WO2024070436A1 - Anisotropic conductive material, anisotropic conductive sheet, anisotropic conductive paste, connection structure, and method for producing connection structure - Google Patents

Anisotropic conductive material, anisotropic conductive sheet, anisotropic conductive paste, connection structure, and method for producing connection structure Download PDF

Info

Publication number
WO2024070436A1
WO2024070436A1 PCT/JP2023/031395 JP2023031395W WO2024070436A1 WO 2024070436 A1 WO2024070436 A1 WO 2024070436A1 JP 2023031395 W JP2023031395 W JP 2023031395W WO 2024070436 A1 WO2024070436 A1 WO 2024070436A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic conductive
conductive material
resin
conductive particles
connection structure
Prior art date
Application number
PCT/JP2023/031395
Other languages
French (fr)
Japanese (ja)
Inventor
達也 金野
秀二 岡本
敏雄 関谷
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Publication of WO2024070436A1 publication Critical patent/WO2024070436A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to an anisotropic conductive material, an anisotropic conductive sheet, an anisotropic conductive paste, a connection structure, and a method for manufacturing the connection structure.
  • Anisotropic conductive films which contain conductive particles such as metal-plated particles dispersed in a resin component, are widely used to connect electronic components.
  • ACFs Anisotropic conductive films
  • the conductive particles contained in the ACF electrically connect the electrodes, and the resin component acts as an adhesive between the electrodes.
  • Conductive resin compositions in which metal-based conductive particles are dispersed in a resin are used for applications such as conductive adhesives and conductive paints.
  • Thermosetting resins and photosetting resins which are cured by crosslinking reactions caused by heat or light energy, are used as the main components of the resins, and a large amount of metal particles are often mixed into the resin compositions to make them conductive.
  • Patent Document 1 discloses a conductive resin composition that contains a resin component that is cured by heat or light and conductive particles, and when the resin component is cured, the conductive resin composition forms a cured body that contains a cured resin formed by the resin component and the conductive particles dispersed in the cured resin, and the cured resin has a phase separation structure containing two or more phases.
  • the problem to be solved by one embodiment of the present invention is to provide an anisotropic conductive material, an anisotropic conductive adhesive sheet, and an anisotropic conductive adhesive paste that, when used in a connection structure, have excellent reliability in electrical conduction between opposing circuit members and excellent insulation between electrodes in the circuit members.
  • the problem to be solved by another embodiment of the present invention is to provide a connection structure and a method for producing the same that have excellent reliability in electrical conduction between opposing circuit members and excellent insulation between electrodes in the circuit members.
  • An embodiment of the present invention includes the following aspects.
  • ⁇ 4> The anisotropic conductive material according to ⁇ 1> or ⁇ 2>, wherein the content of the conductive particles is 1 to 70 parts by mass with respect to 100 parts by mass of the resin component.
  • ⁇ 5> An anisotropic conductive adhesive sheet formed from the anisotropic conductive material according to ⁇ 1> or ⁇ 2>.
  • ⁇ 6> An anisotropic conductive adhesive paste formed from the anisotropic conductive material according to ⁇ 1> or ⁇ 2>.
  • ⁇ 7> An anisotropically conductive cured product obtained by curing the anisotropically conductive material according to ⁇ 1> or ⁇ 2>.
  • a first electronic member having a first electrode provided on a first substrate; a second electronic component having a second electrode provided on a second substrate; a connection member provided between the first electronic member and the second electronic member,
  • the connection member is a cured product of the anisotropic conductive material according to ⁇ 1>
  • a connection structure wherein a filling rate of conductive particles in the connection member in a region between the first electrode and the second electrode is higher than a filling rate of conductive particles in a region other than the region.
  • the connection structure according to ⁇ 8> in which an electrical resistance in a region between the first electrode and the second electrode is equal to or greater than 0 ⁇ and less than 100 ⁇ .
  • a method for manufacturing a semiconductor device comprising the steps of: disposing the anisotropic conductive material according to ⁇ 1> between a first electronic component having a first electrode provided on a substrate and a second electronic component having a second electrode provided on a substrate; and thermocompression bonding the first electronic component and the second electronic component via the anisotropic conductive material; A method for manufacturing a connection structure.
  • an anisotropic conductive material an anisotropic conductive adhesive sheet, and an anisotropic conductive adhesive paste that, when used in a connection structure, provide excellent conductive reliability between opposing circuit members and excellent insulating properties between electrodes within the circuit members.
  • a connection structure and a method for manufacturing the same that provide excellent conductive reliability between opposing circuit members and excellent insulating properties between electrodes within the circuit members.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of an anisotropic conductive material.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of a method for producing a connection structure.
  • FIG. 3 is a schematic diagram showing a method for producing a cured body for electrical conductivity measurement.
  • FIG. 4 is a schematic cross-sectional view of a cured body for measuring electrical conductivity.
  • the present invention will be described in detail below. The following description of the components may be based on a representative embodiment of the present invention, but the present invention is not limited to such an embodiment.
  • the use of "to” indicating a range of values means that the values before and after it are included as the lower limit and upper limit.
  • the term “to” indicating a numerical range means that the units written before or after it indicate the same units, unless otherwise specified.
  • “parts by mass” and “parts by weight” have the same meaning.
  • the term “step” refers not only to an independent step, but also to a step that cannot be clearly distinguished from other steps, as long as the desired purpose of the step is achieved.
  • each component in the anisotropic conductive material may be contained alone or in combination of two or more kinds.
  • the amount of each component in an anisotropically conductive material means, when multiple components are present in the anisotropically conductive material, the total amount of the corresponding substance present in the anisotropically conductive material, unless otherwise specified.
  • a combination of two or more preferred aspects is a more preferred aspect.
  • the term "(meth)acryloyl" is used as a concept that includes both acryloyl and methacryloyl. The present invention will be described in detail below.
  • the anisotropic conductive material of the present invention is an anisotropic conductive material comprising two or more resin components and conductive particles, wherein the resin components form a phase separation structure when cured, and the conductive particles are unevenly distributed in the continuous phase of the phase separation structure.
  • the mechanism by which the anisotropic conductive material of the present invention, having the above-mentioned configuration, when used in a connection structure, provides excellent conductive reliability between opposing circuit components and excellent insulation between electrodes within the circuit components is not clear, but is presumed to be as follows.
  • the resin component of the anisotropic conductive material forms a phase separation structure when cured, and the conductive particles tend to be unevenly distributed in the continuous phase of the phase separation structure, so that the conductive particles contact each other to form a conductive path. It is also presumed that if pressure is applied during curing of the anisotropic conductive material, the conductive particles tend to be unevenly distributed and the conductive particles tend to contact each other. Therefore, it is presumed that a connection structure including an anisotropic conductive material has excellent conductive reliability between circuit members (hereinafter, sometimes simply referred to as "conductive reliability") and excellent insulation between electrodes in the circuit members (hereinafter, sometimes simply referred to as "insulation").
  • conductive reliability circuit members
  • insulation excellent insulation between electrodes in the circuit members
  • the anisotropic conductive material according to the present invention contains two or more resin components.
  • the resin components are not particularly limited as long as they form a phase-separated structure when cured. From the viewpoint of forming a phase-separated structure, at least one of the two or more resin components preferably includes a resin that is cured by heat or light, and more preferably includes a resin that is cured by heat.
  • the resin that is cured by heat or light includes a resin having a polymerizable group, and the polymerizable group may be a cationic polymerizable group or a radical polymerizable group.
  • the resin having a polymerizable group may have one polymerizable group or may have two or more polymerizable groups.
  • the resin having a polymerizable group may be either an oligomer or a polymer. As used herein, "oligomer” preferably refers to a compound having a molecular weight of less than 1,000.
  • polymerizable groups examples include ethylenically unsaturated groups, epoxy groups, glycidyl groups, oxiranyl groups, and oxetanyl groups.
  • ethylenically unsaturated groups include (meth)acryloyl groups and vinyl groups.
  • the resin having a polymerizable group contained in the resin component of the anisotropic conductive material is preferably a resin having an ethylenically unsaturated group, an epoxy group, or a glycidyl group, more preferably a resin having a (meth)acryloyl group, an epoxy group, or a glycidyl group, and even more preferably a resin having an epoxy group, from the viewpoints of easiness in forming a phase separation structure and excellent conductivity reliability and insulation when applied to a connection structure.
  • Epoxy resin The resin having an epoxy group (hereinafter, may be referred to as "epoxy resin”) is not particularly limited, and may contain one epoxy group or two or more epoxy groups in one molecule.
  • the number of epoxy groups contained in the resin having epoxy groups is preferably 2 to 10, more preferably 2 to 6, and even more preferably 2 to 4, from the viewpoints of easily forming a phase-separated structure and of achieving excellent electrical conductivity reliability and insulation when applied to a connection structure.
  • the epoxy resin is preferably an epoxy resin having two epoxy groups in one molecule (hereinafter, also referred to as a "bifunctional epoxy resin").
  • epoxy resins include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, tetrabromobisphenol A diglycidyl ether, bisphenol AD diglycidyl ether, 2,2',6,6'-tetramethyl-4,4'-biphenol diglycidyl ether, N,N,O-triglycidyl-m-aminophenol, N,N,O-triglycidyl-p-aminophenol, N,N,O-triglycidyl-4-amino-3-methylphenol, N, N-diglycidylaniline, N,N-diglycidyl-o-toluidine, N,N,N',N'-tetraglycidyl-4,4'-methylenedianiline, N,N,N',N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, N,N,N',N'-tetraglycid
  • the resin component may contain the above-mentioned bifunctional epoxy resin and a resin having one epoxy group in one molecule, if necessary.
  • resins having one epoxy group per molecule include cyclohexane dimethylol type epoxy resins, phenyl glycidyl ether, o-sec-butylphenyl glycidyl ether, o-cresyl glycidyl ether, p-tert-butylphenyl glycidyl ether, o-phenylphenyl glycidyl ether, nonylphenyl glycidyl ether, phenol (EO) 5 glycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, 1,6-hexan
  • the resin having a (meth)acryloyl group (hereinafter, may be referred to as "acrylic resin") is not particularly limited, and may contain one (meth)acryloyl group or two or more (meth)acryloyl groups in one molecule.
  • the acrylic resin is preferably a (meth)acrylic acid ester obtained by esterification of (meth)acrylic acid with various alcohol compounds. These can be used alone or in combination of two or more kinds.
  • (Meth)acrylic acid esters include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, isobutyl acrylate, tertiary butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate, propyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, octyl methacrylate, benzyl methacrylate, isodeuterium methacrylate, methacrylate, lauryl methacrylate, tridecyl methacrylate, lauryl-tridecyl methacrylate, stearyl methacrylate, isobornyl methacrylate, dicyclopentanyl methacrylate, dicyclopentany
  • the acrylic resin may have three or more (meth)acryloyl groups in one molecule.
  • compounds having three or more (meth)acryloyl groups in one molecule include trimethylolpropane triacrylate, trimethylolpropane ethylene oxide adduct triacrylate, trimethylolpropane propylene oxide adduct triacrylate, glycerin triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, tris(2-acryloyloxyethyl)isocyanurate, a 2:1 adduct of pentaerythritol triacrylate and tolylene diisocyanate, a 2:1 adduct of pentaerythritol triacrylate and hexamethylene diisocyanate, an epoxy acryl
  • the acrylic resin may be a compound having a (meth)acryloyl group and a functional group other than a (meth)acryloyl group, from the viewpoint of forming an appropriate phase separation structure and improving adhesion to a substrate and an electrode when used in a connection structure.
  • functional groups other than the (meth)acryloyl group include a carboxy group, a hydroxy group, an amino group, and a glycidyl group.
  • Examples of compounds having a (meth)acryloyl group and a functional group other than the (meth)acryloyl group include acrylic acid, methacrylic acid, diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, tertiary butylaminoethyl methacrylate, 2-hydroxypropyl methacrylate, glycidyl methacrylate, dimethylaminoethyl methacrylate, and tetrahydrofurfuryl methacrylate.
  • glycidyl methacrylate is preferred as a compound having a (meth)acryloyl group and a functional group other than a (meth)acryloyl group, from the viewpoint of obtaining particularly good adhesion when used in combination with an epoxy resin.
  • the resin having a polymerizable group may be used alone or in combination of two or more kinds.
  • the content of the resin having a polymerizable group is preferably 10 parts by mass or more, more preferably 20 to 95 parts by mass, and even more preferably 30 to 90 parts by mass, relative to 100 parts by mass of the resin component.
  • the two or more resin components preferably contain a thermoplastic resin, from the viewpoint of easily forming a phase separation structure and of providing excellent conductive reliability and insulating properties when used in a connection structure, and more preferably contain a resin having the above-mentioned polymerizable group and a thermoplastic resin.
  • the thermoplastic resin may be an elastomer.
  • the thermoplastic resin may be a resin having a functional group such as a carboxy group, a hydroxy group, or an amino group at the end of the main chain or within the molecular chain, or may be a resin that does not have the above functional groups.
  • thermoplastic resins include resins that have at least one bond in the main chain selected from the group consisting of carbon-carbon bonds, amide bonds, imide bonds (such as polyetherimide), ester bonds, ether bonds, siloxane bonds, carbonate bonds, urethane bonds, urea bonds, thioether bonds, sulfone bonds, imidazole bonds, and carbonyl bonds.
  • bond in the main chain selected from the group consisting of carbon-carbon bonds, amide bonds, imide bonds (such as polyetherimide), ester bonds, ether bonds, siloxane bonds, carbonate bonds, urethane bonds, urea bonds, thioether bonds, sulfone bonds, imidazole bonds, and carbonyl bonds.
  • thermoplastic resin examples include polysulfone, polyethersulfone, polyetherimide, polyimide, polyamide, polyamideimide, polyetherketone, and polyphenylene ether.
  • thermoplastic resin from the viewpoint of easily obtaining a phase separation structure suitable for electrical conductivity and also improving the moist heat resistance, toughness, impact resistance, and peel adhesion strength of the cured resin, a resin having at least one bond selected from the group consisting of a sulfone bond, an imide bond, a carbon-carbon bond, a carbonyl bond, and an ester bond is preferred, and a resin having a sulfone bond is more preferred.
  • thermoplastic resins having sulfone bonds include polyethersulfone (PES), etc.
  • thermoplastic resins having imide bonds include polyetherimide, etc.
  • thermoplastic resins having carbonyl bonds include polyetherketone, etc.
  • polyethersulfone and polyetherketone are preferred as the thermoplastic resin from the viewpoint of easiness in forming a phase-separated structure.
  • the thermoplastic resin may be an oligomer.
  • the number average molecular weight (Mn) of the thermoplastic resin is preferably 10,000 or less, and more preferably 7,000 or less.
  • the number average molecular weight (Mn) of the thermoplastic resin is preferably 3,000 or more, and more preferably 4,000 or more.
  • thermoplastic resin may be used alone or in combination of two or more kinds.
  • the content of the thermoplastic resin (the total amount when two or more types of thermoplastic resins are contained) is preferably 3 to 75 parts by mass, more preferably 5 to 60 parts by mass, per 100 parts by mass of the total resin components.
  • the content of the resin component (e.g., the total amount of the resin containing a polymerizable group and the thermoplastic resin) is preferably 50 to 99 parts by mass, more preferably 70 to 98 parts by mass, based on the total mass of the anisotropic conductive material.
  • the ratio of the resin containing a polymerizable group to the thermoplastic resin is preferably 10:90 to 90:10, and more preferably 15:85 to 85:15, by mass.
  • the anisotropic conductive material contains conductive particles that are unevenly distributed in a continuous phase of the phase-separated structure formed by the resin component upon curing.
  • the conductive particles may be any known particles used in anisotropic conductive materials.
  • the conductive particles are preferably at least one selected from gold, silver, copper, platinum, nickel, aluminum, palladium, tin, bismuth, zinc, indium, magnesium, tungsten, titanium, and carbon, and more preferably at least one selected from gold, silver, copper, and nickel. These particulate materials may be used alone or in combination of two or more.
  • the conductive particles may be particles of alloys of various metals, particles of metal oxide, glass, ceramic, resin, etc., with a metal layer covering the surface thereof, or composite particles made by combining a plurality of materials.
  • resin particles with a metal layer covering the surface thereof examples of the resin particles include particles of epoxy resin, phenol resin, acrylic resin, styrene resin, etc.
  • the conductive particles may be surface-treated.
  • the conductive particles tend to be unevenly distributed in a specific phase of the phase separation structure formed by the resin component.
  • the surface treatment method There are no particular limitations on the surface treatment method, and any known surface treatment method can be used.
  • the conductive particles When the conductive particles are surface-treated, it is preferable that the surfaces of the conductive particles are modified with an organic compound.
  • the organic compound is preferably an organic acid and its salt.
  • the organic acid and its salt are, for example, a compound containing a carboxyl group and its salt.
  • the number of acid groups in the organic acid is not particularly limited, and may be one or two or more. Examples of the acid group include a carboxy group, a sulfo group, a phosphate group, etc. Among these, the acid group is preferably a carboxy group.
  • the organic acid or its salt examples include fatty acids such as succinic acid, glutaric acid, adipic acid, oleic acid, lauric acid, stearic acid, palmitic acid, and myristic acid, and salts thereof.
  • the organic acid or its salt is preferably lauric acid, stearic acid, palmitic acid, myristic acid, or an ammonium salt thereof, since the effect of the surface treatment can be easily obtained with a small amount of use.
  • an organic acid salt is used as the surface treatment agent, the surface treatment of the conductive particles can be performed in water.
  • the amount of organic acid or organic acid salt used for surface treatment is preferably in the range of 0.001 to 0.5 parts by mass per 100 parts by mass of conductive particles. If the amount of surface treatment agent is 0.001 parts by mass or more, it is easier to obtain the effect of surface treatment and the effect of actively unevenly distributing the conductive particles. If the amount of surface treatment agent is 0.5 parts by mass or less, it is easier to obtain the effect of improving conductivity.
  • the shape of the conductive particles may be, for example, spherical, rhombus-like (a shape formed by an aggregation of multiple spheres), flat, needle-like, rod-like, etc.
  • the average particle size of the conductive particles is preferably 0.01 to 20 ⁇ m.
  • the average particle size of the conductive particles is 0.01 ⁇ m or more, the conductive particles can be easily mixed into the resin component, and the applicability of the anisotropic conductive material can be improved.
  • the average particle size of the conductive particles is 20 ⁇ m or less, the conductive resin composition can be easily uniformly permeated into narrow gaps when adhering an adherend having a fine structure.
  • the average particle size of the conductive particles is preferably 0.01 to 20 ⁇ m, more preferably 0.03 to 10 ⁇ m, even more preferably 0.05 to 5 ⁇ m, and particularly preferably 0.1 to 3 ⁇ m.
  • the average particle size of the conductive particles is the particle size (D50) at 50% of the integrated value of the particle size distribution determined by a laser diffraction/scattering particle size distribution measuring device.
  • the content of the conductive particles is preferably 1 to 70 parts by mass, more preferably 2 to 35 parts by mass, and further preferably 5 to 35 parts by mass, relative to 100 parts by mass of the resin component.
  • the content of the conductive particles can be adjusted depending on the fineness of the electrodes to be connected, etc.
  • the conductive particles may be of one type alone or of two or more types.
  • the anisotropic conductive material may contain components other than the above-mentioned resin component and conductive particles (hereinafter also referred to as "other components").
  • other components include a curing agent, a curing catalyst, a polymerization initiator, a polymerization inhibitor, a polymerization accelerator, a filler, a softener, an accelerator, an anti-aging agent, a colorant, a flame retardant, and a thixotropic agent.
  • the curing agent examples include aromatic amines such as 4,4'-diaminodiphenylmethane (DDM) and diaminodiphenylsulfone, aliphatic amines, imidazole derivatives, dicyandiamide, tetramethylguanidine, thiourea adduct amines, carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, carboxylic acid hydrazides, carboxylic acid amides, polyphenol compounds, novolac resins, and polymercaptans.
  • aromatic amines such as 4,4'-diaminodiphenylmethane (DDM) and diaminodiphenylsulfone
  • aliphatic amines imidazole derivatives
  • dicyandiamide imidazole derivatives
  • dicyandiamide tetramethylguanidine
  • thiourea adduct amines examples include carboxylic acid an
  • the curing agent is preferably an aromatic amine, and more preferably 4,4'-diaminodiphenylmethane (DDM).
  • the resin having a polymerizable group contains a cationic polymerizable group such as an epoxy group or a glycidyl group
  • the anisotropic conductive material preferably further contains a curing agent.
  • the curing agent may be used alone or in combination of two or more kinds.
  • the content of the curing agent is preferably 1% by mass or more, and more preferably 1 to 50% by mass, based on the total mass of the resin component.
  • the curing catalyst may, for example, be a Lewis acid complex such as boron trifluoride ethylamine complex.
  • the dicyandiamide may be combined with a urea derivative such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or an imidazole derivative as a curing accelerator, and the carboxylic acid anhydride or novolak resin may be combined with a tertiary amine as a curing accelerator.
  • Polymerization initiators include radical polymerization initiators, such as azo compounds and organic peroxides. Radical polymerization initiators may generate radicals by heat or light.
  • the polymerization inhibitor is, for example, selected from 2,6-di-t-butyl-p-cresol, 2,2'-methylenebis(4-methyl-6-t-butylphenol), 2,2'-methylenebis(4-ethyl-6-t-butylphenol), 4,4'-thiobis(2-methyl-6-t-butylphenol), hydroquinone, 2-t-butylhydroquinone, 2,5-di-t-butylhydroquinone, p-benzoquinone, 2-ethylanthraquinone, dilaurylthiodipropionate, and cupferron.
  • the promoter may be a salt of a transition metal, for example, cobalt naphthenate.
  • the anisotropically conductive cured product according to the present invention is obtained by curing the above-mentioned anisotropically conductive material.
  • the method for curing the anisotropic conductive material can be appropriately selected depending on the resin component of the anisotropic conductive material.
  • the heating temperature may be, for example, 150° C. or more and 250° C. or less.
  • Pressurization may be applied during curing.
  • the pressure during pressurization may be, for example, 1 MPa or more and 100 MPa or less per total area.
  • the time for which pressurization and heating are performed may be, for example, 1 second or more and 5 hours or less.
  • the shape of the anisotropically conductive cured product is not particularly limited, but it is preferable that the product has an uneven shape.
  • the resin component forms a phase-separated structure when cured, and the conductive particles are unevenly distributed in the continuous phase of the phase-separated structure.
  • the conductive particles are unevenly distributed in the continuous phase, which increases the opportunities for contact between the conductive particles and effectively forms a continuous conductive path, resulting in high conductivity even when a relatively small amount of conductive particles is used.
  • the phase separation structure formed by two or more resin components consists of two phases.
  • the phase separation structure may be an island-in-a-sea structure, or a bicontinuous structure in which the two phases form a continuous phase.
  • the size (width) of the phases other than the continuous phase (i.e., the independent phases) that make up the phase separation structure is preferably in the range of 1 nm to 20 ⁇ m, more preferably 20 nm to 10 ⁇ m, and even more preferably 30 nm to 5 ⁇ m.
  • the phase separation structure is preferably a sea-island structure, more preferably a phase in which the continuous phase contains a resin containing a polymerizable group and the independent phase contains a thermoplastic resin, and even more preferably a phase in which the continuous phase contains an epoxy resin and the independent phase contains a polyethersulfone.
  • the proportion of conductive particles unevenly distributed in the continuous phase in the phase separation structure in the cured product of the anisotropic conductive material is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more.
  • phase separation structure and the distribution state of the conductive particles can be confirmed using microscopic techniques such as optical microscopes and electron microscopes.
  • elemental analysis techniques and image processing may be used in combination as necessary to identify the structure.
  • etching of the observed sample by solvent treatment, plasma treatment, corona treatment, etc. may also be used in combination to add contrast.
  • the method for preparing the anisotropic conductive material is not particularly limited as long as the above-mentioned components can be mixed, and the material can be prepared by a known method.
  • the anisotropic conductive material can be prepared by adding the above-mentioned conductive particles to a resin component prepared by a known method.
  • the temperature at which the two or more resin components are mixed is preferably 10 to 200°C, and more preferably 15 to 150°C. From the viewpoint of solubility, the mixing time is preferably 20 minutes to 5 hours, and more preferably 30 minutes to 4 hours.
  • the anisotropic conductive adhesive sheet according to the present invention is a sheet formed from the anisotropic conductive material, and may be only a layer formed from the anisotropic conductive material (i.e., a single layer), or may be provided with a layer formed from the anisotropic conductive material and a layer other than the layer formed from the anisotropic conductive material (hereinafter, simply referred to as "other layer").
  • the anisotropic conductive adhesive sheet may, for example, be provided with a layer formed from the anisotropic conductive adhesive sheet and a film or sheet.
  • the film or sheet is preferably subjected to a release treatment.
  • the shape of the anisotropic conductive material is not particularly limited and may be a desired shape depending on the purpose, for example, a sheet, a film, a paste, or the like.
  • the method for producing the anisotropic conductive adhesive sheet is not particularly limited and can be produced by a known method for producing an adhesive sheet, for example, a method in which the above-mentioned anisotropic conductive material is applied onto a film or sheet, dried, and then the anisotropic conductive adhesive sheet is peeled off from the film or sheet.
  • the anisotropic conductive adhesive paste according to the present invention is a paste formed from the above-mentioned anisotropic conductive material.
  • the anisotropically conductive adhesive paste may be produced by appropriately preparing the components of the anisotropically conductive material so as to form a paste.
  • an anisotropic conductive adhesive paste is one in which the resin component exhibits liquid properties at room temperature
  • an anisotropic conductive adhesive film is one in which the resin component exhibits solid properties at room temperature but part or all of it softens or liquefies when heated and pressed.
  • the anisotropic conductive material according to the present invention can be suitably used as a member for connecting electronic components together, from the viewpoint of excellent conductive reliability and insulating properties.
  • the connection structure of the present invention comprises a first electronic component having a first electrode provided on a substrate, a second electronic component having a second electrode provided on the substrate, and a connecting member provided between the first electronic component and the second electronic component, wherein the connecting member is a cured product of the anisotropic conductive material, and a filling rate of conductive particles in the connecting member in a region between the first electrode and the second electrode is higher than a filling rate of conductive particles in a region other than the region.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of an anisotropic conductive material, where the anisotropic conductive material 1 contains a resin component 2 and conductive particles 3.
  • Figure 2 is a schematic cross-sectional view showing one embodiment of a method for manufacturing a connection structure.
  • the connection structure 11 includes a first electronic component 6a having a first substrate 4a and a first electrode 5a provided on the first substrate 4a, a second electronic component 6b having a second substrate 4b and a second electrode 5b provided on the second substrate 4b, and a connection component 10 disposed between the first electronic component 6a and the second electronic component 6b.
  • connection member 10 is composed of a cured product of the anisotropic conductive material 1 of FIG. 1, and is composed of an independent phase 21a and a continuous phase 21b forming a phase separation structure, and conductive particles 3 dispersed in the cured product.
  • the conductive particles 3 are interposed between the first electrode 5a and the second electrode 5b via the connection member 10, so that the first electronic member 6a and the second electronic member 6b are electrically connected to each other.
  • first substrate 4a may be a known substrate used in connection structures, and for example, a resin substrate may be suitably used.
  • the resin substrate is preferably a substrate formed from at least one thermoplastic resin selected from polyimide (PI), polyethylene terephthalate (PET), polycarbonate (PC) and polyethylene naphthalate (PEN), and more preferably a substrate formed from polyimide (PI).
  • the first substrate 4a may be a single layer or a substrate formed from multiple layers.
  • An example of a substrate formed from two or more resin layers is a substrate having a first resin layer formed from PET or the like and a second resin layer formed from PI or the like. In this case, it is preferable that the second resin layer has a higher heat resistance than the first resin layer, and the first electrode 5a is preferably provided on the second resin layer.
  • the second substrate 4b can be a known substrate used in connection structures, such as a polymer substrate, a glass substrate, or a ceramic substrate.
  • the electrode material for forming the first electrode 5a and the second electrode 5b is not particularly limited, and a known electrode can be used.
  • the electrode include Ag paste, metals such as Ni, Al, Au, Cu, Ti, and Mo, and transparent conductors such as ITO (indium tin oxide), IZO (indium zinc oxide), silver nanowires, and carbon nanotubes.
  • connection structure 11 has excellent electrical conductivity reliability because the conductive particles 3 in the connection member 10 in the region between the first electrode 5a and the second electrode 5b (hereinafter sometimes referred to as the "interelectrode region"), shown as the region between the arrows C in Figure 2(b), come into contact with each other and form a conductive path.
  • the interelectrode region the region between the arrows C in Figure 2(b)
  • the conductive reliability and insulation properties will be superior.
  • Whether the filling rate of the conductive particles 3 in the connection member 10 in the inter-electrode region is higher than the filling rate of the conductive particles in regions other than the inter-electrode region can be confirmed by removing the connection member 10 portion from the connection structure 11 and examining the cross section of the connection member 10 using microscopic techniques such as an optical microscope or an electron microscope.
  • a horizontal cross section of the connection member 10 in the interelectrode region is enlarged using a microscopic technique, and the area A1 of the observed conductive particles is calculated.
  • the range of the horizontal cross section of the connection member 10 to be measured is 10,000 ⁇ m2 , and depending on the shape of the connection structure 11, it is divided into multiple sections and 10,000 ⁇ m2 is measured.
  • the area A2 of the conductive particles in the region other than the interelectrode region is calculated.
  • the ratio (A1/A2) of the area A1 of the conductive particles in the interelectrode region to the area A2 of the conductive particles in the region other than the interelectrode region is calculated. From the viewpoint of achieving superior conduction reliability and insulation properties, the ratio (A1/A2) is preferably 1-1,000, more preferably 1-100, and even more preferably 1-10.
  • the electrical resistance in the region between the first electrode and the second electrode is preferably 0 ⁇ or more and less than 100 ⁇ , more preferably 0 ⁇ or more and less than 10 ⁇ , and even more preferably 0 ⁇ or more and less than 1 ⁇ , per 100 ⁇ m of distance between the electrodes (thickness of the anisotropic conductive material).
  • the electrical resistance in the region between the first electrode and the second electrode is 0 ⁇ or more and less than 100 ⁇ , the electrical conductivity reliability and insulation between the circuit members are excellent.
  • a method for manufacturing a connection structure includes a step of placing the anisotropic conductive material between a first electronic component having a first electrode provided on a first substrate and a second electronic component having a second electrode provided on a second substrate, and thermocompression bonding the first electronic component and the second electronic component via the anisotropic conductive material (hereinafter also referred to as a "thermocompression bonding step").
  • the method for producing the connection structure includes the above-mentioned thermocompression bonding step, so that the resin component contained in the anisotropic conductive material hardens, forming a phase-separated structure in which the conductive particles are likely to be unevenly distributed in the thickness direction between the first electronic member and the second electronic member.
  • connection structure including the anisotropic conductive material has excellent reliability of conduction between circuit members and excellent insulation between electrodes in the circuit members.
  • connection structure obtained by the manufacturing method of the connection structure of the present invention has a higher filling rate of conductive particles in the connection member in the region between the first electrode and the second electrode than in regions other than the region, and therefore has better conductive reliability and insulation properties.
  • thermocompression bonding process it is preferable to arrange the first electrode 5a and the second electrode 5b so that they face each other, and to arrange the anisotropic conductive material 1 between the first electronic component 6a and the second electronic component 6b.
  • the anisotropic conductive material 1 by heating while applying pressure to the entire material in the directions of arrows A and B in the thermocompression bonding process, as shown in FIG. 2(a).
  • the pressure during pressing may be, for example, 1 MPa or more and 100 MPa or less per total connection area.
  • the heating temperature may be, for example, 150° C. or more and 250° C. or less.
  • the time for which pressure and heat are applied may be, for example, 1 second or more and 5 hours or less.
  • the method for manufacturing the connection structure may further include steps other than the thermocompression bonding step (hereinafter also referred to as "other steps").
  • steps other than the thermocompression bonding step hereinafter also referred to as "other steps”. Examples of the other steps include a step of preparing an electronic component, a step of preparing an anisotropic conductive material, and the like.
  • the method for manufacturing the connection structure preferably includes a step of preparing an electronic component prior to the thermocompression bonding step.
  • the step of preparing the electronic component may, for example, be a step of preparing a first electronic component 6a having a first substrate 4a and an electrode (first electrode) 5a provided on the first substrate 4a, and a second electronic component 6b having a second substrate 4b and a second electrode 5b provided on the second substrate 4b, as shown in FIG. 2(a).
  • the process for preparing the anisotropic conductive material is the same as the method for preparing the anisotropic conductive material described above, and the preferred aspects are also the same.
  • connection structure 11 is a flexible organic electroluminescent color display (organic EL display) in which a driving circuit element, which is a driver for displaying images, is mounted on a plastic substrate on which organic EL (Electro-Luminescence) elements are regularly arranged.
  • organic EL Electro-Luminescence
  • Another specific example may be a so-called touch panel that combines a display element such as an organic EL display with a position input device such as a touch pad.
  • connection structure 11 can be applied to any electronic device that uses electrical connections, such as general-purpose connectors, semiconductor devices (ICs: Integrated Circuits, etc.), wiring boards (flexible printed circuit boards, etc.), display devices (televisions, displays, head-mounted displays, etc.), mobile devices (smartphones, tablet devices, wearable devices, etc.), audio devices, imaging devices (image sensors, etc.), vehicle electrical equipment (navigation systems, etc.), medical devices, sensor devices (touch sensors, fingerprint authentication, iris authentication, etc.), solar cells, etc.
  • ICs Integrated Circuits, etc.
  • wiring boards flexible printed circuit boards, etc.
  • display devices televisions, etc.
  • mobile devices smarttphones, tablet devices, wearable devices, etc.
  • audio devices audio devices
  • imaging devices image sensors, etc.
  • vehicle electrical equipment novigation systems, etc.
  • medical devices sensor devices (touch sensors, fingerprint authentication, iris authentication, etc.), solar cells, etc.
  • a display area may be formed by regularly arranging a pixel driving circuit such as an organic TFT (thin film transistor) and a plurality of organic EL elements R, G, B in a matrix on a plastic substrate (first substrate 4a) such as PET or PEN.
  • a pixel driving circuit such as an organic TFT (thin film transistor)
  • first substrate 4a plastic substrate
  • signal lines and scanning lines for displaying images are formed in mutually orthogonal directions.
  • an organic EL display for example, a set of organic EL elements R, G, B that emit red, green, and blue light respectively constitutes one pixel.
  • the organic layer in which the organic EL elements are formed is covered with a protective layer and sealed by a sealing substrate via an adhesive layer.
  • the first electronic component 6a has electrodes for signal lines and scanning lines for displaying images drawn out to the outside of the display area, and is connected to a drive circuit element that is a driver for displaying images.
  • the electrodes (first electrodes 5a) of the signal lines and scanning lines connected to the drive circuit element are arranged according to the arrangement of bumps provided on the drive circuit element.
  • the second electronic component 6b in the above specific example may be a semiconductor electronic component, specifically, for example, an IC chip or an optical element such as an LED (Light Emitting Diode).
  • the second electrode 5b in such a second electronic component 6b may be a bump electrode such as a gold stud bump or a solder bump.
  • Example 1 [Preparation of anisotropic conductive adhesive sheet]
  • Polyethersulfone (PES) (product name: 5003MPS, manufactured by Sumitomo Chemical Co., Ltd.) (22.3 parts by mass) was dispersed in 100 parts by mass of bisphenol A type epoxy resin (product name: JER828, manufactured by Mitsubishi Chemical Co., Ltd.) at room temperature.
  • the resulting dispersion was heated in an oil bath at 150° C. for 3 hours to dissolve the PES in the epoxy resin.
  • the mixture was cooled to 80° C., and 16.3 parts by mass of silver particles A (average particle size: 0.5 ⁇ m, modified with oleic acid, manufactured by Dowa Electronics Co., Ltd.) were mixed and dispersed therein, and 26.2 parts by mass of 4,4′-diaminodiphenylmethane (DDM) (manufactured by Tokyo Chemical Industry Co., Ltd.) were further mixed and dispersed therein, thereby obtaining a resin composition (anisotropic conductive material).
  • DDM 4,4′-diaminodiphenylmethane
  • the above resin composition was applied onto a 50 ⁇ m thick sheet made of tetrafluoroethylene and treated at 150° C. for 15 minutes to form an anisotropic conductive adhesive sheet having a thickness of 200 ⁇ m.
  • the anisotropic conductive adhesive sheet 1 a includes a resin composition (anisotropic conductive material 1 ) and a tetrafluoroethylene sheet 73
  • FIG. 3(a) is a schematic diagram showing the state before the heating and pressurizing treatment
  • FIG. 3(b) is a schematic diagram showing the state after the heating and pressurizing treatment. That is, as shown in Fig.
  • the thickness of the anisotropic conductive adhesive sheet 1a at the convex parts of the tetrafluoroethylene mold 72 was crushed to 100 ⁇ m (the thickness obtained by subtracting the 50 ⁇ m thickness of the tetrafluoroethylene sheet 73 from the 150 ⁇ m thickness of the spacer 74). After that, the anisotropic conductive adhesive sheet 1a was removed from the tetrafluoroethylene sheet 73 and the tetrafluoroethylene mold 72, and a cured body (100 in Fig. 4) for measuring conductivity was obtained, in which uneven parts were formed.
  • the resistance value in the thickness direction of the concave portions of the cured body was measured and evaluated according to the following criteria. This corresponds to the resistance value of the region between the opposing electrodes in the connection structure (the region indicated by arrow C in FIG. 2(b)). It can be said that the smaller the resistance value in the thickness direction, the better the reliability of conduction between the opposing circuit members. Evaluation criteria A to C are within the acceptable range. -Evaluation criteria- A: The resistance value of the recesses in the cured body in the thickness direction is less than 10 0 ⁇ . B: The resistance value in the thickness direction of the recesses of the cured body is 10 0 ⁇ or more and less than 10 1 ⁇ . C: The resistance value in the thickness direction of the recesses of the cured body is 10 1 ⁇ or more and less than 10 2 ⁇ . D: The resistance value in the thickness direction of the recesses of the cured body is 10 2 ⁇ or more.
  • the resistance in the thickness direction (arrow d in FIG. 4) between the aluminum plate and the portions of the cured body other than the concave portions (convex portions of the cured body) was measured in the same manner as above and evaluated according to the following criteria. This corresponds to the measurement of the resistance in the region other than the region between the opposing electrodes in the connection structure (the region indicated by arrow D in FIG. 2(b)). Furthermore, the resistance in the horizontal direction (arrow e in FIG.
  • A The resistance value of the projections of the cured body in the thickness direction or the resistance value of the recesses of the cured body in the horizontal direction is 10 4 ⁇ or more.
  • B The resistance value of the projections of the cured body in the thickness direction or the resistance value of the recesses of the cured body in the horizontal direction is 10 3 ⁇ or more and less than 10 4 ⁇ .
  • C The resistance value of the projections of the cured body in the thickness direction or the resistance value of the recesses of the cured body in the horizontal direction is 10 2 ⁇ or more and less than 10 3 ⁇ .
  • Example 2 to 9 and Comparative Examples 1 to 2 The resistance value was evaluated in the same manner as in Example 1, except that the amount of the resin component used in the preparation of the anisotropic conductive adhesive sheet and the type and amount of the conductive particles used were changed as shown in Table 1. The results are shown in Table 1.
  • Silver particles A average particle size 0.5 ⁇ m, modified with oleic acid
  • Silver particles B average particle size 0.5 ⁇ m, modified with polyvinylpyrrolidone
  • Silver particles C average particle size 0.5 ⁇ m, modified with 5-phenylpentanoic acid
  • the cured bodies of Examples 1 to 9 according to the present invention showed low resistance in the concave portions, and showed high resistance in the horizontal direction between the convex portions of the cured bodies and the concave portions of the adjacent cured bodies. In other words, it is found that the cured bodies of Examples 1 to 9 show anisotropic conductivity. On the other hand, the concave portions of the cured bodies of Comparative Examples 1 and 2 did not exhibit anisotropic conductivity because they showed higher resistance values than the cured bodies of Examples 1 to 9. This shows that the present invention, when applied to a connection structure or the like, provides excellent reliability of conduction between opposing circuit members and excellent insulation between electrodes within a circuit member.
  • 1...anisotropic conductive material 1a...anisotropic conductive sheet, 2...resin component, 3...conductive particles, 4a...first substrate, 4b...second substrate, 5a...first electrode, 5b...second electrode, 6a...first electronic component, 6b...second electronic component, 71...heating and pressurizing stage, 72...mold, 73...tetrafluoroethylene sheet, 74...spacer, 10...connecting member, 11...connecting structure, 21a...phase-separated structure (independent phase) and 21b...phase-separated structure (continuous phase), 80...aluminum plate, 100...cured body.

Abstract

An anisotropic conductive material containing two or more resin components and conductive particles, wherein the resin components in the anisotropic conductive material form a phase separation structure during curing and the conductive particles are unevenly distributed in the continuous phase in the phase separation structure; an anisotropic conductive sheet; an anisotropic conductive paste; and a connection structure and a method for producing the same.

Description

異方導電性材料、異方導電性シートおよび異方導電性ペースト並びに接続構造体および接続構造体の製造方法Anisotropic conductive material, anisotropic conductive sheet, anisotropic conductive paste, connection structure, and method for manufacturing the connection structure
 本発明は、異方導電性材料、異方導電性シートおよび異方導電性ペースト並びに接続構造体および接続構造体の製造方法に関する。 The present invention relates to an anisotropic conductive material, an anisotropic conductive sheet, an anisotropic conductive paste, a connection structure, and a method for manufacturing the connection structure.
 電子部品を接続する際、金属メッキ粒子などの導電性粒子を樹脂成分に分散させた異方性導電フィルム(ACF)が広く使用されている。ACFを介して電極同士が圧着されると、ACFに含まれる導電性粒子が電極間を電気的に接続し、樹脂成分が電極同士の接着剤として働く。
 導電性接着剤や導電性塗料等の用途において、金属を主成分とする導電性粒子が樹脂中に分散されている導電性樹脂組成物が使用されている。樹脂の主成分として、熱又は光のエネルギーにより架橋反応を起こして硬化する、いわゆる熱硬化性樹脂、光硬化性樹脂を用い、樹脂組成物として導電性を発現させる目的で、多量の金属粒子を混合することが多い。
Anisotropic conductive films (ACFs), which contain conductive particles such as metal-plated particles dispersed in a resin component, are widely used to connect electronic components. When electrodes are pressure-bonded together via the ACF, the conductive particles contained in the ACF electrically connect the electrodes, and the resin component acts as an adhesive between the electrodes.
Conductive resin compositions in which metal-based conductive particles are dispersed in a resin are used for applications such as conductive adhesives and conductive paints. Thermosetting resins and photosetting resins, which are cured by crosslinking reactions caused by heat or light energy, are used as the main components of the resins, and a large amount of metal particles are often mixed into the resin compositions to make them conductive.
 十分な導電性と、優れた塗布作業性とを兼ね備えた導電性樹脂組成物として、例えば、特許文献1には、熱又は光により硬化する樹脂成分と、導電性粒子と、を含有する導電性樹脂組成物であって、前記樹脂成分が硬化したときに、当該導電性樹脂組成物が、前記樹脂成分により形成された硬化樹脂と、前記硬化樹脂中に分散する前記導電性粒子と、を含む硬化体を形成し、前記硬化樹脂が、2以上の相を含む相分離構造を有する、導電性樹脂組成物が開示されている。 As an example of a conductive resin composition that combines sufficient conductivity with excellent application workability, Patent Document 1 discloses a conductive resin composition that contains a resin component that is cured by heat or light and conductive particles, and when the resin component is cured, the conductive resin composition forms a cured body that contains a cured resin formed by the resin component and the conductive particles dispersed in the cured resin, and the cured resin has a phase separation structure containing two or more phases.
特開2013-67755号公報JP 2013-67755 A
 近年、例えばフレキシブルプリント基板(FPC)などの配線の微細パターン化が進んでおり、これに伴い、配線間のピッチも狭くなっている。一方、ACFの導電性粒子として用いられる金属メッキ粒子の小径化は限界が顕在化しており、隣接する配線間で導通してしまうなどの課題が生じている。
 このような事情から意図しない導通の形成、または導通が形成されない電極端子が生じるなどの問題を生じない、導通信頼性に優れた異方導電性接着シートの開発が求められている。
In recent years, for example, the finer patterns of wiring in flexible printed circuit boards (FPCs) and the like have been developed, and the pitch between wiring has become narrower accordingly. On the other hand, the size of metal plating particles used as conductive particles in ACFs has reached its limit, resulting in problems such as conduction between adjacent wiring.
Under these circumstances, there is a demand for the development of an anisotropic conductive adhesive sheet that has excellent conductivity reliability and does not cause problems such as the formation of unintended conductivity or electrode terminals that do not form conductivity.
 上記事情に鑑み発明者らが鋭意検討したところ、導電性粒子として金属ナノ粒子を用い、これを樹脂成分の相分離構造の連続相に偏在させることで、微細パターンを有する電極端子の接合に用いても、導通上の問題を生じないACFが得られることを見出した。
 本発明の一実施形態が解決しようとする課題は、接続構造体に用いた場合、対向する回路部材間の導通信頼性に優れ、かつ、回路部材内の電極同士の絶縁性に優れる、異方導電性材料、異方導電性接着シートおよび異方導電性接着ペーストを提供することである。本発明の他の実施形態が解決しようとする課題は、対向する回路部材間の導通信頼性に優れ、かつ、回路部材内の電極同士の絶縁性に優れる接続構造体およびその製造方法を提供することである。
In view of the above circumstances, the inventors conducted intensive research and found that by using metal nanoparticles as conductive particles and distributing these unevenly in the continuous phase of the phase-separated structure of the resin component, an ACF can be obtained that does not cause problems in terms of conductivity even when used to join electrode terminals having fine patterns.
The problem to be solved by one embodiment of the present invention is to provide an anisotropic conductive material, an anisotropic conductive adhesive sheet, and an anisotropic conductive adhesive paste that, when used in a connection structure, have excellent reliability in electrical conduction between opposing circuit members and excellent insulation between electrodes in the circuit members. The problem to be solved by another embodiment of the present invention is to provide a connection structure and a method for producing the same that have excellent reliability in electrical conduction between opposing circuit members and excellent insulation between electrodes in the circuit members.
 本発明の一実施形態には、以下の態様が含まれる。
<1> 2以上の樹脂成分と導電性粒子とを含む異方導電性材料であって、
 前記異方導電性材料は、硬化時に前記樹脂成分が相分離構造を形成し、かつ、前記導電性粒子は前記相分離構造における連続相に偏在する、
 異方導電性材料。
<2> 前記導電性粒子の平均粒子径が0.01~20μmである、<1>に記載の異方導電性材料。
<3> 前記導電性粒子の表面が、有機化合物で修飾されている、<1>または<2>に記載の異方導電性材料。
<4> 前記導電性粒子の含有率が、前記樹脂成分100質量部に対して1~70質量部である、<1>または<2>に記載の異方導電性材料。
<5> <1>または<2>に記載の前記異方導電性材料から形成された異方導電性接着シート。
<6> <1>または<2>に記載の前記異方導電性材料から形成された異方導電性接着ペースト。
<7> <1>または<2>に記載の前記異方導電性材料を硬化してなる異方導電性硬化物。
<8> 第一の基板上に設けられた第一の電極を有する第一の電子部材と、
 第二の基板上に設けられた第二の電極を有する第二の電子部材と、
 前記第一の電子部材と前記第二の電子部材との間に設けられた接続部材と、を備え、
 前記接続部材が、<1>に記載の異方導電性材料の硬化物であり、
 前記第一の電極と前記第二の電極との間の領域における前記接続部材中の導電性粒子の充填率が、前記領域以外の領域における導電性粒子の充填率より高い、接続構造体。
<9> 前記第一の電極と前記第二の電極との間の領域における電気抵抗が、0Ω以上100Ω未満である、<8>に記載の接続構造体。
<10> 基板上に設けられた第一の電極を有する第一の電子部材と基板上に設けられた第二の電極を有する第二の電子部材との間に、<1>に記載の異方導電性材料を配置し、前記異方導電性材料を介して前記第一の電子部材と前記第二の電子部材とを熱圧着する工程を含む、
 接続構造体の製造方法。
An embodiment of the present invention includes the following aspects.
<1> An anisotropic conductive material containing two or more resin components and conductive particles,
the anisotropic conductive material has a phase-separated structure formed by the resin component when cured, and the conductive particles are unevenly distributed in a continuous phase of the phase-separated structure;
Anisotropic conductive material.
<2> The anisotropic conductive material according to <1>, wherein the conductive particles have an average particle size of 0.01 to 20 μm.
<3> The anisotropic conductive material according to <1> or <2>, wherein the surfaces of the conductive particles are modified with an organic compound.
<4> The anisotropic conductive material according to <1> or <2>, wherein the content of the conductive particles is 1 to 70 parts by mass with respect to 100 parts by mass of the resin component.
<5> An anisotropic conductive adhesive sheet formed from the anisotropic conductive material according to <1> or <2>.
<6> An anisotropic conductive adhesive paste formed from the anisotropic conductive material according to <1> or <2>.
<7> An anisotropically conductive cured product obtained by curing the anisotropically conductive material according to <1> or <2>.
<8> A first electronic member having a first electrode provided on a first substrate;
a second electronic component having a second electrode provided on a second substrate;
a connection member provided between the first electronic member and the second electronic member,
The connection member is a cured product of the anisotropic conductive material according to <1>,
A connection structure, wherein a filling rate of conductive particles in the connection member in a region between the first electrode and the second electrode is higher than a filling rate of conductive particles in a region other than the region.
<9> The connection structure according to <8>, in which an electrical resistance in a region between the first electrode and the second electrode is equal to or greater than 0 Ω and less than 100 Ω.
<10> A method for manufacturing a semiconductor device comprising the steps of: disposing the anisotropic conductive material according to <1> between a first electronic component having a first electrode provided on a substrate and a second electronic component having a second electrode provided on a substrate; and thermocompression bonding the first electronic component and the second electronic component via the anisotropic conductive material;
A method for manufacturing a connection structure.
 本発明の一実施形態によれば、接続構造体に用いた場合、対向する回路部材間の導通信頼性に優れ、かつ、回路部材内の電極同士の絶縁性に優れる、異方導電性材料、異方導電性接着シートおよび異方導電性接着ペーストが提供される。また、本発明の一実施形態によれば、対向する回路部材間の導通信頼性に優れ、かつ、回路部材内の電極同士の絶縁性に優れる接続構造体およびその製造方法が提供される。 According to one embodiment of the present invention, there are provided an anisotropic conductive material, an anisotropic conductive adhesive sheet, and an anisotropic conductive adhesive paste that, when used in a connection structure, provide excellent conductive reliability between opposing circuit members and excellent insulating properties between electrodes within the circuit members. Furthermore, according to one embodiment of the present invention, there are provided a connection structure and a method for manufacturing the same that provide excellent conductive reliability between opposing circuit members and excellent insulating properties between electrodes within the circuit members.
図1は、異方導電性材料の一実施形態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of an anisotropic conductive material. 図2は、接続構造体の製造方法の一実施形態を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing one embodiment of a method for producing a connection structure. 図3は、導電性測定用硬化体の作製方法を示す模式図である。FIG. 3 is a schematic diagram showing a method for producing a cured body for electrical conductivity measurement. 図4は、導電性測定用の硬化体の模式断面図である。FIG. 4 is a schematic cross-sectional view of a cured body for measuring electrical conductivity.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の内容の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に限定されることはない。
 本明細書において、数値範囲を示す「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、数値範囲を示す「~」とはその前後いずれか一方に記載される単位は、特に断りがない限り同じ単位を示すことを意味する。
 本明細書において、「質量部」と「重量部」とは同義である。
 本明細書中の「工程」の用語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても、その工程の所望の目的が達成されれば本工程に含まれる。
 また、本明細書において、特に限定しない限りにおいて、異方導電性材料中の各成分は、1種単独で含まれていてもよいし、2種以上を併用してもよいものとする。
 本明細書において、異方導電性材料中の各成分の量は、異方導電性材料中に各成分が複数存在する場合、特に断らない限り、異方導電性材料中に存在する該当する物質の合計量を意味する。
 本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本明細書において、「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルの両方を包含する概念で用いられる語である。
 以下、本発明を詳細に説明する。
The present invention will be described in detail below. The following description of the components may be based on a representative embodiment of the present invention, but the present invention is not limited to such an embodiment.
In this specification, the use of "to" indicating a range of values means that the values before and after it are included as the lower limit and upper limit.
In this specification, the term "to" indicating a numerical range means that the units written before or after it indicate the same units, unless otherwise specified.
In this specification, "parts by mass" and "parts by weight" have the same meaning.
In this specification, the term "step" refers not only to an independent step, but also to a step that cannot be clearly distinguished from other steps, as long as the desired purpose of the step is achieved.
In addition, in the present specification, unless otherwise specified, each component in the anisotropic conductive material may be contained alone or in combination of two or more kinds.
In this specification, the amount of each component in an anisotropically conductive material means, when multiple components are present in the anisotropically conductive material, the total amount of the corresponding substance present in the anisotropically conductive material, unless otherwise specified.
As used herein, a combination of two or more preferred aspects is a more preferred aspect.
In this specification, the term "(meth)acryloyl" is used as a concept that includes both acryloyl and methacryloyl.
The present invention will be described in detail below.
<異方導電性材料>
 本発明に係る異方導電性材料は、2以上の樹脂成分と導電性粒子とを含む異方導電性材料であって、前記異方導電性材料は、硬化時に前記樹脂成分が相分離構造を形成し、かつ、前記導電性粒子は前記相分離構造における連続相に偏在する。
 本発明に係る異方導電性材料が上記構成を有することで、接続構造体に用いた場合、対向する回路部材間の導通信頼性に優れ、かつ、回路部材内の電極同士の絶縁性に優れるメカニズムは明らかではないが、以下のように推察される。
 異方導電性材料は前記樹脂成分が硬化時に相分離構造を形成し、かつ、前記導電性粒子は前記相分離構造における連続相に偏在しやすいので、導電性粒子が互いに接触することで導通経路が形成されると推定している。また、異方導電性材料の硬化時に加圧すると、より導電性粒子が偏在しやすくなり、かつ、導電性粒子同士が接触しやすくなると推定している。そのため、異方導電性材料を備える接続構造体では回路部材間での導通信頼性(以下、単に「導通信頼性」ともいう場合がある。)に優れ、回路部材内の電極同士の絶縁性(以下、単に「絶縁性」ともいう場合がある。)に優れると推定している。
 以下、本発明に係る異方導電性材料の詳細について説明する。
<Anisotropic conductive materials>
The anisotropic conductive material of the present invention is an anisotropic conductive material comprising two or more resin components and conductive particles, wherein the resin components form a phase separation structure when cured, and the conductive particles are unevenly distributed in the continuous phase of the phase separation structure.
The mechanism by which the anisotropic conductive material of the present invention, having the above-mentioned configuration, when used in a connection structure, provides excellent conductive reliability between opposing circuit components and excellent insulation between electrodes within the circuit components is not clear, but is presumed to be as follows.
It is presumed that the resin component of the anisotropic conductive material forms a phase separation structure when cured, and the conductive particles tend to be unevenly distributed in the continuous phase of the phase separation structure, so that the conductive particles contact each other to form a conductive path. It is also presumed that if pressure is applied during curing of the anisotropic conductive material, the conductive particles tend to be unevenly distributed and the conductive particles tend to contact each other. Therefore, it is presumed that a connection structure including an anisotropic conductive material has excellent conductive reliability between circuit members (hereinafter, sometimes simply referred to as "conductive reliability") and excellent insulation between electrodes in the circuit members (hereinafter, sometimes simply referred to as "insulation").
The anisotropic conductive material according to the present invention will be described in detail below.
<<樹脂成分>>
 本発明に係る異方導電性材料は、2以上の樹脂成分を含む。樹脂成分は、硬化時に相分離構造を形成されれば特に制限はされない。
 相分離構造を形成する観点から、2以上の樹脂成分のうち少なくとも1つの樹脂成分は、好ましくは熱または光により硬化する樹脂を含み、より好ましくは熱により硬化する樹脂を含む。
 上記熱または光により硬化する樹脂としては、重合性基を有する樹脂が挙げられ、上記重合性基は、カチオン重合性基であってもよいし、ラジカル重合性基であってもよい。
 また、重合性基を有する樹脂は、重合性基を1つ有していてもよく、2つ以上有していてもよい。重合性基を有する樹脂はオリゴマー又はポリマーのいずれであってもよい。
 本明細書において、「オリゴマー」とは好ましくは分子量が1,000未満である化合物を意味する。
<<Resin component>>
The anisotropic conductive material according to the present invention contains two or more resin components. The resin components are not particularly limited as long as they form a phase-separated structure when cured.
From the viewpoint of forming a phase-separated structure, at least one of the two or more resin components preferably includes a resin that is cured by heat or light, and more preferably includes a resin that is cured by heat.
The resin that is cured by heat or light includes a resin having a polymerizable group, and the polymerizable group may be a cationic polymerizable group or a radical polymerizable group.
The resin having a polymerizable group may have one polymerizable group or may have two or more polymerizable groups. The resin having a polymerizable group may be either an oligomer or a polymer.
As used herein, "oligomer" preferably refers to a compound having a molecular weight of less than 1,000.
 重合性基としては、例えば、エチレン性不飽和基、エポキシ基、グリシジル基、オキシラニル基、オキセタニル基等が挙げられる。エチレン性不飽和基としては(メタ)アクリロイル基、ビニル基等が挙げられる。 Examples of polymerizable groups include ethylenically unsaturated groups, epoxy groups, glycidyl groups, oxiranyl groups, and oxetanyl groups. Examples of ethylenically unsaturated groups include (meth)acryloyl groups and vinyl groups.
 異方導電性材料の樹脂成分に含まれる重合性基を有する樹脂としては、相分離構造を形成しやすく、かつ、接続構造体に適用した場合において導通信頼性および絶縁性に優れる観点から、好ましくはエチレン性不飽和基、エポキシ基、または、グリシジル基を有する樹脂であり、より好ましくは、(メタ)アクリロイル基、エポキシ基、または、グリシジル基を有する樹脂であり、さらに好ましくは、エポキシ基を有する樹脂である。 The resin having a polymerizable group contained in the resin component of the anisotropic conductive material is preferably a resin having an ethylenically unsaturated group, an epoxy group, or a glycidyl group, more preferably a resin having a (meth)acryloyl group, an epoxy group, or a glycidyl group, and even more preferably a resin having an epoxy group, from the viewpoints of easiness in forming a phase separation structure and excellent conductivity reliability and insulation when applied to a connection structure.
<<エポキシ樹脂>>
 エポキシ基を有する樹脂(以下、「エポキシ樹脂」ともいう場合がある。)としては、特に制限はなく、1分子中にエポキシ基を1つ含んでいてもよいし、2以上含んでいてもよい。
 エポキシ基を有する樹脂に含まれるエポキシ基の数としては、相分離構造を形成しやすく、かつ、接続構造体に適用した場合において導通信頼性および絶縁性に優れる観点から、好ましくは2~10であり、より好ましくは2~6であり、さらに好ましくは2~4である。
 上記観点から、エポキシ樹脂は、1分子中に2個のエポキシ基を有するエポキシ樹脂(以下、「2官能エポキシ樹脂」ともいう。)であることが好ましい。
<<Epoxy resin>>
The resin having an epoxy group (hereinafter, may be referred to as "epoxy resin") is not particularly limited, and may contain one epoxy group or two or more epoxy groups in one molecule.
The number of epoxy groups contained in the resin having epoxy groups is preferably 2 to 10, more preferably 2 to 6, and even more preferably 2 to 4, from the viewpoints of easily forming a phase-separated structure and of achieving excellent electrical conductivity reliability and insulation when applied to a connection structure.
From the above viewpoint, the epoxy resin is preferably an epoxy resin having two epoxy groups in one molecule (hereinafter, also referred to as a "bifunctional epoxy resin").
 エポキシ樹脂としては、例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、テトラブロモビスフェノールAジグリシジルエーテル、ビスフェノールADジグリシジルエーテル、2,2',6,6'-テトラメチル-4,4'-ビフェノールジグリシジルエーテル、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-4-アミノ-3-メチルフェノール、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、N,N,N’,N’-テトラグリシジル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-2,2’-ジエチル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(ジグリシジルアミノメチル)シクロヘキサン、エチレングリコールジグリジジルエーテル、プロピレングリコールジグリシジルエーテル、ヘキサメチレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、1,6-ジヒドロキシナフタレンのジグリシジルエーテル、9,9-ビス(4-ヒドロキシフェニル)フルオレンのジグリシジルエーテル、トリス(p-ヒドロキシフェニル)メタンのトリグリシジルエーテル、テトラキス(p-ヒドロキシフェニル)エタンのテトラグリシジルエーテル、フェノールノボラックグリシジルエーテル、クレゾールノボラックグリシジルエーテル、フェノールとジシクロペンタジエンとの縮合物のグリシジルエーテル、フェノールアラルキル樹脂のグリシジルエーテル、トリグリシジルイソシアヌレート、N-グリシジルフタルイミド、5-エチル-1,3-ジグリシジル-5-メチルヒダントイン、1,3-ジグリシジル-5,5-ジメチルヒダントイン、ビスフェノールA ジグリシジルエーテルとトリレンイソシアネートとの付加により得られるオキサゾリドン型エポキシ樹脂、およびフェノールアラルキル型エポキシ樹脂等の2官能エポキシ樹脂が挙げられる。
 これらの中でも、2官能エポキシ樹脂としては、好ましくはビスフェノールAジグリシジルエーテルおよびビスフェノールFジグリシジルエーテルである。
Examples of epoxy resins include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, tetrabromobisphenol A diglycidyl ether, bisphenol AD diglycidyl ether, 2,2',6,6'-tetramethyl-4,4'-biphenol diglycidyl ether, N,N,O-triglycidyl-m-aminophenol, N,N,O-triglycidyl-p-aminophenol, N,N,O-triglycidyl-4-amino-3-methylphenol, N, N-diglycidylaniline, N,N-diglycidyl-o-toluidine, N,N,N',N'-tetraglycidyl-4,4'-methylenedianiline, N,N,N',N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(diglycidylaminomethyl)cyclohexane, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, hexamethylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, phthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, diglycidyl ether of 1,6-dihydroxynaphthalene, diglycidyl ether of 9,9-bis(4-hydroxyphenyl)fluorene, triglycidyl ether of tris(p-hydroxyphenyl)methane, tetraglycidyl ether of tetrakis(p-hydroxyphenyl)ethane, phenol novolac glycidyl ether, cresol novolac glycidyl ether, glycidyl ether of condensation product of phenol and dicyclopentadiene, glycidyl ether of phenol aralkyl resin, triglycidyl isocyanurate, N-glycidyl phthalimide, 5-ethyl-1,3-diglycidyl-5-methylhydantoin, 1,3-diglycidyl-5,5-dimethylhydantoin, bisphenol A Examples of such epoxy resins include bifunctional epoxy resins such as oxazolidone type epoxy resins obtained by addition of diglycidyl ether and tolylene isocyanate, and phenol aralkyl type epoxy resins.
Among these, preferred difunctional epoxy resins are bisphenol A diglycidyl ether and bisphenol F diglycidyl ether.
 また、樹脂成分は、必要に応じて、上記2官能エポキシ樹脂と1分子中に1つのエポキシ基を有する樹脂とを含んでいてもよい。
 1分子中に1つのエポキシ基を有する樹脂としては、例えば、シクロへキサンジメチロール型エポキシ樹脂、フェニルグリシジルエーテル、o-sec-ブチルフェニルグリシジルエーテル、o-クレジルグリシジルエーテル、p-tert-ブチルフェニルグリシジルエーテル、o-フェニルフェニルグリシジルエーテル、ノニルフェニルグリシジルエーテル、フェノール(EO)グリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、および1,4-ブタンジオールジグリシジルエーテル、2-エチルヘキシルグリシジルエーテル等が挙げられる。
Furthermore, the resin component may contain the above-mentioned bifunctional epoxy resin and a resin having one epoxy group in one molecule, if necessary.
Examples of resins having one epoxy group per molecule include cyclohexane dimethylol type epoxy resins, phenyl glycidyl ether, o-sec-butylphenyl glycidyl ether, o-cresyl glycidyl ether, p-tert-butylphenyl glycidyl ether, o-phenylphenyl glycidyl ether, nonylphenyl glycidyl ether, phenol (EO) 5 glycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, 1,6-hexanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, 2-ethylhexyl glycidyl ether, and the like.
 (メタ)アクリロイル基を有する樹脂(以下、「アクリル樹脂」ともいう場合がある。)としては、特に制限はなく、1分子中に(メタ)アクリロイル基を1つ含んでいてもよいし、2以上含んでいてもよい。
 アクリル樹脂は、(メタ)アクリル酸と各種アルコール化合物とのエステル化により得られる(メタ)アクリル酸エステルが好ましい。
 これらは単体あるいは複数種を組み合わせて使用することができる。
The resin having a (meth)acryloyl group (hereinafter, may be referred to as "acrylic resin") is not particularly limited, and may contain one (meth)acryloyl group or two or more (meth)acryloyl groups in one molecule.
The acrylic resin is preferably a (meth)acrylic acid ester obtained by esterification of (meth)acrylic acid with various alcohol compounds.
These can be used alone or in combination of two or more kinds.
 (メタ)アクリル酸エステルは、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソブチル、アクリル酸ターシャリーブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸ターシャリーブチル、メタクリル酸プロピル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸オクチル、メタクリル酸ベンジルメタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ラウリル-トリデシル、メタクリル酸ステアリル、メタクリル酸イソボルニル、メタクリル酸ジシクロペンタニル、メタクリル酸ジシクロペンタニルオキシエチル、ジメタクリル酸エチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジメタクリル酸-1,3-ブチレングリコール、ジメタクリル酸-1,4-ブタンジオール、ジメタクリル酸-1,6-ヘキサンジオール、ジメタクリル酸グリセリン、トリメタクリル酸トリメチロールプロパン、ジメタクリル酸ビスフェノールAエチレンオキシド付加物、およびジメタクリル酸ビスフェノールA プロピレンオキシド付加物、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジアクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、プロポキシ化ビスフェノールAジアクリレート、トリシクロデカンジメタノールジアクリレート、1,10-デカンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジアクリレート、N,N-ジメチルアクリルアミド、および、N-メチロールアクリルアミドから選ばれる。 (Meth)acrylic acid esters include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, isobutyl acrylate, tertiary butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, tertiary butyl methacrylate, propyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, octyl methacrylate, benzyl methacrylate, isodeuterium methacrylate, methacrylate, lauryl methacrylate, tridecyl methacrylate, lauryl-tridecyl methacrylate, stearyl methacrylate, isobornyl methacrylate, dicyclopentanyl methacrylate, dicyclopentanyloxyethyl methacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexamethyldisilane dimethacrylate The monomer is selected from dimethylol, glycerin dimethacrylate, trimethylolpropane trimethacrylate, ethylene oxide adduct of bisphenol A dimethacrylate, and propylene oxide adduct of bisphenol A dimethacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, polyethylene glycol diacrylate, propoxylated ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A diacrylate, 9,9-bis[4-(2-acryloyloxyethoxy)phenyl]fluorene, propoxylated bisphenol A diacrylate, tricyclodecane dimethanol diacrylate, 1,10-decanediol diacrylate, 1,6-hexanediol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, polytetramethylene glycol diacrylate, N,N-dimethylacrylamide, and N-methylolacrylamide.
 アクリル樹脂の架橋を促進させて、ゲル化時間を制御しやすい観点から、アクリル樹脂は、1分子中に3個以上の(メタ)アクリロイル基を有していてもよい。
 1分子中に3個以上の(メタ)アクリロイル基を有する化合物としては、例えば、トリメチロールプロパントリアクリレート、トリメチロールプロパンエチレンオキシド付加物トリアクリレート、トリメチロールプロパンプロピレンオキシド付加物トリアクリレート、グリセリントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート、ペンタエリスリトールトリアクリレートとトリレンジイソシアネートの2:1付加物、ペンタエリスリトールトリアクリレートとヘキサメチレンジイソシアネートの2:1付加物、3官能以上のエポキシ化合物(例えばフェノールノボラックのグリシジルエーテルなど)にアクリル酸を付加させたエポキシアクリレート化合物、および、エトキシ化イソシアヌル酸トリアクリレート等が挙げられる。
From the viewpoint of accelerating crosslinking of the acrylic resin and making it easier to control the gelation time, the acrylic resin may have three or more (meth)acryloyl groups in one molecule.
Examples of compounds having three or more (meth)acryloyl groups in one molecule include trimethylolpropane triacrylate, trimethylolpropane ethylene oxide adduct triacrylate, trimethylolpropane propylene oxide adduct triacrylate, glycerin triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, tris(2-acryloyloxyethyl)isocyanurate, a 2:1 adduct of pentaerythritol triacrylate and tolylene diisocyanate, a 2:1 adduct of pentaerythritol triacrylate and hexamethylene diisocyanate, an epoxy acrylate compound in which acrylic acid is added to a trifunctional or higher epoxy compound (e.g., glycidyl ether of phenol novolac, etc.), and ethoxylated isocyanuric acid triacrylate.
 アクリル樹脂は、適切な相分離構造を形成し、接続構造体に用いた場合に基板および電極に対する接着性を向上させる観点から、(メタ)アクリロイル基と、(メタ)アクリロイル基以外の官能基と、を有する化合物であってもよい。
 (メタ)アクリロイル基以外の官能基としては、例えば、カルボキシ基、ヒドロキシ基、アミノ基、およびグリシジル基などが挙げられる。(メタ)アクリロイル基と(メタ)アクリロイル基以外の官能基とを有する化合物としては、例えば、アクリル酸、メタクリル酸、メタクリル酸ジエチルアミノエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ターシャリーブチルアミノエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸グリシジル、メタクリル酸ジメチルアミノエチル、およびメタクリル酸テトラヒドロフルフリルなどが挙げられる。
 エポキシ樹脂と併用したときに、特に良好な接着性が得られる観点から、これらの中でも(メタ)アクリロイル基と(メタ)アクリロイル基以外の官能基とを有する化合物としては、メタクリル酸グリシジルが好ましい。
The acrylic resin may be a compound having a (meth)acryloyl group and a functional group other than a (meth)acryloyl group, from the viewpoint of forming an appropriate phase separation structure and improving adhesion to a substrate and an electrode when used in a connection structure.
Examples of functional groups other than the (meth)acryloyl group include a carboxy group, a hydroxy group, an amino group, and a glycidyl group. Examples of compounds having a (meth)acryloyl group and a functional group other than the (meth)acryloyl group include acrylic acid, methacrylic acid, diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, tertiary butylaminoethyl methacrylate, 2-hydroxypropyl methacrylate, glycidyl methacrylate, dimethylaminoethyl methacrylate, and tetrahydrofurfuryl methacrylate.
Among these, glycidyl methacrylate is preferred as a compound having a (meth)acryloyl group and a functional group other than a (meth)acryloyl group, from the viewpoint of obtaining particularly good adhesion when used in combination with an epoxy resin.
 重合性基を有する樹脂は、1種単独であってもよいし、2種以上を併用してもよい。
 相分離構造を形成しやすく、かつ、接続構造体に用いた場合において導通信頼性および絶縁性に優れる観点から、重合性基を有する樹脂の含有量としては、樹脂成分100質量部に対して、好ましくは10質量部以上であり、より好ましくは20~95質量部、さらに好ましくは30~90質量部である。
The resin having a polymerizable group may be used alone or in combination of two or more kinds.
From the viewpoint of easily forming a phase separation structure and achieving excellent conductive reliability and insulating properties when used in a connection structure, the content of the resin having a polymerizable group is preferably 10 parts by mass or more, more preferably 20 to 95 parts by mass, and even more preferably 30 to 90 parts by mass, relative to 100 parts by mass of the resin component.
 2以上の樹脂成分は、相分離構造を形成しやすく、かつ、接続構造体に用いた場合において導通信頼性および絶縁性に優れる観点から、熱可塑性樹脂を含むことが好ましく、上述の重合性基を有する樹脂と、熱可塑性樹脂と、を含むことがより好ましい。
 上記熱可塑性樹脂は、エラストマーであってもよい。
The two or more resin components preferably contain a thermoplastic resin, from the viewpoint of easily forming a phase separation structure and of providing excellent conductive reliability and insulating properties when used in a connection structure, and more preferably contain a resin having the above-mentioned polymerizable group and a thermoplastic resin.
The thermoplastic resin may be an elastomer.
 相分離構造を形成しやすく、かつ、接続構造体に用いた場合において導通信頼性および絶縁性に優れる観点から、熱可塑性樹脂は、カルボキシ基、ヒドロキシ基またはアミノ基などの官能基を主鎖末端又は分子鎖中に有する樹脂でもよく、上記官能基を有していない樹脂でもよい。 From the viewpoint of facilitating the formation of a phase separation structure and of achieving excellent electrical conductivity reliability and insulating properties when used in a connection structure, the thermoplastic resin may be a resin having a functional group such as a carboxy group, a hydroxy group, or an amino group at the end of the main chain or within the molecular chain, or may be a resin that does not have the above functional groups.
 熱可塑性樹脂としては、例えば、主鎖に炭素-炭素結合、アミド結合、イミド結合(ポリエーテルイミド等)、エステル結合、エーテル結合、シロキサン結合、カーボネート結合、ウレタン結合、尿素結合、チオエーテル結合、スルフォン結合、イミダゾール結合およびカルボニル結合からなる群より選ばれる少なくとも1種の結合を有する樹脂が挙げられる。 Examples of thermoplastic resins include resins that have at least one bond in the main chain selected from the group consisting of carbon-carbon bonds, amide bonds, imide bonds (such as polyetherimide), ester bonds, ether bonds, siloxane bonds, carbonate bonds, urethane bonds, urea bonds, thioether bonds, sulfone bonds, imidazole bonds, and carbonyl bonds.
 上記熱可塑性樹脂としては、例えば、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルケトン、および、ポリフェニレンエーテル等が挙げられる。 Examples of the thermoplastic resin include polysulfone, polyethersulfone, polyetherimide, polyimide, polyamide, polyamideimide, polyetherketone, and polyphenylene ether.
 熱可塑性樹脂としては、導電性発現に適切な相分離構造を得やすく、また、硬化樹脂の耐湿熱性、靭性、耐衝撃性、剥離接着強さを高める観点から、スルフォン結合、イミド結合、および、炭素-炭素結合、カルボニル結合又はエステル結合からなる群より選ばれる少なくとも1種の結合を有する樹脂が好ましく、スルフォン結合を有する樹脂がより好ましい。 As the thermoplastic resin, from the viewpoint of easily obtaining a phase separation structure suitable for electrical conductivity and also improving the moist heat resistance, toughness, impact resistance, and peel adhesion strength of the cured resin, a resin having at least one bond selected from the group consisting of a sulfone bond, an imide bond, a carbon-carbon bond, a carbonyl bond, and an ester bond is preferred, and a resin having a sulfone bond is more preferred.
 スルフォン結合を有する熱可塑性樹脂としては、例えば、ポリエーテルスルホン(PES)などが挙げられる。また、イミド結合を有する熱可塑性樹脂としては、例えば、ポリエーテルイミド等が挙げられる。また、カルボニル結合を有する熱可塑性樹脂としては、例えば、ポリエーテルケトン等が挙げられる。
 これらの中でも、相分離構造を形成しやすい観点から、熱可塑性樹脂としては好ましくはポリエーテルスルホンおよびポリエーテルケトンである。
Examples of thermoplastic resins having sulfone bonds include polyethersulfone (PES), etc. Examples of thermoplastic resins having imide bonds include polyetherimide, etc. Examples of thermoplastic resins having carbonyl bonds include polyetherketone, etc.
Among these, polyethersulfone and polyetherketone are preferred as the thermoplastic resin from the viewpoint of easiness in forming a phase-separated structure.
 熱可塑性樹脂は、オリゴマーであってもよい。成形時の樹脂粘度が過大となって樹脂の流動性が低下することを防止する観点から、熱可塑性樹脂の数平均分子量(Mn)は、好ましくは10,000以下であり、より好ましくは7,000以下である。さらに、熱可塑性樹脂による改質効果、得られる硬化体の耐衝撃性を維持する観点から、熱可塑性樹脂の数平均分子量(Mn)は好ましくは3,000以上、より好ましくは4,000以上である。 The thermoplastic resin may be an oligomer. From the viewpoint of preventing the resin viscosity from becoming too high during molding, which would result in a decrease in the fluidity of the resin, the number average molecular weight (Mn) of the thermoplastic resin is preferably 10,000 or less, and more preferably 7,000 or less. Furthermore, from the viewpoint of maintaining the modifying effect of the thermoplastic resin and the impact resistance of the resulting cured body, the number average molecular weight (Mn) of the thermoplastic resin is preferably 3,000 or more, and more preferably 4,000 or more.
 熱可塑性樹脂は1種単独であってもよいし、2種以上を併用してもよい。
 相分離構造を形成する観点から、熱可塑性樹脂の含有量(熱可塑性樹脂が2種以上含む場合はその合計量)は、全樹脂成分100質量部に対して、好ましくは3~75質量部であり、より好ましくは5~60質量部である。
The thermoplastic resin may be used alone or in combination of two or more kinds.
From the viewpoint of forming a phase separation structure, the content of the thermoplastic resin (the total amount when two or more types of thermoplastic resins are contained) is preferably 3 to 75 parts by mass, more preferably 5 to 60 parts by mass, per 100 parts by mass of the total resin components.
 樹脂成分の含有量(例えば、重合性基を含む樹脂および熱可塑性樹脂の合計量)は、異方導電性材料の全質量に対して、好ましくは50~99質量部、より好ましくは70~98質量部である。 The content of the resin component (e.g., the total amount of the resin containing a polymerizable group and the thermoplastic resin) is preferably 50 to 99 parts by mass, more preferably 70 to 98 parts by mass, based on the total mass of the anisotropic conductive material.
 また、相分離構造を形成しやすく、かつ、接続構造体に用いた場合において導通信頼性および絶縁性に優れる観点から、重合性基を含む樹脂および熱可塑性樹脂の比(重合性基を含む樹脂:熱可塑性樹脂)は、質量基準で、好ましくは10:90~90:10であり、より好ましくは15:85~85:15である。 In addition, from the viewpoint of facilitating the formation of a phase separation structure and achieving excellent electrical conductivity reliability and insulating properties when used in a connection structure, the ratio of the resin containing a polymerizable group to the thermoplastic resin (resin containing a polymerizable group:thermoplastic resin) is preferably 10:90 to 90:10, and more preferably 15:85 to 85:15, by mass.
<導電性粒子>
 異方導電性材料は導電性粒子を含む。導電性粒子は前記樹脂成分が硬化時に相分離構造を形成した相分離構造における連続相に偏在する。
 導電性粒子としては、異方導電性材料に用いられる公知の粒子を用いることができる。接続構造体に適用した場合において導通信頼性および絶縁性に優れる観点から、導電性粒子としては、好ましくは、金、銀、銅、白金、ニッケル、アルミニウム、パラジウム、スズ、ビスマス、亜鉛、インジウム、マグネシウム、タングステン、チタンおよび炭素から選択される少なくとも1種であり、より好ましくは、金、銀、銅およびニッケルから選択される少なくとも1種である。
 これらの粒子素材は1種単独で、または2種以上を組み合わせて用いられる。
 導電性粒子は、各種金属の合金の粒子でもよく、金属酸化物、ガラス、セラミック、樹脂等の粒子の表面に金属層を被覆したもの等であってもよいし、複数の素材を複合化した複合粒子であってもよい。また、樹脂粒子の表面に金属層を被覆したものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、スチレン系樹脂等の粒子を挙げることができる。
<Conductive particles>
The anisotropic conductive material contains conductive particles that are unevenly distributed in a continuous phase of the phase-separated structure formed by the resin component upon curing.
The conductive particles may be any known particles used in anisotropic conductive materials. In terms of excellent electrical conductivity and insulation when applied to a connection structure, the conductive particles are preferably at least one selected from gold, silver, copper, platinum, nickel, aluminum, palladium, tin, bismuth, zinc, indium, magnesium, tungsten, titanium, and carbon, and more preferably at least one selected from gold, silver, copper, and nickel.
These particulate materials may be used alone or in combination of two or more.
The conductive particles may be particles of alloys of various metals, particles of metal oxide, glass, ceramic, resin, etc., with a metal layer covering the surface thereof, or composite particles made by combining a plurality of materials. In the case of resin particles with a metal layer covering the surface thereof, examples of the resin particles include particles of epoxy resin, phenol resin, acrylic resin, styrene resin, etc.
 導電性粒子は、表面処理されていてもよい。導電性粒子が表面処理されている場合、樹脂成分が形成する相分離構造の特定の相に導電性粒子が偏在し易くなる。表面処理方法としては、特に制限はなく、公知の表面処理方法を用いることができる。導電性粒子が表面処理されている場合、導電性粒子の表面は有機化合物で修飾されていることが好ましい。 The conductive particles may be surface-treated. When the conductive particles are surface-treated, the conductive particles tend to be unevenly distributed in a specific phase of the phase separation structure formed by the resin component. There are no particular limitations on the surface treatment method, and any known surface treatment method can be used. When the conductive particles are surface-treated, it is preferable that the surfaces of the conductive particles are modified with an organic compound.
 上記有機化合物としては、有機酸およびその塩が好適に挙げられる。有機酸およびその塩としては、例えば、カルボキシ基を含有する化合物およびその塩が挙げられる。有機酸中の酸基の数は特に制限はなく、1つであってもよいし、2以上であってもよい。
 酸基としては、例えば、カルボキシ基、スルホ基、リン酸基等が挙げられる。これらの中でも、酸基としては、好ましくはカルボキシ基である。
The organic compound is preferably an organic acid and its salt. The organic acid and its salt are, for example, a compound containing a carboxyl group and its salt. The number of acid groups in the organic acid is not particularly limited, and may be one or two or more.
Examples of the acid group include a carboxy group, a sulfo group, a phosphate group, etc. Among these, the acid group is preferably a carboxy group.
 有機酸又はその塩としては、例えば、コハク酸、グルタン酸、アジピン酸、オレイン酸、ラウリン酸、ステアリン酸、パルミチン酸、ミリスチン酸などの脂肪酸、およびこれらの塩が挙げられる。
 少量の使用で表面処理の効果を得やすいため観点から、これらの中でも、有機酸又はその塩としては、好ましくはラウリン酸、ステアリン酸、パルミチン酸、ミリスチン酸、およびこれらのアンモニウム塩である。有機酸塩を表面処理剤として使用した場合、水中で導電性粒子の表面処理を行うことができる。
Examples of the organic acid or its salt include fatty acids such as succinic acid, glutaric acid, adipic acid, oleic acid, lauric acid, stearic acid, palmitic acid, and myristic acid, and salts thereof.
Among these, the organic acid or its salt is preferably lauric acid, stearic acid, palmitic acid, myristic acid, or an ammonium salt thereof, since the effect of the surface treatment can be easily obtained with a small amount of use. When an organic acid salt is used as the surface treatment agent, the surface treatment of the conductive particles can be performed in water.
 表面処理に用いられる有機酸又は有機酸塩の添加量としては、導電性粒子100質量部に対して0.001~0.5質量部の範囲にあることが好ましい。表面処理剤の量が0.001質量部以上であると、表面処理の効果および導電性粒子を積極的に偏在化させる効果が得られやすい。表面処理剤の量が0.5質量部以下であると、導電性向上の効果が得られやすい。 The amount of organic acid or organic acid salt used for surface treatment is preferably in the range of 0.001 to 0.5 parts by mass per 100 parts by mass of conductive particles. If the amount of surface treatment agent is 0.001 parts by mass or more, it is easier to obtain the effect of surface treatment and the effect of actively unevenly distributing the conductive particles. If the amount of surface treatment agent is 0.5 parts by mass or less, it is easier to obtain the effect of improving conductivity.
 導電性粒子の形状は特に制限はなく、例えば、球状、らくがん状(複数の球が凝集した形状)、平板状、針状、棒状等の形状であってもよい。 There are no particular limitations on the shape of the conductive particles, and they may be, for example, spherical, rhombus-like (a shape formed by an aggregation of multiple spheres), flat, needle-like, rod-like, etc.
 導電性粒子の平均粒子径としては、好ましくは0.01~20μmである。
 導電性粒子の平均粒子径が0.01μm以上であると、樹脂成分に導電性粒子を混合させやすく、異方導電性材料の塗布性も向上させることができる。また、導電性粒子の平均粒子径が20μm以下であると、微細な構造を有する被着体を接着するときに、導電性樹脂組成物を狭い隙間に均一に浸透させやすい。
 上記観点から、導電性粒子の平均粒子径は、好ましくは0.01~20μmであり、より好ましくは0.03~10μmであり、さらに好ましくは0.05~5μmであり、特に好ましくは0.1μm~3μmである。
The average particle size of the conductive particles is preferably 0.01 to 20 μm.
When the average particle size of the conductive particles is 0.01 μm or more, the conductive particles can be easily mixed into the resin component, and the applicability of the anisotropic conductive material can be improved. Also, when the average particle size of the conductive particles is 20 μm or less, the conductive resin composition can be easily uniformly permeated into narrow gaps when adhering an adherend having a fine structure.
From the above viewpoints, the average particle size of the conductive particles is preferably 0.01 to 20 μm, more preferably 0.03 to 10 μm, even more preferably 0.05 to 5 μm, and particularly preferably 0.1 to 3 μm.
 導電性粒子の平均粒子径は、レーザー回折・散乱法粒度分布測定装置により求められた粒度分布の積算値50%における粒子径(D50)である。 The average particle size of the conductive particles is the particle size (D50) at 50% of the integrated value of the particle size distribution determined by a laser diffraction/scattering particle size distribution measuring device.
 導電性粒子の含有率は、樹脂成分100質量部に対して、好ましくは1~70質量部であり、より好ましくは2~35質量部であり、さらに好ましくは5~35質量部である。導電性粒子の含有率は、接続する電極の精細度等に応じて調整することができる。
 導電性粒子は、1種単独であってもよいし、2種以上であってもよい。
The content of the conductive particles is preferably 1 to 70 parts by mass, more preferably 2 to 35 parts by mass, and further preferably 5 to 35 parts by mass, relative to 100 parts by mass of the resin component. The content of the conductive particles can be adjusted depending on the fineness of the electrodes to be connected, etc.
The conductive particles may be of one type alone or of two or more types.
<<その他の成分>>
 異方導電性材料は、上記樹脂成分および導電性粒子以外の成分(以下、「その他の成分」ともいう。)を含んでいてもよい。
 その他の成分としては、硬化剤、硬化触媒、重合開始剤、重合禁止剤、重合促進剤、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤等が挙げられる。
<<Other ingredients>>
The anisotropic conductive material may contain components other than the above-mentioned resin component and conductive particles (hereinafter also referred to as "other components").
Examples of other components include a curing agent, a curing catalyst, a polymerization initiator, a polymerization inhibitor, a polymerization accelerator, a filler, a softener, an accelerator, an anti-aging agent, a colorant, a flame retardant, and a thixotropic agent.
-硬化剤-
 硬化剤としては、例えば、4,4’-ジアミノジフェニルメタン(DDM)、ジアミノジフェニルスルホンなどの芳香族アミン、脂肪族アミン、イミダゾール誘導体、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミン、メチルヘキサヒドロフタル酸無水物などのカルボン酸無水物、カルボン酸ヒドラジド、カルボン酸アミド、ポリフェノール化合物、ノボラック樹脂、およびポリメルカプタン等が挙げられる。
 これらの中でも、硬化剤としては、好ましくは芳香族アミンであり、より好ましくは4,4’-ジアミノジフェニルメタン(DDM)である。
 重合性基を有する樹脂が例えば、エポキシ基、グリシジル基等のカチオン重合性基を含む場合、異方導電性材料は、硬化剤をさらに含有することが好ましい。
- Hardener -
Examples of the curing agent include aromatic amines such as 4,4'-diaminodiphenylmethane (DDM) and diaminodiphenylsulfone, aliphatic amines, imidazole derivatives, dicyandiamide, tetramethylguanidine, thiourea adduct amines, carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, carboxylic acid hydrazides, carboxylic acid amides, polyphenol compounds, novolac resins, and polymercaptans.
Among these, the curing agent is preferably an aromatic amine, and more preferably 4,4'-diaminodiphenylmethane (DDM).
When the resin having a polymerizable group contains a cationic polymerizable group such as an epoxy group or a glycidyl group, the anisotropic conductive material preferably further contains a curing agent.
 硬化剤は、1種単独であってもよいし、2種以上を併用してもよい。
 硬化剤の含有量は、樹脂成分の全質量に対して、好ましくは1質量%以上であり、より好ましくは1~50質量%である。
The curing agent may be used alone or in combination of two or more kinds.
The content of the curing agent is preferably 1% by mass or more, and more preferably 1 to 50% by mass, based on the total mass of the resin component.
 硬化触媒としては、例えば、三フッ化ホウ素エチルアミン錯体等のルイス酸錯体が挙げられる。
 また、例えば、上記ジシアンジアミドに、硬化促進剤として3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(DCMU)等の尿素誘導体又はイミダゾール誘導体を組み合わせてもよい。上記カルボン酸無水物又はノボラック樹脂に、硬化促進剤として第三級アミンを組み合わせてもよい。
The curing catalyst may, for example, be a Lewis acid complex such as boron trifluoride ethylamine complex.
In addition, for example, the dicyandiamide may be combined with a urea derivative such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or an imidazole derivative as a curing accelerator, and the carboxylic acid anhydride or novolak resin may be combined with a tertiary amine as a curing accelerator.
 重合開始剤としてはラジカル重合開始剤が挙げられ、例えば、アゾ化合物、有機過酸化物等が挙げられる。ラジカル重合開始剤は、熱によりラジカルが発生してもよいし、光によりラジカルが発生してもよい。 Polymerization initiators include radical polymerization initiators, such as azo compounds and organic peroxides. Radical polymerization initiators may generate radicals by heat or light.
 重合禁止剤は、例えば、2,6-ジ-t-ブチル-p-クレゾール、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(2-メチル-6-t-ブチルフェノール)、ヒドロキノン、2-t-ブチルヒドロキノン、2,5-ジ-t-ブチルヒドロキノン、p-ベンゾキノン、2-エチルアントラキノン、ジラウリルチオジプロピオネート、およびクペロンから選ばれる。
 促進剤としては、遷移金属の塩が挙げられ、例えば、ナフテン酸コバルトなどを使用することができる。
The polymerization inhibitor is, for example, selected from 2,6-di-t-butyl-p-cresol, 2,2'-methylenebis(4-methyl-6-t-butylphenol), 2,2'-methylenebis(4-ethyl-6-t-butylphenol), 4,4'-thiobis(2-methyl-6-t-butylphenol), hydroquinone, 2-t-butylhydroquinone, 2,5-di-t-butylhydroquinone, p-benzoquinone, 2-ethylanthraquinone, dilaurylthiodipropionate, and cupferron.
The promoter may be a salt of a transition metal, for example, cobalt naphthenate.
(異方導電性硬化物)
 本発明に係る異方導電性硬化物は、上記異方導電性材料を硬化してなる。
 異方導電性材料の硬化物方法は、異方導電性材料の樹脂成分に応じて硬化方法を適宜選択することができる。
 硬化条件としては、例えば、異方導電性材料を熱硬化する場合には、加熱温度は、例えば、150℃以上であってよく、250℃以下であってよい。また、硬化時に加圧してもよい。加圧時の圧力は、例えば、総面積あたり、1MPa以上であってよく、100MPa以下であってよい。加圧および加熱を行う時間は、例えば、1秒間以上であってよく、5時間以下であってよい。
 異方導電性硬化物の形状は、特に制限はないが、凹凸形状を有していることが好ましい。
(Anisotropic conductive cured product)
The anisotropically conductive cured product according to the present invention is obtained by curing the above-mentioned anisotropically conductive material.
The method for curing the anisotropic conductive material can be appropriately selected depending on the resin component of the anisotropic conductive material.
As for the curing conditions, for example, when the anisotropic conductive material is thermally cured, the heating temperature may be, for example, 150° C. or more and 250° C. or less. Pressurization may be applied during curing. The pressure during pressurization may be, for example, 1 MPa or more and 100 MPa or less per total area. The time for which pressurization and heating are performed may be, for example, 1 second or more and 5 hours or less.
The shape of the anisotropically conductive cured product is not particularly limited, but it is preferable that the product has an uneven shape.
<相分離構造>
 異方導電性材料は、硬化時に前記樹脂成分が相分離構造を形成し、かつ、前記導電性粒子は前記相分離構造における連続相に偏在する。
 特に、異方導電性材料の硬化物において、連続相に導電性粒子が偏在することにより、導電性粒子同士の接触機会が増加し、効果的に連続した導電パスが形成され、導電性粒子が比較的少量であっても、高い導電性が発現されると推定している。
<Phase separation structure>
In the anisotropic conductive material, the resin component forms a phase-separated structure when cured, and the conductive particles are unevenly distributed in the continuous phase of the phase-separated structure.
In particular, it is believed that in the cured product of anisotropic conductive materials, the conductive particles are unevenly distributed in the continuous phase, which increases the opportunities for contact between the conductive particles and effectively forms a continuous conductive path, resulting in high conductivity even when a relatively small amount of conductive particles is used.
 2以上の樹脂成分により形成される相分離構造は、2つの相からなる。相分離構造は、海島構造であってもよいし、2つの相が連続相を形成している両相連続構造であってもよい。 The phase separation structure formed by two or more resin components consists of two phases. The phase separation structure may be an island-in-a-sea structure, or a bicontinuous structure in which the two phases form a continuous phase.
 導通信頼性および絶縁性に優れる観点から、相分離構造を構成する相のうち、連続相以外の相(すなわち、独立相)の大きさ(幅)は、好ましくは1nm~20μmであり、より好ましくは20nm~10μmであり、さらに好ましくは30nm~5μmの範囲にある。 From the viewpoint of achieving excellent electrical conductivity reliability and insulating properties, the size (width) of the phases other than the continuous phase (i.e., the independent phases) that make up the phase separation structure is preferably in the range of 1 nm to 20 μm, more preferably 20 nm to 10 μm, and even more preferably 30 nm to 5 μm.
 導通信頼性および絶縁性に優れる観点から、相分離構造は、好ましくは海島構造であり、より好ましくは連続相が重合性基を含む樹脂を含む相であり、かつ、独立相が熱可塑性樹脂を含む相であり、さらに好ましくは連続相がエポキシ樹脂を含む相であり、かつ、独立相がポリエーテルスルホンを含む相である。 From the viewpoint of excellent conductive reliability and insulating properties, the phase separation structure is preferably a sea-island structure, more preferably a phase in which the continuous phase contains a resin containing a polymerizable group and the independent phase contains a thermoplastic resin, and even more preferably a phase in which the continuous phase contains an epoxy resin and the independent phase contains a polyethersulfone.
 導通信頼性および絶縁性に優れる観点から、異方導電性材料の硬化物において、相分離構造中の連続相に偏在している導電性粒子の割合(以下、単に「偏在化の割合」ともいう場合がある。)は、好ましくは80%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。 From the viewpoint of achieving excellent conductive reliability and insulating properties, the proportion of conductive particles unevenly distributed in the continuous phase in the phase separation structure in the cured product of the anisotropic conductive material (hereinafter, sometimes simply referred to as the "uneven distribution proportion") is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more.
 相分離構造および導電性粒子の分布状態は、光学顕微鏡、電子顕微鏡等の顕微鏡的手法を用いて確認することができる。また、必要に応じて元素分析手法および画像処理を併用することにより特定してもよい。相分離構造の観察の際、コントラストをつけるために、観察試料に溶剤処理、プラズマ処理、コロナ処理等によるエッチングを併用してもよい。 The phase separation structure and the distribution state of the conductive particles can be confirmed using microscopic techniques such as optical microscopes and electron microscopes. In addition, elemental analysis techniques and image processing may be used in combination as necessary to identify the structure. When observing the phase separation structure, etching of the observed sample by solvent treatment, plasma treatment, corona treatment, etc. may also be used in combination to add contrast.
<異方導電性材料の調製方法>
 異方導電性材料の調製方法は、上述した各成分が混合させることができれば特に限定されず、公知の方法で調製することができる。例えば、公知の方法で調製された樹脂成分に上記導電性粒子を添加する方法が挙げられる。
 2以上の樹脂成分の混合する温度は、好ましくは10~200℃であり、さらに好ましくは15~150℃である。
 また混合する時間は、溶解性の観点から、好ましくは20分~5時間であり、さらに好ましくは30分~4時間である。
<Method for preparing anisotropic conductive material>
The method for preparing the anisotropic conductive material is not particularly limited as long as the above-mentioned components can be mixed, and the material can be prepared by a known method. For example, the anisotropic conductive material can be prepared by adding the above-mentioned conductive particles to a resin component prepared by a known method.
The temperature at which the two or more resin components are mixed is preferably 10 to 200°C, and more preferably 15 to 150°C.
From the viewpoint of solubility, the mixing time is preferably 20 minutes to 5 hours, and more preferably 30 minutes to 4 hours.
(異方導電性接着シートおよび異方導電性接着ペースト)
 本発明に係る異方導電性接着シートは、上記異方導電性材料から形成されたシートであり、異方導電性材料から形成された層のみ(すなわち、単層)であってもよいし、異方導電性材料から形成された層と、異方導電性材料から形成された層以外の層(以下、単に「他の層」ともいう。)と、を備えたものであってもよい。異方導電性接着シートは、例えば、異方導電性接着シートから形成された層と、フィルムまたはシートと、を備えていてもよい。フィルムまたはシートの材質としては、特に制限はなく、異方導電性材料に用いられる公知のものを適用することができる。上記フィルムまたはシートは、離型処理されていることが好ましい。
 異方導電性材料の形状は、特に制限はなく、目的に応じて所望の形状とすることができる。例えば、シート状、フィルム状、ペースト状等であってもよい。
 異方導電性接着シートの作製方法としては、特に制限はなく公知の接着シートの作製方法にて作製することができる。例えば、フィルムまたはシート上に、上記異方導電性材料を塗布し乾燥後、異方導電性接着シートをフィルムまたはシートから剥離する方法等が挙げられる。
(Anisotropic conductive adhesive sheet and anisotropic conductive adhesive paste)
The anisotropic conductive adhesive sheet according to the present invention is a sheet formed from the anisotropic conductive material, and may be only a layer formed from the anisotropic conductive material (i.e., a single layer), or may be provided with a layer formed from the anisotropic conductive material and a layer other than the layer formed from the anisotropic conductive material (hereinafter, simply referred to as "other layer"). The anisotropic conductive adhesive sheet may, for example, be provided with a layer formed from the anisotropic conductive adhesive sheet and a film or sheet. There is no particular restriction on the material of the film or sheet, and any known material used for anisotropic conductive materials can be applied. The film or sheet is preferably subjected to a release treatment.
The shape of the anisotropic conductive material is not particularly limited and may be a desired shape depending on the purpose, for example, a sheet, a film, a paste, or the like.
The method for producing the anisotropic conductive adhesive sheet is not particularly limited and can be produced by a known method for producing an adhesive sheet, for example, a method in which the above-mentioned anisotropic conductive material is applied onto a film or sheet, dried, and then the anisotropic conductive adhesive sheet is peeled off from the film or sheet.
 本発明に係る異方導電性接着ペーストは、上記異方導電性材料から形成されたペーストである。
 異方導電性接着ペーストの製造方法としては、上記異方導電性材料の成分をペースト状になるように適宜調製すればよい。
 なお、異方導電性接着ペーストは、室温において樹脂成分が液状の性質を示すものであり、異方導電性接着フィルムは、室温において樹脂成分が固体の性質を示すが加熱圧着時にその一部または全部が軟化または液状化する性質を示すものとして区別されうる。
The anisotropic conductive adhesive paste according to the present invention is a paste formed from the above-mentioned anisotropic conductive material.
The anisotropically conductive adhesive paste may be produced by appropriately preparing the components of the anisotropically conductive material so as to form a paste.
In addition, an anisotropic conductive adhesive paste is one in which the resin component exhibits liquid properties at room temperature, while an anisotropic conductive adhesive film is one in which the resin component exhibits solid properties at room temperature but part or all of it softens or liquefies when heated and pressed.
(接続構造体)
 本発明に係る異方導電性材料は、導通信頼性および絶縁性に優れる観点から電子部材同士を接続するための部材として好適に用いることができる。
 本発明に係る接続構造体は、基板上に設けられた第一の電極を有する第一の電子部材と、基板上に設けられた第二の電極を有する第二の電子部材と、前記第一の電子部材と前記第二の電子部材との間に設けられた接続部材と、を備え、前記接続部材が、上記異方導電性材料の硬化物であり、前記第一の電極と前記第二の電極との間の領域における前記接続部材中の導電性粒子の充填率が、前記領域以外の領域における導電性粒子の充填率より高い。
(Connection structure)
The anisotropic conductive material according to the present invention can be suitably used as a member for connecting electronic components together, from the viewpoint of excellent conductive reliability and insulating properties.
The connection structure of the present invention comprises a first electronic component having a first electrode provided on a substrate, a second electronic component having a second electrode provided on the substrate, and a connecting member provided between the first electronic component and the second electronic component, wherein the connecting member is a cured product of the anisotropic conductive material, and a filling rate of conductive particles in the connecting member in a region between the first electrode and the second electrode is higher than a filling rate of conductive particles in a region other than the region.
 以下、異方導電性材料を用いた接続構造体およびその製造方法について、適宜図を参照して説明する。図1は、異方導電性材料の一実施形態を示す模式断面図であり、異方導電性材料1は、樹脂成分2と導電性粒子3とを含む。図2は、接続構造体の製造方法の一実施形態を示す模式断面図である。 Below, a connection structure using an anisotropic conductive material and a method for manufacturing the same will be described with reference to the appropriate figures. Figure 1 is a schematic cross-sectional view showing one embodiment of an anisotropic conductive material, where the anisotropic conductive material 1 contains a resin component 2 and conductive particles 3. Figure 2 is a schematic cross-sectional view showing one embodiment of a method for manufacturing a connection structure.
 図2(b)に示すように、接続構造体11は、第一の基板4aおよび第一の基板4a上に設けられた第一の電極5aを有する第一の電子部材6aと、第二の基板4bおよび第二の基板4b上に設けられた第二の電極5bを有する第二の電子部材6bと、第一の電子部材6aと第二の電子部材6bとの間に配置された接続部材10を備えている。 As shown in FIG. 2(b), the connection structure 11 includes a first electronic component 6a having a first substrate 4a and a first electrode 5a provided on the first substrate 4a, a second electronic component 6b having a second substrate 4b and a second electrode 5b provided on the second substrate 4b, and a connection component 10 disposed between the first electronic component 6a and the second electronic component 6b.
 図2(b)に示すように、接続部材10は、図1の異方導電性材料1の硬化物により構成されており、相分離構造を形成している独立相21aおよび連続相21bと、上記硬化物中に分散された導電性粒子3と、からなっている。
 接続構造体11では、導電性粒子3が第一の電極5aと第二の電極5bとの間に接続部材10が介在することにより、第一の電子部材6aと第二の電子部材6bとが互いに電気的に接続されている。
As shown in FIG. 2(b), the connection member 10 is composed of a cured product of the anisotropic conductive material 1 of FIG. 1, and is composed of an independent phase 21a and a continuous phase 21b forming a phase separation structure, and conductive particles 3 dispersed in the cured product.
In the connection structure 11, the conductive particles 3 are interposed between the first electrode 5a and the second electrode 5b via the connection member 10, so that the first electronic member 6a and the second electronic member 6b are electrically connected to each other.
<<基板>>
 接続構造体11において、第一の基板4aは、接続構造体に用いられる公知の基板を用いることができ、例えば、樹脂基板を好適に用いることができる。
<<Substrate>>
In connection structure 11, first substrate 4a may be a known substrate used in connection structures, and for example, a resin substrate may be suitably used.
 樹脂基板としては、好ましくは、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)およびポリエチレンナフタレート(PEN)から選ばれる少なくとも1種の熱可塑性樹脂より形成された基板であり、より好ましくはポリイミド(PI)より形成された基板である。
 第一の基板4aは、単層であってもよいし、複数の層から形成された基板であってもよい。二層以上の樹脂層から形成された基板としては、例えば、PET等から形成された第一の樹脂層と、PI等から形成された第二の樹脂層と、を備えた基板等が挙げられる。この場合、第二の樹脂層は第一の樹脂層よりも耐熱性に優れていることが好ましく、第一の電極5aは、第二の樹脂層上に設けられていることが好ましい。
The resin substrate is preferably a substrate formed from at least one thermoplastic resin selected from polyimide (PI), polyethylene terephthalate (PET), polycarbonate (PC) and polyethylene naphthalate (PEN), and more preferably a substrate formed from polyimide (PI).
The first substrate 4a may be a single layer or a substrate formed from multiple layers. An example of a substrate formed from two or more resin layers is a substrate having a first resin layer formed from PET or the like and a second resin layer formed from PI or the like. In this case, it is preferable that the second resin layer has a higher heat resistance than the first resin layer, and the first electrode 5a is preferably provided on the second resin layer.
 第二の基板4bは、接続構造体に用いられる公知の基板を用いることができ、例えば、ポリマー基板、ガラス基板、セラミックス基板等が挙げられる。 The second substrate 4b can be a known substrate used in connection structures, such as a polymer substrate, a glass substrate, or a ceramic substrate.
<<電極>>
 第一の電極5aおよび第二の電極5bを形成する電極材料としては、特に制限はなく、公知の電極を用いることができ、電極としては、例えば、Agペースト、Ni、Al、Au、Cu、TiおよびMo等の金属、並びに、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、銀ナノワイヤおよびカーボンナノチューブ等の透明導電体が挙げられる。
<<Electrodes>>
The electrode material for forming the first electrode 5a and the second electrode 5b is not particularly limited, and a known electrode can be used. Examples of the electrode include Ag paste, metals such as Ni, Al, Au, Cu, Ti, and Mo, and transparent conductors such as ITO (indium tin oxide), IZO (indium zinc oxide), silver nanowires, and carbon nanotubes.
 接続構造体11は、図2(b)の矢印Cの間の領域として示される、第一の電極5aと前記第二の電極5bとの間の領域(以下、「電極間領域」ともいう場合がある。)における接続部材10中の導電性粒子3が相互に接触し、導通経路が形成されることで導通信頼性に優れるものとなる。電極間領域で導通経路が形成されれば制限はないが、電極間領域の導電性粒子の充填率が、上記電極間領域以外の領域における導電性粒子の充填率より高いと、導通信頼性および絶縁性により優れる。 The connection structure 11 has excellent electrical conductivity reliability because the conductive particles 3 in the connection member 10 in the region between the first electrode 5a and the second electrode 5b (hereinafter sometimes referred to as the "interelectrode region"), shown as the region between the arrows C in Figure 2(b), come into contact with each other and form a conductive path. There are no restrictions as long as a conductive path is formed in the interelectrode region, but if the filling rate of the conductive particles in the interelectrode region is higher than the filling rate of the conductive particles in regions other than the interelectrode region, the conductive reliability and insulation properties will be superior.
 電極間領域における接続部材10中の導電性粒子3の充填率が、電極間領域以外の領域における導電性粒子の充填率より高いかどうかは、接続構造体11中の接続部材10部分を取り出し、接続部材10の断面について、光学顕微鏡、電子顕微鏡等の顕微鏡的手法を用いて確認することができる。 Whether the filling rate of the conductive particles 3 in the connection member 10 in the inter-electrode region is higher than the filling rate of the conductive particles in regions other than the inter-electrode region can be confirmed by removing the connection member 10 portion from the connection structure 11 and examining the cross section of the connection member 10 using microscopic techniques such as an optical microscope or an electron microscope.
 顕微鏡的手法を用いて電極間領域における接続部材10の水平断面を拡大し、観察される導電性粒子の面積A1を算出する。測定する接続部材10の水平断面の範囲は10000μmとし、接続構造体11の形状等によっては複数区画に分けて10000μm分を測定する。同様にして、電極間領域以外の領域における導電性粒子の面積A2を算出する。その後、電極間領域以外の領域における導電性粒子の面積A2に対する電極間領域における導電性粒子の面積A1の比率(A1/A2)を求める。
 導通信頼性および絶縁性により優れる観点から、当該比率(A1/A2)が、1~1000であることが好ましく、1~100であることがより好ましく、1~10であることがさらに好ましい。
A horizontal cross section of the connection member 10 in the interelectrode region is enlarged using a microscopic technique, and the area A1 of the observed conductive particles is calculated. The range of the horizontal cross section of the connection member 10 to be measured is 10,000 μm2 , and depending on the shape of the connection structure 11, it is divided into multiple sections and 10,000 μm2 is measured. Similarly, the area A2 of the conductive particles in the region other than the interelectrode region is calculated. Then, the ratio (A1/A2) of the area A1 of the conductive particles in the interelectrode region to the area A2 of the conductive particles in the region other than the interelectrode region is calculated.
From the viewpoint of achieving superior conduction reliability and insulation properties, the ratio (A1/A2) is preferably 1-1,000, more preferably 1-100, and even more preferably 1-10.
 第一の電極と前記第二の電極との間の領域における電気抵抗は、電極間の距離(異方導電性材料の厚さ)100μmあたりとして、好ましくは0Ω以上100Ω未満、より好ましくは0Ω以上10Ω未満、さらに好ましくは0Ω以上1Ω未満である。第一の電極と前記第二の電極との間の領域における電気抵抗が0Ω以上100Ω未満であると、回路部材間での導通信頼性および絶縁性に優れる。 The electrical resistance in the region between the first electrode and the second electrode is preferably 0 Ω or more and less than 100 Ω, more preferably 0 Ω or more and less than 10 Ω, and even more preferably 0 Ω or more and less than 1 Ω, per 100 μm of distance between the electrodes (thickness of the anisotropic conductive material). When the electrical resistance in the region between the first electrode and the second electrode is 0 Ω or more and less than 100 Ω, the electrical conductivity reliability and insulation between the circuit members are excellent.
(接続構造体の製造方法)
 接続構造体の製造方法は、第一の基板上に設けられた第一の電極を有する第一の電子部材と、第二の基板上に設けられた第二の電極を有する第二の電子部材と、の間に、上記異方導電性材料を配置し、前記異方導電性材料を介して前記第一の電子部材と前記第二の電子部材とを熱圧着する工程(以下、「熱圧着工程」ともいう。)を含む。
 接続構造体の製造方法は、上記熱圧着工程を含むことにより、上述の異方導電性材料に含まれる樹脂成分が硬化して、樹脂成分が相分離構造を形成し、相分離構造において、導電性粒子が第一の電子部材と前記第二の電子部材との間の厚み方向に偏在しやすい。すなわち、相分離構造を有する硬化物では、独立相が存在することで導電性粒子の移動が制限されるので、加圧された部分は、連続相に含まれる導電性粒子は独立相に挟まれて厚み方向へ偏在しやすくなると推定している。一方、圧が小さいまたは無加圧部分は、連続相に含まれる導電性粒子は厚み方向への偏在が小さくなると推定している。そのため、異方導電性材料を備えた接続構造体では回路部材間での導通信頼性に優れ、回路部材内の電極同士の絶縁性に優れる。
 また、本発明に係る接続構造体の製造方法により得られる接続構造体は、第一の電極と前記第二の電極との間の領域における前記接続部材中の導電性粒子の充填率が、前記領域以外の領域における導電性粒子の充填率より高いので、導通信頼性および絶縁性により優れる。
(Method of manufacturing connection structure)
A method for manufacturing a connection structure includes a step of placing the anisotropic conductive material between a first electronic component having a first electrode provided on a first substrate and a second electronic component having a second electrode provided on a second substrate, and thermocompression bonding the first electronic component and the second electronic component via the anisotropic conductive material (hereinafter also referred to as a "thermocompression bonding step").
The method for producing the connection structure includes the above-mentioned thermocompression bonding step, so that the resin component contained in the anisotropic conductive material hardens, forming a phase-separated structure in which the conductive particles are likely to be unevenly distributed in the thickness direction between the first electronic member and the second electronic member. That is, in a cured product having a phase-separated structure, the presence of an independent phase restricts the movement of the conductive particles, so that in the pressurized portion, the conductive particles contained in the continuous phase are sandwiched between the independent phases and are likely to be unevenly distributed in the thickness direction. On the other hand, in the low pressure or non-pressurized portion, the conductive particles contained in the continuous phase are likely to be unevenly distributed in the thickness direction. Therefore, the connection structure including the anisotropic conductive material has excellent reliability of conduction between circuit members and excellent insulation between electrodes in the circuit members.
In addition, the connection structure obtained by the manufacturing method of the connection structure of the present invention has a higher filling rate of conductive particles in the connection member in the region between the first electrode and the second electrode than in regions other than the region, and therefore has better conductive reliability and insulation properties.
 熱圧着工程において、第一の電極5aと第二の電極5bとが対向するように配置し、第一の電子部材6aと第二の電子部材6bとの間に異方導電性材料1を配置することが好ましい。 In the thermocompression bonding process, it is preferable to arrange the first electrode 5a and the second electrode 5b so that they face each other, and to arrange the anisotropic conductive material 1 between the first electronic component 6a and the second electronic component 6b.
 導電性粒子が第一の電子部材6aと前記第二の電子部材6bとの間の厚み方向に偏在しやすくなり、かつ、導通信頼性および絶縁性に優れる観点から、熱圧着工程において、図2(a)に示されるように、矢印AおよびB方向に全体を加圧しながら、加熱することにより、異方導電性材料1を硬化させることが好ましい。 In order to make it easier for the conductive particles to be unevenly distributed in the thickness direction between the first electronic member 6a and the second electronic member 6b, and to achieve excellent electrical conductivity reliability and insulation properties, it is preferable to cure the anisotropic conductive material 1 by heating while applying pressure to the entire material in the directions of arrows A and B in the thermocompression bonding process, as shown in FIG. 2(a).
 加圧時の圧力は、例えば、総接続面積あたり、1MPa以上であってよく、100MPa以下であってよい。
 加熱温度は、例えば、150℃以上であってよく、250℃以下であってよい。加圧および加熱を行う時間は、例えば、1秒間以上であってよく、5時間以下であってよい。このように、第一の電子部材6aと第二の電子部材6bとが、異方導電性材料1(異方導電性材料1の硬化物)を介して熱圧着される。
The pressure during pressing may be, for example, 1 MPa or more and 100 MPa or less per total connection area.
The heating temperature may be, for example, 150° C. or more and 250° C. or less. The time for which pressure and heat are applied may be, for example, 1 second or more and 5 hours or less. In this manner, the first electronic member 6a and the second electronic member 6b are thermocompression bonded via the anisotropic conductive material 1 (the cured product of the anisotropic conductive material 1).
<<その他の工程>>
 接続構造体の製造方法は、熱圧着工程以外の工程(以下、「その他の工程」ともいう。)をさらに含んでいてもよい。その他の工程としては、例えば、電子部材を準備する工程、異方導電性材料を調製する工程等が挙げられる。
<<Other processes>>
The method for manufacturing the connection structure may further include steps other than the thermocompression bonding step (hereinafter also referred to as "other steps"). Examples of the other steps include a step of preparing an electronic component, a step of preparing an anisotropic conductive material, and the like.
 接続構造体の製造方法は、熱圧着工程の前に電子部材を準備する工程を含むことが好ましい。電子部材を準備する工程は、例えば、図2(a)に示すように、第一の基板4aおよび第一の基板4a上に設けられた電極(第一の電極)5aを有する第一の電子部材6aと、第二の基板4bおよび第二の基板4b上に設けられた第二の電極5bを有する第二の電子部材6bとを用意する工程が挙げられる。 The method for manufacturing the connection structure preferably includes a step of preparing an electronic component prior to the thermocompression bonding step. The step of preparing the electronic component may, for example, be a step of preparing a first electronic component 6a having a first substrate 4a and an electrode (first electrode) 5a provided on the first substrate 4a, and a second electronic component 6b having a second substrate 4b and a second electrode 5b provided on the second substrate 4b, as shown in FIG. 2(a).
 異方導電性材料を調製する工程は、上述の異方導電性材料の調製方法と同義であり、好ましい態様も同様である。 The process for preparing the anisotropic conductive material is the same as the method for preparing the anisotropic conductive material described above, and the preferred aspects are also the same.
 接続構造体11の具体例として、例えば、有機EL(Electro-Luminescence)素子が規則的に配置されたプラスチック基板に、映像表示用のドライバである駆動回路素子が実装されたフレキシブルな有機電界発光カラーディスプレイ(有機ELディスプレイ)が挙げられる。また、別の具体例として、有機ELディスプレイのような表示素子とタッチパッドのような位置入力装置を組み合わせたいわゆるタッチパネルでもよい。接続構造体11は、例えば、汎用コネクタ、半導体装置(IC:Integrated Circuitなど)、配線基板(フレキシブルプリント基板など)、表示装置(テレビ、ディスプレイ、ヘッドマウントディスプレイなど)、携帯機器(スマートフォン、タブレット端末、ウェアラブル端末など)、オーディオ機器、撮像装置(イメージセンサーなど)、車両用電装機器(ナビゲーションシステムなど)、医療機器、センサーデバイス(タッチセンサー、指紋認証、虹彩認証など)、太陽電池など、電気的接続を用いるあらゆる電子機器に適用することができる。 A specific example of the connection structure 11 is a flexible organic electroluminescent color display (organic EL display) in which a driving circuit element, which is a driver for displaying images, is mounted on a plastic substrate on which organic EL (Electro-Luminescence) elements are regularly arranged. Another specific example may be a so-called touch panel that combines a display element such as an organic EL display with a position input device such as a touch pad. The connection structure 11 can be applied to any electronic device that uses electrical connections, such as general-purpose connectors, semiconductor devices (ICs: Integrated Circuits, etc.), wiring boards (flexible printed circuit boards, etc.), display devices (televisions, displays, head-mounted displays, etc.), mobile devices (smartphones, tablet devices, wearable devices, etc.), audio devices, imaging devices (image sensors, etc.), vehicle electrical equipment (navigation systems, etc.), medical devices, sensor devices (touch sensors, fingerprint authentication, iris authentication, etc.), solar cells, etc.
 上記のような具体例における第一の電子部材6aでは、例えば、PET、PEN等のプラスチック基板(第一の基板4a)上に、有機TFT(thin film transistor)等の画素駆動回路および複数の有機EL素子R、G、Bがマトリクス状に規則配列されることにより表示領域が形成されていてもよい。この表示領域には、映像表示用の信号線および走査線が互いに直交する方向に形成されている。有機ELディスプレイは、例えば、それぞれ赤、緑、青の光を発光する有機EL素子R、G、Bの組が一つのピクセルを構成する。有機EL素子が形成された有機層は、保護層に被覆されるとともに、接着層を介して封止基板により封止されている。 In the first electronic component 6a in the above specific example, a display area may be formed by regularly arranging a pixel driving circuit such as an organic TFT (thin film transistor) and a plurality of organic EL elements R, G, B in a matrix on a plastic substrate (first substrate 4a) such as PET or PEN. In this display area, signal lines and scanning lines for displaying images are formed in mutually orthogonal directions. In an organic EL display, for example, a set of organic EL elements R, G, B that emit red, green, and blue light respectively constitutes one pixel. The organic layer in which the organic EL elements are formed is covered with a protective layer and sealed by a sealing substrate via an adhesive layer.
 第一の電子部材6aは、表示領域の外側に、映像表示用の信号線および走査線の各電極が引き出され、それぞれ映像表示用のドライバである駆動回路素子が接続される。駆動回路素子と接続される信号線および走査線の各電極(第一の電極5a)は、駆動回路素子に設けられたバンプの配列に応じて配列されている。なお、プラスチック基板(第一の基板4a)として、光透過性を有する基板を用いることにより、有機EL素子の光を基板の背面側から取り出すことができる。 The first electronic component 6a has electrodes for signal lines and scanning lines for displaying images drawn out to the outside of the display area, and is connected to a drive circuit element that is a driver for displaying images. The electrodes (first electrodes 5a) of the signal lines and scanning lines connected to the drive circuit element are arranged according to the arrangement of bumps provided on the drive circuit element. By using a light-transmitting substrate as the plastic substrate (first substrate 4a), the light from the organic EL element can be extracted from the back side of the substrate.
 上記のような具体例における第二の電子部材6bは、半導体電子部材であってよく、具体的には、例えば、ICチップであってよく、LED(Light Emitting Diode)などの光学素子であってよい。このような第二の電子部材6bにおける第二の電極5bは、金スタッドバンプ、ハンダバンプ等のバンプ電極であってよい。 The second electronic component 6b in the above specific example may be a semiconductor electronic component, specifically, for example, an IC chip or an optical element such as an LED (Light Emitting Diode). The second electrode 5b in such a second electronic component 6b may be a bump electrode such as a gold stud bump or a solder bump.
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例および比較例等の記載において、特に言及しない限り、「部」は「質量部」を示す。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to these examples. In the following descriptions of the examples and comparative examples, "parts" refers to "parts by mass" unless otherwise specified.
(実施例1)
[異方導電性接着シートの調製]
 ビスフェノールA型エポキシ樹脂(製品名;JER828、三菱化学株式会社製)100質量部にポリエーテルスルホン(PES)(製品名;5003MPS、住友化学株式会社製)22.3質量部を室温で分散させた。得られた分散物を150℃のオイルバス中で3時間加熱して、PESを上記エポキシ樹脂に溶解させた。
 その後、80℃にまで冷却し、そこに銀粒子A(平均粒子径0.5μm、オレイン酸修飾、DOWAエレクトロニクス株式会社製)16.3質量部を混合および分散させ、さらに4,4’-ジアミノジフェニルメタン(DDM)(東京化成工業株式会社製)26.2質量部を混合および分散させて樹脂組成物(異方導電性材料)を得た。
 上記樹脂組成物を、厚さ50μmのテトラフルオロエチレン製のシート上に塗布し、150℃で15分間処理して、膜厚200μmの異方導電性接着シートを形成した。
 図3(a)に示されるとおり、異方導電性接着シート1aは、樹脂組成物(異方導電性材料1)と、テトラフルオロエチレン製シート73と、を備えている。
Example 1
[Preparation of anisotropic conductive adhesive sheet]
Polyethersulfone (PES) (product name: 5003MPS, manufactured by Sumitomo Chemical Co., Ltd.) (22.3 parts by mass) was dispersed in 100 parts by mass of bisphenol A type epoxy resin (product name: JER828, manufactured by Mitsubishi Chemical Co., Ltd.) at room temperature. The resulting dispersion was heated in an oil bath at 150° C. for 3 hours to dissolve the PES in the epoxy resin.
Thereafter, the mixture was cooled to 80° C., and 16.3 parts by mass of silver particles A (average particle size: 0.5 μm, modified with oleic acid, manufactured by Dowa Electronics Co., Ltd.) were mixed and dispersed therein, and 26.2 parts by mass of 4,4′-diaminodiphenylmethane (DDM) (manufactured by Tokyo Chemical Industry Co., Ltd.) were further mixed and dispersed therein, thereby obtaining a resin composition (anisotropic conductive material).
The above resin composition was applied onto a 50 μm thick sheet made of tetrafluoroethylene and treated at 150° C. for 15 minutes to form an anisotropic conductive adhesive sheet having a thickness of 200 μm.
As shown in FIG. 3( a ), the anisotropic conductive adhesive sheet 1 a includes a resin composition (anisotropic conductive material 1 ) and a tetrafluoroethylene sheet 73 .
[導電性測定用硬化体の作製]
 図3(a)に示されるように、高さ150μm、幅500μmのライン状の凸部を、幅5mmごとに有する(いわゆるラインアンドスペースパターン)テトラフルオロエチレン製モールド72に、1cm×2cmに裁断した上記で作製した異方導電性接着シート1aの樹脂組成物塗布面側を貼り付けた。
 次いで、これをエヌピーエーシステム株式会社製のネジ式ヒータープレスの加熱加圧ステージ71に載せ、温度180℃、圧力5MPaの条件で2時間、加熱加圧処理を行った。この際、異方導電性接着シート1aが完全に潰されないように、テトラフルオロエチレン製モールド72と加圧ステージ71との間に厚さ150μmのスペーサー74を挟んで加熱加圧処理を行った。なお、図3(a)は、加熱加圧処理前を表す模式図であり、図3(b)は、加熱加圧処理後の状態を表す模式図である。
 すなわち、図3(b)で示されるように、テトラフルオロエチレン製モールド72の凸部における異方導電性接着シート1aの厚さは100μm(スペーサー74の150μm厚から、テトラフルオロエチレン製シート73の50μm厚を引いた差分の厚さ)まで押し潰されることになるように実施した。その後、異方導電性接着シート1aをテトラフルオロエチレン製シート73およびテトラフルオロエチレン製モールド72から取り外し、凹凸部分が形成された導電性測定用の硬化体(図4の100)を得た。
[Preparation of cured body for electrical conductivity measurement]
As shown in Figure 3 (a), the resin composition-coated surface of the anisotropic conductive adhesive sheet 1a prepared above, cut to 1 cm x 2 cm, was attached to a tetrafluoroethylene mold 72 having linear protrusions 150 μm high and 500 μm wide at intervals of 5 mm (a so-called line and space pattern).
Next, this was placed on the heating and pressurizing stage 71 of a screw-type heater press manufactured by NPA Systems Co., Ltd., and subjected to heating and pressurizing treatment for 2 hours under conditions of a temperature of 180° C. and a pressure of 5 MPa. At this time, in order to prevent the anisotropic conductive adhesive sheet 1a from being completely crushed, a spacer 74 having a thickness of 150 μm was sandwiched between the tetrafluoroethylene mold 72 and the pressurizing stage 71 during the heating and pressurizing treatment. Note that FIG. 3(a) is a schematic diagram showing the state before the heating and pressurizing treatment, and FIG. 3(b) is a schematic diagram showing the state after the heating and pressurizing treatment.
That is, as shown in Fig. 3(b), the thickness of the anisotropic conductive adhesive sheet 1a at the convex parts of the tetrafluoroethylene mold 72 was crushed to 100 µm (the thickness obtained by subtracting the 50 µm thickness of the tetrafluoroethylene sheet 73 from the 150 µm thickness of the spacer 74). After that, the anisotropic conductive adhesive sheet 1a was removed from the tetrafluoroethylene sheet 73 and the tetrafluoroethylene mold 72, and a cured body (100 in Fig. 4) for measuring conductivity was obtained, in which uneven parts were formed.
[導電性の測定]
 上記で作製した硬化体について、テトラフルオロエチレン製シートが貼着されていた面をアルミニウム板(図4の80)に載せ、テトラフルオロエチレン製モールドの凸部により形成された硬化体の凹部部分に銀ペーストを点状に塗布した(図示せず)。次に、日置電機株式会社製の計測器ミリオームハイテスタ3540を用いて、アルミニウム板(図4の80)と上記硬化体(図4の100)の凹部の銀ペーストとの間の厚さ方向(図4の矢印c)の抵抗値(以下、「硬化体の凹部の厚さ方向の抵抗値」ともいう。)を測定し、以下の基準にしたがって評価した。
 これは接続構造体における対向する電極間領域(図2(b)中の矢印Cで示される領域)の抵抗値に相当するものである。厚さ方向の抵抗値が小さいほど、対向する回路部材間の導通信頼性に優れるといえる。評価基準A~Cは許容範囲である。
-評価基準-
 A:硬化体の凹部の厚さ方向の抵抗値が10Ω未満である。
 B:硬化体の凹部の厚さ方向の抵抗値が10Ω以上10Ω未満である。
 C:硬化体の凹部の厚さ方向の抵抗値が10Ω以上10Ω未満である。
 D:硬化体の凹部の厚さ方向の抵抗値が10Ω以上である。
[Conductivity measurement]
The surface of the cured body prepared above on which the tetrafluoroethylene sheet was attached was placed on an aluminum plate (80 in FIG. 4), and silver paste was applied in dots to the concave portions of the cured body formed by the convex portions of the tetrafluoroethylene mold (not shown). Next, using a measuring device, a Milliohm HiTester 3540 manufactured by Hioki E.E. Corporation, the resistance value in the thickness direction (arrow c in FIG. 4) between the aluminum plate (80 in FIG. 4) and the silver paste in the concave portions of the cured body (100 in FIG. 4) (hereinafter also referred to as the "resistance value in the thickness direction of the concave portions of the cured body") was measured and evaluated according to the following criteria.
This corresponds to the resistance value of the region between the opposing electrodes in the connection structure (the region indicated by arrow C in FIG. 2(b)). It can be said that the smaller the resistance value in the thickness direction, the better the reliability of conduction between the opposing circuit members. Evaluation criteria A to C are within the acceptable range.
-Evaluation criteria-
A: The resistance value of the recesses in the cured body in the thickness direction is less than 10 0 Ω.
B: The resistance value in the thickness direction of the recesses of the cured body is 10 0 Ω or more and less than 10 1 Ω.
C: The resistance value in the thickness direction of the recesses of the cured body is 10 1 Ω or more and less than 10 2 Ω.
D: The resistance value in the thickness direction of the recesses of the cured body is 10 2 Ω or more.
 また、硬化体の凹部以外の部分(硬化体の凸部)とアルミニウム板との間の厚み方向(図4の矢印d)の抵抗値(以下、「硬化体の凸部の厚さ方向の抵抗値」ともいう。)についても上記と同様にして抵抗値を測定し以下の基準にしたがって評価した。これは接続構造体における対向する電極間領域以外の領域(図2(b)中の矢印Dで示される領域)の抵抗値の測定に相当するものである。
 さらに、硬化体の凹部以外の部分をまたぐように、テトラフルオロエチレン製モールドの凸部で形成された硬化体の凹部部分に塗布した銀ペースト間の水平方向(図4の矢印e)の抵抗値(以下、「硬化体の凹部の水平方向の抵抗値」ともいう。)を測定し、以下の基準にしたがって評価した。これは接続構造体における隣接する電極間(図2(b)中の矢印Eで示される領域)の抵抗値の測定に相当するものである。水平方向の抵抗値が大きいほど、回路部材内の電極同士の絶縁性に優れるといえる。
-評価基準-
 A:硬化体の凸部の厚み方向の抵抗値または硬化体の凹部の水平方向の抵抗値が10Ω以上である。
 B:硬化体の凸部の厚み方向の抵抗値または硬化体の凹部の水平方向の抵抗値が10Ω以上10Ω未満である。
 C:硬化体の凸部の厚み方向の抵抗値または硬化体の凹部の水平方向の抵抗値が10Ω以上10Ω未満である。
The resistance in the thickness direction (arrow d in FIG. 4) between the aluminum plate and the portions of the cured body other than the concave portions (convex portions of the cured body) (hereinafter also referred to as "resistance in the thickness direction of the convex portions of the cured body") was measured in the same manner as above and evaluated according to the following criteria. This corresponds to the measurement of the resistance in the region other than the region between the opposing electrodes in the connection structure (the region indicated by arrow D in FIG. 2(b)).
Furthermore, the resistance in the horizontal direction (arrow e in FIG. 4) between the silver paste applied to the concave portion of the cured body formed by the convex portion of the tetrafluoroethylene mold so as to straddle the portion other than the concave portion of the cured body (hereinafter also referred to as the "horizontal resistance of the concave portion of the cured body") was measured and evaluated according to the following criteria. This corresponds to the measurement of the resistance between adjacent electrodes in the connection structure (the region indicated by arrow E in FIG. 2(b)). It can be said that the higher the horizontal resistance, the better the insulation between the electrodes in the circuit member.
-Evaluation criteria-
A: The resistance value of the projections of the cured body in the thickness direction or the resistance value of the recesses of the cured body in the horizontal direction is 10 4 Ω or more.
B: The resistance value of the projections of the cured body in the thickness direction or the resistance value of the recesses of the cured body in the horizontal direction is 10 3 Ω or more and less than 10 4 Ω.
C: The resistance value of the projections of the cured body in the thickness direction or the resistance value of the recesses of the cured body in the horizontal direction is 10 2 Ω or more and less than 10 3 Ω.
(実施例2~9、および、比較例1~2)
 異方導電性接着シートの調製で使用した樹脂成分の使用量および導電性粒子の種類とその使用量を表1に記載したとおりに変更したこと以外は、実施例1と同様にして、抵抗値を評価した。結果を表1に示す。
(Examples 2 to 9 and Comparative Examples 1 to 2)
The resistance value was evaluated in the same manner as in Example 1, except that the amount of the resin component used in the preparation of the anisotropic conductive adhesive sheet and the type and amount of the conductive particles used were changed as shown in Table 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、「-」は該当する成分を含まないことを意味している。
 また、表1中、「PES」とは、ポリエーテルスルホンを意味し、「DDM」とは、4,4’-ジアミノジフェニルメタンを意味する。
In Table 1, "-" means that the corresponding component is not included.
In Table 1, "PES" means polyethersulfone, and "DDM" means 4,4'-diaminodiphenylmethane.
 上記で説明した以外の成分の詳細は以下のとおりである。
<<導電性粒子>>
・銀粒子A:平均粒子径0.5μm、オレイン酸修飾
・銀粒子B:平均粒子径0.5μm、ポリビニルピロリドン修飾
・銀粒子C:平均粒子径0.5μm、5-フェニルペンタン酸修飾
Details of the components other than those described above are as follows.
<<Conductive particles>>
Silver particles A: average particle size 0.5 μm, modified with oleic acid Silver particles B: average particle size 0.5 μm, modified with polyvinylpyrrolidone Silver particles C: average particle size 0.5 μm, modified with 5-phenylpentanoic acid
 本発明に係る実施例1~9の硬化体の凹部では低い抵抗値を示し、硬化体の凸部および隣接する硬化体の凹部間の水平方向においては高い抵抗値を示した。すなわち、実施例1~9の硬化体は異方導電性を示していることがわかる。
 一方、比較例1~2の硬化体の凹部において、実施例1~9の硬化体よりも高い抵抗値を示したため、異方導電性を示さなかった。このことから、本発明は接続構造体等に適用した場合において、対向する回路部材間の導通信頼性に優れ、かつ、回路部材内の電極同士の絶縁性に優れることが分かる。
The cured bodies of Examples 1 to 9 according to the present invention showed low resistance in the concave portions, and showed high resistance in the horizontal direction between the convex portions of the cured bodies and the concave portions of the adjacent cured bodies. In other words, it is found that the cured bodies of Examples 1 to 9 show anisotropic conductivity.
On the other hand, the concave portions of the cured bodies of Comparative Examples 1 and 2 did not exhibit anisotropic conductivity because they showed higher resistance values than the cured bodies of Examples 1 to 9. This shows that the present invention, when applied to a connection structure or the like, provides excellent reliability of conduction between opposing circuit members and excellent insulation between electrodes within a circuit member.
 1…異方導電性材料、1a…異方導電性シート、2…樹脂成分、3…導電性粒子、4a…第一の基板、4b…第二の基板、5a…第一の電極、5b…第二の電極、6a…第一の電子部材、6b…第二の電子部材、71…加熱加圧ステージ、72…モールド、73…テトラフルオロエチレン製シート、74…スペーサー、10…接続部材、11…接続構造体、21a…相分離構造(独立相)および21b…相分離構造(連続相)、80…アルミニウム板、100…硬化体。 1...anisotropic conductive material, 1a...anisotropic conductive sheet, 2...resin component, 3...conductive particles, 4a...first substrate, 4b...second substrate, 5a...first electrode, 5b...second electrode, 6a...first electronic component, 6b...second electronic component, 71...heating and pressurizing stage, 72...mold, 73...tetrafluoroethylene sheet, 74...spacer, 10...connecting member, 11...connecting structure, 21a...phase-separated structure (independent phase) and 21b...phase-separated structure (continuous phase), 80...aluminum plate, 100...cured body.

Claims (10)

  1.  2以上の樹脂成分と導電性粒子とを含む異方導電性材料であって、
     前記異方導電性材料は、硬化時に前記樹脂成分が相分離構造を形成し、かつ、前記導電性粒子は前記相分離構造における連続相に偏在する、
     異方導電性材料。
    An anisotropic conductive material comprising two or more resin components and conductive particles,
    the anisotropic conductive material has a phase-separated structure formed by the resin component when cured, and the conductive particles are unevenly distributed in a continuous phase of the phase-separated structure;
    Anisotropic conductive material.
  2.  前記導電性粒子の平均粒子径が0.01~20μmである、請求項1に記載の異方導電性材料。 The anisotropic conductive material according to claim 1, wherein the conductive particles have an average particle size of 0.01 to 20 μm.
  3.  前記導電性粒子の表面が、有機化合物で修飾されている、請求項1または請求項2に記載の異方導電性材料。 The anisotropic conductive material according to claim 1 or 2, wherein the surfaces of the conductive particles are modified with an organic compound.
  4.  前記導電性粒子の含有率が、前記樹脂成分100質量部に対して1~70質量部である、請求項1または請求項2に記載の異方導電性材料。 The anisotropic conductive material according to claim 1 or 2, wherein the content of the conductive particles is 1 to 70 parts by mass per 100 parts by mass of the resin component.
  5.  請求項1または請求項2に記載の前記異方導電性材料から形成された異方導電性接着シート。 An anisotropic conductive adhesive sheet formed from the anisotropic conductive material described in claim 1 or 2.
  6.  請求項1または請求項2に記載の前記異方導電性材料から形成された異方導電性接着ペースト。 An anisotropic conductive adhesive paste formed from the anisotropic conductive material described in claim 1 or 2.
  7.  請求項1または請求項2に記載の前記異方導電性材料を硬化してなる異方導電性硬化物。 An anisotropically conductive cured product obtained by curing the anisotropically conductive material described in claim 1 or claim 2.
  8.  第一の基板上に設けられた第一の電極を有する第一の電子部材と、
     第二の基板上に設けられた第二の電極を有する第二の電子部材と、
     前記第一の電子部材と前記第二の電子部材との間に設けられた接続部材と、を備え、
     前記接続部材が、請求項1に記載の異方導電性材料の硬化物であり、
     前記第一の電極と前記第二の電極との間の領域における前記接続部材中の導電性粒子の充填率が、前記領域以外の領域における導電性粒子の充填率より高い、接続構造体。
    a first electronic component having a first electrode provided on a first substrate;
    a second electronic component having a second electrode provided on a second substrate;
    a connection member provided between the first electronic member and the second electronic member,
    The connection member is a cured product of the anisotropic conductive material according to claim 1 ,
    A connection structure, wherein a filling rate of conductive particles in the connection member in a region between the first electrode and the second electrode is higher than a filling rate of conductive particles in a region other than the region.
  9.  前記第一の電極と前記第二の電極との間の領域における電気抵抗が、0Ω以上100Ω未満である、請求項8に記載の接続構造体。 The connection structure according to claim 8, wherein the electrical resistance in the region between the first electrode and the second electrode is 0 Ω or more and less than 100 Ω.
  10.  基板上に設けられた第一の電極を有する第一の電子部材と基板上に設けられた第二の電極を有する第二の電子部材との間に、請求項1に記載の異方導電性材料を配置し、前記異方導電性材料を介して前記第一の電子部材と前記第二の電子部材とを熱圧着する工程を含む、
     接続構造体の製造方法。
    The method includes a step of disposing the anisotropic conductive material according to claim 1 between a first electronic component having a first electrode provided on a substrate and a second electronic component having a second electrode provided on a substrate, and thermocompression bonding the first electronic component and the second electronic component via the anisotropic conductive material.
    A method for manufacturing a connection structure.
PCT/JP2023/031395 2022-09-28 2023-08-30 Anisotropic conductive material, anisotropic conductive sheet, anisotropic conductive paste, connection structure, and method for producing connection structure WO2024070436A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-154697 2022-09-28
JP2022154697 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024070436A1 true WO2024070436A1 (en) 2024-04-04

Family

ID=90477204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031395 WO2024070436A1 (en) 2022-09-28 2023-08-30 Anisotropic conductive material, anisotropic conductive sheet, anisotropic conductive paste, connection structure, and method for producing connection structure

Country Status (1)

Country Link
WO (1) WO2024070436A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185526A (en) * 1997-12-17 1999-07-09 Murata Mfg Co Ltd Anisotropic conductive adhesive, electronic circuit parts, and piezoelectric parts, and bonding method for electric parts
WO2002028574A1 (en) * 2000-10-02 2002-04-11 Asahi Kasei Kabushiki Kaisha Functional alloy particles
JP2009105361A (en) * 2007-10-05 2009-05-14 Hitachi Chem Co Ltd Circuit connecting material, circuit connection structure, and its manufacturing method
JP2012092321A (en) * 2010-09-28 2012-05-17 Sekisui Chem Co Ltd Anisotropic conductive material, b-stage cured product and connection structure
JP2012140594A (en) * 2010-12-31 2012-07-26 Cheil Industries Inc Anisotropic conductive film composition, anisotropic conductive film produced therefrom, and device including the anisotropic conductive film
JP2012150903A (en) * 2011-01-17 2012-08-09 Sekisui Chem Co Ltd Anisotropic conductive paste, connection structure and method for manufacturing connection structure
JP2015221875A (en) * 2014-05-23 2015-12-10 デクセリアルズ株式会社 Adhesive and connection structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185526A (en) * 1997-12-17 1999-07-09 Murata Mfg Co Ltd Anisotropic conductive adhesive, electronic circuit parts, and piezoelectric parts, and bonding method for electric parts
WO2002028574A1 (en) * 2000-10-02 2002-04-11 Asahi Kasei Kabushiki Kaisha Functional alloy particles
JP2009105361A (en) * 2007-10-05 2009-05-14 Hitachi Chem Co Ltd Circuit connecting material, circuit connection structure, and its manufacturing method
JP2012092321A (en) * 2010-09-28 2012-05-17 Sekisui Chem Co Ltd Anisotropic conductive material, b-stage cured product and connection structure
JP2012140594A (en) * 2010-12-31 2012-07-26 Cheil Industries Inc Anisotropic conductive film composition, anisotropic conductive film produced therefrom, and device including the anisotropic conductive film
JP2012150903A (en) * 2011-01-17 2012-08-09 Sekisui Chem Co Ltd Anisotropic conductive paste, connection structure and method for manufacturing connection structure
JP2015221875A (en) * 2014-05-23 2015-12-10 デクセリアルズ株式会社 Adhesive and connection structure

Similar Documents

Publication Publication Date Title
KR100875412B1 (en) Low-temperature setting adhesive and anisotropically electroconductive adhesive film using the same
KR101975730B1 (en) Anisotropic conductive film, method for producing anisotropic conductive film, method for producing connection body, and connection method
TWI588235B (en) Anisotropic conductive film, connecting method, and joined structure
US20100206623A1 (en) Nonconductive adhesive composition and film and methods of making
KR20090065462A (en) Circuit connecting material and connection structure of circuit member
CN108702845B (en) Method for manufacturing connection structure
WO2022102573A1 (en) Circuit-connection adhesive film and method for producing same, and circuit connection structure and method for producing same
WO2013042632A1 (en) Circuit connection material, connection method using same, and connection structure
TW202229487A (en) Adhesive film for circuit connection, method for manufacturing same, connection structure body, and method for manufacturing same
JP5956362B2 (en) Anisotropic conductive film, connection method, and joined body
WO2024070436A1 (en) Anisotropic conductive material, anisotropic conductive sheet, anisotropic conductive paste, connection structure, and method for producing connection structure
KR101872562B1 (en) Circuitry connecting material and connecting method and connecting structure using same
JP2016031888A (en) Method for manufacturing anisotropic conductive film and connection structure
KR101309821B1 (en) Anisotropic conductive film composition
JP2021134262A (en) Adhesive film for circuit connection, circuit connection structure and manufacturing method thereof
JP2012190795A (en) Anisotropic conductive material, connection structure, and manufacturing method of connection structure
CN116529838A (en) Adhesive film for circuit connection, connection structure, and method for manufacturing same
KR20100073595A (en) Double layered anisotropic conductive adhesive
JP2006233200A (en) Anisotropically electroconductive adhesive film
JP7435001B2 (en) Anisotropic conductive adhesive film, connected structure and manufacturing method thereof
US11057992B2 (en) Connection structure
KR100575262B1 (en) Insulated Conductive Particles and an Anisotropic Conductive Film containing the Particles
KR20010083763A (en) Anisotropic conductive adhesive film with excellent electric connection reliability
WO2020203295A1 (en) Adhesive composition
WO2022075370A1 (en) Adhesive film for circuit connection, material for circuit connection, circuit connection structure, and method for manufacturing circuit connection structure