重合開始剤と、導電性粒子とを含有し、
上記絶縁性接着剤層は、膜形成樹脂と、光重合性化合物と、光重合開始剤と、光吸収剤とを含有し、
上記光吸収剤の光吸収ピーク波長が、上記光重合開始剤の光吸収ピーク波長より20nm以上大きく、かつ、上記光吸収剤の光吸収ピーク波長が、320nm〜360nmであり、上記光重合開始剤の光吸収ピーク波長が、290nm〜330nmである光硬化系異方性導電接着剤。
A photocurable anisotropic conductive adhesive that is cured by irradiation with ultraviolet light,
Having a conductive adhesive layer and an insulating adhesive layer,
The conductive adhesive layer contains a film-forming resin, a photopolymerizable compound, a photopolymerization initiator, and conductive particles,
The insulating adhesive layer contains a film-forming resin, a photopolymerizable compound, a photopolymerization initiator, and a light absorber ,
The light absorption peak wavelength of the light absorber is 20 nm or more larger than the light absorption peak wavelength of the photopolymerization initiator, and the light absorption peak wavelength of the light absorber is 320 nm to 360 nm. A light- curing anisotropic conductive adhesive having a light absorption peak wavelength of 290 nm to 330 nm .
上記導電性接着剤層は、上記絶縁性接着剤層が含有する光吸収剤の量より少ない量の光吸収剤を更に含有する請求項1記載の光硬化系異方性導電接着剤。   The photocurable anisotropic conductive adhesive according to claim 1, wherein the conductive adhesive layer further contains a light absorber in an amount smaller than the light absorber contained in the insulating adhesive layer. 上記絶縁性接着剤層の厚さは、上記導電性接着剤層の厚さよりも薄い請求項1又は2のいずれか1項に記載の光硬化系異方性導電接着剤。 The thickness of the insulating adhesive layer, the light-curable anisotropic conductive adhesive according to any one of the thin Claim 1 or 2 than the thickness of the conductive adhesive layer. 接続体の製造方法であって、
ステージ上に載置された透明基板上に、紫外線の照射により硬化する光硬化系異方性導電接着剤を介して電子部品を配置する工程と、
圧着ツールにより上記電子部品を上記透明基板に対して押圧しながら、光照射器により上記光硬化系異方性導電接着剤に対して光照射を行う工程とを有し、
上記光硬化系異方性導電接着剤は、
膜形成樹脂と、光重合性化合物と、光重合開始剤と、導電性粒子とを含有する導電性接着剤層と、
膜形成樹脂と、光重合性化合物と、光重合開始剤と、光吸収剤とを含有する絶縁性接着剤層とを備え
上記光吸収剤の光吸収ピーク波長が、上記光重合開始剤の光吸収ピーク波長より20nm以上大きく、かつ、上記光吸収剤の光吸収ピーク波長が、320nm〜360nmであり、上記光重合開始剤の光吸収ピーク波長が、290nm〜330nmである接続体の製造方法。
A method of manufacturing a connection body,
A step of disposing an electronic component on a transparent substrate mounted on a stage via a photocurable anisotropic conductive adhesive that is cured by irradiation with ultraviolet light,
While pressing the electronic component against the transparent substrate by a pressure tool, a step of performing light irradiation on the photocurable anisotropic conductive adhesive by a light irradiator,
The photocurable anisotropic conductive adhesive,
Film-forming resin, a photopolymerizable compound, a photopolymerization initiator, and a conductive adhesive layer containing conductive particles,
A film-forming resin, a photopolymerizable compound, a photopolymerization initiator, and an insulating adhesive layer containing a light absorber ,
The light absorption peak wavelength of the light absorber is 20 nm or more larger than the light absorption peak wavelength of the photopolymerization initiator, and the light absorption peak wavelength of the light absorber is 320 nm to 360 nm. The method for manufacturing a connector , wherein the light absorption peak wavelength of the connector is 290 nm to 330 nm .
上記導電性接着剤層は、上記絶縁性接着剤層が含有する光吸収剤の量より少ない量の光吸収剤を更に含有する請求項記載の接続体の製造方法。 The method for manufacturing a connector according to claim 4, wherein the conductive adhesive layer further contains a light absorber in an amount smaller than the light absorber contained in the insulating adhesive layer. 上記光硬化系異方性導電接着剤は、上記電子部品の接続端子の高さより厚い厚さを有する請求項又はのいずれか1項記載の接続体の製造方法。 The light-curable anisotropic conductive adhesive, the manufacturing method of the connection of any one of claims 4 or 5 having a height thicker than the thickness of the connection terminal of the electronic component. 電子部品の接続方法であって、
ステージ上に載置された透明基板上に、紫外線の照射により硬化する光硬化系異方性導電接着剤を介して電子部品を配置する工程と、
圧着ツールにより上記電子部品を上記透明基板に対して押圧しながら、光照射器により上記光硬化系異方性導電接着剤に対して光照射を行う工程とを有し、
上記光硬化系異方性導電接着剤は、
膜形成樹脂と、光重合性化合物と、光重合開始剤と、導電性粒子とを含有する導電性接着剤層と、
膜形成樹脂と、光重合性化合物と、光重合開始剤と、光吸収剤とを含有する絶縁性接着剤層とを備え
上記光吸収剤の光吸収ピーク波長が、上記光重合開始剤の光吸収ピーク波長より20nm以上大きく、かつ、上記光吸収剤の光吸収ピーク波長が、320nm〜360nmであり、上記光重合開始剤の光吸収ピーク波長が、290nm〜330nmである電子部品の接続方法。
A method of connecting electronic components,
A step of disposing an electronic component on a transparent substrate mounted on a stage via a photocurable anisotropic conductive adhesive that is cured by irradiation with ultraviolet light,
While pressing the electronic component against the transparent substrate by a pressure tool, a step of performing light irradiation on the photocurable anisotropic conductive adhesive by a light irradiator,
The photocurable anisotropic conductive adhesive,
Film-forming resin, a photopolymerizable compound, a photopolymerization initiator, and a conductive adhesive layer containing conductive particles,
A film-forming resin, a photopolymerizable compound, a photopolymerization initiator, and an insulating adhesive layer containing a light absorber ,
The light absorption peak wavelength of the light absorber is 20 nm or more larger than the light absorption peak wavelength of the photopolymerization initiator, and the light absorption peak wavelength of the light absorber is 320 nm to 360 nm. The method for connecting an electronic component , wherein the light absorption peak wavelength of the electronic component is 290 nm to 330 nm .
上記導電性接着剤層は、上記絶縁性接着剤層が含有する光吸収剤の量より少ない量の光吸収剤を更に含有する請求項記載の電子部品の接続方法。 The method for connecting electronic components according to claim 7, wherein the conductive adhesive layer further contains a light absorber in an amount smaller than the light absorber contained in the insulating adhesive layer. 上記光硬化系異方性導電接着剤は、上記電子部品の接続端子の高さより厚い厚さを有する請求項又はのいずれか1項記載の電子部品の接続方法。
The light-curable anisotropic conductive adhesive, the connection method of the electronic component of any one of claims 7 or 8 having a height thicker than the thickness of the connection terminal of the electronic component.
JP2015222241A 2014-11-12 2015-11-12 Photocurable anisotropic conductive adhesive, method for manufacturing connector, and method for connecting electronic components Active JP6639874B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014229971 2014-11-12
JP2014229971 2014-11-12

Publications (2)

Publication Number Publication Date
JP2016103634A JP2016103634A (en) 2016-06-02
JP6639874B2 true JP6639874B2 (en) 2020-02-05

Family

ID=55954475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015222241A Active JP6639874B2 (en) 2014-11-12 2015-11-12 Photocurable anisotropic conductive adhesive, method for manufacturing connector, and method for connecting electronic components

Country Status (5)

Country Link
JP (1) JP6639874B2 (en)
KR (1) KR102031530B1 (en)
CN (1) CN107001865B (en)
TW (1) TWI715542B (en)
WO (1) WO2016076398A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050005A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film housing set, and manufacturing method thereof
WO2022067506A1 (en) * 2020-09-29 2022-04-07 重庆康佳光电技术研究院有限公司 Display panel and manufacturing method therefor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9508031D0 (en) 1995-04-20 1995-06-07 Minnesota Mining & Mfg UV-absorbing media bleachable by IR-radiation
JP4241452B2 (en) * 2004-03-18 2009-03-18 三井化学株式会社 Photocurable resin composition and liquid crystal sealant composition containing the same
US20060196600A1 (en) * 2005-03-03 2006-09-07 Gi-Jung Nam Apparatus and method for bonding anisotropic conductive film using laser beam
JP4978493B2 (en) * 2007-10-05 2012-07-18 日立化成工業株式会社 Circuit connection material, connection structure and manufacturing method thereof
WO2009071475A1 (en) * 2007-12-03 2009-06-11 Basf Se Crystalline form of 2-(4,6-bis-biphenyl-4-yl-1,3,5-triazin-2-yl)-5-(2-ethyl-(n)-hexyloxy)phenol
US20100330362A1 (en) * 2008-02-13 2010-12-30 Moritoshi Matsumoto Polycarbonate resin laminated sheet
JP4623224B2 (en) * 2008-06-26 2011-02-02 日立化成工業株式会社 Resin film sheet and electronic parts
JP2010221648A (en) * 2009-03-25 2010-10-07 Sumitomo Chemical Co Ltd Mar-resistant resin plate, protective plate for display using the same and display window protective plate of personal digital assistant
JP5823117B2 (en) * 2010-11-16 2015-11-25 デクセリアルズ株式会社 Anisotropic conductive film, bonded body, and manufacturing method of bonded body
JP2013105636A (en) * 2011-11-14 2013-05-30 Dexerials Corp Anisotropic conductive film, connection method, and connected body
JP5530470B2 (en) * 2012-03-09 2014-06-25 チェイル インダストリーズ インコーポレイテッド Adhesive for polarizing plate
JP6259177B2 (en) * 2012-04-16 2018-01-10 早川ゴム株式会社 Method for bonding anisotropic conductive film
JP6002518B2 (en) * 2012-09-21 2016-10-05 デクセリアルズ株式会社 Anisotropic conductive film, connection method, and joined body
JP2014066955A (en) * 2012-09-27 2014-04-17 Konica Minolta Inc Polarizing plate and liquid crystal display device
JP6425899B2 (en) * 2014-03-11 2018-11-21 デクセリアルズ株式会社 ANISOTROPIC CONDUCTIVE ADHESIVE, METHOD FOR MANUFACTURING CONNECTION AND METHOD FOR CONNECTING ELECTRONIC COMPONENTS

Also Published As

Publication number Publication date
WO2016076398A1 (en) 2016-05-19
JP2016103634A (en) 2016-06-02
CN107001865A (en) 2017-08-01
KR20170057322A (en) 2017-05-24
KR102031530B1 (en) 2019-10-14
CN107001865B (en) 2020-08-21
TW201634637A (en) 2016-10-01
TWI715542B (en) 2021-01-11

Similar Documents

Publication Publication Date Title
JP6425899B2 (en) ANISOTROPIC CONDUCTIVE ADHESIVE, METHOD FOR MANUFACTURING CONNECTION AND METHOD FOR CONNECTING ELECTRONIC COMPONENTS
KR101517323B1 (en) Connection method, connected-body production method and connected body
CN107079589B (en) Method for manufacturing connected body, method for connecting electronic component, and connected body
JP6679320B2 (en) Connection body manufacturing method, electronic component connection method
JP6639874B2 (en) Photocurable anisotropic conductive adhesive, method for manufacturing connector, and method for connecting electronic components
JP5836830B2 (en) Manufacturing method of connecting body and connecting method
JP5730035B2 (en) Connection structure manufacturing method, anisotropic conductive connection method, and connection structure
WO2015083809A1 (en) Method for producing connection structure, and anisotropic conductive film
JP2015142120A (en) Method of manufacturing connection body, and connection method and connection device of electronic component
TW201345724A (en) Method for manufacturing connecting body, and method for connecting electronic component
CN107230646B (en) Method for manufacturing connector
TWI603136B (en) Method of manufacturing connection body and connection method of electronic component
CN112543795B (en) Method for producing connection structure and connection film
WO2015111599A1 (en) Connection body production method and electronic component connection method
WO2016117613A1 (en) Method for producing connected body, method for connecting electronic component, and connected body
KR20180043169A (en) Method for manufacturing connected body
JP2015170647A (en) Method of manufacturing connection body, connection method for electronic component, and connection body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190418

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190809

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191225

R150 Certificate of patent or registration of utility model

Ref document number: 6639874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250