WO2013042632A1 - Circuit connection material, connection method using same, and connection structure - Google Patents

Circuit connection material, connection method using same, and connection structure Download PDF

Info

Publication number
WO2013042632A1
WO2013042632A1 PCT/JP2012/073695 JP2012073695W WO2013042632A1 WO 2013042632 A1 WO2013042632 A1 WO 2013042632A1 JP 2012073695 W JP2012073695 W JP 2012073695W WO 2013042632 A1 WO2013042632 A1 WO 2013042632A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
reactive acrylic
acrylic polymer
connection
meth
Prior art date
Application number
PCT/JP2012/073695
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 林
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020137015754A priority Critical patent/KR101944125B1/en
Priority to CN201280009768.4A priority patent/CN103370388B/en
Publication of WO2013042632A1 publication Critical patent/WO2013042632A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display

Definitions

  • the present invention relates to a circuit connection material, a connection method for connecting a pair of circuit members using the circuit connection material, and a connection structure obtained by the connection method.
  • the circuit connection member include an anisotropic conductive film (ACF), a connection surface on which a wiring electrode of a substrate is formed via an anisotropic conductive film, and a terminal electrode (bump of an electronic component).
  • ACF anisotropic conductive film
  • the anisotropic conductive film is temporarily attached on the connection surface of the substrate, and the anisotropic conductive film and the connection surface of the electronic component are opposed to each other on the anisotropic conductive film.
  • An electronic component is placed on and heat-pressed.
  • the electroconductive particle in an anisotropic conductive film is inserted
  • the terminal electrode of the electronic component and the wiring electrode of the substrate are electrically connected via the conductive particles.
  • the conductive particles that are not between the terminal electrode and the wiring electrode are present in the insulating adhesive composition of the anisotropic conductive film and maintain an electrically insulated state. That is, electrical continuity is achieved only between the terminal electrode and the wiring electrode.
  • an adhesive composition constituting such a circuit connecting member there is a conventional one containing an epoxy resin or the like.
  • This adhesive composition generally contains an epoxy resin, a curing agent such as a phenol resin that reacts with the epoxy resin, a latent curing agent that accelerates the reaction between the epoxy resin and the curing agent, and the like.
  • Patent Document 1 describes a circuit connection member that can relieve stress at a connection interface with a connection object by dispersing acrylic rubber in an epoxy resin, thereby improving connection reliability. ing.
  • an anisotropic conductive film is required to have an adhesive composition that cures at a low temperature in a short time in order to shorten the production time.
  • a radical curable adhesive composition containing a radical polymerization initiator such as a (meth) acrylate derivative and a peroxide has attracted attention.
  • the radical curing type circuit connecting material is advantageous in shortening the production time because the curing reaction proceeds in a short time due to radicals rich in reactivity (see Patent Documents 2 and 3).
  • (meth) acrylate derivatives tend to have a large curing shrinkage during polymerization and a large internal stress after curing compared to epoxy resins and the like. For this reason, generally, when a circuit connection material containing a radical curable adhesive composition is used, bubbles may be generated at the interface between the adhesive layer and a substrate such as an LCD panel, which may reduce connection reliability. is there. In particular, at the interface with the silicon nitride (SiN) film used as the insulating film on the panel wiring in the TFT (Thin Film Transistor) LCD panel, this bubble generation becomes remarkable and the adhesion is poor, resulting in connection. Reliability may be greatly reduced.
  • SiN silicon nitride
  • the present invention has been proposed in view of such a conventional situation, and suppresses fluctuations in the resistance value between circuit electrodes when subjected to a high-temperature and high-humidity treatment, while maintaining an interface with the silicon nitride film.
  • Circuit connection material capable of improving adhesion and exhibiting excellent connection reliability
  • connection method for connecting a pair of circuit members using this circuit connection material and connection structure obtained by the connection method The purpose is to provide.
  • the circuit connection material of the present invention includes (1) a radical polymerizable resin, (2) a radical polymerization initiator that generates free radicals by heat or light, and (3) a side chain. And a reactive acrylic polymer having an ethylenically unsaturated group and having a double bond equivalent of 1000 to 12,000.
  • connection structure of the present invention is a circuit in which a circuit connection material is interposed between a pair of circuit members arranged so that circuit electrodes face each other, and face each other.
  • the circuit connection material includes (1) a radical polymerizable resin, (2) Contains a radical polymerization initiator that generates free radicals by heat or light, and (3) a reactive acrylic polymer having an ethylenically unsaturated group in the side chain and a double bond equivalent of 1000 to 12,000. It is characterized by doing.
  • the connection method of the present invention includes a circuit connection material interposed between a pair of circuit members arranged so that circuit electrodes face each other, and is subjected to thermal pressurization.
  • the circuit connection material includes (1) a radical polymerizable resin and (2) a radical polymerization initiator that generates free radicals by heat or light, and (3) a reactive acrylic polymer having an ethylenically unsaturated group in the side chain and having a double bond equivalent of 1000 to 12000.
  • the circuit connection material contained is used.
  • the present invention while suppressing fluctuations in the resistance value between circuit electrodes when subjected to a high-temperature and high-humidity treatment, the adhesion with the interface with the silicon nitride film is improved and excellent connection reliability is exhibited. It is possible to provide a circuit connection material that can be used, a connection method for connecting a pair of circuit members using the circuit connection material, and a connection structure obtained by the connection method.
  • circuit connection material The circuit connecting material in the present embodiment is interposed between a pair of circuit members arranged so that circuit electrodes face each other, and electrically and mechanically connects the facing circuit members.
  • the circuit connection material in the present embodiment is applied to an anisotropic conductive film formed into a film shape by dispersing a plurality of conductive particles in an insulating adhesive composition.
  • the insulating adhesive composition includes a (meth) acrylate compound that is a radical polymerizable resin, a radical polymerization initiator that generates free radicals by heat or light, and a reactive acrylic having an ethylenically unsaturated group in the side chain. Contains a polymer and a film-forming resin.
  • (meth) acrylate includes acrylate and methacrylate.
  • the (meth) acrylate compound forms a cross-linked structure in the insulating adhesive composition when the anisotropic conductive film is heated, thereby curing the adhesive composition.
  • Examples of the (meth) acrylate compound that is a radical polymerizable resin include polyfunctional (meth) acrylate compounds such as polyfunctional (meth) acrylate monomers, polyfunctional (meth) acrylate oligomers, and polyfunctional (meth) acrylate polymers. it can.
  • this polyfunctional (meth) acrylate compound and a monofunctional (meth) acrylate compound such as a monofunctional (meth) acrylate monomer, a monofunctional (meth) acrylate oligomer, a monofunctional (meth) acrylate polymer, and the like May be used in combination.
  • Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) ) Acrylate, t-butyl (meth) acrylate, 2-methylbutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, 2-methylhexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, 2-butylhexyl (meth) acrylate, isooctyl (meth) acrylate, isopentyl (meth) acrylate, isononyl (meth) acrylate, isode
  • Bifunctional (meth) acrylates include bisphenol F-EO-modified di (meth) acrylate, bisphenol A-EO-modified di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, and tricyclodecanedi. Examples include methylol di (meth) acrylate and dicyclopentadiene (meth) acrylate.
  • trifunctional (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, trimethylolpropane PO-modified (meth) acrylate, and isocyanuric acid EO-modified tri (meth) acrylate.
  • tetrafunctional or higher functional (meth) acrylates examples include dipentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetraacrylate.
  • polyfunctional urethane (meth) acrylates can also be used.
  • the blending amount of the (meth) acrylate compound in the insulating adhesive composition is too small, the adhesive strength decreases, and if it is too large, the film strength decreases and it becomes difficult to maintain the film shape. It is 50% by mass, more preferably 3 to 30% by mass.
  • the reactive acrylic polymer one having an ethylenically unsaturated group (—CH ⁇ CH 2) in the side chain is used.
  • examples of such a reactive acrylic polymer include a reactive acrylic rubber having an ethylenically unsaturated group in the side chain.
  • the amount of ethylenically unsaturated groups in the reactive acrylic polymer is indicated by the double bond equivalent.
  • the double bond equivalent is defined by [molecular weight of repeating structural unit (monomer) of reactive acrylic polymer] / [number of double bonds in repeating structural unit (monomer) of reactive acrylic polymer]. This double bond equivalent is a measure of the amount of double bonds contained in the molecule. For the same molecular weight, the amount of double bonds introduced increases as the value of the double bond equivalent decreases.
  • the double bond equivalent of the reactive acrylic polymer is preferably 1000 to 12000 for the following reasons.
  • the double bond equivalent is small, that is, when the number of double bonds in the reactive acrylic polymer is large, the shrinkage of the reactive acrylic polymer during curing increases, and the internal stress after curing also increases. For this reason, the adhesiveness (adhesiveness) with respect to the silicon nitride of the insulating adhesive composition is lowered.
  • the double bond equivalent is large, that is, when the number of reactive acrylic polymer double bonds is small, the curing shrinkage of the reactive acrylic polymer during polymerization is small, and the internal stress after curing is also small. For this reason, the adhesiveness with respect to silicon nitride of an insulating adhesive composition improves.
  • the reactive acrylic polymer does not have a double bond, or when the number of double bonds in one molecule of the reactive acrylic polymer is too small, the binding property between the reactive acrylic polymer and the radical polymerizable resin decreases.
  • the insulating adhesive composition expands. For this reason, the adhesive composition cannot be completely removed between the opposing electrodes, and the conduction resistance value becomes high.
  • the insulation resistance is maintained while maintaining a low conduction resistance value between the opposing electrodes.
  • High adhesiveness can be obtained with respect to silicon nitride of the adhesive composition.
  • the glass transition temperature (Tg) of the reactive acrylic polymer is preferably ⁇ 10 ° C. or lower. If Tg exceeds -10 ° C, the adhesion may be reduced.
  • the polymerization average molecular weight (Mw) of the reactive acrylic polymer is preferably 30,000 to 150,000. When Mw is less than 30000, it becomes impossible to ensure the adhesive strength by the polymer. When Mw exceeds 150,000, the rubber resistance increases and the heat resistance decreases, and the conduction resistance value increases.
  • the compounding amount of the reactive acrylic polymer in the insulating adhesive composition is preferably 10 to 30% by mass. Adhesiveness falls that it is less than 10 mass%. When it exceeds 30% by mass, the rubber property is increased, so that the cured product is inferior in heat resistance, and the conduction resistance value is increased.
  • Reactive acrylic rubber which is a kind of reactive acrylic polymer can be produced by, for example, synthesis by the following method.
  • a (meth) acrylic acid ester monomer having a predetermined mass ratio, glycidyl methacrylate, and water are added and mixed.
  • the mixture is agitated to fully replace the nitrogen.
  • peroxide is added as an initiator to the mixture to initiate the polymerization reaction.
  • (meth) acrylic acid is reacted with the polymer having a glycidyl group in the side chain to produce a reactive acrylic rubber having a double bond.
  • the double bond equivalent of the reactive acrylic rubber which is a reactive acrylic polymer
  • the double bond equivalent of the reactive acrylic rubber can be controlled by the blending amount of glycidyl methacrylate and, as described above, [reactive structural unit (monomer) of the reactive acrylic polymer] Molecular weight] / [number of double bonds in the repeating structural unit (monomer) of the reactive acrylic polymer].
  • the radical polymerization initiator is a curing agent that decomposes by heat or light to generate free radicals, and a known radical polymerization initiator can be selected.
  • peroxide polymerization initiators such as diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, azo polymerization initiator such as azobisbutyronitrile, redox System polymerization initiators and the like.
  • the blending amount of the radical polymerization initiator in the insulating adhesive composition is too small, the curing becomes insufficient, and if it is too large, the cohesive force of the anisotropic conductive film decreases, and therefore the (meth) acrylate compound 100 mass.
  • the amount is preferably 1 to 10 parts by mass, more preferably 3 to 7 parts by mass with respect to parts.
  • thermoplastic elastomer such as epoxy resin, polyester resin, polyurethane resin, phenoxy resin, polyamide, EVA, or the like
  • polyester resins, polyurethane resins, phenoxy resins, particularly phenoxy resins such as bis A type epoxy resins and phenoxy resins having a fluorene skeleton can be mentioned.
  • Adhesive composition It is 80 to 30 parts by mass, more preferably 70 to 40 parts by mass with respect to 100 parts by mass.
  • the conductive particles used in conventional anisotropic conductive films can be used.
  • metal particles such as gold particles, silver particles, and nickel particles, benzoguanamine resins, styrene resins, etc.
  • examples thereof include metal-coated resin particles whose surfaces are coated with a metal such as gold, nickel, and zinc.
  • the average particle diameter of the conductive particles is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, from the viewpoint of connection reliability.
  • the average particle density of the conductive particles in the insulating adhesive composition is preferably 500 to 50000 / mm 2 , more preferably 1000 to 30000 / mm 2 from the viewpoint of connection reliability and insulation reliability. .
  • Insulating adhesive composition can contain phosphate acrylate in order to improve adhesion to metal.
  • the insulating adhesive composition includes other additive compositions such as dilution monomers such as various acrylic monomers, fillers, softeners, colorants, flame retardants, thixotropic agents, silane coupling agents. Further, silica fine particles and the like can be contained.
  • silane coupling agent By including a silane coupling agent, adhesion at the interface between the organic material and the inorganic material is improved.
  • silica fine particles, the storage elastic modulus, the linear expansion coefficient, etc. can be adjusted to improve the connection reliability.
  • the anisotropic conductive film of the present embodiment includes a (meth) acrylate compound that is a radical polymerizable resin, a radical polymerization initiator, a reactive acrylic polymer having an ethylenically unsaturated group in the side chain, and a film-forming resin.
  • the conductive particles are uniformly dispersed and mixed by a known dispersion method into the insulating adhesive composition containing the above, and the resulting mixture is applied to a release film such as a silicone release-treated polyester film using a known coating method such as a bar coater.
  • a release film such as a silicone release-treated polyester film using a known coating method such as a bar coater.
  • the release film for example, PET (PolyPoEthylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), etc. are coated with a release agent such as silicone. While preventing the conductive conductive film from drying, the shape of the anisotropic conductive film is maintained.
  • high-temperature and high-humidity treatment is achieved by containing a reactive acrylic polymer having an ethylenically unsaturated group in the side chain and a double bond equivalent of 1000 to 12000. It is possible to improve the adhesion with the interface with the silicon nitride film and to exhibit excellent connection reliability while suppressing fluctuations in the resistance value between the circuit electrodes when receiving. ⁇ 2. Connection method>
  • connection method in which a glass substrate constituting an LCD (Liquid Crystal Display) panel and a COF (Chip On Film) as a wiring material are crimped and connected via the anisotropic conductive film of the present embodiment.
  • Wiring electrodes are formed on the glass substrate at a fine pitch.
  • terminal electrodes are formed on the COF according to the wiring pattern of the wiring electrodes.
  • the connection structure is obtained by anisotropically connecting the wiring electrode of the glass substrate and the terminal electrode of the COF.
  • a connection method in which the glass substrate and the COF are crimped and connected via an anisotropic conductive film will be specifically described.
  • a surface on which a wiring electrode on a glass substrate is formed and an anisotropic conductive film are temporarily attached to the glass substrate (temporary attaching step).
  • the heating temperature is a low temperature (for example, a predetermined value of 60 to 80 ° C.) such that the insulating adhesive composition flows but does not cure.
  • the pressure applied in the temporary sticking step is a predetermined value of 0.5 MPa to 2 MPa, for example.
  • the heat pressurizing time in the temporary sticking step is, for example, a predetermined time of 1 to 3 seconds (sec).
  • the COF is placed on the anisotropic conductive film so that the bump and the wiring electrode are opposed to each other (placement step).
  • the pressurizing pressure in the connecting step is a predetermined value of 1 MPa to 5 MPa, for example.
  • the heating temperature in the connecting step is a temperature (for example, a predetermined value of 160 to 210 ° C.) at which the insulating particles are melted and the insulating adhesive composition is cured.
  • the heat pressurizing time in the connecting step is a predetermined time of 3 to 10 seconds, for example.
  • connection structure in which the glass substrate and the COF are anisotropically conductively connected is obtained.
  • the obtained connection structure can exhibit excellent connection reliability and conduction reliability while maintaining good insulation reliability.
  • an anisotropic conductive film is used as the anisotropic conductive adhesive member.
  • the structure of the anisotropic conductive adhesive member is not limited to this, and may be, for example, a two-layer anisotropic conductive film in which an insulating adhesive layer is further laminated.
  • a conductive adhesive paste in which conductive particles are contained in an insulating adhesive composition, and an insulating adhesive paste made of an insulating adhesive composition are applied in layers. By doing so, it is good also as two adhesive layers.
  • the glass substrate is not limited to this, for example, a PDP substrate (PDP panel) ), A glass substrate constituting an organic EL substrate (organic EL panel) or the like.
  • the case where a glass substrate is used as the substrate has been described.
  • other substrates such as a rigid substrate and a flexible substrate may be used.
  • COF is used as an electronic component
  • other electronic components such as an IC chip and TAB may be used.
  • the present invention is applied to FOG (Film On Glass) has been described.
  • the present invention is applied to other mounting methods such as COG (Chip On Glass) and FOB (Film On Board) It can also be applied to.
  • side As a reactive acrylic polymer having an ethylenically unsaturated group in the chain, a reactive property having an ethylenically unsaturated group in the side chain having a double bond equivalent of 12000, Tg of ⁇ 40 ° C., and a polymerization average molecular weight (Mw) of 100,000.
  • the reactive acrylic polymer was synthesized and produced by the following synthesis method.
  • a total of 50 parts by mass of glycidyl methacrylate and (meth) acrylic acid ester monomer and 600 parts by mass of water were added and mixed in the reaction vessel. The mixture was agitated to fully replace the nitrogen.
  • 0.5 parts by mass of peroxide as an initiator was added to this mixture to initiate the polymerization reaction.
  • a reactive acrylic polymer (reactive acrylic rubber) having a double bond was produced by reacting a polymer having a glycidyl group in the side chain with (meth) acrylic acid.
  • a reactive acrylic polymer having a double bond equivalent of 12000 was produced by controlling the blending amount of glycidyl methacrylate.
  • an IZO coated glass substrate (all surface IZO coating, glass thickness 0.7 mm) is used for subsequent conduction resistance measurement
  • an SiN coated glass substrate all surface SiN coating
  • an anisotropic conductive film was slit to a width of 1.5 mm on the surface of the glass substrate on which the wiring electrodes were formed, and temporarily pasted on the glass substrate (temporary pasting step).
  • the pressure surface of the head part heated to a low temperature of the pressure bonder was lightly pressed against the upper surface of the conductive particle-containing layer and pressed at a low pressure.
  • the heating temperature was set to 70 ° C., which is a low temperature such that the insulating particles do not dissolve and the insulating adhesive composition flows but does not cure.
  • the pressurization pressure in the temporary sticking process was 1 MPa.
  • the heat-pressing time in the temporary sticking process was 2 seconds.
  • the COF was disposed on the anisotropic conductive film so that the terminal electrode of the COF and the wiring electrode of the glass substrate were opposed to each other (arrangement step).
  • the pressurizing pressure in the connection process was 4 MPa.
  • the heating temperature in the connection process was 190 ° C. Further, the heat pressurizing time in the connecting step was 5 seconds.
  • connection structure conductive particles were sandwiched between the wiring electrodes and the bumps, the adhesive composition was cured, and the glass substrate and the COF were electrically and mechanically connected to obtain a connection structure.
  • Example 2 A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 10,000, and a connection structure was obtained by the same treatment as in Example 1.
  • Example 3 A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was set to 5000, and a connection structure was obtained by the same treatment as in Example 1.
  • Example 4 A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 1000, and a connection structure was obtained by the same treatment as in Example 1.
  • Example 5 A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Tg was ⁇ 30 ° C., and the connection structure was obtained by the same treatment as in Example 1. Got the body.
  • Example 6 A circuit connecting material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Tg was ⁇ 20 ° C., and the connection structure was obtained by the same treatment as in Example 1. Got the body.
  • Example 7 A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Tg was ⁇ 10 ° C., and the connection structure was obtained by the same treatment as in Example 1. Got the body.
  • Example 8> A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Tg was 0 ° C., and the connection structure was obtained by the same treatment as in Example 1. Got.
  • Example 9 A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Mw was 10,000, and the connection structure was obtained by the same treatment as in Example 1. Got.
  • Example 10 A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Mw was 30,000, and the connection structure was obtained by the same treatment as in Example 1. Got.
  • Example 11 A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Mw was 50,000, and the connection structure was obtained by the same treatment as in Example 1. Got.
  • Example 12 A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Mw was 150,000, and the connection structure was obtained by the same treatment as in Example 1. Got.
  • Example 13 A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Mw was 200,000. Got.
  • Example 14> The double bond equivalent of the reactive acrylic rubber is 5000, the amount of the reactive acrylic rubber is 5 parts by mass (5% by mass), and the amount of the radical polymerizable resin is 49 parts by mass (49% by mass). Except for the above, a circuit connection material was produced under the same conditions as in Example 1, and a connection structure was obtained by the same treatment as in Example 1.
  • Example 15 The double bond equivalent of the reactive acrylic polymer is 5000, the amount of the reactive acrylic rubber is 10 parts by mass (10% by mass), and the amount of the radical polymerizable resin is 44 parts by mass (44% by mass). Except for the above, a circuit connection material was produced under the same conditions as in Example 1, and a connection structure was obtained by the same treatment as in Example 1.
  • Example 16> The double bond equivalent of the reactive acrylic polymer is 5000, the amount of the reactive acrylic rubber is 30 parts by mass (30% by mass), and the amount of the radical polymerizable resin is 24 parts by mass (24% by mass). Except for the above, a circuit connection material was produced under the same conditions as in Example 1, and a connection structure was obtained by the same treatment as in Example 1.
  • Example 17 The double bond equivalent of the reactive acrylic polymer is 5000, the amount of the reactive acrylic rubber is 35 parts by mass (35% by mass), and the amount of the radical polymerizable resin is 19 parts by mass (19% by mass). Except for the above, a circuit connection material was produced under the same conditions as in Example 1, and a connection structure was obtained by the same treatment as in Example 1.
  • Example 2 The reactive acrylic polymer was the same as in Example 1 except that 20 parts by mass of a reactive acrylic rubber having no double bond, Tg of ⁇ 40 ° C., and a polymerization average molecular weight (Mw) of 100,000 was contained. A circuit connection material was produced according to the conditions, and a connection structure was obtained by the same processing as in Example 1.
  • connection strength For the initial connection structures of Examples 1 to 17 and Comparative Examples 1 to 4, using a tensile tester (Tensilon, manufactured by Orientec Co., Ltd.) at 90 ° (Y-axis direction) at a peeling speed of 50 mm / min. The adhesive strength (N / cm) was measured. Further, the adhesive strength was measured in the same manner for the connection structures after the TH test (Thermal Humidity Test) in Examples 1 to 17 and Comparative Examples 1 to 4 at a temperature of 85 ° C., a humidity of 85% RH, and 500 hours.
  • TH test Thermal Humidity Test
  • Table 1 summarizes the measurement results of the conditions, conduction resistance values, and connection strengths of Examples 1 to 17 and Comparative Examples 1 to 4.
  • Comparative Example 1 since the reactive acrylic polymer having an ethylenically unsaturated group in the side chain is not contained, it is considered that the adhesion of the anisotropic conductive film to the silicon nitride film is lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided is a circuit connection material that, while suppressing fluctuations in the resistance value between circuit electrodes when subjected to high-temperature, high-humidity processing, is able to evince superior connection reliability by increasing the adhesion with the interface to a silicon nitride film. By being interposed between a pair of circuit members disposed in a manner so that the circuit electrodes face each other, the circuit connection material electrically and mechanically connects the opposing circuit members. The circuit connection material contains: (1) a polyfunctional (meth)acrylate monomer; (2) a curing agent that generates free radicals by means of heat or light; and (3) a reactive acrylic polymer that has an ethylenic unsaturated group in a side chain and has 1000-12000 double bond equivalents.

Description

回路接続材料及びそれを用いた接続方法並びに接続構造体Circuit connection material, connection method using the same, and connection structure
 本発明は、回路接続材料、及び回路接続材料を用いて一対の回路部材を接続する接続方法、並びにその接続方法によって得られる接続構造体に関する。
 本出願は、日本国において2011年9月21日に出願された日本特許出願番号特願2011-206378を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
The present invention relates to a circuit connection material, a connection method for connecting a pair of circuit members using the circuit connection material, and a connection structure obtained by the connection method.
This application claims priority on the basis of Japanese Patent Application No. 2011-206378 filed on Sep. 21, 2011 in Japan. This application is incorporated herein by reference. Incorporated.
 従来より、一対の回路部材を電気的に接続する際に、導電性粒子を分散させた回路接続部材が使用されている。回路接続部材としては、例えば異方性導電フィルム(ACF:Anisotropic Conductive Film)が挙げられるが、異方性導電フィルムを介して基板の配線電極が形成された接続面と電子部品の端子電極(バンプ)が形成された接続面とを接続する方法がある。異方性導電フィルムを用いた接続方法では、基板の接続面上に異方性導電フィルムを仮貼りし、異方性導電フィルムと電子部品の接続面とを対峙させて異方性導電フィルム上に電子部品を配置して熱加圧を行う。これにより、異方性導電フィルム中の導電性粒子が電子部品の端子電極と基板の配線電極との間に挟み込まれて押し潰される。その結果、電子部品の端子電極と基板の配線電極とは、導電性粒子を介して電気的に接続される。 Conventionally, when a pair of circuit members are electrically connected, a circuit connecting member in which conductive particles are dispersed has been used. Examples of the circuit connection member include an anisotropic conductive film (ACF), a connection surface on which a wiring electrode of a substrate is formed via an anisotropic conductive film, and a terminal electrode (bump of an electronic component). There is a method of connecting the connecting surface formed with a). In the connection method using the anisotropic conductive film, the anisotropic conductive film is temporarily attached on the connection surface of the substrate, and the anisotropic conductive film and the connection surface of the electronic component are opposed to each other on the anisotropic conductive film. An electronic component is placed on and heat-pressed. Thereby, the electroconductive particle in an anisotropic conductive film is inserted | pinched between the terminal electrode of an electronic component, and the wiring electrode of a board | substrate, and is crushed. As a result, the terminal electrode of the electronic component and the wiring electrode of the substrate are electrically connected via the conductive particles.
 端子電極と配線電極との間にない導電性粒子は、異方性導電フィルムの絶縁性の接着剤組成物中に存在し、電気的に絶縁した状態を維持している。すなわち、端子電極と配線電極との間のみで電気的導通が図られることになる。 The conductive particles that are not between the terminal electrode and the wiring electrode are present in the insulating adhesive composition of the anisotropic conductive film and maintain an electrically insulated state. That is, electrical continuity is achieved only between the terminal electrode and the wiring electrode.
 このような回路接続部材を構成する接着剤組成物としては、従来、エポキシ樹脂等を含有するものがある。この接着剤組成物は、一般に、エポキシ樹脂、エポキシ樹脂と反応するフェノール樹脂等の硬化剤、エポキシ樹脂と硬化剤との反応を促進する潜在性硬化剤等を含有する。 As an adhesive composition constituting such a circuit connecting member, there is a conventional one containing an epoxy resin or the like. This adhesive composition generally contains an epoxy resin, a curing agent such as a phenol resin that reacts with the epoxy resin, a latent curing agent that accelerates the reaction between the epoxy resin and the curing agent, and the like.
 例えば、特許文献1には、エポキシ樹脂にアクリルゴムを分散させることにより、接続対象物との接続界面におけるストレスを緩和し、これにより、接続信頼性を向上させることができる回路接続部材が記載されている。 For example, Patent Document 1 describes a circuit connection member that can relieve stress at a connection interface with a connection object by dispersing acrylic rubber in an epoxy resin, thereby improving connection reliability. ing.
 一方、近年、異方性導電フィルムに対しては、生産時間の短縮のために、低温短時間で硬化を行う接着剤組成物が要求されている。この要求に応えるために、(メタ)アクリレート誘導体及び過酸化物等のラジカル重合開始剤を含有するラジカル硬化型の接着剤組成物が注目されている。ラジカル硬化型の回路接続材料は、反応性に富むラジカルにより、短時間で硬化反応が進行するため、生産時間の短縮に有利である(特許文献2、3参照)。 On the other hand, in recent years, an anisotropic conductive film is required to have an adhesive composition that cures at a low temperature in a short time in order to shorten the production time. In order to meet this demand, a radical curable adhesive composition containing a radical polymerization initiator such as a (meth) acrylate derivative and a peroxide has attracted attention. The radical curing type circuit connecting material is advantageous in shortening the production time because the curing reaction proceeds in a short time due to radicals rich in reactivity (see Patent Documents 2 and 3).
特開2009-299079号公報JP 2009-299079 A 特開2008-291199号公報JP 2008-291199 A 特開2011-37953号公報JP 2011-37953 A
 しかしながら、(メタ)アクリレート誘導体は、エポキシ樹脂等に比べて重合時の硬化収縮が大きく、また、硬化後の内部応力も大きい傾向にある。このため、一般に、ラジカル硬化型の接着剤組成物を含有する回路接続材料を用いた場合、その接着層とLCDパネル等の基板との界面において気泡が発生し、接続信頼性が低下するおそれがある。特に、TFT(Thin Film Transistor)方式のLCDパネルにおいてパネル配線上の絶縁膜として使用される窒化珪素(SiN)膜との界面では、この気泡発生が顕著となって密着力が劣り、結果として接続信頼性が大きく低下するおそれがある。 However, (meth) acrylate derivatives tend to have a large curing shrinkage during polymerization and a large internal stress after curing compared to epoxy resins and the like. For this reason, generally, when a circuit connection material containing a radical curable adhesive composition is used, bubbles may be generated at the interface between the adhesive layer and a substrate such as an LCD panel, which may reduce connection reliability. is there. In particular, at the interface with the silicon nitride (SiN) film used as the insulating film on the panel wiring in the TFT (Thin Film Transistor) LCD panel, this bubble generation becomes remarkable and the adhesion is poor, resulting in connection. Reliability may be greatly reduced.
 回路接続材料において、(メタ)アクリレート誘導体の含有量を減らすことにより、この気泡発生は、ある程度抑制されるが、バインダの凝集力低下により、導電性粒子の反発を抑制することができず、高温高湿下での接続信頼性試験において、回路電極間の抵抗値が大きく変動するおそれがある。 By reducing the content of the (meth) acrylate derivative in the circuit connecting material, this bubble generation is suppressed to some extent, but due to a decrease in the cohesive strength of the binder, the repulsion of the conductive particles cannot be suppressed, and the high temperature In the connection reliability test under high humidity, the resistance value between the circuit electrodes may greatly fluctuate.
 本発明は、このような従来の実情に鑑みて提案されたものであり、高温高湿処理を受けたときの回路電極間の抵抗値の変動を抑制しながら、窒化珪素膜との界面との密着性を向上させて優れた接続信頼性を発揮することが可能な回路接続材料、及びこの回路接続材料を用いて一対の回路部材を接続する接続方法、並びにその接続方法によって得られる接続構造体を提供することを目的とする。 The present invention has been proposed in view of such a conventional situation, and suppresses fluctuations in the resistance value between circuit electrodes when subjected to a high-temperature and high-humidity treatment, while maintaining an interface with the silicon nitride film. Circuit connection material capable of improving adhesion and exhibiting excellent connection reliability, connection method for connecting a pair of circuit members using this circuit connection material, and connection structure obtained by the connection method The purpose is to provide.
 上述した課題を解決するために、本発明の回路接続材料は、(1)ラジカル重合性樹脂と、(2)熱又は光によって遊離ラジカルを発生するラジカル重合開始剤と、(3)側鎖にエチレン性不飽和基を有し、二重結合当量が1000~12000である反応性アクリルポリマーとを含有することを特徴とする。 In order to solve the above-described problems, the circuit connection material of the present invention includes (1) a radical polymerizable resin, (2) a radical polymerization initiator that generates free radicals by heat or light, and (3) a side chain. And a reactive acrylic polymer having an ethylenically unsaturated group and having a double bond equivalent of 1000 to 12,000.
 また、上述した課題を解決するために、本発明の接続構造体は、回路電極同士が対向するように配置された一対の回路部材の間に、回路接続材料が介在されて、対峙する該回路部材が電気的且つ機械的に接続されてなる接続構造体において、前記回路部材の一方は、表面が窒化珪素膜に覆われており、前記回路接続材料は、(1)ラジカル重合性樹脂と、(2)熱又は光によって遊離ラジカルを発生するラジカル重合開始剤と、(3)側鎖にエチレン性不飽和基を有し、二重結合当量が1000~12000である反応性アクリルポリマーとを含有することを特徴とする。 Further, in order to solve the above-described problem, the connection structure of the present invention is a circuit in which a circuit connection material is interposed between a pair of circuit members arranged so that circuit electrodes face each other, and face each other. In the connection structure in which the members are electrically and mechanically connected, one of the circuit members has a surface covered with a silicon nitride film, and the circuit connection material includes (1) a radical polymerizable resin, (2) Contains a radical polymerization initiator that generates free radicals by heat or light, and (3) a reactive acrylic polymer having an ethylenically unsaturated group in the side chain and a double bond equivalent of 1000 to 12,000. It is characterized by doing.
 また、上述した課題を解決するために、本発明の接続方法は、回路電極同士が対向するように配置された一対の回路部材の間に、回路接続材料を介在させて、熱加圧により、対峙する該回路部材を電気的且つ機械的に接続させる接続方法において、前記回路部材の一方は、表面が窒化珪素膜に覆われており、前記回路接続材料として、(1)ラジカル重合性樹脂と、(2)熱又は光によって遊離ラジカルを発生するラジカル重合開始剤と、(3)側鎖にエチレン性不飽和基を有し、二重結合当量が1000~12000である反応性アクリルポリマーとを含有する回路接続材料を用いることを特徴とする。 Further, in order to solve the above-described problem, the connection method of the present invention includes a circuit connection material interposed between a pair of circuit members arranged so that circuit electrodes face each other, and is subjected to thermal pressurization. In the connection method of electrically and mechanically connecting the circuit members facing each other, one surface of the circuit member is covered with a silicon nitride film, and the circuit connection material includes (1) a radical polymerizable resin and (2) a radical polymerization initiator that generates free radicals by heat or light, and (3) a reactive acrylic polymer having an ethylenically unsaturated group in the side chain and having a double bond equivalent of 1000 to 12000. The circuit connection material contained is used.
 本発明によれば、高温高湿処理を受けたときの回路電極間の抵抗値の変動を抑制しながら、窒化珪素膜との界面との密着性を向上させて優れた接続信頼性を発揮することが可能な回路接続材料、及びこの回路接続材料を用いて一対の回路部材を接続する接続方法、並びにその接続方法によって得られる接続構造体を提供することができる。 According to the present invention, while suppressing fluctuations in the resistance value between circuit electrodes when subjected to a high-temperature and high-humidity treatment, the adhesion with the interface with the silicon nitride film is improved and excellent connection reliability is exhibited. It is possible to provide a circuit connection material that can be used, a connection method for connecting a pair of circuit members using the circuit connection material, and a connection structure obtained by the connection method.
 以下、本発明の具体的な実施の形態(以下、「本実施の形態」という。)について、図面を参照しながら下記の順に詳細に説明する。
<1.回路接続材料>
<2.接続方法>
<3.実施例>
Hereinafter, a specific embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail in the following order with reference to the drawings.
<1. Circuit connection material>
<2. Connection method>
<3. Example>
<1.回路接続材料>
 本実施の形態における回路接続材料は、回路電極同士が対向するように配置された一対の回路部材の間に介在され、対峙するこの回路部材を電気的且つ機械的に接続するものである。本実施の形態における回路接続材料は、絶縁性の接着剤組成物に複数の導電性粒子が分散されてフィルム状に形成された異方性導電フィルムに適用される。
<1. Circuit connection material>
The circuit connecting material in the present embodiment is interposed between a pair of circuit members arranged so that circuit electrodes face each other, and electrically and mechanically connects the facing circuit members. The circuit connection material in the present embodiment is applied to an anisotropic conductive film formed into a film shape by dispersing a plurality of conductive particles in an insulating adhesive composition.
 絶縁性の接着剤組成物は、ラジカル重合性樹脂である(メタ)アクリレート化合物と、熱又は光によって遊離ラジカルを発生するラジカル重合開始剤と、側鎖にエチレン性不飽和基を有する反応性アクリルポリマーと、フィルム形成樹脂とを含有する。ここで、(メタ)アクリレートには、アクリレートとメタクリレートとが含まれる。 The insulating adhesive composition includes a (meth) acrylate compound that is a radical polymerizable resin, a radical polymerization initiator that generates free radicals by heat or light, and a reactive acrylic having an ethylenically unsaturated group in the side chain. Contains a polymer and a film-forming resin. Here, (meth) acrylate includes acrylate and methacrylate.
 (メタ)アクリレート化合物は、異方性導電フィルムが加熱されたときに絶縁性の接着剤組成物内において架橋構造を形成し、これにより、接着剤組成物を硬化させる。 The (meth) acrylate compound forms a cross-linked structure in the insulating adhesive composition when the anisotropic conductive film is heated, thereby curing the adhesive composition.
 ラジカル重合性樹脂である(メタ)アクリレート化合物としては、多官能(メタ)アクリレートモノマー、多官能(メタ)アクリレートオリゴマー、多官能(メタ)アクリレートポリマー等の多官能(メタ)アクリレート化合物を挙げることができる。ラジカル重合性樹脂としては、この多官能(メタ)アクリレート化合物と、単官能(メタ)アクリレートモノマー、単官能(メタ)アクリレートオリゴマー、単官能(メタ)アクリレートポリマー等の単官能(メタ)アクリレート化合物とを併用してもよい。 Examples of the (meth) acrylate compound that is a radical polymerizable resin include polyfunctional (meth) acrylate compounds such as polyfunctional (meth) acrylate monomers, polyfunctional (meth) acrylate oligomers, and polyfunctional (meth) acrylate polymers. it can. As the radical polymerizable resin, this polyfunctional (meth) acrylate compound and a monofunctional (meth) acrylate compound such as a monofunctional (meth) acrylate monomer, a monofunctional (meth) acrylate oligomer, a monofunctional (meth) acrylate polymer, and the like May be used in combination.
 単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-メチルブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、2-メチルヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ブチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、n-ノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。 Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) ) Acrylate, t-butyl (meth) acrylate, 2-methylbutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, 2-methylhexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, 2-butylhexyl (meth) acrylate, isooctyl (meth) acrylate, isopentyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, cyclohexyl ( Acrylate), benzyl (meth) acrylate, phenoxy (meth) acrylate, n-nonyl (meth) acrylate, n-decyl (meth) acrylate, lauryl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate, etc. Is mentioned.
 二官能(メタ)アクリレートとしては、ビスフェノールF―EO変性ジ(メタ)アクリレート、ビスフェノールA―EO変性ジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート、ジシクロペンタジエン(メタ)アクリレート等が挙げられる。 Bifunctional (meth) acrylates include bisphenol F-EO-modified di (meth) acrylate, bisphenol A-EO-modified di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, and tricyclodecanedi. Examples include methylol di (meth) acrylate and dicyclopentadiene (meth) acrylate.
 三官能(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンPO変性(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート等が挙げられる。 Examples of the trifunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, trimethylolpropane PO-modified (meth) acrylate, and isocyanuric acid EO-modified tri (meth) acrylate.
 四官能以上の(メタ)アクリレートとしては、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート等が挙げられる。その他に、多官能ウレタン(メタ)アクリレートも使用することができる。 Examples of tetrafunctional or higher functional (meth) acrylates include dipentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetraacrylate. In addition, polyfunctional urethane (meth) acrylates can also be used.
 絶縁性の接着剤組成物中の(メタ)アクリレート化合物の配合量は、少なすぎると接着強度が低下し、多すぎるとフィルム強度が低下してフィルム形状を維持しにくくなるため、好ましくは1~50質量%、より好ましくは3~30質量%である。 If the blending amount of the (meth) acrylate compound in the insulating adhesive composition is too small, the adhesive strength decreases, and if it is too large, the film strength decreases and it becomes difficult to maintain the film shape. It is 50% by mass, more preferably 3 to 30% by mass.
 反応性アクリルポリマーとしては、側鎖にエチレン性不飽和基(-CH=CH2)を有するものを使用する。このような反応性アクリルポリマーとしては、例えば側鎖にエチレン性不飽和基を有する反応性アクリルゴム等を挙げることができる。反応性アクリルポリマーのエチレン性不飽和基の量は、二重結合当量により示される。二重結合当量は、[反応性アクリルポリマーの繰り返し構成単位(モノマー)の分子量]/[反応性アクリルポリマーの繰り返し構成単位(モノマー)中の二重結合の数]で定義される。この二重結合当量は、分子中に含まれる二重結合量の尺度となるものであり、同じ分子量であれば、二重結合当量の数値が小さい程、二重結合の導入量が多くなる。 As the reactive acrylic polymer, one having an ethylenically unsaturated group (—CH═CH 2) in the side chain is used. Examples of such a reactive acrylic polymer include a reactive acrylic rubber having an ethylenically unsaturated group in the side chain. The amount of ethylenically unsaturated groups in the reactive acrylic polymer is indicated by the double bond equivalent. The double bond equivalent is defined by [molecular weight of repeating structural unit (monomer) of reactive acrylic polymer] / [number of double bonds in repeating structural unit (monomer) of reactive acrylic polymer]. This double bond equivalent is a measure of the amount of double bonds contained in the molecule. For the same molecular weight, the amount of double bonds introduced increases as the value of the double bond equivalent decreases.
 反応性アクリルポリマーの二重結合当量は、以下の理由により、1000~12000であることが好ましい。 The double bond equivalent of the reactive acrylic polymer is preferably 1000 to 12000 for the following reasons.
 二重結合当量が小さい、すなわち、反応性アクリルポリマーの二重結合の数が多いと、重合時における反応性アクリルポリマーの硬化収縮が大きくなり、硬化後の内部応力も大きくなる。このため、絶縁性の接着剤組成物の窒化珪素に対する接着性(密着性)は、低下する。 When the double bond equivalent is small, that is, when the number of double bonds in the reactive acrylic polymer is large, the shrinkage of the reactive acrylic polymer during curing increases, and the internal stress after curing also increases. For this reason, the adhesiveness (adhesiveness) with respect to the silicon nitride of the insulating adhesive composition is lowered.
 一方、二重結合当量が大きい、すなわち、反応性アクリルポリマーの二重結合の数が少ないと、重合時における反応性アクリルポリマーの硬化収縮は小さく、硬化後の内部応力も小さくなる。このため、絶縁性の接着剤組成物の窒化珪素に対する接着性は、向上する。しかしながら、反応性アクリルポリマーが二重結合を有しない、又は反応性アクリルポリマー1分子中の二重結合の数が少なすぎる場合は、反応性アクリルポリマーとラジカル重合性樹脂との結合性が低下し、絶縁性の接着剤組成物が膨張する。このため、対峙する電極間において接着剤組成物が排除しきれなくなり、導通抵抗値は、高くなる。 On the other hand, when the double bond equivalent is large, that is, when the number of reactive acrylic polymer double bonds is small, the curing shrinkage of the reactive acrylic polymer during polymerization is small, and the internal stress after curing is also small. For this reason, the adhesiveness with respect to silicon nitride of an insulating adhesive composition improves. However, when the reactive acrylic polymer does not have a double bond, or when the number of double bonds in one molecule of the reactive acrylic polymer is too small, the binding property between the reactive acrylic polymer and the radical polymerizable resin decreases. The insulating adhesive composition expands. For this reason, the adhesive composition cannot be completely removed between the opposing electrodes, and the conduction resistance value becomes high.
 反応性アクリルポリマーの二重結合当量を1000~12000とした異方性導電フィルムを用いて回路部材同士を接続することにより、対峙する電極間において導通抵抗値を低い値に維持しながら、絶縁性の接着剤組成物の窒化珪素に対して高い接着性を得ることができる。 By connecting the circuit members using an anisotropic conductive film having a reactive acrylic polymer double bond equivalent of 1000 to 12000, the insulation resistance is maintained while maintaining a low conduction resistance value between the opposing electrodes. High adhesiveness can be obtained with respect to silicon nitride of the adhesive composition.
 反応性アクリルポリマーのガラス転移温度(Tg)は、-10℃以下であることが好ましい。Tgが-10℃を超えると、接着性が低下するおそれがある。 The glass transition temperature (Tg) of the reactive acrylic polymer is preferably −10 ° C. or lower. If Tg exceeds -10 ° C, the adhesion may be reduced.
 反応性アクリルポリマーの重合平均分子量(Mw)は、30000~150000が好ましい。Mwが30000未満であると、ポリマーによる接着強度の確保ができなくなる。Mwが150000を超えると、ゴム性が上がり耐熱性が下がることで、導通抵抗値が高くなる。 The polymerization average molecular weight (Mw) of the reactive acrylic polymer is preferably 30,000 to 150,000. When Mw is less than 30000, it becomes impossible to ensure the adhesive strength by the polymer. When Mw exceeds 150,000, the rubber resistance increases and the heat resistance decreases, and the conduction resistance value increases.
 絶縁性の接着剤組成物中の反応性アクリルポリマーの配合量は、10~30質量%であることが好ましい。10質量%未満であると、接着性が下がる。30質量%を超えると、ゴム性が高まることから、耐熱性に劣る硬化物となり、導通抵抗値が高くなる。 The compounding amount of the reactive acrylic polymer in the insulating adhesive composition is preferably 10 to 30% by mass. Adhesiveness falls that it is less than 10 mass%. When it exceeds 30% by mass, the rubber property is increased, so that the cured product is inferior in heat resistance, and the conduction resistance value is increased.
 反応性アクリルポリマーの一種である反応性アクリルゴムは、例えば次の方法によって合成することで生成することができる。反応容器内に、所定の質量比の(メタ)アクリル酸エステルモノマーと、メタクリル酸グリシジルと、水とを添加して混合させる。この混合物を撹拌して十分に窒素の置換を行う。次に、この混合物に開始剤としてパーオキサイドを添加して重合反応を開始させる。次に、この側鎖にグリシジル基を有するポリマーに(メタ)アクリル酸を反応させて、二重結合を有する反応性アクリルゴムを生成する。 Reactive acrylic rubber which is a kind of reactive acrylic polymer can be produced by, for example, synthesis by the following method. In a reaction vessel, a (meth) acrylic acid ester monomer having a predetermined mass ratio, glycidyl methacrylate, and water are added and mixed. The mixture is agitated to fully replace the nitrogen. Next, peroxide is added as an initiator to the mixture to initiate the polymerization reaction. Next, (meth) acrylic acid is reacted with the polymer having a glycidyl group in the side chain to produce a reactive acrylic rubber having a double bond.
 この生成方法において、反応性アクリルポリマーである反応性アクリルゴムの二重結合当量は、メタクリル酸グリシジルの配合量によって制御でき、上述したように、[反応性アクリルポリマーの繰り返し構成単位(モノマー)の分子量]/[反応性アクリルポリマーの繰り返し構成単位(モノマー)中の二重結合の数]から算出される。 In this production method, the double bond equivalent of the reactive acrylic rubber, which is a reactive acrylic polymer, can be controlled by the blending amount of glycidyl methacrylate and, as described above, [reactive structural unit (monomer) of the reactive acrylic polymer] Molecular weight] / [number of double bonds in the repeating structural unit (monomer) of the reactive acrylic polymer].
 このように、側鎖にエチレン性不飽和基を有し、二重結合当量が1000~12000である反応性アクリルポリマーを含有することで、高温高湿処理を受けたときの回路電極間の抵抗値の変動を抑制しながら、窒化珪素膜との界面との密着性を向上させて優れた接続信頼性を発揮することが可能となる。 Thus, by containing a reactive acrylic polymer having an ethylenically unsaturated group in the side chain and a double bond equivalent of 1000 to 12000, resistance between circuit electrodes when subjected to high temperature and high humidity treatment While suppressing the fluctuation of the value, it is possible to improve the adhesion with the interface with the silicon nitride film and exhibit excellent connection reliability.
 ラジカル重合開始剤は、熱又は光により分解して遊離ラジカルを発生する硬化剤であり、公知のラジカル重合開始剤を選択することができる。例えば、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド等の過酸化物系重合開始剤、アゾビスブチロニトリル等のアゾ系重合開始剤、レドックス系重合開始剤等が挙げられる。 The radical polymerization initiator is a curing agent that decomposes by heat or light to generate free radicals, and a known radical polymerization initiator can be selected. For example, peroxide polymerization initiators such as diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, azo polymerization initiator such as azobisbutyronitrile, redox System polymerization initiators and the like.
 絶縁性の接着剤組成物中のラジカル重合開始剤の配合量は、少なすぎると硬化が不十分となり、多すぎると異方性導電フィルムの凝集力が低下するため、(メタ)アクリレート化合物100質量部に対し、好ましくは1~10質量部、より好ましくは3~7質量部である。 If the blending amount of the radical polymerization initiator in the insulating adhesive composition is too small, the curing becomes insufficient, and if it is too large, the cohesive force of the anisotropic conductive film decreases, and therefore the (meth) acrylate compound 100 mass. The amount is preferably 1 to 10 parts by mass, more preferably 3 to 7 parts by mass with respect to parts.
 膜形成樹脂としては、例えば、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、フェノキシ樹脂、ポリアミド、EVA等の熱可塑性エラストマー等を使用することができる。中でも、耐熱性、接着性のために、ポリエステル樹脂、ポリウレタン樹脂、フェノキシ樹脂、特にフェノキシ樹脂、例えばビスA型エポキシ樹脂、フルオレン骨格を有するフェノキシ樹脂を挙げることができる。 As the film forming resin, for example, a thermoplastic elastomer such as epoxy resin, polyester resin, polyurethane resin, phenoxy resin, polyamide, EVA, or the like can be used. Among them, for heat resistance and adhesiveness, polyester resins, polyurethane resins, phenoxy resins, particularly phenoxy resins such as bis A type epoxy resins and phenoxy resins having a fluorene skeleton can be mentioned.
 膜形成樹脂は、少なすぎるとフィルムを形成せず、多すぎると電気接続を得るための樹脂の排除性が低くなる傾向があるので、樹脂固形分(重合性アクリル系化合物と膜形成樹脂からなる接着剤組成物)100質量部に対し、80~30質量部、より好ましくは70~40質量部である。 If the amount of the film-forming resin is too small, a film is not formed. If the amount is too large, the resin exclusion property for obtaining electrical connection tends to be low, so the resin solid content (consisting of a polymerizable acrylic compound and a film-forming resin). Adhesive composition) It is 80 to 30 parts by mass, more preferably 70 to 40 parts by mass with respect to 100 parts by mass.
 導電性粒子としては、従来の異方性導電フィルムで用いられている導電性粒子を使用することができ、例えば、金粒子、銀粒子、ニッケル粒子等の金属粒子、ベンゾグアナミン樹脂やスチレン樹脂等の樹脂粒子の表面を金、ニッケル、亜鉛等の金属で被覆した金属被覆樹脂粒子等を挙げることができる。導電性粒子の平均粒径としては、接続信頼性の観点から、好ましくは1~20μm、より好ましくは2~10μmである。 As the conductive particles, the conductive particles used in conventional anisotropic conductive films can be used. For example, metal particles such as gold particles, silver particles, and nickel particles, benzoguanamine resins, styrene resins, etc. Examples thereof include metal-coated resin particles whose surfaces are coated with a metal such as gold, nickel, and zinc. The average particle diameter of the conductive particles is preferably 1 to 20 μm, more preferably 2 to 10 μm, from the viewpoint of connection reliability.
 絶縁性の接着剤組成物における導電性粒子の平均粒子密度は、接続信頼性及び絶縁信頼性の観点から、好ましくは500~50000個/mm、より好ましくは1000~30000個/mmである。 The average particle density of the conductive particles in the insulating adhesive composition is preferably 500 to 50000 / mm 2 , more preferably 1000 to 30000 / mm 2 from the viewpoint of connection reliability and insulation reliability. .
 絶縁性の接着剤組成物には、金属に対する接着性を向上させるために、リン酸アクリレートを含有させることができる。 Insulating adhesive composition can contain phosphate acrylate in order to improve adhesion to metal.
 さらに、絶縁性の接着剤組成物には、他の添加組成物、例えば各種アクリルモノマー等の希釈用モノマー、充填剤、軟化剤、着色剤、難燃化剤、チキソトロピック剤、シランカップリング剤、シリカ微粒子等を含有させることができる。 In addition, the insulating adhesive composition includes other additive compositions such as dilution monomers such as various acrylic monomers, fillers, softeners, colorants, flame retardants, thixotropic agents, silane coupling agents. Further, silica fine particles and the like can be contained.
 シランカップリング剤を含有させることにより、有機材料と無機材料との界面における接着性が向上される。シリカ微粒子を含有させることにより、貯蔵弾性率、線膨張係数等を調整して接続信頼性を向上させることができる。 By including a silane coupling agent, adhesion at the interface between the organic material and the inorganic material is improved. By including silica fine particles, the storage elastic modulus, the linear expansion coefficient, etc. can be adjusted to improve the connection reliability.
 本実施の形態の異方性導電フィルムは、ラジカル重合性樹脂である(メタ)アクリレート化合物と、ラジカル重合開始剤と、側鎖にエチレン性不飽和基を有する反応性アクリルポリマーと、フィルム形成樹脂とを含有する絶縁性の接着剤組成物に、導電性粒子を公知の分散手法により均一に分散混合し、得られた混合物をシリコーン剥離処理ポリエステルフィルム等の剥離フィルムにバーコータ等の公知の塗布手法により乾燥厚で10~50μmとなるように塗布し、例えば、50~90℃の恒温槽に投入して乾燥することにより製造することができる。この異方性導電フィルム上に絶縁性接着フィルムを積層する場合には、異方性導電フィルム上に、絶縁性の接着剤組成物を塗布し、乾燥することで得ることができる。 The anisotropic conductive film of the present embodiment includes a (meth) acrylate compound that is a radical polymerizable resin, a radical polymerization initiator, a reactive acrylic polymer having an ethylenically unsaturated group in the side chain, and a film-forming resin. The conductive particles are uniformly dispersed and mixed by a known dispersion method into the insulating adhesive composition containing the above, and the resulting mixture is applied to a release film such as a silicone release-treated polyester film using a known coating method such as a bar coater. Thus, it can be manufactured by applying to a dry thickness of 10 to 50 μm and putting it in a thermostat at 50 to 90 ° C. and drying. When an insulating adhesive film is laminated on this anisotropic conductive film, it can be obtained by applying an insulating adhesive composition on the anisotropic conductive film and drying it.
 剥離フィルムとしては、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)等にシリコーン等の剥離剤を塗布してなり、異方性導電フィルムの乾燥を防ぐとともに、異方性導電フィルムの形状を維持する。 As the release film, for example, PET (PolyPoEthylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), etc. are coated with a release agent such as silicone. While preventing the conductive conductive film from drying, the shape of the anisotropic conductive film is maintained.
 本実施の形態の異方性導電フィルムによれば、側鎖にエチレン性不飽和基を有し、二重結合当量が1000~12000である反応性アクリルポリマーを含有することで、高温高湿処理を受けたときの回路電極間の抵抗値の変動を抑制しながら、窒化珪素膜との界面との密着性を向上させて優れた接続信頼性を発揮することが可能となる。
<2.接続方法>
According to the anisotropic conductive film of the present embodiment, high-temperature and high-humidity treatment is achieved by containing a reactive acrylic polymer having an ethylenically unsaturated group in the side chain and a double bond equivalent of 1000 to 12000. It is possible to improve the adhesion with the interface with the silicon nitride film and to exhibit excellent connection reliability while suppressing fluctuations in the resistance value between the circuit electrodes when receiving.
<2. Connection method>
 本実施の形態の異方性導電フィルムを介してLCD(Liquid Crystal Display)パネルを構成するガラス基板と配線材としてのCOF(Chip On Film)とを圧着接続する接続方法を提供する。ガラス基板には、配線電極がファインピッチに形成されている。また、COFには、配線電極の配線パターンに応じて端子電極が形成されている。そして、この接続方法によって、ガラス基板の配線電極とCOFの端子電極とを異方性導電接続することにより、接続構造体を得る。 Provided is a connection method in which a glass substrate constituting an LCD (Liquid Crystal Display) panel and a COF (Chip On Film) as a wiring material are crimped and connected via the anisotropic conductive film of the present embodiment. Wiring electrodes are formed on the glass substrate at a fine pitch. Further, terminal electrodes are formed on the COF according to the wiring pattern of the wiring electrodes. And by this connection method, the connection structure is obtained by anisotropically connecting the wiring electrode of the glass substrate and the terminal electrode of the COF.
 以下、異方性導電フィルムを介してガラス基板とCOFとを圧着接続する接続方法について具体的に説明する。先ず、ガラス基板上の配線電極が形成されている面と、異方性導電フィルムをガラス基板に仮貼りする(仮貼工程)。この仮貼りにおいては、加圧ボンダーの低温に加熱したヘッド部の加圧面を導電性粒子含有層上面に軽く押し当てて低圧で加圧する。加熱温度は、絶縁性の接着剤組成物が流動するが硬化しない程度の低温(例えば60~80℃のうちの所定の値)である。また、仮貼工程での加圧圧力は、例えば0.5MPa~2MPaのうちの所定の値である。また、仮貼工程での熱加圧時間は、例えば1~3秒(sec)のうちの所定の時間である。 Hereinafter, a connection method in which the glass substrate and the COF are crimped and connected via an anisotropic conductive film will be specifically described. First, a surface on which a wiring electrode on a glass substrate is formed and an anisotropic conductive film are temporarily attached to the glass substrate (temporary attaching step). In this temporary bonding, the pressure surface of the head part heated to a low temperature of the pressure bonder is lightly pressed against the upper surface of the conductive particle-containing layer and pressed at a low pressure. The heating temperature is a low temperature (for example, a predetermined value of 60 to 80 ° C.) such that the insulating adhesive composition flows but does not cure. Further, the pressure applied in the temporary sticking step is a predetermined value of 0.5 MPa to 2 MPa, for example. In addition, the heat pressurizing time in the temporary sticking step is, for example, a predetermined time of 1 to 3 seconds (sec).
 仮貼工程で異方性導電フィルムを仮貼りした後、異方性導電フィルムの位置合わせ状態を確認し、位置ずれ等の不具合が生じている場合には、この仮貼工程の後に、異方性導電フィルムを剥離して再度異方性導電フィルムを正しい位置で仮貼りするリペア処理を行う(リペア工程)。 After temporarily sticking the anisotropic conductive film in the temporary sticking step, check the alignment state of the anisotropic conductive film, and if there is a problem such as misalignment, after this temporary sticking step, anisotropic The repair process which peels a conductive conductive film and temporarily sticks an anisotropic conductive film in a correct position again is performed (repair process).
 次いで、バンプと配線電極とを対峙させるようにしてCOFを異方性導電フィルム上に配置する(配置工程)。 Next, the COF is placed on the anisotropic conductive film so that the bump and the wiring electrode are opposed to each other (placement step).
 そして、加圧ボンダーの加熱したヘッド部の加圧面(図示せず)をCOFの上面に押し当ててガラス基板とCOFとを圧着接続させる(接続工程)。 Then, the pressure surface (not shown) of the heated head part of the pressure bonder is pressed against the upper surface of the COF, and the glass substrate and the COF are connected by pressure bonding (connection process).
 接続工程での加圧圧力は、例えば1MPa~5MPaのうちの所定の値である。また、接続工程での加熱温度は、絶縁性粒子を溶融させるとともに絶縁性の接着剤組成物を硬化させる温度(例えば温度160~210℃のうちの所定の値)である。また、接続工程での熱加圧時間は、例えば3~10秒のうちの所定の時間である。 The pressurizing pressure in the connecting step is a predetermined value of 1 MPa to 5 MPa, for example. The heating temperature in the connecting step is a temperature (for example, a predetermined value of 160 to 210 ° C.) at which the insulating particles are melted and the insulating adhesive composition is cured. Further, the heat pressurizing time in the connecting step is a predetermined time of 3 to 10 seconds, for example.
 このようにして、配線電極とバンプとの間に導電性粒子を挟持させ、接着剤組成物を硬化させる。これにより、ガラス基板とCOFとを電気的及び機械的に接続する。そして、ガラス基板とCOFとが異方性導電接続されてなる接続構造体を得る。得られた接続構造体は、上述したように、絶縁信頼性を良好に維持しながら、優れた接続信頼性及び導通信頼性を発揮することができる。 In this way, the conductive particles are sandwiched between the wiring electrodes and the bumps, and the adhesive composition is cured. Thereby, a glass substrate and COF are electrically and mechanically connected. Then, a connection structure in which the glass substrate and the COF are anisotropically conductively connected is obtained. As described above, the obtained connection structure can exhibit excellent connection reliability and conduction reliability while maintaining good insulation reliability.
 以上、本実施の形態について説明したが、本発明が前述の実施の形態に限定されるものでないことは言うまでもなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 As mentioned above, although this Embodiment was demonstrated, it cannot be overemphasized that this invention is not what is limited to the above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary of this invention.
 上述の実施の形態では、異方性導電接着部材として、異方性導電フィルムを用いた。しかしながら、異方性導電接着部材の構造は、これに限定されず、例えば、さらに絶縁性の接着剤層が積層された2層構造の異方性導電フィルムとしてもよい。また、例えば、絶縁性の接着剤組成物に導電性粒子が含まれてなる導電性接着剤ペーストと、絶縁性の接着剤組成物からなる絶縁性接着剤ペーストとからなり、これらを重ねて塗布することで2層の接着剤層としてもよい。 In the above embodiment, an anisotropic conductive film is used as the anisotropic conductive adhesive member. However, the structure of the anisotropic conductive adhesive member is not limited to this, and may be, for example, a two-layer anisotropic conductive film in which an insulating adhesive layer is further laminated. In addition, for example, a conductive adhesive paste in which conductive particles are contained in an insulating adhesive composition, and an insulating adhesive paste made of an insulating adhesive composition, these are applied in layers. By doing so, it is good also as two adhesive layers.
 また、上述の実施の形態では、ガラス基板として、LCD(Liquid Crystal Display)パネルを構成するガラス基板を使用する場合について説明したが、ガラス基板は、これに限定されず、例えばPDP基板(PDPパネル)、有機EL基板(有機ELパネル)等を構成するガラス基板であってもよい。 In the above-described embodiment, the case where a glass substrate constituting an LCD (Liquid Crystal Display) panel is used as the glass substrate has been described. However, the glass substrate is not limited to this, for example, a PDP substrate (PDP panel) ), A glass substrate constituting an organic EL substrate (organic EL panel) or the like.
 また、上述の実施の形態では、基板としてガラス基板を用いる場合について説明したが、リジット基板、フレキシブル基板等の他の基板であってもよい。また、上述の実施の形態では、電子部品としてCOFを用いる場合について説明したが、ICチップ、TAB等の他の電子部品であってもよい。 In the above-described embodiment, the case where a glass substrate is used as the substrate has been described. However, other substrates such as a rigid substrate and a flexible substrate may be used. In the above-described embodiment, the case where COF is used as an electronic component has been described. However, other electronic components such as an IC chip and TAB may be used.
 また、上述の実施の形態では、本発明をFOG(Film On Glass)に適用する場合について説明したが、本発明は、COG(Chip On Glass)、FOB(Film On Board)等の他の実装方法にも適用できる。 Further, in the above-described embodiment, the case where the present invention is applied to FOG (Film On Glass) has been described. However, the present invention is applied to other mounting methods such as COG (Chip On Glass) and FOB (Film On Board) It can also be applied to.
 以下、本発明の具体的な実施例について実験結果を基に説明する。 Hereinafter, specific examples of the present invention will be described based on experimental results.
 <実施例1>
 フィルム形成樹脂として、ポリエステルウレタン樹脂(商品名:UR8200、東洋紡績株式会社製、メチルエチルケトン/トルエン=50:50の混合溶媒にて20質量%に溶解したもの)を固形分換算で40質量部、側鎖にエチレン性不飽和基を有する反応性アクリルポリマーとして、二重結合当量が12000、Tgが-40℃、重合平均分子量(Mw)が10万の側鎖にエチレン性不飽和基を有する反応性アクリルゴムを20質量部、ラジカル重合性樹脂(商品名:EB-600、ダイセル・サイテック株式会社製)を34質量部、シランカップリング剤(商品名:KBM-503、信越化学株式会社製)1質量部、リン酸アクリレート(商品名:P-1M、共栄化学株式会社製)を1質量部、ラジカル重合開始剤(商品名:パーヘキサC、日本油脂株式会社製)4質量部を含有する絶縁性の接着剤組成物中に、導電性粒子(商品名:AUL704、積水化学工業株式会社製)を粒子密度10000個/mmになるように均一に分散し、導電性粒子含有組成物を剥離フィルム上にバーコータにより塗布して乾燥させ、厚み15μmの回路接続材料を作製した。
<Example 1>
As a film-forming resin, a polyester urethane resin (trade name: UR8200, manufactured by Toyobo Co., Ltd., dissolved in 20% by mass in a mixed solvent of methyl ethyl ketone / toluene = 50: 50) is 40 parts by mass in terms of solid content, side As a reactive acrylic polymer having an ethylenically unsaturated group in the chain, a reactive property having an ethylenically unsaturated group in the side chain having a double bond equivalent of 12000, Tg of −40 ° C., and a polymerization average molecular weight (Mw) of 100,000. 20 parts by mass of acrylic rubber, 34 parts by mass of radical polymerizable resin (trade name: EB-600, manufactured by Daicel Cytec Co., Ltd.), silane coupling agent (trade name: KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) 1 1 part by mass of a phosphoric acid acrylate (trade name: P-1M, manufactured by Kyoei Chemical Co., Ltd.), a radical polymerization initiator (trade name: Parge) Sa C, manufactured by NOF CORPORATION) in the adhesive composition of the insulating containing 4 parts by weight, the conductive particles (trade name: AUL704, manufactured by Sekisui Chemical Co., Ltd.) and the particle density 10000 / mm 2 Then, the conductive particle-containing composition was applied onto a release film with a bar coater and dried to prepare a circuit connection material having a thickness of 15 μm.
 ここで、反応性アクリルポリマーは、次の合成方法によって合成し、生成した。反応容器内に、メタクリル酸グリシジル及び(メタ)アクリル酸エステルモノマーの合計50質量部と、水600質量部とを添加して混合させた。この混合物を撹拌して十分に窒素の置換を行った。次に、この混合物に開始剤としてパーオキサイド0.5質量部を添加して重合反応を開始させた。次に、この側鎖にグリシジル基を有するポリマーに(メタ)アクリル酸を反応させて二重結合を有する反応性アクリルポリマー(反応性アクリルゴム)を生成した。 Here, the reactive acrylic polymer was synthesized and produced by the following synthesis method. A total of 50 parts by mass of glycidyl methacrylate and (meth) acrylic acid ester monomer and 600 parts by mass of water were added and mixed in the reaction vessel. The mixture was agitated to fully replace the nitrogen. Next, 0.5 parts by mass of peroxide as an initiator was added to this mixture to initiate the polymerization reaction. Next, a reactive acrylic polymer (reactive acrylic rubber) having a double bond was produced by reacting a polymer having a glycidyl group in the side chain with (meth) acrylic acid.
 ここでは、メタクリル酸グリシジルの配合量を制御することで、二重結合当量が12000である反応性アクリルポリマーを生成した。 Here, a reactive acrylic polymer having a double bond equivalent of 12000 was produced by controlling the blending amount of glycidyl methacrylate.
 次に、作製した異方性導電フィルムを介してガラス基板とCOF(50μmP、Cu8μmt-Snメッキ、38μmt-S’perflex基材)とを接続する処理を行った。ここで、ガラス基板としては、後の導通抵抗値測定用としてIZOコーティングガラス基板(全表面IZOコート、ガラス厚0.7mm)、接続強度測定用としてSiNコーティングガラス基板(全表面SiNコート)を用いた。先ず、ガラス基板上の配線電極が形成されている面上に、異方性導電フィルムを1.5mm幅にスリットしてガラス基板上に仮貼りした(仮貼工程)。この仮貼りにおいては、加圧ボンダーの低温に加熱したヘッド部の加圧面を導電性粒子含有層上面に軽く押し当てて低圧で加圧した。加熱温度は、絶縁性粒子が溶解せず、絶縁性の接着剤組成物が流動するが硬化しない程度の低温である70℃とした。また、仮貼工程での加圧圧力は、1MPaとした。また、仮貼工程での熱加圧時間は、2秒とした。 Next, a process of connecting the glass substrate and COF (50 μm P, Cu 8 μmt-Sn plating, 38 μmt-S′perflex base material) through the produced anisotropic conductive film was performed. Here, as a glass substrate, an IZO coated glass substrate (all surface IZO coating, glass thickness 0.7 mm) is used for subsequent conduction resistance measurement, and an SiN coated glass substrate (all surface SiN coating) is used for connection strength measurement. It was. First, an anisotropic conductive film was slit to a width of 1.5 mm on the surface of the glass substrate on which the wiring electrodes were formed, and temporarily pasted on the glass substrate (temporary pasting step). In this temporary attachment, the pressure surface of the head part heated to a low temperature of the pressure bonder was lightly pressed against the upper surface of the conductive particle-containing layer and pressed at a low pressure. The heating temperature was set to 70 ° C., which is a low temperature such that the insulating particles do not dissolve and the insulating adhesive composition flows but does not cure. Moreover, the pressurization pressure in the temporary sticking process was 1 MPa. Moreover, the heat-pressing time in the temporary sticking process was 2 seconds.
 次いで、COFの端子電極とガラス基板の配線電極とを対峙させるようにしてCOFを異方性導電フィルム上に配置した(配置工程)。 Next, the COF was disposed on the anisotropic conductive film so that the terminal electrode of the COF and the wiring electrode of the glass substrate were opposed to each other (arrangement step).
 そして、加圧ボンダーの加熱したヘッド部の加圧面(1.5mm幅)を緩衝材(100μmtテフロン(登録商標))を介してCOFの上面に押し当ててガラス基板とCOFとを圧着接続させた(接続工程)。 Then, the pressure surface (1.5 mm width) of the heated head part of the pressure bonder was pressed against the upper surface of the COF through a buffer material (100 μmt Teflon (registered trademark)) to press-connect the glass substrate and the COF. (Connection process).
 接続工程での加圧圧力は、4MPaとした。また、接続工程での加熱温度は、190℃とした。また、接続工程での熱加圧時間は、5秒とした。 The pressurizing pressure in the connection process was 4 MPa. The heating temperature in the connection process was 190 ° C. Further, the heat pressurizing time in the connecting step was 5 seconds.
 このようにして、配線電極とバンプとの間に導電性粒子を挟持させ、接着剤組成物を硬化させてガラス基板とCOFとを電気的及び機械的に接続し、接続構造体を得た。 Thus, conductive particles were sandwiched between the wiring electrodes and the bumps, the adhesive composition was cured, and the glass substrate and the COF were electrically and mechanically connected to obtain a connection structure.
 <実施例2>
 反応性アクリルポリマーの二重結合当量を10000とした以外は、実施例1の同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 2>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 10,000, and a connection structure was obtained by the same treatment as in Example 1.
 <実施例3>
 反応性アクリルポリマーの二重結合当量を5000とした以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 3>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was set to 5000, and a connection structure was obtained by the same treatment as in Example 1.
 <実施例4>
 反応性アクリルポリマーの二重結合当量を1000とした以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 4>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 1000, and a connection structure was obtained by the same treatment as in Example 1.
 <実施例5>
 反応性アクリルポリマーの二重結合当量を5000とし、Tgが-30℃である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 5>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Tg was −30 ° C., and the connection structure was obtained by the same treatment as in Example 1. Got the body.
 <実施例6>
 反応性アクリルポリマーの二重結合当量を5000とし、Tgが-20℃である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 6>
A circuit connecting material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Tg was −20 ° C., and the connection structure was obtained by the same treatment as in Example 1. Got the body.
 <実施例7>
 反応性アクリルポリマーの二重結合当量を5000とし、Tgが-10℃である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 7>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Tg was −10 ° C., and the connection structure was obtained by the same treatment as in Example 1. Got the body.
 <実施例8>
 反応性アクリルポリマーの二重結合当量を5000とし、Tgが0℃である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 8>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Tg was 0 ° C., and the connection structure was obtained by the same treatment as in Example 1. Got.
 <実施例9>
 反応性アクリルポリマーの二重結合当量を5000とし、Mwが1万である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 9>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Mw was 10,000, and the connection structure was obtained by the same treatment as in Example 1. Got.
 <実施例10>
 反応性アクリルポリマーの二重結合当量を5000とし、Mwが3万である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 10>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Mw was 30,000, and the connection structure was obtained by the same treatment as in Example 1. Got.
 <実施例11>
 反応性アクリルポリマーの二重結合当量を5000とし、Mwが5万である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 11>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Mw was 50,000, and the connection structure was obtained by the same treatment as in Example 1. Got.
 <実施例12>
 反応性アクリルポリマーの二重結合当量を5000とし、Mwが15万である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 12>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Mw was 150,000, and the connection structure was obtained by the same treatment as in Example 1. Got.
 <実施例13>
 反応性アクリルポリマーの二重結合当量を5000とし、Mwが20万である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 13>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 5000 and Mw was 200,000. Got.
 <実施例14>
 反応性アクリルゴムの二重結合当量を5000とし、反応性アクリルゴムの配合量が5質量部(5質量%)であり、ラジカル重合性樹脂の配合量が49質量部(49質量%)である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 14>
The double bond equivalent of the reactive acrylic rubber is 5000, the amount of the reactive acrylic rubber is 5 parts by mass (5% by mass), and the amount of the radical polymerizable resin is 49 parts by mass (49% by mass). Except for the above, a circuit connection material was produced under the same conditions as in Example 1, and a connection structure was obtained by the same treatment as in Example 1.
 <実施例15>
 反応性アクリルポリマーの二重結合当量を5000とし、反応性アクリルゴムの配合量が10質量部(10質量%)であり、ラジカル重合性樹脂の配合量が44質量部(44質量%)である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 15>
The double bond equivalent of the reactive acrylic polymer is 5000, the amount of the reactive acrylic rubber is 10 parts by mass (10% by mass), and the amount of the radical polymerizable resin is 44 parts by mass (44% by mass). Except for the above, a circuit connection material was produced under the same conditions as in Example 1, and a connection structure was obtained by the same treatment as in Example 1.
 <実施例16>
 反応性アクリルポリマーの二重結合当量を5000とし、反応性アクリルゴムの配合量が30質量部(30質量%)であり、ラジカル重合性樹脂の配合量が24質量部(24質量%)である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 16>
The double bond equivalent of the reactive acrylic polymer is 5000, the amount of the reactive acrylic rubber is 30 parts by mass (30% by mass), and the amount of the radical polymerizable resin is 24 parts by mass (24% by mass). Except for the above, a circuit connection material was produced under the same conditions as in Example 1, and a connection structure was obtained by the same treatment as in Example 1.
 <実施例17>
 反応性アクリルポリマーの二重結合当量を5000とし、反応性アクリルゴムの配合量が35質量部(35質量%)であり、ラジカル重合性樹脂の配合量が19質量部(19質量%)である以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Example 17>
The double bond equivalent of the reactive acrylic polymer is 5000, the amount of the reactive acrylic rubber is 35 parts by mass (35% by mass), and the amount of the radical polymerizable resin is 19 parts by mass (19% by mass). Except for the above, a circuit connection material was produced under the same conditions as in Example 1, and a connection structure was obtained by the same treatment as in Example 1.
 <比較例1>
 フィルム形成樹脂として、ポリエステルウレタン樹脂(商品名:UR8200、東洋紡績株式会社製、メチルエチルケトン/トルエン=50:50の混合溶媒にて20質量%に溶解したもの)を固形分換算で60質量部、ラジカル重合性樹脂(商品名:KBM-503、信越化学株式会社製)34質量部、シランカップリング剤(商品名:KBM-503、信越化学株式会社製)1質量部、リン酸アクリレート(商品名:P-1M、共栄化学株式会社製)を1質量部、ラジカル重合開始剤(商品名:パーヘキサC、日本油脂株式会社製)4質量部で構成された接着剤中に導電性粒子(商品名:AUL704、積水化学工業株式会社製)を粒子密度10000個/mmになるように分散させた厚み15μmの回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。このように、比較例1では、反応性アクリルポリマーを含有させなかった。
<Comparative Example 1>
As a film-forming resin, a polyester urethane resin (trade name: UR8200, manufactured by Toyobo Co., Ltd., dissolved in 20% by mass in a mixed solvent of methyl ethyl ketone / toluene = 50: 50), 60 parts by mass in terms of solid content, radical 34 parts by mass of a polymerizable resin (trade name: KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.), 1 part by mass of a silane coupling agent (trade name: KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.), phosphoric acid acrylate (trade name: Conductive particles (trade name: P-1M, manufactured by Kyoei Chemical Co., Ltd.) in an adhesive composed of 1 part by weight and 4 parts by weight of a radical polymerization initiator (trade name: Perhexa C, manufactured by NOF Corporation). AUL704, to prepare a circuit-connecting material of a thickness 15μm dispersed so that the Sekisui Chemical Co., Ltd.) in particle density 10000 / mm 2, example 1 By the same treatment to obtain a connection structure. Thus, in Comparative Example 1, no reactive acrylic polymer was contained.
 <比較例2>
 反応性アクリルポリマーとして、二重結合を有さず、Tgが-40℃、重合平均分子量(Mw)が10万の反応性アクリルゴムを20質量部含有させた以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Comparative example 2>
The reactive acrylic polymer was the same as in Example 1 except that 20 parts by mass of a reactive acrylic rubber having no double bond, Tg of −40 ° C., and a polymerization average molecular weight (Mw) of 100,000 was contained. A circuit connection material was produced according to the conditions, and a connection structure was obtained by the same processing as in Example 1.
 <比較例3>
 反応性アクリルポリマーの二重結合当量を15000とした以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Comparative Example 3>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 15000, and a connection structure was obtained by the same treatment as in Example 1.
 <比較例4>
 反応性アクリルポリマーの二重結合当量を500とした以外は、実施例1と同様の条件により、回路接続材料を作製し、実施例1と同様の処理により、接続構造体を得た。
<Comparative Example 4>
A circuit connection material was produced under the same conditions as in Example 1 except that the double bond equivalent of the reactive acrylic polymer was 500, and a connection structure was obtained by the same treatment as in Example 1.
 [導通抵抗値の測定]
 実施例1~17及び比較例1~4で作製した接続構造体について、初期(Initial)の導通抵抗と、温度85℃、湿度85%RH、500時間のTHテスト(Thermal Humidity Test)後の導通抵抗を測定した。測定は、デジタルマルチメーター(デジタルマルチメーター7555、横河電機株式会社製)を用いて4端子法にて電流1mAを流したときの接続抵抗を測定した。
[Measurement of conduction resistance]
For the connection structures manufactured in Examples 1 to 17 and Comparative Examples 1 to 4, the initial conduction resistance and the conduction after a TH test (Thermal Humidity Test) at a temperature of 85 ° C. and a humidity of 85% RH for 500 hours. Resistance was measured. The measurement was performed using a digital multimeter (digital multimeter 7555, manufactured by Yokogawa Electric Corporation) to measure the connection resistance when a current of 1 mA was passed by the four-terminal method.
 [接続強度の測定]
 実施例1~17、比較例1~4の初期(Initial)の接続構造体について、引張試験機(テンシロン、オリエンテック社製)を用いて剥離速度50mm/分で90度(Y軸方向)に引き上げ、接着強度(N/cm)を測定した。また、実施例1~17、比較例1~4の温度85℃、湿度85%RH、500時間のTHテスト(Thermal Humidity Test)後の接続構造体について、同様にして接着強度を測定した。
[Measurement of connection strength]
For the initial connection structures of Examples 1 to 17 and Comparative Examples 1 to 4, using a tensile tester (Tensilon, manufactured by Orientec Co., Ltd.) at 90 ° (Y-axis direction) at a peeling speed of 50 mm / min. The adhesive strength (N / cm) was measured. Further, the adhesive strength was measured in the same manner for the connection structures after the TH test (Thermal Humidity Test) in Examples 1 to 17 and Comparative Examples 1 to 4 at a temperature of 85 ° C., a humidity of 85% RH, and 500 hours.
 実施例1~17及び比較例1~4の条件、導通抵抗値及び接続強度の測定結果をまとめたものを[表1]に示す。 [Table 1] summarizes the measurement results of the conditions, conduction resistance values, and connection strengths of Examples 1 to 17 and Comparative Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~17では、側鎖にエチレン性不飽和基を有する反応性アクリルゴムの二重結合当量が1000~12000であることから、この反応性アクリルゴムの重合時における硬化収縮及び硬化後の内部応力が良好となり、異方性導電フィルムの窒化珪素膜に対する接着性が高くなると考えられる。これとともに、反応性アクリルゴムとラジカル重合性樹脂との二重結合による結合性も良好となることで、異方性導電フィルムの絶縁性の接着剤組成物が膨張しないため、導通抵抗値は良好となると考えられる。 In Examples 1 to 17, because the reactive acrylic rubber having an ethylenically unsaturated group in the side chain has a double bond equivalent of 1000 to 12000, the shrinkage at the time of polymerization of the reactive acrylic rubber and after curing It is considered that the internal stress is improved and the adhesiveness of the anisotropic conductive film to the silicon nitride film is increased. At the same time, the bonding resistance by the double bond between the reactive acrylic rubber and the radical polymerizable resin is also good, so that the insulating adhesive composition of the anisotropic conductive film does not expand, and the conduction resistance value is good. It is thought that it becomes.
 一方、比較例1では、側鎖にエチレン性不飽和基を有する反応性アクリルポリマーを含有させていないため、異方性導電フィルムの窒化珪素膜に対する接着性が低下すると考えられる。 On the other hand, in Comparative Example 1, since the reactive acrylic polymer having an ethylenically unsaturated group in the side chain is not contained, it is considered that the adhesion of the anisotropic conductive film to the silicon nitride film is lowered.
 また、比較例2では、二重結合を有しない反応性アクリルポリマーを含有させたことから、反応性アクリルゴムとラジカル重合性樹脂との結合性が悪く、異方性導電フィルムの絶縁性の接着剤組成物が膨張し、結果的に導通抵抗値は高くなると考えられる。 Moreover, in Comparative Example 2, since the reactive acrylic polymer having no double bond was contained, the binding property between the reactive acrylic rubber and the radical polymerizable resin was poor, and the insulating adhesion of the anisotropic conductive film was poor. It is considered that the agent composition expands, and as a result, the conduction resistance value increases.
 また、比較例3では、側鎖にエチレン性不飽和基を有する反応性アクリルゴムの二重結合当量が15000であることから、反応性アクリルポリマーとラジカル重合性樹脂との結合性が低下して絶縁性の接着剤組成物が膨張し、そのため、対峙する電極間において接着剤組成物が排除しきれなくなり、結果として導通抵抗値は高くなると考えられる。 In Comparative Example 3, since the double bond equivalent of the reactive acrylic rubber having an ethylenically unsaturated group in the side chain is 15000, the bondability between the reactive acrylic polymer and the radical polymerizable resin is reduced. It is considered that the insulating adhesive composition expands, and therefore the adhesive composition cannot be completely excluded between the opposing electrodes, and as a result, the conduction resistance value is increased.
 また、比較例4では、側鎖にエチレン性不飽和基を有する反応性アクリルゴムの二重結合当量が500であることから、重合時における反応性アクリルポリマーの硬化収縮が大きく、硬化後の内部応力も大きくなるため、異方性導電フィルムの窒化珪素膜に対する接着性が低下すると考えられる。 In Comparative Example 4, since the double bond equivalent of the reactive acrylic rubber having an ethylenically unsaturated group in the side chain is 500, the curing shrinkage of the reactive acrylic polymer during polymerization is large, and the internal content after curing is large. Since the stress also increases, it is considered that the adhesion of the anisotropic conductive film to the silicon nitride film decreases.

Claims (6)

  1.  (1)ラジカル重合性樹脂と、
     (2)熱又は光によって遊離ラジカルを発生するラジカル重合開始剤と、
     (3)側鎖にエチレン性不飽和基を有し、二重結合当量が1000~12000である反応性アクリルポリマーと
     を含有する回路接続材料。
    (1) a radical polymerizable resin;
    (2) a radical polymerization initiator that generates free radicals by heat or light;
    (3) A circuit connecting material comprising: a reactive acrylic polymer having an ethylenically unsaturated group in a side chain and having a double bond equivalent of 1000 to 12000.
  2.  前記反応性アクリルポリマーのガラス転移温度(Tg)は、-10℃以下である請求項1記載の回路接続材料。 The circuit connecting material according to claim 1, wherein the reactive acrylic polymer has a glass transition temperature (Tg) of -10 ° C or lower.
  3.  前記反応性アクリルポリマーの重量平均分子量(Mw)は、30000~150000である請求項1又は2記載の回路接続材料。 3. The circuit connecting material according to claim 1, wherein the reactive acrylic polymer has a weight average molecular weight (Mw) of 30,000 to 150,000.
  4.  当該回路接続材料に含まれる接着剤組成物中の前記反応性アクリルポリマーの配合量は、10~30質量%である請求項1乃至3の何れか1項記載の回路接続材料。 The circuit connection material according to any one of claims 1 to 3, wherein a compounding amount of the reactive acrylic polymer in the adhesive composition contained in the circuit connection material is 10 to 30% by mass.
  5.  回路電極同士が対向するように配置された一対の回路部材の間に、回路接続材料が介在されて、対峙する該回路部材が電気的且つ機械的に接続されてなる接続構造体において、
     前記回路部材の一方は、表面が窒化珪素膜に覆われており、
     前記回路接続材料は、
     (1)ラジカル重合性樹脂と、
     (2)熱又は光によって遊離ラジカルを発生するラジカル重合開始剤と、
     (3)側鎖にエチレン性不飽和基を有し、二重結合当量が1000~12000である反応性アクリルポリマーと
     を含有する接続構造体。
    In a connection structure in which a circuit connecting material is interposed between a pair of circuit members arranged so that circuit electrodes face each other, and the facing circuit members are electrically and mechanically connected.
    One of the circuit members has a surface covered with a silicon nitride film,
    The circuit connecting material is
    (1) a radical polymerizable resin;
    (2) a radical polymerization initiator that generates free radicals by heat or light;
    (3) A connection structure comprising a reactive acrylic polymer having an ethylenically unsaturated group in a side chain and a double bond equivalent of 1000 to 12000.
  6.  回路電極同士が対向するように配置された一対の回路部材の間に、回路接続材料を介在させて、熱加圧により、対峙する該回路部材を電気的且つ機械的に接続させる接続方法において、
     前記回路部材の一方は、表面が窒化珪素膜に覆われており、
     前記回路接続材料として、
     (1)ラジカル重合性樹脂と、
     (2)熱又は光によって遊離ラジカルを発生するラジカル重合開始剤と、
     (3)側鎖にエチレン性不飽和基を有し、二重結合当量が1000~12000である反応性アクリルポリマーと
     を含有する回路接続材料を用いる接続方法。
    In a connection method in which a circuit connection material is interposed between a pair of circuit members arranged so that circuit electrodes face each other, and the circuit members facing each other are electrically and mechanically connected by heat and pressure,
    One of the circuit members has a surface covered with a silicon nitride film,
    As the circuit connection material,
    (1) a radical polymerizable resin;
    (2) a radical polymerization initiator that generates free radicals by heat or light;
    (3) A connection method using a circuit connection material containing a reactive acrylic polymer having an ethylenically unsaturated group in a side chain and a double bond equivalent of 1000 to 12000.
PCT/JP2012/073695 2011-09-21 2012-09-14 Circuit connection material, connection method using same, and connection structure WO2013042632A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137015754A KR101944125B1 (en) 2011-09-21 2012-09-14 Circuit connection material, connection method using same, and connection structure
CN201280009768.4A CN103370388B (en) 2011-09-21 2012-09-14 Circuit connection material and use its method of attachment and connection structural bodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011206378A JP5844588B2 (en) 2011-09-21 2011-09-21 Circuit connection material, connection method using the same, and connection structure
JP2011-206378 2011-09-21

Publications (1)

Publication Number Publication Date
WO2013042632A1 true WO2013042632A1 (en) 2013-03-28

Family

ID=45898190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073695 WO2013042632A1 (en) 2011-09-21 2012-09-14 Circuit connection material, connection method using same, and connection structure

Country Status (5)

Country Link
JP (1) JP5844588B2 (en)
KR (1) KR101944125B1 (en)
CN (1) CN103370388B (en)
TW (1) TWI542652B (en)
WO (1) WO2013042632A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007180A (en) * 2013-06-25 2015-01-15 日立化成株式会社 Connection material, connection material for solar battery, solar cell module prepared using the same and method of producing the same
JP2015007182A (en) * 2013-06-25 2015-01-15 日立化成株式会社 Connection material, connection material for solar battery, solar cell module prepared using the same and method of producing the same
WO2015076235A1 (en) * 2013-11-19 2015-05-28 積水化学工業株式会社 Method for manufacturing electronic component, and electronic component

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133386A1 (en) * 2014-03-04 2015-09-11 積水化学工業株式会社 Adhesive for mounting electronic component and adhesive film for mounting flip chip
JP6839950B2 (en) * 2016-09-30 2021-03-10 株式会社日本触媒 Acrylic polymer manufacturing method
JP6800129B2 (en) * 2017-11-07 2020-12-16 古河電気工業株式会社 Manufacturing method of semiconductor package using film-like adhesive and film-like adhesive

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101582A (en) * 1984-10-25 1986-05-20 Nitto Electric Ind Co Ltd Manufacture or electrical part
JPH0853655A (en) * 1994-08-11 1996-02-27 Lintec Corp Hardenable pressure-sensitive adhesive tape and method of using it
JP2003261838A (en) * 2002-03-06 2003-09-19 Furukawa Electric Co Ltd:The Adhesive tape
JP2006199824A (en) * 2005-01-20 2006-08-03 Soken Chem & Eng Co Ltd Anisotropic conductive adhesive tape and anisotropic conductive bonded circuit board
WO2009113216A1 (en) * 2008-03-10 2009-09-17 古河電気工業株式会社 Pressure-sensitive adhesive tape for electronic component fabrication
JP2010270293A (en) * 2009-04-23 2010-12-02 Hitachi Chem Co Ltd Photosensitive adhesive composition, and film adhesive, adhesive sheet, adhesive pattern, semiconductor wafer with adhesive layer and semiconductor device each using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244143A (en) * 1986-04-16 1987-10-24 Matsushita Electric Ind Co Ltd Electrical connection for semiconductor element
JP4696360B2 (en) * 2000-12-28 2011-06-08 日立化成工業株式会社 Adhesive composition, circuit terminal connection method using the same, and circuit terminal connection structure
KR20060090717A (en) * 2003-11-12 2006-08-14 쇼와 덴코 가부시키가이샤 Curable polymer compound
JP2005320455A (en) * 2004-05-10 2005-11-17 Hitachi Chem Co Ltd Adhesive composition, material for connecting circuit, connecting structure of circuit member and semiconductor device
JP2008291199A (en) 2007-04-23 2008-12-04 Hitachi Chem Co Ltd Circuit connecting material, and connected structure using the same
CN102876277B (en) * 2007-10-05 2014-12-10 日立化成株式会社 Adhesive composition, circuit connecting material using same, method for connecting circuit members, and circuit connection structure
JP2011037953A (en) 2009-08-07 2011-02-24 Hitachi Chem Co Ltd Adhesive agent composition, circuit-connecting structure and semiconductor device
JP2009299079A (en) 2009-09-29 2009-12-24 Hitachi Chem Co Ltd Connecting member for circuit, and circuit board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101582A (en) * 1984-10-25 1986-05-20 Nitto Electric Ind Co Ltd Manufacture or electrical part
JPH0853655A (en) * 1994-08-11 1996-02-27 Lintec Corp Hardenable pressure-sensitive adhesive tape and method of using it
JP2003261838A (en) * 2002-03-06 2003-09-19 Furukawa Electric Co Ltd:The Adhesive tape
JP2006199824A (en) * 2005-01-20 2006-08-03 Soken Chem & Eng Co Ltd Anisotropic conductive adhesive tape and anisotropic conductive bonded circuit board
WO2009113216A1 (en) * 2008-03-10 2009-09-17 古河電気工業株式会社 Pressure-sensitive adhesive tape for electronic component fabrication
JP2010270293A (en) * 2009-04-23 2010-12-02 Hitachi Chem Co Ltd Photosensitive adhesive composition, and film adhesive, adhesive sheet, adhesive pattern, semiconductor wafer with adhesive layer and semiconductor device each using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007180A (en) * 2013-06-25 2015-01-15 日立化成株式会社 Connection material, connection material for solar battery, solar cell module prepared using the same and method of producing the same
JP2015007182A (en) * 2013-06-25 2015-01-15 日立化成株式会社 Connection material, connection material for solar battery, solar cell module prepared using the same and method of producing the same
WO2015076235A1 (en) * 2013-11-19 2015-05-28 積水化学工業株式会社 Method for manufacturing electronic component, and electronic component
JP5815142B1 (en) * 2013-11-19 2015-11-17 積水化学工業株式会社 Manufacturing method of electronic parts
US9337019B2 (en) 2013-11-19 2016-05-10 Sekisui Chemical Co., Ltd. Method for manufacturing electronic component, and electronic component

Also Published As

Publication number Publication date
TW201326333A (en) 2013-07-01
KR101944125B1 (en) 2019-01-30
CN103370388A (en) 2013-10-23
JP5844588B2 (en) 2016-01-20
JP2012041540A (en) 2012-03-01
TWI542652B (en) 2016-07-21
CN103370388B (en) 2016-08-10
KR20140065373A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
JP5126233B2 (en) Adhesive composition, circuit connection material using the same, circuit member connection method, circuit connection body, and cured product of adhesive composition
KR101025128B1 (en) Adhesive composition, and connection structure for circuit member
JP5867508B2 (en) Circuit connection material and connection body
KR20050072693A (en) Adhesive film for circuit connection, and circuit connection structure
JP5844588B2 (en) Circuit connection material, connection method using the same, and connection structure
JP7347576B2 (en) adhesive film
KR102478959B1 (en) Adhesive composition and connected structure
CN108702845B (en) Method for manufacturing connection structure
WO2012011457A1 (en) Anisotropic conductive film, connection structure body, and processes for production of these materials
JP5972564B2 (en) Connection method, connection structure, anisotropic conductive film, and manufacturing method thereof
JPWO2019131904A1 (en) Connection structure and its manufacturing method
JP5844589B2 (en) Anisotropic conductive film, connection method using the same, and connection structure
JP5816456B2 (en) Anisotropic conductive connection material, film laminate, connection method and connection structure
WO2024048088A1 (en) Anisotropic conductive film, connection structure, and method for producing connection structure
TWI842669B (en) Then the film
JPH11154687A (en) Circuit board
TW202413567A (en) Anisotropic conductive film , connection structure, and method for manufacturing same
TWI570208B (en) Circuit connecting material and connection body
WO2017037951A1 (en) Adhesive composition, anisotropically electroconductive adhesive composition, circuit connecting material, and connected object
TW201712094A (en) Adhesive composition, anisotropic conductive adhesive composition, connection material for circuit and connection body preferably free of epoxy resin-based cationic polymerization hardener and having high bonding characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137015754

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833544

Country of ref document: EP

Kind code of ref document: A1