WO2024042720A1 - Adhesive film for circuit connection, connection structure, and methods for producing same - Google Patents

Adhesive film for circuit connection, connection structure, and methods for producing same Download PDF

Info

Publication number
WO2024042720A1
WO2024042720A1 PCT/JP2022/032258 JP2022032258W WO2024042720A1 WO 2024042720 A1 WO2024042720 A1 WO 2024042720A1 JP 2022032258 W JP2022032258 W JP 2022032258W WO 2024042720 A1 WO2024042720 A1 WO 2024042720A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
conductive particles
adhesive film
adhesive
circuit
Prior art date
Application number
PCT/JP2022/032258
Other languages
French (fr)
Japanese (ja)
Inventor
勝将 宮地
敏光 森谷
裕太 山崎
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to PCT/JP2022/032258 priority Critical patent/WO2024042720A1/en
Publication of WO2024042720A1 publication Critical patent/WO2024042720A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Definitions

  • the present invention relates to an adhesive film for circuit connection, a connection structure, and a manufacturing method thereof.
  • conductive particles in an adhesive can be used as an adhesive material for connecting a liquid crystal display and a tape carrier package (TCP), connecting a flexible printed wiring board (FPC) and a TCP, or connecting an FPC and a printed wiring board.
  • An adhesive film for circuit connection is used in which .
  • Patent Document 1 proposes a method in which conductive particles are unevenly distributed on one side of an adhesive film and the conductive particles are separated from each other.
  • An adhesive film for circuit connection a first adhesive layer having thermosetting properties; conductive particles partially embedded in one side of the first adhesive layer; a second adhesive layer that has thermosetting properties and is in contact with the one surface of the first adhesive layer,
  • the embedding rate of the conductive particles in the first adhesive layer determined by the following formula (1) is 30 to 90%,
  • the circuit connection adhesive film was placed on the glass plate from the first adhesive layer side, and temporary pressure bonding was performed under the conditions of a pressure bonding temperature of 70° C., a bonding pressure of 0.1 MPa, and a bonding time of 1.0 s.
  • the flow rate of each adhesive layer is defined by the following formula (2) when a glass plate is placed on the second adhesive layer and main pressure bonding is performed under the conditions of a pressure bonding temperature of 160°C, a pressure bonding pressure of 2 MPa, and a bonding time of 5 seconds. Then, the adhesive film for circuit connection has a ratio of the flow rate of the second adhesive layer to the flow rate of the first adhesive layer from 1.20 to 4.00.
  • Embedding rate (%) H/L x 100... (1)
  • H represents the length of embedding of the conductive particles in the first adhesive layer (unit: ⁇ m)
  • L represents the particle diameter of the conductive particles in the embedding direction (unit: ⁇ m). ) is shown.
  • Flow rate [%] S B / S A ⁇ 100... (2)
  • S A represents the surface area of the adhesive layer before temporary pressure bonding
  • S B represents the area of the adhesive layer after main pressure bonding.
  • the average particle diameter of the conductive particles is 1.0 to 50.0 ⁇ m, C. of the particle diameter of the conductive particles.
  • the external stimulation curable composition has photocurability, The method for producing a circuit connection adhesive film according to [9] or [10], wherein in the curing step, the precursor layer is cured by light irradiation.
  • the step (I) further includes a transfer step of transferring the conductive particles from the substrate to the precursor layer by providing the precursor layer on the surface of the substrate on which a plurality of conductive particles are arranged.
  • step (I) further includes, before the transfer step, a heating step of heating the layer containing the external stimulation curable composition at 50 to 70° C. for 3 to 60 minutes.
  • step (I) further includes, after the transfer step, a pressurizing step of applying pressure to the surface of the precursor layer to which the conductive particles have been transferred.
  • an adhesive film for circuit connection that can sufficiently secure the ability to capture conductive particles while suppressing an increase in connection resistance.
  • FIG. 1 is a schematic plan view showing one embodiment of an adhesive film for circuit connection.
  • FIG. 2 is a schematic cross-sectional view of the circuit-connecting adhesive film taken along line II-II in FIG.
  • FIG. 3 is a partially enlarged cross-sectional view of the circuit-connecting adhesive film shown in FIG. 2.
  • FIG. 4 is a schematic diagram for explaining one embodiment of a method for manufacturing a circuit connection adhesive film.
  • FIG. 5 is a schematic diagram for explaining one embodiment of a method for manufacturing a circuit connection adhesive film.
  • FIG. 6 is a schematic diagram for explaining one embodiment of a method for manufacturing a circuit connection adhesive film.
  • FIG. 7 is a schematic diagram for explaining one embodiment of a method for manufacturing a circuit connection adhesive film.
  • FIG. 8 is a schematic cross-sectional view showing one embodiment of a connected structure.
  • FIG. 9 is a schematic diagram for explaining one embodiment of a method for manufacturing a connected structure.
  • the present invention is not limited to the following embodiments.
  • the materials exemplified below may be used alone or in combination of two or more, unless otherwise specified.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition, unless otherwise specified.
  • a numerical range indicated using " ⁇ " indicates a range that includes the numerical values written before and after " ⁇ " as the minimum and maximum values, respectively.
  • the upper limit or lower limit of the numerical range of one step may be replaced with the upper limit or lower limit of the numerical range of another step.
  • (meth)acrylate means at least one of acrylate and methacrylate corresponding thereto.
  • (meth)acryloyl means at least one of acrylate and methacrylate corresponding thereto. The same applies to other similar expressions such as "(meth)acryloyl".
  • the circuit connection adhesive film includes conductive particles, a first thermosetting adhesive layer, and a thermosetting second adhesive layer.
  • "For circuit connection” means used for connecting circuit members.
  • FIG. 1 is a schematic plan view showing one embodiment of a circuit connection adhesive film.
  • a plurality of conductive particles 3 are present in the circuit connection adhesive film 10 shown in FIG.
  • adjacent conductive particles 3 exist in a state separated from each other. Therefore, it can be said that the circuit connection adhesive film 10 has a property (anisotropic conductivity) that is conductive in the pressure direction and maintains insulation in the non-pressure direction.
  • the ratio (monodisperse rate) in which the conductive particles 3 exist in a state separated from other conductive particles 3 (monodisperse state) is preferably 90.0% or more, 93.0% or more, 95.0% or more. % or more, 97.0% or more, or 98.0% or more.
  • the upper limit of the monodispersity rate is 100%.
  • Such a dispersed state can be formed by using a substrate on which the conductive particles 3 are arranged in a predetermined arrangement in the method for manufacturing the adhesive film 10 for circuit connection. Details will be described later.
  • At least some of the plurality of conductive particles 3 are arranged in a predetermined pattern in a plan view of the circuit connection adhesive film.
  • the predetermined pattern position and number of conductive particles 3 can be set depending on, for example, the shape, size, pattern, etc. of the electrode to be connected.
  • the conductive particles 3 are arranged regularly and at approximately equal intervals over the entire area of the circuit-connecting adhesive film 10, but the arrangement of the conductive particles 3 is not limited to this example. .
  • the conductive particles are formed so that regions where a plurality of conductive particles 3 are regularly arranged and regions where conductive particles 3 are substantially absent are regularly formed. Particles 3 may be arranged.
  • the fact that at least some of the plurality of conductive particles 3 are arranged in a predetermined pattern means that, for example, the circuit-connecting adhesive film 10 is inspected from above the main surface of the circuit-connecting adhesive film 10 using an electron microscope or the like. This can be confirmed by observation.
  • FIG. 2 is a schematic cross-sectional view of the circuit-connecting adhesive film taken along line II-II in FIG. 1
  • FIG. 3 is a partially enlarged view of the cross-section of the circuit-connecting adhesive film shown in FIG. 2.
  • S the boundary between the first adhesive layer 1 and the second adhesive layer 2
  • C1 and C2 two contact points between the surface of the conductive particle 3 and the boundary S
  • l1 a line segment (first virtual line segment) connecting the contact point C1 and the contact point C2 is indicated by l1.
  • a line segment (second virtual line segment) that is perpendicular to the line segment l1 and has the longest distance between the two points is indicated by l2.
  • the point of contact with the first adhesive layer 1 is indicated by C3
  • the point of contact with the second adhesive layer 2 is indicated by C4.
  • the intersection of line segment l1 and line segment l2 is assumed to be C5.
  • the conductive particles 3 are partially embedded in one side of the first adhesive layer 1, and the second adhesive layer 2 is attached to the first adhesive layer 1.
  • the conductive particles 3 are coated with the first adhesive layer 1 and the second adhesive layer 2 by being provided so as to be in contact with the one surface.
  • the boundary S is located at a part where adjacent conductive particles 3, 3 are separated.
  • all of the plurality of conductive particles 3 are partially embedded in one side of the first adhesive layer 1, but as long as it does not impede the effects of the present invention, the first adhesive There may also be electrically conductive particles 3 completely embedded in layer 1 or in the second adhesive layer 2.
  • the proportion of the conductive particles 3 completely buried in the first adhesive layer 1 or the second adhesive layer 2 may be, for example, 20% or less, 10% or less, or 5% or less. .
  • the embedding rate (particle embedding rate) of the conductive particles 3 in the first adhesive layer 1 is 30 to 90%, and
  • the flow rate ratio (hereinafter referred to as "flow ratio") of the second adhesive layer 2 is 1.20 to 4.00.
  • the particle embedding rate is determined by the following formula (1).
  • Particle embedding rate (%) H/L ⁇ 100...(1)
  • H represents the length of the conductive particles 3 embedded in the first adhesive layer 1 (unit: ⁇ m)
  • L represents the particle diameter of the conductive particles in the embedding direction (unit: ⁇ m). shows.
  • the direction perpendicular to the line segment l1 is defined as the embedding direction of the conductive particles 3
  • the maximum value of the particle diameter in the embedding direction is defined as the particle diameter L in the embedding direction of the conductive particles. Therefore, the particle diameter L is equal to the length of the line segment l2.
  • the maximum value of the length of the portion of the conductive particles 3 embedded in the first adhesive layer 1 (the length in the above-mentioned embedding direction) is calculated as the embedding length of the conductive particles 3 in the first adhesive layer 1. Let it be H. Therefore, the embedded length H of the conductive particles 3 in the first adhesive layer 1 is equal to the length of the line segment connecting the contact point C3 and the intersection point C5.
  • the particle embedding ratio can be measured by, for example, observing a longitudinal section (a section in the thickness direction) of the circuit-connecting adhesive film using a scanning electron microscope (SEM). Specifically, for example, after obtaining cross-sectional images (SEM images) by observing 100 arbitrary cross-sections of a circuit-connecting adhesive film at a magnification of 5000 times using a scanning electron microscope (SEM), each cross-sectional image is In any 20 ⁇ m x 15 ⁇ m area within, the embedding rate of conductive particles having the maximum particle diameter L in the embedding direction and the conductive particles having a particle diameter L of 0.85 to 1.00 times that of the conductive particles.
  • SEM scanning electron microscope
  • the average value of these values is determined as the embedding rate of conductive particles in each cross section.
  • the average value of the embedding ratio of conductive particles in the ten calculated cross sections is determined, and this is taken as the embedding ratio of conductive particles in the circuit connection adhesive film (particle embedding ratio).
  • S A represents the surface area of the adhesive layer before temporary pressure bonding
  • S B represents the area of the adhesive layer after main pressure bonding
  • the flow rate of each of the adhesive layers described above can be measured by the following procedures (I) to (IV).
  • (I) Punch out the adhesive film for circuit connection in the thickness direction with the base material affixed on both main surfaces of the adhesive film for circuit connection, and form a disc-shaped evaluation adhesive with radius r. Get the film.
  • (II) After peeling off the base material on the first adhesive layer side from the adhesive film for evaluation, place the adhesive film for evaluation on the first glass plate from the first adhesive layer side, and From the adhesive layer side, thermocompression bonding is performed under conditions of a compression temperature of 70° C., a compression pressure of 0.1 MPa, and a compression time of 1.0 s to obtain a temporarily fixed body.
  • the circuit connection adhesive film 10 adheres the first circuit member having the first electrode and the second circuit member having the second electrode, and also connects the first electrode and the second electrode. It is suitably used for electrically connecting two parts to each other.
  • the particle embedding rate in the first adhesive layer may be 38% or more, 45% or more, 52% or more, or 60% or more from the viewpoint of further increasing the capture rate of the conductive particles 3.
  • the particle embedding rate in the first adhesive layer may be 85% or less, 75% or less, 65% or less, 55% or less, or 48% or less from the viewpoint of further reducing connection resistance. From these viewpoints, the particle embedding rate in the first adhesive layer is 38-85%, 45-75%, 52-75%, 60-75%, 30-65%, 30-55%, or 30%. It may be between 48% and 48%.
  • the flow ratio may be 1.40 or more, 1.50 or more, 1.60 or more, or 1.70 or more from the viewpoint of increasing the capture rate of the conductive particles 3 and reducing the connection resistance. good. From the viewpoint of increasing the connection reliability of the connected structure, the flow ratio may be 3.60 or less, 2.80 or less, 2.20 or less, or 1.70 or less. From these points of view, the flow ratio is 1.40 to 3.60, 1.50 to 2.80, 1.60 to 2.80, 1.70 to 2.80, 1.20 to 2.20, or 1. It may be between .20 and 1.70.
  • the above flow ratio is achieved, for example, by using the first adhesive layer 1 as a cured product of a precursor layer containing an external stimulation curable composition.
  • the flow rate of the first adhesive layer 1 may be 88% or more, 92% or more, 95% or more, or 100% or more.
  • the flow rate of the first adhesive layer 1 may be 110% or less, 108% or less, or 106% or less from the viewpoint of further increasing the capture rate of the conductive particles 3. From these points of view, the flow rate of the first adhesive layer 1 may be 88-110%, 92-110%, 95-108% or 100-108%.
  • the flow rate of the second adhesive layer 2 may be 120% or more, 150% or more, 160% or more, or 210% or more.
  • the flow rate of the second adhesive layer 2 may be 440% or less, 400% or less, 350% or less, 300% or less, 250% or less, from the viewpoint of further increasing the capture rate of the conductive particles 3. Or it may be 200% or less.
  • the flow rate of the second adhesive layer 2 may be 120-440%, 150-400%, 160-400%, 210-350%, 120-300%, 120-250%. Or it may be 120 to 200%.
  • the first adhesive layer 1 and the second adhesive layer 2 are formed on the surface of the circuit connecting adhesive film 10 (the surface opposite to the second adhesive layer 2 side in the first adhesive layer 1, and The thickness may be such that the conductive particles 3 are not exposed from the surface of the second adhesive layer 2 opposite to the first adhesive layer 1 side.
  • the thickness d1 (distance indicated by d1 in FIG. 2) of the first adhesive layer 1 may be, for example, 0.5 ⁇ m or more, 1.0 ⁇ m or more, or 2.0 ⁇ m or more, and 50.0 ⁇ m or less, 40 ⁇ m or more. .0 ⁇ m, 30.0 ⁇ m or less, 20.0 ⁇ m or less, 10.0 ⁇ m or less, 5.0 ⁇ m or less, or 3.0 ⁇ m or less, 0.5 to 50.0 ⁇ m, 1.0 to 40.0 ⁇ m, 2. It may be 0-30.0 ⁇ m, 1.0-20.0 ⁇ m, 1.0-10.0 ⁇ m, 1.0-5.0 ⁇ m or 1.0-3.0 ⁇ m. When the thickness d1 of the first adhesive layer 1 is within the above range, it is easy to achieve both lower connection resistance and higher conductive particle capture rate.
  • the thickness d2 (distance indicated by d2 in FIG. 2) of the second adhesive layer 2 may be, for example, 0.5 ⁇ m or more, 1.0 ⁇ m or more, 2.0 ⁇ m or more, or 3.0 ⁇ m or more, and may be 50 ⁇ m or more, for example. .0 ⁇ m or less, 40.0 ⁇ m or less, 30.0 ⁇ m or less, 20.0 ⁇ m or less, 10.0 ⁇ m or less, or 5.0 ⁇ m or less, 0.5 to 50.0 ⁇ m, 1.0 to 40.0 ⁇ m, 2 0 to 30.0 ⁇ m, 3.0 to 20.0 ⁇ m, 3.0 to 10.0 ⁇ m, or 3.0 to 5.0 ⁇ m.
  • the thickness d2 of the second adhesive layer 2 is within the above range, the space between the electrodes can be sufficiently filled to seal the electrodes, and better connection reliability is likely to be obtained.
  • the ratio of the thickness d2 of the second adhesive layer 2 to the thickness d1 of the first adhesive layer 1 may be 0.3 or more from the viewpoint of connection reliability of the connected structure, It may be 1.0 or more, 2.0 or more, or 2.5 or more.
  • the ratio of the thickness d2 of the second adhesive layer 2 to the thickness d1 of the first adhesive layer 1 may be 20.0 or less from the viewpoint of the capture rate of conductive particles, and 15. It may be 0 or less, 12.0 or less, 10.0 or less, 6.0 or less, or 4.0 or less. From these viewpoints, the ratio of the thickness d2 of the second adhesive layer 2 to the thickness d1 of the first adhesive layer 1 is determined from the viewpoint of connection reliability and low resistance of the connected structure. It may be 0.3 to 20.0, 1.0 to 15.0, 2.0 to 12.0, 2.0 to 10.0, 2.0 to 6.0, 2.0 to 4. It may be 0 or 2.5 to 10.0.
  • the thickness of the circuit connection adhesive film 10 may be, for example, 2.0 ⁇ m or more, 3.0 ⁇ m or more, or 4.0 ⁇ m or more, and 100.0 ⁇ m or less, 80.0 ⁇ m or less, 60.0 ⁇ m or less, or 40.0 ⁇ m or less. May be 0 ⁇ m or less, 20.0 ⁇ m or less, or 10.0 ⁇ m or less, 2.0 to 100.0 ⁇ m, 3.0 to 80.0 ⁇ m, 4.0 to 60.0 ⁇ m, 4.0 to 40.0 ⁇ m, 4 It may be between .0 and 20.0 ⁇ m or between 4.0 and 10.0 ⁇ m.
  • the thickness d1 of the first adhesive layer 1, the thickness d2 of the second adhesive layer 2, and the thickness of the circuit connection adhesive film 10 are, for example, such that the circuit connection adhesive film 10 is attached to two sheets of glass. (thickness: approximately 1 mm) and 100 g of bisphenol A epoxy resin (product name: jER811, manufactured by Mitsubishi Chemical Corporation) and 10 g of a curing agent (product name: Epomount hardening agent, manufactured by Refinetech Co., Ltd.). After casting with a resin composition of can.
  • first adhesive composition the adhesive composition forming the first adhesive layer 1
  • second adhesive composition the adhesive composition forming the second adhesive layer 2
  • agent composition the adhesive composition forming the second adhesive layer 2
  • the first adhesive composition has thermosetting properties. That is, the first adhesive composition contains at least a thermosetting component.
  • the first adhesive composition is, for example, a cured product of an external stimulation curable composition obtained by curing an external stimulation curable composition. Since the cured product of the external stimulation curable composition has thermosetting properties, it can also be called a partially cured product. External stimulus curable compositions have the property of being cured by external stimuli such as heat, light, stress, and the like.
  • the external stimulation curable composition is, for example, a composition having thermosetting properties and photocuring properties. By photocuring a thermosetting and photocurable composition, a thermosetting cured product (cured product of an external stimulation curable composition) can be obtained.
  • the external stimulation composition When the external stimulation composition has thermosetting and photocurable properties, the external stimulation composition includes at least a thermosetting component and a photocurable component, and the first adhesive composition has a photocurable composition. It contains at least a cured product of the components and a thermosetting component.
  • thermosetting component is a component that is flowable upon connection and hardens upon heating.
  • the thermosetting component includes, for example, a polymerizable compound and a thermal polymerization initiator.
  • the polymerizable compound may be a radically polymerizable compound, a cationically polymerizable compound, or an anionically polymerizable compound.
  • the thermal polymerization initiator may be a thermal radical polymerization initiator, a thermal cationic polymerization initiator, or a thermal anionic polymerization initiator.
  • the polymerizable compound may be a cationic polymerizable compound
  • the thermal polymerization initiator may be a thermal cationic polymerization initiator.
  • the cationic polymerizable compound may be a compound having a cyclic ether group from the viewpoint of further improving the connection resistance reduction effect and providing superior connection reliability.
  • the compounds having a cyclic ether group when at least one selected from the group consisting of alicyclic epoxy compounds and oxetane compounds is used, the effect of reducing connection resistance tends to be further improved.
  • the cationic polymerizable compound may contain both an alicyclic epoxy compound and an oxetane compound from the viewpoint of easily obtaining a desired melt viscosity.
  • the alicyclic epoxy compound can be used without particular limitation as long as it is a compound having an alicyclic epoxy group (for example, an epoxycyclohexyl group).
  • the alicyclic epoxy compound may be, for example, an epoxy compound having an epoxy equivalent of 100 to 300 g/eq.
  • the epoxy equivalent is determined in accordance with JIS K 7236.
  • alicyclic epoxy compounds include Celoxide 8010 (trade name, Bi-7-oxabicyclo[4.1.0]heptane, manufactured by Daicel Corporation), for example, EHPE3150, EHPE3150CE, Celoxide 2021P, Celoxide 2081 (trade name, manufactured by Daicel Corporation) and the like.
  • the oxetane compound can be used without particular limitation as long as it has an oxetanyl group.
  • Commercially available oxetane compounds include, for example, ETERNACOLL OXBP (trade name, 4,4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl, manufactured by Ube Industries, Ltd.), OXSQ, OXT-121, Examples include OXT-221, OXT-101, OXT-212 (trade name, manufactured by Toagosei Co., Ltd.).
  • epoxy compounds other than alicyclic epoxy compounds may be used.
  • epoxy compounds having an aromatic hydrocarbon group such as bisphenol A type epoxy resin and bisphenol F type epoxy resin (for example, Mitsubishi Chemical Corporation's product name "jER1010", Nippon Steel Chemical & Materials) It is also possible to use a product such as "TOPR-400" (trade name, manufactured by Co., Ltd.).
  • the epoxy equivalent of the epoxy compound having an aromatic hydrocarbon group may be 100 g/eq or more (for example, 100 to 3500 g/eq), or 150 g/eq or more (for example, 150 to 3500 g/eq).
  • An epoxy compound having an aromatic hydrocarbon group may be used in combination with an alicyclic epoxy compound from the viewpoint of further improving the effect of reducing connection resistance and providing superior connection reliability.
  • the thermal cationic polymerization initiator is, for example, a compound (thermal latent cation generator) that can generate an acid or the like upon heating to initiate polymerization.
  • the thermal cationic polymerization initiator may be a salt compound composed of a cation and an anion.
  • Thermal cationic polymerization initiators include, for example, BF 4 - , BR 4 - (R represents a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups), PF 6 - , SbF 6 Examples include onium salts such as sulfonium salts, phosphonium salts, ammonium salts, diazonium salts, iodonium salts, anilinium salts, and pyridinium salts having anions such as - and AsF 6 - . These may be used alone or in combination.
  • the thermal cationic polymerization initiator may be, for example, a salt compound having an anion containing boron as a constituent element.
  • salt compounds include salt compounds having BF 4 - or BR 4 - (R represents a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups). It will be done.
  • the anion containing boron as a constituent element may be BR 4 ⁇ , and more specifically may be tetrakis(pentafluorophenyl)borate.
  • the thermal cationic polymerization initiator may be a salt compound having a cation represented by the following formula (I) or the following formula (II).
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an organic group containing a substituted or unsubstituted aromatic hydrocarbon group.
  • R 3 represents an alkyl group having 1 to 6 carbon atoms.
  • compounds having a cation represented by formula (I) include 1-naphthylmethyl-p-hydroxyphenylsulfonium hexafluoroantimonate (manufactured by Sanshin Kagaku Co., Ltd., SI-60 base agent).
  • R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an organic group containing a substituted or unsubstituted aromatic hydrocarbon group; , R 6 and R 7 each independently represent an alkyl group having 1 to 6 carbon atoms.
  • the content of the thermal cationic polymerization initiator is, for example, 0.1 to 25 parts by mass, 0.1 to 25 parts by mass, based on 100 parts by mass of the cationic polymerizable compound, from the viewpoint of ensuring the formability and curability of the adhesive film. It may be 20 parts by weight, 1 to 18 parts by weight, 3 to 15 parts by weight, or 5 to 12 parts by weight.
  • the content of the thermosetting component (for example, the total content of the polymerizable compound and the thermal polymerization initiator) is based on the total mass of the first adhesive composition, from the viewpoint of ensuring the curability of the adhesive film. For example, it may be 3% by mass or more, 5% by mass or more, 10% by mass or more, or 15% by mass or more. From the viewpoint of ensuring adhesive film formability, the content of the thermosetting component is, for example, 70% by mass or less, 60% by mass or less, 50% by mass or less, or 40% by mass or less, based on the total mass of the adhesive composition. It may be less than % by mass.
  • the content of the thermosetting component is, for example, 3 to 70% by mass, 5 to 60% by mass, 10 to 50% by mass, or 15 to 50% by mass, based on the total mass of the first adhesive composition. It may be 40% by mass. From the same viewpoint as above, the total content of the cationic polymerizable compound and the thermal cationic polymerization initiator may be within the above range.
  • a photocurable component is a component that is cured by light (actinic rays).
  • the photocurable component includes, for example, a polymerizable compound and a photopolymerization initiator.
  • the polymerizable compound may be a radically polymerizable compound, a cationically polymerizable compound, or an anionically polymerizable compound.
  • the photopolymerization initiator may be a radical photopolymerization initiator, a cationic photopolymerization initiator, or an anionic photopolymerization initiator.
  • the type of photocurable component may be determined by considering the combination with the thermosetting component.
  • the photocurable component when the thermosetting component is a cationically polymerizable component, the photocurable component may be a radically polymerizable component. That is, when the thermosetting component contains a cationically polymerizable compound and a thermal cationic polymerization initiator, the photocurable component may contain a radically polymerizable compound and a photoradical polymerization initiator.
  • radically polymerizable compounds examples include (meth)acrylate compounds, maleimide compounds, citraconimide compounds, nadimide compounds, and the like.
  • the photocurable component may contain a (meth)acrylate compound, and from the viewpoint that it is easier to obtain the first adhesive layer with the above flow rate.
  • the photocurable component may contain a polyfunctional (meth)acrylate compound having two or more (meth)acryloyl groups.
  • polyfunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, and polyethylene glycol di(meth)acrylate.
  • acrylate propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, ethoxylated polypropylene glycol Di(meth)acrylate, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate (meth)acrylate, 1,6-hexanediol di(meth)acrylate, 2-butyl-2-ethyl-1,3-propanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1 Aliphatic ( meth)acrylate,
  • the content of polyfunctional (meth)acrylate is 40 to 100% by mass based on the total mass of the polymerizable compound in the photocurable component, from the viewpoint of achieving both the effect of reducing connection resistance and suppressing particle flow. It may be 50 to 100% by weight or 60 to 100% by weight.
  • the photocurable component may contain epoxy (meth)acrylate, and from the viewpoint that it is easier to obtain the first adhesive layer with the above flow rate.
  • the photocurable component may include aromatic epoxy (meth)acrylate.
  • the content of epoxy (meth)acrylate may be, for example, 40 to 100% by weight, 50 to 100% by weight, or 60 to 100% by weight, based on the total weight of the polymerizable compounds in the photocurable component.
  • the photocurable component contains a (meth)acrylate compound having a crosslinked structure such as a tricyclodecane structure or a norbornane structure, and/or an aromatic structure. It's okay to be there.
  • the content of the (meth)acrylate compound having a crosslinked structure such as a tricyclodecane structure or a norbornane structure, and/or an aromatic structure is, for example, 40% based on the total mass of the polymerizable compound in the photocurable component. It may be ⁇ 100% by weight, 50-100% by weight, or 60-100% by weight.
  • the photo-radical polymerization initiator is a photo-polymerization initiator that generates radicals upon irradiation with light (for example, ultraviolet light) having a wavelength within the range of 150 to 750 nm.
  • the photo-radical polymerization initiator has an oxime ester structure, a bisimidazole structure, an acridine structure, an ⁇ -aminoalkylphenone structure, an aminobenzophenone structure, an N-phenylglycine structure, an acylphosphine oxide structure, a benzyl dimethyl ketal structure, and an ⁇ -hydroxyalkylphenone structure. It may be a compound having a structure such as a structure.
  • the photoradical polymerization initiator is selected from the group consisting of an oxime ester structure, an ⁇ -aminoalkylphenone structure, and an acylphosphine oxide structure, from the viewpoint of easily obtaining the desired melt viscosity and from the viewpoint of being more effective in reducing connection resistance. It may be a compound having at least one type of structure.
  • compounds having an oxime ester structure include 1-phenyl-1,2-butanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-methoxycarbonyl) ) oxime, 1-phenyl-1,2-propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-o-benzoyloxime, 1,3-diphenylpropanetrione- 2-(o-ethoxycarbonyl)oxime, 1-phenyl-3-ethoxypropanetrione-2-(o-benzoyl)oxime, 1,2-octanedione, 1-[4-(phenylthio)phenyl-,2-( o-benzoyloxime)], ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(
  • compounds having an ⁇ -aminoalkylphenone structure include 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -morpholinophenyl)-butanone-1 and the like.
  • compounds having an acylphosphine oxide structure include bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide, bis(2,4,6,-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, and the like.
  • the content of the photoradical polymerization initiator is, for example, 0.1 to 10 parts by mass, 0.1 to 10 parts by mass, based on 100 parts by mass of the radically polymerizable compound, from the viewpoint of easily obtaining the first adhesive layer having the above flow rate. It may be 3 to 7 parts by weight or 0.5 to 5 parts by weight.
  • the content of the photocurable component (for example, the total content of the polymerizable compound and the photopolymerization initiator) is determined based on the total content of the first adhesive composition from the viewpoint of easily obtaining the first adhesive layer having the above flow rate. Based on the mass, it may be, for example, 3% by mass or more, 5% by mass or more, or 10% by mass or more.
  • the content of the photocurable component is, for example, 50% by mass or less, 40% by mass or less based on the total mass of the adhesive composition, from the viewpoint of easily obtaining the desired melt viscosity and from the viewpoint of being more effective in reducing connection resistance. It may be less than 30% by mass or less than 30% by mass.
  • the content of the thermosetting component is, for example, 3 to 50% by mass, 5 to 40% by mass, or 10 to 30% by mass, based on the total mass of the first adhesive composition. good.
  • the total content of the radically polymerizable compound and the photoradical polymerization initiator may be within the above range.
  • the first adhesive composition may further contain, for example, a thermoplastic resin, a filler, a coupling agent, and the like.
  • thermoplastic resin contributes to improving the film-forming properties of the adhesive film.
  • thermoplastic resin include phenoxy resin, polyester resin, polyamide resin, polyurethane resin, polyester urethane resin, acrylic rubber, and epoxy resin (solid at 25° C.).
  • phenoxy resins include fluorene type phenoxy resins (epoxy resins containing a fluorene skeleton), bisphenol A/bisphenol F copolymerized phenoxy resins (phenoxy resins containing a bisphenol A skeleton and a bisphenol F skeleton), and the like. .
  • thermoplastic resin for example, film-forming properties
  • curability of the connection portion in the connected structure may be used alone or in combination.
  • the weight average molecular weight (Mw) of the thermoplastic resin may be, for example, 5,000 to 200,000, 10,000 to 100,000, 20,000 to 80,000, or 40,000 to 60,000 from the viewpoint of resin expulsion during connection (mounting).
  • Mw means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
  • the content of the thermoplastic resin may be, for example, 1% by mass or more, 5% by mass or more, 10% by mass or more, or 20% by mass or more, based on the total mass of the first adhesive composition, and may be 70% by mass or more. % or less, 60% by weight or less, 50% by weight or less, or 40% by weight or less, and may be 1 to 70% by weight, 5 to 60% by weight, 10 to 50% by weight, or 20 to 40% by weight.
  • the filler examples include non-conductive fillers (for example, non-conductive particles).
  • the filler may be either an inorganic filler or an organic filler.
  • the inorganic filler include metal oxide particles such as silica particles, alumina particles, silica-alumina particles, titania particles, and zirconia particles; inorganic particles such as metal nitride particles.
  • the organic filler include organic fine particles such as silicone fine particles, methacrylate/butadiene/styrene fine particles, acrylic/silicone fine particles, polyamide fine particles, and polyimide fine particles.
  • the filler may be fine silica particles, or fine silica particles whose surface has been treated with a silane compound such as phenyltrimethoxysilane or octylsilane.
  • the average particle size of the filler may be 0.25 to 20 ⁇ m.
  • the average particle diameter of the filler is a value measured by a flow type particle image analyzer (for example, FPIA-3000S manufactured by CIMEX Corporation).
  • the content of the filler may be, for example, 0.1 to 10% by mass based on the total mass of the first adhesive composition.
  • Examples of coupling agents include silane coupling agents ( ⁇ -glycidoxypropyltrimethoxysilane, 2-( Examples include silane compounds such as 3,4-epoxycyclohexyl)ethyltrimethoxysilane, tetraalkoxysilane, tetraalkoxy titanate derivatives, and polydialkyl titanate derivatives.
  • silane coupling agents ⁇ -glycidoxypropyltrimethoxysilane, 2-( Examples include silane compounds such as 3,4-epoxycyclohexyl)ethyltrimethoxysilane, tetraalkoxysilane, tetraalkoxy titanate derivatives, and polydialkyl titanate derivatives.
  • the content of the coupling agent may be, for example, 0.1 to 10% by weight based on the total weight of the first adhesive composition.
  • the first adhesive composition may further contain a softener, an accelerator, a deterioration inhibitor, a colorant, a flame retardant, a thixotropic agent, etc. as other components.
  • the content of these components may be, for example, 0.1 to 10% by mass based on the total mass of the first adhesive composition.
  • the second adhesive composition has thermosetting properties. That is, the second adhesive composition contains at least a thermosetting component.
  • the thermosetting component those exemplified as the thermosetting component contained in the first adhesive composition can be used.
  • the thermosetting component may contain a cationic polymerizable compound and a thermal cationic polymerization initiator from the viewpoint of being more effective in reducing connection resistance.
  • the content of the thermal cationic polymerization initiator in the second adhesive composition may be the same as the content of the thermal cationic polymerization initiator in the first adhesive composition.
  • the cationic polymerizable compound may contain both an alicyclic epoxy compound and an oxetane compound from the viewpoint of easily obtaining a desired melt viscosity. Furthermore, from the viewpoint of further improving the connection resistance reduction effect and providing superior connection reliability, an alicyclic epoxy compound and an epoxy compound having an aromatic hydrocarbon group may be used in combination. Furthermore, from the viewpoint of connection reliability of the connected structure, a rubber-modified alicyclic epoxy compound may be used.
  • the content of the thermosetting component (for example, the total content of the polymerizable compound and the thermal polymerization initiator) is based on the total mass of the second adhesive composition, from the viewpoint of ensuring the curability of the adhesive film. For example, it may be 3% by mass or more, 5% by mass or more, 10% by mass or more, or 15% by mass or more. From the viewpoint of ensuring adhesive film formability, the content of the thermosetting component is, for example, 70% by mass or less, 60% by mass or less, 50% by mass or less, or 40% by mass or less, based on the total mass of the adhesive composition. It may be less than % by mass.
  • the content of the thermosetting component is, for example, 3 to 70% by mass, 5 to 60% by mass, 10 to 50% by mass, or 15 to 50% by mass, based on the total mass of the first adhesive composition. It may be 40% by mass. From the same viewpoint as above, the total content of the cationic polymerizable compound and the thermal cationic polymerization initiator may be within the above range.
  • the second adhesive composition may further contain components such as a thermoplastic resin, a filler, and a coupling agent.
  • components such as a thermoplastic resin, a filler, and a coupling agent.
  • these components those exemplified as components that can be included in the first adhesive composition can be used.
  • the content of the thermoplastic resin may be, for example, 1% by mass or more, 5% by mass or more, 10% by mass or more, or 20% by mass or more, based on the total mass of the second adhesive composition, and may be 70% by mass or more. % or less, 60% by weight or less, 50% by weight or less, or 40% by weight or less, and may be 1 to 70% by weight, 5 to 60% by weight, 10 to 50% by weight, or 20 to 40% by weight.
  • the filler may be fine silica particles, or fine silica particles whose surface has been treated with a silane compound such as phenyltrimethoxysilane or octylsilane.
  • the content of the filler may be, for example, 0.1 to 10% by weight, based on the total weight of the second adhesive composition.
  • the adhesiveness of the second adhesive composition tends to be further improved.
  • the content of the coupling agent may be, for example, 0.1 to 10% by weight based on the total weight of the second adhesive composition.
  • the second adhesive composition may further contain a softener, an accelerator, a deterioration inhibitor, a colorant, a flame retardant, a thixotropic agent, and the like.
  • the content of these components may be, for example, 0.1 to 10% by mass based on the total mass of the second adhesive composition.
  • the second adhesive composition may contain ⁇ -caprolactam as a thermosetting reaction rate regulator.
  • the content of ⁇ -caprolactam may be, for example, 0.005 to 0.1% by mass based on the total mass of the second adhesive composition.
  • the second adhesive composition may contain tributylborate as an additive.
  • Tributylborate can function as, for example, a viscosity modifier.
  • the content of tributylborate may be, for example, 0.1 to 2.0% by weight based on the total weight of the second adhesive composition.
  • the conductive particles 3 are particles having conductivity.
  • metal particles made of metal such as Au, Ag, Ni, Cu, and solder, conductive carbon particles made of conductive carbon, and the like can be used.
  • the conductive particles 3 may be coated conductive particles comprising a core containing non-conductive glass, ceramic, plastic (polystyrene, etc.), and a coating layer containing the above-mentioned metal or conductive carbon and covering the core. .
  • the first becomes easy to deform the adhesive layer by heating or applying pressure. Therefore, when electrically connecting the electrodes, the contact area between the electrodes and the conductive particles can be increased, and the conductivity between the electrodes can be further improved.
  • the conductive particles 3 may be insulating coated conductive particles that include the above metal particles, conductive carbon particles, or coated conductive particles and an insulating layer that includes an insulating material such as a resin and covers the surface of the particles. .
  • the conductive particles 3 are insulating coated conductive particles, even if the conductive particle content is large, the surface of the particles is coated with resin, so it is possible to suppress the occurrence of short circuits due to contact between the conductive particles, and , it is also possible to improve the insulation between adjacent electrode circuits.
  • the average particle diameter of the conductive particles 3 may be 1.0 to 50.0 ⁇ m.
  • the particle diameter of the conductive particles 3 is C. V.
  • the value may be 25% or less.
  • the conductive particles 3 have an average particle diameter of 1.0 to 50.0 ⁇ m, and a particle diameter of C. V.
  • the particles may have a value of 25% or less.
  • the average particle diameter of the conductive particles is the average value of the particle diameters in the embedding direction of the conductive particles measured by the method described above, and the C.I. V.
  • the value is the C. V. It is a value. Particle size C. V.
  • the value is a value calculated by dividing the standard deviation of particle diameter by the average particle diameter and multiplying by 100, and is a parameter indicating the degree of variation in particle diameter.
  • Particle size C. V. A small value means that there is little variation in particle size.
  • V. The value can be measured by observing a longitudinal section (cross section in the thickness direction) of the circuit-connecting adhesive film using a scanning electron microscope (SEM) in the same manner as the method for measuring the particle embedding rate.
  • SEM scanning electron microscope
  • the average particle diameter of the conductive particles 3 may be 2.0 ⁇ m or more or 4.0 ⁇ m or more from the viewpoint of lowering resistance.
  • the average particle diameter of the conductive particles 3 may be 40.0 ⁇ m or less or 25.0 ⁇ m or less from the viewpoint of connection reliability of the connected structure. From these viewpoints, the average particle diameter of the conductive particles 3 may be 2.0 to 40.0 ⁇ m or 4.0 to 25.0 ⁇ m.
  • C. of particle diameter of conductive particles 3 V The value may be 20% or less or 15% or less from the viewpoint of connection reliability of the connection structure.
  • the lower limit of the value is preferably as small as possible, and may be 0%, 1% or 3%.
  • the value may be, for example, 0-25%, 1-20% or 3-15%.
  • the ratio of the thickness of the circuit-connecting adhesive film 10 to the average particle diameter of the conductive particles 3 may be 1.1 or more from the viewpoint of not exposing the conductive particles 3 from the surface of the circuit-connecting adhesive film 10. It may be 1.5 or more, 2.0 or more, or 2.5 or more.
  • the ratio of the thickness of the circuit connection adhesive film 10 to the average particle diameter of the conductive particles 3 may be 10.0 or less, 8.0 or less, 5.0 or less, or 3.0 or less, from the viewpoint of reducing resistance. It may be 0 or less. From these viewpoints, the ratio of the thickness of the circuit connecting adhesive film 10 to the average particle diameter of the conductive particles 3 may be 1.1 to 10.0, 1.5 to 8.0, 2.0. ⁇ 5.0, 2.5 ⁇ 5.0, or 1.5 ⁇ 3.0.
  • the particle density of the conductive particles 3 may be 5,000 particles/mm 2 or more, 10,000 particles/mm 2 or more, or 20,000 particles/mm 2 or more from the viewpoint of easily obtaining stable connection resistance.
  • the particle density of the conductive particles 3 may be 50,000 particles/mm 2 or less, 40,000 particles/mm 2 or less, or 30,000 particles/mm 2 or less from the viewpoint of improving the insulation between adjacent electrodes. From these viewpoints, the particle density of the conductive particles 3 may be 5,000 to 50,000 particles/mm 2 , 10,000 to 40,000 particles/mm 2 or 20,000 to 30,000 particles/mm 2 .
  • the content of the conductive particles 3 is, for example, 40% by mass or more, 50% by mass or more, or 60% by mass or more, based on the total mass of the circuit connection adhesive film 10. It may be. From the viewpoint of easily suppressing short circuits, the content of the conductive particles 3 may be, for example, 80% by mass or less, 75% by mass or less, or 70% by mass or less, based on the total mass of the circuit connection adhesive film 10. . From these viewpoints, the content of the conductive particles 3 may be, for example, 40 to 80% by mass, 50 to 75% by mass, or 60 to 70% by mass, based on the total mass of the circuit connection adhesive film 10. .
  • the circuit connection adhesive film is not limited to the above embodiment.
  • a plurality of conductive particles present in the circuit-connecting adhesive film may not be arranged in a predetermined pattern when the circuit-connecting adhesive film is viewed from above.
  • the adhesive film for circuit connection may further include an adhesive layer other than the first adhesive layer and the second adhesive layer.
  • a method for producing an adhesive film for circuit connection includes preparing a first adhesive film comprising a first adhesive layer and conductive particles partially embedded in one side of the first adhesive layer. and a step (II) of providing a second adhesive layer on one side of the first adhesive layer, the step (I) comprising a precursor comprising an externally stimulated curable composition.
  • the method includes a curing step of curing the precursor layer by external stimulation to form a first adhesive layer in a state where the conductive particles are partially embedded in one side of the body layer.
  • Step (I) may further include a transfer step of transferring the conductive particles from the substrate to the precursor layer by providing the precursor layer on the surface of the substrate on which a plurality of conductive particles are arranged. . By performing the transfer step, it becomes easy to embed adjacent conductive particles in the precursor layer in a state where they are separated from each other.
  • Step (I) may further include, before the transfer step, a heating step of heating the layer containing the external stimulation curable composition at 50 to 70° C. for 3 to 60 minutes.
  • a heating step of heating the layer containing the external stimulation curable composition at 50 to 70° C. for 3 to 60 minutes.
  • Step (I) may further include, after the transfer step, a pressurizing step of applying pressure to the surface of the precursor layer to which the conductive particles have been transferred.
  • a pressurizing step of applying pressure to the surface of the precursor layer to which the conductive particles have been transferred.
  • the conductive particles can be further embedded in the precursor layer, and the particle embedding rate can be increased. If a sufficient particle embedding rate is obtained in the transfer process, the pressurizing process may not be performed.
  • circuit-connecting adhesive film 10 of the above embodiment taking as an example the method for manufacturing the circuit-connecting adhesive film 10 of the above embodiment. Note that the descriptions that overlap with those described for the circuit connection adhesive film 10 of the above embodiment, such as details of the first adhesive layer, conductive particles, second adhesive layer, external stimulus curable composition, etc. Omitted.
  • FIG. 4 is a schematic diagram showing the transfer step in step (I).
  • FIG. 5 is a schematic diagram showing the pressurizing step in step (I).
  • FIG. 6 is a schematic diagram showing the curing step in step (I).
  • FIG. 7 is a schematic diagram showing step (II).
  • Step (I) [Substrate preparation]
  • a film provided with a precursor layer containing an externally stimulated curable composition and a substrate on which a plurality of conductive particles are arranged are prepared.
  • the laminated film 12 shown in FIG. 4(a) can be used as the film provided with the precursor layer containing the externally stimulated curable composition.
  • the laminated film 12 includes a first support 21 and a precursor layer 11 provided on the first support 21.
  • the first support 21 may be a plastic film or a metal foil.
  • the first support 21 include oriented polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polybutylene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, polyimide, and cellulose.
  • OPP oriented polypropylene
  • PET polyethylene terephthalate
  • PET polyethylene naphthalate
  • polyethylene isophthalate polybutylene terephthalate
  • polyolefin polyacetate
  • polycarbonate polyphenylene sulfide
  • polyamide polyimide
  • cellulose cellulose
  • ethylene/vinyl acetate copolymer polyvinyl chloride, polyvinylidene chloride, synthetic rubber, liquid crystal polymer, or the like may be used as a base material (for example, a film).
  • the precursor layer 11 is formed by applying an external stimulus-curable composition or its solution (varnish) onto the first support 21, and optionally heating the obtained layer (layer containing the external stimulus-curable composition). It can be formed by drying.
  • the varnish is prepared by mixing the components of the external stimuli-curable composition in an organic organic solvent. Coating can be performed using a knife coater, roll coater, applicator, comma coater, die coater, or the like.
  • the heating conditions for volatilizing the organic solvent from the varnish applied to the base material can be set depending on the type of organic solvent used, but in this embodiment, the heating conditions From the viewpoint of adjusting the particle embedding rate, drying may be performed for a longer time than usual.
  • the heating conditions may be, for example, 50 to 70°C for 3 to 60 minutes. However, the heating conditions can be adjusted depending on the desired melt viscosity of the precursor layer 11.
  • the minimum melt viscosity of the precursor layer 11 may be 30 to 10,000 Pa ⁇ s, or 50 to 5,000 Pa ⁇ s.
  • the minimum melt viscosity of the precursor layer is determined, for example, by laminating a plurality of precursor layers to a thickness of 300 ⁇ m to 500 ⁇ m using a laminator (Leon 13DX (Lamy Corporation)), and then applying , can be determined by performing viscoelasticity measurement using ARES-G2 (TA instruments).
  • the lamination conditions of the precursor layer are, for example, 50° C., paper passing speed of 1 m/min, and device setting S8.
  • Viscoelasticity measurement is performed, for example, in the measurement temperature range of 0°C to 200°C.
  • the lowest value of the measured melt viscosities (Pa ⁇ s) is taken as the minimum melt viscosity.
  • the precursor layer is heated at 20°C. It is preferable to exhibit a complex viscosity of 1,000 to 10,000 Pa ⁇ s at a temperature in the range of ⁇ 80°C. Near 2,000 Pa ⁇ s (for example, 1,500 to 3,000 Pa ⁇ s) at a temperature in the range of 40°C to 70°C. More preferably, it exhibits a complex viscosity of .
  • the organic solvent used in preparing the varnish is not particularly limited as long as it has the property of substantially uniformly dissolving or dispersing the components of the external stimulation-curable composition.
  • organic solvents include toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate, and the like. These organic solvents can be used alone or in combination of two or more. Mixing during the preparation of the varnish can be carried out using, for example, a stirrer, a miller, a three-roll mill, a ball mill, a bead mill, a homodisper, or the like.
  • the base 22 shown in FIG. 4(a) can be used as the base.
  • the base body 22 has a plurality of recesses on its surface in which conductive particles are arranged.
  • the plurality of recesses are, for example, regularly arranged in a predetermined pattern (for example, a pattern corresponding to the electrode pattern of the circuit member).
  • a predetermined pattern for example, a pattern corresponding to the electrode pattern of the circuit member.
  • the shape and size of the recessed portion of the base body 22 can be set from the viewpoints of the shape and size of the conductive particles, the embedding rate of the particles in the first adhesive layer, and the like.
  • the material constituting the base body 22 for example, inorganic materials such as silicon, various ceramics, glass, metals such as stainless steel, and organic materials such as various resins can be used.
  • the method of arranging (accommodating) the conductive particles 3 in the recesses of the base body 22 is not particularly limited. For example, by placing the conductive particles 3 on the surface of the base 22 and rubbing the surface of the base 22 using a squeegee or a slightly adhesive roller, the conductive particles 3 are placed in the recesses while removing excess conductive particles 3. can do.
  • Examples of methods for removing excess solder particles include blowing compressed air and rubbing the surface of the substrate 22 with a nonwoven fabric or a bundle of fibers.
  • the conductive particles 3 may be arranged in the recesses by forming the conductive particles 3 within the recesses of the base body 22 .
  • a base body having a support portion (such as a needle) on its surface that can fix the conductive particles can also be used.
  • the first particle-attached laminate film 13 includes a first support 21 , a precursor layer 11 , and conductive particles 3 partially embedded in the precursor layer 11 .
  • Examples of methods for bonding the laminated film 12 and the base 22 include hot pressing, roll lamination, vacuum lamination, and the like.
  • Lamination can be performed, for example, at a temperature of 0 to 80°C.
  • the temperature during transfer may be the lowest temperature at which the particle transfer rate to the precursor layer 11 is 98% or more.
  • the precursor layer 11 may be formed by directly applying an externally stimulated curable composition or its solution (varnish) to the substrate 22.
  • Pressure process Next, pressure is applied to the surface of the precursor layer 11 onto which the conductive particles 3 have been transferred. Specifically, for example, as shown in FIG. 5A, after the protective film 23 is attached to the surface of the precursor layer 11 to which the conductive particles 3 are transferred, the first support 21 side and the protective film 23 are attached. Pressure (P1 and P2 in FIG. 5(a)) is applied to the first particle-attached laminated film 13 from the film 23 side. As a result, the conductive particles 3 are further embedded in the precursor layer, and a second particle-attached laminated film 14 shown in FIG. 5(b) is obtained.
  • the protective film 23 for example, a release film whose surface has been subjected to a release treatment can be used. Depending on the type of precursor layer 11, the protective film 23 may not be used.
  • Examples of methods for applying pressure include pressing, roll lamination, vacuum lamination, and the like.
  • the pressure may be between 0.1 and 10 MPa.
  • the pressurization time may be 0.5 to 20 seconds.
  • heating may be performed simultaneously with pressurizing.
  • the temperature during pressurization may be, for example, 20 to 70°C.
  • an external stimulus is applied to the precursor layer 11 containing the external stimulus-curable composition to cure the precursor layer.
  • the precursor layer 11 is irradiated with light (actinic rays) 24 as shown in FIG. This causes the precursor layer 11 to harden.
  • the first adhesive film 15 shown in FIG. 6(b) is obtained.
  • the first adhesive film 15 is attached to the first support 21, the first adhesive layer 1, and one side of the first adhesive layer 1 (the opposite side to the first support 21). and partially embedded conductive particles 3.
  • irradiation light for example, ultraviolet light
  • Light irradiation can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, an LED light source, or the like.
  • the amount of light irradiation is not particularly limited, and the cumulative amount of light with a wavelength of 350 nm may be 100 mJ/cm 2 or more, 200 mJ/cm 2 or more, or 300 mJ/cm 2 or more.
  • the amount of light irradiation may be 10,000 mJ/cm 2 or less, 5,000 mJ/cm 2 or less, or 3,000 mJ/cm 2 or less as an integrated amount of light with a wavelength of 365 nm.
  • the second laminated film 14 with particles is used, but if the pressurizing process is not performed, the first laminated film 13 with particles can be used instead of the second laminated film 14 with particles. good. Further, in the curing step, heat treatment may be performed in place of or in addition to light irradiation.
  • step (II) In step (II), first, a film provided with the second adhesive layer 2 is prepared. As the film including the second adhesive layer 2, a second adhesive film 16 shown in FIG. 7(a) can be used.
  • the second adhesive film 16 includes a second support 25 and a second adhesive layer 2 provided on the second support 25.
  • the base material exemplified as the first support 21 can be used.
  • the second adhesive layer 2 can be formed in the same manner as the precursor layer 11, except that the second adhesive composition is used instead of the external stimulation curable composition.
  • a second adhesive layer is applied to the first adhesive layer 1 side of the first adhesive film 15 prepared in step (I) (the side opposite to the support 21 of the first adhesive layer 1).
  • the second adhesive film 16 is attached from the second side, and the second adhesive layer 2 is laminated on the first adhesive layer 1 (see FIG. 7).
  • a support-attached circuit connection adhesive film 17 shown in FIG. 7(b) is obtained.
  • the circuit connection adhesive film 17 with a support includes a first support 21 , a circuit connection adhesive film 10 , and a second support 25 .
  • Examples of methods for bonding the first adhesive film 15 and the second adhesive film 16 include methods such as hot pressing, roll lamination, and vacuum lamination. Lamination can be performed, for example, at a temperature of 0 to 80°C.
  • step (II) the second adhesive composition or its solution (varnish) is applied to the first adhesive layer 1 in the same manner as in the method of forming the second adhesive layer on the second support 25.
  • the second adhesive layer 2 may be provided on the first adhesive layer 1 by directly applying the second adhesive layer 2 to the first adhesive layer 1.
  • connection structure includes a first circuit member having a first electrode, a second circuit member having a second electrode electrically connected to the first electrode, and a first circuit member having a first electrode and a second electrode.
  • the device includes a connection portion that electrically connects the electrodes to each other via conductive particles and adheres the first circuit member and the second circuit member.
  • the connection portion includes a cured product of a circuit connection adhesive film.
  • a method for manufacturing a connected structure includes a method for manufacturing a first circuit member having a first electrode on which the first electrode is provided, and a second circuit member having the second electrode on which the second electrode is provided. a laminate including a first circuit member, a circuit connection adhesive film, and a second circuit member; By heating the first electrode and the second electrode while being pressed in the direction, the first electrode and the second electrode are electrically connected to each other via the conductive particles, and the first circuit member and the second circuit member are bonded together. and include.
  • connection structure circuit connection structure
  • circuit connection adhesive film 10 as a connection material
  • a method for manufacturing the same will be exemplified. The manufacturing method will be explained.
  • FIG. 8 is a schematic cross-sectional view showing one embodiment of the connected structure.
  • the connection structure 100 includes a first circuit board 31 and a first circuit member 33 having a first electrode 32 formed on the main surface 31a of the first circuit board 31; A second circuit member 36 having a second circuit board 34 and a second electrode 35 formed on the main surface 34a of the second circuit board 34, and a first electrode 32 and a second electrode 35. It includes a connecting portion 40 that is electrically connected to each other via conductive particles 43 and that adheres the first circuit member 33 and the second circuit member 36.
  • the first circuit member 33 and the second circuit member 36 may be the same or different from each other.
  • the first circuit member 33 and the second circuit member 36 may be a glass substrate or a plastic substrate on which circuit electrodes are formed; a printed wiring board; a ceramic wiring board; a flexible wiring board; an IC chip such as a driving IC; It's fine.
  • the first circuit board 31 and the second circuit board 34 may be formed of a semiconductor, an inorganic material such as glass or ceramic, an organic material such as polyimide or polycarbonate, or a composite material such as glass/epoxy.
  • the first circuit board 31 may be a plastic board.
  • the first circuit member 33 may be, for example, a plastic substrate (a plastic substrate made of an organic material such as polyimide, polycarbonate, polyethylene terephthalate, or cycloolefin polymer) on which circuit electrodes are formed, and the second circuit member 33 may be a plastic substrate on which circuit electrodes are formed.
  • the member 36 may be, for example, an IC chip such as a driving IC.
  • a display area is formed by, for example, pixel drive circuits such as organic TFTs or a plurality of organic EL elements R, G, B being regularly arranged in a matrix on the plastic substrate. It may be something like that.
  • the first electrode 32 and the second electrode 35 are made of metals such as gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, aluminum, molybdenum, titanium, etc., indium tin oxide (ITO),
  • the electrode may include an oxide such as indium zinc oxide (IZO) or indium gallium zinc oxide (IGZO).
  • the first electrode 32 and the second electrode 35 may be electrodes formed by laminating two or more of these metals, oxides, etc.
  • the electrode formed by laminating two or more types may have two or more layers, or may have three or more layers.
  • the first electrode 32 and the second electrode 35 may be circuit electrodes or bump electrodes. In FIG. 8, the first electrode 32 is a circuit electrode, and the second electrode 35 is a bump electrode.
  • the total value of the height of the first electrode 32 and the height of the second electrode 35 is smaller than the average particle diameter of the conductive particles 3 in the circuit connection adhesive film used to form the connection part 40. good.
  • the total value may be, for example, 30 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, 5 ⁇ m or less, less than 4 ⁇ m, less than 3 ⁇ m, less than 2 ⁇ m, or less than 1 ⁇ m.
  • the height of the first electrode 32 (for example, the height of the circuit electrode) may be, for example, 0.05 to 5.0 ⁇ m, 0.1 to 4.0 ⁇ m, or 0.5 to 3.0 ⁇ m.
  • the height of the second electrode 35 (for example, the height of the bump electrode) may be, for example, 0.5 to 25.0 ⁇ m, 2.0 to 15.0 ⁇ m, or 5.0 to 10.0 ⁇ m.
  • the connection portion 40 is a cured product of the circuit connection adhesive film 10.
  • the connecting portion 40 is located on the first circuit member 33 side in the direction in which the first circuit member 33 and the second circuit member 36 face each other, and includes a cured product of the first adhesive layer 1.
  • the first region 41 is located on the second circuit member 36 side in the direction in which the first circuit member 33 and the second circuit member 36 face each other, and includes a cured product of the second adhesive layer 2.
  • the conductive particles 43 that are interposed between the second region 42 and the first electrode 32 and the second electrode 35 and electrically connect the first electrode 32 and the second electrode 35 to each other are adjacent to each other. It has conductive particles 3 located between the electrodes.
  • the connecting part 40 does not have to have two distinct areas between the first area 41 and the second area 42, for example, the first adhesive layer 1 and the second adhesive layer It may include a hardened region in which layer 2 is mixed.
  • connection structure examples include a color display in which a plastic substrate on which minute LED elements (light emitting elements) are regularly arranged and a drive circuit element that is a driver for displaying an image is connected;
  • a micro LED display device such as a touch panel in which a regularly arranged plastic substrate and a position input element such as a touch pad are connected.
  • the connected structure may be an organic EL display device in which the LED elements are organic EL elements.
  • the connection structure can also be applied to various monitors such as smart phones, tablets, televisions, vehicle navigation systems, and wearable terminals; furniture; home appliances; daily necessities, and the like.
  • FIG. 9 is a schematic cross-sectional view showing an embodiment of a method for manufacturing the connected structure 100.
  • FIGS. 9A and 9B are schematic cross-sectional views showing each step.
  • the method for manufacturing the connection structure 100 includes a surface where the first electrode 32 of the first circuit member 33 is provided, and a surface where the second electrode 35 of the second circuit member 36 is provided.
  • a laminate including the first circuit member 33, the circuit connection adhesive film 10, and the second circuit member 36. is heated while being pressed in the thickness direction of the laminate, thereby electrically connecting the first electrode 32 and the second electrode 35 to each other via the conductive particles 43, and forming the first circuit. This includes adhering the member 33 and the second circuit member 36.
  • the first circuit member 33 including the first circuit board 31 and the first electrode 32 formed on the main surface 31a of the first circuit board 31, and the second circuit board 34 and a second circuit member 36 including a second electrode 35 formed on the main surface 34a of the second circuit board 34.
  • the first circuit member 33 and the second circuit member 36 are arranged so that the first electrode 32 and the second electrode 35 face each other, and the first circuit member 33 and the second circuit member
  • the circuit connection adhesive film 10 is placed between the circuit connection member 36 and the circuit connection adhesive film 10 .
  • the circuit connecting adhesive film 10 is attached to the first circuit member with the first adhesive layer 1 side facing the main surface 31a of the first circuit board 31. Laminate on 33.
  • the circuit connection adhesive film 10 was laminated so that the first electrode 32 on the first circuit board 31 and the second electrode 35 on the second circuit board 34 faced each other.
  • a second circuit member 36 is placed on the first circuit member 33.
  • FIG. 9(b) a laminate in which the first circuit member 33, the circuit connection adhesive film 10, and the second circuit member 36 are laminated in this order is formed into the laminate.
  • the first circuit member 33 and the second circuit member 36 are thermocompression bonded to each other.
  • the flowable uncured thermosetting components contained in the first adhesive layer 1 and the second adhesive layer 2 are adjacent to each other. It flows so as to fill the gaps between the electrodes (the gaps between the first electrodes 32 and the gaps between the second electrodes 35), and is cured by the heating.
  • the first electrode 32 and the second electrode 35 are electrically connected to each other via the conductive particles 43, and the first circuit member 33 and the second circuit member 36 are bonded to each other.
  • a connected structure 100 shown in 8 is obtained.
  • the temperature and time during thermocompression bonding may be any temperature that can sufficiently cure the circuit connection adhesive film 10 and bond the first circuit member 33 and the second circuit member 36.
  • the thermocompression bonding temperature may be 150 to 200°C.
  • the thermocompression bonding time may be 4 to 7 seconds.
  • A cationic polymerizable compound
  • A1 Celoxide 8010 (bi-7-oxabicyclo[4.1.0]heptane, manufactured by Daicel Corporation, epoxy equivalent: about 100 g/eq)
  • A2 ETERNACOLL OXBP (4,4'-bis[3-ethyl-3-oxetanyl]methoxymethyl]biphenyl, manufactured by Ube Industries, Ltd.)
  • ⁇ A3: jER1010 bisphenol A type solid epoxy resin, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 3000 to 5000 g/eq, number average molecular weight: 5500
  • A4 jER1007 (bisphenol A type solid epoxy resin, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 1750 to 2200 g/eq)
  • C radically polymerizable compound
  • C1 NK ester A-BPEF (9,9-bi[4-(2-acryloyloxyethoxy)phenyl]fluorene, manufactured by Shin Nakamura Chemical Co., Ltd.)
  • C2 Lipoxy VR-90 (bisphenol A type epoxy methacrylate, manufactured by Showa Denko K.K.)
  • E thermoplastic resin
  • E1 YP-70 (bisphenol A/bisphenol F copolymerized phenoxy resin, manufactured by Nippon Steel Chemical & Materials Co., Ltd., weight average molecular weight: 50,000 to 60,000, Tg: 70 to 80°C)
  • E2 Phenoxy resin P-1 synthesized below
  • thermosetting reaction rate regulator H1: ⁇ -caprolactam (manufactured by Fujifilm Wako Pure Chemical Industries)
  • I1 Conductive particles in which a nickel layer with a thickness of 0.20 ⁇ m is formed on the surface of a core (particle) made of plastic (crosslinked polystyrene) (average particle size: 3.0 ⁇ m, C.V. value of particle size: 4.2%, specific gravity: 2.5)
  • the number average molecular weight Mn and the weight average molecular weight Mw of the phenoxy resin P-1 are polystyrene equivalent molecular weights measured under the following conditions using a high performance liquid chromatograph GP8020 manufactured by Tosoh Corporation. [conditions] ⁇ Column: Gelpak GL-A150S and GLA160S manufactured by Showa Denko Materials Co., Ltd. ⁇ Eluent: Tetrahydrofuran ⁇ Flow rate: 1.0ml/min
  • a substrate (PET film, thickness: 55 ⁇ m) having a plurality of recesses on its surface was prepared.
  • the concave part of the base body has a truncated conical shape with the opening area expanding toward the surface side of the base body (when viewed from the top of the opening, the center of the bottom and the center of the opening are the same), the opening diameter is 4.3 ⁇ m ⁇ , and the bottom diameter is 4.3 ⁇ m ⁇ . was 4.0 ⁇ m ⁇ , and the depth was 4.0 ⁇ m.
  • the plurality of recesses on the base were regularly formed in a three-sided array with an interval of 6.2 ⁇ m (distance between the centers of each bottom) so that 29,000 recesses were formed per 1 mm square.
  • Step (I) [Formation of precursor layer]
  • the materials shown in Table 1 were mixed to have the composition shown in Table 1 to prepare an external stimulation curable composition.
  • the blending amounts in Table 1 indicate the solid content.
  • the obtained external stimulation curable composition was mixed with an organic solvent (2-butanone) to obtain a varnish.
  • this varnish was applied to a PET film with a thickness of 38 ⁇ m that had been treated with silicone mold release, and was dried with hot air at 60°C for 3 minutes using an explosion-proof dryer (DFB-80S, manufactured by Futaba Scientific Co., Ltd.) to remove the precursor.
  • a body layer was formed on the PET film. Thereby, a laminated film including a PET film and a precursor layer was obtained.
  • Conductive particles (I1) are placed on the surface of the substrate prepared in advance on which the recesses are formed, and the excess conductive particles are removed by rubbing the surface of the substrate with the recesses with a slightly adhesive roller. Conductive particles were placed only within the recesses.
  • the substrate was placed on a heated hot plate (HP-2SA, manufactured by As One Co., Ltd.), and the surface of the substrate on which the concave portion was formed was opposed to the surface of the laminated film on the precursor layer side.
  • the substrate and the laminated film were bonded together using a squeegee, and the conductive particles were transferred to the precursor layer.
  • a first particle-attached laminate film including a PET film, a precursor layer, and conductive particles partially embedded in the precursor layer was obtained.
  • the heating temperature of the hot plate was set to the lowest temperature at which the particle transfer rate to the precursor layer was 98% or higher.
  • the precursor layer is irradiated with ultraviolet rays from the side opposite to the PET film of the first laminated film with particles, and the light in the precursor layer is The curable components (radical polymerizable compound and radical photopolymerization initiator) were reacted and cured.
  • a first adhesive film comprising a PET film, a first adhesive layer, and conductive particles partially embedded in the first adhesive layer was obtained.
  • the exposure illuminance was 250 ⁇ 10 mW/cm 2
  • the cumulative amount of light with a wavelength of 350 nm was 1500 ⁇ 50 mJ/cm 2 .
  • the exposure illuminance and integrated light amount were measured using an ultraviolet integrated light meter (UIT-250, manufactured by Ushio Inc.).
  • Step (II) [Preparation of second adhesive film]
  • a second adhesive composition was prepared by mixing the materials shown in Table 2 to have the composition shown in Table 2.
  • the blending amounts in Table 2 indicate the solid content.
  • the obtained second adhesive composition was mixed with an organic solvent (2-butanone) to obtain a varnish.
  • this varnish was applied to a 38 ⁇ m thick PET film treated with silicone mold release, and dried with hot air at 60°C for 3 minutes using an explosion-proof dryer (DFB-80S, manufactured by Futaba Scientific Co., Ltd.).
  • a second adhesive layer was formed on the PET film. Thereby, a second adhesive film including a PET film and a second adhesive layer was obtained.
  • the second adhesive film was pasted from the second adhesive layer side to the first adhesive layer side of the first adhesive film produced in step (I), and a hot roll laminator (Leon13DX, Inc.) was applied. (manufactured by Lamy Corporation) at a temperature of 50°C. Thereby, the adhesive film for circuit connection of Example 1 (the adhesive film for circuit connection with PET film) was obtained.
  • a hot roll laminator Leon13DX, Inc.
  • a circuit connection adhesive film is sandwiched between two pieces of glass (thickness: approximately 1 mm), and 100 g of bisphenol A epoxy resin (product name: jER811, manufactured by Mitsubishi Chemical Corporation) and a curing agent (product name: Epomount) are added.
  • the cross section was polished using a polishing machine to expose the longitudinal section (cross section in the thickness direction) of the circuit connection adhesive film.
  • a cross-sectional image was obtained by observation using a scanning electron microscope (SEM, trade name: SE-8020, manufactured by Hitachi High-Tech Science Co., Ltd.) at a magnification of 5,000 times.
  • SEM scanning electron microscope
  • conductive particles have a maximum particle diameter L in the direction of embedding the conductive particles and a particle diameter L that is 0.85 to 1.00 times that of the conductive particles.
  • the embedding ratio of conductive particles was determined, and the average value thereof was calculated. By performing the same operation on any 100 cross sections and further averaging the average value of the conductive particle embedding ratio calculated for each cross section, the conductive particle embedding ratio (particle embedding rate) was calculated. The results are shown in Table 3.
  • the adhesive film for evaluation was attached to a cover glass manufactured by Matsunami Glass Industries (thickness: 0.05 mm) from the first adhesive layer side. 15 mm, width 18 mm, depth 18 mm), and using a thermocompression bonding device LD-06 manufactured by Ohashi Manufacturing Co., Ltd., apply the second adhesive under the conditions of a compression temperature of 70°C, a compression pressure of 0.1 MPa, and a compression time of 1.0 s.
  • a temporary fixed body cover glass/evaluation adhesive film/PET film
  • the compression temperature is the temperature reached when compression is performed for 1 second
  • the compression pressure is the area-converted pressure of the adhesive film for evaluation.
  • a cover glass manufactured by Matsunami Glass Industries was placed on the second adhesive layer. was placed thereon to obtain a laminate (cover glass/evaluation adhesive film/cover glass).
  • the laminate was thermocompression bonded from the second adhesive layer side under conditions of a bonding temperature of 160° C., a bonding pressure of 2 MPa, and a bonding time of 5 seconds to obtain a bonded body.
  • the compression temperature is the maximum temperature reached by the evaluation adhesive film
  • the compression pressure is the area-converted pressure of the evaluation adhesive film.
  • a dummy sample (the same laminate as the evaluation laminate) is prepared separately, and a thin temperature sensor (Rika ST-50D (manufactured by Kogyo Co., Ltd.) was sandwiched and thermocompression bonded, and the maximum temperature of the adhesive film in the dummy sample was adjusted by measuring in advance.
  • Example 2 An adhesive film for circuit connection was prepared in the same manner as in Example 1, except that the amount of the second adhesive composition used and the coating method were changed so that the thickness of the second adhesive layer was 15 ⁇ m. I got it. Further, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3. In addition, the average particle diameter and C.I. of the particle diameter of the conductive particles in the circuit connection adhesive film. V. It was confirmed that the values were the same as in Example 1.
  • Example 3 A circuit connection adhesive film was obtained in the same manner as in Example 1, except that a pressure step was performed after the transfer step and before the curing step.
  • a release film (A3171 manufactured by Toyobo Co., Ltd., thickness: 50 ⁇ m) whose surface has been subjected to release treatment is placed on both sides of the first particle-coated laminate film, and then the obtained laminate is This was done by sandwiching the film while applying a temperature of 35° C. using a hot roll laminator (Leon 13DX, manufactured by Lamy Corporation). Further, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3. In addition, the average particle diameter and C.I. of the particle diameter of the conductive particles in the circuit connection adhesive film. V. It was confirmed that the values were the same as in Example 1.
  • Examples 4, 6 to 8> An adhesive film for circuit connection was obtained in the same manner as in Example 1, except that the drying time when forming the precursor layer was changed as shown in Table 3. Further, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3. In addition, the average particle diameter and C.I. of the particle diameter of the conductive particles in the circuit connection adhesive film. V. It was confirmed that the values were the same as in Example 1.
  • Example 5 An adhesive film for circuit connection was obtained in the same manner as in Example 3, except that the drying time when forming the precursor layer was changed as shown in Table 3. Further, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3. In addition, the average particle diameter and C.I. of the particle diameter of the conductive particles in the circuit connection adhesive film. V. It was confirmed that the values were the same as in Example 1.
  • Example 10 Circuit connection was carried out in the same manner as in Example 3, except that the drying time when forming the precursor layer was changed as shown in Table 3, and the heating temperature in the pressurization step was changed to 50°C. An adhesive film for use was obtained. Further, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3. In addition, the average particle diameter and C.I. of the particle diameter of the conductive particles in the circuit connection adhesive film. V. It was confirmed that the values were the same as in Example 1.
  • ⁇ Comparative example 1> In the same manner as in Example 1, a laminated film including a PET film and a precursor layer, and a second adhesive film including a PET film and a second adhesive layer were prepared. Next, a transfer step was performed in the same manner as in Example 1 except that a second adhesive film was used instead of the laminated film, and the conductive particles were transferred to the second adhesive layer. Next, a lamination step was carried out in the same manner as in Example 1, and a precursor layer was laminated on the second adhesive layer to which the conductive particles were transferred. Next, in the same manner as in Example 1, a curing step was performed to cure the precursor layer and form a first adhesive layer. Thereby, an adhesive film for circuit connection was obtained. In addition, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3.
  • a circuit board was prepared in which ITO circuit electrodes (pattern width 20 ⁇ m, inter-electrode space 10 ⁇ m) were formed on the surface of a glass substrate (#1737 manufactured by Corning, 38 mm ⁇ 28 mm, thickness 0.5 mm).
  • the adhesive film for circuit connection is cut out into a square shape of 2.0 mm x 2.0 mm, and after peeling off the PET film on the first adhesive layer side of the adhesive film for circuit connection, the adhesive film for circuit connection is cut out.
  • the circuit-connecting adhesive film was temporarily pressed onto the circuit board so that the first adhesive layer was in contact with the surface of the circuit board on which the circuit electrodes were formed, to obtain a temporarily pressed body.
  • Temporary pressure bonding was performed by heating and pressurizing the circuit connection adhesive film for 1 second under the conditions of a measured maximum temperature of 70° C. and a pressure of 1 MPa in terms of adhesive film area. After the temporary pressure bonding, the PET film on the second adhesive layer side was pinched with tweezers and peeled off from the second adhesive layer.
  • an IC chip with bump electrodes arranged (outer diameter 0.5 mm x 0.5 mm, thickness 0.4 mm, bump electrode area 400 ⁇ m 2 (length 20 ⁇ m x width 20 ⁇ m), space between bump electrodes 10 ⁇ m, bump electrode height 2 ⁇ m ), and after aligning the bump electrodes of the IC chip and the circuit electrodes of the glass substrate, the conditions of the measured maximum temperature of the circuit connection adhesive film of 160°C and the area-converted pressure of the bump electrodes of 125 MPa were applied.
  • the second adhesive layer was attached to the IC chip by heating and pressing for 5 seconds. Thereby, a circuit connection structure was obtained.
  • connection resistance evaluation The resistance value between the opposing electrodes of the circuit connection structure (between the bump electrode and the circuit electrode) was measured using a four-terminal measurement method using a multimeter (MLR21, manufactured by Kusumoto Kasei Co., Ltd.), and the resistance value was measured at 14 locations. The connection resistance was evaluated by comparing the average value of the measured values (initial mounting resistance value).
  • the number of conductive particles contained in the same area at the same location (5 locations) as the observed location of the temporarily crimped body was counted, and the obtained conductive
  • the average value vA2 of the number of particles at five locations was determined.
  • the particle residual rate x (v A2 /v A1 ⁇ 100) was calculated. Based on the obtained particle residual rate x, the trapping performance of the conductive particles was evaluated according to the following criteria. 5: x ⁇ 98% 4:90% ⁇ x ⁇ 98% 3:75% ⁇ x ⁇ 90% 2:50% ⁇ x ⁇ 75% 1:x ⁇ 50%
  • the particle transfer layer refers to a layer to which conductive particles are transferred in the transfer step
  • the drying time refers to the drying time during formation of the transfer layer.
  • SYMBOLS 1 First adhesive layer, 2...Second adhesive layer, 3...Conductive particles, 10...Adhesive film for circuit connection, 10...Adhesive film for circuit connection, 11...Precursor layer, 15...th 1 adhesive film, 16... second adhesive film, 22... base, 31... first circuit board, 32... first electrode (circuit electrode), 33... first circuit member, 34... second circuit board, 35... second electrode (bump electrode), 36... second circuit member, 40... connection part, 100... connection structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

An adhesive film for circuit connection comprising a first adhesive layer having thermosettability, conductive particles partially embedded in one side of the first adhesive layer, and a second adhesive layer that has thermosettability and contacts one side of the first adhesive layer, the embedding rate of conductive particles in the first adhesive layer being 30-90% and the ratio of the flow rate of the second adhesive layer to the flow rate of the first adhesive layer being 1.20-4.00.

Description

回路接続用接着剤フィルム及び接続構造体、並びに、それらの製造方法Adhesive film for circuit connection, connection structure, and manufacturing method thereof
 本発明は、回路接続用接着剤フィルム及び接続構造体、並びに、それらの製造方法に関する。 The present invention relates to an adhesive film for circuit connection, a connection structure, and a manufacturing method thereof.
 従来、回路接続を行うために各種の接着材料が使用されている。例えば、液晶ディスプレイとテープキャリアパッケージ(TCP)との接続、フレキシブルプリント配線基板(FPC)とTCPとの接続、又はFPCとプリント配線板との接続のための接着材料として、接着剤中に導電粒子が分散された回路接続用接着剤フィルムが使用されている。回路接続用接着剤フィルムを用いることで、回路部材同士を接着しつつ、回路部材上の電極同士を回路接続部中の導電粒子を介して電気的に接続することができる。 Conventionally, various adhesive materials have been used to make circuit connections. For example, conductive particles in an adhesive can be used as an adhesive material for connecting a liquid crystal display and a tape carrier package (TCP), connecting a flexible printed wiring board (FPC) and a TCP, or connecting an FPC and a printed wiring board. An adhesive film for circuit connection is used in which . By using the circuit connection adhesive film, it is possible to adhere the circuit members to each other and to electrically connect the electrodes on the circuit members to each other via the conductive particles in the circuit connection portion.
 ところで、回路接続用接着剤フィルムが使用される精密電子機器の分野では、回路の高密度化が進んでおり、電極幅及び電極間隔が極めて狭くなっている。このため、微小電極上に効率良く導電粒子を捕捉させ、高い接続信頼性を得ることが必ずしも容易ではなくなっている。これに対し、例えば特許文献1では、導電粒子を接着剤フィルムの片側に偏在させ、導電粒子同士を離間させる手法が提案されている。 By the way, in the field of precision electronic equipment in which circuit-connecting adhesive films are used, the density of circuits is increasing, and the electrode width and electrode spacing are becoming extremely narrow. For this reason, it is not always easy to efficiently trap conductive particles on the microelectrodes and obtain high connection reliability. On the other hand, for example, Patent Document 1 proposes a method in which conductive particles are unevenly distributed on one side of an adhesive film and the conductive particles are separated from each other.
国際公開第2005/54388号International Publication No. 2005/54388
 しかしながら、特許文献1の手法では、回路接続時に導電粒子が流動するため、電極間に導電粒子が凝集し、短絡が発生する可能性がある。 However, in the method of Patent Document 1, since the conductive particles flow when the circuit is connected, the conductive particles may aggregate between the electrodes, causing a short circuit.
 本発明の一側面は、接続抵抗の上昇を抑えながら、導電粒子の捕捉性を充分に確保することができる、回路接続用接着剤フィルムを提供することを目的とする。また、本発明の他の一側面は、上記回路接続用接着剤フィルムの製造方法を提供することを目的とする。また、本発明の他のいくつかの側面は、上記回路接続用接着剤フィルムを用いた接続構造体及びその製造方法を提供することを目的とする。 One aspect of the present invention is to provide an adhesive film for circuit connection that can sufficiently secure conductive particle trapping properties while suppressing an increase in connection resistance. Another aspect of the present invention is to provide a method for manufacturing the circuit connection adhesive film. Moreover, some other aspects of the present invention aim to provide a connected structure using the above adhesive film for circuit connection and a method for manufacturing the same.
 本発明のいくつかの側面は、下記[1]~[16]を提供する。 Some aspects of the present invention provide the following [1] to [16].
[1]
 回路接続用接着剤フィルムであって、
 熱硬化性を有する第1の接着剤層と、
 前記第1の接着剤層の一方面側に部分的に埋め込まれている導電粒子と、
 熱硬化性を有し、前記第1の接着剤層の前記一方面に接する第2の接着剤層と、を備え、
 下記式(1)で求められる前記導電粒子の前記第1の接着剤層への埋込率が、30~90%であり、
 前記回路接続用接着剤フィルムを前記第1の接着剤層側からガラス板上に載せ、圧着温度70℃、圧着圧力0.1MPa、圧着時間1.0sの条件で仮圧着を行った後、前記第2の接着剤層上にガラス板を載せ、圧着温度160℃、圧着圧力2MPa、圧着時間5sの条件で本圧着を行ったときの各接着剤層のフロー率を下記式(2)で定義すると、前記第1の接着剤層のフロー率に対する前記第2の接着剤層のフロー率の比が、1.20~4.00である、回路接続用接着剤フィルム。
 埋込率(%)=H/L×100・・・(1)
[式(1)中、Hは、前記導電粒子の前記第1の接着剤層への埋め込み長さ(単位:μm)を示し、Lは、前記導電粒子の埋め込み方向における粒子径(単位:μm)を示す。]
 フロー率[%]=S/S×100・・・(2)
[式(2)中、Sは、仮圧着前の接着剤層の表面積を示し、Sは、本圧着後の接着剤層の面積を示す。]
[1]
An adhesive film for circuit connection,
a first adhesive layer having thermosetting properties;
conductive particles partially embedded in one side of the first adhesive layer;
a second adhesive layer that has thermosetting properties and is in contact with the one surface of the first adhesive layer,
The embedding rate of the conductive particles in the first adhesive layer determined by the following formula (1) is 30 to 90%,
The circuit connection adhesive film was placed on the glass plate from the first adhesive layer side, and temporary pressure bonding was performed under the conditions of a pressure bonding temperature of 70° C., a bonding pressure of 0.1 MPa, and a bonding time of 1.0 s. The flow rate of each adhesive layer is defined by the following formula (2) when a glass plate is placed on the second adhesive layer and main pressure bonding is performed under the conditions of a pressure bonding temperature of 160°C, a pressure bonding pressure of 2 MPa, and a bonding time of 5 seconds. Then, the adhesive film for circuit connection has a ratio of the flow rate of the second adhesive layer to the flow rate of the first adhesive layer from 1.20 to 4.00.
Embedding rate (%) = H/L x 100... (1)
[In formula (1), H represents the length of embedding of the conductive particles in the first adhesive layer (unit: μm), and L represents the particle diameter of the conductive particles in the embedding direction (unit: μm). ) is shown. ]
Flow rate [%] = S B / S A × 100... (2)
[In formula (2), S A represents the surface area of the adhesive layer before temporary pressure bonding, and S B represents the area of the adhesive layer after main pressure bonding. ]
[2]
 前記第1の接着剤層のフロー率が88~110%である、[1]に記載の回路接続用接着剤フィルム。
[2]
The adhesive film for circuit connection according to [1], wherein the first adhesive layer has a flow rate of 88 to 110%.
[3]
 前記第1の接着剤層が、外部刺激硬化性組成物を含む前駆体層の硬化物である、[1]又は[2]に記載の回路接続用接着剤フィルム。
[3]
The adhesive film for circuit connection according to [1] or [2], wherein the first adhesive layer is a cured product of a precursor layer containing an external stimulation curable composition.
[4]
 前記外部刺激硬化性組成物が光硬化性を有する、[3]に記載の回路接続用接着剤フィルム。
[4]
The adhesive film for circuit connection according to [3], wherein the externally stimulated curable composition has photocurability.
[5]
 複数存在する前記導電粒子の少なくとも一部が、平面視において、所定のパターンで並んでいる、[1]~[4]のいずれかに記載の回路接続用接着剤フィルム。
[5]
The adhesive film for circuit connection according to any one of [1] to [4], wherein at least some of the plurality of conductive particles are arranged in a predetermined pattern in plan view.
[6]
 前記導電粒子の平均粒子径が1.0~50.0μmであり、
 前記導電粒子の粒子径のC.V.値が25%以下である、[1]~[5]のいずれかに記載の回路接続用接着剤フィルム。
[6]
The average particle diameter of the conductive particles is 1.0 to 50.0 μm,
C. of the particle diameter of the conductive particles. V. The adhesive film for circuit connection according to any one of [1] to [5], which has a value of 25% or less.
[7]
 前記導電粒子の平均粒子径に対する前記回路接続用接着剤フィルムの厚さの比が、1.1~10.0である、[1]~[6]のいずれかに記載の回路接続用接着剤フィルム。
[7]
The circuit connecting adhesive according to any one of [1] to [6], wherein the ratio of the thickness of the circuit connecting adhesive film to the average particle diameter of the conductive particles is 1.1 to 10.0. film.
[8]
 前記第1の接着剤層の厚さに対する前記第2の接着剤層の厚さの比が、0.3~20.0である、[1]~[7]のいずれかに記載の回路接続用接着剤フィルム。
[8]
The circuit connection according to any one of [1] to [7], wherein the ratio of the thickness of the second adhesive layer to the thickness of the first adhesive layer is 0.3 to 20.0. Adhesive film for.
[9]
 [1]~[8]のいずれかに記載の回路接続用接着剤フィルムの製造方法であって、
 前記第1の接着剤層と、前記第1の接着剤層の一方面側に部分的に埋め込まれている前記導電粒子とを備える第1の接着剤フィルムを用意する工程(I)と、
 前記第1の接着剤層の前記一方面上に前記第2の接着剤層を設ける工程(II)と、を備え、
 前記工程(I)が、外部刺激硬化性組成物を含む前駆体層の一方面側に前記導電粒子が部分的に埋め込まれた状態で、外部刺激によって前記前駆体層を硬化させて前記第1の接着剤層を形成する硬化工程を含む、回路接続用接着剤フィルムの製造方法。
[9]
The method for producing a circuit connection adhesive film according to any one of [1] to [8],
Step (I) of preparing a first adhesive film comprising the first adhesive layer and the conductive particles partially embedded in one side of the first adhesive layer;
a step (II) of providing the second adhesive layer on the one surface of the first adhesive layer,
In step (I), in a state where the conductive particles are partially embedded in one side of a precursor layer containing an external stimulus-curable composition, the precursor layer is cured by an external stimulus, and the first A method for producing an adhesive film for circuit connection, comprising a curing step of forming an adhesive layer.
[10]
 前記硬化工程では、前記第1の接着剤層の前記フロー率が88~110%となるように前記前駆体層を硬化させる、[9]に記載の回路接続用接着剤フィルムの製造方法。
[10]
The method for producing a circuit connection adhesive film according to [9], wherein in the curing step, the precursor layer is cured so that the flow rate of the first adhesive layer is 88 to 110%.
[11]
 前記外部刺激硬化性組成物が光硬化性を有し、
 前記硬化工程では、光照射によって前記前駆体層を硬化させる、[9]又は[10]に記載の回路接続用接着剤フィルムの製造方法。
[11]
The external stimulation curable composition has photocurability,
The method for producing a circuit connection adhesive film according to [9] or [10], wherein in the curing step, the precursor layer is cured by light irradiation.
[12]
 前記工程(I)が、表面に複数の導電粒子が配置された基体の該表面上に前記前駆体層を設けることで、前記基体から前記前駆体層に前記導電粒子を転写する転写工程を更に含む、[9]~[11]のいずれかに記載の回路接続用接着剤フィルムの製造方法。
[12]
The step (I) further includes a transfer step of transferring the conductive particles from the substrate to the precursor layer by providing the precursor layer on the surface of the substrate on which a plurality of conductive particles are arranged. The method for producing a circuit connection adhesive film according to any one of [9] to [11], comprising:
[13]
 前記工程(I)が、前記転写工程の前に、外部刺激硬化性組成物を含む層を50~70℃で3~60分間加熱する加熱工程を更に含む、[12]に記載の回路接続用接着剤フィルムの製造方法。
[13]
For circuit connection according to [12], wherein the step (I) further includes, before the transfer step, a heating step of heating the layer containing the external stimulation curable composition at 50 to 70° C. for 3 to 60 minutes. Method of manufacturing adhesive film.
[14]
 前記工程(I)が、前記転写工程の後に、前記前駆体層の前記導電粒子が転写された面に圧力を加える加圧工程を更に含む、[12]又は[13]に記載の回路接続用接着剤フィルムの製造方法。
[14]
The circuit connection method according to [12] or [13], wherein the step (I) further includes, after the transfer step, a pressurizing step of applying pressure to the surface of the precursor layer to which the conductive particles have been transferred. Method of manufacturing adhesive film.
[15]
 第1の電極を有する第1の回路部材と、前記第1の電極と電気的に接続される第2の電極を有する第2の回路部材と、前記第1の電極と前記第2の電極とを導電粒子を介して互いに電気的に接続し、かつ、前記第1の回路部材と前記第2の回路部材とを接着する接続部と、を備え、
 前記接続部が、[1]~[8]のいずれかに記載の回路接続用接着剤フィルムの硬化物を含む、接続構造体。
[15]
a first circuit member having a first electrode; a second circuit member having a second electrode electrically connected to the first electrode; and a first circuit member having a first electrode and a second electrode. and a connecting portion that electrically connects the circuit members to each other via conductive particles and adheres the first circuit member and the second circuit member,
A connected structure, wherein the connecting portion includes a cured product of the circuit connecting adhesive film according to any one of [1] to [8].
[16]
 第1の電極を有する第1の回路部材の前記第1の電極が設けられている面と、第2の電極を有する第2の回路部材の前記第2の電極が設けられている面との間に、[1]~[8]のいずれかに記載の回路接続用接着剤フィルムを配置することと、
 前記第1の回路部材と前記回路接続用接着剤フィルムと前記第2の回路部材とを含む積層体を前記積層体の厚さ方向に押圧した状態で加熱することにより、前記第1の電極と前記第2の電極とを導電粒子を介して互いに電気的に接続し、かつ、前記第1の回路部材と前記第2の回路部材とを接着することと、を含む、接続構造体の製造方法。
[16]
A surface of a first circuit member having a first electrode on which the first electrode is provided and a surface of a second circuit member having a second electrode on which the second electrode is provided. Placing the circuit connection adhesive film according to any one of [1] to [8] between them;
By heating a laminate including the first circuit member, the circuit connection adhesive film, and the second circuit member while pressing the laminate in the thickness direction, the first electrode and A method for manufacturing a connected structure, the method comprising electrically connecting the second electrode to each other via conductive particles, and bonding the first circuit member and the second circuit member. .
 本発明の一側面によれば、接続抵抗の上昇を抑えながら、導電粒子の捕捉性を充分に確保することができる、回路接続用接着剤フィルムを提供することができる。また、本発明の他の一側面によれば、上記回路接続用接着剤フィルムの製造方法を提供することができる。また、本発明の他のいくつかの側面によれば、上記回路接続用接着剤フィルムを用いた接続構造体及びその製造方法を提供することができる。 According to one aspect of the present invention, it is possible to provide an adhesive film for circuit connection that can sufficiently secure the ability to capture conductive particles while suppressing an increase in connection resistance. Moreover, according to another aspect of the present invention, it is possible to provide a method for manufacturing the above adhesive film for circuit connection. Further, according to some other aspects of the present invention, it is possible to provide a connected structure using the above adhesive film for circuit connection and a method for manufacturing the same.
図1は、回路接続用接着剤フィルムの一実施形態を示す模式平面図である。FIG. 1 is a schematic plan view showing one embodiment of an adhesive film for circuit connection. 図2は、図1のII-II線に沿った回路接続用接着剤フィルムの模式断面図である。FIG. 2 is a schematic cross-sectional view of the circuit-connecting adhesive film taken along line II-II in FIG. 図3は、図2に示す回路接続用接着剤フィルムの断面の部分拡大図である。FIG. 3 is a partially enlarged cross-sectional view of the circuit-connecting adhesive film shown in FIG. 2. FIG. 図4は、回路接続用接着剤フィルムの製造方法の一実施形態を説明するための模式図である。FIG. 4 is a schematic diagram for explaining one embodiment of a method for manufacturing a circuit connection adhesive film. 図5は、回路接続用接着剤フィルムの製造方法の一実施形態を説明するための模式図である。FIG. 5 is a schematic diagram for explaining one embodiment of a method for manufacturing a circuit connection adhesive film. 図6は、回路接続用接着剤フィルムの製造方法の一実施形態を説明するための模式図である。FIG. 6 is a schematic diagram for explaining one embodiment of a method for manufacturing a circuit connection adhesive film. 図7は、回路接続用接着剤フィルムの製造方法の一実施形態を説明するための模式図である。FIG. 7 is a schematic diagram for explaining one embodiment of a method for manufacturing a circuit connection adhesive film. 図8は、接続構造体の一実施形態を示す模式断面図である。FIG. 8 is a schematic cross-sectional view showing one embodiment of a connected structure. 図9は、接続構造体の製造方法の一実施形態を説明するための模式図である。FIG. 9 is a schematic diagram for explaining one embodiment of a method for manufacturing a connected structure.
 以下、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、以下で例示する材料は、特に断らない限り、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書において、「(メタ)アクリレート」とは、アクリレート、及び、それに対応するメタクリレートの少なくとも一方を意味する。「(メタ)アクリロイル」等の他の類似の表現においても同様である。 Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments. Note that the materials exemplified below may be used alone or in combination of two or more, unless otherwise specified. When a plurality of substances corresponding to each component are present in the composition, the content of each component in the composition means the total amount of the plurality of substances present in the composition, unless otherwise specified. A numerical range indicated using "~" indicates a range that includes the numerical values written before and after "~" as the minimum and maximum values, respectively. In the numerical ranges described stepwise in this specification, the upper limit or lower limit of the numerical range of one step may be replaced with the upper limit or lower limit of the numerical range of another step. In the numerical ranges described in this specification, the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples. As used herein, "(meth)acrylate" means at least one of acrylate and methacrylate corresponding thereto. The same applies to other similar expressions such as "(meth)acryloyl".
<回路接続用接着剤フィルム>
 回路接続用接着剤フィルムは、導電粒子と、熱硬化性を有する第1の接着剤層と、熱硬化性を有する第2の接着剤層と、を備える。「回路接続用」とは、回路部材の接続に用いられることを意味する。
<Adhesive film for circuit connection>
The circuit connection adhesive film includes conductive particles, a first thermosetting adhesive layer, and a thermosetting second adhesive layer. "For circuit connection" means used for connecting circuit members.
 図1は、回路接続用接着剤フィルムの一実施形態を示す模式平面図である。図1に示す回路接続用接着剤フィルム10中には複数の導電粒子3が存在する。複数の導電粒子3のうち、隣り合う導電粒子3同士は、互いに離隔した状態で存在している。そのため、回路接続用接着剤フィルム10は、加圧方向には導通し、非加圧方向では絶縁性を保つ性質(異方導電性)を有するということもできる。導電粒子3が他の導電粒子3と離間した状態(単分散状態)で存在している比率(単分散率)は、好ましくは90.0%以上であり、93.0%以上、95.0%以上、97.0%以上又は98.0%以上であってもよい。単分散率の上限値は100%である。単分散率が高いほど、絶縁信頼性に優れる接続構造体が得られやすくなる。このような分散状態は、回路接続用接着剤フィルム10の製造方法において、導電粒子3が所定の配列で配置された基体を用いることによって形成することができる。詳細は後述する。 FIG. 1 is a schematic plan view showing one embodiment of a circuit connection adhesive film. A plurality of conductive particles 3 are present in the circuit connection adhesive film 10 shown in FIG. Among the plurality of conductive particles 3, adjacent conductive particles 3 exist in a state separated from each other. Therefore, it can be said that the circuit connection adhesive film 10 has a property (anisotropic conductivity) that is conductive in the pressure direction and maintains insulation in the non-pressure direction. The ratio (monodisperse rate) in which the conductive particles 3 exist in a state separated from other conductive particles 3 (monodisperse state) is preferably 90.0% or more, 93.0% or more, 95.0% or more. % or more, 97.0% or more, or 98.0% or more. The upper limit of the monodispersity rate is 100%. The higher the monodispersity, the easier it is to obtain a connected structure with excellent insulation reliability. Such a dispersed state can be formed by using a substrate on which the conductive particles 3 are arranged in a predetermined arrangement in the method for manufacturing the adhesive film 10 for circuit connection. Details will be described later.
 複数存在する導電粒子3の少なくとも一部は、回路接続用接着剤フィルムの平面視において、所定のパターンで並んでいる。所定のパターン(導電粒子3の位置及び個数)は、例えば、接続すべき電極の形状、サイズ及びパターン等に応じて、設定することができる。図1では、導電粒子3が回路接続用接着剤フィルム10の全体の領域に対して規則的、かつ、ほぼ均等の間隔で配置されているが、導電粒子3の配置は、この例に限定されない。例えば、回路接続用接着剤フィルムの平面視において、複数の導電粒子3が規則的に配置されている領域と、導電粒子3が実質的に存在しない領域が規則的に形成されるように、導電粒子3が配置されていてもよい。複数の導電粒子3の少なくとも一部が所定のパターンで並んでいることは、例えば、電子顕微鏡等を用いて、回路接続用接着剤フィルム10の主面上方より該回路接続用接着剤フィルム10を観察することにより確認することができる。 At least some of the plurality of conductive particles 3 are arranged in a predetermined pattern in a plan view of the circuit connection adhesive film. The predetermined pattern (position and number of conductive particles 3) can be set depending on, for example, the shape, size, pattern, etc. of the electrode to be connected. In FIG. 1, the conductive particles 3 are arranged regularly and at approximately equal intervals over the entire area of the circuit-connecting adhesive film 10, but the arrangement of the conductive particles 3 is not limited to this example. . For example, in a plan view of the circuit-connecting adhesive film, the conductive particles are formed so that regions where a plurality of conductive particles 3 are regularly arranged and regions where conductive particles 3 are substantially absent are regularly formed. Particles 3 may be arranged. The fact that at least some of the plurality of conductive particles 3 are arranged in a predetermined pattern means that, for example, the circuit-connecting adhesive film 10 is inspected from above the main surface of the circuit-connecting adhesive film 10 using an electron microscope or the like. This can be confirmed by observation.
 図2は、図1のII-II線に沿った回路接続用接着剤フィルムの模式断面図であり、図3は、図2に示す回路接続用接着剤フィルムの断面の部分拡大図である。図2及び図3では、第1の接着剤層1と第2の接着剤層2との境界をSで示す。図3では、導電粒子3の表面と境界Sとの2つ接点をそれぞれC1及びC2で示し、接点C1と接点C2とを結ぶ線分(第一の仮想線分)をl1で示す。また、導電粒子3の表面上の2点を結ぶ線分のうち、線分l1に対し垂直となり2点間の距離が最長となる線分(第二の仮想線分)をl2で示す。また、線分l2をなす導電粒子3の表面上の2点のうち、第1の接着剤層1との接点をC3で示し、第2の接着剤層2との接点をC4で示す。また、線分l1と線分l2との交点をC5とする。 2 is a schematic cross-sectional view of the circuit-connecting adhesive film taken along line II-II in FIG. 1, and FIG. 3 is a partially enlarged view of the cross-section of the circuit-connecting adhesive film shown in FIG. 2. In FIGS. 2 and 3, the boundary between the first adhesive layer 1 and the second adhesive layer 2 is indicated by S. In FIG. 3, two contact points between the surface of the conductive particle 3 and the boundary S are indicated by C1 and C2, respectively, and a line segment (first virtual line segment) connecting the contact point C1 and the contact point C2 is indicated by l1. Further, among the line segments connecting two points on the surface of the conductive particles 3, a line segment (second virtual line segment) that is perpendicular to the line segment l1 and has the longest distance between the two points is indicated by l2. Furthermore, among the two points on the surface of the conductive particles 3 forming the line segment 12, the point of contact with the first adhesive layer 1 is indicated by C3, and the point of contact with the second adhesive layer 2 is indicated by C4. Further, the intersection of line segment l1 and line segment l2 is assumed to be C5.
 図2及び図3に示すように、導電粒子3は第1の接着剤層1の一方面側に部分的に埋め込まれており、第2の接着剤層2が第1の接着剤層1の該一方面に接するように設けられることで、導電粒子3が第1の接着剤層1及び第2の接着剤層2により被覆されている。境界Sは、隣り合う導電粒子3,3の離間部分に位置している。なお、図2では、複数存在する導電粒子3のすべてが第1の接着剤層1の一方面側に部分的に埋め込まれているが、本発明の効果を阻害しない限り、第1の接着剤層1又は第2の接着剤層2に完全に埋もれている導電粒子3が存在していてもよい。第1の接着剤層1又は第2の接着剤層2に完全に埋もれている導電粒子3の割合は、例えば、20%以下であってよく、10%以下又は5%以下であってもよい。 As shown in FIGS. 2 and 3, the conductive particles 3 are partially embedded in one side of the first adhesive layer 1, and the second adhesive layer 2 is attached to the first adhesive layer 1. The conductive particles 3 are coated with the first adhesive layer 1 and the second adhesive layer 2 by being provided so as to be in contact with the one surface. The boundary S is located at a part where adjacent conductive particles 3, 3 are separated. In addition, in FIG. 2, all of the plurality of conductive particles 3 are partially embedded in one side of the first adhesive layer 1, but as long as it does not impede the effects of the present invention, the first adhesive There may also be electrically conductive particles 3 completely embedded in layer 1 or in the second adhesive layer 2. The proportion of the conductive particles 3 completely buried in the first adhesive layer 1 or the second adhesive layer 2 may be, for example, 20% or less, 10% or less, or 5% or less. .
 回路接続用接着剤フィルム10は、導電粒子3の第1の接着剤層1への埋込率(粒子埋込率)が30~90%であり、第1の接着剤層1のフロー率に対する第2の接着剤層2のフロー率の比(以下、「フロー比」という。)が1.20~4.00である。 In the circuit connection adhesive film 10, the embedding rate (particle embedding rate) of the conductive particles 3 in the first adhesive layer 1 is 30 to 90%, and The flow rate ratio (hereinafter referred to as "flow ratio") of the second adhesive layer 2 is 1.20 to 4.00.
 粒子埋込率は下記式(1)で求められる。
 粒子埋込率(%)=H/L×100・・・(1)
The particle embedding rate is determined by the following formula (1).
Particle embedding rate (%)=H/L×100...(1)
 式(1)中、Hは、導電粒子3の第1の接着剤層1への埋め込み長さ(単位:μm)を示し、Lは、前記導電粒子の埋め込み方向における粒子径(単位:μm)を示す。本明細書では、線分l1に対し垂直な方向を導電粒子3の埋め込み方向とし、埋め込み方向における粒子径の最大値を導電粒子の埋め込み方向における粒子径Lとする。したがって、粒子径Lは線分l2の長さに等しい。また、導電粒子3の第1の接着剤層1に埋め込まれている部分の長さ(上記埋め込み方向における長さ)の最大値を導電粒子3の第1の接着剤層1への埋め込み長さHとする。したがって、導電粒子3の第1の接着剤層1への埋め込み長さHは、であり、接点C3と交点C5とを結ぶ線分の長さに等しい。 In formula (1), H represents the length of the conductive particles 3 embedded in the first adhesive layer 1 (unit: μm), and L represents the particle diameter of the conductive particles in the embedding direction (unit: μm). shows. In this specification, the direction perpendicular to the line segment l1 is defined as the embedding direction of the conductive particles 3, and the maximum value of the particle diameter in the embedding direction is defined as the particle diameter L in the embedding direction of the conductive particles. Therefore, the particle diameter L is equal to the length of the line segment l2. In addition, the maximum value of the length of the portion of the conductive particles 3 embedded in the first adhesive layer 1 (the length in the above-mentioned embedding direction) is calculated as the embedding length of the conductive particles 3 in the first adhesive layer 1. Let it be H. Therefore, the embedded length H of the conductive particles 3 in the first adhesive layer 1 is equal to the length of the line segment connecting the contact point C3 and the intersection point C5.
 上記粒子埋込率は、例えば、走査型電子顕微鏡(SEM)により回路接続用接着剤フィルムの縦断面(厚さ方向の断面)を観察して測定することができる。具体的には、例えば、回路接続用接着剤フィルムの任意の100個の断面を走査型電子顕微鏡(SEM)により倍率5000倍で観察して断面画像(SEM画像)を得た後、各断面画像内の任意の20μm×15μmの領域において、上記埋め込み方向における粒子径Lが最大となる導電粒子及び該導電粒子の0.85~1.00倍の粒子径Lを有する導電粒子の埋込率を求め、これらの平均値を各断面における導電粒子の埋込率とする。次いで、算出された10個の断面における導電粒子の埋込率の平均値を求め、これを回路接続用接着剤フィルムにおける導電粒子の埋込率(粒子埋込率)とする。 The particle embedding ratio can be measured by, for example, observing a longitudinal section (a section in the thickness direction) of the circuit-connecting adhesive film using a scanning electron microscope (SEM). Specifically, for example, after obtaining cross-sectional images (SEM images) by observing 100 arbitrary cross-sections of a circuit-connecting adhesive film at a magnification of 5000 times using a scanning electron microscope (SEM), each cross-sectional image is In any 20 μm x 15 μm area within, the embedding rate of conductive particles having the maximum particle diameter L in the embedding direction and the conductive particles having a particle diameter L of 0.85 to 1.00 times that of the conductive particles. The average value of these values is determined as the embedding rate of conductive particles in each cross section. Next, the average value of the embedding ratio of conductive particles in the ten calculated cross sections is determined, and this is taken as the embedding ratio of conductive particles in the circuit connection adhesive film (particle embedding ratio).
 各接着剤層(第1の接着剤層1及び第2の接着剤層2)のフロー率は、回路接続用接着剤フィルム10を第1の接着剤層1側からガラス板上に載せ、圧着温度70℃、圧着圧力0.1MPa、圧着時間1.0sの条件で仮圧着を行った後、第2の接着剤層2上にガラス板を載せ、圧着温度160℃、圧着圧力2MPa、圧着時間5sの条件で本圧着を行ったときのフロー率であり、下記式(2)で定義される。
 フロー率[%]=S/S×100・・・(2)
The flow rate of each adhesive layer (first adhesive layer 1 and second adhesive layer 2) is determined by placing the adhesive film 10 for circuit connection on a glass plate from the first adhesive layer 1 side, and pressing it. After performing temporary pressure bonding at a temperature of 70° C., a pressure bonding pressure of 0.1 MPa, and a pressure bonding time of 1.0 s, a glass plate was placed on the second adhesive layer 2, and a pressure bonding temperature of 160° C., a pressure bonding pressure of 2 MPa, and a pressure bonding time of 1.0 seconds were performed. This is the flow rate when main pressure bonding is performed under the condition of 5 seconds, and is defined by the following formula (2).
Flow rate [%] = S B / S A × 100... (2)
 式(2)中、Sは、仮圧着前の接着剤層の表面積を示し、Sは、本圧着後の接着剤層の面積を示す。 In formula (2), S A represents the surface area of the adhesive layer before temporary pressure bonding, and S B represents the area of the adhesive layer after main pressure bonding.
 上記各接着剤層のフロー率は、具体的には、下記(I)~(IV)の手順で測定することができる。
(I)回路接続用接着剤フィルムを、該回路接続用接着剤フィルムの両主面上に基材が貼り付けられた状態で厚さ方向に打ち抜き、半径rの円板状の評価用接着剤フィルムを得る。
(II)評価用接着剤フィルムから第1の接着剤層側の基材を剥離した後、評価用接着剤フィルムを第1の接着剤層側から第1のガラス板上に載せ、第2の接着剤層側から、圧着温度70℃、圧着圧力0.1MPa、圧着時間1.0sの条件で熱圧着し、仮固定体を得る。
(III)仮固定体から第2の接着剤層側の基材を剥離した後、第2の接着剤層上に第2のガラス板を載せ、第2の接着剤層側から、圧着温度160℃、圧着圧力2MPa、圧着時間5sの条件で熱圧着し、圧着体を得る。
(IV)圧着体における、第1の接着剤層側の表面と第1のガラス板との接着面積SB1(単位:mm)及び第2の接着剤層側の表面と第2のガラス板との接着面積SB2(単位:mm)を求め、下記式(2-1)及び式(2-2)に基づき、前記第1の接着剤層のフロー率及び前記第2の接着剤層のフロー率を算出する。
第1の接着剤層のフロー率[%]=SB1/(rπ)×100・・・(2-1)
第2の接着剤層のフロー率[%]=SB2/(rπ)×100・・・(2-2)
Specifically, the flow rate of each of the adhesive layers described above can be measured by the following procedures (I) to (IV).
(I) Punch out the adhesive film for circuit connection in the thickness direction with the base material affixed on both main surfaces of the adhesive film for circuit connection, and form a disc-shaped evaluation adhesive with radius r. Get the film.
(II) After peeling off the base material on the first adhesive layer side from the adhesive film for evaluation, place the adhesive film for evaluation on the first glass plate from the first adhesive layer side, and From the adhesive layer side, thermocompression bonding is performed under conditions of a compression temperature of 70° C., a compression pressure of 0.1 MPa, and a compression time of 1.0 s to obtain a temporarily fixed body.
(III) After peeling off the base material on the second adhesive layer side from the temporary fixing body, place the second glass plate on the second adhesive layer, and press from the second adhesive layer side at a pressure bonding temperature of 160. ℃, a compression pressure of 2 MPa, and a compression time of 5 seconds to obtain a crimped body.
(IV) Adhesion area S B1 (unit: mm 2 ) between the surface on the first adhesive layer side and the first glass plate in the crimped body and the surface on the second adhesive layer side and the second glass plate The adhesive area S B2 (unit: mm 2 ) with the first adhesive layer is determined and the flow rate of the first adhesive layer and the second adhesive layer are determined based on the following formulas (2-1) and (2-2). Calculate the flow rate of
Flow rate of first adhesive layer [%] = S B1 / (r 2 π) × 100 (2-1)
Flow rate of second adhesive layer [%] = S B2 / (r 2 π) × 100 (2-2)
 粒子埋込率及びフロー比が上記範囲であることで、熱圧着時の導電粒子の流動が抑制されるため、導電粒子の捕捉性を充分に確保することができる。また、粒子埋込率及びフロー比が上記範囲であることで、導電粒子と接続部との間に接着剤が介在することによる接続抵抗の上昇が抑制される。そのため、回路接続用接着剤フィルム10は、第1の電極を有する第1の回路部材と第2の電極を有する第2の回路部材とを接着すると共に、第1の電極と第2の電極とを互いに電気的に接続する用途に好適に用いられる。 When the particle embedding ratio and flow ratio are within the above ranges, the flow of the conductive particles during thermocompression bonding is suppressed, so that the trapping performance of the conductive particles can be sufficiently ensured. Further, when the particle embedding ratio and the flow ratio are within the above ranges, an increase in connection resistance due to the presence of adhesive between the conductive particles and the connection portion is suppressed. Therefore, the circuit connection adhesive film 10 adheres the first circuit member having the first electrode and the second circuit member having the second electrode, and also connects the first electrode and the second electrode. It is suitably used for electrically connecting two parts to each other.
 第1の接着剤層への粒子埋込率は、導電粒子3の捕捉率をより高めることができる観点では、38%以上、45%以上、52%以上又は60%以上であってもよい。第1の接着剤層への粒子埋込率は、接続抵抗をより低減できる観点では、85%以下、75%以下、65%以下、55%以下又は48%以下であってもよい。これらの観点から、第1の接着剤層への粒子埋込率は、38~85%、45~75%、52~75%、60~75%、30~65%、30~55%又は30~48%であってもよい。 The particle embedding rate in the first adhesive layer may be 38% or more, 45% or more, 52% or more, or 60% or more from the viewpoint of further increasing the capture rate of the conductive particles 3. The particle embedding rate in the first adhesive layer may be 85% or less, 75% or less, 65% or less, 55% or less, or 48% or less from the viewpoint of further reducing connection resistance. From these viewpoints, the particle embedding rate in the first adhesive layer is 38-85%, 45-75%, 52-75%, 60-75%, 30-65%, 30-55%, or 30%. It may be between 48% and 48%.
 フロー比は、導電粒子3の捕捉率をより高めることができる観点及び接続抵抗をより低減できる観点では、1.40以上、1.50以上、1.60以上又は1.70以上であってもよい。フロー比は、接続構造体の接続信頼性を高める観点では、3.60以下、2.80以下、2.20以下又は1.70以下であってもよい。これらの観点から、フロー比は、1.40~3.60、1.50~2.80、1.60~2.80、1.70~2.80、1.20~2.20又は1.20~1.70であってもよい。上記フロー比は、例えば、第1の接着剤層1を外部刺激硬化性組成物を含む前駆体層の硬化物とすることにより達成される。 The flow ratio may be 1.40 or more, 1.50 or more, 1.60 or more, or 1.70 or more from the viewpoint of increasing the capture rate of the conductive particles 3 and reducing the connection resistance. good. From the viewpoint of increasing the connection reliability of the connected structure, the flow ratio may be 3.60 or less, 2.80 or less, 2.20 or less, or 1.70 or less. From these points of view, the flow ratio is 1.40 to 3.60, 1.50 to 2.80, 1.60 to 2.80, 1.70 to 2.80, 1.20 to 2.20, or 1. It may be between .20 and 1.70. The above flow ratio is achieved, for example, by using the first adhesive layer 1 as a cured product of a precursor layer containing an external stimulation curable composition.
 第1の接着剤層1のフロー率は、接続抵抗をより低減できる観点では、88%以上であってよく、92%以上、95%以上又は100%以上であってもよい。第1の接着剤層1のフロー率は、導電粒子3の捕捉率をより高めることができる観点では、110%以下であってよく、108%以下又は106%以下であってもよい。これらの観点から、第1の接着剤層1のフロー率は、88~110%であってよく、92~110%、95~108%又は100~108%であってもよい。 From the viewpoint of further reducing connection resistance, the flow rate of the first adhesive layer 1 may be 88% or more, 92% or more, 95% or more, or 100% or more. The flow rate of the first adhesive layer 1 may be 110% or less, 108% or less, or 106% or less from the viewpoint of further increasing the capture rate of the conductive particles 3. From these points of view, the flow rate of the first adhesive layer 1 may be 88-110%, 92-110%, 95-108% or 100-108%.
 第2の接着剤層2のフロー率は、接続抵抗をより低減できる観点では、120%以上であってよく、150%以上、160%以上又は210%以上であってもよい。第2の接着剤層2のフロー率は、導電粒子3の捕捉率をより高めることができる観点では、440%以下であってよく、400%以下、350%以下、300%以下、250%以下又は200%以下であってもよい。これらの観点から、第2の接着剤層2のフロー率は、120~440%であってよく、150~400%、160~400%、210~350%、120~300%、120~250%又は120~200%であってもよい。 From the viewpoint of further reducing connection resistance, the flow rate of the second adhesive layer 2 may be 120% or more, 150% or more, 160% or more, or 210% or more. The flow rate of the second adhesive layer 2 may be 440% or less, 400% or less, 350% or less, 300% or less, 250% or less, from the viewpoint of further increasing the capture rate of the conductive particles 3. Or it may be 200% or less. From these points of view, the flow rate of the second adhesive layer 2 may be 120-440%, 150-400%, 160-400%, 210-350%, 120-300%, 120-250%. Or it may be 120 to 200%.
 第1の接着剤層1及び第2の接着剤層2は、回路接続用接着剤フィルム10の表面(第1の接着剤層1における第2の接着剤層2側とは反対側の面及び第2の接着剤層2における第1の接着剤層1側とは反対側の面)から導電粒子3が露出しない程度に厚みを有していてよい。 The first adhesive layer 1 and the second adhesive layer 2 are formed on the surface of the circuit connecting adhesive film 10 (the surface opposite to the second adhesive layer 2 side in the first adhesive layer 1, and The thickness may be such that the conductive particles 3 are not exposed from the surface of the second adhesive layer 2 opposite to the first adhesive layer 1 side.
 第1の接着剤層1の厚さd1(図2中のd1で示す距離)は、例えば、0.5μm以上、1.0μm以上又は2.0μm以上であってよく、50.0μm以下、40.0μm、30.0μm以下、20.0μm以下、10.0μm以下、5.0μm以下又は3.0μm以下であってよく、0.5~50.0μm、1.0~40.0μm、2.0~30.0μm、1.0~20.0μm、1.0~10.0μm、1.0~5.0μm又は1.0~3.0μmであってよい。第1の接着剤層1の厚さd1が上記範囲であると、より低い接続抵抗とより高い導電粒子の捕捉率とを両立しやすい。 The thickness d1 (distance indicated by d1 in FIG. 2) of the first adhesive layer 1 may be, for example, 0.5 μm or more, 1.0 μm or more, or 2.0 μm or more, and 50.0 μm or less, 40 μm or more. .0 μm, 30.0 μm or less, 20.0 μm or less, 10.0 μm or less, 5.0 μm or less, or 3.0 μm or less, 0.5 to 50.0 μm, 1.0 to 40.0 μm, 2. It may be 0-30.0 μm, 1.0-20.0 μm, 1.0-10.0 μm, 1.0-5.0 μm or 1.0-3.0 μm. When the thickness d1 of the first adhesive layer 1 is within the above range, it is easy to achieve both lower connection resistance and higher conductive particle capture rate.
 第2の接着剤層2の厚さd2(図2中のd2で示す距離)は、例えば、0.5μm以上、1.0μm以上、2.0μm以上又は3.0μm以上であってよく、50.0μm以下、40.0μm以下、30.0μm以下、20.0μm以下、10.0μm以下又は5.0μm以下であってよく、0.5~50.0μm、1.0~40.0μm、2.0~30.0μm、3.0~20.0μm、3.0~10.0μm又は3.0~5.0μmであってよい。第2の接着剤層2の厚さd2が上記範囲であると、電極間のスペースを充分に充填して電極を封止することができ、より良好な接続信頼性が得られやすい。 The thickness d2 (distance indicated by d2 in FIG. 2) of the second adhesive layer 2 may be, for example, 0.5 μm or more, 1.0 μm or more, 2.0 μm or more, or 3.0 μm or more, and may be 50 μm or more, for example. .0 μm or less, 40.0 μm or less, 30.0 μm or less, 20.0 μm or less, 10.0 μm or less, or 5.0 μm or less, 0.5 to 50.0 μm, 1.0 to 40.0 μm, 2 0 to 30.0 μm, 3.0 to 20.0 μm, 3.0 to 10.0 μm, or 3.0 to 5.0 μm. When the thickness d2 of the second adhesive layer 2 is within the above range, the space between the electrodes can be sufficiently filled to seal the electrodes, and better connection reliability is likely to be obtained.
 第1の接着剤層1の厚さd1に対する第2の接着剤層2の厚さd2の厚さの比は、接続構造体の接続信頼性の観点から、0.3以上であってよく、1.0以上、2.0以上又は2.5以上であってもよい。第1の接着剤層1の厚さd1に対する第2の接着剤層2の厚さd2の厚さの比は、導電粒子の捕捉率の観点から、20.0以下であってよく、15.0以下、12.0以下、10.0以下、6.0以下又は4.0以下であってもよい。これらの観点から、第1の接着剤層1の厚さd1に対する第2の接着剤層2の厚さd2の厚さの比は、接続構造体の接続信頼性及び低抵抗化の観点から、0.3~20.0であってよく、1.0~15.0、2.0~12.0、2.0~10.0、2.0~6.0、2.0~4.0又は2.5~10.0であってもよい。 The ratio of the thickness d2 of the second adhesive layer 2 to the thickness d1 of the first adhesive layer 1 may be 0.3 or more from the viewpoint of connection reliability of the connected structure, It may be 1.0 or more, 2.0 or more, or 2.5 or more. The ratio of the thickness d2 of the second adhesive layer 2 to the thickness d1 of the first adhesive layer 1 may be 20.0 or less from the viewpoint of the capture rate of conductive particles, and 15. It may be 0 or less, 12.0 or less, 10.0 or less, 6.0 or less, or 4.0 or less. From these viewpoints, the ratio of the thickness d2 of the second adhesive layer 2 to the thickness d1 of the first adhesive layer 1 is determined from the viewpoint of connection reliability and low resistance of the connected structure. It may be 0.3 to 20.0, 1.0 to 15.0, 2.0 to 12.0, 2.0 to 10.0, 2.0 to 6.0, 2.0 to 4. It may be 0 or 2.5 to 10.0.
 回路接続用接着剤フィルム10の厚さは、例えば、2.0μm以上、3.0μm以上又は4.0μm以上であってよく、100.0μm以下、80.0μm以下、60.0μm以下、40.0μm以下、20.0μm以下又は10.0μm以下であってよく、2.0~100.0μm、3.0~80.0μm、4.0~60.0μm、4.0~40.0μm、4.0~20.0μm又は4.0~10.0μmであってよい。 The thickness of the circuit connection adhesive film 10 may be, for example, 2.0 μm or more, 3.0 μm or more, or 4.0 μm or more, and 100.0 μm or less, 80.0 μm or less, 60.0 μm or less, or 40.0 μm or less. May be 0 μm or less, 20.0 μm or less, or 10.0 μm or less, 2.0 to 100.0 μm, 3.0 to 80.0 μm, 4.0 to 60.0 μm, 4.0 to 40.0 μm, 4 It may be between .0 and 20.0 μm or between 4.0 and 10.0 μm.
 第1の接着剤層1の厚さd1、第2の接着剤層2の厚さd2及び回路接続用接着剤フィルム10の厚さは、例えば、回路接続用接着剤フィルム10を2枚のガラス(厚さ:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:jER811、三菱ケミカル株式会社製)100gと、硬化剤(商品名:エポマウント硬化剤、リファインテック株式会社製)10gとからなる樹脂組成物で注型後に、研磨機を用いて断面研磨を行い、走査型電子顕微鏡(SEM、商品名:SE-8020、株式会社日立ハイテクサイエンス製)を用いて測定することによって求めることができる。 The thickness d1 of the first adhesive layer 1, the thickness d2 of the second adhesive layer 2, and the thickness of the circuit connection adhesive film 10 are, for example, such that the circuit connection adhesive film 10 is attached to two sheets of glass. (thickness: approximately 1 mm) and 100 g of bisphenol A epoxy resin (product name: jER811, manufactured by Mitsubishi Chemical Corporation) and 10 g of a curing agent (product name: Epomount hardening agent, manufactured by Refinetech Co., Ltd.). After casting with a resin composition of can.
 次に、第1の接着剤層1及び第2の接着剤層2を構成する接着剤組成物、並びに、導電粒子3について説明する。以下では、第1の接着剤層1を構成する接着剤組成物を「第1の接着剤組成物」といい、第2の接着剤層2を構成する接着剤組成物を「第2の接着剤組成物」という。 Next, the adhesive composition constituting the first adhesive layer 1 and the second adhesive layer 2 and the conductive particles 3 will be explained. Hereinafter, the adhesive composition forming the first adhesive layer 1 will be referred to as a "first adhesive composition," and the adhesive composition forming the second adhesive layer 2 will be referred to as a "second adhesive composition." agent composition.
(第1の接着剤組成物)
 第1の接着剤組成物は熱硬化性を有する。すなわち、第1の接着剤組成物は熱硬化性成分を少なくとも含む。
(First adhesive composition)
The first adhesive composition has thermosetting properties. That is, the first adhesive composition contains at least a thermosetting component.
 第1の接着剤組成物は、例えば、外部刺激硬化性組成物を硬化してなる外部刺激硬化性組成物の硬化物である。外部刺激硬化性組成物の硬化物は、熱硬化性を有することから、部分硬化物ということもできる。外部刺激硬化性組成物は、熱、光、応力等の外部刺激によって硬化する性質を有する。外部刺激硬化性組成物は、例えば、熱硬化性及び光硬化性を有する組成物である。熱硬化性及び光硬化性を有する組成物を光硬化させることで、熱硬化性を有する硬化物(外部刺激硬化性組成物の硬化物)が得られる。外部刺激性組成物が熱硬化性及び光硬化性を有する場合、外部刺激性組成物は、熱硬化性成分と光硬化性成分とを少なくとも含み、第1の接着剤組成物は、光硬化性成分の硬化物と熱硬化性成分とを少なくとも含む。 The first adhesive composition is, for example, a cured product of an external stimulation curable composition obtained by curing an external stimulation curable composition. Since the cured product of the external stimulation curable composition has thermosetting properties, it can also be called a partially cured product. External stimulus curable compositions have the property of being cured by external stimuli such as heat, light, stress, and the like. The external stimulation curable composition is, for example, a composition having thermosetting properties and photocuring properties. By photocuring a thermosetting and photocurable composition, a thermosetting cured product (cured product of an external stimulation curable composition) can be obtained. When the external stimulation composition has thermosetting and photocurable properties, the external stimulation composition includes at least a thermosetting component and a photocurable component, and the first adhesive composition has a photocurable composition. It contains at least a cured product of the components and a thermosetting component.
[熱硬化性成分]
 熱硬化性成分は、接続時に流動可能であり、加熱によって硬化する成分である。熱硬化性成分は、例えば、重合性化合物及び熱重合開始剤を含む。重合性化合物は、ラジカル重合性化合物であってよく、カチオン重合性化合物であってもよく、アニオン重合性化合物であってもよい。同様に、熱重合開始剤は、熱ラジカル重合開始剤であってよく、熱カチオン重合開始剤であってもよく、熱アニオン重合開始剤であってもよい。接続抵抗の低減効果により優れる観点では、重合性化合物がカチオン重合性化合物であり、熱重合開始剤が熱カチオン重合開始剤であってよい。
[Thermosetting component]
A thermosetting component is a component that is flowable upon connection and hardens upon heating. The thermosetting component includes, for example, a polymerizable compound and a thermal polymerization initiator. The polymerizable compound may be a radically polymerizable compound, a cationically polymerizable compound, or an anionically polymerizable compound. Similarly, the thermal polymerization initiator may be a thermal radical polymerization initiator, a thermal cationic polymerization initiator, or a thermal anionic polymerization initiator. From the viewpoint of being more effective in reducing connection resistance, the polymerizable compound may be a cationic polymerizable compound, and the thermal polymerization initiator may be a thermal cationic polymerization initiator.
 カチオン重合性化合物としては、接続抵抗の低減効果が更に向上し、接続信頼性により優れる観点から、環状エーテル基を有する化合物であってよい。環状エーテル基を有する化合物の中でも、脂環式エポキシ化合物及びオキセタン化合物からなる群より選ばれる少なくとも1種を用いる場合、接続抵抗の低減効果が一層向上する傾向がある。カチオン重合性化合物は、所望の溶融粘度が得られ易い観点から、脂環式エポキシ化合物及びオキセタン化合物の両方を含んでいてよい。 The cationic polymerizable compound may be a compound having a cyclic ether group from the viewpoint of further improving the connection resistance reduction effect and providing superior connection reliability. Among the compounds having a cyclic ether group, when at least one selected from the group consisting of alicyclic epoxy compounds and oxetane compounds is used, the effect of reducing connection resistance tends to be further improved. The cationic polymerizable compound may contain both an alicyclic epoxy compound and an oxetane compound from the viewpoint of easily obtaining a desired melt viscosity.
 脂環式エポキシ化合物は、脂環式エポキシ基(例えば、エポキシシクロヘキシル基)を有する化合物であれば特に制限なく使用することができる。脂環式エポキシ化合物は、例えば、エポキシ当量が100~300g/eqのエポキシ化合物であってよい。エポキシ当量は、JIS K 7236に準拠して決定される。 The alicyclic epoxy compound can be used without particular limitation as long as it is a compound having an alicyclic epoxy group (for example, an epoxycyclohexyl group). The alicyclic epoxy compound may be, for example, an epoxy compound having an epoxy equivalent of 100 to 300 g/eq. The epoxy equivalent is determined in accordance with JIS K 7236.
 脂環式エポキシ化合物の市販品としては、セロキサイド8010(商品名、ビ-7-オキサビシクロ[4.1.0]ヘプタン、株式会社ダイセル製)の他、例えば、EHPE3150、EHPE3150CE、セロキサイド2021P、セロキサイド2081(商品名、株式会社ダイセル製)等が挙げられる。 Commercially available alicyclic epoxy compounds include Celoxide 8010 (trade name, Bi-7-oxabicyclo[4.1.0]heptane, manufactured by Daicel Corporation), for example, EHPE3150, EHPE3150CE, Celoxide 2021P, Celoxide 2081 (trade name, manufactured by Daicel Corporation) and the like.
 オキセタン化合物は、オキセタニル基を有する化合物であれば特に制限なく使用することができる。オキセタン化合物の市販品としては、例えば、ETERNACOLL OXBP(商品名、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、宇部興産株式会社製)、OXSQ、OXT-121、OXT-221、OXT-101、OXT-212(商品名、東亜合成株式会社製)等が挙げられる。 The oxetane compound can be used without particular limitation as long as it has an oxetanyl group. Commercially available oxetane compounds include, for example, ETERNACOLL OXBP (trade name, 4,4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl, manufactured by Ube Industries, Ltd.), OXSQ, OXT-121, Examples include OXT-221, OXT-101, OXT-212 (trade name, manufactured by Toagosei Co., Ltd.).
 環状エーテル基を有する化合物としては、脂環式エポキシ化合物以外のエポキシ化合物を用いてもよい。具体的には、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等の芳香族系炭化水素基を有するエポキシ化合物(例えば、三菱化学株式会社製の商品名「jER1010」、日鉄ケミカル&マテリアルズ株式会社製の商品名「TOPR-400」等)を用いることもできる。芳香族系炭化水素基を有するエポキシ化合物のエポキシ当量は、100g/eq以上(例えば100~3500g/eq)であってよく、150g/eq以上(例えば150~3500g/eq)であってもよい。芳香族系炭化水素基を有するエポキシ化合物は、接続抵抗の低減効果が更に向上し、接続信頼性により優れる観点から、脂環式エポキシ化合物と組み合わせて用いてよい。 As the compound having a cyclic ether group, epoxy compounds other than alicyclic epoxy compounds may be used. Specifically, for example, epoxy compounds having an aromatic hydrocarbon group such as bisphenol A type epoxy resin and bisphenol F type epoxy resin (for example, Mitsubishi Chemical Corporation's product name "jER1010", Nippon Steel Chemical & Materials) It is also possible to use a product such as "TOPR-400" (trade name, manufactured by Co., Ltd.). The epoxy equivalent of the epoxy compound having an aromatic hydrocarbon group may be 100 g/eq or more (for example, 100 to 3500 g/eq), or 150 g/eq or more (for example, 150 to 3500 g/eq). An epoxy compound having an aromatic hydrocarbon group may be used in combination with an alicyclic epoxy compound from the viewpoint of further improving the effect of reducing connection resistance and providing superior connection reliability.
 熱カチオン重合開始剤は、例えば、加熱により酸等を発生して重合を開始させることができる化合物(熱潜在性カチオン発生剤)である。熱カチオン重合開始剤はカチオンとアニオンとから構成される塩化合物であってよい。熱カチオン重合開始剤は、例えば、BF 、BR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)、PF 、SbF 、AsF 等のアニオンを有する、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ジアゾニウム塩、ヨードニウム塩、アニリニウム塩、ピリジニウム塩等のオニウム塩などが挙げられる。これらは、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。 The thermal cationic polymerization initiator is, for example, a compound (thermal latent cation generator) that can generate an acid or the like upon heating to initiate polymerization. The thermal cationic polymerization initiator may be a salt compound composed of a cation and an anion. Thermal cationic polymerization initiators include, for example, BF 4 - , BR 4 - (R represents a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups), PF 6 - , SbF 6 Examples include onium salts such as sulfonium salts, phosphonium salts, ammonium salts, diazonium salts, iodonium salts, anilinium salts, and pyridinium salts having anions such as - and AsF 6 - . These may be used alone or in combination.
 熱カチオン重合開始剤は、速硬化性の観点から、例えば、構成元素としてホウ素を含むアニオンを有する塩化合物であってよい。このような塩化合物としては、例えば、BF 又はBR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)を有する塩化合物が挙げられる。構成元素としてホウ素を含むアニオンは、BR であってよく、より具体的には、テトラキス(ペンタフルオロフェニル)ボレートであってもよい。 From the viewpoint of rapid curing, the thermal cationic polymerization initiator may be, for example, a salt compound having an anion containing boron as a constituent element. Examples of such salt compounds include salt compounds having BF 4 - or BR 4 - (R represents a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups). It will be done. The anion containing boron as a constituent element may be BR 4 , and more specifically may be tetrakis(pentafluorophenyl)borate.
 熱カチオン重合開始剤は、保存安定性の観点から、下記式(I)又は下記式(II)で表されるカチオンを有する塩化合物であってよい。
From the viewpoint of storage stability, the thermal cationic polymerization initiator may be a salt compound having a cation represented by the following formula (I) or the following formula (II).
 式(I)中、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基を示し、Rは、炭素数1~6のアルキル基を示す。 In formula (I), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an organic group containing a substituted or unsubstituted aromatic hydrocarbon group. , R 3 represents an alkyl group having 1 to 6 carbon atoms.
 式(I)で表されるカチオンを有する化合物の具体例としては、1-ナフチルメチル-p-ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート(三新化学株式会社製、SI-60主剤)等が挙げられる。 Specific examples of compounds having a cation represented by formula (I) include 1-naphthylmethyl-p-hydroxyphenylsulfonium hexafluoroantimonate (manufactured by Sanshin Kagaku Co., Ltd., SI-60 base agent).
 式(II)中、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基を示し、R及びRは、それぞれ独立して、炭素数1~6のアルキル基を示す。 In formula (II), R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an organic group containing a substituted or unsubstituted aromatic hydrocarbon group; , R 6 and R 7 each independently represent an alkyl group having 1 to 6 carbon atoms.
 式(II)で表されるカチオンを有する化合物の具体例としては、YH-MS20(商品名、横浜ゴム株式会社製)、CXC-1821(商品名、King Industries社製)等が挙げられる。 Specific examples of compounds having a cation represented by formula (II) include YH-MS20 (trade name, manufactured by Yokohama Rubber Co., Ltd.), CXC-1821 (trade name, manufactured by King Industries), and the like.
 熱カチオン重合開始剤の含有量は、接着剤フィルムの形成性及び硬化性を担保する観点から、カチオン重合性化合物100質量部に対して、例えば、0.1~25質量部、0.1~20質量部、1~18質量部、3~15質量部又は5~12質量部であってよい。 The content of the thermal cationic polymerization initiator is, for example, 0.1 to 25 parts by mass, 0.1 to 25 parts by mass, based on 100 parts by mass of the cationic polymerizable compound, from the viewpoint of ensuring the formability and curability of the adhesive film. It may be 20 parts by weight, 1 to 18 parts by weight, 3 to 15 parts by weight, or 5 to 12 parts by weight.
 熱硬化性成分の含有量(例えば重合性化合物と熱重合開始剤の合計含有量)は、接着剤フィルムの硬化性を担保する観点から、第1の接着剤組成物の全質量を基準として、例えば、3質量%以上、5質量%以上、10質量%以上又は15質量%以上であってよい。熱硬化性成分の含有量は、接着剤フィルムの形成性を担保する観点から、接着剤組成物の全質量を基準として、例えば、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってよい。これらの観点から、熱硬化性成分の含有量は、第1の接着剤組成物の全質量を基準として、例えば、3~70質量%、5~60質量%、10~50質量%又は15~40質量%であってよい。上記と同様の観点から、カチオン重合性化合物と熱カチオン重合開始剤の合計含有量が上記範囲であってもよい。 The content of the thermosetting component (for example, the total content of the polymerizable compound and the thermal polymerization initiator) is based on the total mass of the first adhesive composition, from the viewpoint of ensuring the curability of the adhesive film. For example, it may be 3% by mass or more, 5% by mass or more, 10% by mass or more, or 15% by mass or more. From the viewpoint of ensuring adhesive film formability, the content of the thermosetting component is, for example, 70% by mass or less, 60% by mass or less, 50% by mass or less, or 40% by mass or less, based on the total mass of the adhesive composition. It may be less than % by mass. From these viewpoints, the content of the thermosetting component is, for example, 3 to 70% by mass, 5 to 60% by mass, 10 to 50% by mass, or 15 to 50% by mass, based on the total mass of the first adhesive composition. It may be 40% by mass. From the same viewpoint as above, the total content of the cationic polymerizable compound and the thermal cationic polymerization initiator may be within the above range.
[光硬化性成分]
 光硬化性成分は、光(活性光線)によって硬化する成分である。光硬化性成分は、例えば、重合性化合物及び光重合開始剤を含む。重合性化合物は、ラジカル重合性化合物であってよく、カチオン重合性化合物であってもよく、アニオン重合性化合物であってもよい。同様に、光重合開始剤は、光ラジカル重合開始剤であってよく、光カチオン重合開始剤であってもよく、光アニオン重合開始剤であってもよい。光硬化性成分の種類は、熱硬化性成分との組み合わせを考慮して決定されてよい。例えば、熱硬化性成分がカチオン重合性成分である場合、光硬化性成分は、ラジカル重合性成分であってよい。すなわち、熱硬化性成分がカチオン重合性化合物及び熱カチオン重合開始剤を含む場合、光硬化性成分は、ラジカル重合性化合物及び光ラジカル重合開始剤を含んでいてよい。
[Photocurable component]
A photocurable component is a component that is cured by light (actinic rays). The photocurable component includes, for example, a polymerizable compound and a photopolymerization initiator. The polymerizable compound may be a radically polymerizable compound, a cationically polymerizable compound, or an anionically polymerizable compound. Similarly, the photopolymerization initiator may be a radical photopolymerization initiator, a cationic photopolymerization initiator, or an anionic photopolymerization initiator. The type of photocurable component may be determined by considering the combination with the thermosetting component. For example, when the thermosetting component is a cationically polymerizable component, the photocurable component may be a radically polymerizable component. That is, when the thermosetting component contains a cationically polymerizable compound and a thermal cationic polymerization initiator, the photocurable component may contain a radically polymerizable compound and a photoradical polymerization initiator.
 ラジカル重合性化合物としては、(メタ)アクリレート化合物、マレイミド化合物、シトラコンイミド化合物、ナジイミド化合物等が挙げられる。上記フロー率の第1の接着剤層が得られ易い観点では、光硬化性成分が(メタ)アクリレート化合物を含んでいてよく、上記フロー率の第1の接着剤層がさらに得られ易い観点では、光硬化性成分が(メタ)アクリロイル基を二つ以上有する多官能の(メタ)アクリレート化合物を含んでいてよい。 Examples of radically polymerizable compounds include (meth)acrylate compounds, maleimide compounds, citraconimide compounds, nadimide compounds, and the like. From the viewpoint that it is easier to obtain the first adhesive layer with the above flow rate, the photocurable component may contain a (meth)acrylate compound, and from the viewpoint that it is easier to obtain the first adhesive layer with the above flow rate. The photocurable component may contain a polyfunctional (meth)acrylate compound having two or more (meth)acryloyl groups.
 多官能の(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化2-メチル-1,3-プロパンジオールジ(メタ)アクリレート等の脂肪族(メタ)アクリレート;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、エトキシ化ビスフェノールF型ジ(メタ)アクリレート、プロポキシ化ビスフェノールF型ジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールF型ジ(メタ)アクリレート、エトキシ化フルオレン型ジ(メタ)アクリレート、プロポキシ化フルオレン型ジ(メタ)アクリレート、エトキシ化プロポキシ化フルオレン型ジ(メタ)アクリレート等の芳香族(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族(メタ)アクリレート;ビスフェノール型エポキシ(メタ)アクリレート(例えばビスフェノールA型エポキシ(メタ)アクリレート)、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレートなどが挙げられる。 Examples of polyfunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, and polyethylene glycol di(meth)acrylate. ) acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, ethoxylated polypropylene glycol Di(meth)acrylate, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate (meth)acrylate, 1,6-hexanediol di(meth)acrylate, 2-butyl-2-ethyl-1,3-propanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1 Aliphatic ( meth)acrylate; ethoxylated bisphenol A type di(meth)acrylate, propoxylated bisphenol A type di(meth)acrylate, ethoxylated propoxylated bisphenol A type di(meth)acrylate, ethoxylated bisphenol F type di(meth)acrylate, Propoxylated bisphenol F type di(meth)acrylate, ethoxylated propoxylated bisphenol F type di(meth)acrylate, ethoxylated fluorene type di(meth)acrylate, propoxylated fluorene type di(meth)acrylate, ethoxylated propoxylated fluorene type Aromatic (meth)acrylates such as di(meth)acrylate, trimethylolpropane tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, propoxylated trimethylolpropane tri(meth)acrylate, ethoxylated propoxylated tri(meth)acrylate Methylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, ethoxylated pentaerythritol tri(meth)acrylate, propoxylated pentaerythritol tri(meth)acrylate, ethoxylated propoxylated pentaerythritol tri(meth)acrylate, pentaerythritol Tetra(meth)acrylate, Ethoxylated Pentaerythritol Tetra(meth)acrylate, Propoxylated Pentaerythritol Tetra(meth)acrylate, Ethoxylated Propoxylated Pentaerythritol Tetra(meth)acrylate, Ditrimethylolpropane Tetraacrylate, Dipentaerythritol Hexa(meth)acrylate ) aliphatic (meth)acrylates such as acrylates; aromatics such as bisphenol-type epoxy (meth)acrylates (e.g. bisphenol A-type epoxy (meth)acrylates), phenol novolac-type epoxy (meth)acrylates, cresol novolak-type epoxy (meth)acrylates, etc. Examples include group epoxy (meth)acrylates.
 多官能の(メタ)アクリレートの含有量は、接続抵抗の低減効果と粒子流動の抑制とを両立させる観点から、光硬化性成分中の重合性化合物の全質量を基準として、40~100質量%であってよく、50~100質量%又は60~100質量%であってもよい。 The content of polyfunctional (meth)acrylate is 40 to 100% by mass based on the total mass of the polymerizable compound in the photocurable component, from the viewpoint of achieving both the effect of reducing connection resistance and suppressing particle flow. It may be 50 to 100% by weight or 60 to 100% by weight.
 上記フロー率の第1の接着剤層が得られ易い観点では、光硬化性成分がエポキシ(メタ)アクリレートを含んでいてよく、上記フロー率の第1の接着剤層がさらに得られ易い観点では、光硬化性成分が芳香族エポキシ(メタ)アクリレートを含んでいてよい。エポキシ(メタ)アクリレートの含有量は、光硬化性成分中の重合性化合物の全質量を基準として、例えば、40~100質量%、50~100質量%又は60~100質量%であってよい。 From the viewpoint that it is easier to obtain the first adhesive layer with the above flow rate, the photocurable component may contain epoxy (meth)acrylate, and from the viewpoint that it is easier to obtain the first adhesive layer with the above flow rate. , the photocurable component may include aromatic epoxy (meth)acrylate. The content of epoxy (meth)acrylate may be, for example, 40 to 100% by weight, 50 to 100% by weight, or 60 to 100% by weight, based on the total weight of the polymerizable compounds in the photocurable component.
 上記フロー率の第1の接着剤層が得られ易い観点では、光硬化性成分がトリシクロデカン構造、ノルボルナン構造等の架橋構造、及び/又は、芳香族構造を有する(メタ)アクリレート化合物を含んでいてよい。トリシクロデカン構造、ノルボルナン構造等の架橋構造、及び/又は、芳香族構造を有する(メタ)アクリレート化合物の含有量は、光硬化性成分中の重合性化合物の全質量を基準として、例えば、40~100質量%、50~100質量%又は60~100質量%であってよい。 From the viewpoint that the first adhesive layer having the above flow rate can be easily obtained, the photocurable component contains a (meth)acrylate compound having a crosslinked structure such as a tricyclodecane structure or a norbornane structure, and/or an aromatic structure. It's okay to be there. The content of the (meth)acrylate compound having a crosslinked structure such as a tricyclodecane structure or a norbornane structure, and/or an aromatic structure is, for example, 40% based on the total mass of the polymerizable compound in the photocurable component. It may be ~100% by weight, 50-100% by weight, or 60-100% by weight.
 光ラジカル重合開始剤は、150~750nmの範囲内の波長を含む光(例えば紫外光)の照射によってラジカルを発生する光重合開始剤である。光ラジカル重合開始剤は、オキシムエステル構造、ビスイミダゾール構造、アクリジン構造、α-アミノアルキルフェノン構造、アミノベンゾフェノン構造、N-フェニルグリシン構造、アシルホスフィンオキサイド構造、ベンジルジメチルケタール構造、α-ヒドロキシアルキルフェノン構造等の構造を有する化合物であってよい。光ラジカル重合開始剤は、所望の溶融粘度が得られ易い観点、及び、接続抵抗の低減効果により優れる観点では、オキシムエステル構造、α-アミノアルキルフェノン構造、及びアシルホスフィンオキサイド構造からなる群より選択される少なくとも1種の構造を有する化合物であってよい。 The photo-radical polymerization initiator is a photo-polymerization initiator that generates radicals upon irradiation with light (for example, ultraviolet light) having a wavelength within the range of 150 to 750 nm. The photo-radical polymerization initiator has an oxime ester structure, a bisimidazole structure, an acridine structure, an α-aminoalkylphenone structure, an aminobenzophenone structure, an N-phenylglycine structure, an acylphosphine oxide structure, a benzyl dimethyl ketal structure, and an α-hydroxyalkylphenone structure. It may be a compound having a structure such as a structure. The photoradical polymerization initiator is selected from the group consisting of an oxime ester structure, an α-aminoalkylphenone structure, and an acylphosphine oxide structure, from the viewpoint of easily obtaining the desired melt viscosity and from the viewpoint of being more effective in reducing connection resistance. It may be a compound having at least one type of structure.
 オキシムエステル構造を有する化合物の具体例としては、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-o-ベンゾイルオキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)等が挙げられる。 Specific examples of compounds having an oxime ester structure include 1-phenyl-1,2-butanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-methoxycarbonyl) ) oxime, 1-phenyl-1,2-propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-o-benzoyloxime, 1,3-diphenylpropanetrione- 2-(o-ethoxycarbonyl)oxime, 1-phenyl-3-ethoxypropanetrione-2-(o-benzoyl)oxime, 1,2-octanedione, 1-[4-(phenylthio)phenyl-,2-( o-benzoyloxime)], ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(o-acetyloxime), and the like.
 α-アミノアルキルフェノン構造を有する化合物の具体例としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-モルフォリノフェニル)-ブタノン-1等が挙げられる。 Specific examples of compounds having an α-aminoalkylphenone structure include 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -morpholinophenyl)-butanone-1 and the like.
 アシルホスフィンオキサイド構造を有する化合物の具体例としては、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド、ビス(2,4,6,-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド等が挙げられる。 Specific examples of compounds having an acylphosphine oxide structure include bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide, bis(2,4,6,-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, and the like.
 光ラジカル重合開始剤の含有量は、上記フロー率の第1の接着剤層が得られやすい観点から、ラジカル重合性化合物100質量部に対して、例えば、0.1~10質量部、0.3~7質量部又は0.5~5質量部であってよい。 The content of the photoradical polymerization initiator is, for example, 0.1 to 10 parts by mass, 0.1 to 10 parts by mass, based on 100 parts by mass of the radically polymerizable compound, from the viewpoint of easily obtaining the first adhesive layer having the above flow rate. It may be 3 to 7 parts by weight or 0.5 to 5 parts by weight.
 光硬化性成分の含有量(例えば重合性化合物と光重合開始剤の合計含有量)は、上記フロー率の第1の接着剤層が得られやすい観点から、第1の接着剤組成物の全質量を基準として、例えば、3質量%以上、5質量%以上又は10質量%以上であってよい。光硬化性成分の含有量は、所望の溶融粘度が得られ易い観点、及び、接続抵抗の低減効果により優れる観点から、接着剤組成物の全質量を基準として、例えば、50質量%以下、40質量%以下又は30質量%以下であってよい。これらの観点から、熱硬化性成分の含有量は、第1の接着剤組成物の全質量を基準として、例えば、3~50質量%、5~40質量%又は10~30質量%であってよい。上記と同様の観点から、ラジカル重合性化合物と光ラジカル重合開始剤の合計含有量が上記範囲であってもよい。 The content of the photocurable component (for example, the total content of the polymerizable compound and the photopolymerization initiator) is determined based on the total content of the first adhesive composition from the viewpoint of easily obtaining the first adhesive layer having the above flow rate. Based on the mass, it may be, for example, 3% by mass or more, 5% by mass or more, or 10% by mass or more. The content of the photocurable component is, for example, 50% by mass or less, 40% by mass or less based on the total mass of the adhesive composition, from the viewpoint of easily obtaining the desired melt viscosity and from the viewpoint of being more effective in reducing connection resistance. It may be less than 30% by mass or less than 30% by mass. From these viewpoints, the content of the thermosetting component is, for example, 3 to 50% by mass, 5 to 40% by mass, or 10 to 30% by mass, based on the total mass of the first adhesive composition. good. From the same viewpoint as above, the total content of the radically polymerizable compound and the photoradical polymerization initiator may be within the above range.
[その他の成分]
 第1の接着剤組成物は、例えば、熱可塑性樹脂、充填材、カップリング剤等を更に含んでいてよい。
[Other ingredients]
The first adhesive composition may further contain, for example, a thermoplastic resin, a filler, a coupling agent, and the like.
 熱可塑性樹脂は、接着剤フィルムのフィルム形成性の向上に寄与する。熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリルゴム、エポキシ樹脂(25℃で固形)等が挙げられる。上記フェノキシ樹脂としては、例えば、フルオレン型フェノキシ樹脂(フルオレン骨格を含有するエポキシ樹脂)、ビスフェノールA・ビスフェノールF共重合型フェノキシ樹脂(ビスフェノールA骨格及びビスフェノールF骨格を含有するフェノキシ樹脂)等が挙げられる。これらの中でも、ビスフェノールA・ビスフェノールF共重合型フェノキシ樹脂を用いる場合、熱可塑性樹脂由来の特性(例えばフィルム形成性)と接続構造体における接続部の硬化性を両立し易い傾向がある。これらは、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。 The thermoplastic resin contributes to improving the film-forming properties of the adhesive film. Examples of the thermoplastic resin include phenoxy resin, polyester resin, polyamide resin, polyurethane resin, polyester urethane resin, acrylic rubber, and epoxy resin (solid at 25° C.). Examples of the above phenoxy resins include fluorene type phenoxy resins (epoxy resins containing a fluorene skeleton), bisphenol A/bisphenol F copolymerized phenoxy resins (phenoxy resins containing a bisphenol A skeleton and a bisphenol F skeleton), and the like. . Among these, when using a bisphenol A/bisphenol F copolymerized phenoxy resin, there is a tendency to easily achieve both properties derived from a thermoplastic resin (for example, film-forming properties) and curability of the connection portion in the connected structure. These may be used alone or in combination.
 熱可塑性樹脂の重量平均分子量(Mw)は、接続時(実装時)の樹脂排除性の観点から、例えば、5000~200000、10000~100000、20000~80000又は40000~60000であってよい。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。 The weight average molecular weight (Mw) of the thermoplastic resin may be, for example, 5,000 to 200,000, 10,000 to 100,000, 20,000 to 80,000, or 40,000 to 60,000 from the viewpoint of resin expulsion during connection (mounting). Note that Mw means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
 熱可塑性樹脂の含有量は、第1の接着剤組成物の全質量を基準として、例えば、1質量%以上、5質量%以上、10質量%以上又は20質量%以上であってよく、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってよく、1~70質量%、5~60質量%、10~50質量%又は20~40質量%であってよい。 The content of the thermoplastic resin may be, for example, 1% by mass or more, 5% by mass or more, 10% by mass or more, or 20% by mass or more, based on the total mass of the first adhesive composition, and may be 70% by mass or more. % or less, 60% by weight or less, 50% by weight or less, or 40% by weight or less, and may be 1 to 70% by weight, 5 to 60% by weight, 10 to 50% by weight, or 20 to 40% by weight.
 充填材としては、例えば、非導電性のフィラー(例えば、非導電粒子)が挙げられる。充填材は、無機フィラー及び有機フィラーのいずれであってもよい。無機フィラーとしては、例えば、シリカ微粒子、アルミナ微粒子、シリカ-アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等の金属酸化物微粒子;金属窒化物微粒子などの無機微粒子が挙げられる。有機フィラーとしては、例えば、シリコーン微粒子、メタアクリレート・ブタジエン・スチレン微粒子、アクリル・シリコーン微粒子、ポリアミド微粒子、ポリイミド微粒子等の有機微粒子が挙げられる。充填材は、接続構造体の接続信頼性の観点では、シリカ微粒子であってよく、フェニルトリメトキシシラン、オクチルシラン等のシラン化合物により表面処理されたシリカ微粒子であってよい。 Examples of the filler include non-conductive fillers (for example, non-conductive particles). The filler may be either an inorganic filler or an organic filler. Examples of the inorganic filler include metal oxide particles such as silica particles, alumina particles, silica-alumina particles, titania particles, and zirconia particles; inorganic particles such as metal nitride particles. Examples of the organic filler include organic fine particles such as silicone fine particles, methacrylate/butadiene/styrene fine particles, acrylic/silicone fine particles, polyamide fine particles, and polyimide fine particles. From the viewpoint of connection reliability of the connected structure, the filler may be fine silica particles, or fine silica particles whose surface has been treated with a silane compound such as phenyltrimethoxysilane or octylsilane.
 充填材の平均粒子径は0.25~20μmであってよい。ここで、充填材の平均粒子径は、フロー式粒子像分析装置(例えばシメックス株式会社のFPIA-3000S)により測定される値である。 The average particle size of the filler may be 0.25 to 20 μm. Here, the average particle diameter of the filler is a value measured by a flow type particle image analyzer (for example, FPIA-3000S manufactured by CIMEX Corporation).
 充填材の含有量は、第1の接着剤組成物の全質量を基準として、例えば、0.1~10質量%であってよい。 The content of the filler may be, for example, 0.1 to 10% by mass based on the total mass of the first adhesive composition.
 カップリング剤としては、例えば、(メタ)アクリロイル基、メルカプト基、アミノ基、イミダゾール基、エポキシ基等の有機官能基を有するシランカップリング剤(γ―グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等)、テトラアルコキシシラン等のシラン化合物、テトラアルコキシチタネート誘導体、ポリジアルキルチタネート誘導体などが挙げられる。これらの中でも、有機官能基を有するシランカップリング剤を用いる場合、第1の接着剤組成物の接着性が更に向上する傾向がある。カップリング剤の含有量は、第1の接着剤組成物の全質量を基準として、例えば、0.1~10質量%であってよい。 Examples of coupling agents include silane coupling agents (γ-glycidoxypropyltrimethoxysilane, 2-( Examples include silane compounds such as 3,4-epoxycyclohexyl)ethyltrimethoxysilane, tetraalkoxysilane, tetraalkoxy titanate derivatives, and polydialkyl titanate derivatives. Among these, when a silane coupling agent having an organic functional group is used, the adhesiveness of the first adhesive composition tends to be further improved. The content of the coupling agent may be, for example, 0.1 to 10% by weight based on the total weight of the first adhesive composition.
 第1の接着剤組成物は、その他の成分として、軟化剤、促進剤、劣化防止剤、着色剤、難燃化剤、チキソトロピック剤等を更に含んでいてもよい。これらの成分の含有量は、第1の接着剤組成物の全質量を基準として、例えば、0.1~10質量%であってよい。 The first adhesive composition may further contain a softener, an accelerator, a deterioration inhibitor, a colorant, a flame retardant, a thixotropic agent, etc. as other components. The content of these components may be, for example, 0.1 to 10% by mass based on the total mass of the first adhesive composition.
(第2の接着剤組成物)
 第2の接着剤組成物は、熱硬化性を有する。すなわち、第2の接着剤組成物は熱硬化性成分を少なくとも含む。熱硬化性成分としては、第1の接着剤組成物に含まれる上記熱硬化性成分として例示したものを使用することができる。
(Second adhesive composition)
The second adhesive composition has thermosetting properties. That is, the second adhesive composition contains at least a thermosetting component. As the thermosetting component, those exemplified as the thermosetting component contained in the first adhesive composition can be used.
 熱硬化性成分は、接続抵抗の低減効果により優れる観点では、カチオン重合性化合物と熱カチオン重合開始剤とを含んでいてよい。第2の接着剤組成物における熱カチオン重合開始剤の含有量は第1の接着剤組成物における熱カチオン重合開始剤の含有量と同じであってよい。 The thermosetting component may contain a cationic polymerizable compound and a thermal cationic polymerization initiator from the viewpoint of being more effective in reducing connection resistance. The content of the thermal cationic polymerization initiator in the second adhesive composition may be the same as the content of the thermal cationic polymerization initiator in the first adhesive composition.
 カチオン重合性化合物は、所望の溶融粘度が得られ易い観点から、脂環式エポキシ化合物及びオキセタン化合物の両方を含んでいてよい。また、接続抵抗の低減効果が更に向上し、接続信頼性により優れる観点から、脂環式エポキシ化合物と芳香族系炭化水素基を有するエポキシ化合物とを組み合わせて用いてよい。また、接続構造体の接続信頼性の観点では、ゴム変性された脂環式エポキシ化合物を用いてもよい。 The cationic polymerizable compound may contain both an alicyclic epoxy compound and an oxetane compound from the viewpoint of easily obtaining a desired melt viscosity. Furthermore, from the viewpoint of further improving the connection resistance reduction effect and providing superior connection reliability, an alicyclic epoxy compound and an epoxy compound having an aromatic hydrocarbon group may be used in combination. Furthermore, from the viewpoint of connection reliability of the connected structure, a rubber-modified alicyclic epoxy compound may be used.
 熱硬化性成分の含有量(例えば重合性化合物と熱重合開始剤の合計含有量)は、接着剤フィルムの硬化性を担保する観点から、第2の接着剤組成物の全質量を基準として、例えば、3質量%以上、5質量%以上、10質量%以上又は15質量%以上であってよい。熱硬化性成分の含有量は、接着剤フィルムの形成性を担保する観点から、接着剤組成物の全質量を基準として、例えば、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってよい。これらの観点から、熱硬化性成分の含有量は、第1の接着剤組成物の全質量を基準として、例えば、3~70質量%、5~60質量%、10~50質量%又は15~40質量%であってよい。上記と同様の観点から、カチオン重合性化合物と熱カチオン重合開始剤の合計含有量が上記範囲であってもよい。 The content of the thermosetting component (for example, the total content of the polymerizable compound and the thermal polymerization initiator) is based on the total mass of the second adhesive composition, from the viewpoint of ensuring the curability of the adhesive film. For example, it may be 3% by mass or more, 5% by mass or more, 10% by mass or more, or 15% by mass or more. From the viewpoint of ensuring adhesive film formability, the content of the thermosetting component is, for example, 70% by mass or less, 60% by mass or less, 50% by mass or less, or 40% by mass or less, based on the total mass of the adhesive composition. It may be less than % by mass. From these viewpoints, the content of the thermosetting component is, for example, 3 to 70% by mass, 5 to 60% by mass, 10 to 50% by mass, or 15 to 50% by mass, based on the total mass of the first adhesive composition. It may be 40% by mass. From the same viewpoint as above, the total content of the cationic polymerizable compound and the thermal cationic polymerization initiator may be within the above range.
 第2の接着剤組成物は、第1の接着剤組成物と同様に、熱可塑性樹脂、充填材、カップリング剤等の成分を更に含んでいてよい。これらの成分としては、第1の接着剤組成物に含まれ得る成分として例示したものを使用することができる。 Similarly to the first adhesive composition, the second adhesive composition may further contain components such as a thermoplastic resin, a filler, and a coupling agent. As these components, those exemplified as components that can be included in the first adhesive composition can be used.
 熱可塑性樹脂の中でもフルオレン型フェノキシ樹脂を用いる場合、フィルム形成性と接続構造体の接続信頼性を両立し易い傾向がある。熱可塑性樹脂の含有量は、第2の接着剤組成物の全質量を基準として、例えば、1質量%以上、5質量%以上、10質量%以上又は20質量%以上であってよく、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってよく、1~70質量%、5~60質量%、10~50質量%又は20~40質量%であってよい。 When using a fluorene-type phenoxy resin among thermoplastic resins, there is a tendency to achieve both film formability and connection reliability of the connected structure. The content of the thermoplastic resin may be, for example, 1% by mass or more, 5% by mass or more, 10% by mass or more, or 20% by mass or more, based on the total mass of the second adhesive composition, and may be 70% by mass or more. % or less, 60% by weight or less, 50% by weight or less, or 40% by weight or less, and may be 1 to 70% by weight, 5 to 60% by weight, 10 to 50% by weight, or 20 to 40% by weight.
 充填材は、接続構造体の接続信頼性の観点では、シリカ微粒子であってよく、フェニルトリメトキシシラン、オクチルシラン等のシラン化合物により表面処理されたシリカ微粒子であってよい。充填材の含有量は、第2の接着剤組成物の全質量を基準として、例えば、0.1~10質量%であってよい。 From the viewpoint of connection reliability of the connected structure, the filler may be fine silica particles, or fine silica particles whose surface has been treated with a silane compound such as phenyltrimethoxysilane or octylsilane. The content of the filler may be, for example, 0.1 to 10% by weight, based on the total weight of the second adhesive composition.
 カップリング剤の中でも、有機官能基を有するシランカップリング剤を用いる場合、第2の接着剤組成物の接着性が更に向上する傾向がある。カップリング剤の含有量は、第2の接着剤組成物の全質量を基準として、例えば、0.1~10質量%であってよい。 Among the coupling agents, when a silane coupling agent having an organic functional group is used, the adhesiveness of the second adhesive composition tends to be further improved. The content of the coupling agent may be, for example, 0.1 to 10% by weight based on the total weight of the second adhesive composition.
 第2の接着剤組成物は、軟化剤、促進剤、劣化防止剤、着色剤、難燃化剤、チキソトロピック剤等を更に含んでいてもよい。これらの成分の含有量は、第2の接着剤組成物の全質量を基準として、例えば、0.1~10質量%であってよい。 The second adhesive composition may further contain a softener, an accelerator, a deterioration inhibitor, a colorant, a flame retardant, a thixotropic agent, and the like. The content of these components may be, for example, 0.1 to 10% by mass based on the total mass of the second adhesive composition.
 第2の接着剤組成物は、熱硬化反応速度調整剤として、ε-カプロラクタムを含有してよい。ε-カプロラクタムの含有量は、第2の接着剤組成物の全質量を基準として、例えば、0.005~0.1質量%であってよい。 The second adhesive composition may contain ε-caprolactam as a thermosetting reaction rate regulator. The content of ε-caprolactam may be, for example, 0.005 to 0.1% by mass based on the total mass of the second adhesive composition.
 第2の接着剤組成物は、添加剤として、トリブチルボレートを含有してよい。トリブチルボレートは、例えば、粘度調整剤等として機能し得る。トリブチルボレートの含有量は、第2の接着剤組成物の全質量を基準として、例えば、0.1~2.0質量%であってよい。 The second adhesive composition may contain tributylborate as an additive. Tributylborate can function as, for example, a viscosity modifier. The content of tributylborate may be, for example, 0.1 to 2.0% by weight based on the total weight of the second adhesive composition.
(導電粒子)
 導電粒子3は、導電性を有する粒子である。導電粒子3としては、Au、Ag、Ni、Cu、はんだ等の金属で構成された金属粒子、導電性カーボンで構成された導電性カーボン粒子などを用いることができる。導電粒子3は、非導電性のガラス、セラミック、プラスチック(ポリスチレン等)などを含む核と、上記金属又は導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子であってもよい。これらの中でも、熱溶融性の金属で形成された金属粒子、又はプラスチックを含む核と、金属又は導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子を用いる場合、第1の接着剤層を加熱又は加圧により変形させることが容易となる。そのため、電極同士を電気的に接続する際に、電極と導電粒子との接触面積を増加させ、電極間の導電性をより向上させることができる。
(conductive particles)
The conductive particles 3 are particles having conductivity. As the conductive particles 3, metal particles made of metal such as Au, Ag, Ni, Cu, and solder, conductive carbon particles made of conductive carbon, and the like can be used. The conductive particles 3 may be coated conductive particles comprising a core containing non-conductive glass, ceramic, plastic (polystyrene, etc.), and a coating layer containing the above-mentioned metal or conductive carbon and covering the core. . Among these, when using metal particles formed of a heat-melting metal or coated conductive particles comprising a core containing plastic and a coating layer containing metal or conductive carbon and covering the core, the first It becomes easy to deform the adhesive layer by heating or applying pressure. Therefore, when electrically connecting the electrodes, the contact area between the electrodes and the conductive particles can be increased, and the conductivity between the electrodes can be further improved.
 導電粒子3は、上記の金属粒子、導電性カーボン粒子、又は被覆導電粒子と、樹脂等の絶縁材料を含み、該粒子の表面を被覆する絶縁層とを備える絶縁被覆導電粒子であってもよい。導電粒子3が絶縁被覆導電粒子であると、導電粒子含有量が多い場合であっても、粒子の表面が樹脂で被覆されているため、導電粒子同士の接触による短絡の発生を抑制でき、また、隣り合う電極回路間の絶縁性を向上させることもできる。 The conductive particles 3 may be insulating coated conductive particles that include the above metal particles, conductive carbon particles, or coated conductive particles and an insulating layer that includes an insulating material such as a resin and covers the surface of the particles. . When the conductive particles 3 are insulating coated conductive particles, even if the conductive particle content is large, the surface of the particles is coated with resin, so it is possible to suppress the occurrence of short circuits due to contact between the conductive particles, and , it is also possible to improve the insulation between adjacent electrode circuits.
 原材料の入手性及び市場で求められている接続構造体形成の観点では、導電粒子3の平均粒子径が1.0~50.0μmであってよい。また、構造体の接続信頼性の観点では、導電粒子3の粒子径のC.V.値は25%以下であってよい。これらの観点から、導電粒子3は、平均粒子径が1.0~50.0μmであり、粒子径のC.V.値が25%以下である粒子であってよい。本明細書において、導電粒子の平均粒子径とは、上述した方法により測定される導電粒子の埋め込み方向における粒子径の平均値であり、導電粒子の粒子径のC.V.値は、上述した方法により測定される導電粒子の埋め込み方向における粒子径のC.V.値である。粒子径のC.V.値は、粒子径の標準偏差を平均粒子径で割った値に100を掛けることで算出される値であり、粒子径のばらつきの程度を示すパラメータである。粒子径のC.V.値が小さいことは、粒子径のばらつきが少ないことを意味する。導電粒子の平均粒子径及び導電粒子の粒子径のC.V.値は、粒子埋込率の測定方法と同様の方法により、走査型電子顕微鏡(SEM)により回路接続用接着剤フィルムの縦断面(厚さ方向の断面)を観察して測定することができる。 From the viewpoint of availability of raw materials and formation of a connected structure required in the market, the average particle diameter of the conductive particles 3 may be 1.0 to 50.0 μm. In addition, from the viewpoint of connection reliability of the structure, the particle diameter of the conductive particles 3 is C. V. The value may be 25% or less. From these viewpoints, the conductive particles 3 have an average particle diameter of 1.0 to 50.0 μm, and a particle diameter of C. V. The particles may have a value of 25% or less. In this specification, the average particle diameter of the conductive particles is the average value of the particle diameters in the embedding direction of the conductive particles measured by the method described above, and the C.I. V. The value is the C. V. It is a value. Particle size C. V. The value is a value calculated by dividing the standard deviation of particle diameter by the average particle diameter and multiplying by 100, and is a parameter indicating the degree of variation in particle diameter. Particle size C. V. A small value means that there is little variation in particle size. C. of the average particle diameter of the conductive particles and the particle diameter of the conductive particles. V. The value can be measured by observing a longitudinal section (cross section in the thickness direction) of the circuit-connecting adhesive film using a scanning electron microscope (SEM) in the same manner as the method for measuring the particle embedding rate.
 導電粒子3の平均粒子径は、低抵抗化の観点から、2.0μm以上又は4.0μm以上であってもよい。導電粒子3の平均粒子径は、接続構造体の接続信頼性の観点から、40.0μm以下又は25.0μm以下であってもよい。これらの観点から、導電粒子3の平均粒子径は、2.0~40.0μm又は4.0~25.0μmであってもよい。 The average particle diameter of the conductive particles 3 may be 2.0 μm or more or 4.0 μm or more from the viewpoint of lowering resistance. The average particle diameter of the conductive particles 3 may be 40.0 μm or less or 25.0 μm or less from the viewpoint of connection reliability of the connected structure. From these viewpoints, the average particle diameter of the conductive particles 3 may be 2.0 to 40.0 μm or 4.0 to 25.0 μm.
 導電粒子3の粒子径のC.V.値は、接続構造体の接続信頼性の観点から、20%以下又は15%以下であってもよい。導電粒子3の粒子径のC.V.値の下限値は、小さいほど好ましく、0%であってよく、1%又は3%であってもよい。導電粒子3の粒子径のC.V.値は、例えば、0~25%、1~20%又は3~15%であってよい。 C. of particle diameter of conductive particles 3 V. The value may be 20% or less or 15% or less from the viewpoint of connection reliability of the connection structure. C. of the particle diameter of the conductive particles 3 V. The lower limit of the value is preferably as small as possible, and may be 0%, 1% or 3%. C. of the particle diameter of the conductive particles 3 V. The value may be, for example, 0-25%, 1-20% or 3-15%.
 導電粒子3の平均粒子径に対する回路接続用接着剤フィルム10の厚さの比は、導電粒子3を回路接続用接着剤フィルム10の表面から露出させない観点から、1.1以上であってよく、1.5以上、2.0以上又は2.5以上であってもよい。導電粒子3の平均粒子径に対する回路接続用接着剤フィルム10の厚さの比は、低抵抗化の観点から、10.0以下であってよく、8.0以下、5.0以下又は3.0以下であってもよい。これらの観点から、導電粒子3の平均粒子径に対する回路接続用接着剤フィルム10の厚さの比は、1.1~10.0であってよく、1.5~8.0、2.0~5.0、2.5~5.0、又は1.5~3.0であってもよい。 The ratio of the thickness of the circuit-connecting adhesive film 10 to the average particle diameter of the conductive particles 3 may be 1.1 or more from the viewpoint of not exposing the conductive particles 3 from the surface of the circuit-connecting adhesive film 10. It may be 1.5 or more, 2.0 or more, or 2.5 or more. The ratio of the thickness of the circuit connection adhesive film 10 to the average particle diameter of the conductive particles 3 may be 10.0 or less, 8.0 or less, 5.0 or less, or 3.0 or less, from the viewpoint of reducing resistance. It may be 0 or less. From these viewpoints, the ratio of the thickness of the circuit connecting adhesive film 10 to the average particle diameter of the conductive particles 3 may be 1.1 to 10.0, 1.5 to 8.0, 2.0. ~5.0, 2.5~5.0, or 1.5~3.0.
 導電粒子3の粒子密度は、安定した接続抵抗が得られやすい観点から、5000個/mm以上、10000個/mm以上又は20000個/mm以上であってよい。導電粒子3の粒子密度は、隣り合う電極間の絶縁性を向上させる観点から、50000個/mm以下、40000個/mm以下又は30000個/mm以下であってよい。これらの観点から、導電粒子3の粒子密度は、5000~50000個/mm、10000~40000個/mm又は20000~30000個/mmであってよい。 The particle density of the conductive particles 3 may be 5,000 particles/mm 2 or more, 10,000 particles/mm 2 or more, or 20,000 particles/mm 2 or more from the viewpoint of easily obtaining stable connection resistance. The particle density of the conductive particles 3 may be 50,000 particles/mm 2 or less, 40,000 particles/mm 2 or less, or 30,000 particles/mm 2 or less from the viewpoint of improving the insulation between adjacent electrodes. From these viewpoints, the particle density of the conductive particles 3 may be 5,000 to 50,000 particles/mm 2 , 10,000 to 40,000 particles/mm 2 or 20,000 to 30,000 particles/mm 2 .
 導電粒子3の含有量は、導電性をより向上させることができる観点から、回路接続用接着剤フィルム10の全質量を基準として、例えば、40質量%以上、50質量%以上又は60質量%以上であってよい。導電粒子3の含有量は、短絡を抑制し易い観点から、回路接続用接着剤フィルム10の全質量を基準として、例えば、80質量%以下、75質量%以下又は70質量%以下であってよい。これらの観点から、導電粒子3の含有量は、回路接続用接着剤フィルム10の全質量を基準として、例えば、40~80質量%、50~75質量%又は60~70質量%であってよい。 From the viewpoint of further improving conductivity, the content of the conductive particles 3 is, for example, 40% by mass or more, 50% by mass or more, or 60% by mass or more, based on the total mass of the circuit connection adhesive film 10. It may be. From the viewpoint of easily suppressing short circuits, the content of the conductive particles 3 may be, for example, 80% by mass or less, 75% by mass or less, or 70% by mass or less, based on the total mass of the circuit connection adhesive film 10. . From these viewpoints, the content of the conductive particles 3 may be, for example, 40 to 80% by mass, 50 to 75% by mass, or 60 to 70% by mass, based on the total mass of the circuit connection adhesive film 10. .
 以上、回路接続用接着剤フィルムの一実施形態について説明したが、回路接続用接着剤フィルムは上記実施形態に限定されない。例えば、回路接続用接着剤フィルム中に複数存在する導電粒子は、回路接続用接着剤フィルムの平面視において、所定のパターンで並んでいなくてもよい。また、回路接続用接着剤フィルムが、第1の接着剤層及び第2の接着剤層以外の他の接着剤層を更に備えていてもよい。 Although one embodiment of the circuit connection adhesive film has been described above, the circuit connection adhesive film is not limited to the above embodiment. For example, a plurality of conductive particles present in the circuit-connecting adhesive film may not be arranged in a predetermined pattern when the circuit-connecting adhesive film is viewed from above. Moreover, the adhesive film for circuit connection may further include an adhesive layer other than the first adhesive layer and the second adhesive layer.
<回路接続用接着剤フィルムの製造方法>
 回路接続用接着剤フィルムの製造方法は、第1の接着剤層と、第1の接着剤層の一方面側に部分的に埋め込まれている導電粒子とを備える第1の接着剤フィルムを用意する工程(I)と、第1の接着剤層の一方面上に第2の接着剤層を設ける工程(II)と、を備え、工程(I)が、外部刺激硬化性組成物を含む前駆体層の一方面側に導電粒子が部分的に埋め込まれた状態で、外部刺激によって前駆体層を硬化させて第1の接着剤層を形成する硬化工程を含む。
<Method for manufacturing adhesive film for circuit connection>
A method for producing an adhesive film for circuit connection includes preparing a first adhesive film comprising a first adhesive layer and conductive particles partially embedded in one side of the first adhesive layer. and a step (II) of providing a second adhesive layer on one side of the first adhesive layer, the step (I) comprising a precursor comprising an externally stimulated curable composition. The method includes a curing step of curing the precursor layer by external stimulation to form a first adhesive layer in a state where the conductive particles are partially embedded in one side of the body layer.
 工程(I)は、表面に複数の導電粒子が配置された基体の該表面上に上記前駆体層を設けることで、基体から前駆体層に導電粒子を転写する転写工程を更に含んでいてよい。転写工程を実施することにより、隣り合う導電粒子同士を互いに離隔した状態で前駆体層に埋め込むことが容易となる。 Step (I) may further include a transfer step of transferring the conductive particles from the substrate to the precursor layer by providing the precursor layer on the surface of the substrate on which a plurality of conductive particles are arranged. . By performing the transfer step, it becomes easy to embed adjacent conductive particles in the precursor layer in a state where they are separated from each other.
 工程(I)は、転写工程の前に、外部刺激硬化性組成物を含む層を50~70℃で3~60分間加熱する加熱工程を更に含んでいてよい。加熱工程を実施することで、転写工程での前駆体層への導電粒子の埋込率を調整することができ、所望の粒子埋込率を有する回路接続用接着剤フィルムを得ることが容易となる。前駆体層が所望の粒子埋込率を得るために充分な硬度を有する場合には、加熱工程を実施しなくてもよい。 Step (I) may further include, before the transfer step, a heating step of heating the layer containing the external stimulation curable composition at 50 to 70° C. for 3 to 60 minutes. By performing the heating process, the embedding rate of conductive particles in the precursor layer in the transfer process can be adjusted, and it is easy to obtain an adhesive film for circuit connection having a desired particle embedding rate. Become. If the precursor layer has sufficient hardness to obtain the desired particle embedding, the heating step may not be performed.
 工程(I)は、転写工程の後に、前駆体層の導電粒子が転写された面に圧力を加える加圧工程を更に含んでいてよい。加圧工程を実施することで、導電粒子を前駆体層中にさらに埋め込むことができ、粒子埋込率を高めることができる。転写工程で充分な粒子埋込率が得られている場合には加圧工程を実施しなくてもよい。 Step (I) may further include, after the transfer step, a pressurizing step of applying pressure to the surface of the precursor layer to which the conductive particles have been transferred. By performing the pressurizing step, the conductive particles can be further embedded in the precursor layer, and the particle embedding rate can be increased. If a sufficient particle embedding rate is obtained in the transfer process, the pressurizing process may not be performed.
 以下、図4~図7を参照しながら、上記実施形態の回路接続用接着剤フィルム10の製造方法を例に挙げて、回路接続用接着剤フィルムの製造方法について説明する。なお、第1の接着剤層、導電粒子、第2の接着剤層、外部刺激硬化性組成物等の詳細など、上記実施形態の回路接続用接着剤フィルム10について説明したものと重複する説明は省略する。 Hereinafter, with reference to FIGS. 4 to 7, a method for manufacturing a circuit-connecting adhesive film will be described, taking as an example the method for manufacturing the circuit-connecting adhesive film 10 of the above embodiment. Note that the descriptions that overlap with those described for the circuit connection adhesive film 10 of the above embodiment, such as details of the first adhesive layer, conductive particles, second adhesive layer, external stimulus curable composition, etc. Omitted.
 図4は、工程(I)における転写工程を示す模式図である。図5は、工程(I)における加圧工程を示す模式図である。図6は、工程(I)における硬化工程を示す模式図である。図7は、工程(II)を示す模式図である。 FIG. 4 is a schematic diagram showing the transfer step in step (I). FIG. 5 is a schematic diagram showing the pressurizing step in step (I). FIG. 6 is a schematic diagram showing the curing step in step (I). FIG. 7 is a schematic diagram showing step (II).
(工程(I))
[基体の準備]
 工程(I)では、まず、外部刺激硬化性組成物を含む前駆体層を備えるフィルム、及び、表面に複数の導電粒子が配置された基体を用意する。
(Step (I))
[Substrate preparation]
In step (I), first, a film provided with a precursor layer containing an externally stimulated curable composition and a substrate on which a plurality of conductive particles are arranged are prepared.
 外部刺激硬化性組成物を含む前駆体層を備えるフィルムとしては、例えば、図4の(a)に示す積層フィルム12を用いることができる。積層フィルム12は、第1の支持体21と、第1の支持体21上に設けられた前駆体層11とを備える。 For example, the laminated film 12 shown in FIG. 4(a) can be used as the film provided with the precursor layer containing the externally stimulated curable composition. The laminated film 12 includes a first support 21 and a precursor layer 11 provided on the first support 21.
 第1の支持体21は、プラスチックフィルムであってもよいし、金属箔であってもよい。第1の支持体21としては、例えば、延伸ポリプロピレン(OPP)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリオレフィン、ポリアセテート、ポリカーボネート、ポリフェニレンサルファイド、ポリアミド、ポリイミド、セルロース、エチレン・酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、合成ゴム系、液晶ポリマー等を構成材料とする基材(例えば、フィルム)などを用いてよい。 The first support 21 may be a plastic film or a metal foil. Examples of the first support 21 include oriented polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polybutylene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, polyimide, and cellulose. , ethylene/vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, synthetic rubber, liquid crystal polymer, or the like may be used as a base material (for example, a film).
 前駆体層11は、外部刺激硬化性組成物又はその溶液(ワニス)を第1の支持体21上に塗布し、場合により得られた層(外部刺激硬化性組成物を含む層)を加熱して乾燥させることにより形成することができる。ワニスは、外部刺激硬化性組成物の構成成分を有機機溶媒中で混合することによって調製される。塗布は、ナイフコーター、ロールコーター、アプリケーター、コンマコーター、ダイコーター等を用いて行うことができる。基材へ塗布したワニスから有機溶媒を揮発させる際の加熱条件は、使用する有機溶媒の種類等に合わせて設定することができるが、本実施形態では、転写工程での前駆体層への導電粒子の埋込率を調整する観点から、通常よりも長時間乾燥を行ってよい。加熱条件は、例えば、50~70℃で3~60分間であってよい。ただし、加熱条件は、目的とする前駆体層11の溶融粘度によって調整可能である。 The precursor layer 11 is formed by applying an external stimulus-curable composition or its solution (varnish) onto the first support 21, and optionally heating the obtained layer (layer containing the external stimulus-curable composition). It can be formed by drying. The varnish is prepared by mixing the components of the external stimuli-curable composition in an organic organic solvent. Coating can be performed using a knife coater, roll coater, applicator, comma coater, die coater, or the like. The heating conditions for volatilizing the organic solvent from the varnish applied to the base material can be set depending on the type of organic solvent used, but in this embodiment, the heating conditions From the viewpoint of adjusting the particle embedding rate, drying may be performed for a longer time than usual. The heating conditions may be, for example, 50 to 70°C for 3 to 60 minutes. However, the heating conditions can be adjusted depending on the desired melt viscosity of the precursor layer 11.
 前駆体層11の最低溶融粘度は30~10000Pa・sであってよく、50~5000Pa・sであってもよい。前駆体層の最低溶融粘度は、例えば、前駆体層を厚さ300μm~500μmとなるよう、ラミネータ(Leon13DX(株式会社ラミーコーポレーション)を用いて、複数積層した後、得られた積層サンプルに対して、ARES-G2(TA instruments社)用いた粘弾性測定を行うことにより求めることができる。前駆体層の積層条件は、例えば、50℃、通紙速度1m/min、装置設定S8で行うことができる。粘弾性測定は、例えば、0℃~200℃の測定温度範囲で行う。測定された溶融粘度(Pa・s)のうち最も低い値を最低溶融粘度とする。前駆体層は、20℃~80℃の範囲のいずれか温度において、1000~10000Pa・sの複素粘度を示すことが好ましい。40℃~70℃の範囲のいずれか温度において、2000Pa・s近傍(例えば1500~3000Pa・s)の複素粘度を示すことがより好ましい。 The minimum melt viscosity of the precursor layer 11 may be 30 to 10,000 Pa·s, or 50 to 5,000 Pa·s. The minimum melt viscosity of the precursor layer is determined, for example, by laminating a plurality of precursor layers to a thickness of 300 μm to 500 μm using a laminator (Leon 13DX (Lamy Corporation)), and then applying , can be determined by performing viscoelasticity measurement using ARES-G2 (TA instruments).The lamination conditions of the precursor layer are, for example, 50° C., paper passing speed of 1 m/min, and device setting S8. Viscoelasticity measurement is performed, for example, in the measurement temperature range of 0°C to 200°C.The lowest value of the measured melt viscosities (Pa・s) is taken as the minimum melt viscosity.The precursor layer is heated at 20°C. It is preferable to exhibit a complex viscosity of 1,000 to 10,000 Pa・s at a temperature in the range of ~80°C. Near 2,000 Pa・s (for example, 1,500 to 3,000 Pa・s) at a temperature in the range of 40°C to 70°C. More preferably, it exhibits a complex viscosity of .
 ワニスの調製において使用される有機溶媒は、外部刺激硬化性組成物の構成成分を略均一に溶解又は分散し得る特性を有するものであれば特に制限されない。このような有機溶媒としては、例えば、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。これらの有機溶媒は、単独で又は2種以上を組み合わせて使用することができる。ワニスの調製の際の混合は、例えば、撹拌機、らいかい機、3本ロール、ボールミル、ビーズミル、ホモディスパー等を用いて行うことができる。 The organic solvent used in preparing the varnish is not particularly limited as long as it has the property of substantially uniformly dissolving or dispersing the components of the external stimulation-curable composition. Examples of such organic solvents include toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate, and the like. These organic solvents can be used alone or in combination of two or more. Mixing during the preparation of the varnish can be carried out using, for example, a stirrer, a miller, a three-roll mill, a ball mill, a bead mill, a homodisper, or the like.
 基体としては、例えば、図4の(a)に示す基体22を用いることができる。基体22は、導電粒子が配置される凹部を表面に複数有する。複数の凹部は、例えば、所定のパターン(例えば、回路部材の電極パターンに対応するパターン)で規則的に配置されている。凹部が所定のパターンで配置されている場合、導電粒子3が所定のパターンで第1の接着剤層に転写されることとなる。そのため、導電粒子3が所定のパターン(図1に示されるようなパターン)で規則的に配置された回路接続用接着剤フィルム10が得られる。基体22の凹部の形状及びサイズは、導電粒子の形状、サイズ、第1の接着剤層への粒子埋込率等の観点から設定することができる。基体22を構成する材料としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチール等の金属等の無機材料、並びに、各種樹脂等の有機材料を使用することができる。基体22の凹部に導電粒子3を配置(収容)する方法は特に限定されない。例えば、導電粒子3を基体22の表面上に配置し、スキージ又は微粘着ローラーを用いて、基体22の表面を擦ることで、余分な導電粒子3を除去しつつ、凹部に導電粒子3を配置することができる。余分なはんだ粒子を除去する方法として、圧縮空気を吹き付ける、不織布又は繊維の束で基体22の表面を擦る方法も挙げられる。また、導電粒子3を基体22の凹部内で形成することにより、導電粒子3を凹部に配置してもよい。図示しないが、基体22に代えて、導電粒子を固定可能な支持部(針等)を表面に備える基体を用いることもできる。 As the base, for example, the base 22 shown in FIG. 4(a) can be used. The base body 22 has a plurality of recesses on its surface in which conductive particles are arranged. The plurality of recesses are, for example, regularly arranged in a predetermined pattern (for example, a pattern corresponding to the electrode pattern of the circuit member). When the recesses are arranged in a predetermined pattern, the conductive particles 3 will be transferred to the first adhesive layer in a predetermined pattern. Therefore, a circuit-connecting adhesive film 10 in which conductive particles 3 are regularly arranged in a predetermined pattern (such as the pattern shown in FIG. 1) is obtained. The shape and size of the recessed portion of the base body 22 can be set from the viewpoints of the shape and size of the conductive particles, the embedding rate of the particles in the first adhesive layer, and the like. As the material constituting the base body 22, for example, inorganic materials such as silicon, various ceramics, glass, metals such as stainless steel, and organic materials such as various resins can be used. The method of arranging (accommodating) the conductive particles 3 in the recesses of the base body 22 is not particularly limited. For example, by placing the conductive particles 3 on the surface of the base 22 and rubbing the surface of the base 22 using a squeegee or a slightly adhesive roller, the conductive particles 3 are placed in the recesses while removing excess conductive particles 3. can do. Examples of methods for removing excess solder particles include blowing compressed air and rubbing the surface of the substrate 22 with a nonwoven fabric or a bundle of fibers. Further, the conductive particles 3 may be arranged in the recesses by forming the conductive particles 3 within the recesses of the base body 22 . Although not shown, instead of the base body 22, a base body having a support portion (such as a needle) on its surface that can fix the conductive particles can also be used.
[転写工程]
 次に、基体22の導電粒子3が配置された表面上に上記前駆体層11を設けることで、基体22から前駆体層11に導電粒子3を転写する(図4参照。)。具体的には、まず、基体22の凹部が形成されている面(基体22の表面)と、積層フィルム12の前駆体層11側の面(前駆体層11の第1の支持体21とは反対側の面)とを対向させて、基体22と前駆体層11とを近づける(図4の(a)参照)。次に、積層フィルム12と基体22とを貼り合わせることで前駆体層11を基体22の表面(凹部が形成されている面)に接触させて、前駆体層11に導電粒子3を転写する(図4の(b)参照。)。これにより、図4の(c)に示す第1の粒子付き積層フィルム13が得られる。第1の粒子付き積層フィルム13は、第1の支持体21と、前駆体層11と、部分的に前駆体層11中に埋め込まれた導電粒子3と、を備える。
[Transfer process]
Next, by providing the precursor layer 11 on the surface of the base 22 on which the conductive particles 3 are arranged, the conductive particles 3 are transferred from the base 22 to the precursor layer 11 (see FIG. 4). Specifically, first, the surface of the base 22 where the concave portion is formed (the surface of the base 22) and the surface of the laminated film 12 on the precursor layer 11 side (the first support 21 of the precursor layer 11 are The base body 22 and the precursor layer 11 are brought close to each other with the opposite surfaces facing each other (see FIG. 4(a)). Next, by bonding the laminated film 12 and the base 22 together, the precursor layer 11 is brought into contact with the surface of the base 22 (the surface on which the recesses are formed), and the conductive particles 3 are transferred to the precursor layer 11 ( (See Figure 4(b).) As a result, the first particle-coated laminated film 13 shown in FIG. 4(c) is obtained. The first particle-attached laminate film 13 includes a first support 21 , a precursor layer 11 , and conductive particles 3 partially embedded in the precursor layer 11 .
 積層フィルム12と基体22とを貼り合わせる方法としては、例えば、加熱プレス、ロールラミネート、真空ラミネート等の方法が挙げられる。ラミネートは、例えば、0~80℃の温度条件下で行うことができる。転写時の温度は、前駆体層11に対する粒子転写率が98%以上となる最も低い温度であってよい。 Examples of methods for bonding the laminated film 12 and the base 22 include hot pressing, roll lamination, vacuum lamination, and the like. Lamination can be performed, for example, at a temperature of 0 to 80°C. The temperature during transfer may be the lowest temperature at which the particle transfer rate to the precursor layer 11 is 98% or more.
 図示しないが、転写工程では、外部刺激硬化性組成物又はその溶液(ワニス)を基体22に直接塗布することで前駆体層11を形成してもよい。 Although not shown, in the transfer step, the precursor layer 11 may be formed by directly applying an externally stimulated curable composition or its solution (varnish) to the substrate 22.
[加圧工程]
 次に、前駆体層11の導電粒子3が転写された面に圧力を加える。具体的には、例えば、図5の(a)に示すように、前駆体層11の導電粒子3が転写された面に保護フィルム23を貼り付けた後、第1の支持体21側及び保護フィルム23側から第1の粒子付き積層フィルム13に圧力(図5の(a)中のP1及びP2)を加える。これにより、導電粒子3がさらに前駆体層に埋め込まれ、図5の(b)に示す第2の粒子付き積層フィルム14が得られる。
[Pressure process]
Next, pressure is applied to the surface of the precursor layer 11 onto which the conductive particles 3 have been transferred. Specifically, for example, as shown in FIG. 5A, after the protective film 23 is attached to the surface of the precursor layer 11 to which the conductive particles 3 are transferred, the first support 21 side and the protective film 23 are attached. Pressure (P1 and P2 in FIG. 5(a)) is applied to the first particle-attached laminated film 13 from the film 23 side. As a result, the conductive particles 3 are further embedded in the precursor layer, and a second particle-attached laminated film 14 shown in FIG. 5(b) is obtained.
 保護フィルム23としては、例えば、表面に離型処理が施された剥離フィルムを用いることができる。前駆体層11の種類によっては、保護フィルム23を用いなくてもよい。 As the protective film 23, for example, a release film whose surface has been subjected to a release treatment can be used. Depending on the type of precursor layer 11, the protective film 23 may not be used.
 圧力を加える方法としては、例えば、プレス、ロールラミネート、真空ラミネート等の方法が挙げられる。圧力は、0.1~10MPaであってよい。加圧時間は、0.5~20秒間であってよい。加圧工程では、加圧と同時に加熱を行ってもよい。加圧時の温度は、例えば、20~70℃としてよい。 Examples of methods for applying pressure include pressing, roll lamination, vacuum lamination, and the like. The pressure may be between 0.1 and 10 MPa. The pressurization time may be 0.5 to 20 seconds. In the pressurizing step, heating may be performed simultaneously with pressurizing. The temperature during pressurization may be, for example, 20 to 70°C.
[硬化工程]
 次に、外部刺激硬化性組成物を含む前駆体層11に外部刺激を加えて前駆体層を硬化させる。例えば、外部刺激硬化性組成物が熱硬化性及び光硬化性を有する組成物である場合は、図6の(a)に示すように、光(活性光線)24を前駆体層11に照射することで該前駆体層11を硬化させる。これより、図6の(b)に示す第1の接着剤フィルム15が得られる。第1の接着剤フィルム15は、第1の支持体21と、第1の接着剤層1と、第1の接着剤層1の一方面側(第1の支持体21とは反対側)に部分的に埋め込まれている導電粒子3とを備える。
[Curing process]
Next, an external stimulus is applied to the precursor layer 11 containing the external stimulus-curable composition to cure the precursor layer. For example, when the externally stimulated curable composition is a thermosetting and photocurable composition, the precursor layer 11 is irradiated with light (actinic rays) 24 as shown in FIG. This causes the precursor layer 11 to harden. As a result, the first adhesive film 15 shown in FIG. 6(b) is obtained. The first adhesive film 15 is attached to the first support 21, the first adhesive layer 1, and one side of the first adhesive layer 1 (the opposite side to the first support 21). and partially embedded conductive particles 3.
 光の照射には、波長150~750nmの範囲内の照射光(例えば紫外光)を用いてよい。光の照射は、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプ、LED光源等を使用して行うことができる。光の照射量は、特に限定されず、波長350nmの光の積算光量で、100mJ/cm以上であってよく、200mJ/cm以上であってよく、300mJ/cm以上であってよい。光の照射量は、波長365nmの光の積算光量で、10000mJ/cm以下であってよく、5000mJ/cm以下であってよく、3000mJ/cm以下であってよい。 For light irradiation, irradiation light (for example, ultraviolet light) within a wavelength range of 150 to 750 nm may be used. Light irradiation can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, an LED light source, or the like. The amount of light irradiation is not particularly limited, and the cumulative amount of light with a wavelength of 350 nm may be 100 mJ/cm 2 or more, 200 mJ/cm 2 or more, or 300 mJ/cm 2 or more. The amount of light irradiation may be 10,000 mJ/cm 2 or less, 5,000 mJ/cm 2 or less, or 3,000 mJ/cm 2 or less as an integrated amount of light with a wavelength of 365 nm.
 図6では第2の粒子付き積層フィルム14が使用されているが、加圧工程を実施しない場合には、第2の粒子付き積層フィルム14に代えて第1の粒子付き積層フィルム13を用いてよい。また、硬化工程では、光照射に代えて、又は、光照射に加えて、加熱処理を行ってもよい。 In FIG. 6, the second laminated film 14 with particles is used, but if the pressurizing process is not performed, the first laminated film 13 with particles can be used instead of the second laminated film 14 with particles. good. Further, in the curing step, heat treatment may be performed in place of or in addition to light irradiation.
(工程(II))
 工程(II)では、まず、第2の接着剤層2を備えるフィルムを用意する。第2の接着剤層2を備えるフィルムとしては、図7の(a)に示す第2の接着剤フィルム16を用いることができる。第2の接着剤フィルム16は、第2の支持体25と、第2の支持体25上に設けられた第2の接着剤層2とを備える。
(Step (II))
In step (II), first, a film provided with the second adhesive layer 2 is prepared. As the film including the second adhesive layer 2, a second adhesive film 16 shown in FIG. 7(a) can be used. The second adhesive film 16 includes a second support 25 and a second adhesive layer 2 provided on the second support 25.
 第2の支持体25としては、第1の支持体21として例示した基材を用いることができる。第2の接着剤層2は、外部刺激硬化性組成物に代えて第2の接着剤組成物を用いること以外は、前駆体層11と同様にして形成することができる。 As the second support 25, the base material exemplified as the first support 21 can be used. The second adhesive layer 2 can be formed in the same manner as the precursor layer 11, except that the second adhesive composition is used instead of the external stimulation curable composition.
 次に、工程(I)で準備した第1の接着剤フィルム15の第1の接着剤層1側(第1の接着剤層1の支持体21とは反対側)に第2の接着剤層2側から第2の接着剤フィルム16を貼り合わせ、第1の接着剤層1上に第2の接着剤層2を積層する(図7参照。)。これにより、図7の(b)に示す支持体付き回路接続用接着剤フィルム17が得られる。支持体付き回路接続用接着剤フィルム17は、第1の支持体21と、回路接続用接着剤フィルム10と、第2の支持体25とを備える。 Next, a second adhesive layer is applied to the first adhesive layer 1 side of the first adhesive film 15 prepared in step (I) (the side opposite to the support 21 of the first adhesive layer 1). The second adhesive film 16 is attached from the second side, and the second adhesive layer 2 is laminated on the first adhesive layer 1 (see FIG. 7). As a result, a support-attached circuit connection adhesive film 17 shown in FIG. 7(b) is obtained. The circuit connection adhesive film 17 with a support includes a first support 21 , a circuit connection adhesive film 10 , and a second support 25 .
 第1の接着剤フィルム15と第2の接着剤フィルム16とを貼り合わせる方法としては、例えば、加熱プレス、ロールラミネート、真空ラミネート等の方法が挙げられる。ラミネートは、例えば、0~80℃の温度条件下で行うことができる。 Examples of methods for bonding the first adhesive film 15 and the second adhesive film 16 include methods such as hot pressing, roll lamination, and vacuum lamination. Lamination can be performed, for example, at a temperature of 0 to 80°C.
 工程(II)では、第2の支持体25上に第2の接着剤層を形成する方法と同様にして、第2の接着剤組成物又はその溶液(ワニス)を第1の接着剤層1に直接塗布することで第1の接着剤層1上に第2の接着剤層2を設けてもよい。 In step (II), the second adhesive composition or its solution (varnish) is applied to the first adhesive layer 1 in the same manner as in the method of forming the second adhesive layer on the second support 25. The second adhesive layer 2 may be provided on the first adhesive layer 1 by directly applying the second adhesive layer 2 to the first adhesive layer 1.
<接続構造体及びその製造方法>
 接続構造体は、第1の電極を有する第1の回路部材と、第1の電極と電気的に接続される第2の電極を有する第2の回路部材と、第1の電極と第2の電極とを導電粒子を介して互いに電気的に接続し、かつ、第1の回路部材と第2の回路部材とを接着する接続部と、を備える。上記接続部は、回路接続用接着剤フィルムの硬化物を含む。
<Connected structure and its manufacturing method>
The connection structure includes a first circuit member having a first electrode, a second circuit member having a second electrode electrically connected to the first electrode, and a first circuit member having a first electrode and a second electrode. The device includes a connection portion that electrically connects the electrodes to each other via conductive particles and adheres the first circuit member and the second circuit member. The connection portion includes a cured product of a circuit connection adhesive film.
 接続構造体の製造方法は、第1の電極を有する第1の回路部材の第1の電極が設けられている面と、第2の電極を有する第2の回路部材の第2の電極が設けられている面との間に、回路接続用接着剤フィルムを配置することと、第1の回路部材と回路接続用接着剤フィルムと第2の回路部材とを含む積層体を積層体の厚さ方向に押圧した状態で加熱することにより、第1の電極と第2の電極とを導電粒子を介して互いに電気的に接続し、かつ、第1の回路部材と第2の回路部材とを接着することと、を含む。 A method for manufacturing a connected structure includes a method for manufacturing a first circuit member having a first electrode on which the first electrode is provided, and a second circuit member having the second electrode on which the second electrode is provided. a laminate including a first circuit member, a circuit connection adhesive film, and a second circuit member; By heating the first electrode and the second electrode while being pressed in the direction, the first electrode and the second electrode are electrically connected to each other via the conductive particles, and the first circuit member and the second circuit member are bonded together. and include.
 以下、図8及び図9を参照しながら、接続材料として上述の回路接続用接着剤フィルム10を用いた接続構造体(回路接続構造体)及びその製造方法を例に挙げて、接続構造体及びその製造方法について説明する。 Hereinafter, with reference to FIGS. 8 and 9, a connection structure (circuit connection structure) using the above-mentioned circuit connection adhesive film 10 as a connection material and a method for manufacturing the same will be exemplified. The manufacturing method will be explained.
 図8は、接続構造体の一実施形態を示す模式断面図である。図8に示すように、接続構造体100は、第1の回路基板31及び第1の回路基板31の主面31a上に形成された第1の電極32を有する第1の回路部材33と、第2の回路基板34及び第2の回路基板34の主面34a上に形成された第2の電極35を有する第2の回路部材36と、第1の電極32と第2の電極35とを導電粒子43を介して互いに電気的に接続し、かつ、第1の回路部材33と第2の回路部材36とを接着する接続部40と、を備えている。 FIG. 8 is a schematic cross-sectional view showing one embodiment of the connected structure. As shown in FIG. 8, the connection structure 100 includes a first circuit board 31 and a first circuit member 33 having a first electrode 32 formed on the main surface 31a of the first circuit board 31; A second circuit member 36 having a second circuit board 34 and a second electrode 35 formed on the main surface 34a of the second circuit board 34, and a first electrode 32 and a second electrode 35. It includes a connecting portion 40 that is electrically connected to each other via conductive particles 43 and that adheres the first circuit member 33 and the second circuit member 36.
 第1の回路部材33及び第2の回路部材36は、互いに同じであっても異なっていてもよい。第1の回路部材33及び第2の回路部材36は、回路電極が形成されているガラス基板又はプラスチック基板;プリント配線板;セラミック配線板;フレキシブル配線板;駆動用IC等のICチップなどであってよい。第1の回路基板31及び第2の回路基板34は、半導体、ガラス、セラミック等の無機物、ポリイミド、ポリカーボネート等の有機物、ガラス/エポキシ等の複合物などで形成されていてよい。第1の回路基板31は、プラスチック基板であってよい。第1の回路部材33は、例えば、回路電極が形成されているプラスチック基板(ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、シクロオレフィンポリマー等の有機物を構成材料とするプラスチック基板)であってよく、第2の回路部材36は、例えば、駆動用IC等のICチップであってよい。電極が形成されているプラスチック基板は、プラスチック基板上に、例えば、有機TFT等の画素駆動回路又は複数の有機EL素子R、G、Bがマトリクス状に規則配列されることによって表示領域が形成されたものであってもよい。 The first circuit member 33 and the second circuit member 36 may be the same or different from each other. The first circuit member 33 and the second circuit member 36 may be a glass substrate or a plastic substrate on which circuit electrodes are formed; a printed wiring board; a ceramic wiring board; a flexible wiring board; an IC chip such as a driving IC; It's fine. The first circuit board 31 and the second circuit board 34 may be formed of a semiconductor, an inorganic material such as glass or ceramic, an organic material such as polyimide or polycarbonate, or a composite material such as glass/epoxy. The first circuit board 31 may be a plastic board. The first circuit member 33 may be, for example, a plastic substrate (a plastic substrate made of an organic material such as polyimide, polycarbonate, polyethylene terephthalate, or cycloolefin polymer) on which circuit electrodes are formed, and the second circuit member 33 may be a plastic substrate on which circuit electrodes are formed. The member 36 may be, for example, an IC chip such as a driving IC. In the plastic substrate on which the electrodes are formed, a display area is formed by, for example, pixel drive circuits such as organic TFTs or a plurality of organic EL elements R, G, B being regularly arranged in a matrix on the plastic substrate. It may be something like that.
 第1の電極32及び第2の電極35は、金、銀、錫、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銅、アルミ、モリブデン、チタン等の金属、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、インジウムガリウム亜鉛酸化物(IGZO)等の酸化物などを含む電極であってよい。第1の電極32及び第2の電極35は、これら金属、酸化物等の2種以上を積層してなる電極であってもよい。2種以上を積層してなる電極は、2層以上であってよく、3層以上であってよい。第1の電極32及び第2の電極35は回路電極であってよく、バンプ電極であってもよい。図8では、第1の電極32が回路電極であり、第2の電極35がバンプ電極である。 The first electrode 32 and the second electrode 35 are made of metals such as gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, aluminum, molybdenum, titanium, etc., indium tin oxide (ITO), The electrode may include an oxide such as indium zinc oxide (IZO) or indium gallium zinc oxide (IGZO). The first electrode 32 and the second electrode 35 may be electrodes formed by laminating two or more of these metals, oxides, etc. The electrode formed by laminating two or more types may have two or more layers, or may have three or more layers. The first electrode 32 and the second electrode 35 may be circuit electrodes or bump electrodes. In FIG. 8, the first electrode 32 is a circuit electrode, and the second electrode 35 is a bump electrode.
 第1の電極32の高さと第2の電極35の高さの合計値は、接続部40を形成するために用いられる回路接続用接着剤フィルム中の導電粒子3の平均粒子径よりも小さくてよい。合計値は、例えば、30μm以下、20μm以下、15μm以下、10μm以下、5μm以下、4μm未満、3μm未満、2μm未満又は1μm未満であってよい。第1の電極32の高さ(例えば回路電極の高さ)は、例えば、0.05~5.0μm、0.1~4.0μm又は0.5~3.0μmであってよい。第2の電極35の高さ(例えばバンプ電極の高さ)は、例えば、0.5~25.0μm、2.0~15.0μm又は5.0~10.0μmであってよい。 The total value of the height of the first electrode 32 and the height of the second electrode 35 is smaller than the average particle diameter of the conductive particles 3 in the circuit connection adhesive film used to form the connection part 40. good. The total value may be, for example, 30 μm or less, 20 μm or less, 15 μm or less, 10 μm or less, 5 μm or less, less than 4 μm, less than 3 μm, less than 2 μm, or less than 1 μm. The height of the first electrode 32 (for example, the height of the circuit electrode) may be, for example, 0.05 to 5.0 μm, 0.1 to 4.0 μm, or 0.5 to 3.0 μm. The height of the second electrode 35 (for example, the height of the bump electrode) may be, for example, 0.5 to 25.0 μm, 2.0 to 15.0 μm, or 5.0 to 10.0 μm.
 接続部40は、回路接続用接着剤フィルム10の硬化物である。接続部40は、例えば、第1の回路部材33と第2の回路部材36とが互いに対向する方向における第1の回路部材33側に位置し、第1の接着剤層1の硬化物を含む第1の領域41と、第1の回路部材33と第2の回路部材36とが互いに対向する方向における第2の回路部材36側に位置し、第2の接着剤層2の硬化物を含む第2の領域42と、第1の電極32及び第2の電極35の間に介在して第1の電極32と第2の電極35とを互いに電気的に接続する導電粒子43と、隣り合う電極間に位置する導電粒子3とを有している。接続部40は、第1の領域41と第2の領域42との間に、2つの明確な領域を有していなくてもよく、例えば、第1の接着剤層1と第2の接着剤層2とが混在した状態で硬化した領域を含んでいてもよい。 The connection portion 40 is a cured product of the circuit connection adhesive film 10. For example, the connecting portion 40 is located on the first circuit member 33 side in the direction in which the first circuit member 33 and the second circuit member 36 face each other, and includes a cured product of the first adhesive layer 1. The first region 41 is located on the second circuit member 36 side in the direction in which the first circuit member 33 and the second circuit member 36 face each other, and includes a cured product of the second adhesive layer 2. The conductive particles 43 that are interposed between the second region 42 and the first electrode 32 and the second electrode 35 and electrically connect the first electrode 32 and the second electrode 35 to each other are adjacent to each other. It has conductive particles 3 located between the electrodes. The connecting part 40 does not have to have two distinct areas between the first area 41 and the second area 42, for example, the first adhesive layer 1 and the second adhesive layer It may include a hardened region in which layer 2 is mixed.
 接続構造体としては、例えば、微細なLED素子(発光素子)が規則的に配置されたプラスチック基板と、映像表示用のドライバーである駆動回路素子とが接続されたカラーディスプレイ、微細なLED素子が規則的に配置されたプラスチック基板と、タッチパッド等の位置入力素子とが接続されたタッチパネルなどのマイクロLED表示装置が挙げられる。接続構造体は、LED素子が有機EL素子である有機EL表示装置であってもよい。接続構造体は、スマートホン、タブレット、テレビ、乗り物のナビゲーションシステム、ウェアラブル端末等の各種モニタ;家具;家電;日用品などに適用することもできる。 Examples of the connection structure include a color display in which a plastic substrate on which minute LED elements (light emitting elements) are regularly arranged and a drive circuit element that is a driver for displaying an image is connected; An example of this is a micro LED display device such as a touch panel in which a regularly arranged plastic substrate and a position input element such as a touch pad are connected. The connected structure may be an organic EL display device in which the LED elements are organic EL elements. The connection structure can also be applied to various monitors such as smart phones, tablets, televisions, vehicle navigation systems, and wearable terminals; furniture; home appliances; daily necessities, and the like.
 図9は、接続構造体100の製造方法の一実施形態を示す模式断面図である。図9の(a)及び図9の(b)は、各工程を示す模式断面図である。図9に示すように、接続構造体100の製造方法は、第1の回路部材33の第1の電極32が設けられている面と、第2の回路部材36の第2の電極35が設けられている面との間に、上述の回路接続用接着剤フィルム10を配置することと、第1の回路部材33と回路接続用接着剤フィルム10と第2の回路部材36とを含む積層体を当該積層体の厚さ方向に押圧した状態で加熱することにより、第1の電極32と第2の電極35とを導電粒子43を介して互いに電気的に接続し、かつ、第1の回路部材33と第2の回路部材36とを接着することとを含む。 FIG. 9 is a schematic cross-sectional view showing an embodiment of a method for manufacturing the connected structure 100. FIGS. 9A and 9B are schematic cross-sectional views showing each step. As shown in FIG. 9, the method for manufacturing the connection structure 100 includes a surface where the first electrode 32 of the first circuit member 33 is provided, and a surface where the second electrode 35 of the second circuit member 36 is provided. A laminate including the first circuit member 33, the circuit connection adhesive film 10, and the second circuit member 36. is heated while being pressed in the thickness direction of the laminate, thereby electrically connecting the first electrode 32 and the second electrode 35 to each other via the conductive particles 43, and forming the first circuit. This includes adhering the member 33 and the second circuit member 36.
 具体的には、まず、第1の回路基板31及び第1の回路基板31の主面31a上に形成された第1の電極32を備える第1の回路部材33と、第2の回路基板34及び第2の回路基板34の主面34a上に形成された第2の電極35を備える第2の回路部材36とを準備する。 Specifically, first, the first circuit member 33 including the first circuit board 31 and the first electrode 32 formed on the main surface 31a of the first circuit board 31, and the second circuit board 34 and a second circuit member 36 including a second electrode 35 formed on the main surface 34a of the second circuit board 34.
 次に、第1の回路部材33及び第2の回路部材36を、第1の電極32及び第2の電極35が互いに対向するように配置し、第1の回路部材33と第2の回路部材36との間に回路接続用接着剤フィルム10を配置する。例えば、図9の(a)に示すように、第1の接着剤層1側が第1の回路基板31の主面31aと対向するようにして回路接続用接着剤フィルム10を第1の回路部材33上にラミネートする。次に、第1の回路基板31上の第1の電極32と、第2の回路基板34上の第2の電極35とが互いに対向するように、回路接続用接着剤フィルム10がラミネートされた第1の回路部材33上に第2の回路部材36を配置する。 Next, the first circuit member 33 and the second circuit member 36 are arranged so that the first electrode 32 and the second electrode 35 face each other, and the first circuit member 33 and the second circuit member The circuit connection adhesive film 10 is placed between the circuit connection member 36 and the circuit connection adhesive film 10 . For example, as shown in FIG. 9A, the circuit connecting adhesive film 10 is attached to the first circuit member with the first adhesive layer 1 side facing the main surface 31a of the first circuit board 31. Laminate on 33. Next, the circuit connection adhesive film 10 was laminated so that the first electrode 32 on the first circuit board 31 and the second electrode 35 on the second circuit board 34 faced each other. A second circuit member 36 is placed on the first circuit member 33.
 そして、図9の(b)に示すように、第1の回路部材33と、回路接続用接着剤フィルム10と、第2の回路部材36とがこの順で積層されてなる積層体を当該積層体の厚さ方向に押圧した状態で加熱することで、第1の回路部材33と第2の回路部材36とを互いに熱圧着する。この際、図9の(b)において矢印で示すように、第1の接着剤層1及び第2の接着剤層2中に含まれる流動可能な未硬化の熱硬化性成分が、互いに隣り合う電極の空隙(第1の電極32同士の間の空隙、及び、第2の電極35同士の間の空隙)を埋めるように流動すると共に、上記加熱によって硬化する。これにより、第1の電極32及び第2の電極35が導電粒子43を介して互いに電気的に接続され、また、第1の回路部材33及び第2の回路部材36が互いに接着されて、図8に示す接続構造体100が得られる。 Then, as shown in FIG. 9(b), a laminate in which the first circuit member 33, the circuit connection adhesive film 10, and the second circuit member 36 are laminated in this order is formed into the laminate. By heating while being pressed in the thickness direction of the body, the first circuit member 33 and the second circuit member 36 are thermocompression bonded to each other. At this time, as shown by arrows in FIG. 9(b), the flowable uncured thermosetting components contained in the first adhesive layer 1 and the second adhesive layer 2 are adjacent to each other. It flows so as to fill the gaps between the electrodes (the gaps between the first electrodes 32 and the gaps between the second electrodes 35), and is cured by the heating. As a result, the first electrode 32 and the second electrode 35 are electrically connected to each other via the conductive particles 43, and the first circuit member 33 and the second circuit member 36 are bonded to each other. A connected structure 100 shown in 8 is obtained.
 熱圧着時の温度及び時間は、回路接続用接着剤フィルム10を充分に硬化させ、第1の回路部材33と第2の回路部材36とを接着できる温度であればよい。熱圧着温度は、150~200℃であってよい。熱圧着時間は、4~7秒であってよい。 The temperature and time during thermocompression bonding may be any temperature that can sufficiently cure the circuit connection adhesive film 10 and bond the first circuit member 33 and the second circuit member 36. The thermocompression bonding temperature may be 150 to 200°C. The thermocompression bonding time may be 4 to 7 seconds.
 以下、本発明の内容を実施例及び比較例を用いてより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the content of the present invention will be explained in more detail using Examples and Comparative Examples, but the present invention is not limited to the following Examples.
<材料の用意>
 以下に示す材料を用意した。
<Preparation of materials>
The materials shown below were prepared.
(A:カチオン重合性化合物)
・A1:セロキサイド8010(ビ-7-オキサビシクロ[4.1.0]ヘプタン、株式会社ダイセル製、エポキシ当量:約100g/eq)
・A2:ETERNACOLL OXBP(4,4’-ビス[3-エチル-3-オキセタニル]メトキシメチル]ビフェニル、宇部興産株式会社製)
・A3:jER1010(ビスフェノールA型固形エポキシ樹脂、三菱化学株式会社製、エポキシ当量:3000~5000g/eq、数平均分子量:5500)
・A4:jER1007(ビスフェノールA型固形エポキシ樹脂、三菱化学株式会社製、エポキシ当量:1750~2200g/eq)
(A: cationic polymerizable compound)
・A1: Celoxide 8010 (bi-7-oxabicyclo[4.1.0]heptane, manufactured by Daicel Corporation, epoxy equivalent: about 100 g/eq)
・A2: ETERNACOLL OXBP (4,4'-bis[3-ethyl-3-oxetanyl]methoxymethyl]biphenyl, manufactured by Ube Industries, Ltd.)
・A3: jER1010 (bisphenol A type solid epoxy resin, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 3000 to 5000 g/eq, number average molecular weight: 5500)
・A4: jER1007 (bisphenol A type solid epoxy resin, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 1750 to 2200 g/eq)
(B:熱カチオン重合開始剤)
・B1:YH-MS20(アンモニウム塩系熱カチオン重合開始剤、横浜ゴム株式会社製)
(B: thermal cationic polymerization initiator)
・B1: YH-MS20 (ammonium salt-based thermal cationic polymerization initiator, manufactured by Yokohama Rubber Co., Ltd.)
(C:ラジカル重合性化合物)
・C1:NKエステルA-BPEF(9,9-ビ[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、新中村化学工業株式会社製)
・C2:リポキシVR-90(ビスフェノールA型エポキシメタクリレート、昭和電工株式会社製)
(C: radically polymerizable compound)
・C1: NK ester A-BPEF (9,9-bi[4-(2-acryloyloxyethoxy)phenyl]fluorene, manufactured by Shin Nakamura Chemical Co., Ltd.)
・C2: Lipoxy VR-90 (bisphenol A type epoxy methacrylate, manufactured by Showa Denko K.K.)
(D:光ラジカル重合開始剤)
・D1:Irgacure OXE-02(1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-エタノン1-(O-アセチルオキシム)、IGM Resins社製)
(D: photoradical polymerization initiator)
・D1: Irgacure OXE-02 (1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-ethanone 1-(O-acetyloxime), manufactured by IGM Resins)
(E:熱可塑性樹脂)
・E1:YP-70(ビスフェノールA・ビスフェノールF共重合型フェノキシ樹脂、日鉄ケミカル&マテリアル株式会社製、重量平均分子量:50000~60000、Tg:70~80℃)
・E2:下記で合成したフェノキシ樹脂P-1
(E: thermoplastic resin)
・E1: YP-70 (bisphenol A/bisphenol F copolymerized phenoxy resin, manufactured by Nippon Steel Chemical & Materials Co., Ltd., weight average molecular weight: 50,000 to 60,000, Tg: 70 to 80°C)
・E2: Phenoxy resin P-1 synthesized below
(F:カップリング剤)
・F1:SH-6040(γ-グリシドキシプロピルトリメトキシシラン、東レ・ダウコーニング株式会社製)
(F: coupling agent)
・F1: SH-6040 (γ-glycidoxypropyltrimethoxysilane, manufactured by Dow Corning Toray Co., Ltd.)
(G:充填材)
・G1:R805(オクチルシラン表面処理シリカ微粒子、日本アエロジル株式会社製、平均粒子径:12nm)
(G: filler)
・G1: R805 (octylsilane surface treated silica fine particles, manufactured by Nippon Aerosil Co., Ltd., average particle diameter: 12 nm)
(H:熱硬化反応速度調整剤)
H1:ε-カプロラクタム(富士フイルム和光純薬社製)
(H: thermosetting reaction rate regulator)
H1: ε-caprolactam (manufactured by Fujifilm Wako Pure Chemical Industries)
(I:導電粒子)
I1:プラスチック(架橋ポリスチレン)からなる核(粒子)の表面に、厚さ0.20μmのニッケル層が形成されてなる導電粒子(平均粒子径:3.0μm、粒子径のC.V.値:4.2%、比重:2.5)
(I: conductive particles)
I1: Conductive particles in which a nickel layer with a thickness of 0.20 μm is formed on the surface of a core (particle) made of plastic (crosslinked polystyrene) (average particle size: 3.0 μm, C.V. value of particle size: 4.2%, specific gravity: 2.5)
<フェノキシ樹脂P-1の合成>
 4,4’-(9-フルオレニリデン)-ジフェノール45g(シグマアルドリッチジャパン株式会社製)、及び3,3’,5,5’-テトラメチルビフェノールジグリシジルエーテル50g(YX-4000H、三菱化学株式会社製)を、ジムロート冷却管、塩化カルシウム管、及び攪拌モーターに接続されたPTFE製攪拌棒を装着した3000mLの3つ口フラスコ中でN-メチルピロリドン1000mLに溶解して反応液とした。これに炭酸カリウム21gを加え、マントルヒーターで110℃に加熱しながら攪拌した。3時間攪拌後、1000mLのメタノールが入ったビーカーに反応液を滴下し、生成した沈殿物を吸引ろ過することによってろ取した。ろ取した沈殿物をさらに300mLのメタノールで3回洗浄して、フェノキシ樹脂P-1(Mn=15769、Mw=38045、Mw/Mn=2.413)を75g得た。フェノキシ樹脂P-1の数平均分子量Mn及び重量平均分子量Mwは、東ソー株式会社製高速液体クロマトグラフGP8020を用いて下記の条件で測定したポリスチレン換算の分子量である。
[条件]
・カラム:昭和電工マテリアルズ株式会社製Gelpak GL-A150S及びGLA160S
・溶離液:テトラヒドロフラン
・流速:1.0ml/分
<Synthesis of phenoxy resin P-1>
45 g of 4,4'-(9-fluorenylidene)-diphenol (manufactured by Sigma-Aldrich Japan Co., Ltd.) and 50 g of 3,3',5,5'-tetramethylbiphenol diglycidyl ether (YX-4000H, Mitsubishi Chemical Corporation) ) was dissolved in 1000 mL of N-methylpyrrolidone to prepare a reaction solution in a 3000 mL three-necked flask equipped with a Dimroth condenser, a calcium chloride tube, and a PTFE stirring bar connected to a stirring motor. 21 g of potassium carbonate was added to this, and the mixture was stirred while being heated to 110° C. with a mantle heater. After stirring for 3 hours, the reaction solution was dropped into a beaker containing 1000 mL of methanol, and the generated precipitate was collected by suction filtration. The filtered precipitate was further washed three times with 300 mL of methanol to obtain 75 g of phenoxy resin P-1 (Mn=15769, Mw=38045, Mw/Mn=2.413). The number average molecular weight Mn and the weight average molecular weight Mw of the phenoxy resin P-1 are polystyrene equivalent molecular weights measured under the following conditions using a high performance liquid chromatograph GP8020 manufactured by Tosoh Corporation.
[conditions]
・Column: Gelpak GL-A150S and GLA160S manufactured by Showa Denko Materials Co., Ltd.
・Eluent: Tetrahydrofuran ・Flow rate: 1.0ml/min
<基体の用意>
 表面に複数の凹部を有する基体(PETフィルム、厚さ:55μm)を用意した。基体の凹部は、基体の表面側に向けて開口面積が拡大する円錐台状(開口部上面からみると、底部の中心と開口部の中心は同一)とし、開口径は4.3μmφ、底部径は4.0μmφ、深さは4.0μmとした。また、基体の複数の凹部は、6.2μmの間隔(各底部の中心間距離)で三方配列にて規則的に1mm四方辺り29,000個となるように形成した。
<Preparation of the base>
A substrate (PET film, thickness: 55 μm) having a plurality of recesses on its surface was prepared. The concave part of the base body has a truncated conical shape with the opening area expanding toward the surface side of the base body (when viewed from the top of the opening, the center of the bottom and the center of the opening are the same), the opening diameter is 4.3 μmφ, and the bottom diameter is 4.3 μmφ. was 4.0 μmφ, and the depth was 4.0 μm. The plurality of recesses on the base were regularly formed in a three-sided array with an interval of 6.2 μm (distance between the centers of each bottom) so that 29,000 recesses were formed per 1 mm square.
<実施例1>
(工程(I))
[前駆体層の形成]
 表1に示す材料を表1に示す組成となるように混合して外部刺激硬化性組成物を調製した。表1中の配合量は固形分量を示す。
<Example 1>
(Step (I))
[Formation of precursor layer]
The materials shown in Table 1 were mixed to have the composition shown in Table 1 to prepare an external stimulation curable composition. The blending amounts in Table 1 indicate the solid content.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 得られた外部刺激硬化性組成物を有機溶媒(2-ブタノン)と共に混合し、ワニスを得た。次いで、このワニスをシリコーン離型処理された厚さ38μmのPETフィルムに塗布し、防爆乾燥機(DFB-80S、株式会社二葉科学製)を用いて60℃で3分間熱風乾燥することによって、前駆体層をPETフィルム上に形成した。これにより、PETフィルムと、前駆体層とを備える積層フィルムを得た。 The obtained external stimulation curable composition was mixed with an organic solvent (2-butanone) to obtain a varnish. Next, this varnish was applied to a PET film with a thickness of 38 μm that had been treated with silicone mold release, and was dried with hot air at 60°C for 3 minutes using an explosion-proof dryer (DFB-80S, manufactured by Futaba Scientific Co., Ltd.) to remove the precursor. A body layer was formed on the PET film. Thereby, a laminated film including a PET film and a precursor layer was obtained.
[転写工程]
 予め用意しておいた基体の凹部が形成されている面上に導電粒子(I1)を配置し、基体の凹部が形成されている面を微粘着ローラーで擦ることで余分な導電粒子を取り除き、凹部内のみに導電粒子を配置した。次いで、加熱されたホットプレート(HP-2SA、アズワン株式会社製)上に基体を配置し、該基体の凹部が形成されている面と、積層フィルムの前駆体層側の面とを対向させて、基体と積層フィルムとをスキージを用いて貼り合わせ、前駆体層に導電粒子を転写した。これにより、PETフィルムと、前駆体層と、部分的に前駆体層中に埋め込まれた導電粒子と、を備える第1の粒子付き積層フィルムを得た。なお、上記ホットプレートの加熱温度は、前駆体層に対する粒子転写率が98%以上となる温度のうち、最も低い温度とした。
[Transfer process]
Conductive particles (I1) are placed on the surface of the substrate prepared in advance on which the recesses are formed, and the excess conductive particles are removed by rubbing the surface of the substrate with the recesses with a slightly adhesive roller. Conductive particles were placed only within the recesses. Next, the substrate was placed on a heated hot plate (HP-2SA, manufactured by As One Co., Ltd.), and the surface of the substrate on which the concave portion was formed was opposed to the surface of the laminated film on the precursor layer side. The substrate and the laminated film were bonded together using a squeegee, and the conductive particles were transferred to the precursor layer. Thereby, a first particle-attached laminate film including a PET film, a precursor layer, and conductive particles partially embedded in the precursor layer was obtained. The heating temperature of the hot plate was set to the lowest temperature at which the particle transfer rate to the precursor layer was 98% or higher.
[硬化工程]
 UV露光機(UVC-2534 1MNLC3-XJ01、ウシオ電機株式会社製)を用いて第1の粒子付き積層フィルムのPETフィルムとは反対側から前駆体層に紫外線を照射し、前駆体層中の光硬化性成分(ラジカル重合性化合物及び光ラジカル重合開始剤)を反応させて硬化させた。これにより、PETフィルムと、第1の接着剤層と、部分的に第1の接着剤層中に埋め込まれた導電粒子とを備える、第1の接着剤フィルムを得た。なお、露光照度は250±10mW/cmとし、波長350nmの光の積算光量は1500±50mJ/cmとした。また、露光照度及び積算光量は、紫外線積算光量計(UIT-250、ウシオ電機株式会社製)を用いて測定した。
[Curing process]
Using a UV exposure machine (UVC-2534 1MNLC3-XJ01, manufactured by Ushio Inc.), the precursor layer is irradiated with ultraviolet rays from the side opposite to the PET film of the first laminated film with particles, and the light in the precursor layer is The curable components (radical polymerizable compound and radical photopolymerization initiator) were reacted and cured. Thereby, a first adhesive film comprising a PET film, a first adhesive layer, and conductive particles partially embedded in the first adhesive layer was obtained. Note that the exposure illuminance was 250±10 mW/cm 2 , and the cumulative amount of light with a wavelength of 350 nm was 1500±50 mJ/cm 2 . In addition, the exposure illuminance and integrated light amount were measured using an ultraviolet integrated light meter (UIT-250, manufactured by Ushio Inc.).
(工程(II))
[第2の接着剤フィルムの用意]
 表2に示す材料を表2に示す組成となるように混合して第2の接着剤組成物を調製した。表2中の配合量は固形分量を示す。
(Step (II))
[Preparation of second adhesive film]
A second adhesive composition was prepared by mixing the materials shown in Table 2 to have the composition shown in Table 2. The blending amounts in Table 2 indicate the solid content.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 得られた第2の接着剤組成物を有機溶媒(2-ブタノン)と共に混合し、ワニスを得た。次いで、このワニスをシリコーン離型処理された厚さ38μmのPETフィルムに塗布し、防爆乾燥機(DFB-80S、株式会社二葉科学製)を用いて60℃で3分間熱風乾燥することによって、第2の接着剤層をPETフィルム上に形成した。これにより、PETフィルムと、第2の接着剤層とを備える第2の接着剤フィルムを得た。 The obtained second adhesive composition was mixed with an organic solvent (2-butanone) to obtain a varnish. Next, this varnish was applied to a 38 μm thick PET film treated with silicone mold release, and dried with hot air at 60°C for 3 minutes using an explosion-proof dryer (DFB-80S, manufactured by Futaba Scientific Co., Ltd.). A second adhesive layer was formed on the PET film. Thereby, a second adhesive film including a PET film and a second adhesive layer was obtained.
[積層工程]
 工程(I)で作製した第1の接着剤フィルムの第1の接着剤層側に、上記第2の接着剤フィルムを第2の接着剤層側から貼り付け、ホットロールラミネータ(Leon13DX、株式会社製ラミ―コーポレーション製)を用いて50℃の温度をかけながら貼り合わせた。これにより、実施例1の回路接続用接着剤フィルム(PETフィルム付き回路接続用接着剤フィルム)を得た。
[Lamination process]
The second adhesive film was pasted from the second adhesive layer side to the first adhesive layer side of the first adhesive film produced in step (I), and a hot roll laminator (Leon13DX, Inc.) was applied. (manufactured by Lamy Corporation) at a temperature of 50°C. Thereby, the adhesive film for circuit connection of Example 1 (the adhesive film for circuit connection with PET film) was obtained.
[粒子埋込率の測定]
 まず、回路接続用接着剤フィルムを2枚のガラス(厚み:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:jER811、三菱ケミカル株式会社製)100gと、硬化剤(商品名:エポマウント硬化剤、リファインテック株式会社製)10gとからなる樹脂組成物で注型した。次いで、研磨機を用いて断面研磨を行い、回路接続用接着剤フィルムの縦断面(厚さ方向の断面)を露出させた。次いで、走査型電子顕微鏡(SEM、商品名:SE-8020、株式会社日立ハイテクサイエンス製)を用いて、倍率5000倍で観察して断面画像(SEM画像)を得た。得られた断面画像内の任意の20μm×15μmの領域において、導電粒子の埋め込み方向における粒子径Lが最大となる導電粒子及び該導電粒子の0.85~1.00倍の粒子径Lを有する導電粒子の埋込率を求め、これらの平均値を算出した。同様の操作を任意の100個の断面について行い、各断面において算出された導電粒子の埋込率の平均値を更に平均することで、回路接続用接着剤フィルムにおける導電粒子の埋込率(粒子埋込率)を求めた。結果を表3に示す。
[Measurement of particle embedding rate]
First, a circuit connection adhesive film is sandwiched between two pieces of glass (thickness: approximately 1 mm), and 100 g of bisphenol A epoxy resin (product name: jER811, manufactured by Mitsubishi Chemical Corporation) and a curing agent (product name: Epomount) are added. A resin composition consisting of 10 g of a curing agent (manufactured by Refinetech Co., Ltd.) was cast. Next, the cross section was polished using a polishing machine to expose the longitudinal section (cross section in the thickness direction) of the circuit connection adhesive film. Next, a cross-sectional image (SEM image) was obtained by observation using a scanning electron microscope (SEM, trade name: SE-8020, manufactured by Hitachi High-Tech Science Co., Ltd.) at a magnification of 5,000 times. In an arbitrary 20 μm x 15 μm area in the obtained cross-sectional image, conductive particles have a maximum particle diameter L in the direction of embedding the conductive particles and a particle diameter L that is 0.85 to 1.00 times that of the conductive particles. The embedding ratio of conductive particles was determined, and the average value thereof was calculated. By performing the same operation on any 100 cross sections and further averaging the average value of the conductive particle embedding ratio calculated for each cross section, the conductive particle embedding ratio (particle embedding rate) was calculated. The results are shown in Table 3.
[導電粒子の平均粒子径及び粒子径のC.V.値の測定]
 上記粒子埋込率の測定において取得した断面画像を用いて、導電粒子の平均粒子径及び粒子径のC.V.値を算出した。具体的には、得られた断面画像内の任意の20μm×15μmの領域において、導電粒子の埋め込み方向における粒子径Lを測定し、これらの平均値及びC.V.値を算出した。同様の操作を任意の100個の断面について行い、各断面において算出された導電粒子の平均粒子径の平均値及び粒子径のC.V.値の平均値を求め、これらを回路接続用接着剤フィルムにおける導電粒子の平均粒子径及び粒子径のC.V.値とした。回路接続用接着剤フィルムにおける導電粒子の平均粒子径は2.3μmであり、粒子径のC.V.値は5.8%であった。
[Average particle diameter and particle diameter C. of conductive particles] V. Measurement of value]
Using the cross-sectional image acquired in the measurement of the particle embedding ratio, the average particle diameter and particle diameter C. V. The value was calculated. Specifically, in an arbitrary 20 μm x 15 μm area within the obtained cross-sectional image, the particle diameter L in the embedding direction of the conductive particles is measured, and the average value and C. V. The value was calculated. The same operation is performed for 100 arbitrary cross sections, and the average value of the average particle diameter of the conductive particles and the C. V. The average value of the values is determined, and these are calculated as the average particle diameter and C.I. of the particle diameter of the conductive particles in the circuit connection adhesive film. V. value. The average particle diameter of the conductive particles in the adhesive film for circuit connection is 2.3 μm, and the C.I. V. The value was 5.8%.
[厚さの測定]
 上記粒子埋込率の測定において取得した断面画像を用いて、隣り合う導電粒子の離間部分に位置する第1の接着剤層と第2の接着剤層との境界からそれぞれの表面までの長さを測定し、第1の接着剤層の厚さ、第2の接着剤層の厚さ及び回路接続用接着剤フィルムの厚さを求めた。実施例1~10の回路接続用接着剤フィルムにおける第1の接着剤層の厚さは1.5μmであり、第2の接着剤層の厚さは3.5μmであり、回路接続用接着剤フィルムの厚さは5.0μmであった。
[Measurement of thickness]
Using the cross-sectional image obtained in the measurement of the particle embedding ratio above, the length from the boundary between the first adhesive layer and the second adhesive layer located in the separated part of adjacent conductive particles to the respective surfaces was measured, and the thickness of the first adhesive layer, the thickness of the second adhesive layer, and the thickness of the circuit-connecting adhesive film were determined. The thickness of the first adhesive layer in the circuit connection adhesive films of Examples 1 to 10 is 1.5 μm, the thickness of the second adhesive layer is 3.5 μm, and the circuit connection adhesive The thickness of the film was 5.0 μm.
[フロー率の測定]
 まず、生検トレパンBP-10F 1.0mm(カイ インダストリーズ株式会社製)を用いてPETフィルム付き回路接続用接着剤フィルムを厚さ方向に打ち抜き、直径1mmの円板状の評価用接着剤フィルムを得た。
[Measurement of flow rate]
First, a circuit connection adhesive film with a PET film was punched out in the thickness direction using a Biopsy Trappan BP-10F 1.0mm (manufactured by Kai Industries Co., Ltd.) to obtain a disc-shaped evaluation adhesive film with a diameter of 1mm. Obtained.
 得られた評価用接着剤フィルムから第1の接着剤層側のPETフィルムを剥離した後、評価用接着剤フィルムを第1の接着剤層側から松波硝子工業製のカバーガラス(厚さ0.15mm、幅18mm、奥行18mm)上に載せ、大橋製作所製の熱圧着装置LD―06を用いて、圧着温度70℃、圧着圧力0.1MPa、圧着時間1.0sの条件で第2の接着剤層側から熱圧着し、仮固定体(カバーガラス/評価用接着剤フィルム/PETフィルム)を得た。なお、圧着温度は、1秒間圧着した際の到達温度であり、圧着圧力は、評価用接着剤フィルムの面積換算圧力である。 After peeling off the PET film on the first adhesive layer side from the obtained adhesive film for evaluation, the adhesive film for evaluation was attached to a cover glass manufactured by Matsunami Glass Industries (thickness: 0.05 mm) from the first adhesive layer side. 15 mm, width 18 mm, depth 18 mm), and using a thermocompression bonding device LD-06 manufactured by Ohashi Manufacturing Co., Ltd., apply the second adhesive under the conditions of a compression temperature of 70°C, a compression pressure of 0.1 MPa, and a compression time of 1.0 s. A temporary fixed body (cover glass/evaluation adhesive film/PET film) was obtained by thermocompression bonding from the layer side. Note that the compression temperature is the temperature reached when compression is performed for 1 second, and the compression pressure is the area-converted pressure of the adhesive film for evaluation.
 次に、仮固定体から第2の接着剤層側のPETフィルムを剥離した後、第2の接着剤層上に松波硝子工業製のカバーガラス(厚さ0.15mm、幅18mm、奥行18mm)を載せ、積層体(カバーガラス/評価用接着剤フィルム/カバーガラス)を得た。次いで、東レエンジニアリング製の熱圧着装置FC3000WSを用いて、圧着温度160℃、圧着圧力2MPa、圧着時間5sの条件で第2の接着剤層側から積層体を熱圧着し、圧着体を得た。なお、圧着温度は、評価用接着剤フィルムの最高到達温度であり、圧着圧力は、評価用接着剤フィルムの面積換算圧力である。最高到達温度は、ダミーサンプル(評価用の積層体と同一の積層体)を別途用意し、ダミーサンプルの接着剤フィルムと第1の接着剤層側のカバーガラスとの間に薄型温度センサ(理化工業株式会社製のST-50D)を挟んだ状態で熱圧着を行い、ダミーサンプルにおける接着剤フィルムの最高到達温度を予め測定することにより調整した。 Next, after peeling off the PET film on the second adhesive layer side from the temporary fixing body, a cover glass manufactured by Matsunami Glass Industries (thickness 0.15 mm, width 18 mm, depth 18 mm) was placed on the second adhesive layer. was placed thereon to obtain a laminate (cover glass/evaluation adhesive film/cover glass). Next, using a thermocompression bonding device FC3000WS manufactured by Toray Engineering Co., Ltd., the laminate was thermocompression bonded from the second adhesive layer side under conditions of a bonding temperature of 160° C., a bonding pressure of 2 MPa, and a bonding time of 5 seconds to obtain a bonded body. Note that the compression temperature is the maximum temperature reached by the evaluation adhesive film, and the compression pressure is the area-converted pressure of the evaluation adhesive film. To determine the maximum temperature, a dummy sample (the same laminate as the evaluation laminate) is prepared separately, and a thin temperature sensor (Rika ST-50D (manufactured by Kogyo Co., Ltd.) was sandwiched and thermocompression bonded, and the maximum temperature of the adhesive film in the dummy sample was adjusted by measuring in advance.
 圧着体を光学顕微鏡(株式会社ニコン製のL300ND)で観察し、測長ツールを用いて、圧着体における第1の接着剤層側の表面とカバーガラスとの接着面積SB1(単位:mm)及び第2の接着剤層側の表面とカバーガラスとの接着面積SB2(単位:mm)を求め、下記式(2-1a)及び式(2-2a)に基づき、第1の接着剤層のフロー率及び第2の接着剤層のフロー率を算出した。また、得られたフロー率から、第1の接着剤層1のフロー率に対する第2の接着剤層2のフロー率の比(フロー比)を算出した。結果を表3に示す。
第1の接着剤層のフロー率[%]=SB1/(0.25π)×100・・・(2-1a)
第2の接着剤層のフロー率[%]=SB2/(0.25π)×100・・・(2-2a)
Observe the crimped body with an optical microscope (L300ND manufactured by Nikon Corporation), and use a length measurement tool to measure the adhesion area S B1 (unit: mm 2 ) between the surface of the crimped body on the first adhesive layer side and the cover glass. ) and the adhesion area S B2 (unit: mm 2 ) between the surface on the second adhesive layer side and the cover glass, and based on the following formulas (2-1a) and (2-2a), the first adhesive The flow rate of the adhesive layer and the flow rate of the second adhesive layer were calculated. Further, from the obtained flow rate, the ratio of the flow rate of the second adhesive layer 2 to the flow rate of the first adhesive layer 1 (flow ratio) was calculated. The results are shown in Table 3.
Flow rate of first adhesive layer [%]=S B1 /(0.25π)×100...(2-1a)
Flow rate of second adhesive layer [%]=S B2 /(0.25π)×100...(2-2a)
<実施例2>
 第2の接着剤層の厚さが15μmとなるように第2の接着剤組成物の使用量及び塗工方法を変更したことを以外は、実施例1と同様にして回路接続用接着剤フィルムを得た。また、実施例1と同様にしてフロー率等の測定を行った。結果を表3に示す。なお、回路接続用接着剤フィルムにおける導電粒子の平均粒子径及び粒子径のC.V.値は実施例1と同等であることを確認した。
<Example 2>
An adhesive film for circuit connection was prepared in the same manner as in Example 1, except that the amount of the second adhesive composition used and the coating method were changed so that the thickness of the second adhesive layer was 15 μm. I got it. Further, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3. In addition, the average particle diameter and C.I. of the particle diameter of the conductive particles in the circuit connection adhesive film. V. It was confirmed that the values were the same as in Example 1.
<実施例3>
 転写工程後、硬化工程の前に加圧工程を行ったこと以外は、実施例1と同様にして、回路接続用接着剤フィルムを得た。加圧工程は、第1の粒子付き積層フィルムの両面上に表面に離型処理が施された剥離フィルム(東洋紡株式会社製のA3171、厚さ:50μm)が配置した後、得られた積層体をホットロールラミネータ(Leon13DX、株式会社製ラミ―コーポレーション製)を用いて35℃の温度をかけながら挟み込むことにより行った。また、実施例1と同様にしてフロー率等の測定を行った。結果を表3に示す。なお、回路接続用接着剤フィルムにおける導電粒子の平均粒子径及び粒子径のC.V.値は実施例1と同等であることを確認した。
<Example 3>
A circuit connection adhesive film was obtained in the same manner as in Example 1, except that a pressure step was performed after the transfer step and before the curing step. In the pressurizing step, a release film (A3171 manufactured by Toyobo Co., Ltd., thickness: 50 μm) whose surface has been subjected to release treatment is placed on both sides of the first particle-coated laminate film, and then the obtained laminate is This was done by sandwiching the film while applying a temperature of 35° C. using a hot roll laminator (Leon 13DX, manufactured by Lamy Corporation). Further, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3. In addition, the average particle diameter and C.I. of the particle diameter of the conductive particles in the circuit connection adhesive film. V. It was confirmed that the values were the same as in Example 1.
<実施例4、6~8>
 前駆体層を形成する際の乾燥時間を表3に示すように変更したこと以外は、実施例1と同様にして、回路接続用接着剤フィルムを得た。また、実施例1と同様にしてフロー率等の測定を行った。結果を表3に示す。なお、回路接続用接着剤フィルムにおける導電粒子の平均粒子径及び粒子径のC.V.値は実施例1と同等であることを確認した。
<Examples 4, 6 to 8>
An adhesive film for circuit connection was obtained in the same manner as in Example 1, except that the drying time when forming the precursor layer was changed as shown in Table 3. Further, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3. In addition, the average particle diameter and C.I. of the particle diameter of the conductive particles in the circuit connection adhesive film. V. It was confirmed that the values were the same as in Example 1.
<実施例5、9>
前駆体層を形成する際の乾燥時間を表3に示すように変更したこと以外は、実施例3と同様にして、回路接続用接着剤フィルムを得た。また、実施例1と同様にしてフロー率等の測定を行った。結果を表3に示す。なお、回路接続用接着剤フィルムにおける導電粒子の平均粒子径及び粒子径のC.V.値は実施例1と同等であることを確認した。
<Example 5, 9>
An adhesive film for circuit connection was obtained in the same manner as in Example 3, except that the drying time when forming the precursor layer was changed as shown in Table 3. Further, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3. In addition, the average particle diameter and C.I. of the particle diameter of the conductive particles in the circuit connection adhesive film. V. It was confirmed that the values were the same as in Example 1.
<実施例10>
前駆体層を形成する際の乾燥時間を表3に示すように変更したこと、及び、加圧工程での加熱温度を50℃に変更したこと以外は、実施例3と同様にして、回路接続用接着剤フィルムを得た。また、実施例1と同様にしてフロー率等の測定を行った。結果を表3に示す。なお、回路接続用接着剤フィルムにおける導電粒子の平均粒子径及び粒子径のC.V.値は実施例1と同等であることを確認した。
<Example 10>
Circuit connection was carried out in the same manner as in Example 3, except that the drying time when forming the precursor layer was changed as shown in Table 3, and the heating temperature in the pressurization step was changed to 50°C. An adhesive film for use was obtained. Further, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3. In addition, the average particle diameter and C.I. of the particle diameter of the conductive particles in the circuit connection adhesive film. V. It was confirmed that the values were the same as in Example 1.
<比較例1>
 実施例1と同様にして、PETフィルムと、前駆体層とを備える積層フィルム、及び、PETフィルムと、第2の接着剤層とを備える第2の接着剤フィルムを用意した。次いで、積層フィルムに代えて第2の接着剤フィルムを用いたこと以外は実施例1と同様にして転写工程を行い、第2の接着剤層に導電粒子を転写させた。次いで、実施例1と同様にして、積層工程を実施し、導電粒子が転写された第2の接着剤層上に前駆体層を積層した。次いで、実施例1と同様にして、硬化工程を実施し、前駆体層を硬化させ、第1の接着剤層を形成した。これにより、回路接続用接着剤フィルムを得た。また、実施例1と同様にしてフロー率等の測定を行った。結果を表3に示す。
<Comparative example 1>
In the same manner as in Example 1, a laminated film including a PET film and a precursor layer, and a second adhesive film including a PET film and a second adhesive layer were prepared. Next, a transfer step was performed in the same manner as in Example 1 except that a second adhesive film was used instead of the laminated film, and the conductive particles were transferred to the second adhesive layer. Next, a lamination step was carried out in the same manner as in Example 1, and a precursor layer was laminated on the second adhesive layer to which the conductive particles were transferred. Next, in the same manner as in Example 1, a curing step was performed to cure the precursor layer and form a first adhesive layer. Thereby, an adhesive film for circuit connection was obtained. In addition, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3.
<比較例2>
 転写工程後、積層工程の前に加圧工程を行ったこと以外は、比較例1と同様にして、回路接続用接着剤フィルムを得た。加圧工程は、実施例3と同様にして行った。また、実施例1と同様にしてフロー率等の測定を行った。結果を表3に示す。
<Comparative example 2>
A circuit-connecting adhesive film was obtained in the same manner as in Comparative Example 1, except that a pressure step was performed after the transfer step and before the lamination step. The pressurization step was performed in the same manner as in Example 3. Further, the flow rate and the like were measured in the same manner as in Example 1. The results are shown in Table 3.
<評価>
(回路接続構造体の作製)
 上記で得られた各回路接続用接着剤フィルムを用いて、以下の方法で、接続構造体を作製した。
<Evaluation>
(Preparation of circuit connection structure)
Using each of the circuit connection adhesive films obtained above, a connected structure was produced by the following method.
 まず、ガラス基板(コーニング社製:#1737、38mm×28mm、厚み0.5mm)の表面にITOの回路電極(パターン幅20μm、電極間スペース10μm)が形成された回路基板を用意した。次いで、回路接続用接着剤フィルムを2.0mm×2.0mmの正方形状に切り出し、回路接続用接着剤フィルムの第1の接着剤層側のPETフィルムを剥離した後、回路接続用接着剤フィルムの第1の接着剤層が上記回路基板の回路電極が形成されている面に接触するようにして、回路接続用接着剤フィルムを上記回路基板に仮圧着し、仮圧着体を得た。仮圧着は、回路接続用接着剤フィルムを、実測最高到達温度70℃、接着剤フィルム面積換算圧力1MPaの条件で1秒間加熱及び加圧することにより行った。仮圧着後、第2の接着剤層側のPETフィルムをピンセットでつまみ、第2の接着剤層から剥離した。次に、バンプ電極を配列したICチップ(外形0.5mm×0.5mm、厚み0.4mm、バンプ電極の面積400μm(縦20μm×横20μm)、バンプ電極間スペース10μm、バンプ電極高さ2μm)を準備し、ICチップのバンプ電極とガラス基板の回路電極との位置合わせを行った後、回路接続用接着剤フィルムの実測最高到達温度160℃、及びバンプ電極での面積換算圧力125MPaの条件で5秒間加熱及び加圧して第2の接着剤層をICチップに貼り付けた。これにより、回路接続構造体を得た。 First, a circuit board was prepared in which ITO circuit electrodes (pattern width 20 μm, inter-electrode space 10 μm) were formed on the surface of a glass substrate (#1737 manufactured by Corning, 38 mm×28 mm, thickness 0.5 mm). Next, the adhesive film for circuit connection is cut out into a square shape of 2.0 mm x 2.0 mm, and after peeling off the PET film on the first adhesive layer side of the adhesive film for circuit connection, the adhesive film for circuit connection is cut out. The circuit-connecting adhesive film was temporarily pressed onto the circuit board so that the first adhesive layer was in contact with the surface of the circuit board on which the circuit electrodes were formed, to obtain a temporarily pressed body. Temporary pressure bonding was performed by heating and pressurizing the circuit connection adhesive film for 1 second under the conditions of a measured maximum temperature of 70° C. and a pressure of 1 MPa in terms of adhesive film area. After the temporary pressure bonding, the PET film on the second adhesive layer side was pinched with tweezers and peeled off from the second adhesive layer. Next, an IC chip with bump electrodes arranged (outer diameter 0.5 mm x 0.5 mm, thickness 0.4 mm, bump electrode area 400 μm 2 (length 20 μm x width 20 μm), space between bump electrodes 10 μm, bump electrode height 2 μm ), and after aligning the bump electrodes of the IC chip and the circuit electrodes of the glass substrate, the conditions of the measured maximum temperature of the circuit connection adhesive film of 160°C and the area-converted pressure of the bump electrodes of 125 MPa were applied. The second adhesive layer was attached to the IC chip by heating and pressing for 5 seconds. Thereby, a circuit connection structure was obtained.
(回路接続構造体の評価)
 上記で得られた各回路接続構造体の接続抵抗、及び、粒子捕捉性を以下の方法で評価した。結果は表3に示す。
(Evaluation of circuit connection structure)
The connection resistance and particle trapping properties of each circuit connection structure obtained above were evaluated by the following method. The results are shown in Table 3.
[接続抵抗評価]
 回路接続構造体の対向する電極間(バンプ電極と回路電極との間)の抵抗値を、マルチメータ(MLR21、楠本化成株式会社製)を用いた四端子測定法にて測定し、14箇所の測定値の平均値(実装初期抵抗値)を比較することにより、接続抵抗を評価した。
[Connection resistance evaluation]
The resistance value between the opposing electrodes of the circuit connection structure (between the bump electrode and the circuit electrode) was measured using a four-terminal measurement method using a multimeter (MLR21, manufactured by Kusumoto Kasei Co., Ltd.), and the resistance value was measured at 14 locations. The connection resistance was evaluated by comparing the average value of the measured values (initial mounting resistance value).
[粒子捕捉性評価]
 上記の仮圧着体及び回路接続構造体の外観(実装外観)をガラス基板側から微分干渉顕微鏡で観察し、導電粒子の捕捉性を評価した。具体的には、まず、仮圧着体の任意の5箇所において、ICチップのバンプ電極を9つ含む100μm×100μm四方の領域と接触することとなる領域を観察し、該領域内に含まれる導電粒子数を数え、得られた導電粒子数の5箇所での平均値vA1を求めた。次いで、観察した仮圧着体から得られた回路接続構造体についても同様に、仮圧着体の観察箇所と同じ箇所(5箇所)の同じ領域内に含まれる導電粒子数を数え、得られた導電粒子数の5箇所での平均値vA2を求めた。次いで、仮圧着体について求めた導電粒子数の平均値vA1と回路接続構造体について求めた導電粒子数の平均値vA2とから、接続後における仮圧着後からの粒子残存率x(vA2/vA1×100)を算出した。得られた粒子残存率xに基づき、以下の基準で導電粒子の捕捉性を評価した。
5:x≧98%
4:90%≦x<98%
3:75%≦x<90%
2:50%≦x<75%
1:x<50%
[Particle capture performance evaluation]
The appearance (mounted appearance) of the above-mentioned temporary press-bonded body and circuit connection structure was observed using a differential interference microscope from the glass substrate side, and the ability to capture conductive particles was evaluated. Specifically, first, at any five locations on the temporarily crimped body, we observe the area that will come into contact with a 100 μm x 100 μm square area containing nine bump electrodes of the IC chip, and check the conductivity contained within the area. The number of particles was counted, and the average value v A1 of the obtained number of conductive particles at five locations was determined. Next, regarding the circuit connection structure obtained from the observed temporarily crimped body, the number of conductive particles contained in the same area at the same location (5 locations) as the observed location of the temporarily crimped body was counted, and the obtained conductive The average value vA2 of the number of particles at five locations was determined. Next, from the average value v A1 of the number of conductive particles determined for the temporary crimp body and the average value v A2 of the number of conductive particles determined for the circuit connection structure, the particle residual rate x (v A2 /v A1 ×100) was calculated. Based on the obtained particle residual rate x, the trapping performance of the conductive particles was evaluated according to the following criteria.
5: x≧98%
4:90%≦x<98%
3:75%≦x<90%
2:50%≦x<75%
1:x<50%
Figure JPOXMLDOC01-appb-T000005
 表3中、粒子転写層とは、転写工程において導電粒子が転写された層を示し、乾燥時間とは転写層形成時の乾燥時間を示す。
Figure JPOXMLDOC01-appb-T000005
In Table 3, the particle transfer layer refers to a layer to which conductive particles are transferred in the transfer step, and the drying time refers to the drying time during formation of the transfer layer.
 1…第1の接着剤層、2…第2の接着剤層、3…導電粒子、10…回路接続用接着剤フィルム、10…回路接続用接着剤フィルム、11…前駆体層、15…第1の接着剤フィルム、16…第2の接着剤フィルム、22…基体、31…第1の回路基板、32…第1の電極(回路電極)、33…第1の回路部材、34…第2の回路基板、35…第2の電極(バンプ電極)、36…第2の回路部材、40…接続部、100…接続構造体。

 
DESCRIPTION OF SYMBOLS 1...First adhesive layer, 2...Second adhesive layer, 3...Conductive particles, 10...Adhesive film for circuit connection, 10...Adhesive film for circuit connection, 11...Precursor layer, 15...th 1 adhesive film, 16... second adhesive film, 22... base, 31... first circuit board, 32... first electrode (circuit electrode), 33... first circuit member, 34... second circuit board, 35... second electrode (bump electrode), 36... second circuit member, 40... connection part, 100... connection structure.

Claims (16)

  1.  回路接続用接着剤フィルムであって、
     熱硬化性を有する第1の接着剤層と、
     前記第1の接着剤層の一方面側に部分的に埋め込まれている導電粒子と、
     熱硬化性を有し、前記第1の接着剤層の前記一方面に接する第2の接着剤層と、を備え、
     下記式(1)で求められる前記導電粒子の前記第1の接着剤層への埋込率が、30~90%であり、
     前記回路接続用接着剤フィルムを前記第1の接着剤層側からガラス板上に載せ、圧着温度70℃、圧着圧力0.1MPa、圧着時間1.0sの条件で仮圧着を行った後、前記第2の接着剤層上にガラス板を載せ、圧着温度160℃、圧着圧力2MPa、圧着時間5sの条件で本圧着を行ったときの各接着剤層のフロー率を下記式(2)で定義すると、前記第1の接着剤層のフロー率に対する前記第2の接着剤層のフロー率の比が、1.20~4.00である、回路接続用接着剤フィルム。
     埋込率(%)=H/L×100・・・(1)
    [式(1)中、Hは、前記導電粒子の前記第1の接着剤層への埋め込み長さ(単位:μm)を示し、Lは、前記導電粒子の埋め込み方向における粒子径(単位:μm)を示す。]
     フロー率[%]=S/S×100・・・(2)
    [式(2)中、Sは、仮圧着前の接着剤層の表面積を示し、Sは、本圧着後の接着剤層の面積を示す。]
    An adhesive film for circuit connection,
    a first adhesive layer having thermosetting properties;
    conductive particles partially embedded in one side of the first adhesive layer;
    a second adhesive layer that has thermosetting properties and is in contact with the one surface of the first adhesive layer,
    The embedding rate of the conductive particles in the first adhesive layer determined by the following formula (1) is 30 to 90%,
    The circuit connection adhesive film was placed on the glass plate from the first adhesive layer side, and temporary pressure bonding was performed under the conditions of a pressure bonding temperature of 70° C., a bonding pressure of 0.1 MPa, and a bonding time of 1.0 s. The flow rate of each adhesive layer is defined by the following formula (2) when a glass plate is placed on the second adhesive layer and main pressure bonding is performed under the conditions of a pressure bonding temperature of 160°C, a pressure bonding pressure of 2 MPa, and a bonding time of 5 seconds. Then, the adhesive film for circuit connection has a ratio of the flow rate of the second adhesive layer to the flow rate of the first adhesive layer from 1.20 to 4.00.
    Embedding rate (%) = H/L x 100...(1)
    [In formula (1), H represents the length (unit: μm) of the conductive particles embedded in the first adhesive layer, and L represents the particle diameter (unit: μm) of the conductive particles in the embedding direction. ) is shown. ]
    Flow rate [%] = S B / S A × 100... (2)
    [In formula (2), S A represents the surface area of the adhesive layer before temporary pressure bonding, and S B represents the area of the adhesive layer after main pressure bonding. ]
  2.  前記第1の接着剤層のフロー率が88~110%である、請求項1に記載の回路接続用接着剤フィルム。 The adhesive film for circuit connection according to claim 1, wherein the first adhesive layer has a flow rate of 88 to 110%.
  3.  前記第1の接着剤層が、外部刺激硬化性組成物を含む前駆体層の硬化物である、請求項1又は2に記載の回路接続用接着剤フィルム。 The adhesive film for circuit connection according to claim 1 or 2, wherein the first adhesive layer is a cured product of a precursor layer containing an externally stimulated curable composition.
  4.  前記外部刺激硬化性組成物が光硬化性を有する、請求項3に記載の回路接続用接着剤フィルム。 The adhesive film for circuit connection according to claim 3, wherein the externally stimulated curable composition has photocurability.
  5.  複数存在する前記導電粒子の少なくとも一部が、平面視において、所定のパターンで並んでいる、請求項1又は2に記載の回路接続用接着剤フィルム。 The adhesive film for circuit connection according to claim 1 or 2, wherein at least some of the plurality of conductive particles are arranged in a predetermined pattern in plan view.
  6.  前記導電粒子の平均粒子径が1.0~50.0μmであり、
     前記導電粒子の粒子径のC.V.値が25%以下である、請求項1又は2に記載の回路接続用接着剤フィルム。
    The average particle diameter of the conductive particles is 1.0 to 50.0 μm,
    C. of the particle diameter of the conductive particles. V. The adhesive film for circuit connection according to claim 1 or 2, having a value of 25% or less.
  7.  前記導電粒子の平均粒子径に対する前記回路接続用接着剤フィルムの厚さの比が、1.1~10.0である、請求項1又は2に記載の回路接続用接着剤フィルム。 The adhesive film for circuit connection according to claim 1 or 2, wherein the ratio of the thickness of the adhesive film for circuit connection to the average particle diameter of the conductive particles is 1.1 to 10.0.
  8.  前記第1の接着剤層の厚さに対する前記第2の接着剤層の厚さの比が、0.3~20.0である、請求項1又は2に記載の回路接続用接着剤フィルム。 The adhesive film for circuit connection according to claim 1 or 2, wherein the ratio of the thickness of the second adhesive layer to the thickness of the first adhesive layer is 0.3 to 20.0.
  9.  請求項1に記載の回路接続用接着剤フィルムの製造方法であって、
     前記第1の接着剤層と、前記第1の接着剤層の一方面側に部分的に埋め込まれている前記導電粒子とを備える第1の接着剤フィルムを用意する工程(I)と、
     前記第1の接着剤層の前記一方面上に前記第2の接着剤層を設ける工程(II)と、を備え、
     前記工程(I)が、外部刺激硬化性組成物を含む前駆体層の一方面側に前記導電粒子が部分的に埋め込まれた状態で、外部刺激によって前記前駆体層を硬化させて前記第1の接着剤層を形成する硬化工程を含む、回路接続用接着剤フィルムの製造方法。
    A method for producing a circuit connecting adhesive film according to claim 1, comprising:
    Step (I) of preparing a first adhesive film comprising the first adhesive layer and the conductive particles partially embedded in one side of the first adhesive layer;
    a step (II) of providing the second adhesive layer on the one surface of the first adhesive layer,
    In step (I), in a state where the conductive particles are partially embedded in one side of a precursor layer containing an external stimulus-curable composition, the precursor layer is cured by an external stimulus, and the first A method for producing an adhesive film for circuit connection, comprising a curing step of forming an adhesive layer.
  10.  前記硬化工程では、前記第1の接着剤層の前記フロー率が88~110%となるように前記前駆体層を硬化させる、請求項9に記載の回路接続用接着剤フィルムの製造方法。 The method for producing a circuit connection adhesive film according to claim 9, wherein in the curing step, the precursor layer is cured so that the flow rate of the first adhesive layer is 88 to 110%.
  11.  前記外部刺激硬化性組成物が光硬化性を有し、
     前記硬化工程では、光照射によって前記前駆体層を硬化させる、請求項9又は10に記載の回路接続用接着剤フィルムの製造方法。
    The external stimulation curable composition has photocurability,
    The method for producing a circuit connection adhesive film according to claim 9 or 10, wherein in the curing step, the precursor layer is cured by light irradiation.
  12.  前記工程(I)が、表面に複数の導電粒子が配置された基体の該表面上に前記前駆体層を設けることで、前記基体から前記前駆体層に前記導電粒子を転写する転写工程を更に含む、請求項9又は10に記載の回路接続用接着剤フィルムの製造方法。 The step (I) further includes a transfer step of transferring the conductive particles from the substrate to the precursor layer by providing the precursor layer on the surface of the substrate on which a plurality of conductive particles are arranged. The method for producing a circuit connection adhesive film according to claim 9 or 10, comprising:
  13.  前記工程(I)が、前記転写工程の前に、外部刺激硬化性組成物を含む層を50~70℃で3~60分間加熱する加熱工程を更に含む、請求項12に記載の回路接続用接着剤フィルムの製造方法。 13. The circuit connection method according to claim 12, wherein the step (I) further includes a heating step of heating the layer containing the externally stimulated curable composition at 50 to 70° C. for 3 to 60 minutes before the transfer step. Method of manufacturing adhesive film.
  14.  前記工程(I)が、前記転写工程の後に、前記前駆体層の前記導電粒子が転写された面に圧力を加える加圧工程を更に含む、請求項12に記載の回路接続用接着剤フィルムの製造方法。 The adhesive film for circuit connection according to claim 12, wherein the step (I) further includes, after the transfer step, a pressurizing step of applying pressure to the surface of the precursor layer to which the conductive particles have been transferred. Production method.
  15.  第1の電極を有する第1の回路部材と、前記第1の電極と電気的に接続される第2の電極を有する第2の回路部材と、前記第1の電極と前記第2の電極とを導電粒子を介して互いに電気的に接続し、かつ、前記第1の回路部材と前記第2の回路部材とを接着する接続部と、を備え、
     前記接続部が、請求項1又は2に記載の回路接続用接着剤フィルムの硬化物を含む、接続構造体。
    a first circuit member having a first electrode; a second circuit member having a second electrode electrically connected to the first electrode; and a first circuit member having a first electrode and a second electrode. and a connecting portion that electrically connects the circuit members to each other via conductive particles and adheres the first circuit member and the second circuit member,
    A connection structure in which the connection portion includes a cured product of the circuit connection adhesive film according to claim 1 or 2.
  16.  第1の電極を有する第1の回路部材の前記第1の電極が設けられている面と、第2の電極を有する第2の回路部材の前記第2の電極が設けられている面との間に、請求項1又は2に記載の回路接続用接着剤フィルムを配置することと、
     前記第1の回路部材と前記回路接続用接着剤フィルムと前記第2の回路部材とを含む積層体を前記積層体の厚さ方向に押圧した状態で加熱することにより、前記第1の電極と前記第2の電極とを導電粒子を介して互いに電気的に接続し、かつ、前記第1の回路部材と前記第2の回路部材とを接着することと、を含む、接続構造体の製造方法。
    A surface of a first circuit member having a first electrode on which the first electrode is provided and a surface of a second circuit member having a second electrode on which the second electrode is provided. Arranging the circuit connection adhesive film according to claim 1 or 2 between them;
    By heating a laminate including the first circuit member, the circuit connection adhesive film, and the second circuit member while pressing the laminate in the thickness direction, the first electrode and A method for manufacturing a connected structure, the method comprising electrically connecting the second electrode to each other via conductive particles, and bonding the first circuit member and the second circuit member. .
PCT/JP2022/032258 2022-08-26 2022-08-26 Adhesive film for circuit connection, connection structure, and methods for producing same WO2024042720A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032258 WO2024042720A1 (en) 2022-08-26 2022-08-26 Adhesive film for circuit connection, connection structure, and methods for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032258 WO2024042720A1 (en) 2022-08-26 2022-08-26 Adhesive film for circuit connection, connection structure, and methods for producing same

Publications (1)

Publication Number Publication Date
WO2024042720A1 true WO2024042720A1 (en) 2024-02-29

Family

ID=90012903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032258 WO2024042720A1 (en) 2022-08-26 2022-08-26 Adhesive film for circuit connection, connection structure, and methods for producing same

Country Status (1)

Country Link
WO (1) WO2024042720A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147224A (en) * 2016-02-15 2017-08-24 デクセリアルズ株式会社 Anisotropically conductive film, method for manufacturing the same, and connection structure
WO2018051799A1 (en) * 2016-09-13 2018-03-22 デクセリアルズ株式会社 Filler-containing film
WO2022102672A1 (en) * 2020-11-12 2022-05-19 昭和電工マテリアルズ株式会社 Adhesive film for circuit connection, method for manufacturing same, connection structure body, and method for manufacturing same
WO2022102573A1 (en) * 2020-11-10 2022-05-19 昭和電工マテリアルズ株式会社 Circuit-connection adhesive film and method for producing same, and circuit connection structure and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147224A (en) * 2016-02-15 2017-08-24 デクセリアルズ株式会社 Anisotropically conductive film, method for manufacturing the same, and connection structure
WO2018051799A1 (en) * 2016-09-13 2018-03-22 デクセリアルズ株式会社 Filler-containing film
WO2022102573A1 (en) * 2020-11-10 2022-05-19 昭和電工マテリアルズ株式会社 Circuit-connection adhesive film and method for producing same, and circuit connection structure and method for producing same
WO2022102672A1 (en) * 2020-11-12 2022-05-19 昭和電工マテリアルズ株式会社 Adhesive film for circuit connection, method for manufacturing same, connection structure body, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP6372542B2 (en) Method for producing anisotropic conductive film and anisotropic conductive film
KR102551117B1 (en) Anisotropic conductive film and manufacturing method therefor
WO2022102672A1 (en) Adhesive film for circuit connection, method for manufacturing same, connection structure body, and method for manufacturing same
US20230234333A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2022009846A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2022102573A1 (en) Circuit-connection adhesive film and method for producing same, and circuit connection structure and method for producing same
WO2024042720A1 (en) Adhesive film for circuit connection, connection structure, and methods for producing same
JP2016171133A (en) Film-like circuit connection material and method for manufacturing connection structural body of circuit member
WO2022025207A1 (en) Adhesive film for circuit connection, adhesive composition for circuit connection, and circuit connection structure and method for manufacturing same
KR102533475B1 (en) Adhesive film for circuit connection and manufacturing method thereof, manufacturing method for circuit connection structure, and adhesive film accommodating set
JP6273875B2 (en) Anisotropic conductive film and manufacturing method thereof
KR20230126743A (en) Adhesive film for circuit connections and manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
WO2022138747A1 (en) Adhesive film for circuit connection, and circuit connection structure and method for manufacturing same
WO2024034464A1 (en) Adhesive film for circuit connection, circuit connection structure, and manufacturing method therefor
WO2023106400A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
WO2023106410A1 (en) Adhesive film for circuit connection, and circuit connection structure and method for producing same
WO2022065496A1 (en) Adhesive film for circuit connection, composition containing inorganic filler, circuit connection structure and method of manufacturing same
WO2022075370A1 (en) Adhesive film for circuit connection, material for circuit connection, circuit connection structure, and method for manufacturing circuit connection structure
WO2022113946A1 (en) Adhesive film for circuit connection, and circuit connection structure and production method therefor
JP2023086476A (en) Adhesive film for circuit connection, and circuit connection structure and method for manufacturing the same
JP2022112210A (en) Circuit connection adhesive agent, and method of manufacturing connection structure
JP2022061623A (en) Adhesive film for circuit connection as well as circuit connection structure and manufacturing method thereof
KR20210141954A (en) Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodation set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956546

Country of ref document: EP

Kind code of ref document: A1