WO2018051799A1 - Filler-containing film - Google Patents

Filler-containing film Download PDF

Info

Publication number
WO2018051799A1
WO2018051799A1 PCT/JP2017/031318 JP2017031318W WO2018051799A1 WO 2018051799 A1 WO2018051799 A1 WO 2018051799A1 JP 2017031318 W JP2017031318 W JP 2017031318W WO 2018051799 A1 WO2018051799 A1 WO 2018051799A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
resin layer
containing film
layer
film
Prior art date
Application number
PCT/JP2017/031318
Other languages
French (fr)
Japanese (ja)
Inventor
怜司 塚尾
三宅 健
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017166277A external-priority patent/JP7081097B2/en
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN202211291848.5A priority Critical patent/CN116003858A/en
Priority to US16/333,200 priority patent/US20190241710A1/en
Priority to CN201780052909.3A priority patent/CN109642037A/en
Priority to KR1020187036915A priority patent/KR20190010879A/en
Priority to KR1020227018479A priority patent/KR20220080204A/en
Publication of WO2018051799A1 publication Critical patent/WO2018051799A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Definitions

  • the present invention relates to a filler-containing film.
  • Filler-containing films in which filler is dispersed in the resin layer are used in a wide variety of applications such as matte films, condenser films, optical films, label films, anti-static films, anisotropic conductive films ( Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4).
  • a filler-containing film is pressure-bonded to an article that is an adherend of the filler-containing film, it is optically possible to suppress unnecessary resin flow of the resin forming the filler-containing film and suppress uneven distribution of the filler. Desirable in terms of characteristics, mechanical characteristics, or electrical characteristics.
  • the filler-containing film is an anisotropic conductive film used for mounting electronic components such as IC chips
  • it is insulative so that it can cope with the high mounting density of electronic components.
  • the conductive particles are dispersed in the resin layer at a high density, the conductive particles dispersed at a high density move unnecessarily due to the resin flow when the electronic component is mounted and are unevenly distributed between the terminals, causing a short circuit.
  • Patent Document 5 a photocurable resin layer in which conductive particles are embedded in a single layer, an insulating adhesive layer, An anisotropic conductive film in which is laminated is proposed (Patent Document 5).
  • Patent Document 5 As a method of using this anisotropic conductive film, temporary pressure bonding is performed in a state where the photocurable resin is uncured and has tackiness, and then the photocurable resin layer is photocured to fix the conductive particles, and then Then, the substrate and the electronic component are finally bonded.
  • an anisotropic conductive film having a three-layer structure in which a first connection layer is sandwiched between a second connection layer and a third connection layer mainly made of an insulating resin have also been proposed (Patent Documents 6 and 7).
  • the anisotropic conductive film of Patent Document 6 has a structure in which the first connection layer has conductive particles arranged in a single layer in the plane direction on the second connection layer side of the insulating resin layer, The insulating resin layer thickness in the central region between the adjacent conductive particles is thinner than the insulating resin layer thickness in the vicinity of the conductive particles.
  • the anisotropic conductive film of Patent Document 7 has a structure in which the boundary between the first connection layer and the third connection layer is undulated, and the first connection layer is on the third connection layer side of the insulating resin layer.
  • the conductive particles are arranged in a single layer, and the insulating resin layer thickness in the central region between adjacent conductive particles is thinner than the insulating resin layer thickness in the vicinity of the conductive particles.
  • JP 2006-15680 A JP2015-138904A JP2013-103368A JP 2014-183266 A JP 2003-64324 A JP 2014-060150 A Japanese Patent Application Laid-Open No. 2014-060151
  • the conductive particles easily move during temporary pressure bonding of the anisotropic conductive connection, and the precise arrangement of the conductive particles before the anisotropic conductive connection is made after the anisotropic conductive connection. There is a problem that it cannot be maintained or the distance between the conductive particles cannot be sufficiently separated.
  • the photocurable resin layer is photocured, and the photocured resin layer in which the conductive particles are embedded is bonded to the electronic component. There is a problem that the conductive particles are difficult to be captured at the ends of the bumps, and an excessively large force is required to push the conductive particles, and the conductive particles cannot be pushed in sufficiently.
  • examination from the viewpoint of the exposure of the electrically-conductive particle from a photocurable resin layer etc. is not fully made for the improvement of indentation of an electrically-conductive particle.
  • conductive particles are dispersed in an insulating resin layer that becomes highly viscous at the heating temperature during anisotropic conductive connection, thereby suppressing the fluidity of the conductive particles during anisotropic conductive connection.
  • the conductive particles are precisely arranged in such an insulating resin layer, if the resin layer flows during anisotropic conductive connection, the conductive particles also flow at the same time. It is difficult to sufficiently reduce the short circuit, and it is difficult to maintain the initial precise arrangement of the conductive particles after anisotropic conductive connection and to keep the conductive particles in a separated state.
  • the manufacturing cost is low. From the viewpoint, it is required to reduce the number of manufacturing steps.
  • the whole or part of the first connection layer is greatly raised along the outer shape of the conductive particles, and the insulating resin layer itself forming the first connection layer is flat.
  • the conductive particles are held in the raised portions, there is a concern that there are many design restrictions for improving the holding of the conductive particles and the capturing property by the terminals.
  • the present invention provides a filler-containing film in which fillers such as conductive particles are dispersed in a resin layer, and does not require a three-layer structure. Even if the whole or a part of the filler is not raised larger than the outer shape of the filler, it is possible to suppress the flow of the filler due to the unnecessary flow of the resin layer when the filler-containing film and the article are pressure-bonded. Is formed as an anisotropic conductive film, the unnecessary flow of the conductive particles is suppressed at the time of thermocompression bonding between the anisotropic conductive film and the electronic component, the trapping property of the conductive particles at the terminal is improved, and a short circuit is caused. The problem is to reduce.
  • the present inventor has obtained the following knowledge about the relationship between the surface shape of the resin layer near the filler and the viscosity of the resin layer, with respect to the filler-containing film having a filler dispersion layer in which fillers such as conductive particles are dispersed in the resin layer.
  • the surface of the insulating resin layer (that is, the photocurable resin layer) on the side where the conductive particles are embedded is flat, i) When fillers such as conductive particles are exposed from the resin layer, if the surface of the resin layer around the filler is recessed with respect to the tangential plane of the resin layer at the center between adjacent fillers, Unnecessary insulation that may interfere with the bonding between the filler and the article when the filler-containing film is pressed onto the article and the filler-containing film is joined to the article due to the dent becoming part of the surface of the resin layer chipped.
  • the resin can be reduced, and (ii) when the filler is embedded in the resin layer without being exposed from the resin layer, the filler is embedded in the resin layer on the surface of the resin layer immediately above the filler. And traces of When undulations such as undulations are formed, the amount of resin is reduced in the undulations of the undulations, which makes it easier for the filler to be pushed in by the article when crimping the filler-containing film to the article.
  • the present invention is based on the above-described findings, and is a filler-containing film having a filler dispersion layer in which a filler is dispersed in a resin layer,
  • the surface of the resin layer in the vicinity of the filler provides a filler-containing film having a recess with respect to the tangent plane of the resin layer at the center between adjacent fillers.
  • the surface of the resin layer around the filler is Provided is a film that is lacking with respect to the tangent plane or has a resin amount in the resin layer immediately above the filler that is less than when the surface of the resin layer immediately above the filler is on the tangential plane. .
  • the present invention is a method for producing a filler-containing film having a step of forming a filler dispersion layer in which a filler is dispersed in a resin layer
  • the step of forming the filler dispersion layer is a step of holding the filler on the surface of the resin layer; Having a step of pushing the filler held on the surface of the resin layer into the resin layer;
  • the filler is held on the surface of the resin layer in a state where the filler is dispersed,
  • the viscosity of the resin layer when pushing the filler so that the surface of the resin layer in the vicinity of the filler has a dent with respect to the tangent plane of the resin layer at the center between adjacent fillers
  • a method for producing a filler-containing film that adjusts the indentation speed or temperature, and in particular, as the dent, the surface of the resin layer around the filler is
  • the filler-containing film of the present invention has a filler dispersion layer in which a filler is dispersed in a resin layer.
  • the surface of the resin layer in the vicinity of the filler has a dent with respect to the tangential plane of the resin layer at the center between adjacent fillers. That is, when the filler is exposed from the resin layer, there is a dent in the surface of the resin layer around the exposed filler, and the resin layer is not in contact with the tangential plane at the dent. The amount of resin has been reduced.
  • the surface of the resin layer immediately above the filler has a dent, and the amount of resin in the dent portion is reduced with respect to the tangential plane. ing.
  • the resin flow is reduced when the filler-containing film is pressure-bonded to the article due to the reduced amount of resin in the dent.
  • the filler is easily pressed against the article.
  • the resin is unlikely to hinder the filler from being sandwiched or the filler from being flattened.
  • the resin amount around the filler is reduced by the depression, the resin flow that leads to unnecessary flow of the filler is reduced. Therefore, the trapping property of the filler in the article is improved, and in particular, when the filler-containing film is configured as an anisotropic conductive film, the conduction reliability is improved by improving the trapping property of the conductive particles in the terminal.
  • the resin layer immediately above the filler embedded in the resin layer has a dent
  • the pressing force from the article is likely to be applied to the filler when the filler-containing film is pressure-bonded to the article.
  • the resin flow that leads to unnecessary flow of the filler is reduced by the amount of the resin immediately above the filler being reduced by the depression. Therefore, in this case as well, the trapping property of the filler in the article is improved, especially when the filler-containing film is configured as an anisotropic conductive film, that is, when the conductive particles are dispersed in the insulating resin layer as a filler.
  • the conduction reliability is improved by improving the trapping property of the conductive particles at the terminal.
  • the filler capturing property is improved, and the filler is difficult to flow on the article, so that the arrangement of the filler can be precisely controlled. Therefore, when the filler-containing film is an anisotropic conductive film, the arrangement of the conductive particles can be precisely controlled with respect to the terminals. For example, a fine pitch with a terminal width of 6 ⁇ m to 50 ⁇ m and a space between terminals of 6 ⁇ m to 50 ⁇ m. Can be used to connect electronic components.
  • the effective connection terminal width (the width of the overlapping portion in plan view among the widths of the pair of terminals opposed at the time of connection) ) Is 3 ⁇ m or more, and the shortest distance between terminals is 3 ⁇ m or more, it is possible to connect electronic components without causing a short circuit.
  • the layout of the conductive particle arrangement area and the area where the number density of the conductive particles is changed is the terminal of various electronic parts. It is possible to correspond to the layout of.
  • the filler-containing film of the present invention if there is a dent in the resin layer immediately above the filler embedded in the resin layer, the position of the filler can be clearly seen by observing the appearance of the filler-containing film. It becomes easy to identify the front and back of the film surface. For this reason, when the filler-containing film is pressure-bonded to the article, it is easy to confirm the use surface of which side of the filler-containing film is bonded to the article. Similar advantages are obtained when producing filler-containing films.
  • the filler-containing film of the present invention it is not always necessary to photocure the resin layer in order to fix the filler arrangement. Can have sex. For this reason, when the final pressure bonding is performed after the filler-containing film and the article are temporarily pressure-bonded, workability at the time of temporary pressure-bonding is improved, and workability is improved also when the article is finally pressure-bonded after the temporary pressure bonding.
  • the viscosity, indentation speed, or temperature of the resin layer when the filler is embedded in the resin layer is adjusted so that the above-described dent is formed in the resin layer. Therefore, the filler-containing film of the present invention that exhibits the above-described effects can be easily manufactured.
  • FIG. 1A is a plan view showing the arrangement of conductive particles of an anisotropic conductive film 10A of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 1B is a cross-sectional view of an anisotropic conductive film 10A of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 2 is a cross-sectional view of an anisotropic conductive film 10B of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 3A is a cross-sectional view of an anisotropic conductive film 10C of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 1A is a plan view showing the arrangement of conductive particles of an anisotropic conductive film 10A of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 1B is a cross-sectional view of an anisotropic conductive film 10A of an example which
  • FIG. 3B is a cross-sectional view of the anisotropic conductive film 10 ⁇ / b> C ′ of an example which is an aspect of the filler-containing film of the present invention.
  • FIG. 4 is a cross-sectional view of an anisotropic conductive film 10D of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 5 is a cross-sectional view of an anisotropic conductive film 10E of an embodiment which is an aspect of the filler-containing film of the present invention.
  • FIG. 6 is a cross-sectional view of an anisotropic conductive film 10F of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 7 is a cross-sectional view of an anisotropic conductive film 10G of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 8 is a cross-sectional view of an anisotropic conductive film 10X serving as a comparative example of the filler-containing film of the present invention.
  • FIG. 9 is a cross-sectional view of an anisotropic conductive film 10Y serving as a comparative example of the filler-containing film of the present invention.
  • FIG. 10 is a cross-sectional view of an anisotropic conductive film 10H of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 11 is a cross-sectional view of an anisotropic conductive film 10I of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 12A is a cross-sectional photograph of an anisotropic conductive film of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 12B is a cross-sectional photograph of an anisotropic conductive film of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 12C is a cross-sectional photograph of an anisotropic conductive film serving as a comparative example of the filler-containing film of the present invention.
  • FIG. 12A is a cross-sectional photograph of an anisotropic conductive film of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 12B is a cross-sectional photograph of an anisotropic conductive film of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 13A is a top view photograph of an anisotropic conductive film of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 13B is a top view photograph of an anisotropic conductive film of an example which is an embodiment of the filler-containing film of the present invention.
  • FIG. 1A is a plan view for explaining the arrangement of fillers in a filler-containing film 10A according to one embodiment of the present invention
  • FIG. 1B is a sectional view taken along line XX.
  • This filler-containing film 10 ⁇ / b> A is used as an anisotropic conductive film, in which conductive particles as a filler 1 are dispersed in an insulating resin layer 2.
  • the filler-containing film 10A such as an anisotropic conductive film can be in the form of a long film having a length of, for example, 5 m or more, and can be a wound body wound around a winding core.
  • the filler-containing film 10 ⁇ / b> A is composed of a filler dispersion layer 3, and the filler dispersion layer 3 is regularly dispersed with the filler 1 exposed on one side of the resin layer 2.
  • the fillers 1 are not in contact with each other in the plan view of the film, the fillers 1 are regularly dispersed in the film thickness direction without overlapping each other, and the single layer filler layer in which the positions of the fillers 1 in the film thickness direction are aligned. Is configured.
  • a recess 2b is formed on the surface 2a of the resin layer 2 around each filler 1 with respect to the tangential plane 2p of the resin layer 2 at the center between adjacent fillers.
  • a recess 2c may be formed on the surface of the resin layer immediately above the filler 1 embedded in the resin layer 2 (FIGS. 4 and 6).
  • the filler dispersion state in the present invention includes a state where the fillers 1 are randomly dispersed and a state where the fillers 1 are regularly arranged. In either case, it is preferable from the viewpoint of capture stability that the positions in the film thickness direction are aligned.
  • the position of the filler 1 in the film thickness direction being aligned is not limited to the position of the filler 1 being aligned at a single depth in the film thickness direction. It includes a mode in which filler 1 is present in each of the vicinity.
  • the filler 1 is a plan view of the film from the viewpoint of suppressing short circuit. It is preferable to arrange regularly.
  • the arrangement mode can be determined according to the article to which the filler-containing film is pressure-bonded.
  • the arrangement mode of the conductive particles can be determined by the layout of the terminals and bumps. There is no limitation in particular about this aspect. For example, it can be a square lattice arrangement as shown in FIG. 1A in a plan view of the film.
  • examples of the regular arrangement of the filler include a lattice arrangement such as a rectangular lattice, an oblique lattice, a hexagonal lattice, and a triangular lattice.
  • a plurality of grids having different shapes may be combined.
  • particle rows in which fillers are linearly arranged at predetermined intervals may be arranged in parallel at predetermined intervals.
  • missing of a filler exists regularly in the predetermined direction of a film may be sufficient.
  • the fillers 1 By making the fillers 1 non-contact with each other and having a regular arrangement such as a lattice shape, when the filler-containing film is pressure-bonded to the article, pressure is evenly applied to the fillers 1 to reduce variations in the connection state. it can. In addition, it is possible to manage lots by allowing fillers to be repeatedly removed in the longitudinal direction of the film, or by gradually increasing or decreasing the locations where fillers are missing in the longitudinal direction of the film. It is also possible to impart traceability (a property that enables tracking) to the connected connection structure. This is also effective for prevention of counterfeiting, authenticity determination, prevention of unauthorized use, etc. of the filler-containing film and the connection structure using the same.
  • the anisotropic conductive film since the conductive particles are regularly arranged, variation in conduction resistance can be reduced when electronic parts are connected by the anisotropic conductive film.
  • the conductive particles are regularly arranged in a plan view of the film and that the positions in the film thickness direction are aligned in order to achieve both capture stability and short circuit suppression.
  • the conductive particles may be randomly dispersed without regularly arranging them.
  • the lattice axis or the arrangement axis of the arrangement may be parallel to the longitudinal direction of the film or the direction perpendicular to the longitudinal direction, and intersect with the longitudinal direction of the film. It can be determined according to the article to be connected, and when the filler-containing film is an anisotropic conductive film, it can be determined according to the terminal width, terminal pitch, and the like. For example, when an anisotropic conductive film for fine pitch is used, the lattice axis A of the conductive particles 1 is skewed with respect to the longitudinal direction of the anisotropic conductive film 10A as shown in FIG.
  • the angle ⁇ formed by the longitudinal direction of the terminals 20 connected by the film 10A (the short direction of the film) and the lattice axis A is preferably 6 ° to 84 °, more preferably 11 ° to 74 °.
  • the distance between the fillers can also be determined according to the article to be connected.
  • the filler-containing film is an anisotropic conductive film
  • the interparticle distance of the conductive particles 1 is determined by the anisotropic conductive film. It can be appropriately determined according to the size of the terminal to be connected and the terminal pitch.
  • the distance between the nearest particles should be 0.5 times or more the conductive particle diameter D in order to prevent occurrence of short circuit. Preferably, it is more preferable to make it larger than 0.7 times.
  • the upper limit of the distance between the nearest particles can be determined according to the purpose of the filler-containing film.
  • the distance between the nearest particles is preferably the conductive particle diameter D. It can be 100 times or less, more preferably 50 times or less. Further, from the viewpoint of the capturing property of the conductive particles 1 at the terminal at the time of anisotropic conductive connection, the distance between the nearest particles is preferably 4 times or less of the conductive particle diameter D, more preferably 3 times or less. preferable.
  • the filler area occupancy calculated by the following formula is preferably 35% or less, more preferably 0.3 to 30%.
  • Area occupancy (%) [number density of fillers in plan view] ⁇ [average of area in plan view of one filler] ⁇ 100
  • the measurement area of the number density of the filler a plurality of rectangular areas each having a side of 100 ⁇ m or more are arbitrarily set (preferably 5 or more, more preferably 10 or more), and the total area of the measurement area is 2 mm. Two or more are preferable. What is necessary is just to adjust suitably the magnitude
  • a metal microscope is used for 200 places (2 mm 2 ) in an area of 100 ⁇ m ⁇ 100 ⁇ m arbitrarily selected from anisotropic conductive films.
  • a region having an area of 100 ⁇ m ⁇ 100 ⁇ m is a region where one or more bumps exist in a connection object having a space between bumps of 50 ⁇ m or less.
  • the number density value is not particularly limited as long as the area occupancy is within the above range, but when the filler-containing film is an anisotropic conductive film, the number density is practically 30 pieces / mm. 2 or more, preferably 150 to 70000 pieces / mm 2 , particularly in the case of fine pitch use, preferably 6000 to 42000 pieces / mm 2 , more preferably 10,000 to 40000 pieces / mm 2 , and still more preferably 15000-35000 pieces / mm 2 .
  • the number density of the filler may be obtained by observing with a metal microscope as described above, or may be obtained by measuring an observation image with image analysis software (for example, WinROOF, Mitani Corporation, etc.).
  • image analysis software for example, WinROOF, Mitani Corporation, etc.
  • the observation method and the measurement method are not limited to the above.
  • the average of the planar view area of one filler can be obtained by measuring an observation image using a metal microscope on the film surface or an electron microscope such as SEM. Image analysis software may be used.
  • the observation method and the measurement method are not limited to the above.
  • the area occupancy ratio is an index of thrust required for the pressing jig to press the filler-containing film to the article, and is preferably 35% or less, more preferably 0.3 to 30%. This is due to the following reason. That is, conventionally, in order to correspond to a fine pitch in anisotropic conductive films, the distance between conductive particles has been reduced and the number density has been increased as long as no short circuit occurs. However, when the number density is increased in this way, the number of terminals of the electronic component is increased, and the total area of connection per electronic component is increased, so that the anisotropic conductive film is pressed against the electronic component to be pressed.
  • the problem of thrust required for such a pressing jig is not limited to anisotropic conductive films, but is common to all filler-containing films.
  • the area occupation ratio to 35% or less, more preferably 30% or less as described above, the thrust required for the pressing jig to press the filler-containing film to the article is reduced. It becomes possible to suppress.
  • the filler 1 is a known inorganic filler (metal, metal oxide, metal nitride, etc.), organic filler (resin particles, rubber particles, etc.), organic material, etc., depending on the use of the filler-containing film.
  • Fillers mixed with inorganic materials for example, particles whose core is formed of a resin material and metal-plated on the surface (metal-coated resin particles), those in which insulating fine particles are attached to the surface of conductive particles, conductive particles
  • the surface is suitably selected according to the performance required for applications such as hardness and optical performance.
  • a silica filler for example, in an optical film or a matte film, a silica filler, a titanium oxide filler, a styrene filler, an acrylic filler, a melamine filler, various titanates, and the like can be used.
  • titanium oxide, magnesium titanate, zinc titanate, bismuth titanate, lanthanum oxide, calcium titanate, strontium titanate, barium titanate, barium zirconate titanate, lead zirconate titanate and mixtures thereof Etc. can be used.
  • the adhesive film can contain polymer rubber particles, silicone rubber particles, and the like.
  • the anisotropic conductive film contains conductive particles.
  • the conductive particles include metal particles such as nickel, cobalt, silver, copper, gold, and palladium, alloy particles such as solder, metal-coated resin particles, and metal-coated resin particles having insulating fine particles attached to the surface. .
  • metal particles such as nickel, cobalt, silver, copper, gold, and palladium
  • alloy particles such as solder
  • metal-coated resin particles are preferable in that the resin particles repel after being connected, so that the contact with the terminal is easily maintained and the conduction performance is stabilized.
  • the surface of the conductive particles may be subjected to an insulation treatment that does not hinder the conduction characteristics by a known technique.
  • the filler mentioned according to the above-mentioned use is not limited to the said use, and may contain the filler containing film of another use as needed. Moreover, in the filler-containing film for each application, two or more kinds of fillers can be used in combination as required.
  • the particle diameter D of the filler 1 is appropriately determined according to the use of the filler-containing film.
  • an anisotropic conductive film is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably, in order to be able to cope with variations in wiring height, to suppress increase in conduction resistance, and to suppress occurrence of short circuit. 3 ⁇ m or more and 9 ⁇ m or less.
  • the particle diameter D of the filler before being dispersed in the resin layer 2 can be measured with a general particle size distribution measuring apparatus, and the average particle diameter can also be obtained with a particle size distribution measuring apparatus.
  • An example of the particle size distribution measuring apparatus is FPIA-3000 (Malvern).
  • the particle diameter D of the filler in the filler-containing film (that is, the particle diameter D after the filler is dispersed in the resin layer) can be obtained from observation with an electron microscope such as SEM. In this case, it is desirable that the number of samples for measuring the particle diameter D is 200 or more.
  • the diameter of the shape imitating the maximum length or a sphere based on a planar image or a cross-sectional image can be used as the particle diameter D of the filler.
  • the particle size of the filler in the present invention is the surface The particle diameter does not include the insulating fine particles.
  • the minimum melt viscosity of the resin layer 2 is not particularly limited, and can be appropriately determined according to the use of the filler-containing film, the method for producing the filler-containing film, and the like. For example, as long as the above-mentioned dents 2b and 2c can be formed, depending on the manufacturing method of a filler containing film, it can also be set as about 1000 Pa.s. On the other hand, as a method for producing a filler-containing film, when the filler is held on the surface of the resin layer in a predetermined arrangement and the filler is pushed into the resin layer, the resin layer is the minimum from the point that the film can be formed.
  • the melt viscosity is preferably 1100 Pa ⁇ s or more.
  • a dent 2b is formed around the exposed portion of the filler 1 pushed into the resin layer 2 as shown in FIG. From the point of forming the recess 2c just above the filler 1 pushed into the resin layer 2 as shown, preferably 1500 Pa ⁇ s or more, more preferably 2000 Pa ⁇ s or more, still more preferably 3000 to 15000 Pa ⁇ s, even more.
  • the pressure is preferably 3000 to 10,000 Pa ⁇ s.
  • This minimum melt viscosity can be obtained by using a rotary rheometer (manufactured by TA Instruments Inc.) as an example, keeping it constant at a measurement pressure of 5 g, and using a measurement plate having a diameter of 8 mm, and more specifically in the temperature range. At 30 to 200 ° C., it can be obtained by setting the temperature rising rate 10 ° C./min, the measurement frequency 10 Hz, and the load fluctuation 5 g with respect to the measurement plate.
  • the minimum melt viscosity of the resin layer 2 By setting the minimum melt viscosity of the resin layer 2 to a high viscosity of 1500 Pa ⁇ s or more, it is possible to suppress unnecessary movement of the filler for pressure-bonding the filler-containing film to the article. In this case, it is possible to prevent the conductive particles to be sandwiched between the terminals during anisotropic conductive connection from flowing due to resin flow.
  • the resin layer 2 when the filler 1 is pressed is such that the filler 1 is exposed from the resin layer 2.
  • the resin layer 2 is plastically deformed to form a highly viscous viscous material that forms a recess 2 b (FIG. 1B) in the resin layer 2 around the filler 1, or
  • a dent 2 c (FIG. 6) is formed on the surface of the resin layer 2 immediately above the filler 1.
  • the lower limit of the viscosity of the resin layer 2 at 60 ° C. is preferably 3000 Pa ⁇ s or more, more preferably 4000 Pa ⁇ s or more, further preferably 4500 Pa ⁇ s or more, and the upper limit is preferably 20000 Pa ⁇ s or less. Preferably it is 15000 Pa.s or less, More preferably, it is 10000 Pa.s or less. This measurement is performed by the same measurement method as that for the minimum melt viscosity, and can be obtained by extracting a value at a temperature of 60 ° C.
  • the specific viscosity of the resin layer 2 when the filler 1 is pushed into the resin layer 2 is preferably at least 3000 Pa ⁇ s, more preferably 4000 Pa, depending on the shape and depth of the recesses 2b and 2c to be formed.
  • S or more, more preferably 4500 Pa ⁇ s or more, and the upper limit is preferably 20000 Pa ⁇ s or less, more preferably 15000 Pa ⁇ s or less, and even more preferably 10000 Pa ⁇ s or less.
  • such a viscosity is preferably obtained at 40 to 80 ° C., more preferably 50 to 60 ° C.
  • the depression 2b (FIG. 1B) is formed around the filler 1 exposed from the resin layer 2, thereby preventing the filler 1 from being flattened when the filler-containing film is bonded to the article.
  • the resistance received from the resin is reduced compared to the case where there is no dent 2b.
  • the filler-containing film is an anisotropic conductive film
  • the conductive particles are easily sandwiched between the terminals at the time of anisotropic conductive connection, whereby the conduction performance is improved and the trapping property is improved.
  • the recess 2c (FIGS. 4 and 6) is formed on the surface of the resin layer 2 immediately above the filler 1 that is buried without being exposed from the resin layer 2, compared to the case where there is no recess 2c.
  • the pressure during pressure bonding of the filler-containing film to the article is likely to concentrate on the filler 1. Therefore, when the filler-containing film is an anisotropic conductive film, the conductive particles are easily sandwiched between the terminals at the time of anisotropic conductive connection, so that the trapping property is improved and the conduction performance is improved.
  • the ratio (La / D) between the layer thickness La of the resin layer 2 and the particle diameter D of the filler 1 is preferably 0.6 to 10.
  • the particle diameter D of the filler 1 means the average particle diameter. If the layer thickness La of the resin layer 2 is too large, the filler tends to be misaligned when the filler-containing film is pressed onto the article. Therefore, when the filler-containing film is an optical film, the optical characteristics vary. Further, when the filler-containing film is an anisotropic conductive film, the trapping property of the conductive particles at the terminal is lowered during anisotropic conductive connection. This tendency is remarkable when La / D exceeds 10.
  • La / D is more preferably 8 or less, and even more preferably 6 or less.
  • the layer thickness La of the resin layer 2 is too small and La / D is less than 0.6, it is difficult to maintain the filler 1 in a predetermined particle dispersion state or a predetermined arrangement by the resin layer 2. Therefore, when the filler-containing film is an anisotropic conductive film, particularly when the terminal to be connected is a high density COG, the ratio (La) of the layer thickness La of the insulating resin layer 2 to the particle diameter D of the conductive particles 1 / D) is preferably 0.8-2. On the other hand, when it is considered that the risk of occurrence of a short circuit is low due to the bump layout of electronic components to be connected, the lower limit of the ratio (La / D) may be set to 0.25 or more.
  • the resin layer 2 can be formed from a thermoplastic resin composition, a high viscosity adhesive resin composition, and a curable resin composition.
  • the resin composition constituting the resin layer 2 is appropriately selected according to the use of the filler-containing film, and whether or not the resin layer 2 is insulative is also determined according to the use of the filler-containing film.
  • the curable resin composition can be formed from, for example, a thermopolymerizable composition containing a thermopolymerizable compound and a thermal polymerization initiator. You may make a thermopolymerizable composition contain a photoinitiator as needed.
  • thermopolymerizable compound When a thermal polymerization initiator and a photopolymerization initiator are used in combination, one that also functions as a photopolymerizable compound may be used as the thermopolymerizable compound, and a photopolymerizable compound is contained separately from the thermopolymerizable compound. May be. Preferably, a photopolymerizable compound is contained separately from the thermally polymerizable compound.
  • a cationic curing initiator is used as the thermal polymerization initiator
  • an epoxy resin is used as the thermopolymerizable compound
  • a photo radical initiator is used as the photopolymerization initiator
  • an acrylate compound is used as the photopolymerizable compound.
  • the photopolymerization initiator As the photopolymerization initiator, a plurality of types that react to light having different wavelengths may be contained. Thereby, at the time of manufacture of a filler containing film, the wavelength used by the photocuring of resin for film-forming a resin layer and the photocuring of resin when a filler containing film is crimped
  • the amount of the photopolymerizable compound in the resin layer is preferably 30% by mass or less, more preferably 10% by mass or less, and more preferably less than 2% by mass. This is because when the amount of the photopolymerizable compound is too large, the thrust required for pressing when the filler-containing film is pressure-bonded to the article increases.
  • thermally polymerizable composition examples include a thermal radical polymerizable acrylate composition containing a (meth) acrylate compound and a thermal radical polymerization initiator, and a thermal cationic polymerizable epoxy system containing an epoxy compound and a thermal cationic polymerization initiator.
  • examples thereof include compositions.
  • a thermal anionic polymerizable epoxy composition containing a thermal anionic polymerization initiator may be used.
  • a plurality of types of polymerizable compositions may be used in combination as long as there is no particular problem. Examples of combined use include combined use of a thermal cationic polymerizable compound and a thermal radical polymerizable compound.
  • the (meth) acrylate compound a conventionally known thermal polymerization type (meth) acrylate monomer can be used.
  • a monofunctional (meth) acrylate monomer or a bifunctional or higher polyfunctional (meth) acrylate monomer can be used.
  • thermal radical polymerization initiator examples include organic peroxides and azo compounds.
  • organic peroxides that does not generate nitrogen that causes bubbles can be preferably used.
  • the epoxy compound examples include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a novolac type epoxy resin, a modified epoxy resin thereof, an alicyclic epoxy resin, and the like. it can.
  • an oxetane compound may be used in combination.
  • thermal cationic polymerization initiator those known as thermal cationic polymerization initiators for epoxy compounds can be employed.
  • thermal cationic polymerization initiators for epoxy compounds.
  • iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, etc. that generate an acid by heat are used.
  • an aromatic sulfonium salt showing a good potential with respect to temperature can be preferably used.
  • the amount of the thermal cationic polymerization initiator used is preferably 2 to 60 mass relative to 100 parts by mass of the epoxy compound. Part, more preferably 5 to 40 parts by weight.
  • thermal anionic polymerization initiator a commonly used known curing agent can be used.
  • one kind can be used alone, or two or more kinds can be used in combination.
  • it is preferable to use a microcapsule type latent curing agent having an imidazole-modified product as a core and a surface thereof coated with polyurethane.
  • the thermopolymerizable composition preferably contains a film-forming resin and a silane coupling agent.
  • the film-forming resin include phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin resin, and the like. be able to.
  • a phenoxy resin can be preferably used from the viewpoint of film forming property, workability, and connection reliability.
  • the weight average molecular weight is preferably 10,000 or more.
  • the silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are mainly alkoxysilane derivatives.
  • an insulating filler may be contained in the thermopolymerizable composition in order to adjust the melt viscosity.
  • examples of this include silica powder and alumina powder.
  • the insulating filler is preferably a fine filler having a particle size of 20 to 1000 nm, and the blending amount is 5 to 50 parts by mass with respect to 100 parts by mass of a thermally polymerizable compound (photopolymerizable composition) such as an epoxy compound. Is preferred.
  • the insulating filler contained separately from the filler 1 is preferably used when the use of the filler-containing film is an anisotropic conductive film, but may not be insulating depending on the use. For example, a conductive fine filler may be used.
  • the resin layer forming the filler dispersion layer appropriately contains a finer insulating filler (so-called nanofiller) different from the filler 1 as necessary. Can do.
  • the filler-containing film of the present invention includes a filler, a softening agent, an accelerator, an anti-aging agent, a colorant (pigment, dye), an organic solvent, an ion catcher agent, etc. in addition to the above-described insulating or conductive filler. You may make it contain.
  • the filler 1 in the thickness direction of the resin layer 2 may be exposed from the resin layer 2 as described above, and is embedded in the resin layer 2 without being exposed.
  • the distance of the deepest part of the filler from the tangential plane 2p in the center between adjacent fillers on the surface 2a on which the resin layer recesses 2b and 2c are formed (hereinafter referred to as an embedding amount). It is preferable that the ratio (Lb / D) between Lb and the particle diameter D of the filler 1 (hereinafter referred to as embedding rate) is 60% or more and 105% or less.
  • the filler 1 By setting the embedding rate (Lb / D) to 60% or more, the filler 1 is maintained in a predetermined particle dispersion state or a predetermined arrangement by the resin layer 2, and by setting it to 105% or less, a filler-containing film
  • the amount of resin in the resin layer that acts to cause the filler to flow unnecessarily at the time of pressure bonding with the article can be reduced.
  • the embedding rate (Lb / D) is 80% or more, preferably 90% or more, more preferably 96% or more of the total number of fillers contained in the filler-containing film. It means that the value is (Lb / D). Therefore, the embedding rate of 60% or more and 105% or less means that the embedding rate of 80% or more, preferably 90% or more, more preferably 96% or more of the total number of fillers contained in the filler-containing film is 60% or more and 105%. % Or less.
  • the embedding rate (Lb / D) of all fillers is uniform, the pressing load when the filler-containing film is pressure-bonded to the article is uniformly applied to the filler. Therefore, in the film sticking body in which the filler-containing film is pressure-bonded to the article and bonded, quality uniformity such as optical characteristics and mechanical characteristics can be ensured. Moreover, when an anisotropic conductive film is used as the filler-containing film, the state of trapping the conductive particles at the terminal becomes good during anisotropic conductive connection, and the conduction stability is improved.
  • the embedding rate (Lb / D) 10 or more areas having an area of 30 mm 2 or more are arbitrarily extracted from the filler-containing film, a part of the film cross section is observed with an SEM image, and a total of 50 or more fillers are measured. Can be obtained. In order to increase accuracy, 200 or more fillers may be measured and obtained.
  • the measurement of the embedding rate (Lb / D) can be obtained collectively for a certain number by adjusting the focus in the surface field image.
  • a laser discriminating displacement sensor manufactured by Keyence etc. may be used for measuring the embedding rate (Lb / D).
  • the filler 1 is formed from the resin layer 2 as in the filler-containing film 10A shown in FIG.
  • a mode of embedding at an embedding rate of 60% or more and less than 100% so as to be exposed can be given.
  • the filler-containing film 10A has a portion of the surface of the resin layer 2 in contact with the filler 1 exposed from the resin layer 2 and the vicinity thereof in contact with the surface 2a of the resin layer at the center between adjacent fillers. It has a dent 2b that is recessed in a bowl shape with respect to the plane 2p.
  • the lower limit of the viscosity of the resin layer 2 when the filler 1 is pressed is preferably 3000 Pa ⁇ s or more. It is preferably 4000 Pa ⁇ s or more, more preferably 4500 Pa ⁇ s or more, and the upper limit is preferably 20000 Pa ⁇ s or less, more preferably 15000 Pa ⁇ s or less, and further preferably 10,000 Pa ⁇ s or less. Further, such a viscosity is preferably obtained at 40 to 80 ° C., more preferably 50 to 60 ° C.
  • the filler-containing film 10C shown in FIG. 3A has a mortar-like dent 2b similar to the containing film 10A, and the exposed diameter Lc of the filler 1 exposed from the resin layer 2 is smaller than the particle diameter D of the filler 1.
  • a recess 2b around the exposed portion of the filler 1 suddenly appears in the vicinity of the filler 1, and the exposed diameter Lc of the filler 1 and the particle diameter D of the filler are substantially equal.
  • the filler-containing film 10D shown in FIG. As described above, the surface of the resin layer 2 has a shallow dent 2c, and the filler 1 is exposed from the resin layer 2 at one point of the top 1a.
  • a minute protruding portion 2q may be formed adjacent to the recess 2b of the resin layer 2 around the exposed portion of the filler or the recess 2c of the resin layer immediately above the filler. An example of this is shown in FIG. 3B.
  • these filler-containing films 10B, 10C, 10C ', and 10D have an embedding rate of 100%, the top portion 1a of the filler 1 and the surface 2a of the resin layer 2 are flush with each other.
  • the filler-containing film and the article are compared to the case where the filler 1 protrudes from the resin layer 2 as shown in FIG.
  • the amount of resin in the film thickness direction is less likely to be nonuniform in the periphery of each filler during pressure bonding, and there is an effect that the movement of the filler due to resin flow can be reduced.
  • filler-containing films 10B, 10C, and 10D, 10D can hardly eliminate the amount of resin around the filler 1 so that the movement of the filler due to resin flow can be eliminated. Since the filler 1 is exposed from the layer 2, the trapping property of the filler 1 in the article is also good. Therefore, when the filler-containing film is formed of an anisotropic conductive film, an effect that slight movement hardly occurs in the conductive particles captured by the terminal at the time of anisotropic conductive connection can be expected. Therefore, this aspect is particularly effective for anisotropic conductive films used for applications where the fine pitch and the space between bumps are narrow.
  • the filler-containing films 10B (FIG. 2), 10C (FIG. 3A), and 10D (FIG. 4) having different shapes and depths of the recesses 2b and 2c are formed on the resin layer 2 when the filler 1 is pushed in, as will be described later. It can be produced by changing the viscosity, indentation speed or temperature.
  • the filler 1 is exposed like the filler-containing film 10E shown in FIG. 5, and the tangential plane 2p is formed on the resin layer 2 around the exposed portion.
  • lifted The thing with the dent 2c with respect to the tangent plane 2p can be mention
  • the filler-containing film 10E which has the dent 2b in the resin layer 2 around the exposed part of the filler 1 and the filler-containing film 10F (FIG. 6) which has the dent 2c in the resin layer 2 immediately above the filler 1 are It can manufacture by changing the viscosity of the resin layer 2 at the time of indentation of the filler 1 at the time of manufacturing them, indentation speed, or temperature.
  • the filler 1 When the filler-containing film 10E shown in FIG. 5 is pressure-bonded to the article, the filler 1 is directly pressed from the article, so that the article and the filler can be easily joined.
  • the trapping property of the conductive particles at the terminal when the electronic component is anisotropically conductively connected with the anisotropic conductive film is improved.
  • the filler-containing film 10F shown in FIG. 6 when the filler-containing film 10F shown in FIG. 6 is pressure-bonded to the article, the filler 1 does not directly press the article and presses through the resin layer 2, but the amount of resin present in the pressing direction is small.
  • the state of FIG. 8 that is, the filler 1 is embedded with an embedding rate exceeding 100%, the filler 1 is not exposed from the resin layer 2 and the surface of the resin layer 2 is flat). For this reason, it is easy to apply a pressing force to the filler, and it is prevented that the filler 1 moves unnecessarily due to the resin flow at the time of pressure bond
  • the recess 2b (FIGS. 1B, 2, 3A, 3B, and 5) of the resin layer 2 around the exposed portion of the filler and the recess 2c (FIGS. 4 and 6) of the resin layer immediately above the filler.
  • the ratio (Le / D) of the maximum depth Le of the recess 2b around the exposed portion of the filler 1 and the particle diameter D of the filler 1 is preferably less than 50%, more preferably less than 30%.
  • the ratio (Ld / D) of the maximum diameter Ld of the dent 2b around the exposed portion of the filler 1 to the particle diameter D of the filler 1 is preferably 100% or more, more preferably Is 100 to 150%, and the ratio (Lf / D) of the maximum depth Lf of the recess 2c to the particle diameter D of the filler 1 in the resin immediately above the filler 1 is greater than 0, preferably less than 10%, more Preferably it is 5% or less.
  • the exposed diameter Lc of the filler 1 can be made equal to or less than the particle diameter D of the filler 1, and is preferably 10 to 90% of the particle diameter D. As shown in FIG. 4, it may be exposed at one point on the top of the filler 1, or the filler 1 may be completely buried in the resin layer 2 and the exposed diameter Lc may be zero.
  • the top of the filler 1 embedded in the resin layer 2 and the surface of the resin layer 2 are substantially flush with each other, and the depths of the recesses 2b and 2c (recesses from the tangential plane at the center between adjacent fillers). If there is a region where the filler with the deepest part) having a particle size of 10% or more of the particle diameter (hereinafter simply referred to as “filler having a recess depth of 10% or more flush with the resin layer”) is contained in the filler, Even if there is no problem in the performance and quality of the film, the appearance may be impaired.
  • the dents 2b and 2c may cause floating or the like after the bonding.
  • the filler-containing film is an anisotropic conductive film
  • conductive particles having a dent depth of 10% or more flush with the insulating resin layer 2 are concentrated on one bump, it floats after connection with the bump. May occur and conductivity may be reduced. Therefore, in an area within 200 times the particle diameter of the filler from an arbitrary filler having a depth of 10% or more that is flush with the resin layer 2, the depth of the depression is 10 flush with the resin layer with respect to the total number of fillers.
  • % Of the number of fillers is preferably 50% or less, more preferably 40% or less, and even more preferably 30% or less.
  • the resin to be sprayed has a lower viscosity than the resin forming the resin layer 2, and the concentration of the resin to be sprayed is diluted to such an extent that the dent of the resin layer 2 can be confirmed after the spraying. It is desirable.
  • the dents 2b and 2c shallow the above-described appearance and floating problems can be improved.
  • the filler 1 is likely to roll on the resin layer 2. From the viewpoint of improving the capture rate, it is preferable to set the embedding rate (Lb / D) to 60% or more.
  • the embedding rate (Lb / D) exceeds 100%, a resin interposed between the filler 1 and the article when the surface of the resin layer 2 is flat like the filler-containing film 10X shown in FIG. The amount is excessive. Further, when the surface of the resin layer 2 is raised along the shape of the filler 1 as in the filler-containing film 10Y shown in FIG. 9, the filler 1 is caused to flow by the resin flow of the resin layer 2 at the time of pressure bonding with the article. easy. Furthermore, since the filler 1 presses the article through the resin without directly contacting the article and pressing the article, the filler is easily flowed by the resin flow.
  • the presence of the dents 2b and 2c on the surface of the resin layer 2 can be confirmed by observing the cross section of the filler-containing film with a scanning electron microscope, and can also be confirmed with surface field observation.
  • the dents 2b and 2c can be observed even with an optical microscope or a metal microscope.
  • the size of the recesses 2b and 2c can also be confirmed by focus adjustment during image observation. The same is true even after the resin is sprayed on the deep dents as described above.
  • the filler-containing film of the present invention preferably has the lowest melting than the resin layer 2 on the surface of the filler dispersion layer 3 where the dents 2b of the resin layer 2 are formed, as in the filler-containing film 10H shown in FIG. You may laminate
  • the second resin layer and the third resin layer described later are layers that do not contain the filler 1 dispersed in the filler dispersion layer. Further, like the filler-containing film 10I shown in FIG.
  • the resin layer is formed on the surface of the filler dispersion layer 3 where the recess 2b of the resin layer 2 is not formed (the surface opposite to the surface where the recess is formed).
  • a second resin layer 4 having a minimum melt viscosity lower than 2 may be laminated.
  • the second resin layer 4 can also be made insulating or conductive depending on the use of the filler-containing film.
  • the filler-containing film and the article are pressure-bonded by laminating the second resin layer 4, even if the article has irregularities, the second resin layer can fill the space formed by the irregularities. it can.
  • the filler-containing film is an anisotropic conductive film having an insulating resin layer as the second resin layer, the opposite electronic parts are anisotropically conductively connected using the anisotropic conductive film.
  • the space formed by the electrodes and bumps of the electronic components can be filled with the second resin layer, and the adhesion between the electronic components can be improved.
  • the opposite electronic parts are anisotropically conductively connected using the anisotropic conductive film having the second resin layer 4, whether or not the second resin layer 4 is on the formation surface of the recess 2b.
  • the second resin layer 4 is on the first electronic component side such as an IC chip (in other words, the resin layer 2 is on the second electronic component side such as a substrate).
  • the first electronic component such as an IC chip is on the pressing jig side
  • the second electronic component such as a substrate is on the stage side
  • the anisotropic conductive film is temporarily bonded to the second electronic component
  • the first electronic component is The component and the second electronic component are finally crimped.
  • the first electronic component and the second electronic component are temporarily attached after the anisotropic conductive film is temporarily attached to the first electronic component. Is crimped.
  • the minimum melt viscosity between the resin layer 2 and the second resin layer 4 is more likely to be filled with the second resin layer in the space formed by the surface irregularities of the article to be thermocompression-bonded with the filler-containing film. For this reason, when the adhesiveness between the filler-containing film and the article, or when the opposing article is thermocompression bonded via the filler-containing film, the adhesiveness between the opposing articles is improved. Further, as the difference is increased, the amount of movement of the resin layer 2 existing in the filler dispersion layer 3 becomes relatively small with respect to the second resin layer 4, and the unnecessary flow of the filler held in the resin layer 2 is reduced. Can be reduced.
  • the filler-containing film is an anisotropic conductive film having an insulating second resin layer, it is formed by electrodes and bumps of electronic parts that are anisotropically conductively connected by the anisotropic conductive film.
  • the space to be filled is easily filled with the second resin layer 4, and the effect of improving the adhesion between the electronic components can be expected.
  • the amount of movement of the resin layer 2 holding the conductive particles in the filler dispersion layer 3 is relatively small with respect to the second resin layer, the trapping property of the conductive particles at the terminal is easily improved.
  • the minimum melt viscosity ratio between the resin layer 2 and the second resin layer 4 depends on the ratio of the layer thicknesses of the resin layer 2 and the second resin layer 4, it is preferably 2 or more in practice, more preferably 5 or more, more preferably 8 or more. On the other hand, if this ratio is too large, when a long filler-containing film is used as a wound body, there is a possibility that the resin protrudes or blocks, so that the resin layer 2 and the second resin layer 4 are practically used.
  • the minimum melt viscosity ratio is preferably 15 or less.
  • the preferable minimum melt viscosity of the second resin layer 4 more specifically satisfies the above-mentioned ratio and is 3000 Pa ⁇ s or less, more preferably 2000 Pa ⁇ s or less, and particularly 100 to 2000 Pa ⁇ s.
  • the second resin layer 4 can be formed by adjusting the viscosity in the same resin composition as the resin layer 2.
  • the thickness of the second resin layer 4 can be appropriately set according to the use of the filler-containing film. From the viewpoint of not excessively increasing the difficulty of the lamination process of the second resin layer 4, it is generally preferable that the particle diameter of the filler is 0.2 to 50 times.
  • the layer thickness of the second resin layer 4 is preferably 4 to 20 ⁇ m, and the conductive particle diameter is preferably 1 to 8 times.
  • the minimum melt viscosity of the entire anisotropic conductive film including the insulating resin layer 2 and the second resin layer 4 is the resin layer 2 and the second resin layer.
  • the thickness ratio of 4 it may be 8000 Pa ⁇ s or less for practical use, and may be 200 to 7000 Pa ⁇ s for easy filling between the bumps, preferably 200 to 4000 Pa. -S.
  • a third resin layer may be provided on the opposite side across the second resin layer 4 and the resin layer 2.
  • the third resin layer can also be made insulating or conductive depending on the use of the filler-containing film.
  • the third resin layer can function as a tack layer.
  • the third resin layer may be provided to fill a space formed by the electrodes and bumps of the electronic component.
  • the resin composition, viscosity, and thickness of the third resin layer may be the same as or different from those of the second resin layer.
  • the minimum melt viscosity of the filler-containing film in which the resin layer 2, the second resin layer 4, and the third resin layer are combined is not particularly limited, but may be 8000 Pa ⁇ s or less, or 200 to 7000 Pa ⁇ s. It may be 200 to 4000 Pa ⁇ s.
  • a filler dispersion layer may be laminated, and a layer containing no filler, such as the second resin layer, may be interposed between the laminated filler dispersion layers.
  • a second resin layer or a third resin layer may be provided on the outer layer.
  • the method for producing a filler-containing film of the present invention includes a step of forming a filler dispersion layer in which a filler is dispersed in a resin layer.
  • the step of forming the filler dispersion layer includes a step of holding the filler in a state where the filler is dispersed on the surface of the resin layer, and a step of pushing the filler held in the resin layer into the resin layer.
  • the resin layer when the filler is pushed so that the surface of the resin layer near the filler has a dent with respect to the tangent plane of the resin layer at the center between the adjacent fillers Adjust the viscosity, indentation speed or temperature.
  • the resin layer into which the filler is pushed is not particularly limited as long as the depressions 2b and 2c of the previous operation can be formed, but it is preferable that the minimum melt viscosity is 1100 Pa ⁇ s or more and the viscosity at 60 ° C. is 3000 Pa ⁇ s or more.
  • the minimum melt viscosity is preferably 1500 Pa ⁇ s or more, more preferably 2000 Pa ⁇ s or more, further preferably 3000 to 15000 Pa ⁇ s, and particularly preferably 3000 to 10,000 Pa ⁇ s.
  • the minimum melt viscosity of the resin layer that holds the filler on the surface is in the above range.
  • the filler-containing film of the present invention holds the filler 1 on the surface of the resin layer 2 in a predetermined arrangement, and the filler 1 is a flat plate or It is manufactured by pushing into the resin layer with a roller.
  • the film may be pressed with a pressing plate having a convex portion corresponding to the filler arrangement.
  • the embedding amount of the filler 1 in the resin layer 2 can be adjusted by the pressing force, temperature, etc. when the filler 1 is pushed, and the shapes and depths of the recesses 2b, 2c are the resin when pushing. It can adjust with the viscosity of the layer 2, indentation speed, temperature, etc.
  • the viscosity of the insulating resin layer 2 when the conductive particles 1 are pushed in is preferably 8000 Pa ⁇ s (60 ° C.).
  • the isotropic conductive film 10C FIG.
  • the viscosity of the insulating resin layer 2 when the conductive particles 1 are pushed in is preferably 12000 Pa ⁇ s (70 ° C.), and the anisotropic conductive film 10D (FIG. 4), when manufacturing the anisotropic conductive film 10E (FIG. 5), it is preferable that the viscosity of the insulating resin layer 2 when the conductive particles 1 are pushed in is 4500 Pa ⁇ s (60 ° C.).
  • the viscosity of the insulating resin layer 2 when the conductive particles 1 are pushed in is preferably 7000 Pa ⁇ s (70 ° C.).
  • the anisotropic conductive film 10F (FIG. 6) is manufactured, the conductive particles 1 It is preferable that the viscosity of the insulating resin layer 2 at the time included the 3500Pa ⁇ s (70 °C).
  • the filler 1 can be directly sprayed on the resin layer 2, or the filler 1 can be attached as a single layer to a film that can be biaxially stretched, the film is biaxially stretched, and the resin layer 2 is applied to the stretched film.
  • the filler 1 is held on the resin layer 2.
  • the filler 1 can be held on the resin layer 2 using a transfer mold.
  • examples of the transfer mold include inorganic materials such as silicon, various ceramics, glass, and stainless steel, and organic materials such as various resins.
  • inorganic materials such as silicon, various ceramics, glass, and stainless steel
  • organic materials such as various resins.
  • those in which openings are formed by a known opening forming method such as a photolithographic method or those in which a printing method is applied can be used.
  • the transfer mold can take a plate shape, a roll shape or the like. The present invention is not limited by the above method.
  • the second resin layer 4 having a lower viscosity than that of the resin layer 2 can be laminated on the surface of the resin layer 2 into which the filler has been pressed in, or on the opposite surface thereof.
  • the length of the filler-containing film is preferably 5 m or more, more preferably 10 m or more, and even more preferably 25 m or more.
  • the length of the filler-containing film is preferably 5000 m or less, more preferably 1000 m or less, and even more preferably 500 m or less.
  • Such a long body of the filler-containing film is preferably a wound body wound around a core from the viewpoint of excellent handleability.
  • the filler-containing film of the present invention can be used by being attached to an article in the same manner as a conventional filler-containing film, and the article is not particularly limited as long as the filler-containing film can be attached. It can be attached to various articles according to the use of the filler-containing film by pressure bonding, preferably by heat pressure bonding. At the time of bonding, light irradiation may be used, and heat and light may be used in combination. For example, when the resin layer of the filler-containing film has sufficient adhesiveness to the article to which the filler-containing film is bonded, the filler-containing film is a single article by lightly pressing the resin layer of the filler-containing film against the article.
  • the film sticking body stuck on the surface can be obtained.
  • the surface of the article is not limited to a flat surface, and may be uneven, or may be bent as a whole.
  • the filler-containing film may be bonded to the article using a pressure roller. Thereby, the filler of a filler containing film and articles
  • a filler-containing film is interposed between the first article and the second article facing each other, the two articles facing each other are joined by a thermocompression roller or a crimping tool, and the filler is sandwiched between the articles. Good. Further, the filler-containing film may be sandwiched between the articles so that the filler and the article are not in direct contact with each other.
  • the filler-containing film is an anisotropic conductive film
  • a first electronic component such as an IC chip, an IC module, or an FPC, an FPC, a glass substrate through the anisotropic conductive film
  • a second electronic component such as a plastic substrate, a rigid substrate, or a ceramic substrate.
  • IC chips and wafers may be stacked using an anisotropic conductive film to form a multilayer.
  • the electronic component connected with the anisotropic conductive film of this invention is not limited to the above-mentioned electronic component. It can be used for various electronic parts that have been diversified in recent years.
  • this invention includes the manufacturing method of the bonding body which bonded the filler containing film of this invention to various articles
  • the filler-containing film is an anisotropic conductive film
  • a structure that is, a connection structure in which electronic components are anisotropically conductively connected by the anisotropic conductive film of the present invention is also included.
  • the anisotropic conductive film is used for second electronic components such as various substrates.
  • the first electronic component such as an IC chip on the side where the conductive particles 1 of the anisotropic conductive film temporarily bonded and temporarily bonded from the side where the conductive particles 1 are embedded in the surface is not embedded in the surface. And can be manufactured by thermocompression bonding.
  • the insulating resin layer of the anisotropic conductive film contains not only a thermal polymerization initiator and a thermal polymerizable compound, but also a photopolymerization initiator and a photopolymerizable compound (may be the same as the thermal polymerizable compound), A pressure bonding method using both light and heat may be used. In this way, unintentional movement of the conductive particles can be minimized. Further, the side on which the conductive particles are not embedded may be temporarily attached to the second electronic component for use. Note that the anisotropic conductive film may be temporarily attached to the first electronic component instead of the second electronic component.
  • the anisotropic conductive film is formed of a laminate of the conductive particle dispersion layer 3 and the second insulating resin layer 4, the conductive particle dispersion layer 3 is temporarily attached to a second electronic component such as various substrates. Then, the first electronic component such as an IC chip is aligned and placed on the second insulating resin layer 4 side of the anisotropic conductive film that has been temporarily pressure-bonded, and thermocompression-bonded.
  • the second insulating resin layer 4 side of the anisotropic conductive film may be temporarily attached to the first electronic component.
  • the conductive particle dispersion layer 3 side can be temporarily attached to the first electronic component for use.
  • anisotropic conductive film which is one aspect of the filler-containing film of the present invention will be specifically described with reference to examples.
  • Examples 1 to 15 and Comparative Examples 1 to 3 (1) Manufacture of anisotropic conductive film Resin compositions for forming an insulating resin layer, a second insulating resin layer, and a tack layer were prepared using the formulations shown in Tables 1A and 1B.
  • the resin composition for forming the insulating resin layer is coated on a PET film having a film thickness of 50 ⁇ m with a bar coater, dried in an oven at 80 ° C. for 5 minutes, and the thicknesses shown in Tables 2A and 2B on the PET film.
  • the insulating resin layer was formed.
  • a second insulating resin layer and a tack layer were formed on the PET film with the thicknesses shown in Table 2A and Table 2B, respectively.
  • Comparative Example 3 conductive particles were mixed with the resin composition forming the insulating resin layer to form an insulating resin layer (number density 70000 / mm 2 ) in which the conductive particles were dispersed in a single layer at random.
  • the mold is prepared so that the conductive particles 1 have a square lattice arrangement shown in FIG. 1A in plan view, the interparticle distance is equal to the particle diameter of the conductive particles, and the number density of the conductive particles is 28000 / mm 2. did. That is, the convex pattern of the mold is a square lattice arrangement, and the pitch of the convex portions on the lattice axis is twice the average conductive particle diameter (3 ⁇ m), which is formed by the lattice axis and the short direction of the anisotropic conductive film.
  • a mold having an angle ⁇ of 15 ° is manufactured, and a known transparent resin pellet is poured into the mold in a melted state, cooled, and solidified, whereby the resin mold having the array pattern shown in FIG. 1A is formed. Formed.
  • metal-coated resin particles (Sekisui Chemical Co., Ltd., AUL703, average particle diameter of 3 ⁇ m) are coated with insulating fine particles (average particle diameter of 0.3 ⁇ m) according to the description in JP-A No. 2014-132567.
  • the conductive particles were filled in resin-type dents, and the above-mentioned insulating resin layer was covered thereon and adhered by pressing at 60 ° C. and 0.5 MPa. Then, the insulating resin layer is peeled from the mold, and the conductive particles on the insulating resin layer are pressed into the insulating resin layer by pressing (pressing conditions: 60 to 70 ° C., 0.5 Mpa) to disperse the conductive particles.
  • An anisotropic conductive film composed of a single layer was produced (Examples 6 to 10, 14 and Comparative Example 2). The embedded state of the conductive particles was controlled by the indentation conditions.
  • a two-layer type anisotropic conductive film was prepared by laminating the second insulating resin layer on the conductive particle dispersion layer prepared in the same manner (Examples 1 to 5, 11 to 13, Comparative Example 1). ).
  • the second insulating resin layer was laminated on the insulating resin layer in which the conductive particles were dispersed as described above.
  • the surface of the conductive particle dispersion layer on which the second insulating resin layer was laminated was the surface of the insulating resin layer into which the conductive particles were pressed, or the surface on the opposite side.
  • a three-layer type anisotropic conductive film was prepared by laminating a tack layer on a similarly prepared two-layer type anisotropic conductive film (Example 15).
  • Examples 1 to 7, 9 to 15, and Comparative Example 1 conductive particles having an embedding rate of less than 60% and conductive particles having an embedding rate of more than 100% were exposed from the insulating resin layer.
  • dents 2b were observed on the surface of the insulating resin layer around the electroparticles (FIGS. 12A, 12B, and 13A).
  • the embedding rate was less than 100%, but the conductive particles were not exposed from the insulating resin layer, and the recesses 2b and 2c were not observed.
  • the metal layer 1p of the conductive particles 1 appears in a dark circle, and the insulating particle layer 1q attached to the metal layer 1p appears in a light color.
  • Example 8 the conductive particles are completely embedded in the insulating resin layer, and the conductive particles are not exposed from the insulating resin layer, but a dent 2c is observed on the surface of the insulating resin layer immediately above the conductive particle layer.
  • FIG. 13B the embedding rate was slightly larger than 100%, and the conductive particles were not exposed from the resin layer, but the surface of the resin layer was flat and no dent was observed on the surface of the resin layer immediately above the conductive particles. .
  • (A) Initial conduction resistance The anisotropic conductive film of each Example and Comparative Example is cut with a sufficient area for connection, and sandwiched between an IC for evaluation of conduction characteristics and a glass substrate, and heated and pressurized (180 ° C. 60 MPa, 5 seconds) to obtain each evaluation connection, and the conduction resistance of the obtained evaluation connection was measured by a four-terminal method.
  • the initial conduction resistance is practically preferably 2 ⁇ or less, more preferably 0.6 ⁇ or less.
  • the IC for evaluation and the glass substrate correspond to their terminal patterns, and the sizes are as follows. Further, when connecting the evaluation IC and the glass substrate, the longitudinal direction of the anisotropic conductive film and the short direction of the bump were matched.
  • (B) Conduction reliability The conduction resistance after placing the evaluation connection prepared in (a) in a thermostatic bath at a temperature of 85 ° C. and a humidity of 85% RH for 500 hours was measured in the same manner as the initial conduction resistance.
  • the conduction reliability is practically preferably 6 ⁇ or less, more preferably 4 ⁇ or less.
  • Particle gap 100 * P1 / P0 (Wherein, P1: average particle pitch after heating and pressurization, P0: average particle pitch before heating and pressing)
  • Evaluation criteria for positional deviation A A Particle gap of 160% or less B Particle gap of over 160% 180% or less C Particle gap of over 180% 200% or less D Particle gap of over 200%
  • Example 8 completely embedded in the resin layer and having the recess 2c has sufficiently low initial conduction resistance and conduction reliability, and evaluation of particle trapping property and positional deviation is good, but the embedding rate is in this range.
  • the positional deviation is D evaluation.
  • the conductive particles 1 are covered with the insulating resin layer 2 and protrude from the surface of the insulating resin layer 2 in the central portion between the adjacent conductive particles, but the recesses 2b and 2c are formed in the vicinity of the conductive particles 1.
  • Comparative Example 3 which does not, has poor conduction reliability. Therefore, when the surface of the insulating resin layer 2 is raised along the shape of the conductive particles 1, the conductive particles are easily affected by the resin flow during anisotropic conductive connection, and the conductive particles are connected to the terminals of the conductive particles. It can be inferred that the indentation is insufficient.
  • the minimum melt viscosity of the insulating resin layer is 2000 Pa ⁇ s or more and the 60 ° C. melt viscosity is 3000 Pa ⁇ s or more.
  • the minimum melt viscosity is 1000 Pa. S
  • the melt viscosity at 60 ° C. is 1500 Pa ⁇ s
  • Comparative Example 3 the minimum melt viscosity and the viscosity at 60 ° C.
  • the conductive particle dispersion layer was not formed by pushing the conductive particles into the insulating resin layer.
  • the conductive particles are dispersed in the resin composition for forming the conductive resin layer and coated to form the conductive particle dispersed layer, so that the recesses 2b and 2c are not formed.
  • Example 11 minimum melt viscosity 2000 Pa ⁇ s, 60 ° C. melt viscosity 3000 Pa ⁇ s.
  • Example 12 minimum melt viscosity of 10000 Pa ⁇ s, 60 ° C. melt viscosity of 15000 Pa ⁇ s
  • the positional deviation is more than B evaluation. It turns out that there is no problem in practical use.
  • the embedding rate of the conductive particles is between 60 to 105%, but in comparison with this, Example 13 having an embedding rate of less than 60% is evaluated for positional deviation. It turns out that becomes low.
  • Example 3 and Examples 4 and 5 when the anisotropic conductive film is a two-layer type of the conductive particle dispersion layer and the second insulating resin layer, on the surface into which the conductive particles of the insulating resin layer are pressed. It can be seen that evaluation of particle trapping property and positional deviation is practically good both when the second insulating resin layer is laminated and when the second insulating resin layer is laminated on the opposite side.
  • the number of shorts in 100 bumps is set for the connection for evaluation of the initial conduction resistance of all the examples in the same manner as the method for measuring the number of shorts described in the examples of Japanese Patent Application Laid-Open No. 2016-059883. I confirmed that there was no short circuit. Further, when the short-circuit occurrence rates were determined for the anisotropic conductive films of all the examples according to the measurement method of the short-circuit occurrence rate described in the examples of JP-A-2016-059882, all were less than 50 ppm. It was confirmed that there was no problem in practical use.
  • a conductive film was prepared, and a second insulating resin layer was laminated on the side where the conductive particles of the insulating resin layer were pushed, to prepare an anisotropic conductive film shown in Table 4.
  • the arrangement of the conductive particles is the same as in Example 1. Further, the conductive particles were brought into the embedded state shown in Table 4 by appropriately adjusting the indentation conditions of the conductive particles.
  • Evaluation criteria for initial conduction resistance OK 2.0 ⁇ or less NG: Greater than 2.0 ⁇
  • an insulating resin layer is formed in the same manner as in Example 1, and the conductive particles are pressed into the insulating resin layer to form an anisotropic layer composed of a single layer of the conductive particle dispersion layer.
  • a conductive film was prepared, and a second insulating resin layer was laminated on the side where the conductive particles of the insulating resin layer were pressed, to prepare anisotropic conductive films shown in Table 6.
  • the conductive particles were in the embedded state shown in Table 6 by appropriately adjusting the indentation conditions of the conductive particles.
  • Terminal pitch 20 ⁇ m Terminal width / inter-terminal space 8.5 ⁇ m / 11.5 ⁇ m
  • Polyimide film thickness (PI) / copper foil thickness (Cu) 38/8, Sn plating
  • Non-alkali glass substrate Electrode ITO wiring thickness 0.7mm
  • (C) Short-circuit occurrence rate The number of shorts of the connection object for evaluation produced in (i) was measured, and the short-circuit occurrence rate was obtained from the measured number of shorts and the number of gaps of the connection object for evaluation. In all of Experimental Examples 5 to 7, the short-circuit occurrence rate was less than 50 ppm, and it was confirmed that there was no practical problem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)

Abstract

The purpose of the invention is, in a filler-containing film in which filler is dispersed in a resin layer, to limit filler flow due to unnecessary flow of the resin layer during pressure bonding of the filler-containing film and an object. Said filler-containing film 10A has a filler dispersion layer 3 in which filler 1 is dispersed in the resin layer 2. The surface of the resin layer 2 near the filler 1 has depressions 2b, 2c with respect to a tangent plane to the resin layer 2 at the center between adjacent fillers 1. The ratio (La/D) of the layer thickness La of the resin layer 2 to the particle diameter D of the filler 1 is preferably 0.6-10. The ratio (Lb/D) of the deepest distance Lb for filler 1 from the tangent plane at the center between adjacent fillers 1 for the surface of the resin layer 2 in which the depressions 2b, 2c are formed to the filler particle diameter D is preferably 60% to 105%.

Description

フィラー含有フィルムFiller-containing film
 本発明は、フィラー含有フィルムに関する。 The present invention relates to a filler-containing film.
 フィラーが樹脂層に分散しているフィラー含有フィルムは、艶消しフィルム、コンデンサー用フィルム、光学フィルム、ラベル用フィルム、耐電防止用フィルム、異方性導電フィルムなど多種多様の用途で使用されている(特許文献1、特許文献2、特許文献3、特許文献4)。フィラー含有フィルムを、該フィラー含有フィルムの被着体とする物品に圧着するときには、フィラー含有フィルムを形成している樹脂の不用な樹脂流動を抑制してフィラーの偏在を抑制することが、光学的特性、機械的特性、又は電気的特性の点から望ましい。特に、フィラーとして導電粒子を含有させ、フィラー含有フィルムを、ICチップなどの電子部品の実装に使用する異方性導電フィルムとする場合に、電子部品の高実装密度に対応できるように、絶縁性樹脂層に導電粒子を高密度に分散させると、高密度に分散した導電粒子が電子部品の実装時に樹脂流動により不用に移動して端子間に偏在し、ショートの発生要因となる。 Filler-containing films in which filler is dispersed in the resin layer are used in a wide variety of applications such as matte films, condenser films, optical films, label films, anti-static films, anisotropic conductive films ( Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4). When a filler-containing film is pressure-bonded to an article that is an adherend of the filler-containing film, it is optically possible to suppress unnecessary resin flow of the resin forming the filler-containing film and suppress uneven distribution of the filler. Desirable in terms of characteristics, mechanical characteristics, or electrical characteristics. In particular, when conductive particles are included as fillers and the filler-containing film is an anisotropic conductive film used for mounting electronic components such as IC chips, it is insulative so that it can cope with the high mounting density of electronic components. When the conductive particles are dispersed in the resin layer at a high density, the conductive particles dispersed at a high density move unnecessarily due to the resin flow when the electronic component is mounted and are unevenly distributed between the terminals, causing a short circuit.
 これに対し、ショートを低減させると共に、異方性導電フィルムを基板に仮圧着するときの作業性を改善するため、導電粒子を単層で埋め込んだ光硬化性樹脂層と絶縁性接着剤層とを積層した異方性導電フィルムが提案されている(特許文献5)。この異方性導電フィルムの使用方法としては、光硬化性樹脂が未硬化でタック性を有する状態で仮圧着を行い、次に光硬化性樹脂層を光硬化させて導電粒子を固定化し、その後、基板と電子部品とを本圧着する。 On the other hand, in order to reduce shorts and improve workability when temporarily bonding an anisotropic conductive film to a substrate, a photocurable resin layer in which conductive particles are embedded in a single layer, an insulating adhesive layer, An anisotropic conductive film in which is laminated is proposed (Patent Document 5). As a method of using this anisotropic conductive film, temporary pressure bonding is performed in a state where the photocurable resin is uncured and has tackiness, and then the photocurable resin layer is photocured to fix the conductive particles, and then Then, the substrate and the electronic component are finally bonded.
 また、特許文献5と同様の目的を達成するために、第1接続層が、主として絶縁性樹脂からなる第2接続層と第3接続層とに挟持された3層構造の異方性導電フィルムも提案されている(特許文献6,7)。具体的には、特許文献6の異方性導電フィルムは、第1接続層が、絶縁性樹脂層の第2接続層側の平面方向に導電粒子が単層で配列された構造を有し、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている。他方、特許文献7の異方性導電フィルムは、第1接続層と第3接続層の境界が起伏している構造を有し、第1接続層が、絶縁性樹脂層の第3接続層側の平面方向に導電粒子が単層で配列された構造を有し、隣接する導電粒子間の中央領域の絶縁性樹脂層厚が、導電粒子近傍の絶縁性樹脂層厚よりも薄くなっている。 In order to achieve the same object as that of Patent Document 5, an anisotropic conductive film having a three-layer structure in which a first connection layer is sandwiched between a second connection layer and a third connection layer mainly made of an insulating resin. Have also been proposed (Patent Documents 6 and 7). Specifically, the anisotropic conductive film of Patent Document 6 has a structure in which the first connection layer has conductive particles arranged in a single layer in the plane direction on the second connection layer side of the insulating resin layer, The insulating resin layer thickness in the central region between the adjacent conductive particles is thinner than the insulating resin layer thickness in the vicinity of the conductive particles. On the other hand, the anisotropic conductive film of Patent Document 7 has a structure in which the boundary between the first connection layer and the third connection layer is undulated, and the first connection layer is on the third connection layer side of the insulating resin layer. In this plane direction, the conductive particles are arranged in a single layer, and the insulating resin layer thickness in the central region between adjacent conductive particles is thinner than the insulating resin layer thickness in the vicinity of the conductive particles.
特開2006-15680号公報JP 2006-15680 A 特開2015-138904号公報JP2015-138904A 特開2013-103368号公報JP2013-103368A 特開2014-183266号公報JP 2014-183266 A 特開2003-64324号公報JP 2003-64324 A 特開2014-060150号公報JP 2014-060150 A 特開2014-060151号公報Japanese Patent Application Laid-Open No. 2014-060151
 しかしながら、特許文献5に記載の異方性導電フィルムでは、異方性導電接続の仮圧着時に導電粒子が動きやすく、異方性導電接続前の導電粒子の精密な配置を異方性導電接続後に維持できない、もしくは導電粒子間の距離を十分に離間させることができないという問題がある。また、このような異方性導電フィルムを基板と仮圧着した後に光硬化性樹脂層を光硬化させ、導電粒子が埋め込まれている光硬化した樹脂層と電子部品とを貼り合わせると、電子部品のバンプの端部で導電粒子が捕捉されにくいという問題や、導電粒子の押込に過度に大きな力が必要となり、導電粒子を十分に押し込むことができないという問題があった。また、特許文献5では、導電粒子の押し込みの改善のために、光硬化性樹脂層からの導電粒子の露出の観点等からの検討も十分になされていない。 However, in the anisotropic conductive film described in Patent Document 5, the conductive particles easily move during temporary pressure bonding of the anisotropic conductive connection, and the precise arrangement of the conductive particles before the anisotropic conductive connection is made after the anisotropic conductive connection. There is a problem that it cannot be maintained or the distance between the conductive particles cannot be sufficiently separated. In addition, after temporarily bonding such an anisotropic conductive film to the substrate, the photocurable resin layer is photocured, and the photocured resin layer in which the conductive particles are embedded is bonded to the electronic component. There is a problem that the conductive particles are difficult to be captured at the ends of the bumps, and an excessively large force is required to push the conductive particles, and the conductive particles cannot be pushed in sufficiently. Moreover, in patent document 5, examination from the viewpoint of the exposure of the electrically-conductive particle from a photocurable resin layer etc. is not fully made for the improvement of indentation of an electrically-conductive particle.
 そこで、光硬化性樹脂層に代えて、異方性導電接続時の加熱温度で高粘度となる絶縁性樹脂層に導電粒子を分散させ、異方性導電接続時の導電粒子の流動性を抑制すると共に、異方性導電フィルムを電子部品と貼着するときの作業性を向上させることが考えられる。しかしながら、そのような絶縁性樹脂層に導電粒子を仮に精密に配置したとしても、異方性導電接続時に樹脂層が流動すると導電粒子も同時に流動してしまうので、導電粒子の捕捉性の向上やショートの低減を十分に図ることは困難であり、異方性導電接続後の導電粒子に当初の精密な配置を維持させることも、導電粒子同士を離間した状態に保持させることも困難である。 Therefore, instead of the photo-curable resin layer, conductive particles are dispersed in an insulating resin layer that becomes highly viscous at the heating temperature during anisotropic conductive connection, thereby suppressing the fluidity of the conductive particles during anisotropic conductive connection. In addition, it is conceivable to improve workability when the anisotropic conductive film is attached to the electronic component. However, even if the conductive particles are precisely arranged in such an insulating resin layer, if the resin layer flows during anisotropic conductive connection, the conductive particles also flow at the same time. It is difficult to sufficiently reduce the short circuit, and it is difficult to maintain the initial precise arrangement of the conductive particles after anisotropic conductive connection and to keep the conductive particles in a separated state.
 また、特許文献6、7に記載の3層構造の異方性導電フィルムの場合、基本点な異方性導電接続特性については問題が認められないものの、3層構造であるため、製造コストの観点から、製造工数を減数化することが求められている。また、第1接続層の片面における導電粒子の近傍において、第1接続層の全体もしくはその一部が導電粒子の外形に沿って大きく隆起し、第1接続層をなす絶縁性樹脂層そのものが平坦ではなく、その隆起した部分に導電粒子が保持されているため、導電粒子の保持と端子による捕捉性を向上させるための設計上の制約が多くなることが懸念される。 In addition, in the case of the anisotropic conductive film having a three-layer structure described in Patent Documents 6 and 7, although there is no problem with respect to the basic anisotropic conductive connection characteristics, since it has a three-layer structure, the manufacturing cost is low. From the viewpoint, it is required to reduce the number of manufacturing steps. In addition, in the vicinity of the conductive particles on one side of the first connection layer, the whole or part of the first connection layer is greatly raised along the outer shape of the conductive particles, and the insulating resin layer itself forming the first connection layer is flat. However, since the conductive particles are held in the raised portions, there is a concern that there are many design restrictions for improving the holding of the conductive particles and the capturing property by the terminals.
 これに対し、本発明は、導電粒子等のフィラーが樹脂層に分散したフィラー含有フィルムにおいて、3層構造を必須としなくても、また、フィラーを保持している樹脂の当該フィラー近傍において樹脂層の全体もしくはその一部をフィラーの外形より大きく隆起させなくても、フィラー含有フィルムと物品との圧着時に、樹脂層が不用に流動することによるフィラーの流動を抑制すること、特に、フィラー含有フィルムを異方性導電フィルムとして構成する場合には、異方性導電フィルムと電子部品との熱圧着時に導電粒子の不用な流動を抑制し、端子における導電粒子の捕捉性を向上させ、且つショートを低減させることを課題とする。 On the other hand, the present invention provides a filler-containing film in which fillers such as conductive particles are dispersed in a resin layer, and does not require a three-layer structure. Even if the whole or a part of the filler is not raised larger than the outer shape of the filler, it is possible to suppress the flow of the filler due to the unnecessary flow of the resin layer when the filler-containing film and the article are pressure-bonded. Is formed as an anisotropic conductive film, the unnecessary flow of the conductive particles is suppressed at the time of thermocompression bonding between the anisotropic conductive film and the electronic component, the trapping property of the conductive particles at the terminal is improved, and a short circuit is caused. The problem is to reduce.
 本発明者は、導電粒子等のフィラーが樹脂層に分散したフィラー分散層を有するフィラー含有フィルムに関し、樹脂層のフィラー近傍の表面形状と樹脂層の粘度との関係について以下の知見を得た。即ち、特許文献5に記載の異方性導電フィルムでは、導電粒子が埋め込まれた側の絶縁性樹脂層(即ち、光硬化性樹脂層)自体の表面が平坦になっているのに対し、(i)導電粒子等のフィラーが樹脂層から露出している場合に、フィラーの周囲の樹脂層の表面が、隣接するフィラー間の中央部における樹脂層の接平面に対して凹むようにすると、その凹みにより樹脂層の表面の一部が欠けた状態となり、フィラー含有フィルムを物品に圧着してフィラー含有フィルムを物品に接合させるときに、フィラーと物品との接合を妨げる虞のある不用な絶縁性樹脂を低減させることができ、また、(ii)フィラーが樹脂層から露出することなく樹脂層内に埋まっている場合に、フィラーの直上の樹脂層の表面に、該フィラーの樹脂層への埋め込みの痕跡と認められるうねりのような起伏が形成されるようにすると、その起伏の凹み部分で樹脂量が少なくなっていることにより、フィラー含有フィルムを物品に圧着するときにフィラーが物品によって押し込まれやすくなること、(iii)したがって、フィラー含有フィルムを介して対向する2つの物品を圧着すると、対向する物品で挟持されたフィラーとその物品とが良好に接続すること、言い換えると、物品におけるフィラーの捕捉性、または物品で挟持されたフィラーの圧着前後における配置状態の一致性が向上し、さらにフィラー含有フィルムの製品検査や、使用面の確認が容易になることを見出した。加えて、樹脂層におけるこのような凹みは、樹脂層にフィラーを押し込むことによってフィラー分散層を形成する場合に、フィラーを押し込む樹脂層の粘度を調整することにより形成できることを見出した。 The present inventor has obtained the following knowledge about the relationship between the surface shape of the resin layer near the filler and the viscosity of the resin layer, with respect to the filler-containing film having a filler dispersion layer in which fillers such as conductive particles are dispersed in the resin layer. That is, in the anisotropic conductive film described in Patent Document 5, the surface of the insulating resin layer (that is, the photocurable resin layer) on the side where the conductive particles are embedded is flat, i) When fillers such as conductive particles are exposed from the resin layer, if the surface of the resin layer around the filler is recessed with respect to the tangential plane of the resin layer at the center between adjacent fillers, Unnecessary insulation that may interfere with the bonding between the filler and the article when the filler-containing film is pressed onto the article and the filler-containing film is joined to the article due to the dent becoming part of the surface of the resin layer chipped. The resin can be reduced, and (ii) when the filler is embedded in the resin layer without being exposed from the resin layer, the filler is embedded in the resin layer on the surface of the resin layer immediately above the filler. And traces of When undulations such as undulations are formed, the amount of resin is reduced in the undulations of the undulations, which makes it easier for the filler to be pushed in by the article when crimping the filler-containing film to the article. (Iii) Therefore, when two opposing articles are pressure-bonded via the filler-containing film, the filler sandwiched between the opposing articles and the article are well connected, in other words, the filler trapping property in the article, Alternatively, the present inventors have found that the consistency of the arrangement state before and after the pressure-bonding of the filler sandwiched between articles is improved, and that the product inspection of the filler-containing film and the confirmation of the use surface are facilitated. In addition, it has been found that such a dent in the resin layer can be formed by adjusting the viscosity of the resin layer into which the filler is pressed when the filler dispersion layer is formed by pressing the filler into the resin layer.
 本発明は上述の知見に基づくものであり、フィラーが樹脂層に分散しているフィラー分散層を有するフィラー含有フィルムであって、
フィラー近傍の樹脂層の表面が、隣接するフィラー間の中央部における樹脂層の接平面に対して凹みを有するフィラー含有フィルムを提供し、特に、この凹みにおいて、フィラーの周りの樹脂層の表面が前記接平面に対して欠けているか、又はフィラー直上の樹脂層の樹脂量が、該フィラー直上の樹脂層の表面が前記接平面にあるとしたときに比して少なくなっているフィルムを提供する。
The present invention is based on the above-described findings, and is a filler-containing film having a filler dispersion layer in which a filler is dispersed in a resin layer,
The surface of the resin layer in the vicinity of the filler provides a filler-containing film having a recess with respect to the tangent plane of the resin layer at the center between adjacent fillers. In particular, in this recess, the surface of the resin layer around the filler is Provided is a film that is lacking with respect to the tangent plane or has a resin amount in the resin layer immediately above the filler that is less than when the surface of the resin layer immediately above the filler is on the tangential plane. .
 また、本発明は、フィラーが樹脂層に分散しているフィラー分散層を形成する工程を有するフィラー含有フィルムの製造方法であって、
フィラー分散層を形成する工程が、フィラーを樹脂層の表面に保持させる工程と、
樹脂層表面に保持させたフィラーを該樹脂層に押し込む工程を有し、
フィラーを樹脂層の表面に保持させる工程において、フィラーが分散した状態でフィラーを樹脂層の表面に保持させ、
フィラーを樹脂層に押し込む工程において、フィラー近傍の樹脂層の表面が、隣接するフィラー間の中央部における樹脂層の接平面に対して凹みを有するように、フィラーを押し込むときの樹脂層の粘度、押込速度又は温度を調整するフィラー含有フィルムの製造方法を提供し、特に、この凹みとして、フィラーの周りの樹脂層の表面が前記接平面に対して欠けている状態か、又はフィラー直上の樹脂層の樹脂量が、該フィラー直上の樹脂層の表面が前記接平面にあるとしたときに比して少ない状態が形成されるようにするフィラー含有フィルムの製造方法を提供する。
Further, the present invention is a method for producing a filler-containing film having a step of forming a filler dispersion layer in which a filler is dispersed in a resin layer,
The step of forming the filler dispersion layer is a step of holding the filler on the surface of the resin layer;
Having a step of pushing the filler held on the surface of the resin layer into the resin layer;
In the step of holding the filler on the surface of the resin layer, the filler is held on the surface of the resin layer in a state where the filler is dispersed,
In the step of pushing the filler into the resin layer, the viscosity of the resin layer when pushing the filler so that the surface of the resin layer in the vicinity of the filler has a dent with respect to the tangent plane of the resin layer at the center between adjacent fillers, Provided is a method for producing a filler-containing film that adjusts the indentation speed or temperature, and in particular, as the dent, the surface of the resin layer around the filler is missing from the tangential plane, or the resin layer directly above the filler A method for producing a filler-containing film is provided in which a less amount of the resin is formed than when the surface of the resin layer immediately above the filler is on the tangential plane.
 本発明のフィラー含有フィルムは、フィラーが樹脂層に分散しているフィラー分散層を有する。このフィラー分散層では、フィラー近傍の、樹脂層の表面が、隣接するフィラー間の中央部における樹脂層の接平面に対して凹みを有する。即ち、フィラーが樹脂層から露出している場合には、露出しているフィラーの周囲の樹脂層の表面に凹みがあり、その凹み部分で樹脂層が前記接平面に対して欠けた状態になり、樹脂量が低減している。また、フィラーが樹脂層から露出することなく該樹脂層内に埋まっている場合には、フィラーの直上の樹脂層の表面に凹みがあり、前記接平面に対して凹み部分の樹脂量が低減している。 The filler-containing film of the present invention has a filler dispersion layer in which a filler is dispersed in a resin layer. In this filler dispersion layer, the surface of the resin layer in the vicinity of the filler has a dent with respect to the tangential plane of the resin layer at the center between adjacent fillers. That is, when the filler is exposed from the resin layer, there is a dent in the surface of the resin layer around the exposed filler, and the resin layer is not in contact with the tangential plane at the dent. The amount of resin has been reduced. In addition, when the filler is buried in the resin layer without being exposed from the resin layer, the surface of the resin layer immediately above the filler has a dent, and the amount of resin in the dent portion is reduced with respect to the tangential plane. ing.
 このため、樹脂層から露出しているフィラーの周囲の樹脂層に凹みがあると、その凹み部分では樹脂量が低減していることによりフィラー含有フィルムを物品に圧着するときに樹脂流動が少なくなるとともに、フィラーが物品に押し付けられやすくなる。さらに、フィラー含有フィルムを介して2つの物品を圧着するときには、フィラーが挟持されることや、フィラーが扁平に潰れようとすることに対して樹脂が妨げとなりにくい。また、凹みによってフィラーの周囲の樹脂量が低減している分、フィラーを不用に流動させることに繋がる樹脂流動が低減する。よって、物品におけるフィラーの捕捉性が向上し、特に、フィラー含有フィルムを異方性導電フィルムに構成した場合には、端子における導電粒子の捕捉性が向上することにより導通信頼性が向上する。 For this reason, if there is a dent in the resin layer around the filler exposed from the resin layer, the resin flow is reduced when the filler-containing film is pressure-bonded to the article due to the reduced amount of resin in the dent. At the same time, the filler is easily pressed against the article. Furthermore, when two articles are pressure-bonded via the filler-containing film, the resin is unlikely to hinder the filler from being sandwiched or the filler from being flattened. Moreover, since the resin amount around the filler is reduced by the depression, the resin flow that leads to unnecessary flow of the filler is reduced. Therefore, the trapping property of the filler in the article is improved, and in particular, when the filler-containing film is configured as an anisotropic conductive film, the conduction reliability is improved by improving the trapping property of the conductive particles in the terminal.
 また、樹脂層内に埋まっているフィラーの直上の樹脂層に凹みがあると、フィラー含有フィルムを物品に圧着するときに物品からの押圧力がフィラーにかかりやすくなる。また、凹みによりフィラーの直上の樹脂量が低減している分、そのフィラーを不用に流動させることに繋がる樹脂流動が低減する。よって、この場合にも物品におけるフィラーの捕捉性が向上し、特に、フィラー含有フィルムを異方性導電フィルムに構成した場合、即ち、フィラーとして導電粒子を絶縁性の樹脂層に分散させた場合には、端子における導電粒子の捕捉性が向上することにより導通信頼性が向上する。 Also, if the resin layer immediately above the filler embedded in the resin layer has a dent, the pressing force from the article is likely to be applied to the filler when the filler-containing film is pressure-bonded to the article. In addition, the resin flow that leads to unnecessary flow of the filler is reduced by the amount of the resin immediately above the filler being reduced by the depression. Therefore, in this case as well, the trapping property of the filler in the article is improved, especially when the filler-containing film is configured as an anisotropic conductive film, that is, when the conductive particles are dispersed in the insulating resin layer as a filler. The conduction reliability is improved by improving the trapping property of the conductive particles at the terminal.
 このように本発明のフィラー含有フィルムによれば、フィラーの捕捉性が向上し、物品上でフィラーが流動し難いことからフィラーの配置を精密に制御できる。したがって、フィラー含有フィルムを異方性導電フィルムに構成した場合には、端子に対して導電粒子の配置を精密に制御できるので、例えば、端子幅6μm~50μm、端子間スペース6μm~50μmのファインピッチの電子部品の接続に使用することができる。また、導電粒子の大きさが3μm未満(例えば2.5~2.8μm)のときに有効接続端子幅(接続時に対向した一対の端子の幅のうち、平面視にて重なり合っている部分の幅)が3μm以上、最短端子間距離が3μm以上であればショートを起こすこと無く電子部品を接続することができる。 Thus, according to the filler-containing film of the present invention, the filler capturing property is improved, and the filler is difficult to flow on the article, so that the arrangement of the filler can be precisely controlled. Therefore, when the filler-containing film is an anisotropic conductive film, the arrangement of the conductive particles can be precisely controlled with respect to the terminals. For example, a fine pitch with a terminal width of 6 μm to 50 μm and a space between terminals of 6 μm to 50 μm. Can be used to connect electronic components. Further, when the size of the conductive particles is less than 3 μm (for example, 2.5 to 2.8 μm), the effective connection terminal width (the width of the overlapping portion in plan view among the widths of the pair of terminals opposed at the time of connection) ) Is 3 μm or more, and the shortest distance between terminals is 3 μm or more, it is possible to connect electronic components without causing a short circuit.
 また、導電粒子の配置を精密に制御できるので、ノーマルピッチの電子部品を接続する場合には、導電粒子の配置領域や、導電粒子の個数密度を変えた領域のレイアウトを種々の電子部品の端子のレイアウトに対応させることが可能となる。 In addition, since the arrangement of the conductive particles can be precisely controlled, when connecting electronic components with normal pitch, the layout of the conductive particle arrangement area and the area where the number density of the conductive particles is changed is the terminal of various electronic parts. It is possible to correspond to the layout of.
 さらに、本発明のフィラー含有フィルムにおいて、樹脂層内に埋まっているフィラーの直上の樹脂層に凹みがあると、フィラー含有フィルムの外観観察によりフィラーの位置が明確に分かるので、外観による製品検査が容易になり、フィルム面の表裏の識別も容易になる。このため、フィラー含有フィルムを物品に圧着するときに、フィラー含有フィルムのどちらのフィルム面を物品に貼り合わせるかという使用面の確認が容易になる。フィラー含有フィルムを製造する場合にも、同様の利点が得られる。 Furthermore, in the filler-containing film of the present invention, if there is a dent in the resin layer immediately above the filler embedded in the resin layer, the position of the filler can be clearly seen by observing the appearance of the filler-containing film. It becomes easy to identify the front and back of the film surface. For this reason, when the filler-containing film is pressure-bonded to the article, it is easy to confirm the use surface of which side of the filler-containing film is bonded to the article. Similar advantages are obtained when producing filler-containing films.
 加えて、本発明のフィラー含有フィルムによれば、フィラーの配置の固定のために樹脂層を光硬化させておくことが必ずしも必要ではないのでフィラー含有フィルムを物品に圧着するときに樹脂層がタック性を持ちうる。このため、フィラー含有フィルムと物品とを仮圧着した後に本圧着する場合には、仮圧着するときの作業性が向上し、仮圧着後に物品を本圧着するときにも作業性が向上する。 In addition, according to the filler-containing film of the present invention, it is not always necessary to photocure the resin layer in order to fix the filler arrangement. Can have sex. For this reason, when the final pressure bonding is performed after the filler-containing film and the article are temporarily pressure-bonded, workability at the time of temporary pressure-bonding is improved, and workability is improved also when the article is finally pressure-bonded after the temporary pressure bonding.
 一方、本発明の製造方法によれば、樹脂層に上述の凹みが形成されるように、樹脂層にフィラーを埋め込むときの該樹脂層の粘度、押込速度又は温度を調整する。そのため、上述の効果を奏する本発明のフィラー含有フィルムを容易に製造することができる。 On the other hand, according to the manufacturing method of the present invention, the viscosity, indentation speed, or temperature of the resin layer when the filler is embedded in the resin layer is adjusted so that the above-described dent is formed in the resin layer. Therefore, the filler-containing film of the present invention that exhibits the above-described effects can be easily manufactured.
図1Aは、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルム10Aの導電粒子の配置を示す平面図である。FIG. 1A is a plan view showing the arrangement of conductive particles of an anisotropic conductive film 10A of an example which is an embodiment of the filler-containing film of the present invention. 図1Bは、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルム10Aの断面図である。FIG. 1B is a cross-sectional view of an anisotropic conductive film 10A of an example which is an embodiment of the filler-containing film of the present invention. 図2は、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルム10Bの断面図である。FIG. 2 is a cross-sectional view of an anisotropic conductive film 10B of an example which is an embodiment of the filler-containing film of the present invention. 図3Aは、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルム10Cの断面図である。FIG. 3A is a cross-sectional view of an anisotropic conductive film 10C of an example which is an embodiment of the filler-containing film of the present invention. 図3Bは、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルム10C’の断面図である。FIG. 3B is a cross-sectional view of the anisotropic conductive film 10 </ b> C ′ of an example which is an aspect of the filler-containing film of the present invention. 図4は、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルム10Dの断面図である。FIG. 4 is a cross-sectional view of an anisotropic conductive film 10D of an example which is an embodiment of the filler-containing film of the present invention. 図5は、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルム10Eの断面図である。FIG. 5 is a cross-sectional view of an anisotropic conductive film 10E of an embodiment which is an aspect of the filler-containing film of the present invention. 図6は、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルム10Fの断面図である。FIG. 6 is a cross-sectional view of an anisotropic conductive film 10F of an example which is an embodiment of the filler-containing film of the present invention. 図7は、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルム10Gの断面図である。FIG. 7 is a cross-sectional view of an anisotropic conductive film 10G of an example which is an embodiment of the filler-containing film of the present invention. 図8は、本発明のフィラー含有フィルムの比較例になる異方性導電フィルム10Xの断面図である。FIG. 8 is a cross-sectional view of an anisotropic conductive film 10X serving as a comparative example of the filler-containing film of the present invention. 図9は、本発明のフィラー含有フィルムの比較例になる異方性導電フィルム10Yの断面図である。FIG. 9 is a cross-sectional view of an anisotropic conductive film 10Y serving as a comparative example of the filler-containing film of the present invention. 図10は、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルム10Hの断面図である。FIG. 10 is a cross-sectional view of an anisotropic conductive film 10H of an example which is an embodiment of the filler-containing film of the present invention. 図11は、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルム10Iの断面図である。FIG. 11 is a cross-sectional view of an anisotropic conductive film 10I of an example which is an embodiment of the filler-containing film of the present invention. 図12Aは、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルムの断面写真である。FIG. 12A is a cross-sectional photograph of an anisotropic conductive film of an example which is an embodiment of the filler-containing film of the present invention. 図12Bは、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルムの断面写真である。FIG. 12B is a cross-sectional photograph of an anisotropic conductive film of an example which is an embodiment of the filler-containing film of the present invention. 図12Cは、本発明のフィラー含有フィルムの比較例になる異方性導電フィルムの断面写真である。FIG. 12C is a cross-sectional photograph of an anisotropic conductive film serving as a comparative example of the filler-containing film of the present invention. 図13Aは、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルムの上面写真である。FIG. 13A is a top view photograph of an anisotropic conductive film of an example which is an embodiment of the filler-containing film of the present invention. 図13Bは、本発明のフィラー含有フィルムの一態様である実施例の異方性導電フィルムの上面写真である。FIG. 13B is a top view photograph of an anisotropic conductive film of an example which is an embodiment of the filler-containing film of the present invention.
 以下、本発明のフィラー含有フィルムの一例について図面を参照しつつ詳細に説明する。なお、各図中、同一符号は、同一又は同等の構成要素を表している。 Hereinafter, an example of the filler-containing film of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol represents the same or equivalent component.
<フィラー含有フィルムの全体構成>
 図1Aは、本発明の一実施例のフィラー含有フィルム10Aのフィラーの配置を説明する平面図であり、図1BはそのX-X断面図である。このフィラー含有フィルム10Aは、異方性導電フィルムとして使用されるもので、フィラー1として導電粒子を絶縁性の樹脂層2に分散させたものである。
<Overall configuration of filler-containing film>
FIG. 1A is a plan view for explaining the arrangement of fillers in a filler-containing film 10A according to one embodiment of the present invention, and FIG. 1B is a sectional view taken along line XX. This filler-containing film 10 </ b> A is used as an anisotropic conductive film, in which conductive particles as a filler 1 are dispersed in an insulating resin layer 2.
 本発明において異方性導電フィルム等のフィラー含有フィルム10Aは、例えば長さ5m以上の長尺のフィルム形態とすることができ、巻き芯に巻いた巻装体とすることもできる。 In the present invention, the filler-containing film 10A such as an anisotropic conductive film can be in the form of a long film having a length of, for example, 5 m or more, and can be a wound body wound around a winding core.
 フィラー含有フィルム10Aはフィラー分散層3から構成されており、フィラー分散層3では、樹脂層2の片面にフィラー1が露出した状態で規則的に分散している。フィルムの平面視にてフィラー1は互いに接触しておらず、フィルム厚方向にもフィラー1が互いに重なることなく規則的に分散し、フィラー1のフィルム厚方向の位置が揃った単層のフィラー層を構成している。 The filler-containing film 10 </ b> A is composed of a filler dispersion layer 3, and the filler dispersion layer 3 is regularly dispersed with the filler 1 exposed on one side of the resin layer 2. The fillers 1 are not in contact with each other in the plan view of the film, the fillers 1 are regularly dispersed in the film thickness direction without overlapping each other, and the single layer filler layer in which the positions of the fillers 1 in the film thickness direction are aligned. Is configured.
 個々のフィラー1の周囲の樹脂層2の表面2aには、隣接するフィラー間の中央部における樹脂層2の接平面2pに対して凹み2bが形成されている。なお後述するように、本発明のフィラー含有フィルムでは、樹脂層2に埋め込まれたフィラー1の直上の樹脂層の表面に凹み2cが形成されていてもよい(図4、図6)。 A recess 2b is formed on the surface 2a of the resin layer 2 around each filler 1 with respect to the tangential plane 2p of the resin layer 2 at the center between adjacent fillers. As will be described later, in the filler-containing film of the present invention, a recess 2c may be formed on the surface of the resin layer immediately above the filler 1 embedded in the resin layer 2 (FIGS. 4 and 6).
<フィラーの分散状態>
 本発明におけるフィラーの分散状態には、フィラー1がランダムに分散している状態も規則的な配置に分散している状態も含まれる。どちらの場合においても、フィルム厚方向の位置が揃っていることが捕捉安定性の点から好ましい。ここで、フィルム厚方向のフィラー1の位置が揃っているとは、フィルム厚方向の単一の深さにフィラー1の位置が揃っていることに限定されず、樹脂層2の表裏の界面又はその近傍のそれぞれにフィラー1が存在している態様を含む。
<Dispersed state of filler>
The filler dispersion state in the present invention includes a state where the fillers 1 are randomly dispersed and a state where the fillers 1 are regularly arranged. In either case, it is preferable from the viewpoint of capture stability that the positions in the film thickness direction are aligned. Here, the position of the filler 1 in the film thickness direction being aligned is not limited to the position of the filler 1 being aligned at a single depth in the film thickness direction. It includes a mode in which filler 1 is present in each of the vicinity.
 また、フィラー含有フィルムの光学的、機械的又は電気的な特性を均一にするため、特にフィラー含有フィルムを異方性導電フィルムとする場合にはショート抑制の点から、フィラー1はフィルムの平面視にて規則的に配列していることが好ましい。配列の態様は、フィラー含有フィルムを圧着する物品に応じて定めることができ、例えば、異方性導電フィルムでは導電粒子の配列態様を端子およびバンプのレイアウトによって定めることができるため、導電粒子の配列の態様について特に限定はない。例えば、フィルムの平面視にて図1Aに示したように正方格子配列とすることができる。この他、フィラーの規則的な配列の態様としては、長方格子、斜方格子、6方格子、3角格子等の格子配列をあげることができる。異なる形状の格子が、複数組み合わさったものでもよい。フィラーの配列の態様としては、フィラーが所定間隔で直線状に並んだ粒子列を所定の間隔で並列させてもよい。また、フィラーの抜けがフィルムの所定の方向に規則的に存在する態様であってもよい。 Further, in order to make the optical, mechanical or electrical characteristics of the filler-containing film uniform, especially when the filler-containing film is an anisotropic conductive film, the filler 1 is a plan view of the film from the viewpoint of suppressing short circuit. It is preferable to arrange regularly. The arrangement mode can be determined according to the article to which the filler-containing film is pressure-bonded. For example, in the anisotropic conductive film, the arrangement mode of the conductive particles can be determined by the layout of the terminals and bumps. There is no limitation in particular about this aspect. For example, it can be a square lattice arrangement as shown in FIG. 1A in a plan view of the film. In addition, examples of the regular arrangement of the filler include a lattice arrangement such as a rectangular lattice, an oblique lattice, a hexagonal lattice, and a triangular lattice. A plurality of grids having different shapes may be combined. As an arrangement mode of the fillers, particle rows in which fillers are linearly arranged at predetermined intervals may be arranged in parallel at predetermined intervals. Moreover, the aspect which the missing | missing of a filler exists regularly in the predetermined direction of a film may be sufficient.
 フィラー1を互いに非接触とし、格子状等の規則的な配列にすることにより、フィラー含有フィルムを物品に圧着するときに各フィラー1に圧力を均等に加え、接続状態のばらつきを低減させることができる。また、フィラーの抜けをフィルムの長手方向に繰り返し存在させること、あるいはフィラーの抜けている箇所をフィルムの長手方向に漸次増加または減少させることにより、ロット管理が可能となり、フィラー含有フィルム及びそれを用いた接続構造体にトレーサビリティ(追跡を可能とする性質)を付与することも可能となる。これは、フィラー含有フィルムやそれを用いた接続構造体の偽造防止、真贋判定、不正利用防止等にも有効となる。 By making the fillers 1 non-contact with each other and having a regular arrangement such as a lattice shape, when the filler-containing film is pressure-bonded to the article, pressure is evenly applied to the fillers 1 to reduce variations in the connection state. it can. In addition, it is possible to manage lots by allowing fillers to be repeatedly removed in the longitudinal direction of the film, or by gradually increasing or decreasing the locations where fillers are missing in the longitudinal direction of the film. It is also possible to impart traceability (a property that enables tracking) to the connected connection structure. This is also effective for prevention of counterfeiting, authenticity determination, prevention of unauthorized use, etc. of the filler-containing film and the connection structure using the same.
 したがって、異方性導電フィルムにおいては、導電粒子が規則的に配列していることにより、異方性導電フィルムで電子部品を接続した場合に導通抵抗のばらつきを低減させることができる。また、導電粒子がフィルムの平面視にて規則的に配列し、かつフィルム厚方向の位置が揃っていることが捕捉安定性とショート抑制の両立のためにより好ましい。 Therefore, in the anisotropic conductive film, since the conductive particles are regularly arranged, variation in conduction resistance can be reduced when electronic parts are connected by the anisotropic conductive film. In addition, it is more preferable that the conductive particles are regularly arranged in a plan view of the film and that the positions in the film thickness direction are aligned in order to achieve both capture stability and short circuit suppression.
 一方、接続する電子部品の端子間スペースが広くショートが発生しにくい場合には、導電粒子を規則的に配列させることなくランダムに分散させていてもよい。 On the other hand, when the space between the terminals of the electronic parts to be connected is wide and short-circuiting is difficult to occur, the conductive particles may be randomly dispersed without regularly arranging them.
 フィラー含有フィルムにおいてフィラーを規則的に配列させる場合に、その配列の格子軸又は配列軸は、フィルムの長手方向や長手方向と直行する方向に対して平行でもよく、フィルムの長手方向と交叉してもよく、接続する物品に応じて定めることができ、フィラー含有フィルムを異方性導電フィルムとする場合には端子幅、端子ピッチなどに応じて定めることができる。例えば、ファインピッチ用の異方性導電フィルムとする場合、図1Aに示したように導電粒子1の格子軸Aを異方性導電フィルム10Aの長手方向に対して斜行させ、異方性導電フィルム10Aで接続する端子20の長手方向(フィルムの短手方向)と格子軸Aとのなす角度θを好ましくは6°~84°、より好ましくは11°~74°にする。 When the fillers are regularly arranged in the filler-containing film, the lattice axis or the arrangement axis of the arrangement may be parallel to the longitudinal direction of the film or the direction perpendicular to the longitudinal direction, and intersect with the longitudinal direction of the film. It can be determined according to the article to be connected, and when the filler-containing film is an anisotropic conductive film, it can be determined according to the terminal width, terminal pitch, and the like. For example, when an anisotropic conductive film for fine pitch is used, the lattice axis A of the conductive particles 1 is skewed with respect to the longitudinal direction of the anisotropic conductive film 10A as shown in FIG. The angle θ formed by the longitudinal direction of the terminals 20 connected by the film 10A (the short direction of the film) and the lattice axis A is preferably 6 ° to 84 °, more preferably 11 ° to 74 °.
 フィラー含有フィルムにおいてフィラー間の距離も接続する物品に応じて定めることができ、フィラー含有フィルムを異方性導電フィルムとする場合には、導電粒子1の粒子間距離を、異方性導電フィルムで接続する端子の大きさや端子ピッチに応じて適宜定めることができる。例えば、異方性導電フィルムをファインピッチのCOG(Chip On Glass)に対応させる場合、ショートの発生を防止する点から最近接粒子間距離を導電粒子径Dの0.5倍以上にすることが好ましく、0.7倍より大きくすることがより好ましい。一方、最近接粒子間距離の上限はフィラー含有フィルムの目的によって決めることができ、例えば、フィラー含有フィルムの製造上の難易度の点からは、最近接粒子間距離を導電粒子径Dの好ましくは100倍以下、より好ましくは50倍以下とすることができる。また、異方性導電接続時の端子における導電粒子1の捕捉性の点からは、最近接粒子間距離を導電粒子径Dの4倍以下とすることが好ましく、3倍以下とすることがより好ましい。 In the filler-containing film, the distance between the fillers can also be determined according to the article to be connected. When the filler-containing film is an anisotropic conductive film, the interparticle distance of the conductive particles 1 is determined by the anisotropic conductive film. It can be appropriately determined according to the size of the terminal to be connected and the terminal pitch. For example, when an anisotropic conductive film is made compatible with fine pitch COG (Chip-On-Glass), the distance between the nearest particles should be 0.5 times or more the conductive particle diameter D in order to prevent occurrence of short circuit. Preferably, it is more preferable to make it larger than 0.7 times. On the other hand, the upper limit of the distance between the nearest particles can be determined according to the purpose of the filler-containing film. For example, from the viewpoint of difficulty in manufacturing the filler-containing film, the distance between the nearest particles is preferably the conductive particle diameter D. It can be 100 times or less, more preferably 50 times or less. Further, from the viewpoint of the capturing property of the conductive particles 1 at the terminal at the time of anisotropic conductive connection, the distance between the nearest particles is preferably 4 times or less of the conductive particle diameter D, more preferably 3 times or less. preferable.
 また、本発明のフィラー含有フィルムでは、次式で算出されるフィラーの面積占有率を、好ましくは35%以下、より好ましくは0.3~30%とする。
面積占有率(%)=[平面視におけるフィラーの個数密度]×[フィラー1個の平面視面積の平均]×100
In the filler-containing film of the present invention, the filler area occupancy calculated by the following formula is preferably 35% or less, more preferably 0.3 to 30%.
Area occupancy (%) = [number density of fillers in plan view] × [average of area in plan view of one filler] × 100
 ここで、フィラーの個数密度の測定領域としては、1辺が100μm以上の矩形領域を任意に複数箇所(好ましくは5箇所以上、より好ましくは10箇所以上)設定し、測定領域の合計面積を2mm2以上とすることが好ましい。個々の領域の大きさや数は、個数密度の状態によって適宜調整すればよい。例えば、ファインピッチ用途の異方性導電フィルムの比較的個数密度が大きい場合の一例として、異方性導電フィルムから任意に選択した面積100μm×100μmの領域の200箇所(2mm2)について、金属顕微鏡などによる観測画像を用いて個数密度を測定し、それを平均することにより上述の式中の「平面視における導電粒子の個数密度」を得ることができる。面積100μm×100μmの領域は、バンプ間スペース50μm以下の接続対象物において、1個以上のバンプが存在する領域になる。 Here, as the measurement area of the number density of the filler, a plurality of rectangular areas each having a side of 100 μm or more are arbitrarily set (preferably 5 or more, more preferably 10 or more), and the total area of the measurement area is 2 mm. Two or more are preferable. What is necessary is just to adjust suitably the magnitude | size and number of each area | region according to the state of number density. For example, as an example of the case where the number density of anisotropic conductive films for fine pitch is relatively large, a metal microscope is used for 200 places (2 mm 2 ) in an area of 100 μm × 100 μm arbitrarily selected from anisotropic conductive films. The number density is measured using an observation image obtained by, for example, and averaged to obtain the “number density of conductive particles in plan view” in the above formula. A region having an area of 100 μm × 100 μm is a region where one or more bumps exist in a connection object having a space between bumps of 50 μm or less.
 なお、面積占有率が上述の範囲内であれば個数密度の値には特に制限はないが、フィラー含有フィルムを異方性導電フィルムとする場合には、実用上、個数密度は30個/mm2以上であればよく、150~70000個/mm2が好ましく、特にファインピッチ用途の場合には好ましくは6000~42000個/mm2、より好ましくは10000~40000個/mm2、更により好ましくは15000~35000個/mm2である。 The number density value is not particularly limited as long as the area occupancy is within the above range, but when the filler-containing film is an anisotropic conductive film, the number density is practically 30 pieces / mm. 2 or more, preferably 150 to 70000 pieces / mm 2 , particularly in the case of fine pitch use, preferably 6000 to 42000 pieces / mm 2 , more preferably 10,000 to 40000 pieces / mm 2 , and still more preferably 15000-35000 pieces / mm 2 .
 フィラーの個数密度は、上述のように金属顕微鏡を用いて観察して求める他、画像解析ソフト(例えば、WinROOF、三谷商事株式会社等)により観察画像を計測して求めてもよい。観察方法や計測手法は、上記に限定されるものではない。 The number density of the filler may be obtained by observing with a metal microscope as described above, or may be obtained by measuring an observation image with image analysis software (for example, WinROOF, Mitani Corporation, etc.). The observation method and the measurement method are not limited to the above.
 また、フィラー1個の平面視面積の平均は、フィルム面の金属顕微鏡やSEMなどの電子顕微鏡などによる観測画像の計測により求められる。画像解析ソフトを用いてもよい。観察方法や計測手法は、上記に限定されるものではない。 In addition, the average of the planar view area of one filler can be obtained by measuring an observation image using a metal microscope on the film surface or an electron microscope such as SEM. Image analysis software may be used. The observation method and the measurement method are not limited to the above.
 面積占有率は、フィラー含有フィルムを物品に圧着するために押圧治具に必要とされる推力の指標となり、好ましくは35%以下、より好ましくは0.3~30%である。これは以下の理由による。即ち、従来、異方性導電フィルムではファインピッチに対応させるために、ショートを発生させない限りで導電粒子の粒子間距離を狭め、個数密度が高められてきた。しかしながら、そのように個数密度を高めると、電子部品の端子個数が増え、電子部品1個当りの接続総面積が大きくなるのに伴い、異方性導電フィルムを電子部品に圧着するために押圧治具に必要とされる推力が大きくなり、従前の押圧治具では押圧が不十分になるという問題が起こることが懸念される。このような押圧治具に必要とされる推力の問題は、異方性導電フィルムに限られず、フィラー含有フィルム全般に共通する。これに対し、面積占有率を上述のように好ましくは35%以下、より好ましくは30%以下とすることにより、フィラー含有フィルムを物品に圧着するために押圧治具に必要とされる推力を低く抑えることが可能となる。 The area occupancy ratio is an index of thrust required for the pressing jig to press the filler-containing film to the article, and is preferably 35% or less, more preferably 0.3 to 30%. This is due to the following reason. That is, conventionally, in order to correspond to a fine pitch in anisotropic conductive films, the distance between conductive particles has been reduced and the number density has been increased as long as no short circuit occurs. However, when the number density is increased in this way, the number of terminals of the electronic component is increased, and the total area of connection per electronic component is increased, so that the anisotropic conductive film is pressed against the electronic component to be pressed. There is a concern that the thrust required for the tool becomes large, and there is a problem that the pressing is insufficient with the conventional pressing jig. The problem of thrust required for such a pressing jig is not limited to anisotropic conductive films, but is common to all filler-containing films. On the other hand, by setting the area occupation ratio to 35% or less, more preferably 30% or less as described above, the thrust required for the pressing jig to press the filler-containing film to the article is reduced. It becomes possible to suppress.
<フィラー>
 本発明においてフィラー1は、フィラー含有フィルムの用途に応じて、公知の無機系フィラー(金属、金属酸化物、金属窒化物など)、有機系フィラー(樹脂粒子、ゴム粒子など)、有機系材料と無機系材料が混在したフィラー(例えば、コアが樹脂材料で形成され、表面が金属メッキされている粒子(金属被覆樹脂粒子)、導電粒子の表面に絶縁性微粒子を付着させたもの、導電粒子の表面を絶縁処理したもの等)から、硬さ、光学的性能などの用途に求められる性能に応じて適宜選択される。例えば、光学フィルムや艶消しフィルムでは、シリカフィラー、酸化チタンフィラー、スチレンフィラー、アクリルフィラー、メラミンフィラーや種々のチタン酸塩等を使用することができる。コンデンサー用フィルムでは、酸化チタン、チタン酸マグネシウム、チタン酸亜鉛、チタン酸ビスマス、酸化ランタン、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸鉛及びこれらの混合物等を使用することができる。接着フィルムではポリマー系のゴム粒子、シリコーンゴム粒子等を含有させることができる。異方性導電フィルムでは導電粒子を含有させる。導電粒子としては、ニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、ハンダなどの合金粒子、金属被覆樹脂粒子、表面に絶縁性微粒子が付着している金属被覆樹脂粒子などが挙げられる。2種以上を併用することもできる。中でも、金属被覆樹脂粒子が、接続された後に樹脂粒子が反発することで端子との接触が維持され易くなり、導通性能が安定する点から好ましい。また、導電粒子の表面には公知の技術によって、導通特性に支障を来さない絶縁処理が施されていてもよい。上述の用途別に挙げたフィラーは、当該用途に限定されるものではなく、必要に応じて他の用途のフィラー含有フィルムが含有してもよい。また、各用途のフィラー含有フィルムでは、必要に応じて2種以上のフィラーを併用することができる。
<Filler>
In the present invention, the filler 1 is a known inorganic filler (metal, metal oxide, metal nitride, etc.), organic filler (resin particles, rubber particles, etc.), organic material, etc., depending on the use of the filler-containing film. Fillers mixed with inorganic materials (for example, particles whose core is formed of a resin material and metal-plated on the surface (metal-coated resin particles), those in which insulating fine particles are attached to the surface of conductive particles, conductive particles The surface is suitably selected according to the performance required for applications such as hardness and optical performance. For example, in an optical film or a matte film, a silica filler, a titanium oxide filler, a styrene filler, an acrylic filler, a melamine filler, various titanates, and the like can be used. For capacitor films, titanium oxide, magnesium titanate, zinc titanate, bismuth titanate, lanthanum oxide, calcium titanate, strontium titanate, barium titanate, barium zirconate titanate, lead zirconate titanate and mixtures thereof Etc. can be used. The adhesive film can contain polymer rubber particles, silicone rubber particles, and the like. The anisotropic conductive film contains conductive particles. Examples of the conductive particles include metal particles such as nickel, cobalt, silver, copper, gold, and palladium, alloy particles such as solder, metal-coated resin particles, and metal-coated resin particles having insulating fine particles attached to the surface. . Two or more kinds can be used in combination. Among these, the metal-coated resin particles are preferable in that the resin particles repel after being connected, so that the contact with the terminal is easily maintained and the conduction performance is stabilized. In addition, the surface of the conductive particles may be subjected to an insulation treatment that does not hinder the conduction characteristics by a known technique. The filler mentioned according to the above-mentioned use is not limited to the said use, and may contain the filler containing film of another use as needed. Moreover, in the filler-containing film for each application, two or more kinds of fillers can be used in combination as required.
 フィラー1の粒子径Dは、フィラー含有フィルムの用途に応じて適宜定められる。例えば、異方性導電フィルムでは、配線高さのばらつきに対応できるようにし、また、導通抵抗の上昇を抑制し、且つショートの発生を抑制するために、好ましくは1μm以上30μm以下、より好ましくは3μm以上9μm以下である。 The particle diameter D of the filler 1 is appropriately determined according to the use of the filler-containing film. For example, an anisotropic conductive film is preferably 1 μm or more and 30 μm or less, more preferably, in order to be able to cope with variations in wiring height, to suppress increase in conduction resistance, and to suppress occurrence of short circuit. 3 μm or more and 9 μm or less.
 樹脂層2に分散させる前のフィラーの粒子径Dは、一般的な粒度分布測定装置により測定することができ、また、平均粒子径も粒度分布測定装置を用いて求めることができる。粒度分布測定装置の一例としてFPIA-3000(マルバーン社)を挙げることができる。一方、フィラー含有フィルムにおけるフィラーの粒子径D(即ち、フィラーを樹脂層に分散させた後の粒子径D)は、SEMなどの電子顕微鏡観察から求めることができる。この場合、粒子径Dを測定するサンプル数を200以上とすることが望ましい。また、フィラーの形状が球形でない場合、平面画像又は断面画像に基づき最大長または球形に模した形状の直径をフィラーの粒子径Dとすることができる。 The particle diameter D of the filler before being dispersed in the resin layer 2 can be measured with a general particle size distribution measuring apparatus, and the average particle diameter can also be obtained with a particle size distribution measuring apparatus. An example of the particle size distribution measuring apparatus is FPIA-3000 (Malvern). On the other hand, the particle diameter D of the filler in the filler-containing film (that is, the particle diameter D after the filler is dispersed in the resin layer) can be obtained from observation with an electron microscope such as SEM. In this case, it is desirable that the number of samples for measuring the particle diameter D is 200 or more. Moreover, when the shape of a filler is not spherical, the diameter of the shape imitating the maximum length or a sphere based on a planar image or a cross-sectional image can be used as the particle diameter D of the filler.
 なお、例えば、異方性導電フィルムの導電粒子の絶縁性を向上させるために、フィラーとしてその表面に絶縁性微粒子が付着しているものを使用する場合、本発明におけるフィラーの粒子径は、表面の絶縁性微粒子を含めない粒子径を意味する。 In addition, for example, in order to improve the insulating properties of the conductive particles of the anisotropic conductive film, when using a filler having insulating fine particles attached to its surface, the particle size of the filler in the present invention is the surface The particle diameter does not include the insulating fine particles.
<樹脂層>
(樹脂の粘度)
 本発明において樹脂層2の最低溶融粘度は、特に制限はなく、フィラー含有フィルムの用途や、フィラー含有フィルムの製造方法等に応じて適宜定めることができる。例えば、上述の凹み2b、2cを形成できる限り、フィラー含有フィルムの製造方法によっては1000Pa・s程度とすることもできる。一方、フィラー含有フィルムの製造方法として、フィラーを樹脂層の表面に所定の配置で保持させ、そのフィラーを樹脂層に押し込む方法を行うとき、樹脂層がフィルム成形を可能とする点から樹脂の最低溶融粘度を1100Pa・s以上とすることが好ましい。
<Resin layer>
(Viscosity of resin)
In the present invention, the minimum melt viscosity of the resin layer 2 is not particularly limited, and can be appropriately determined according to the use of the filler-containing film, the method for producing the filler-containing film, and the like. For example, as long as the above-mentioned dents 2b and 2c can be formed, depending on the manufacturing method of a filler containing film, it can also be set as about 1000 Pa.s. On the other hand, as a method for producing a filler-containing film, when the filler is held on the surface of the resin layer in a predetermined arrangement and the filler is pushed into the resin layer, the resin layer is the minimum from the point that the film can be formed. The melt viscosity is preferably 1100 Pa · s or more.
 また、後述のフィラー含有フィルムの製造方法で説明するように、図1B等に示すように樹脂層2に押し込んだフィラー1の露出部分の周りに凹み2bを形成したり、図4及び図6に示すように樹脂層2に押し込んだフィラー1の直上に凹み2cを形成したりする点から、好ましくは1500Pa・s以上、より好ましくは2000Pa・s以上、さらに好ましくは3000~15000Pa・s、さらにより好ましくは3000~10000Pa・sである。この最低溶融粘度は、一例として回転式レオメータ(TA instrument社製)を用い、測定圧力5gで一定に保持し、直径8mmの測定プレートを使用し求めることができ、より具体的には、温度範囲30~200℃において、昇温速度10℃/分、測定周波数10Hz、前記測定プレートに対する荷重変動5gとすることにより求めることができる。 Further, as described in the method for producing a filler-containing film described later, a dent 2b is formed around the exposed portion of the filler 1 pushed into the resin layer 2 as shown in FIG. From the point of forming the recess 2c just above the filler 1 pushed into the resin layer 2 as shown, preferably 1500 Pa · s or more, more preferably 2000 Pa · s or more, still more preferably 3000 to 15000 Pa · s, even more. The pressure is preferably 3000 to 10,000 Pa · s. This minimum melt viscosity can be obtained by using a rotary rheometer (manufactured by TA Instruments Inc.) as an example, keeping it constant at a measurement pressure of 5 g, and using a measurement plate having a diameter of 8 mm, and more specifically in the temperature range. At 30 to 200 ° C., it can be obtained by setting the temperature rising rate 10 ° C./min, the measurement frequency 10 Hz, and the load fluctuation 5 g with respect to the measurement plate.
 樹脂層2の最低溶融粘度を1500Pa・s以上の高粘度とすることにより、フィラー含有フィルムの物品への圧着にフィラーの不用な移動を抑制でき、特に、フィラー含有フィルムを異方性導電フィルムとする場合には、異方性導電接続時に端子間で挟持されるべき導電粒子が樹脂流動により流されてしまうことを防止できる。 By setting the minimum melt viscosity of the resin layer 2 to a high viscosity of 1500 Pa · s or more, it is possible to suppress unnecessary movement of the filler for pressure-bonding the filler-containing film to the article. In this case, it is possible to prevent the conductive particles to be sandwiched between the terminals during anisotropic conductive connection from flowing due to resin flow.
 また、樹脂層2にフィラー1を押し込むことによりフィラー含有フィルム10Aのフィラー分散層3を形成する場合において、フィラー1を押し込むときの樹脂層2は、フィラー1が樹脂層2から露出するようにフィラー1を樹脂層2に押し込んだときに、樹脂層2が塑性変形してフィラー1の周囲の樹脂層2に凹み2b(図1B)が形成されるような高粘度な粘性体とするか、あるいは、フィラー1が樹脂層2から露出することなく樹脂層2に埋まるようにフィラー1を押し込んだときに、フィラー1の直上の樹脂層2の表面に凹み2c(図6)が形成されるような高粘度な粘性体とする。そのため、樹脂層2の60℃における粘度は、下限は好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは4500Pa・s以上であり、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、さらに好ましくは10000Pa・s以下である。この測定は最低溶融粘度と同様の測定方法で行い、温度が60℃の値を抽出して求めることができる。 Further, when the filler dispersion layer 3 of the filler-containing film 10 </ b> A is formed by pressing the filler 1 into the resin layer 2, the resin layer 2 when the filler 1 is pressed is such that the filler 1 is exposed from the resin layer 2. When the resin layer 2 is pressed into the resin layer 2, the resin layer 2 is plastically deformed to form a highly viscous viscous material that forms a recess 2 b (FIG. 1B) in the resin layer 2 around the filler 1, or When the filler 1 is pushed into the resin layer 2 without being exposed from the resin layer 2, a dent 2 c (FIG. 6) is formed on the surface of the resin layer 2 immediately above the filler 1. Use a highly viscous material. Therefore, the lower limit of the viscosity of the resin layer 2 at 60 ° C. is preferably 3000 Pa · s or more, more preferably 4000 Pa · s or more, further preferably 4500 Pa · s or more, and the upper limit is preferably 20000 Pa · s or less. Preferably it is 15000 Pa.s or less, More preferably, it is 10000 Pa.s or less. This measurement is performed by the same measurement method as that for the minimum melt viscosity, and can be obtained by extracting a value at a temperature of 60 ° C.
 樹脂層2にフィラー1を押し込むときの該樹脂層2の具体的な粘度は、形成する凹み2b、2cの形状や深さなどに応じて、下限は好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは4500Pa・s以上であり、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、さらに好ましくは10000Pa・s以下である。また、このような粘度を好ましくは40~80℃、より好ましくは50~60℃で得られるようにする。 The specific viscosity of the resin layer 2 when the filler 1 is pushed into the resin layer 2 is preferably at least 3000 Pa · s, more preferably 4000 Pa, depending on the shape and depth of the recesses 2b and 2c to be formed. S or more, more preferably 4500 Pa · s or more, and the upper limit is preferably 20000 Pa · s or less, more preferably 15000 Pa · s or less, and even more preferably 10000 Pa · s or less. Further, such a viscosity is preferably obtained at 40 to 80 ° C., more preferably 50 to 60 ° C.
 上述したように、樹脂層2から露出しているフィラー1の周囲に凹み2b(図1B)が形成されていることにより、フィラー含有フィルムの物品への圧着時に生じるフィラー1の扁平化に対して樹脂から受ける抵抗が、凹み2bが無い場合に比して低減する。このため、フィラー含有フィルムを異方性導電フィルムとした場合には、異方性導電接続時に端子で導電粒子が挟持され易くなることで導通性能が向上し、また捕捉性が向上する。 As described above, the depression 2b (FIG. 1B) is formed around the filler 1 exposed from the resin layer 2, thereby preventing the filler 1 from being flattened when the filler-containing film is bonded to the article. The resistance received from the resin is reduced compared to the case where there is no dent 2b. For this reason, when the filler-containing film is an anisotropic conductive film, the conductive particles are easily sandwiched between the terminals at the time of anisotropic conductive connection, whereby the conduction performance is improved and the trapping property is improved.
 また、樹脂層2から露出することなく埋まっているフィラー1の直上の樹脂層2の表面に凹み2c(図4、図6)が形成されていることにより、凹み2cが無い場合に比してフィラー含有フィルムの物品への圧着時の圧力がフィラー1に集中し易くなる。このため、フィラー含有フィルムを異方性導電フィルムとした場合には、異方性導電接続時に端子で導電粒子が挟持され易くなることで捕捉性が向上し、導通性能が向上する。 Further, since the recess 2c (FIGS. 4 and 6) is formed on the surface of the resin layer 2 immediately above the filler 1 that is buried without being exposed from the resin layer 2, compared to the case where there is no recess 2c. The pressure during pressure bonding of the filler-containing film to the article is likely to concentrate on the filler 1. Therefore, when the filler-containing film is an anisotropic conductive film, the conductive particles are easily sandwiched between the terminals at the time of anisotropic conductive connection, so that the trapping property is improved and the conduction performance is improved.
(樹脂層の層厚)
 本発明のフィラー含有フィルムでは、樹脂層2の層厚Laとフィラー1の粒子径Dとの比(La/D)が0.6~10が好ましい。ここで、フィラー1の粒子径Dは、その平均粒子径を意味する。樹脂層2の層厚Laが大き過ぎるとフィラー含有フィルムの物品への圧着時にフィラーが位置ズレしやすくなる。そのため、フィラー含有フィルムを光学フィルムとした場合には、光学特性にばらつきが生じる。また、フィラー含有フィルムを異方性導電フィルムとした場合には、異方性導電接続時に端子における導電粒子の捕捉性が低下する。この傾向はLa/Dが10を超えると顕著である。そこでLa/Dは8以下がより好ましく、6以下が更により好ましい。反対に樹脂層2の層厚Laが小さすぎてLa/Dが0.6未満となると、フィラー1を樹脂層2によって所定の粒子分散状態あるいは所定の配列に維持することが困難となる。そのため、フィラー含有フィルムを異方性導電フィルムとする場合において、特に、接続する端子が高密度COGのときには、絶縁性樹脂層2の層厚Laと導電粒子1の粒子径Dとの比(La/D)は、好ましくは0.8~2である。一方、接続する電子部品のバンプレイアウトなどによりショート発生のリスクが低いと考えられる場合には、比(La/D)の下限に関し、0.25以上としてもよい。
(Layer thickness of resin layer)
In the filler-containing film of the present invention, the ratio (La / D) between the layer thickness La of the resin layer 2 and the particle diameter D of the filler 1 is preferably 0.6 to 10. Here, the particle diameter D of the filler 1 means the average particle diameter. If the layer thickness La of the resin layer 2 is too large, the filler tends to be misaligned when the filler-containing film is pressed onto the article. Therefore, when the filler-containing film is an optical film, the optical characteristics vary. Further, when the filler-containing film is an anisotropic conductive film, the trapping property of the conductive particles at the terminal is lowered during anisotropic conductive connection. This tendency is remarkable when La / D exceeds 10. Therefore, La / D is more preferably 8 or less, and even more preferably 6 or less. On the other hand, if the layer thickness La of the resin layer 2 is too small and La / D is less than 0.6, it is difficult to maintain the filler 1 in a predetermined particle dispersion state or a predetermined arrangement by the resin layer 2. Therefore, when the filler-containing film is an anisotropic conductive film, particularly when the terminal to be connected is a high density COG, the ratio (La) of the layer thickness La of the insulating resin layer 2 to the particle diameter D of the conductive particles 1 / D) is preferably 0.8-2. On the other hand, when it is considered that the risk of occurrence of a short circuit is low due to the bump layout of electronic components to be connected, the lower limit of the ratio (La / D) may be set to 0.25 or more.
(樹脂層の組成)
 本発明において樹脂層2は、熱可塑性樹脂組成物、高粘度粘着性樹脂組成物、硬化性樹脂組成物から形成することができる。樹脂層2を構成する樹脂組成物は、フィラー含有フィルムの用途に応じて適宜選択され、また、樹脂層2を絶縁性とするか否かもフィラー含有フィルムの用途に応じて決定される。
(Composition of resin layer)
In the present invention, the resin layer 2 can be formed from a thermoplastic resin composition, a high viscosity adhesive resin composition, and a curable resin composition. The resin composition constituting the resin layer 2 is appropriately selected according to the use of the filler-containing film, and whether or not the resin layer 2 is insulative is also determined according to the use of the filler-containing film.
 ここで、硬化性樹脂組成物は、例えば、熱重合性化合物と熱重合開始剤とを含有する熱重合性組成物から形成することができる。熱重合性組成物には必要に応じて光重合開始剤を含有させてもよい。 Here, the curable resin composition can be formed from, for example, a thermopolymerizable composition containing a thermopolymerizable compound and a thermal polymerization initiator. You may make a thermopolymerizable composition contain a photoinitiator as needed.
 熱重合開始剤と光重合開始剤を併用する場合に、熱重合性化合物として光重合性化合物としても機能するものを使用してもよく、熱重合性化合物とは別に光重合性化合物を含有させてもよい。好ましくは、熱重合性化合物とは別に光重合性化合物を含有させる。例えば、熱重合開始剤としてカチオン系硬化開始剤、熱重合性化合物としてエポキシ樹脂を使用し、光重合開始剤として光ラジカル開始剤、光重合性化合物としてアクリレート化合物を使用する。 When a thermal polymerization initiator and a photopolymerization initiator are used in combination, one that also functions as a photopolymerizable compound may be used as the thermopolymerizable compound, and a photopolymerizable compound is contained separately from the thermopolymerizable compound. May be. Preferably, a photopolymerizable compound is contained separately from the thermally polymerizable compound. For example, a cationic curing initiator is used as the thermal polymerization initiator, an epoxy resin is used as the thermopolymerizable compound, a photo radical initiator is used as the photopolymerization initiator, and an acrylate compound is used as the photopolymerizable compound.
 光重合開始剤として、波長の異なる光に反応する複数種類を含有させてもよい。これにより、フィラー含有フィルムの製造時において、樹脂層をフィルム化するための樹脂の光硬化と、フィラー含有フィルムを物品に圧着するときの樹脂の光硬化とで使用する波長を使い分けることができる。 As the photopolymerization initiator, a plurality of types that react to light having different wavelengths may be contained. Thereby, at the time of manufacture of a filler containing film, the wavelength used by the photocuring of resin for film-forming a resin layer and the photocuring of resin when a filler containing film is crimped | bonded to articles | goods can be used properly.
 フィラー含有フィルムの製造時の光硬化では、樹脂層に含まれる光重合性化合物の全部又は一部を光硬化させることができる。この光硬化により、樹脂層2におけるフィラー1の配置が保持乃至固定化され、ショートの抑制と捕捉性の向上が見込まれる。また、この光硬化により、フィラー含有フィルムの製造工程における樹脂層の粘度を適宜調整してもよい。 In photocuring during the production of the filler-containing film, all or part of the photopolymerizable compound contained in the resin layer can be photocured. By this photocuring, the arrangement of the filler 1 in the resin layer 2 is maintained or fixed, and it is expected that the short circuit is suppressed and the capturing property is improved. Moreover, you may adjust suitably the viscosity of the resin layer in the manufacturing process of a filler containing film by this photocuring.
 樹脂層における光重合性化合物の配合量は30質量%以下が好ましく、10質量%以下がより好ましく、2質量%未満がより好ましい。光重合性化合物が多すぎるとフィラー含有フィルムを物品と圧着するときの押し込みに要する推力が増加するためである。 The amount of the photopolymerizable compound in the resin layer is preferably 30% by mass or less, more preferably 10% by mass or less, and more preferably less than 2% by mass. This is because when the amount of the photopolymerizable compound is too large, the thrust required for pressing when the filler-containing film is pressure-bonded to the article increases.
 熱重合性組成物の例としては、(メタ)アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合性アクリレート系組成物、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合性エポキシ系組成物等が挙げられる。熱カチオン重合開始剤を含む熱カチオン重合性エポキシ系組成物に代えて、熱アニオン重合開始剤を含む熱アニオン重合性エポキシ系組成物を使用してもよい。また、特に支障を来たさなければ、複数種の重合性組成物を併用してもよい。併用例としては、熱カチオン重合性化合物と熱ラジカル重合性化合物の併用などが挙げられる。 Examples of the thermally polymerizable composition include a thermal radical polymerizable acrylate composition containing a (meth) acrylate compound and a thermal radical polymerization initiator, and a thermal cationic polymerizable epoxy system containing an epoxy compound and a thermal cationic polymerization initiator. Examples thereof include compositions. Instead of the thermal cationic polymerizable epoxy composition containing a thermal cationic polymerization initiator, a thermal anionic polymerizable epoxy composition containing a thermal anionic polymerization initiator may be used. In addition, a plurality of types of polymerizable compositions may be used in combination as long as there is no particular problem. Examples of combined use include combined use of a thermal cationic polymerizable compound and a thermal radical polymerizable compound.
 ここで、(メタ)アクリレート化合物としては、従来公知の熱重合型(メタ)アクリレートモノマーを使用することができる。例えば、単官能(メタ)アクリレート系モノマー、二官能以上の多官能(メタ)アクリレート系モノマーを使用することができる。 Here, as the (meth) acrylate compound, a conventionally known thermal polymerization type (meth) acrylate monomer can be used. For example, a monofunctional (meth) acrylate monomer or a bifunctional or higher polyfunctional (meth) acrylate monomer can be used.
 熱ラジカル重合開始剤としては、例えば、有機過酸化物、アゾ系化合物等を挙げることができる。特に、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。 Examples of the thermal radical polymerization initiator include organic peroxides and azo compounds. In particular, an organic peroxide that does not generate nitrogen that causes bubbles can be preferably used.
 熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、(メタ)アクリレート化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。 If the amount of the thermal radical polymerization initiator used is too small, curing will be poor, and if it is too large, the product life will be reduced. Therefore, it is preferably 2 to 60 parts by weight, more preferably 100 parts by weight of the (meth) acrylate compound. 5 to 40 parts by mass.
 エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、それらの変性エポキシ樹脂、脂環式エポキシ樹脂などを挙げることができ、これらの2種以上を併用することができる。また、エポキシ化合物に加えてオキセタン化合物を併用してもよい。 Examples of the epoxy compound include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a novolac type epoxy resin, a modified epoxy resin thereof, an alicyclic epoxy resin, and the like. it can. In addition to the epoxy compound, an oxetane compound may be used in combination.
 熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により酸を発生するヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、特に、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。 As the thermal cationic polymerization initiator, those known as thermal cationic polymerization initiators for epoxy compounds can be employed. For example, iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, etc. that generate an acid by heat are used. In particular, an aromatic sulfonium salt showing a good potential with respect to temperature can be preferably used.
 熱カチオン重合開始剤の使用量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。 If the amount of the thermal cationic polymerization initiator used is too small, curing tends to be poor, and if it is too much, the product life tends to decrease. Therefore, the amount is preferably 2 to 60 mass relative to 100 parts by mass of the epoxy compound. Part, more preferably 5 to 40 parts by weight.
 熱アニオン重合開始剤としては、通常用いられる公知の硬化剤を使用することができる。例えば、有機酸ジヒドラジド、ジシアンジアミド、アミン化合物、ポリアミドアミン化合物、シアナートエステル化合物、フェノール樹脂、酸無水物、カルボン酸、三級アミン化合物、イミダゾール、ルイス酸、ブレンステッド酸塩、ポリメルカプタン系硬化剤、ユリア樹脂、メラミン樹脂、イソシアネート化合物、ブロックイソシアネート化合物などが挙げられ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、イミダゾール変性体を核としその表面をポリウレタンで被覆してなるマイクロカプセル型潜在性硬化剤を用いることが好ましい。 As the thermal anionic polymerization initiator, a commonly used known curing agent can be used. For example, organic acid dihydrazide, dicyandiamide, amine compound, polyamidoamine compound, cyanate ester compound, phenol resin, acid anhydride, carboxylic acid, tertiary amine compound, imidazole, Lewis acid, Bronsted acid salt, polymercaptan curing agent , Urea resin, melamine resin, isocyanate compound, block isocyanate compound, and the like. Among these, one kind can be used alone, or two or more kinds can be used in combination. Among these, it is preferable to use a microcapsule type latent curing agent having an imidazole-modified product as a core and a surface thereof coated with polyurethane.
 熱重合性組成物は、膜形成樹脂やシランカップリング剤を含有することが好ましい。膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、製膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。重量平均分子量は10000以上であることが好ましい。また、シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を挙げることができる。これらのシランカップリング剤は、主としてアルコキシシラン誘導体である。 The thermopolymerizable composition preferably contains a film-forming resin and a silane coupling agent. Examples of the film-forming resin include phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin resin, and the like. be able to. Among these, a phenoxy resin can be preferably used from the viewpoint of film forming property, workability, and connection reliability. The weight average molecular weight is preferably 10,000 or more. Examples of the silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are mainly alkoxysilane derivatives.
 熱重合性組成物には、溶融粘度調整のために、上述のフィラー1とは別に絶縁性フィラーを含有させてもよい。これはシリカ粉やアルミナ粉などが挙げられる。絶縁性フィラーは粒子径20~1000nmの微小なフィラーが好ましく、また、配合量はエポキシ化合物等の熱重合性化合物(光重合性組成物)100質量部に対して5~50質量部とすることが好ましい。フィラー1とは別に含有させる絶縁性フィラーは、フィラー含有フィルムの用途が異方性導電フィルムの場合に好ましく使用されるが、用途によっては絶縁性でなくともよく、例えば導電性の微小なフィラーを含有させてもよい。フィラー含有フィルムを異方性導電フィルムとする場合、フィラー分散層を形成する樹脂層には、必要に応じて、フィラー1とは異なるより微小な絶縁性フィラー(所謂ナノフィラー)を適宜含有させることができる。 In addition to the filler 1 described above, an insulating filler may be contained in the thermopolymerizable composition in order to adjust the melt viscosity. Examples of this include silica powder and alumina powder. The insulating filler is preferably a fine filler having a particle size of 20 to 1000 nm, and the blending amount is 5 to 50 parts by mass with respect to 100 parts by mass of a thermally polymerizable compound (photopolymerizable composition) such as an epoxy compound. Is preferred. The insulating filler contained separately from the filler 1 is preferably used when the use of the filler-containing film is an anisotropic conductive film, but may not be insulating depending on the use. For example, a conductive fine filler may be used. You may make it contain. When the filler-containing film is an anisotropic conductive film, the resin layer forming the filler dispersion layer appropriately contains a finer insulating filler (so-called nanofiller) different from the filler 1 as necessary. Can do.
 本発明のフィラー含有フィルムには、上述の絶縁性又は導電性のフィラーとは別に充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを含有させてもよい。 The filler-containing film of the present invention includes a filler, a softening agent, an accelerator, an anti-aging agent, a colorant (pigment, dye), an organic solvent, an ion catcher agent, etc. in addition to the above-described insulating or conductive filler. You may make it contain.
<樹脂層の厚さ方向におけるフィラーの位置>
 本発明のフィラー含有フィルムでは、樹脂層2の厚さ方向におけるフィラー1の位置は前述のように、フィラー1が樹脂層2から露出していてもよく、露出することなく樹脂層2内に埋め込まれていても良いが、樹脂層の凹み2b、2cが形成されている表面2aの、隣接するフィラー間の中央部における接平面2pからのフィラーの最深部の距離(以下、埋込量という)Lbと、フィラー1の粒子径Dとの比(Lb/D)(以下、埋込率という)が60%以上105%以下であることが好ましい。
<Position of filler in thickness direction of resin layer>
In the filler-containing film of the present invention, the filler 1 in the thickness direction of the resin layer 2 may be exposed from the resin layer 2 as described above, and is embedded in the resin layer 2 without being exposed. The distance of the deepest part of the filler from the tangential plane 2p in the center between adjacent fillers on the surface 2a on which the resin layer recesses 2b and 2c are formed (hereinafter referred to as an embedding amount). It is preferable that the ratio (Lb / D) between Lb and the particle diameter D of the filler 1 (hereinafter referred to as embedding rate) is 60% or more and 105% or less.
 埋込率(Lb/D)を60%以上とすることにより、フィラー1を樹脂層2によって所定の粒子分散状態あるいは所定の配列に維持し、また、105%以下とすることにより、フィラー含有フィルムの物品との圧着時にフィラーを不用に流動させるように作用する樹脂層の樹脂量を低減させることができる。 By setting the embedding rate (Lb / D) to 60% or more, the filler 1 is maintained in a predetermined particle dispersion state or a predetermined arrangement by the resin layer 2, and by setting it to 105% or less, a filler-containing film The amount of resin in the resin layer that acts to cause the filler to flow unnecessarily at the time of pressure bonding with the article can be reduced.
 なお、本発明において、埋込率(Lb/D)の数値は、フィラー含有フィルムに含まれる全フィラー数の80%以上、好ましくは90%以上、より好ましくは96%以上が、当該埋込率(Lb/D)の数値になっていることをいう。したがって、埋込率が60%以上105%以下とは、フィラー含有フィルムに含まれる全フィラー数の80%以上、好ましくは90%以上、より好ましくは96%以上の埋込率が60%以上105%以下であることをいう。 In the present invention, the embedding rate (Lb / D) is 80% or more, preferably 90% or more, more preferably 96% or more of the total number of fillers contained in the filler-containing film. It means that the value is (Lb / D). Therefore, the embedding rate of 60% or more and 105% or less means that the embedding rate of 80% or more, preferably 90% or more, more preferably 96% or more of the total number of fillers contained in the filler-containing film is 60% or more and 105%. % Or less.
 このように全フィラーの埋込率(Lb/D)が揃っていることにより、フィラー含有フィルムを物品に圧着するときの押圧加重がフィラーに均一にかかる。したがって、フィラー含有フィルムを物品に圧着して貼り合わせたフィルム貼着体では光学特性、機械的特性などの品質の均一性を確保することができる。また、フィラー含有フィルムを異方性導電フィルムとした場合には、異方性導電接続時に端子における導電粒子の捕捉状態が良好になり、導通の安定性が向上する。 As described above, since the embedding rate (Lb / D) of all fillers is uniform, the pressing load when the filler-containing film is pressure-bonded to the article is uniformly applied to the filler. Therefore, in the film sticking body in which the filler-containing film is pressure-bonded to the article and bonded, quality uniformity such as optical characteristics and mechanical characteristics can be ensured. Moreover, when an anisotropic conductive film is used as the filler-containing film, the state of trapping the conductive particles at the terminal becomes good during anisotropic conductive connection, and the conduction stability is improved.
 埋込率(Lb/D)は、フィラー含有フィルムから面積30mm2以上の領域を任意に10箇所以上抜き取り、そのフィルム断面の一部をSEM画像で観察し、合計50個以上のフィラーを計測することにより求めることができる。より精度を上げるため、200個以上のフィラーを計測して求めてもよい。 As for the embedding rate (Lb / D), 10 or more areas having an area of 30 mm 2 or more are arbitrarily extracted from the filler-containing film, a part of the film cross section is observed with an SEM image, and a total of 50 or more fillers are measured. Can be obtained. In order to increase accuracy, 200 or more fillers may be measured and obtained.
 また、埋込率(Lb/D)の計測は、面視野画像において焦点調整することにより、ある程度の個数について一括して求めることができる。もしくは埋込率(Lb/D)の計測にレーザー式判別変位センサ(キーエンス製など)を用いてもよい。 Further, the measurement of the embedding rate (Lb / D) can be obtained collectively for a certain number by adjusting the focus in the surface field image. Alternatively, a laser discriminating displacement sensor (manufactured by Keyence etc.) may be used for measuring the embedding rate (Lb / D).
(埋込率60%以上100%未満の態様)
 埋込率(Lb/D)60%以上105%以下のフィラー1のより具体的な埋込態様としては、まず、図1Bに示したフィラー含有フィルム10Aのように、フィラー1が樹脂層2から露出するように埋込率60%以上100%未満で埋め込まれた態様をあげることができる。このフィラー含有フィルム10Aは、樹脂層2の表面のうち該樹脂層2から露出しているフィラー1と接している部分及びその近傍が、隣接するフィラー間の中央部の樹脂層の表面2aにおける接平面2pに対して擂り鉢状に凹んだ凹み2bを有している。
(Aspects with an embedding rate of 60% or more and less than 100%)
As a more specific embedding mode of the filler 1 with an embedding rate (Lb / D) of 60% or more and 105% or less, first, the filler 1 is formed from the resin layer 2 as in the filler-containing film 10A shown in FIG. A mode of embedding at an embedding rate of 60% or more and less than 100% so as to be exposed can be given. The filler-containing film 10A has a portion of the surface of the resin layer 2 in contact with the filler 1 exposed from the resin layer 2 and the vicinity thereof in contact with the surface 2a of the resin layer at the center between adjacent fillers. It has a dent 2b that is recessed in a bowl shape with respect to the plane 2p.
 この凹み2bを有するフィラー含有フィルム10Aを、樹脂層2にフィラー1を押し込むことにより製造する場合に、フィラー1の押し込み時の樹脂層2の粘度を、下限は、好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは4500Pa・s以上とし、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、更に好ましくは10000Pa・s以下とする。また、このような粘度を好ましくは40~80℃、より好ましくは50~60℃で得られるようにする。 When the filler-containing film 10A having the dent 2b is manufactured by pressing the filler 1 into the resin layer 2, the lower limit of the viscosity of the resin layer 2 when the filler 1 is pressed is preferably 3000 Pa · s or more. It is preferably 4000 Pa · s or more, more preferably 4500 Pa · s or more, and the upper limit is preferably 20000 Pa · s or less, more preferably 15000 Pa · s or less, and further preferably 10,000 Pa · s or less. Further, such a viscosity is preferably obtained at 40 to 80 ° C., more preferably 50 to 60 ° C.
(埋込率100%の態様)
 次に、本発明のフィラー含有フィルムのうち、埋込率(Lb/D)100%の態様としては、図2に示すフィラー含有フィルム10Bのように、フィラー1の周りに図1Bに示したフィラー含有フィルム10Aと同様の擂り鉢状の凹み2bを有し、樹脂層2から露出しているフィラー1の露出径Lcがフィラー1の粒子径Dよりも小さいもの、図3Aに示すフィラー含有フィルム10Cのように、フィラー1の露出部分の周りの凹み2bがフィラー1近傍で急激に現れ、フィラー1の露出径Lcとフィラーの粒子径Dとが略等しいもの、図4に示すフィラー含有フィルム10Dのように、樹脂層2の表面に浅い凹み2cがあり、フィラー1がその頂部1aの1点で樹脂層2から露出しているものをあげることができる。
(Aspect with 100% embedding rate)
Next, among the filler-containing films of the present invention, as an embodiment with an embedding rate (Lb / D) of 100%, the filler shown in FIG. 1B around the filler 1 like the filler-containing film 10B shown in FIG. The filler-containing film 10C shown in FIG. 3A has a mortar-like dent 2b similar to the containing film 10A, and the exposed diameter Lc of the filler 1 exposed from the resin layer 2 is smaller than the particle diameter D of the filler 1. As shown in FIG. 4, a recess 2b around the exposed portion of the filler 1 suddenly appears in the vicinity of the filler 1, and the exposed diameter Lc of the filler 1 and the particle diameter D of the filler are substantially equal. The filler-containing film 10D shown in FIG. As described above, the surface of the resin layer 2 has a shallow dent 2c, and the filler 1 is exposed from the resin layer 2 at one point of the top 1a.
 なお、フィラーの露出部分の周りの樹脂層2の凹み2bや、フィラーの直上の樹脂層の凹み2cに隣接して、微小な突出部分2qが形成されていてもよい。この一例を図3Bに示す。 Note that a minute protruding portion 2q may be formed adjacent to the recess 2b of the resin layer 2 around the exposed portion of the filler or the recess 2c of the resin layer immediately above the filler. An example of this is shown in FIG. 3B.
 これらのフィラー含有フィルム10B、10C、10C’、10Dは埋込率100%であるため、フィラー1の頂部1aと樹脂層2の表面2aとが面一に揃っている。フィラー1の頂部1aと樹脂層2の表面2aとが面一に揃っていると、図1Bに示したようにフィラー1が樹脂層2から突出している場合に比して、フィラー含有フィルムと物品との圧着時に個々のフィラーの周辺にてフィルム厚み方向の樹脂量が不均一になりにくく、樹脂流動によるフィラーの移動を低減できるという効果がある。なお、埋込率が厳密に100%でなくても、樹脂層2に埋め込まれたフィラー1の頂部と樹脂層2の表面とが面一となる程度に揃っているとこの効果を得ることができる。言い換えると、埋込率(Lb/D)が概略80~105%、特に、90~100%の場合には、樹脂層2に埋め込まれたフィラー1の頂部と樹脂層2の表面とは面一であるといえるので、樹脂流動によるフィラーの移動を低減させることができる。 Since these filler-containing films 10B, 10C, 10C ', and 10D have an embedding rate of 100%, the top portion 1a of the filler 1 and the surface 2a of the resin layer 2 are flush with each other. When the top portion 1a of the filler 1 and the surface 2a of the resin layer 2 are flush with each other, the filler-containing film and the article are compared to the case where the filler 1 protrudes from the resin layer 2 as shown in FIG. The amount of resin in the film thickness direction is less likely to be nonuniform in the periphery of each filler during pressure bonding, and there is an effect that the movement of the filler due to resin flow can be reduced. Even if the embedding rate is not strictly 100%, this effect can be obtained if the top of the filler 1 embedded in the resin layer 2 and the surface of the resin layer 2 are aligned with each other. it can. In other words, when the embedding rate (Lb / D) is approximately 80 to 105%, particularly 90 to 100%, the top of the filler 1 embedded in the resin layer 2 and the surface of the resin layer 2 are flush with each other. Therefore, the movement of the filler due to the resin flow can be reduced.
 これらのフィラー含有フィルム10B、10C、10Dの中でも、10Dはフィラー1の周りの樹脂量が不均一になりにくいので樹脂流動によるフィラーの移動を解消でき、また頂部1aの1点であっても樹脂層2からフィラー1が露出しているので、物品におけるフィラー1の捕捉性もよい。したがって、フィラー含有フィルムを異方性導電フィルムに構成した場合には、異方性導電接続時に端子に捕捉された導電粒子にはわずかな移動も起こりにくいという効果が期待できる。したがって、この態様は、特にファインピッチやバンプ間スペースが狭い用途に使用する異方性導電フィルムに有効である。 Among these filler-containing films 10B, 10C, and 10D, 10D can hardly eliminate the amount of resin around the filler 1 so that the movement of the filler due to resin flow can be eliminated. Since the filler 1 is exposed from the layer 2, the trapping property of the filler 1 in the article is also good. Therefore, when the filler-containing film is formed of an anisotropic conductive film, an effect that slight movement hardly occurs in the conductive particles captured by the terminal at the time of anisotropic conductive connection can be expected. Therefore, this aspect is particularly effective for anisotropic conductive films used for applications where the fine pitch and the space between bumps are narrow.
 なお、凹み2b、2cの形状や深さが異なるフィラー含有フィルム10B(図2)、10C(図3A)、10D(図4)は、後述するように、フィラー1の押し込み時の樹脂層2の粘度、押込速度又は温度等を変えることで製造することができる。 Note that the filler-containing films 10B (FIG. 2), 10C (FIG. 3A), and 10D (FIG. 4) having different shapes and depths of the recesses 2b and 2c are formed on the resin layer 2 when the filler 1 is pushed in, as will be described later. It can be produced by changing the viscosity, indentation speed or temperature.
(埋込率100%超の態様)
 本発明のフィラー含有フィルムのうち、埋込率100%を超える態様としては、図5に示すフィラー含有フィルム10Eのようにフィラー1が露出し、その露出部分の周りの樹脂層2に接平面2pに対する凹み2bがあるもの、図6に示すフィラー含有フィルム10Fのように、フィラー1が樹脂層2から露出せず(即ち、露出径Lc=0)、フィラー1の直上の樹脂層2の表面に接平面2pに対する凹み2cがあるものをあげることができる。
(Mode of embedding rate over 100%)
Among the filler-containing films of the present invention, as an aspect exceeding 100% embedding rate, the filler 1 is exposed like the filler-containing film 10E shown in FIG. 5, and the tangential plane 2p is formed on the resin layer 2 around the exposed portion. The filler 1 is not exposed from the resin layer 2 (that is, the exposed diameter Lc = 0) as in the filler-containing film 10F shown in FIG. 6, and the surface of the resin layer 2 immediately above the filler 1 is present. The thing with the dent 2c with respect to the tangent plane 2p can be mention | raise | lifted.
 なお、フィラー1の露出部分の周りの樹脂層2に凹み2bを有するフィラー含有フィルム10E(図5)とフィラー1の直上の樹脂層2に凹み2cを有するフィラー含有フィルム10F(図6)は、それらを製造する際のフィラー1の押し込み時の樹脂層2の粘度、押込速度又は温度等を変えることで製造することができる。 In addition, the filler-containing film 10E (FIG. 5) which has the dent 2b in the resin layer 2 around the exposed part of the filler 1 and the filler-containing film 10F (FIG. 6) which has the dent 2c in the resin layer 2 immediately above the filler 1 are It can manufacture by changing the viscosity of the resin layer 2 at the time of indentation of the filler 1 at the time of manufacturing them, indentation speed, or temperature.
 図5に示すフィラー含有フィルム10Eを物品と圧着すると、フィラー1が物品から直接押圧されるので、物品とフィラーが接合し易くなり、フィラー含有フィルムを異方性導電フィルムとした場合には、異方性導電フィルムで電子部品を異方性導電接続したときの端子における導電粒子の捕捉性が向上する。また、図6に示すフィラー含有フィルム10Fを物品と圧着すると、フィラー1が物品を直接的には押圧せず、樹脂層2を介して押圧することになるが、押圧方向に存在する樹脂量が図8の状態(即ち、フィラー1が埋込率100%を超えて埋め込まれ、フィラー1が樹脂層2から露出しておらず、かつ樹脂層2の表面が平坦である状態)に比べて少ないため、フィラーに押圧力がかかりやすくなり、且つ物品との圧着時にフィラー1が樹脂流動により不用に移動することが妨げられる。 When the filler-containing film 10E shown in FIG. 5 is pressure-bonded to the article, the filler 1 is directly pressed from the article, so that the article and the filler can be easily joined. The trapping property of the conductive particles at the terminal when the electronic component is anisotropically conductively connected with the anisotropic conductive film is improved. In addition, when the filler-containing film 10F shown in FIG. 6 is pressure-bonded to the article, the filler 1 does not directly press the article and presses through the resin layer 2, but the amount of resin present in the pressing direction is small. Compared to the state of FIG. 8 (that is, the filler 1 is embedded with an embedding rate exceeding 100%, the filler 1 is not exposed from the resin layer 2 and the surface of the resin layer 2 is flat). For this reason, it is easy to apply a pressing force to the filler, and it is prevented that the filler 1 moves unnecessarily due to the resin flow at the time of pressure bonding with the article.
 上述したフィラーの露出部分の周りの樹脂層2の凹み2b(図1B、図2、図3A、図3B、図5)や、フィラーの直上の樹脂層の凹み2c(図4、図6)の効果を易くする点からフィラー1の露出部分の周りの凹み2bの最大深さLeとフィラー1の粒子径Dとの比(Le/D)は、好ましくは50%未満、より好ましくは30%未満、さらに好ましくは20~25%であり、フィラー1の露出部分の周りの凹み2bの最大径Ldとフィラー1の粒子径Dとの比(Ld/D)は、好ましくは100%以上、より好ましくは100~150%であり、フィラー1の直上の樹脂における凹み2cの最大深さLfとフィラー1の粒子径Dとの比(Lf/D)は、0より大きく、好ましくは10%未満、より好ましくは5%以下である。 The recess 2b (FIGS. 1B, 2, 3A, 3B, and 5) of the resin layer 2 around the exposed portion of the filler and the recess 2c (FIGS. 4 and 6) of the resin layer immediately above the filler. From the viewpoint of facilitating the effect, the ratio (Le / D) of the maximum depth Le of the recess 2b around the exposed portion of the filler 1 and the particle diameter D of the filler 1 is preferably less than 50%, more preferably less than 30%. More preferably, it is 20 to 25%, and the ratio (Ld / D) of the maximum diameter Ld of the dent 2b around the exposed portion of the filler 1 to the particle diameter D of the filler 1 is preferably 100% or more, more preferably Is 100 to 150%, and the ratio (Lf / D) of the maximum depth Lf of the recess 2c to the particle diameter D of the filler 1 in the resin immediately above the filler 1 is greater than 0, preferably less than 10%, more Preferably it is 5% or less.
 なお、フィラー1の露出径Lcは、フィラー1の粒子径D以下とすることができ、好ましくは粒子径Dの10~90%である。図4に示したようにフィラー1の頂部の1点で露出するようにしてもよく、フィラー1が樹脂層2内に完全に埋まり、露出径Lcがゼロとなるようにしてもよい。 Note that the exposed diameter Lc of the filler 1 can be made equal to or less than the particle diameter D of the filler 1, and is preferably 10 to 90% of the particle diameter D. As shown in FIG. 4, it may be exposed at one point on the top of the filler 1, or the filler 1 may be completely buried in the resin layer 2 and the exposed diameter Lc may be zero.
 一方、樹脂層2に埋め込まれたフィラー1の頂部と樹脂層2の表面とが略面一であり、且つ凹み2b、2cの深さ(隣接するフィラー間の中央部における接平面からの凹みの最深部の距離)が粒子径の10%以上のフィラー(以下、単に「樹脂層と面一で凹み深さが10%以上のフィラー」という)が局所的に集中した領域が存在すると、フィラー含有フィルムの性能や品質に問題はなくとも、外観が損なわれる場合がある。また、そのような領域の凹み2b、2cを物品に向けてフィラー含有フィルムと物品とを貼り合わせると凹み2b、2cが貼り合わせ後に浮き等の原因となることがある。例えば、フィラー含有フィルムが異方性導電フィルムの場合に、絶縁性樹脂層2と面一で凹み深さが10%以上の導電粒子が一つのバンプに集中的に存在するとバンプとの接続後に浮きが生じ、導通性の低下が生じる場合がある。そのため、樹脂層2と面一で凹み深さが10%以上の任意のフィラーからフィラーの粒子径の200倍以内の領域において、トータルのフィラー数に対する、樹脂層と面一で凹み深さが10%以上のフィラー数の割合が50%以内であることが好ましく、40%以内であることがより好ましく、30%以内であることが更により好ましい。これに対してこの割合が50%を超える領域には、フィラー含有フィルムの表面に樹脂を散布するなどして凹み2b、2cを浅くすることが好ましい。この場合、散布する樹脂は、樹脂層2を形成する樹脂よりも低粘度であることが好ましく、また、散布後に樹脂層2の凹みが確認できる程度に、散布する樹脂の濃度が希釈されていることが望ましい。こうして凹み2b、2cを浅くすることにより、上述した外観や浮きの問題を改善することができる。 On the other hand, the top of the filler 1 embedded in the resin layer 2 and the surface of the resin layer 2 are substantially flush with each other, and the depths of the recesses 2b and 2c (recesses from the tangential plane at the center between adjacent fillers). If there is a region where the filler with the deepest part) having a particle size of 10% or more of the particle diameter (hereinafter simply referred to as “filler having a recess depth of 10% or more flush with the resin layer”) is contained in the filler, Even if there is no problem in the performance and quality of the film, the appearance may be impaired. Further, when the filler-containing film and the article are bonded together with the dents 2b and 2c in such a region facing the article, the dents 2b and 2c may cause floating or the like after the bonding. For example, in the case where the filler-containing film is an anisotropic conductive film, if conductive particles having a dent depth of 10% or more flush with the insulating resin layer 2 are concentrated on one bump, it floats after connection with the bump. May occur and conductivity may be reduced. Therefore, in an area within 200 times the particle diameter of the filler from an arbitrary filler having a depth of 10% or more that is flush with the resin layer 2, the depth of the depression is 10 flush with the resin layer with respect to the total number of fillers. % Of the number of fillers is preferably 50% or less, more preferably 40% or less, and even more preferably 30% or less. On the other hand, in a region where this ratio exceeds 50%, it is preferable to make the recesses 2b and 2c shallow by spraying a resin on the surface of the filler-containing film. In this case, it is preferable that the resin to be sprayed has a lower viscosity than the resin forming the resin layer 2, and the concentration of the resin to be sprayed is diluted to such an extent that the dent of the resin layer 2 can be confirmed after the spraying. It is desirable. Thus, by making the dents 2b and 2c shallow, the above-described appearance and floating problems can be improved.
 なお、図7に示すように、埋込率(Lb/D)が60%未満のフィラー含有フィルム10Gでは、樹脂層2上をフィラー1が転がりやすくなるため、物品との圧着時にフィラーに対する物品の捕捉率を向上させる点からは、埋込率(Lb/D)を60%以上とすることが好ましい。 In addition, as shown in FIG. 7, in the filler-containing film 10G having an embedding rate (Lb / D) of less than 60%, the filler 1 is likely to roll on the resin layer 2. From the viewpoint of improving the capture rate, it is preferable to set the embedding rate (Lb / D) to 60% or more.
 また、埋込率(Lb/D)が100%を超える態様において、図8に示すフィラー含有フィルム10Xのように樹脂層2の表面が平坦な場合はフィラー1と物品との間に介在する樹脂量が過度に多くなる。また、図9に示すフィラー含有フィルム10Yのように樹脂層2の表面がフィラー1の形状に沿って隆起している場合は、物品との圧着時にフィラー1が樹脂層2の樹脂流動によって流され易い。さらに、フィラー1が直接物品に接触して物品を押圧することなく、樹脂を介して物品を押圧するので、これによってもフィラーが樹脂流動によって流され易い。 Further, in an embodiment where the embedding rate (Lb / D) exceeds 100%, a resin interposed between the filler 1 and the article when the surface of the resin layer 2 is flat like the filler-containing film 10X shown in FIG. The amount is excessive. Further, when the surface of the resin layer 2 is raised along the shape of the filler 1 as in the filler-containing film 10Y shown in FIG. 9, the filler 1 is caused to flow by the resin flow of the resin layer 2 at the time of pressure bonding with the article. easy. Furthermore, since the filler 1 presses the article through the resin without directly contacting the article and pressing the article, the filler is easily flowed by the resin flow.
 本発明において、樹脂層2の表面の凹み2b、2cの存在は、フィラー含有フィルムの断面を走査型電子顕微鏡で観察することにより確認することができ、面視野観察においても確認できる。光学顕微鏡、金属顕微鏡でも凹み2b、2cの観察は可能である。また、凹み2b、2cの大きさは画像観察時の焦点調整などで確認することもできる。上述のように深い凹みに対して樹脂を散布した後であっても、同様である。 In the present invention, the presence of the dents 2b and 2c on the surface of the resin layer 2 can be confirmed by observing the cross section of the filler-containing film with a scanning electron microscope, and can also be confirmed with surface field observation. The dents 2b and 2c can be observed even with an optical microscope or a metal microscope. The size of the recesses 2b and 2c can also be confirmed by focus adjustment during image observation. The same is true even after the resin is sprayed on the deep dents as described above.
<フィラー含有フィルムの変形態様>
(第2の絶縁性樹脂層)
 本発明のフィラー含有フィルムは、図10に示すフィラー含有フィルム10Hのように、フィラー分散層3の、樹脂層2の凹み2bが形成されている面に、該樹脂層2よりも好ましくは最低溶融粘度が低い第2の樹脂層4を積層してもよい。第2の樹脂層および後述する第3の樹脂層はフィラー分散層に分散しているフィラー1を含有しない層になる。また図11に示すフィラー含有フィルム10Iのように、フィラー分散層3の、樹脂層2の凹み2bが形成されていない面(凹みが形成されている面と反対側の面)に、該樹脂層2よりも最低溶融粘度が低い第2の樹脂層4を積層してもよい。
<Deformation aspect of a filler containing film>
(Second insulating resin layer)
The filler-containing film of the present invention preferably has the lowest melting than the resin layer 2 on the surface of the filler dispersion layer 3 where the dents 2b of the resin layer 2 are formed, as in the filler-containing film 10H shown in FIG. You may laminate | stack the 2nd resin layer 4 with a low viscosity. The second resin layer and the third resin layer described later are layers that do not contain the filler 1 dispersed in the filler dispersion layer. Further, like the filler-containing film 10I shown in FIG. 11, the resin layer is formed on the surface of the filler dispersion layer 3 where the recess 2b of the resin layer 2 is not formed (the surface opposite to the surface where the recess is formed). A second resin layer 4 having a minimum melt viscosity lower than 2 may be laminated.
 第2の樹脂層4もフィラー含有フィルムの用途に応じて絶縁性又は導電性にすることができる。第2の樹脂層4の積層により、フィラー含有フィルムと物品とを圧着するときに、物品の表面に凹凸があっても、その凹凸により形成される空間を第2の樹脂層で充填することができる。したがって、フィラー含有フィルムを、第2の樹脂層として絶縁性樹脂層を有する異方性導電フィルムとした場合には、その異方性導電フィルムを用いて対向する電子部品を異方性導電接続するときに、電子部品の電極やバンプによって形成される空間を第2の樹脂層で充填し、電子部品同士の接着性を向上させることができる。 The second resin layer 4 can also be made insulating or conductive depending on the use of the filler-containing film. When the filler-containing film and the article are pressure-bonded by laminating the second resin layer 4, even if the article has irregularities, the second resin layer can fill the space formed by the irregularities. it can. Accordingly, when the filler-containing film is an anisotropic conductive film having an insulating resin layer as the second resin layer, the opposite electronic parts are anisotropically conductively connected using the anisotropic conductive film. Sometimes, the space formed by the electrodes and bumps of the electronic components can be filled with the second resin layer, and the adhesion between the electronic components can be improved.
 なお、第2の樹脂層4を有する異方性導電フィルムを用いて対向する電子部品を異方性導電接続する場合、第2の樹脂層4が凹み2bの形成面上にあるか否かに関わらず第2の樹脂層4がICチップ等の第1電子部品側にある(言い換えると、樹脂層2が基板等の第2電子部品側にある)ことが好ましい。このようにすることで、導電粒子の不本意な移動を避けることができ、捕捉性を向上させることができる。なお、通常はICチップ等の第1電子部品を押圧治具側とし、基板等の第2電子部品をステージ側とし、異方性導電フィルムを第2電子部品と仮圧着した後に、第1電子部品と第2電子部品を本圧着するが、第2電子部品の圧着領域のサイズ等によっては、異方性導電フィルムを第1電子部品に仮貼りした後に、第1電子部品と第2電子部品を本圧着する。 In the case where the opposite electronic parts are anisotropically conductively connected using the anisotropic conductive film having the second resin layer 4, whether or not the second resin layer 4 is on the formation surface of the recess 2b. Regardless, it is preferable that the second resin layer 4 is on the first electronic component side such as an IC chip (in other words, the resin layer 2 is on the second electronic component side such as a substrate). By doing so, unintentional movement of the conductive particles can be avoided, and the trapping property can be improved. Usually, the first electronic component such as an IC chip is on the pressing jig side, the second electronic component such as a substrate is on the stage side, and the anisotropic conductive film is temporarily bonded to the second electronic component, and then the first electronic component is The component and the second electronic component are finally crimped. Depending on the size or the like of the crimping region of the second electronic component, the first electronic component and the second electronic component are temporarily attached after the anisotropic conductive film is temporarily attached to the first electronic component. Is crimped.
 樹脂層2と第2の樹脂層4との最低溶融粘度は、差があるほどフィラー含有フィルムを熱圧着する物品の表面凹凸により形成される空間が第2の樹脂層で充填されやすくなり、このため、フィラー含有フィルムと物品との接着性、又はフィラー含有フィルムを介して対向する物品を熱圧着する場合には、その対向する物品同士の接着性が向上する。また、この差があるほどフィラー分散層3中に存在する樹脂層2の移動量が第2の樹脂層4に対して相対的に小さくなり、樹脂層2に保持されているフィラーの不用な流動を低減できる。したがって、フィラー含有フィルムを、絶縁性の第2の樹脂層を有する異方性導電フィルムとした場合には、その異方性導電フィルムで異方性導電接続する電子部品の電極やバンプによって形成される空間が第2の樹脂層4で充填されやすくなり、電子部品同士の接着性を向上させる効果が期待できる。また、フィラー分散層3中で導電粒子を保持している樹脂層2の移動量が第2の樹脂層に対して相対的に小さくなるため、端子における導電粒子の捕捉性が向上しやすくなる。 The minimum melt viscosity between the resin layer 2 and the second resin layer 4 is more likely to be filled with the second resin layer in the space formed by the surface irregularities of the article to be thermocompression-bonded with the filler-containing film. For this reason, when the adhesiveness between the filler-containing film and the article, or when the opposing article is thermocompression bonded via the filler-containing film, the adhesiveness between the opposing articles is improved. Further, as the difference is increased, the amount of movement of the resin layer 2 existing in the filler dispersion layer 3 becomes relatively small with respect to the second resin layer 4, and the unnecessary flow of the filler held in the resin layer 2 is reduced. Can be reduced. Therefore, when the filler-containing film is an anisotropic conductive film having an insulating second resin layer, it is formed by electrodes and bumps of electronic parts that are anisotropically conductively connected by the anisotropic conductive film. The space to be filled is easily filled with the second resin layer 4, and the effect of improving the adhesion between the electronic components can be expected. In addition, since the amount of movement of the resin layer 2 holding the conductive particles in the filler dispersion layer 3 is relatively small with respect to the second resin layer, the trapping property of the conductive particles at the terminal is easily improved.
 樹脂層2と第2の樹脂層4との最低溶融粘度比は、樹脂層2と第2の樹脂層4の層厚の比率にもよるが、実用上は、好ましくは2以上、より好ましくは5以上、さらに好ましくは8以上である。一方、この比が大きすぎると長尺のフィラー含有フィルムを巻装体にした場合に、樹脂のはみだしやブロッキングが生じる虞があるので、実用上は樹脂層2と第2の樹脂層4との最低溶融粘度比は15以下が好ましい。第2の樹脂層4の好ましい最低溶融粘度は、より具体的には、上述の比を満たし、かつ3000Pa・s以下、より好ましくは2000Pa・s以下であり、特に100~2000Pa・sである。 Although the minimum melt viscosity ratio between the resin layer 2 and the second resin layer 4 depends on the ratio of the layer thicknesses of the resin layer 2 and the second resin layer 4, it is preferably 2 or more in practice, more preferably 5 or more, more preferably 8 or more. On the other hand, if this ratio is too large, when a long filler-containing film is used as a wound body, there is a possibility that the resin protrudes or blocks, so that the resin layer 2 and the second resin layer 4 are practically used. The minimum melt viscosity ratio is preferably 15 or less. The preferable minimum melt viscosity of the second resin layer 4 more specifically satisfies the above-mentioned ratio and is 3000 Pa · s or less, more preferably 2000 Pa · s or less, and particularly 100 to 2000 Pa · s.
 なお、第2の樹脂層4は、樹脂層2と同様の樹脂組成物において、粘度を調整することにより形成することができる。 The second resin layer 4 can be formed by adjusting the viscosity in the same resin composition as the resin layer 2.
 また、第2の樹脂層4の厚さは、フィラー含有フィルムの用途に応じて適宜設定することができる。第2の樹脂層4の積層工程の難易度を過度に上げない点からは、一般にフィラーの粒子径の0.2~50倍とすることが好ましい。また、フィラー含有フィルムを異方性導電フィルム10H、10Iとする場合には、第2の樹脂層4の層厚さは、好ましくは4~20μmであり、また、導電粒子径の好ましくは1~8倍である。 Further, the thickness of the second resin layer 4 can be appropriately set according to the use of the filler-containing film. From the viewpoint of not excessively increasing the difficulty of the lamination process of the second resin layer 4, it is generally preferable that the particle diameter of the filler is 0.2 to 50 times. When the filler-containing film is an anisotropic conductive film 10H or 10I, the layer thickness of the second resin layer 4 is preferably 4 to 20 μm, and the conductive particle diameter is preferably 1 to 8 times.
 また、この異方性導電フィルム10H、10Iにおいて、絶縁性の樹脂層2と第2の樹脂層4を合わせた異方性導電フィルム全体の最低溶融粘度は、樹脂層2と第2の樹脂層4の厚みの比率にもよるが、実用上は8000Pa・s以下としてもよく、バンプ間への充填を行い易くするためには200~7000Pa・sであってもよく、好ましくは、200~4000Pa・sである。 In the anisotropic conductive films 10H and 10I, the minimum melt viscosity of the entire anisotropic conductive film including the insulating resin layer 2 and the second resin layer 4 is the resin layer 2 and the second resin layer. Although it depends on the thickness ratio of 4, it may be 8000 Pa · s or less for practical use, and may be 200 to 7000 Pa · s for easy filling between the bumps, preferably 200 to 4000 Pa. -S.
(第3の樹脂層)
 第2の樹脂層4と樹脂層2を挟んで反対側に第3の樹脂層が設けられていてもよい。第3の樹脂層も、フィラー含有フィルムの用途に応じて絶縁性又は導電性とすることができる。例えば、フィラー含有フィルムを、絶縁性の第3の樹脂層を有する異方性導電フィルムとした場合に、第3の樹脂層をタック層として機能させることができる。第3の樹脂層は、第2の樹脂層と同様に、電子部品の電極やバンプによって形成される空間を充填させるために設けてもよい。
(Third resin layer)
A third resin layer may be provided on the opposite side across the second resin layer 4 and the resin layer 2. The third resin layer can also be made insulating or conductive depending on the use of the filler-containing film. For example, when the filler-containing film is an anisotropic conductive film having an insulating third resin layer, the third resin layer can function as a tack layer. Similar to the second resin layer, the third resin layer may be provided to fill a space formed by the electrodes and bumps of the electronic component.
 第3の樹脂層の樹脂組成、粘度及び厚みは第2の樹脂層と同様でもよく、異なっていても良い。樹脂層2と第2の樹脂層4と第3の樹脂層を合わせたフィラー含有フィルムの最低溶融粘度は特に制限はないが、8000Pa・s以下としてもよく、200~7000Pa・sであってもよく、200~4000Pa・sとすることもできる。 The resin composition, viscosity, and thickness of the third resin layer may be the same as or different from those of the second resin layer. The minimum melt viscosity of the filler-containing film in which the resin layer 2, the second resin layer 4, and the third resin layer are combined is not particularly limited, but may be 8000 Pa · s or less, or 200 to 7000 Pa · s. It may be 200 to 4000 Pa · s.
(その他の積層態様)
 フィラー含有フィルムの用途によっては、フィラー分散層を積層してもよく、積層したフィラー分散層間に、第2の樹脂層のようにフィラーを含有していない層を介在していてもよく、更に最外層に第2の樹脂層や第3の樹脂層を設けてもよい。
(Other lamination modes)
Depending on the use of the filler-containing film, a filler dispersion layer may be laminated, and a layer containing no filler, such as the second resin layer, may be interposed between the laminated filler dispersion layers. A second resin layer or a third resin layer may be provided on the outer layer.
<フィラー含有フィルムの製造方法>
 本発明のフィラー含有フィルムの製造方法は、フィラーが樹脂層に分散しているフィラー分散層を形成する工程を有する。このフィラー分散層を形成する工程は、フィラーを樹脂層表面に該フィラーが分散した状態で保持させる工程と、樹脂層に保持させたフィラーを該樹脂層に押し込む工程を有する。
<Method for producing filler-containing film>
The method for producing a filler-containing film of the present invention includes a step of forming a filler dispersion layer in which a filler is dispersed in a resin layer. The step of forming the filler dispersion layer includes a step of holding the filler in a state where the filler is dispersed on the surface of the resin layer, and a step of pushing the filler held in the resin layer into the resin layer.
 このうち、フィラーを樹脂層に押し込む工程では、フィラー近傍の樹脂層の表面が、隣接するフィラー間の中央部における樹脂層の接平面に対して凹みを有するように、フィラーを押し込むときの樹脂層の粘度、押込速度又は温度を調整する。 Among these, in the step of pushing the filler into the resin layer, the resin layer when the filler is pushed so that the surface of the resin layer near the filler has a dent with respect to the tangent plane of the resin layer at the center between the adjacent fillers Adjust the viscosity, indentation speed or temperature.
 フィラーを押し込む樹脂層は、前術の凹み2b、2cを形成できる限り特に制限はないが、最低溶融粘度を1100Pa・s以上、60℃における粘度を3000Pa・s以上とすることが好ましい。中でも、最低溶融粘度は、好ましくは1500Pa・s以上、より好ましくは2000Pa・s以上、さらに好ましくは3000~15000Pa・s、特に好ましくは3000~10000Pa・sであり、60℃における粘度は、下限は好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは4500Pa・s以上であり、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、更に好ましくは10000Pa・s以下である。したがって、フィラーを表面に保持させる樹脂層の最低溶融粘度を上述の範囲とすることが好ましい。 The resin layer into which the filler is pushed is not particularly limited as long as the depressions 2b and 2c of the previous operation can be formed, but it is preferable that the minimum melt viscosity is 1100 Pa · s or more and the viscosity at 60 ° C. is 3000 Pa · s or more. Among them, the minimum melt viscosity is preferably 1500 Pa · s or more, more preferably 2000 Pa · s or more, further preferably 3000 to 15000 Pa · s, and particularly preferably 3000 to 10,000 Pa · s. Preferably it is 3000 Pa · s or more, more preferably 4000 Pa · s or more, further preferably 4500 Pa · s or more, and the upper limit is preferably 20000 Pa · s or less, more preferably 15000 Pa · s or less, further preferably 10000 Pa · s or less. It is. Therefore, it is preferable that the minimum melt viscosity of the resin layer that holds the filler on the surface is in the above range.
 フィラー含有フィルムがフィラー分散層3の単層から形成されている場合、本発明のフィラー含有フィルムは、例えば、樹脂層2の表面にフィラー1を所定の配列で保持させ、そのフィラー1を平板又はローラーで樹脂層に押し込むことにより製造される。なお、埋込率100%超のフィラー含有フィルムを製造する場合に、フィラー配列に対応した凸部を有する押し板で押し込んでもよい。 When the filler-containing film is formed from a single layer of the filler dispersion layer 3, the filler-containing film of the present invention, for example, holds the filler 1 on the surface of the resin layer 2 in a predetermined arrangement, and the filler 1 is a flat plate or It is manufactured by pushing into the resin layer with a roller. In the case of producing a filler-containing film having an embedding rate of more than 100%, the film may be pressed with a pressing plate having a convex portion corresponding to the filler arrangement.
 ここで、樹脂層2におけるフィラー1の埋込量は、フィラー1の押し込み時の押圧力、温度等により調整することができ、また、凹み2b、2cの形状及び深さは、押し込み時の樹脂層2の粘度、押込速度、温度等により調整することができる。例えば、フィラー含有フィルムとして異方性導電フィルム10B(図2)を製造する場合、導電粒子1の押し込み時の絶縁性樹脂層2の粘度を8000Pa・s(60℃)とすることが好ましく、異方性導電フィルム10C(図3A)を製造する場合、導電粒子1の押し込み時の絶縁性樹脂層2の粘度を12000Pa・s(70℃)とすることが好ましく、異方性導電フィルム10D(図4)を製造する場合、導電粒子1の押し込み時の絶縁性樹脂層2の粘度を4500Pa・s(60℃)とすることが好ましく、異方性導電フィルム10E(図5)を製造する場合、導電粒子1の押し込み時の絶縁性樹脂層2の粘度を7000Pa・s(70℃)とすることが好ましく、異方性導電フィルム10F(図6)を製造する場合、導電粒子1の押し込み時の絶縁性樹脂層2の粘度を3500Pa・s(70℃)とすることが好ましい。 Here, the embedding amount of the filler 1 in the resin layer 2 can be adjusted by the pressing force, temperature, etc. when the filler 1 is pushed, and the shapes and depths of the recesses 2b, 2c are the resin when pushing. It can adjust with the viscosity of the layer 2, indentation speed, temperature, etc. For example, when the anisotropic conductive film 10B (FIG. 2) is manufactured as the filler-containing film, the viscosity of the insulating resin layer 2 when the conductive particles 1 are pushed in is preferably 8000 Pa · s (60 ° C.). When the isotropic conductive film 10C (FIG. 3A) is manufactured, the viscosity of the insulating resin layer 2 when the conductive particles 1 are pushed in is preferably 12000 Pa · s (70 ° C.), and the anisotropic conductive film 10D (FIG. 4), when manufacturing the anisotropic conductive film 10E (FIG. 5), it is preferable that the viscosity of the insulating resin layer 2 when the conductive particles 1 are pushed in is 4500 Pa · s (60 ° C.). The viscosity of the insulating resin layer 2 when the conductive particles 1 are pushed in is preferably 7000 Pa · s (70 ° C.). When the anisotropic conductive film 10F (FIG. 6) is manufactured, the conductive particles 1 It is preferable that the viscosity of the insulating resin layer 2 at the time included the 3500Pa · s (70 ℃).
 また、樹脂層2にフィラー1を保持させる手法としては、公知の手法を利用することができる。例えば、樹脂層2にフィラー1を直接散布する、あるいは二軸延伸させることのできるフィルムにフィラー1を単層で付着させ、そのフィルムを二軸延伸し、その延伸させたフィルムに樹脂層2を押圧してフィラーを樹脂層2に転写することにより、樹脂層2にフィラー1を保持させる。また、転写型を使用して樹脂層2にフィラー1を保持させることもできる。 Further, as a method for holding the filler 1 in the resin layer 2, a known method can be used. For example, the filler 1 can be directly sprayed on the resin layer 2, or the filler 1 can be attached as a single layer to a film that can be biaxially stretched, the film is biaxially stretched, and the resin layer 2 is applied to the stretched film. By pressing and transferring the filler to the resin layer 2, the filler 1 is held on the resin layer 2. Alternatively, the filler 1 can be held on the resin layer 2 using a transfer mold.
 転写型を使用して樹脂層2にフィラー1を保持させる場合、転写型としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチールなどの金属等の無機材料や、各種樹脂等の有機材料などに対し、フォトリソグラフ法等の公知の開口形成方法によって開口を形成したもの、印刷法を応用したものを使用することができる。また、転写型は、板状、ロール状等の形状をとることができる。なお、本発明は上記の手法で限定されるものではない。 When the transfer layer is used to hold the filler 1 on the resin layer 2, examples of the transfer mold include inorganic materials such as silicon, various ceramics, glass, and stainless steel, and organic materials such as various resins. On the other hand, those in which openings are formed by a known opening forming method such as a photolithographic method or those in which a printing method is applied can be used. Further, the transfer mold can take a plate shape, a roll shape or the like. The present invention is not limited by the above method.
 また、フィラーを押し込んだ樹脂層2の、フィラーを押し込んだ側の表面、又はその反対面に、樹脂層2よりも低粘度の第2の樹脂層4を積層することができる。 Further, the second resin layer 4 having a lower viscosity than that of the resin layer 2 can be laminated on the surface of the resin layer 2 into which the filler has been pressed in, or on the opposite surface thereof.
 フィラー含有フィルムを物品に圧着したり、又はフィラー含有フィルムを用いて対向する物品を圧着したりする場合に、その圧着を経済的に行うには、フィラー含有フィルムはある程度の長尺であることが好ましい。そこでフィラー含有フィルムは長さを、好ましくは5m以上、より好ましくは10m以上、さらに好ましくは25m以上に製造する。一方、フィラー含有フィルムを過度に長くすると、フィラー含有フィルムを物品と圧着する場合に、従前の接続装置を使用することができなくなり、取り扱い性も劣る。そこで、フィラー含有フィルムは、その長さを好ましくは5000m以下、より好ましくは1000m以下、さらに好ましくは500m以下に製造する。フィラー含有フィルムのこのような長尺体は、巻芯に巻かれた巻装体とすることが取り扱い性に優れる点から好ましい。 When a filler-containing film is pressure-bonded to an article, or when an opposite article is pressure-bonded using a filler-containing film, the filler-containing film must be somewhat long in order to economically perform the pressure-bonding. preferable. Therefore, the length of the filler-containing film is preferably 5 m or more, more preferably 10 m or more, and even more preferably 25 m or more. On the other hand, if the filler-containing film is excessively long, the conventional connection device cannot be used when the filler-containing film is pressure-bonded to the article, and the handleability is also poor. Therefore, the length of the filler-containing film is preferably 5000 m or less, more preferably 1000 m or less, and even more preferably 500 m or less. Such a long body of the filler-containing film is preferably a wound body wound around a core from the viewpoint of excellent handleability.
<フィラー含有フィルムの使用方法>
 本発明のフィラー含有フィルムは、従前のフィラー含有フィルムと同様に物品に貼り合わせて使用することができ、フィラー含有フィルムを貼り合わせることができれば物品に特に制限はない。フィラー含有フィルムの用途に応じた種々の物品に圧着により、好ましくは熱圧着により貼着することができる。この貼り合わせ時には光照射を利用してもよく、熱と光を併用してもよい。例えば、フィラー含有フィルムの樹脂層が、該フィラー含有フィルムを貼り合わせる物品に対して十分な粘着性を有する場合、フィラー含有フィルムの樹脂層を物品に軽く押し付けることによりフィラー含有フィルムが一つの物品の表面に貼着したフィルム貼着体を得ることができる。この場合に、物品の表面は平面に限られず、凹凸があってもよく、全体として屈曲していてもよい。物品がフィルム状又は平板状である場合には、圧着ローラーを用いてフィラー含有フィルムを物品に貼り合わせてもよい。これにより、フィラー含有フィルムのフィラーと物品を直接的に接合させることもできる。
<Usage method of filler-containing film>
The filler-containing film of the present invention can be used by being attached to an article in the same manner as a conventional filler-containing film, and the article is not particularly limited as long as the filler-containing film can be attached. It can be attached to various articles according to the use of the filler-containing film by pressure bonding, preferably by heat pressure bonding. At the time of bonding, light irradiation may be used, and heat and light may be used in combination. For example, when the resin layer of the filler-containing film has sufficient adhesiveness to the article to which the filler-containing film is bonded, the filler-containing film is a single article by lightly pressing the resin layer of the filler-containing film against the article. The film sticking body stuck on the surface can be obtained. In this case, the surface of the article is not limited to a flat surface, and may be uneven, or may be bent as a whole. When the article is in the form of a film or a flat plate, the filler-containing film may be bonded to the article using a pressure roller. Thereby, the filler of a filler containing film and articles | goods can also be joined directly.
 また、対向する第1物品と第2物品の間にフィラー含有フィルムを介在させ、熱圧着ローラーや圧着ツールで対向する2つの物品を接合し、その物品間でフィラーが挟持されるようにしてもよい。また、フィラーと物品とを直接接触させないようにしてフィラー含有フィルムを物品で挟み込むようにしてもよい。 In addition, a filler-containing film is interposed between the first article and the second article facing each other, the two articles facing each other are joined by a thermocompression roller or a crimping tool, and the filler is sandwiched between the articles. Good. Further, the filler-containing film may be sandwiched between the articles so that the filler and the article are not in direct contact with each other.
 特に、フィラー含有フィルムを異方性導電フィルムとする場合、熱圧着ツールを用いて、該異方性導電フィルムを介してICチップ、ICモジュール、FPCなどの第1電子部品と、FPC、ガラス基板、プラスチック基板、リジッド基板、セラミック基板などの第2電子部品とを異方性導電接続する際に好ましく使用することができる。異方性導電フィルムを用いてICチップやウェーハーをスタックして多層化してもよい。なお、本発明の異方性導電フィルムで接続する電子部品は、上述の電子部品に限定されるものではない。近年、多様化している種々の電子部品に使用することができる。 In particular, when the filler-containing film is an anisotropic conductive film, using a thermocompression bonding tool, a first electronic component such as an IC chip, an IC module, or an FPC, an FPC, a glass substrate through the anisotropic conductive film It can be preferably used for anisotropic conductive connection with a second electronic component such as a plastic substrate, a rigid substrate, or a ceramic substrate. IC chips and wafers may be stacked using an anisotropic conductive film to form a multilayer. In addition, the electronic component connected with the anisotropic conductive film of this invention is not limited to the above-mentioned electronic component. It can be used for various electronic parts that have been diversified in recent years.
 したがって、本発明は、本発明のフィラー含有フィルムを種々の物品に圧着により貼着した貼合体や、貼合体の製造方法を包含する。特に、フィラー含有フィルムを異方性導電フィルムとする場合には、その異方性導電フィルムを用いて電子部品同士を異方性導電接続する接続構造体の製造方法や、それにより得られた接続構造体、即ち、本発明の異方性導電フィルムにより電子部品同士が異方性導電接続されている接続構造体も包含する。 Therefore, this invention includes the manufacturing method of the bonding body which bonded the filler containing film of this invention to various articles | goods by crimping, and a bonding body. In particular, when the filler-containing film is an anisotropic conductive film, a method for manufacturing a connection structure for anisotropic conductive connection between electronic components using the anisotropic conductive film, and a connection obtained thereby A structure, that is, a connection structure in which electronic components are anisotropically conductively connected by the anisotropic conductive film of the present invention is also included.
 異方性導電フィルムを用いた電子部品の接続方法としては、異方性導電フィルムが導電粒子分散層3の単層からなる場合、各種基板などの第2電子部品に対し、異方性導電フィルムの導電粒子1が表面に埋め込まれている側から仮貼りして仮圧着し、仮圧着した異方性導電フィルムの導電粒子1が表面に埋め込まれていない側にICチップ等の第1電子部品を合わせ、熱圧着することにより製造することができる。異方性導電フィルムの絶縁性樹脂層に熱重合開始剤と熱重合性化合物だけでなく、光重合開始剤と光重合性化合物(熱重合性化合物と同一でもよい)が含まれている場合、光と熱を併用した圧着方法でもよい。このようにすれば、導電粒子の不本意な移動は最小限に抑えることができる。また、導電粒子が埋め込まれていない側を第2電子部品に仮貼りして使用してもよい。なお、第2電子部品ではなく、第1電子部品に異方性導電フィルムを仮貼りすることもできる。 As a method for connecting an electronic component using an anisotropic conductive film, when the anisotropic conductive film is composed of a single layer of the conductive particle dispersion layer 3, the anisotropic conductive film is used for second electronic components such as various substrates. The first electronic component such as an IC chip on the side where the conductive particles 1 of the anisotropic conductive film temporarily bonded and temporarily bonded from the side where the conductive particles 1 are embedded in the surface is not embedded in the surface. And can be manufactured by thermocompression bonding. When the insulating resin layer of the anisotropic conductive film contains not only a thermal polymerization initiator and a thermal polymerizable compound, but also a photopolymerization initiator and a photopolymerizable compound (may be the same as the thermal polymerizable compound), A pressure bonding method using both light and heat may be used. In this way, unintentional movement of the conductive particles can be minimized. Further, the side on which the conductive particles are not embedded may be temporarily attached to the second electronic component for use. Note that the anisotropic conductive film may be temporarily attached to the first electronic component instead of the second electronic component.
 また、異方性導電フィルムが、導電粒子分散層3と第2の絶縁性樹脂層4の積層体から形成されている場合、導電粒子分散層3を各種基板などの第2電子部品に仮貼りして仮圧着し、仮圧着した異方性導電フィルムの第2の絶縁性樹脂層4側にICチップ等の第1電子部品をアライメントして載置し、熱圧着する。異方性導電フィルムの第2の絶縁性樹脂層4側を第1電子部品に仮貼りしてもよい。また、導電粒子分散層3側を第1電子部品に仮貼りして使用することもできる。 Further, when the anisotropic conductive film is formed of a laminate of the conductive particle dispersion layer 3 and the second insulating resin layer 4, the conductive particle dispersion layer 3 is temporarily attached to a second electronic component such as various substrates. Then, the first electronic component such as an IC chip is aligned and placed on the second insulating resin layer 4 side of the anisotropic conductive film that has been temporarily pressure-bonded, and thermocompression-bonded. The second insulating resin layer 4 side of the anisotropic conductive film may be temporarily attached to the first electronic component. Alternatively, the conductive particle dispersion layer 3 side can be temporarily attached to the first electronic component for use.
 以下、本発明のフィラー含有フィルムの一態様である異方性導電フィルムについて、実施例により具体的に説明する。
 実施例1~15、比較例1~3
(1)異方性導電フィルムの製造
 表1A及び表1Bに示した配合で、絶縁性樹脂層、第2の絶縁性樹脂層及びタック層を形成する樹脂組成物をそれぞれ調製した。
Hereinafter, the anisotropic conductive film which is one aspect of the filler-containing film of the present invention will be specifically described with reference to examples.
Examples 1 to 15 and Comparative Examples 1 to 3
(1) Manufacture of anisotropic conductive film Resin compositions for forming an insulating resin layer, a second insulating resin layer, and a tack layer were prepared using the formulations shown in Tables 1A and 1B.
 絶縁性樹脂層を形成する樹脂組成物をバーコーターでフィルム厚さ50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させ、PETフィルム上に表2A及び表2Bに示す厚さの絶縁性樹脂層を形成した。同様にして、第2の絶縁性樹脂層及びタック層を、それぞれ表2A及び表2Bに示す厚さでPETフィルム上に形成した。 The resin composition for forming the insulating resin layer is coated on a PET film having a film thickness of 50 μm with a bar coater, dried in an oven at 80 ° C. for 5 minutes, and the thicknesses shown in Tables 2A and 2B on the PET film. The insulating resin layer was formed. Similarly, a second insulating resin layer and a tack layer were formed on the PET film with the thicknesses shown in Table 2A and Table 2B, respectively.
 ただし、比較例3では絶縁性樹脂層を形成する樹脂組成物に導電粒子を混合し、導電粒子が単層でランダムに分散した絶縁性樹脂層(個数密度70000個/mm2)を形成した。 However, in Comparative Example 3, conductive particles were mixed with the resin composition forming the insulating resin layer to form an insulating resin layer (number density 70000 / mm 2 ) in which the conductive particles were dispersed in a single layer at random.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 一方、導電粒子1が平面視で図1Aに示す正方格子配列で粒子間距離が導電粒子の粒子径と等しくなり、導電粒子の個数密度が28000個/mm2となるように、金型を作製した。即ち、金型の凸部パターンが正方格子配列で、格子軸における凸部のピッチが平均導電粒子径(3μm)の2倍であり、格子軸と異方性導電フィルムの短手方向とのなす角度θが15°となる金型を作製し、公知の透明性樹脂のペレットを溶融させた状態で該金型に流し込み、冷やして固めることで、凹みが図1Aに示す配列パターンの樹脂型を形成した。 On the other hand, the mold is prepared so that the conductive particles 1 have a square lattice arrangement shown in FIG. 1A in plan view, the interparticle distance is equal to the particle diameter of the conductive particles, and the number density of the conductive particles is 28000 / mm 2. did. That is, the convex pattern of the mold is a square lattice arrangement, and the pitch of the convex portions on the lattice axis is twice the average conductive particle diameter (3 μm), which is formed by the lattice axis and the short direction of the anisotropic conductive film. A mold having an angle θ of 15 ° is manufactured, and a known transparent resin pellet is poured into the mold in a melted state, cooled, and solidified, whereby the resin mold having the array pattern shown in FIG. 1A is formed. Formed.
 導電粒子として、金属被覆樹脂粒子(積水化学工業(株)、AUL703、平均粒子径3μm)の表面に、特開2014-132567号公報の記載に準じて絶縁性微粒子(平均粒子径0.3μm)を付着させたものを用意し、この導電粒子を樹脂型の凹みに充填し、その上に上述の絶縁性樹脂層を被せ、60℃、0.5MPaで押圧することで貼着させた。そして、型から絶縁性樹脂層を剥離し、絶縁性樹脂層上の導電粒子を、加圧(押圧条件:60~70℃、0.5Mpa)することで絶縁性樹脂層に押し込み、導電粒子分散層の単層からなる異方性導電フィルムを作製した(実施例6~10、14及び比較例2)。導電粒子の埋め込みの状態は、押し込み条件でコントロールした。 As conductive particles, metal-coated resin particles (Sekisui Chemical Co., Ltd., AUL703, average particle diameter of 3 μm) are coated with insulating fine particles (average particle diameter of 0.3 μm) according to the description in JP-A No. 2014-132567. The conductive particles were filled in resin-type dents, and the above-mentioned insulating resin layer was covered thereon and adhered by pressing at 60 ° C. and 0.5 MPa. Then, the insulating resin layer is peeled from the mold, and the conductive particles on the insulating resin layer are pressed into the insulating resin layer by pressing (pressing conditions: 60 to 70 ° C., 0.5 Mpa) to disperse the conductive particles. An anisotropic conductive film composed of a single layer was produced (Examples 6 to 10, 14 and Comparative Example 2). The embedded state of the conductive particles was controlled by the indentation conditions.
 また、同様に作製した導電粒子分散層に、第2の絶縁性樹脂層を積層することにより2層タイプの異方性導電フィルムを作製した(実施例1~5、11~13、比較例1)。また、比較例3では、上述のように導電粒子を分散させた絶縁性樹脂層に第2の絶縁性樹脂層を積層した。この場合、第2の絶縁性樹脂層を積層する導電粒子分散層の表面は、表2に示したように、導電粒子を押し込んだ絶縁性樹脂層の表面、又はその反対側の表面とした。 Further, a two-layer type anisotropic conductive film was prepared by laminating the second insulating resin layer on the conductive particle dispersion layer prepared in the same manner (Examples 1 to 5, 11 to 13, Comparative Example 1). ). In Comparative Example 3, the second insulating resin layer was laminated on the insulating resin layer in which the conductive particles were dispersed as described above. In this case, as shown in Table 2, the surface of the conductive particle dispersion layer on which the second insulating resin layer was laminated was the surface of the insulating resin layer into which the conductive particles were pressed, or the surface on the opposite side.
 さらに、同様に作製した2層タイプの異方性導電フィルムに、タック層を積層することにより3層タイプの異方性導電フィルムを作製した(実施例15)。 Further, a three-layer type anisotropic conductive film was prepared by laminating a tack layer on a similarly prepared two-layer type anisotropic conductive film (Example 15).
(2)埋込状態
 各実施例1~15及び比較例1~3の異方性導電フィルムを、導電粒子を通る切断線で切断し、その断面を金属顕微鏡で観察した。また、導電粒子が異方性導電フィルムの表面に露出しているか、導電粒子が異方性導電フィルムのフィルム表面近傍にある実施例4~10、14、比較例2について、そのフィルム表面を金属顕微鏡で観察した。図12Aに実施例2の断面写真、図12Bに実施例3の断面写真を示し、図12Cに比較例3の断面写真、図13Aに実施例4の上面写真、図13Bに実施例8の上面写真を示す。
(2) Embedding State The anisotropic conductive films of Examples 1 to 15 and Comparative Examples 1 to 3 were cut along a cutting line passing through the conductive particles, and the cross section was observed with a metal microscope. In Examples 4 to 10, 14 and Comparative Example 2 where the conductive particles are exposed on the surface of the anisotropic conductive film or the conductive particles are in the vicinity of the film surface of the anisotropic conductive film, the film surface is made of metal. Observed with a microscope. 12A shows a cross-sectional photograph of Example 2, FIG. 12B shows a cross-sectional photograph of Example 3, FIG. 12C shows a cross-sectional photograph of Comparative Example 3, FIG. 13A shows a top view of Example 4, and FIG. 13B shows a top view of Example 8. Show photos.
 実施例1~7、9~15及び比較例1では、埋込率が60%未満の導電粒子も埋込率が100%を超える導電粒子も絶縁性樹脂層から露出しており、このうち実施例1~7、9~15では電粒子の周りの絶縁性樹脂層表面に凹み2bが観察された(図12A、図12B、図13A)。比較例3は埋込率が100%未満だが、絶縁性樹脂層から導電粒子は露出しておらず、凹み2b、2cは観察されなかった。なお、図12A、図12B、図12Cの写真において、導電粒子1の金属層1pは濃い色の円形に写り、金属層1pに付着している絶縁粒子層1qは薄い色に写っている。 In Examples 1 to 7, 9 to 15, and Comparative Example 1, conductive particles having an embedding rate of less than 60% and conductive particles having an embedding rate of more than 100% were exposed from the insulating resin layer. In Examples 1 to 7 and 9 to 15, dents 2b were observed on the surface of the insulating resin layer around the electroparticles (FIGS. 12A, 12B, and 13A). In Comparative Example 3, the embedding rate was less than 100%, but the conductive particles were not exposed from the insulating resin layer, and the recesses 2b and 2c were not observed. In the photographs of FIGS. 12A, 12B, and 12C, the metal layer 1p of the conductive particles 1 appears in a dark circle, and the insulating particle layer 1q attached to the metal layer 1p appears in a light color.
 実施例8では導電粒子が絶縁性樹脂層に完全に埋め込まれており、導電粒子が絶縁性樹脂層から露出していないが、導電粒子層の直上の絶縁性樹脂層表面に凹み2cが観察された(図13B)。比較例2は埋込率が100%より若干大きく、導電粒子が樹脂層から露出していないが、樹脂層の表面は平坦で、導電粒子の直上の樹脂層表面にも凹みは観察されなかった。 In Example 8, the conductive particles are completely embedded in the insulating resin layer, and the conductive particles are not exposed from the insulating resin layer, but a dent 2c is observed on the surface of the insulating resin layer immediately above the conductive particle layer. (FIG. 13B). In Comparative Example 2, the embedding rate was slightly larger than 100%, and the conductive particles were not exposed from the resin layer, but the surface of the resin layer was flat and no dent was observed on the surface of the resin layer immediately above the conductive particles. .
(3)評価
 (1)で作製した実施例及び比較例の異方性導電フィルムに対し、以下のようにして(a)初期導通抵抗、(b)導通信頼性、(c)粒子捕捉性、(d)位置ズレを測定ないし評価した。結果を表2A及び表2Bに示す。
(3) Evaluation For the anisotropic conductive films of Examples and Comparative Examples prepared in (1), (a) initial conduction resistance, (b) conduction reliability, (c) particle trapping property, (D) The positional deviation was measured or evaluated. The results are shown in Table 2A and Table 2B.
(a)初期導通抵抗
 各実施例及び比較例の異方性導電フィルムを、接続に十分な面積で截断し、導通特性の評価用ICとガラス基板との間に挟み、加熱加圧(180℃、60MPa、5秒)して各評価用接続物を得、得られた評価用接続物の導通抵抗を4端子法で測定した。初期導通抵抗は実用上2Ω以下であることが好ましく、0.6Ω以下がより好ましい。
(A) Initial conduction resistance The anisotropic conductive film of each Example and Comparative Example is cut with a sufficient area for connection, and sandwiched between an IC for evaluation of conduction characteristics and a glass substrate, and heated and pressurized (180 ° C. 60 MPa, 5 seconds) to obtain each evaluation connection, and the conduction resistance of the obtained evaluation connection was measured by a four-terminal method. The initial conduction resistance is practically preferably 2Ω or less, more preferably 0.6Ω or less.
 ここで、評価用ICとガラス基板は、それらの端子パターンが対応しており、サイズは次の通りである。また、評価用ICとガラス基板を接続する際には、異方性導電フィルムの長手方向とバンプの短手方向を合わせた。 Here, the IC for evaluation and the glass substrate correspond to their terminal patterns, and the sizes are as follows. Further, when connecting the evaluation IC and the glass substrate, the longitudinal direction of the anisotropic conductive film and the short direction of the bump were matched.
導通特性の評価用IC
 外形 1.8×20.0mm
 厚み 0.5mm
 バンプ仕様 サイズ30×85μm、バンプ間距離50μm、バンプ高さ15μm
IC for evaluating conduction characteristics
Outline 1.8 × 20.0mm
Thickness 0.5mm
Bump specifications Size 30 × 85μm, distance between bumps 50μm, bump height 15μm
ガラス基板(ITO配線)
 ガラス材質 コーニング社製1737F
 外形 30×50mm
 厚み 0.5mm
 電極 ITO配線 
Glass substrate (ITO wiring)
Glass material 1737F made by Corning
Outline 30 × 50mm
Thickness 0.5mm
Electrode ITO wiring
(b)導通信頼性
 (a)で作製した評価用接続物を、温度85℃、湿度85%RHの恒温槽に500時間おいた後の導通抵抗を、初期導通抵抗と同様に測定した。導通信頼性は実用上6Ω以下であることが好ましく、4Ω以下がより好ましい。
(B) Conduction reliability The conduction resistance after placing the evaluation connection prepared in (a) in a thermostatic bath at a temperature of 85 ° C. and a humidity of 85% RH for 500 hours was measured in the same manner as the initial conduction resistance. The conduction reliability is practically preferably 6Ω or less, more preferably 4Ω or less.
(c)粒子捕捉性
 粒子捕捉性の評価用ICを使用し、この評価用ICと、端子パターンが対応するガラス基板(ITO配線)とを、アライメントを6μmずらして加熱加圧(180℃、60MPa、5秒)し、評価用ICのバンプと基板の端子とが重なる6μm×66.6μmの領域の100個について導電粒子の捕捉数を計測し、最低捕捉数を求め、次の基準で評価した。実用上、B評価以上であることが好ましい。
(C) Particle trapping property Using an IC for particle trapping evaluation, this evaluation IC and the glass substrate (ITO wiring) corresponding to the terminal pattern are heated and pressurized (180 ° C., 60 MPa) while shifting the alignment by 6 μm. 5 seconds), the number of trapped conductive particles was measured for 100 of the 6 μm × 66.6 μm region where the bump of the IC for evaluation and the terminal of the substrate overlap, and the minimum number of traps was determined and evaluated according to the following criteria: . Practically, it is preferable that it is B evaluation or more.
 粒子捕捉性の評価用IC
 外形 1.6×29.8mm
 厚み 0.3mm
 バンプ仕様 サイズ12×66.6μm、バンプピッチ22μm(L/S=12μm/10μm)、バンプ高さ12μm
IC for particle trapping evaluation
Outline 1.6 × 29.8mm
Thickness 0.3mm
Bump specifications Size 12 × 66.6μm, bump pitch 22μm (L / S = 12μm / 10μm), bump height 12μm
 粒子捕捉性評価基準
 A 5個以上
 B 3個以上5個未満
 C 3個未満
Particle trapping evaluation criteria A 5 or more B 3 or more and less than 5 C 3 or less
(d)位置ズレ
 (c)と同様の評価用ICを使用し、この評価用ICと、端子パターンが対応するガラス基板(ITO配線)とを位置合わせして加熱加圧(180℃、60MPa、5秒)した。この場合、金属顕微鏡を用いて加熱加圧前の粒子ピッチと、加熱加圧後の粒子ピッチ(ガラス側からの圧痕観察から計測)をそれぞれ計測し、それぞれの平均を求め、次の式により粒子ギャップを計算し、次の基準で評価した。実用上、C評価以上であることが好ましい。
(D) Position shift Using the same evaluation IC as in (c), this evaluation IC and the glass substrate (ITO wiring) corresponding to the terminal pattern are aligned and heated and pressurized (180 ° C., 60 MPa, 5 seconds). In this case, the particle pitch before heating and pressurization and the particle pitch after heating and pressurization (measured from indentation observation from the glass side) are measured using a metal microscope, and the average of each is obtained. The gap was calculated and evaluated according to the following criteria. Practically, it is preferable that it is C evaluation or more.
 なお、比較例3では導電粒子がランダムに分散しているため、位置ズレの評価は行っていない。 In Comparative Example 3, since the conductive particles are randomly dispersed, the positional deviation is not evaluated.
 粒子ギャップ=100*P1/P0
(式中、P1:加熱加圧後の粒子ピッチの平均、
    P0:加熱加圧前の粒子ピッチの平均)
Particle gap = 100 * P1 / P0
(Wherein, P1: average particle pitch after heating and pressurization,
P0: average particle pitch before heating and pressing)
 位置ズレ評価基準
 A 粒子ギャップ160%以下
 B 粒子ギャップ160%超180%以下
 C 粒子ギャップ180%超200%以下
 D 粒子ギャップ200%超


































Evaluation criteria for positional deviation A A Particle gap of 160% or less B Particle gap of over 160% 180% or less C Particle gap of over 180% 200% or less D Particle gap of over 200%


































Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003





Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004








表2A及び表2Bから、導電粒子の埋込率が60~105%の間にあり、導電粒子が絶縁性樹脂層から突出し、かつ凹み2bを有する実施例1~3や、導電粒子が絶縁性樹脂層に完全に埋まり、かつ凹み2cを有する実施例8は初期導通抵抗及び導通信頼性が十分に低く、粒子捕捉性及び位置ズレの評価も良好であるが、埋込率がこの範囲にあり導電粒子が絶縁性樹脂層から突出していても凹み2bが無い比較例1と、導電粒子が絶縁性樹脂層に完全に埋まり、凹み2cが無い比較例2は位置ズレがD評価であり、接続時に導電粒子が保持できず、ファインピッチ接続には対応できないことがわかる。また、導電粒子1が絶縁性樹脂層2に覆われ、隣り合う導電粒子間の中央部における絶縁性樹脂層2の表面から突出しているが、該導電粒子1の近傍に凹み2bも凹み2cも無い比較例3は導通信頼性が劣っていることがわかる。このことから、絶縁性樹脂層2の表面が導電粒子1の形状に沿って隆起していると異方性導電接続時に導電粒子が樹脂流動の影響を受け易くなり、また導電粒子の端子への押し込みが不足することが推察できる。 From Table 2A and Table 2B, Examples 1 to 3 in which the embedding rate of the conductive particles is between 60% and 105%, the conductive particles protrude from the insulating resin layer, and have the dent 2b, and the conductive particles are insulating. Example 8 completely embedded in the resin layer and having the recess 2c has sufficiently low initial conduction resistance and conduction reliability, and evaluation of particle trapping property and positional deviation is good, but the embedding rate is in this range. In Comparative Example 1 in which the conductive particles protrude from the insulating resin layer and there is no dent 2b, and in Comparative Example 2 in which the conductive particles are completely embedded in the insulating resin layer and there is no dent 2c, the positional deviation is D evaluation. It can be seen that sometimes the conductive particles cannot be held, and the fine pitch connection cannot be supported. In addition, the conductive particles 1 are covered with the insulating resin layer 2 and protrude from the surface of the insulating resin layer 2 in the central portion between the adjacent conductive particles, but the recesses 2b and 2c are formed in the vicinity of the conductive particles 1. It can be seen that Comparative Example 3, which does not, has poor conduction reliability. Therefore, when the surface of the insulating resin layer 2 is raised along the shape of the conductive particles 1, the conductive particles are easily affected by the resin flow during anisotropic conductive connection, and the conductive particles are connected to the terminals of the conductive particles. It can be inferred that the indentation is insufficient.
 また、上述の実施例1~3、8は絶縁性樹脂層の最低溶融粘度が2000Pa・s以上、60℃溶融粘度が3000Pa・s以上であるが、比較例1、2は最低溶融粘度が1000Pa・s、60℃溶融粘度が1500Pa・sであり、導電粒子の押し込み条件の調整により押し込み時の粘度が低くなったために凹み2b、2cが形成されなかったことがわかる。一方、比較例3は、最低溶融粘度や60℃粘度は実施例1~3と同じ程度であるが、絶縁性樹脂層に導電粒子を押し込むことにより導電粒子分散層を形成したのではなく、絶縁性樹脂層を形成する樹脂組成物に導電粒子を分散させ、それを塗布することにより導電粒子分散層を形成したため、凹み2b、2cが形成されていない。 In Examples 1 to 3 and 8 described above, the minimum melt viscosity of the insulating resin layer is 2000 Pa · s or more and the 60 ° C. melt viscosity is 3000 Pa · s or more. In Comparative Examples 1 and 2, the minimum melt viscosity is 1000 Pa. S, the melt viscosity at 60 ° C. is 1500 Pa · s, and it can be seen that the depressions 2b and 2c were not formed because the viscosity at the time of indentation was lowered by adjusting the indentation conditions of the conductive particles. On the other hand, in Comparative Example 3, the minimum melt viscosity and the viscosity at 60 ° C. are the same as those in Examples 1 to 3, but the conductive particle dispersion layer was not formed by pushing the conductive particles into the insulating resin layer. The conductive particles are dispersed in the resin composition for forming the conductive resin layer and coated to form the conductive particle dispersed layer, so that the recesses 2b and 2c are not formed.
 また、実施例3(最低溶融粘度6000Pa・s、60℃溶融粘度8000Pa・s)に対し、これらが実施例11(最低溶融粘度2000Pa・s、60℃溶融粘度3000Pa・s)のように低くても、実施例12(最低溶融粘度10000Pa・s、60℃溶融粘度15000Pa・s)のように高くても、導電粒子の周りに凹み2bができる場合には、位置ズレはB評価以上となって実用上問題ないことがわかる。 Further, in contrast to Example 3 (minimum melt viscosity 6000 Pa · s, 60 ° C. melt viscosity 8000 Pa · s), these are as low as Example 11 (minimum melt viscosity 2000 Pa · s, 60 ° C. melt viscosity 3000 Pa · s). However, even if it is high as in Example 12 (minimum melt viscosity of 10000 Pa · s, 60 ° C. melt viscosity of 15000 Pa · s), when the dent 2b is formed around the conductive particles, the positional deviation is more than B evaluation. It turns out that there is no problem in practical use.
 さらに、上述の実施例1~3、8は導電粒子の埋込率が60~105%の間にあるが、これと比べると埋込率が低い60%未満の実施例13は位置ズレの評価が低くなることがわかる。 Furthermore, in Examples 1 to 3 and 8 described above, the embedding rate of the conductive particles is between 60 to 105%, but in comparison with this, Example 13 having an embedding rate of less than 60% is evaluated for positional deviation. It turns out that becomes low.
 実施例4、5と実施例6、7から、異方性導電フィルムを導電粒子分散層と第2の絶縁性樹脂層の2層タイプとした場合も、導電粒子分散層の単層とした場合も、粒子捕捉性や位置ズレの評価が実用上良好であることがわかる。また、実施例2、3、13と実施例15から、2層タイプの異方性導電フィルムにさらにタック層を設けて3層タイプとしても粒子捕捉性が実用上良好であることがわかる。 From Examples 4 and 5 and Examples 6 and 7, when the anisotropic conductive film is a two-layer type of a conductive particle dispersion layer and a second insulating resin layer, or a single layer of a conductive particle dispersion layer It can also be seen that the evaluation of particle trapping property and positional deviation is practically good. Moreover, from Examples 2, 3, 13 and Example 15, it is found that the particle trapping property is practically good even when a two-layer type anisotropic conductive film is further provided with a tack layer to form a three-layer type.
 実施例3と実施例4、5から、異方性導電フィルムを導電粒子分散層と第2の絶縁性樹脂層の2層タイプとする場合に、絶縁性樹脂層の導電粒子を押し込んだ面に第2の絶縁性樹脂層を積層した場合も、それと反対側に第2の絶縁性樹脂層を積層した場合も粒子捕捉性や位置ズレの評価が実用上良好であることがわかる。 From Example 3 and Examples 4 and 5, when the anisotropic conductive film is a two-layer type of the conductive particle dispersion layer and the second insulating resin layer, on the surface into which the conductive particles of the insulating resin layer are pressed. It can be seen that evaluation of particle trapping property and positional deviation is practically good both when the second insulating resin layer is laminated and when the second insulating resin layer is laminated on the opposite side.
 さらに実施例6、7、9、10と実施例14から、絶縁性樹脂層の層厚Laと導電粒子の粒子径Dとの比La/Dが10以下に対し10を超えると、位置ズレの評価が低くなることがわかる。 Furthermore, from Examples 6, 7, 9, 10 and Example 14, when the ratio La / D between the layer thickness La of the insulating resin layer and the particle diameter D of the conductive particles exceeds 10 with respect to 10 or less, the positional deviation It turns out that evaluation becomes low.
 なお、実施例4、5の異方性導電フィルムの導電粒子が露出している表面に希釈した同一の樹脂組成物を噴霧し、その表面を略平滑にしたものについて、同様の評価をしたところ、略同等の結果が得られた。 In addition, when the same resin composition diluted on the surface where the conductive particles of the anisotropic conductive films of Examples 4 and 5 are exposed is sprayed and the surface thereof is substantially smoothed, the same evaluation is performed. As a result, almost equivalent results were obtained.
 また、全ての実施例の初期導通抵抗の評価用接続物に対し、特開2016-085983号公報の実施例に記載されているショート数の測定方法と同様にしてバンプ間100個におけるショート数を確認したところ、ショートしているものはなかった。さらに、全ての実施例の異方性導電フィルムについて、特開2016-085982号公報の実施例に記載されているショート発生率の測定方法にしたがいショート発生率を求めたところ、全て50ppm未満であり実用上問題がないことを確認した。 In addition, the number of shorts in 100 bumps is set for the connection for evaluation of the initial conduction resistance of all the examples in the same manner as the method for measuring the number of shorts described in the examples of Japanese Patent Application Laid-Open No. 2016-059883. I confirmed that there was no short circuit. Further, when the short-circuit occurrence rates were determined for the anisotropic conductive films of all the examples according to the measurement method of the short-circuit occurrence rate described in the examples of JP-A-2016-059882, all were less than 50 ppm. It was confirmed that there was no problem in practical use.
 実験例1~4
(異方性導電フィルムの作製)
 COG接続に使用する異方性導電フィルムについて、絶縁性樹脂層の樹脂組成がフィルム形成能と導通特性に及ぼす影響を調べるために、表3に示す配合で絶縁性樹脂層と第2の絶縁性樹脂層を形成する樹脂組成物を調製した。この場合、樹脂組成物の調製条件により樹脂組成物の最低溶融粘度を調整した。得られた樹脂組成物を使用して、実施例1と同様にして絶縁性樹脂層を形成し、その絶縁性樹脂層に導電粒子を押し込むことにより導電粒子分散層の単層からなる異方性導電フィルムを作製し、さらにその絶縁性樹脂層の導電粒子を押し込んだ側に第2の絶縁性樹脂層を積層して表4に示す異方性導電フィルムを作製した。この場合、導電粒子の配置は実施例1と同じものである。また、導電粒子の押し込み条件を適宜調整することにより、導電粒子は表4に示す埋込状態となった。
Experimental Examples 1-4
(Preparation of anisotropic conductive film)
In order to investigate the influence of the resin composition of the insulating resin layer on the film forming ability and the conduction characteristics of the anisotropic conductive film used for the COG connection, the insulating resin layer and the second insulating property are blended as shown in Table 3. A resin composition for forming a resin layer was prepared. In this case, the minimum melt viscosity of the resin composition was adjusted according to the resin composition preparation conditions. Using the obtained resin composition, an insulating resin layer is formed in the same manner as in Example 1, and the conductive particles are pressed into the insulating resin layer to form an anisotropic layer composed of a single layer of the conductive particle dispersion layer. A conductive film was prepared, and a second insulating resin layer was laminated on the side where the conductive particles of the insulating resin layer were pushed, to prepare an anisotropic conductive film shown in Table 4. In this case, the arrangement of the conductive particles is the same as in Example 1. Further, the conductive particles were brought into the embedded state shown in Table 4 by appropriately adjusting the indentation conditions of the conductive particles.
 この異方性導電フィルムの作成工程において、絶縁性樹脂層に導電粒子を押し込んだ後に実験例4ではフィルム形状が維持されなかった(フィルム形状評価:NG)が、それ以外の実験例ではフィルム形状が維持された(フィルム形状評価:OK)。そのため、実験例4を除く実験例の異方性導電フィルムについて導電粒子の埋込状態を金属顕微鏡で観察して計測し、さらに以降の評価を行った。 In this anisotropic conductive film production process, the film shape was not maintained in Experimental Example 4 after the conductive particles were pushed into the insulating resin layer (film shape evaluation: NG), but in the other experimental examples, the film shape was not maintained. Was maintained (film shape evaluation: OK). Therefore, the embedded state of the conductive particles in the anisotropic conductive films of the experimental examples except experimental example 4 was observed and measured with a metal microscope, and further evaluation was performed.
 なお、実験例4を除く各実験例では絶縁性樹脂層から露出した導電粒子の周りの凹み、導電粒子直上の絶縁性樹脂層の凹み、又はこれらの双方が観察された。表4には、各実験例ごとに凹みが最も明確に観察されたものの計測値を示した。観察された埋込状態は前述した好ましい範囲を満たしていた。 In each experimental example except experimental example 4, a dent around the conductive particles exposed from the insulating resin layer, a dent in the insulating resin layer immediately above the conductive particles, or both of these were observed. Table 4 shows the measured values of the dents most clearly observed for each experimental example. The observed embedded state satisfied the above-described preferable range.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(評価)
(a)初期導通抵抗及び導通信頼性
 実施例1と同様にして初期導通抵抗と導通信頼性を評価した。この場合の評価基準は次の通りである。結果を表4に示す。
(Evaluation)
(A) Initial conduction resistance and conduction reliability The initial conduction resistance and conduction reliability were evaluated in the same manner as in Example 1. The evaluation criteria in this case are as follows. The results are shown in Table 4.
 初期導通抵抗の評価基準
  OK:2.0Ω以下
  NG:2.0Ωより大きい
Evaluation criteria for initial conduction resistance OK: 2.0Ω or less NG: Greater than 2.0Ω
 導通信頼性の評価基準
  OK:6.0Ω以下
  NG:6.0Ωより大きい
Evaluation standard of conduction reliability OK: 6.0Ω or less NG: Greater than 6.0Ω
(b)粒子捕捉性
 実施例1と同様にして粒子捕捉性を評価した。
 その結果、実験例1~3のいずれもB判定以上であった。
(B) Particle trapping property The particle trapping property was evaluated in the same manner as in Example 1.
As a result, all of Experimental Examples 1 to 3 were B judgment or higher.
(c)ショート発生率
 実施例1と同様にしてショート発生率を評価した。
 その結果、実験例1~3のいずれも50ppm未満であり実用上問題がないことを確認した。
(C) Short-circuit occurrence rate The short-circuit occurrence rate was evaluated in the same manner as in Example 1.
As a result, it was confirmed that all of Experimental Examples 1 to 3 were less than 50 ppm and there was no practical problem.
 表4から絶縁性樹脂層の最低溶融粘度が800Pa・sであると、導電粒子近傍の絶縁性樹脂層が凹みを有するフィルムの形成は難しいことがわかる。一方、絶縁性樹脂層の最低溶融粘度が1500Pa・s以上であると、導電粒子の埋込時の条件の調整により導電粒子近傍の絶縁性樹脂層の表面に凹みを形成できること、こうして得られた異方性導電フィルムはCOG用に導通特性が良好であることがわかる。なお、実験例1~3の全てにおいて初期導通抵抗は0.6Ω以下であり、導通信頼性は4Ω以下となり、良好な結果を示していた。 From Table 4, it can be seen that when the minimum melt viscosity of the insulating resin layer is 800 Pa · s, it is difficult to form a film having a dent in the insulating resin layer near the conductive particles. On the other hand, when the minimum melt viscosity of the insulating resin layer is 1500 Pa · s or more, a depression can be formed on the surface of the insulating resin layer in the vicinity of the conductive particles by adjusting the conditions when the conductive particles are embedded, thus obtained. It can be seen that the anisotropic conductive film has good conduction characteristics for COG. In all of Experimental Examples 1 to 3, the initial conduction resistance was 0.6Ω or less, and the conduction reliability was 4Ω or less, indicating good results.
 実験例5~8
(異方性導電フィルムの作製)
 FOG接続に使用する異方性導電フィルムについて、絶縁性樹脂層の樹脂組成がフィルム形成能と導通特性に及ぼす影響を調べるために、表5に示す配合で絶縁性樹脂層と第2の絶縁性樹脂層を形成する樹脂組成物を調製した。この場合、導電粒子の配置は個数密度15000個/mm2の6方格子配列とし、その格子軸の一つを異方性導電フィルムの長手方向に対して15°傾斜させた。また、樹脂組成物の調製条件により樹脂組成物の最低溶融粘度を調整した。得られた樹脂組成物を使用して、実施例1と同様にして絶縁性樹脂層を形成し、その絶縁性樹脂層に導電粒子を押し込むことにより導電粒子分散層の単層からなる異方性導電フィルムを作製し、さらにその絶縁性樹脂層の導電粒子を押し込んだ側に第2の絶縁性樹脂層を積層して表6に示す異方性導電フィルムを作製した。この場合、導電粒子の押し込み条件を適宜調整することにより、導電粒子は表6に示す埋込状態となった。
Experimental Examples 5-8
(Preparation of anisotropic conductive film)
In order to investigate the influence of the resin composition of the insulating resin layer on the film forming ability and the conduction characteristics of the anisotropic conductive film used for FOG connection, the insulating resin layer and the second insulating property are blended as shown in Table 5 A resin composition for forming a resin layer was prepared. In this case, the conductive particles were arranged in a hexagonal lattice arrangement with a number density of 15000 / mm 2 , and one of the lattice axes was inclined 15 ° with respect to the longitudinal direction of the anisotropic conductive film. Moreover, the minimum melt viscosity of the resin composition was adjusted according to the preparation conditions of the resin composition. Using the obtained resin composition, an insulating resin layer is formed in the same manner as in Example 1, and the conductive particles are pressed into the insulating resin layer to form an anisotropic layer composed of a single layer of the conductive particle dispersion layer. A conductive film was prepared, and a second insulating resin layer was laminated on the side where the conductive particles of the insulating resin layer were pressed, to prepare anisotropic conductive films shown in Table 6. In this case, the conductive particles were in the embedded state shown in Table 6 by appropriately adjusting the indentation conditions of the conductive particles.
 この異方性導電フィルムの作成工程において、絶縁性樹脂層に導電粒子を押し込んだ後に実験例8ではフィルム形状が維持されなかった(フィルム形状評価:NG)が、それ以外の実験例ではフィルム形状が維持された(フィルム形状評価:OK)。そのため、実験例8を除く実験例の異方性導電フィルムについて導電粒子の埋込状態を金属顕微鏡で観察して計測し、さらに以降の評価を行った。 In this anisotropic conductive film preparation process, the film shape was not maintained in Experimental Example 8 after the conductive particles were pushed into the insulating resin layer (film shape evaluation: NG), but in the other experimental examples, the film shape was not maintained. Was maintained (film shape evaluation: OK). Therefore, the embedded state of the conductive particles was observed and measured for the anisotropic conductive films of the experimental examples except experimental example 8, and further evaluation was performed.
 なお、実験例8を除く各実験例には絶縁性樹脂層から露出した導電粒子の周りの凹み、導電粒子直上の絶縁性樹脂層の凹み、又はこれらの双方が観察された。表6には、各実験例ごとに凹みが最も明確に観察されたものの計測値を示した。観察された埋込状態は前述した好ましい範囲を満たしていた。 In each experimental example except Experimental Example 8, a dent around the conductive particles exposed from the insulating resin layer, a dent in the insulating resin layer directly above the conductive particles, or both of these were observed. Table 6 shows the measured values of the dents most clearly observed for each experimental example. The observed embedded state satisfied the above-described preferable range.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(評価)
(a)初期導通抵抗及び導通信頼性
 次のようにして(i)初期導通抵抗と(ii)導通信頼性を評価した。結果を表6に示す。
(Evaluation)
(A) Initial conduction resistance and conduction reliability (i) Initial conduction resistance and (ii) conduction reliability were evaluated as follows. The results are shown in Table 6.
(i)初期導通抵抗
 各実験例で得た異方性導電フィルムを接続に十分な面積で裁断し、導通特性の評価用FPCとノンアルカリガラス基板との間に挟み、熱圧着ツールのツール幅1.5mmで加熱加圧(180℃、4.5MPa、5秒)し、各評価用接続物を得た。得られた評価用接続物の導通抵抗を4端子法で測定し、その測定値を次の基準で評価した。
(I) Initial conduction resistance The anisotropic conductive film obtained in each experimental example was cut in an area sufficient for connection, and sandwiched between an FPC for evaluating conduction characteristics and a non-alkali glass substrate, and the tool width of the thermocompression bonding tool Heating and pressing were performed at 1.5 mm (180 ° C., 4.5 MPa, 5 seconds) to obtain each evaluation connection. The conduction resistance of the obtained connection for evaluation was measured by a four-terminal method, and the measured value was evaluated according to the following criteria.
 導通特性の評価用FPC:
  端子ピッチ 20μm
  端子幅/端子間スペース 8.5μm/11.5μm
  ポリイミドフィルム厚(PI)/銅箔厚(Cu)=38/8、Sn plating
FPC for evaluation of conduction characteristics:
Terminal pitch 20μm
Terminal width / inter-terminal space 8.5μm / 11.5μm
Polyimide film thickness (PI) / copper foil thickness (Cu) = 38/8, Sn plating
 ノンアルカリガラス基板:
  電極 ITO配線
  厚み 0.7mm
Non-alkali glass substrate:
Electrode ITO wiring thickness 0.7mm
 初期導通抵抗の評価基準
  OK:2.0Ω未満
  NG:2.0Ω以上
Evaluation criteria for initial conduction resistance OK: Less than 2.0Ω NG: 2.0Ω or more
(ii)導通信頼性
 (i)で作製した評価用接続物を、温度85℃、湿度85%RHの恒温槽に500時間置き、その後の導通抵抗を初期導通抵抗と同様に測定し、その測定値を次の基準で評価した。
(Ii) Conduction reliability The connected object for evaluation produced in (i) is placed in a thermostatic bath at a temperature of 85 ° C. and a humidity of 85% RH for 500 hours, and the subsequent conduction resistance is measured in the same manner as the initial conduction resistance. Values were evaluated according to the following criteria.
 導通信頼性の評価基準
  OK:5.0Ω未満
  NG:5.0Ω以上
(b)粒子捕捉性
 (i)で作製した評価用接続物の端子100個について導電粒子の捕捉数を計測し、最低捕捉数を求めた。最低捕捉数が10個以上であれば、実用上問題はない。
 実験例5~7のいずれも最低捕捉数が10個以上であった。
Evaluation criteria of conduction reliability OK: Less than 5.0Ω NG: 5.0Ω or more (b) Particle trapping property The number of trapped conductive particles is measured for 100 terminals of the connection object for evaluation prepared in (i), and the minimum trapping is achieved. I asked for a number. If the minimum number of captures is 10 or more, there is no practical problem.
In all of Experimental Examples 5 to 7, the minimum number of captures was 10 or more.
(c)ショート発生率
 (i)で作製した評価用接続物のショート数を計測し、計測されたショート数と評価用接続物のギャップ数からショート発生率を求めた。実験例5~7のいずれもショート発生率は50ppm未満であり実用上問題がないことを確認した。
(C) Short-circuit occurrence rate The number of shorts of the connection object for evaluation produced in (i) was measured, and the short-circuit occurrence rate was obtained from the measured number of shorts and the number of gaps of the connection object for evaluation. In all of Experimental Examples 5 to 7, the short-circuit occurrence rate was less than 50 ppm, and it was confirmed that there was no practical problem.
 表6から絶縁性樹脂層の最低溶融粘度が800Pa・sであると導電粒子近傍の絶縁性樹脂層の表面に凹みを有するフィルムの形成は難しいことがわかる。一方、絶縁性樹脂層の最低溶融粘度が1500Pa・s以上であると、導電粒子の埋込時の条件の調整により導電粒子近傍の絶縁性樹脂層の表面に凹みを形成できること、こうして得られた異方性導電フィルムはFOG用に導通特性が良好であることがわかる。 It can be seen from Table 6 that when the minimum melt viscosity of the insulating resin layer is 800 Pa · s, it is difficult to form a film having a dent on the surface of the insulating resin layer near the conductive particles. On the other hand, when the minimum melt viscosity of the insulating resin layer is 1500 Pa · s or more, a depression can be formed on the surface of the insulating resin layer in the vicinity of the conductive particles by adjusting the conditions when the conductive particles are embedded, thus obtained. It can be seen that the anisotropic conductive film has good conduction characteristics for FOG.
 1 フィラー、導電粒子
 1a フィラー頂部
 1p 導電粒子の金属層
 1q 絶縁粒子層
 2 樹脂層
 2a 樹脂層の表面
 2b 凹み
 2c 凹み
 2p 接平面
 2q 突出部分
 3 フィラー分散層、導電粒子分散層
 4 第2の樹脂層、第2の絶縁性樹脂層
10A、10B、10C、10C’、10D、10E、10F、10G、10H、10I フィラー含有フィルム、異方性導電フィルム
20 端子
 A 格子軸
 D フィラーの粒子径、導電粒子の粒子径
 La 樹脂層の層厚
 Lb 埋込量(隣接するフィラー間の中央部における接平面からのフィラーの最深部の距離)
 Lc 露出径
 Ld 凹みの最大径
 Le フィラーの露出部分の周りの凹みの最大深さ
 Lf フィラーの直上の樹脂における凹みの最大深さ
 θ 端子の長手方向と導電粒子の配列の格子軸とのなす角度
DESCRIPTION OF SYMBOLS 1 Filler, conductive particle 1a Filler top part 1p Metal layer of conductive particle 1q Insulating particle layer 2 Resin layer 2a Surface of resin layer 2b Recess 2c Recess 2p Tangent plane 2q Protruding part 3 Filler dispersion layer, conductive particle dispersion layer 4 Second resin Layer, second insulating resin layer 10A, 10B, 10C, 10C ', 10D, 10E, 10F, 10G, 10H, 10I Filler-containing film, anisotropic conductive film 20 Terminal A Grid axis D Filler particle diameter, conductivity Particle diameter of particle La Layer thickness of resin layer Lb Embedding amount (Distance of deepest part of filler from tangential plane in central part between adjacent fillers)
Lc Exposed diameter Ld Maximum diameter of the recess Le Maximum depth of the recess around the exposed portion of the filler Lf Maximum depth of the recess in the resin immediately above the filler θ Angle formed between the longitudinal direction of the terminal and the lattice axis of the conductive particle array

Claims (27)

  1.  フィラーが樹脂層に分散しているフィラー分散層を有するフィラー含有フィルムであって、
    フィラー近傍の樹脂層の表面が、隣接するフィラー間の中央部における樹脂層の接平面に対して凹みを有するフィラー含有フィルム。
    A filler-containing film having a filler dispersion layer in which a filler is dispersed in a resin layer,
    A filler-containing film in which the surface of the resin layer in the vicinity of the filler has a dent with respect to the tangent plane of the resin layer at the center between adjacent fillers.
  2.  樹脂層から露出しているフィラーの周囲の樹脂層の表面に凹みが形成されている請求項1記載のフィラー含有フィルム。 2. The filler-containing film according to claim 1, wherein a dent is formed on the surface of the resin layer around the filler exposed from the resin layer.
  3.  接平面からの凹みの深さLeとフィラーの粒子径Dとの比(Le/D)が50%未満である請求項2記載のフィラー含有フィルム。 The filler-containing film according to claim 2, wherein the ratio (Le / D) of the depth Le of the dent from the tangent plane to the particle diameter D of the filler is less than 50%.
  4.  凹みの最大径Ldとフィラーの粒子径Dとの比(Ld/D)が100%以上である請求項2又は3記載のフィラー含有フィルム。 The filler-containing film according to claim 2 or 3, wherein a ratio (Ld / D) between the maximum diameter Ld of the dent and the particle diameter D of the filler is 100% or more.
  5.  樹脂層から露出することなく樹脂層内に埋まっているフィラーの直上の樹脂層の表面に凹みが形成されている請求項1記載のフィラー含有フィルム。 2. The filler-containing film according to claim 1, wherein a dent is formed on the surface of the resin layer immediately above the filler buried in the resin layer without being exposed from the resin layer.
  6.  隣接するフィラー間の中央部における樹脂層の接平面にフィラーが接しており、その接点の周囲の樹脂層の表面に凹みが形成されている請求項1記載のフィラー含有フィルム。 The filler-containing film according to claim 1, wherein the filler is in contact with the tangent plane of the resin layer at the center between adjacent fillers, and a recess is formed on the surface of the resin layer around the contact.
  7.  前記凹みの接平面からの深さLfとフィラーの粒子径Dとの比(Lf/D)が10%未満である請求項5又は6記載のフィラー含有フィルム。 The filler-containing film according to claim 5 or 6, wherein the ratio (Lf / D) of the depth Lf from the tangential plane of the dent to the particle diameter D of the filler is less than 10%.
  8.  樹脂層の層厚Laとフィラーの粒子径Dとの比(La/D)が0.6~10である請求項1~7のいずれかに記載のフィラー含有フィルム。 The filler-containing film according to any one of claims 1 to 7, wherein the ratio (La / D) between the layer thickness La of the resin layer and the particle diameter D of the filler is 0.6 to 10.
  9.  樹脂層の凹みが形成されている表面の、隣接するフィラー間の中央部における接平面からのフィラーの最深部の距離Lbと、フィラーの粒子径Dとの比(Lb/D)が60%以上105%以下である請求項1~8のいずれかに記載のフィラー含有フィルム。 The ratio (Lb / D) between the distance Lb of the deepest part of the filler from the tangent plane at the center between adjacent fillers on the surface where the dents of the resin layer are formed and the particle diameter D of the filler (Lb / D) is 60% or more. The filler-containing film according to any one of claims 1 to 8, which is 105% or less.
  10.  フィラーが互いに非接触で配置されている請求項1~9のいずれかに記載のフィラー含有フィルム。 The filler-containing film according to any one of claims 1 to 9, wherein the fillers are arranged in a non-contact manner.
  11.  フィラーの最近接粒子間距離がフィラーの粒子径の0.5倍以上である請求項1~10のいずれかに記載のフィラー含有フィルム。 The filler-containing film according to any one of claims 1 to 10, wherein the distance between the closest particles of the filler is 0.5 times or more the particle diameter of the filler.
  12.  フィラー分散層の樹脂層の凹みが形成されている表面と反対側の表面に、第2の樹脂層が積層されている請求項1~11のいずれかに記載のフィラー含有フィルム。 The filler-containing film according to any one of claims 1 to 11, wherein a second resin layer is laminated on the surface of the filler dispersion layer opposite to the surface where the dents of the resin layer are formed.
  13.  フィラー分散層の樹脂層の凹みが形成されている表面に、第2の樹脂層が積層されている請求項1~11のいずれかに記載のフィラー含有フィルム。 The filler-containing film according to any one of claims 1 to 11, wherein a second resin layer is laminated on the surface of the filler-dispersed layer where the dent of the resin layer is formed.
  14.  第2の樹脂層の最低溶融粘度がフィラー分散層の樹脂層の最低溶融粘度よりも低い請求項12又は13に記載のフィラー含有フィルム。 The filler-containing film according to claim 12 or 13, wherein the minimum melt viscosity of the second resin layer is lower than the minimum melt viscosity of the resin layer of the filler dispersion layer.
  15.  フィラー分散層の樹脂層と第2の樹脂層との最低溶融粘度比が2以上である請求項12~14のいずれかに記載のフィラー含有フィルム。 The filler-containing film according to any one of claims 12 to 14, wherein the minimum melt viscosity ratio between the resin layer of the filler dispersion layer and the second resin layer is 2 or more.
  16.  フィラー分散層の樹脂層の60℃における粘度が3000~20000Pa・sである請求項1~15のいずれかに記載のフィラー含有フィルム。 The filler-containing film according to any one of claims 1 to 15, wherein the resin layer of the filler dispersion layer has a viscosity of 3000 to 20000 Pa · s at 60 ° C.
  17.  フィラーが導電粒子であり、フィラー分散層の樹脂層が絶縁性樹脂層であり、異方性導電フィルムとして使用される請求項1~16のいずれかに記載のフィラー含有フィルム。 The filler-containing film according to claim 1, wherein the filler is a conductive particle, the resin layer of the filler dispersion layer is an insulating resin layer, and is used as an anisotropic conductive film.
  18.  請求項1~17のいずれかに記載のフィラー含有フィルムが物品に貼着しているフィルム貼着体。 A film sticking body in which the filler-containing film according to any one of claims 1 to 17 is stuck to an article.
  19.  請求項1~17のいずれかに記載のフィラー含有フィルムを介して第1物品と第2物品が接続されている接続構造体。 A connection structure in which the first article and the second article are connected via the filler-containing film according to any one of claims 1 to 17.
  20.  請求項17記載のフィラー含有フィルムを介して第1電子部品と第2電子部品が異方性導電接続されている請求項19記載の接続構造体。 The connection structure according to claim 19, wherein the first electronic component and the second electronic component are anisotropically conductively connected through the filler-containing film according to claim 17.
  21.  請求項1~17のいずれかに記載のフィラー含有フィルムを介して第1物品と第2物品を圧着する接続構造体の製造方法。 A method for producing a connection structure, wherein the first article and the second article are pressure-bonded via the filler-containing film according to any one of claims 1 to 17.
  22.  第1物品、第2物品をそれぞれ第1電子部品、第2電子部品とし、請求項17記載のフィラー含有フィルムを介して第1電子部品と第2電子部品を熱圧着することにより第1電子部品と第2電子部品が異方性導電接続された接続構造体を製造する請求項21記載の接続構造体の製造方法。 The first electronic component and the second electronic component are first electronic component and second electronic component, respectively, and the first electronic component and the second electronic component are thermocompression bonded through the filler-containing film according to claim 17. The manufacturing method of the connection structure of Claim 21 which manufactures the connection structure in which the 2nd electronic component and anisotropic conductive connection were manufactured.
  23.  フィラーが樹脂層に分散しているフィラー分散層を形成する工程を有するフィラー含有フィルムの製造方法であって、
    フィラー分散層を形成する工程が、フィラーを樹脂層の表面に保持させる工程と、
    樹脂層表面に保持させたフィラーを該樹脂層に押し込む工程を有し、
    フィラーを樹脂層の表面に保持させる工程において、フィラーが分散した状態でフィラーを樹脂層の表面に保持させ、
    フィラーを樹脂層に押し込む工程において、フィラー近傍の樹脂層の表面が、隣接するフィラー間の中央部における樹脂層の接平面に対して凹みを有するように、フィラーを押し込むときの樹脂層の粘度、押込速度又は温度を調整するフィラー含有フィルムの製造方法。
    A method for producing a filler-containing film having a step of forming a filler dispersion layer in which a filler is dispersed in a resin layer,
    The step of forming the filler dispersion layer is a step of holding the filler on the surface of the resin layer;
    Having a step of pushing the filler held on the surface of the resin layer into the resin layer;
    In the step of holding the filler on the surface of the resin layer, the filler is held on the surface of the resin layer in a state where the filler is dispersed,
    In the step of pushing the filler into the resin layer, the viscosity of the resin layer when pushing the filler so that the surface of the resin layer in the vicinity of the filler has a dent with respect to the tangent plane of the resin layer at the center between adjacent fillers, The manufacturing method of the filler containing film which adjusts indentation speed or temperature.
  24.  フィラーを樹脂層の表面に保持させる工程において、樹脂層として、最低溶融粘度が1100Pa・s以上、60℃における粘度が3000Pa・s以上の樹脂層を使用する請求項23記載のフィラー含有フィルムの製造方法。 24. The production of a filler-containing film according to claim 23, wherein in the step of holding the filler on the surface of the resin layer, a resin layer having a minimum melt viscosity of 1100 Pa · s or higher and a viscosity at 60 ° C. of 3000 Pa · s or higher is used as the resin layer. Method.
  25.  フィラーを樹脂層の表面に保持させる工程において、樹脂層の表面にフィラーを所定の配列で保持させ、
     フィラーを樹脂層に押し込む工程において、フィラーを平板又はローラーで樹脂層に押し込む請求項23又は24記載のフィラー含有フィルムの製造方法。
    In the step of holding the filler on the surface of the resin layer, the filler is held on the surface of the resin layer in a predetermined arrangement,
    The method for producing a filler-containing film according to claim 23 or 24, wherein, in the step of pushing the filler into the resin layer, the filler is pushed into the resin layer with a flat plate or a roller.
  26.  フィラーを樹脂層の表面に保持させる工程において、転写型にフィラーを充填し、そのフィラーを樹脂層に転写することにより樹脂層の表面にフィラーを所定の配置で保持させる請求項23~25のいずれかに記載のフィラー含有フィルムの製造方法。 The step of holding the filler on the surface of the resin layer fills the transfer mold with the filler, and transfers the filler to the resin layer to hold the filler on the surface of the resin layer in a predetermined arrangement. The manufacturing method of the filler containing film of crab.
  27.  フィラーとして導電粒子を使用し、フィラー分散層の樹脂層として絶縁性樹脂層を使用し、フィラー含有フィルムとして異方性導電フィルムを製造する請求項23~26のいずれかに記載のフィラー含有フィルムの製造方法。 The filler-containing film according to any one of claims 23 to 26, wherein conductive particles are used as the filler, an insulating resin layer is used as the resin layer of the filler dispersion layer, and an anisotropic conductive film is produced as the filler-containing film. Production method.
PCT/JP2017/031318 2016-09-13 2017-08-31 Filler-containing film WO2018051799A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202211291848.5A CN116003858A (en) 2016-09-13 2017-08-31 Filler-containing film
US16/333,200 US20190241710A1 (en) 2016-09-13 2017-08-31 Filler-containing film
CN201780052909.3A CN109642037A (en) 2016-09-13 2017-08-31 Containing filled film
KR1020187036915A KR20190010879A (en) 2016-09-13 2017-08-31 Filler-containing film
KR1020227018479A KR20220080204A (en) 2016-09-13 2017-08-31 Filler-containing film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016-179042 2016-09-13
JP2016179042 2016-09-13
JP2017-084913 2017-04-23
JP2017084913 2017-04-23
JP2017-158302 2017-08-20
JP2017158302 2017-08-20
JP2017-166277 2017-08-30
JP2017166277A JP7081097B2 (en) 2016-09-13 2017-08-30 Filler-containing film

Publications (1)

Publication Number Publication Date
WO2018051799A1 true WO2018051799A1 (en) 2018-03-22

Family

ID=61618854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031318 WO2018051799A1 (en) 2016-09-13 2017-08-31 Filler-containing film

Country Status (5)

Country Link
JP (1) JP7352114B2 (en)
KR (2) KR20220080204A (en)
CN (1) CN116003858A (en)
TW (2) TWI759326B (en)
WO (1) WO2018051799A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042720A1 (en) * 2022-08-26 2024-02-29 株式会社レゾナック Adhesive film for circuit connection, connection structure, and methods for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308632A (en) * 1994-05-17 1995-11-28 Sumitomo Metal Ind Ltd Metal plate with good lubricity, and manufacture of the same
JP2004207689A (en) * 2002-12-12 2004-07-22 Tokyo Electron Ltd Anisotropic conductive film, method for manufacturing the same, and probe
JP2015195198A (en) * 2014-03-20 2015-11-05 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method thereof
JP2016103476A (en) * 2014-11-17 2016-06-02 デクセリアルズ株式会社 Anisotropically conductive film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064324A (en) 2001-06-11 2003-03-05 Hitachi Chem Co Ltd Anisotropic electroconductive adhesive film, connection method for circuit board using the same and circuit board connected body
JP2006015680A (en) 2004-07-05 2006-01-19 Oike Ind Co Ltd Lusterless film
JP2013103368A (en) 2011-11-11 2013-05-30 Sekisui Chem Co Ltd Multi-layer film
TWI547538B (en) * 2012-08-24 2016-09-01 Dexerials Corp Method for producing anisotropic conductive film and anisotropic conductive film
CN109166649B (en) 2012-08-24 2021-04-13 迪睿合电子材料有限公司 Anisotropic conductive film and method for producing same
JP6221285B2 (en) 2013-03-21 2017-11-01 日立化成株式会社 Circuit member connection method
JP6289831B2 (en) * 2013-07-29 2018-03-07 デクセリアルズ株式会社 Manufacturing method of conductive adhesive film, conductive adhesive film, and manufacturing method of connector
JP6264897B2 (en) 2014-01-23 2018-01-24 トヨタ自動車株式会社 High dielectric constant film and film capacitor
JP7081097B2 (en) * 2016-09-13 2022-06-07 デクセリアルズ株式会社 Filler-containing film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308632A (en) * 1994-05-17 1995-11-28 Sumitomo Metal Ind Ltd Metal plate with good lubricity, and manufacture of the same
JP2004207689A (en) * 2002-12-12 2004-07-22 Tokyo Electron Ltd Anisotropic conductive film, method for manufacturing the same, and probe
JP2015195198A (en) * 2014-03-20 2015-11-05 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method thereof
JP2016103476A (en) * 2014-11-17 2016-06-02 デクセリアルズ株式会社 Anisotropically conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042720A1 (en) * 2022-08-26 2024-02-29 株式会社レゾナック Adhesive film for circuit connection, connection structure, and methods for producing same

Also Published As

Publication number Publication date
TWI759326B (en) 2022-04-01
TW202227543A (en) 2022-07-16
JP7352114B2 (en) 2023-09-28
CN116003858A (en) 2023-04-25
JP2022126655A (en) 2022-08-30
KR20190010879A (en) 2019-01-31
TW201825563A (en) 2018-07-16
KR20220080204A (en) 2022-06-14

Similar Documents

Publication Publication Date Title
JP6187665B1 (en) Anisotropic conductive film
JP7307377B2 (en) Filler containing film
KR102314818B1 (en) Filler-containing film
JP7315878B2 (en) Filler containing film
JP7081097B2 (en) Filler-containing film
WO2018074318A1 (en) Filler-containing film
JP7087305B2 (en) Filler-containing film
JP7352114B2 (en) Filler-containing film
CN109804002B (en) Filled membranes
WO2020071271A1 (en) Anisotropic conductive film, connection structure, and method for manufacturing connection structure
JP7319578B2 (en) Filler containing film
KR20230008230A (en) Anisotropic conductive film
TWI835252B (en) Film containing filler
WO2018079365A1 (en) Anisotropic conductive film

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036915

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850702

Country of ref document: EP

Kind code of ref document: A1