WO2020203295A1 - Adhesive composition - Google Patents

Adhesive composition Download PDF

Info

Publication number
WO2020203295A1
WO2020203295A1 PCT/JP2020/011982 JP2020011982W WO2020203295A1 WO 2020203295 A1 WO2020203295 A1 WO 2020203295A1 JP 2020011982 W JP2020011982 W JP 2020011982W WO 2020203295 A1 WO2020203295 A1 WO 2020203295A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
silicone
adhesive composition
average particle
electronic component
Prior art date
Application number
PCT/JP2020/011982
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 大祐
明史 樋口
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020217030338A priority Critical patent/KR20210129169A/en
Priority to CN202080026360.2A priority patent/CN113785027B/en
Publication of WO2020203295A1 publication Critical patent/WO2020203295A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present technology relates to, for example, an adhesive composition for connecting an IC (Integrated Circuit) chip and a flexible wiring board.
  • This application claims priority on the basis of Japanese Patent Application No. Japanese Patent Application No. 2019-068612 filed on March 29, 2019 in Japan, and this application is referred to in this application. It will be used.
  • Patent Document 1 drawn from the interior of the display panel, proposed to use the exposed wiring, moisture permeability 5 ⁇ 6g / m 2 ⁇ 24h or less sealing material Has been done.
  • a moisture permeation preventive material is provided on the base film of the electrode connection portion of the flexible wiring board, and a lead electrode is formed on the base film, and the lead electrode is formed on the electrode connection portion of the flexible wiring board.
  • moisture permeability has been proposed to use the following: 10g / m 2 ⁇ 24h.
  • the method described in the above-mentioned Patent Documents 1 and 2 is to improve the moisture resistance by using a sealing resin having a low moisture permeability for the wiring (outer lead).
  • a sealing resin having a low moisture permeability causes an increase in the number of materials and a limit in material selection. Therefore, in HAST (Highly Accelerated Temperature and Humidity Stress Test), which is one of the test methods for evaluating moisture resistance, , It is difficult to obtain high reliability.
  • This technology solves the above-mentioned problems and provides an adhesive composition that can obtain high reliability.
  • the present inventor has proceeded with research on the formulation of an adhesive composition that can obtain high moisture permeability in order to immediately discharge the moisture that has entered the inside of the device.
  • the present technology has been completed based on the finding that the moisture permeability is improved by blending a predetermined amount of silicone particles and a silane coupling agent.
  • the adhesive composition according to the present technology contains silicone-based particles, a silane coupling agent, a polymerizable compound, and a curing agent, and is a true spherical particle calculated from the average particle size of the silicone-based particles.
  • the total surface area of the composition is 10 ⁇ 10 3 m 2 or more per 100 g of the composition.
  • the method for producing a connector according to the present technology contains silicone-based particles, a silane coupling agent, a polymerizable compound, and a curing agent, and is a true sphere calculated from the average particle size of the silicone-based particles.
  • the connector according to the present technology includes the first electronic component, the second electronic component, and the adhesive film to which the first electronic component and the second electronic component are adhered, and the adhesion is provided.
  • the film contains silicone-based particles, a silane coupling agent, a polymerizable compound, and a curing agent, and the total surface area of spherical particles calculated from the average particle size of the silicone-based particles is the composition.
  • 10 ⁇ 10 3 m adhesive composition is two or more per 100g is cured, is moisture permeability 80 g / m 2 ⁇ 24 hr or more.
  • FIG. 1 is a cross-sectional view schematically showing an arrangement process of a connecting body manufacturing method according to the present embodiment.
  • the adhesive composition according to the present embodiment contains silicone-based particles, a silane coupling agent, a polymerizable compound, and a curing agent, and is a true sphere particle calculated from the average particle size of the silicone-based particles.
  • the total surface area is 10 ⁇ 10 3 m 2 or more per 100 g of the composition.
  • the adhesive composition may be in the form of a film or a paste. From the viewpoint of ease of handling, it is preferably in the form of a film, and from the viewpoint of cost, it is preferably in the form of a paste. Further, examples of the curing type of the adhesive composition include a thermosetting type, a photocuring type, and a photocuring type that is combined with light heat, and can be appropriately selected depending on the intended use.
  • thermosetting adhesive composition for example, a cation curing type, an anion curing type, a radical curing type, or a combination thereof can be used.
  • the polymerizable compound include an epoxy compound having an ionic polymerization group (cationic polymerization, anionic polymerization), an oxetane compound, a (meth) acrylic compound having a radical polymerization group, and the like, and these are used alone or in combination of two or more. be able to.
  • examples of the silane coupling agent include silane coupling agents having a functional group such as an epoxy group, a (meth) acrylic group, and a vinyl group, which can be appropriately selected depending on the type of the polymerizable compound.
  • thermosetting type an anion curing type epoxy resin composition is shown.
  • the adhesive composition shown as a specific example contains silicone-based particles, an epoxy-based silane coupling agent, an epoxy compound, and an epoxy curing agent. Thereby, an epoxy-based adhesive having high moisture permeability can be obtained.
  • silicone-based particles examples include a silicone rubber powder having a structure in which organopolysiloxane is crosslinked, a silicone resin powder having a structure in which the siloxane bond is represented by (RSiO 3/2 ) n in a three-dimensional network, and a spherical shape.
  • silicone composite powder which is a spherical powder in which the surface of the silicone rubber powder is coated with silicone resin, and one of these can be used alone or in combination of two or more.
  • the silicone-based particles preferably contain a silicone composite powder.
  • Specific examples of the silicone composite powder available on the market include the trade names "KMP-600", “KMP-605", and "X-52-7030" of Shin-Etsu Chemical Co., Ltd.
  • the average particle size of the silicone-based particles is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, still more preferably 1 ⁇ m or less. This makes it possible to increase the total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles in the adhesive composition.
  • the total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles is 10 ⁇ 10 3 m 2 or more per 100 g of the composition, more preferably 25 ⁇ 10 3 m 2 or more per 100 g of the composition 150 ⁇ 10 3 It is m 2 or less, more preferably 50 ⁇ 10 3 m 2 or more and 150 ⁇ 10 3 m 2 or less per 100 g of the composition.
  • the moisture permeability tends to increase, but the adhesive strength tends to decrease.
  • the total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles in the adhesive composition can be calculated from, for example, the specific surface area of the silicone-based particles and the amount of the silicone-based particles added. it can. Further, the specific surface area of the silicone-based particles can be obtained from, for example, the surface area per particle calculated from the average particle size and the mass per particle calculated from the average particle size and the true specific gravity.
  • the blending amount of the silicone-based particles is, for example, preferably 1 to 30 parts by mass, more preferably 5 to 30 parts by mass, and 10 to 30 parts by mass with respect to 100 parts by mass of the adhesive composition excluding the silicone-based particles. It is more preferable to use parts by mass.
  • conductive particles When conductive particles are blended in the adhesive composition, it is in the range of parts by mass with respect to 100 parts by mass of the adhesive composition excluding the conductive particles.
  • the epoxy-based silane coupling agent is an organosilicon compound having both an epoxy group and a hydrolyzable group, and chemically bonds the silicone-based particles and the epoxy resin which is a matrix resin to improve dispersibility.
  • epoxy-based silane coupling agent examples include silane compounds having an epoxy structure such as 3-glycidoxypropyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • epoxy-based silane coupling agents available on the market include "A-187" from Momentive Performance Materials Japan (Go).
  • the blending amount of the epoxy-based silane coupling agent is preferably, for example, 0.1 to 10 parts by mass, and 0.1 to 5 parts by mass, based on 100 parts by mass of the adhesive composition excluding the silicone-based particles. Is more preferable, and 0.5 to 1 part by mass is further preferable.
  • the epoxy compound is not particularly limited, and is a naphthalene type epoxy compound, a glycidyl ether type epoxy compound, a glycidyl ester type epoxy compound, an alicyclic epoxy compound, a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, and a dicyclopentadiene type epoxy.
  • examples include compounds, novolak phenol-type epoxy compounds, and biphenyl-type epoxy compounds, and one of these can be used alone or in combination of two or more.
  • Specific examples of the naphthalene-type bifunctional epoxy resin available on the market include "HP4032D" of DIC Corporation.
  • the blending amount of the epoxy compound is, for example, preferably 1 to 30 parts by mass, more preferably 1 to 20 parts by mass, and 1 to 10 parts by mass with respect to 100 parts by mass of the adhesive composition excluding the silicone-based particles. It is more preferable to use a part.
  • the epoxy curing agent examples include imidazoles, polyhydric phenols, acid anhydrides, amines, hydrazides, polyethercaptans, and Lewis acid-amine complexes, and one of these may be used alone or 2 Seeds and above can be used in combination.
  • the epoxy curing agent more preferably contains imidazoles.
  • the imidazole-based latent curing agent available on the market include "HP3941" of Asahi Kasei Chemicals Co., Ltd.
  • the blending amount of the epoxy curing agent is, for example, preferably 5 to 70 parts by mass, more preferably 10 to 60 parts by mass, and 20 to 50 parts by mass with respect to 100 parts by mass of the adhesive composition excluding the silicone-based particles. It is more preferable to use parts by mass.
  • the adhesive composition shown as a specific example preferably contains a polymer and a rubber component.
  • polymer examples include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol S type phenoxy resin, phenoxy resin having a fluorene skeleton, polystyrene, polyacrylonitrile, polyphenylene sulfide, polytetrafluoroethylene, polycarbonate and the like. It can be used alone or in combination of two or more. Among these, bisphenol A type phenoxy resin is preferably used from the viewpoint of film formation state, connection reliability and the like. Phenoxy resin is a polyhydroxypolyether synthesized from bisphenols and epichlorohydrin. Specific examples of the phenoxy resin available on the market include the trade name "YP-50" of Nippon Steel & Sumikin Chemical Co., Ltd.
  • the amount of the polymer to be blended is preferably, for example, 10 to 60 parts by mass, more preferably 20 to 50 parts by mass, based on 100 parts by mass of the adhesive composition excluding the silicone-based particles. Is even more preferable.
  • the rubber component examples include acrylic rubber (ACR), butadiene rubber (BR), nitrile rubber (NBR), etc., which can be used alone or in combination of two or more.
  • acrylic rubber is preferably used from the viewpoint of film formation state, connection reliability and the like.
  • Specific examples of acrylic rubber available on the market include the trade name "SG80H” of Nagase Chemtex Co., Ltd.
  • the elastic particles can absorb internal stress and do not cause hardening inhibition, so that high connection reliability can be provided.
  • the elastic particles include crosslinked acrylonitrile-butadiene rubber particles, crosslinked styrene-butadiene rubber particles, acrylic rubber particles, and silicone particles.
  • Specific examples of the crosslinked acrylonitrile butadiene rubber particles available on the market include XER-91 (average particle diameter 0.5 ⁇ m, manufactured by JSR Corporation).
  • the amount of the rubber component to be blended is preferably, for example, 1 to 30 parts by mass, more preferably 5 to 25 parts by mass, and 10 to 20 parts by mass with respect to 100 parts by mass of the adhesive composition excluding the silicone-based particles. It is more preferable to use a part.
  • the minimum melt viscosity of the adhesive composition is preferably 1 to 100,000 Pa ⁇ s, and more preferably 10 to 10000 Pa ⁇ s. If the minimum melt viscosity is too high, the binder between the electrodes cannot be sufficiently removed during thermocompression bonding, and the connection resistance tends to increase. On the other hand, if the minimum melt viscosity is too low, the deformation of the adhesive composition due to the load during thermocompression bonding becomes large, so that the restoring force of the adhesive composition is applied to the interface of the connecting portion as a force in the peeling direction when the pressure is released. .. For this reason, the connection resistance tends to increase immediately after thermocompression bonding, and bubbles tend to be generated at the connection portion.
  • the adhesive composition of such a construction is the moisture permeability measured under conditions of temperature and 90% relative humidity 40 ° C. after curing, preferably 80g / m 2 ⁇ 24hr or more, more preferably 85 g / m 2 ⁇ 24 hr or more, and more preferably 90g / m 2 ⁇ 24hr or more.
  • the moisture permeability can be measured under the conditions of 40 ° C. and 90% relative humidity in accordance with the moisture permeability test method (cup method) of the moisture-proof packaging material of JIS Z 0208.
  • the moisture that has entered the inside of the device can be immediately discharged, so that excellent connection reliability can be obtained. If water resistance is provided, the infiltrated water will stay. In other words, it can be said that, instead of allowing a certain amount of water to enter, it does not allow the retention of water that causes excessive deterioration of adhesiveness.
  • the ability to adjust the required water resistance conditions has the effect of expanding the selectivity of the design conditions of the device and the equipment in which it is incorporated. For example, in addition to mobile terminals and wearable terminals that require weather resistance, motorcycles and automobiles that are expected to require higher weather resistance, flying devices (drones, airplanes, etc.), moving objects such as ships, and electrical equipment for vehicles. There are advantages that can be used for.
  • the adhesive composition may be a conductive adhesive further containing conductive particles having an average particle diameter larger than the average particle diameter of the silicone-based particles.
  • the average particle size of the conductive particles is preferably larger than the average particle size of the solid composition other than the conductive particles so as not to hinder the sandwiching.
  • the ratio of the average particle size of the conductive particles to the average particle size of the silicone particles is preferably 1.5 or more, more preferably 2.0 or more, still more preferably 3.5 or more. The value should be large so that the silicone-based particles do not hinder the compression and flattening of the conductive particles.
  • the conductive particles are sandwiched between the electrodes, it is preferable to sandwich the silicone-based particles together with the compressed or flattened conductive particles in order to assist in breaking through the oxides on the electrodes. Therefore, it may be better to have a small number. It is preferably 1.1 or less, more preferably 1.07 or less, and even more preferably 1.05 or less. These may be appropriately adjusted according to the purpose.
  • the conductive adhesive may be either a film-like conductive film or a paste-like conductive paste.
  • a conductive film is preferable from the viewpoint of ease of handling, and a conductive paste is preferable from the viewpoint of cost.
  • the conductive adhesive and the conductive film can also be used as the anisotropic conductive adhesive and the anisotropic conductive film. Further, these structures may be anisotropic connection structures.
  • conductive particles known conductive particles used in the conductive film can be used.
  • conductive particles on the surface of particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver and gold, and particles of metal oxides, carbon, graphite, glass, ceramics and plastics. Examples thereof include those coated with metal, those coated with an insulating thin film on the surface of these particles, and those subjected to an insulating treatment such as adhering insulating fine particles. Two or more of these may be mixed.
  • the resin particles include, for example, epoxy resin, phenol resin, acrylic resin, acrylonitrile-styrene (AS) resin, benzoguanamine resin, divinylbenzene resin, styrene resin and the like. Particles can be used.
  • the average particle size of the conductive particles is usually 1 to 30 ⁇ m, preferably 2 to 20 ⁇ m, and more preferably 2.5 to 15 ⁇ m.
  • the average particle density of the conductive particles in the binder resin connected in terms of reliability and insulation reliability, and preferably from 100 to 100,000 / mm 2, more preferably from 500 to 80,000 pieces / mm 2.
  • the observation result obtained by forming a film and forming the film surface with an optical microscope or a metallurgical microscope can be obtained by the image analysis software WinROOF (Mitani Shoji Co., Ltd.).
  • the conductive particles may be dispersed in the insulating resin, and in the case of a film, they may be individually independent in the plan view of the film, or may be arbitrarily arranged and present.
  • the conductive particles When the conductive particles are arranged, the number density, the distance between the conductive particles, and the like can be set according to the size and layout of the connected electrodes. For this reason, it is effective in improving capture and suppressing short circuits, and is expected to have cost reduction effects such as improvement in yield.
  • the minimum melt viscosity of the conductive adhesive is preferably 1 to 100,000 Pa ⁇ s, and more preferably 10 to 10000 Pa ⁇ s.
  • the optimization of the minimum melt viscosity also depends on the compressive deformation characteristics of the conductive particles, but if the minimum melt viscosity is too high, the binder between the conductive particles and the electrodes cannot be sufficiently removed during thermocompression bonding, resulting in connection resistance. It tends to rise. In particular, the conductive particles having protrusions make it difficult to sufficiently remove the binder between the conductive particles and the electrodes during thermocompression bonding.
  • connection resistance tends to increase immediately after thermocompression bonding, and bubbles tend to be generated at the connection portion.
  • moisture permeability is measured under the conditions of temperature and 90% relative humidity 40 ° C. after curing, preferably 80g / m 2 ⁇ 24hr or more, more preferably 85 g / m 2 ⁇ 24 hr or more, and more preferably 90g / m 2 ⁇ 24hr or more.
  • the moisture permeability can be measured under the conditions of 40 ° C. and 90% relative humidity in accordance with the moisture permeability test method (cup method) of the moisture-proof packaging material of JIS Z 0208.
  • the method for producing a connector according to the present embodiment contains silicone-based particles, a silane coupling agent, a polymerizable compound, and a curing agent, and is a true spherical particle calculated from the average particle size of the silicone-based particles.
  • the first electronic component and the second electronic component are arranged via the adhesive composition having a total surface area of 10 ⁇ 10 3 m 2 or more per 100 g of the composition, and the second by the crimping tool. It has a curing step of crimping the electronic component of No. 1 to the first electronic component and curing the adhesive composition.
  • the crimping tool refers to a tool that pressurizes from a first electronic component, a second electronic component, or both.
  • the shape and material of the crimping tool are not particularly limited, but an example thereof is a flat metal having a heating mechanism. This may be used in known thermocompression bonding devices. Further, a mechanism for irradiating light may be provided.
  • the connector according to the present embodiment includes an adhesive film in which the first electronic component, the second electronic component, and the first electronic component and the second electronic component are adhered to each other.
  • the adhesive composition is 10 ⁇ 10 3 m 2 or more is cured, is moisture permeability 80g / m 2 ⁇ 24hr or more.
  • the adhesive film in which the first electronic component and the second electronic component are bonded has high moisture permeability, the moisture that has entered the inside of the device can be immediately discharged. It can be done, and high reliability can be obtained in HAST.
  • FIG. 1 is a cross-sectional view schematically showing an arrangement process of a connecting body manufacturing method according to the present embodiment. Since the adhesive composition constituting the adhesive film is the same as described above, description thereof will be omitted here.
  • the first electronic component 10 includes a first terminal row 11.
  • the first electronic component 10 is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the first electronic component 10 includes, for example, an LCD (Liquid Crystal Display) panel, a flat panel display (FPD) application such as an organic EL (OLED), a transparent substrate for a touch panel application, a printed wiring board (PWB), and a flexible substrate.
  • FPC Flexible Printed Circuits
  • the material of the printed wiring board is not particularly limited, and for example, a glass epoxy such as a FR-4 base material may be used, and plastic such as a thermoplastic resin, ceramic or the like can also be used.
  • the transparent substrate is not particularly limited as long as it has high transparency, and examples thereof include a glass substrate and a plastic substrate. Among these, a ceramic substrate is preferably used from the viewpoint of heat resistance.
  • a plated bump such as an IC or a flexible substrate is formed.
  • the plated bumps preferably have low or no dimples, or preferably have a flat surface. Further, the surface of the plated bump is preferably leveled from the viewpoint of increasing the contact area at the time of crimping. Further, stud bumps may be formed on the wiring board.
  • the thickness of the adhesive film 20 is preferably 1 to 100 ⁇ m, more preferably 10 to 50 ⁇ m. This range is the same regardless of whether it is a single layer or a multi-layer structure. In the case of a paste, it refers to the thickness when used for connection.
  • the second electronic component is placed on the adhesive film 20, and the second electronic component is pressed against the first electronic component 10 by a crimping tool to be crimped while applying heat. Further, in the curing step (S2), pressing is performed using a crimping tool at a temperature of preferably 250 ° C. or lower, more preferably 220 ° C. or lower, and further preferably 200 ° C. or lower. As a result, the resin is melted by the heat of the crimping tool, the second electronic component is sufficiently pushed by the crimping tool, and the resin is thermoset, so that excellent adhesiveness can be obtained. In this case, although it is assumed that the crimping tool incorporates a heating mechanism, the adhesive film 20 may be heated and cured by a method in which the crimping tool does not incorporate a heating mechanism.
  • the second electronic component includes a second terminal row facing the first terminal row 11.
  • the second electronic component is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples of the second electronic component include an IC (Integrated Circuit), a flexible printed circuit board (FPC: Flexible Printed Circuits), a tape carrier package (TCP) board, and the like.
  • IC Integrated Circuit
  • FPC Flexible Printed Circuits
  • TCP tape carrier package
  • COF Chip On Film
  • a cushioning material may be used between the crimping tool and the second electronic component.
  • PTFE polytetrafluoroethylene
  • polyimide polyimide
  • glass cloth glass cloth
  • silicon rubber silicon rubber
  • the adhesive film that adheres the first electronic component and the second electronic component has high moisture permeability, so that the moisture that has entered the inside of the device can be immediately removed. It can be discharged, and high reliability can be obtained in HAST.
  • the first electronic component and the second electronic component are connected by using an adhesive film, but the present invention is not limited to this, and the conductive adhesive film containing conductive particles. May be used to connect the first electronic component and the second electronic component.
  • the conductive adhesive film is composed of a layer containing conductive particles (for convenience, a layer containing conductive particles) and a layer not containing conductive particles (for convenience, a layer containing no conductive particles). It may have a structure of layers or more. Further, even in the case of a paste, the same configuration can be taken at the time of connection. ⁇ 3. Example>
  • an adhesive film was produced as one form of the adhesive composition, and a connector was produced. Then, the moisture permeability of the adhesive film after curing, the initial adhesive strength of the connector, the adhesive strength after the reliability test, the initial conduction resistance of the connector, and the conduction resistance after the reliability test were measured.
  • the bare chip (IC chip) has a thickness of 0.4 mm, a width of 6 mm, and a length of 6 mm (6 mm ⁇ 6 mm), and is a wiring for continuity measurement (bump size: 50 ⁇ 50 ⁇ m, pitch: 85 ⁇ m (space between bumps 35 ⁇ m), gold bump.
  • a TEG (Test Element Group) for measurement having a height h 15 ⁇ m) was used.
  • the gold bump was a plated bump and was smooth without dimples.
  • thermocompression bonding conditions were a temperature of 200 ° C., a pressure of 100 MPa, and 10 sec. Further, at the time of thermocompression bonding, a polytetrafluoroethylene sheet having a thickness of 50 ⁇ m was placed on the bare chip as a cushioning material.
  • the flexible wiring board of the connecting body was peeled off in the 90 ° direction at a pulling speed of 50 mm / sec, and the maximum value of the peel strength required for the peeling was defined as the adhesive strength.
  • the initial connection and the connection after the reliability test were measured.
  • the reliability test was based on JEDEC (JEDEC22-A110), and the conditions were a temperature of 110 ° C., a humidity of 85%, and a time of 264 hr.
  • the conduction resistance ( ⁇ ) was measured at the initial stage of connection and after the reliability test using a digital multimeter.
  • a digital multimeter was connected to the wiring of the flexible wiring board connected to the bump of the bare chip, and a current of 1 mA was passed by the 4-terminal method to measure the conduction resistance value.
  • the reliability test was based on JEDEC (JEDEC22-A110), and the conditions were a temperature of 110 ° C., a humidity of 85%, and a time of 264 hr.
  • the specific surface area of the silicone-based particles was determined from the surface area per particle calculated from the average particle size and the mass per particle calculated from the average particle size and the true specific gravity.
  • the total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles is 10 ⁇ 10 3 m 2 or more per 100 g of the composition (Examples 1 to 8). It could be obtained 80g / m 2 ⁇ 24hr or more moisture permeability. Further, the total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles is 50 ⁇ 10 3 m 2 or more per 100 g of the composition (Examples 5 to 7), so that 90 g / m 2 ⁇ . A moisture permeability of 24 hr or more could be obtained. If not blended silicone particles, moisture permeability became 75g / m 2 ⁇ 24hr (Comparative Example 1).
  • a conductive film was prepared as one form of the adhesive composition, and a connector was prepared. Then, the moisture permeability of the conductive film after curing, the initial adhesive strength of the connector, the adhesive strength after the reliability test, the initial conduction resistance of the connector, and the conduction resistance after the reliability test were measured. ..
  • the bare chip (IC chip) has a thickness of 0.4 mm, a width of 6 mm, and a length of 6 mm (6 mm ⁇ 6 mm), and is a wiring for continuity measurement (bump size: 50 ⁇ 50 ⁇ m, pitch: 85 ⁇ m (space between bumps 35 ⁇ m), gold bump.
  • a TEG (Test Element Group) for measurement having a height h 15 ⁇ m) was used.
  • the gold bump was a plated bump and was smooth without dimples.
  • thermocompression bonding conditions were a temperature of 200 ° C., a pressure of 100 MPa, and 10 sec. Further, at the time of thermocompression bonding, a silicon rubber having a thickness of 200 ⁇ m was placed on the bare chip as a cushioning material.
  • the flexible wiring board of the connecting body was peeled off in the 90 ° direction at a pulling speed of 50 mm / sec, and the maximum value of the peel strength required for the peeling was defined as the adhesive strength.
  • the initial connection and the connection after the reliability test were measured.
  • the reliability test was based on JEDEC (JEDEC22-A110), and the conditions were a temperature of 110 ° C., a humidity of 85%, and a time of 264 hr.
  • the conduction resistance ( ⁇ ) was measured at the initial stage of connection and after the reliability test using a digital multimeter.
  • a digital multimeter was connected to the wiring of the flexible wiring board connected to the bump of the bare chip, and a current of 1 mA was passed by the 4-terminal method to measure the conduction resistance value.
  • the reliability test was based on JEDEC (JEDEC22-A110), and the conditions were a temperature of 110 ° C., a humidity of 85%, and a time of 264 hr.
  • Conductive particles C Ni / Au plated acrylic resin particles, average particle diameter 3 ⁇ m, Nippon Kagaku Co., Ltd.
  • Silicone particles A X-52-7030 (Shinetsu Silicone Co., Ltd.), average particle diameter 0.8 ⁇ m, true specific gravity 1.01
  • Silicone particles B KMP-605 (Shinetsu Silicone Co., Ltd.), average particle diameter 2 ⁇ m, true specific gravity 0.99
  • Silicone particles C KMP-600 (Shinetsu Silicone Co., Ltd.), average particle diameter 5 ⁇ m, true specific gravity 0.99
  • the specific surface area of the silicone-based particles was determined from the surface area per particle calculated from the average particle size and the mass per particle calculated from the average particle size and the true specific gravity.
  • the average particle size of the silicone-based particles is smaller than the average particle size of the conductive particles, and the total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles is per 100 g of the composition. by at 10 ⁇ 10 3 m 2 or more (examples 9-17), it was possible to obtain a more moisture permeability 80g / m 2 ⁇ 24hr.
  • the total surface area of a sphere particles is calculated from an average particle size of the silicone-based particles, (Examples 13-15) by at 50 ⁇ 10 3 m 2 or more per 100g, 90g / m 2 ⁇ 24hr or more I was able to obtain the moisture permeability of.
  • the moisture permeability of the conductive film as in Examples 9-17 by a 80g / m 2 ⁇ 24hr or more it was possible to suppress the increase in resistance after reliability testing. It is considered that this is because the high humidity permeability of the conductive film made it possible to immediately discharge the moisture that had entered the inside of the device.

Abstract

Provided is an adhesive composition that can achieve high reliability. An adhesive composition that contains silicone particles, a silane coupling agent, a polymerizable compound, and a curing agent. The total surface area of perfectly spherical particles as calculated from the average particle size of the silicone particles is at least 10×103 m2 per 100 g of the composition. The adhesive composition can thereby improve moisture permeability and achieve high reliability.

Description

接着剤組成物Adhesive composition
 本技術は、例えばIC(Integrated Circuit)チップとフレキシブル配線板とを接続させる接着剤組成物に関する。本出願は、日本国において2019年3月29日に出願された日本特許出願番号特願2019-068612を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present technology relates to, for example, an adhesive composition for connecting an IC (Integrated Circuit) chip and a flexible wiring board. This application claims priority on the basis of Japanese Patent Application No. Japanese Patent Application No. 2019-068612 filed on March 29, 2019 in Japan, and this application is referred to in this application. It will be used.
 従来、例えばLCD(Liquid Crystal Display)ドライバICをフレキシブル配線板に接続させたデバイスにおいて、デバイスが加熱されると、デバイス内部に侵入した水分が急激に膨張してデバイスを破壊させることがあった。 Conventionally, for example, in a device in which an LCD (Liquid Crystal Display) driver IC is connected to a flexible wiring board, when the device is heated, the moisture that has entered the inside of the device may rapidly expand and destroy the device.
 これを解決するために、特許文献1には、ディスプレイパネルの内部から引き出され、露出した配線に対して、透湿度が5~6g/m・24h以下の封止材を使用することが提案されている。 To solve this problem, Patent Document 1, drawn from the interior of the display panel, proposed to use the exposed wiring, moisture permeability 5 ~ 6g / m 2 · 24h or less sealing material Has been done.
 また、特許文献2には、フレキシブル配線板の電極接続部のベースフィルム上に透湿防止材を設けて、その上にリード電極を形成する形態、フレキシブル配線基板の電極接続部に形成されているリード電極の間を透湿防止材にて被覆する形態などが記載され、透湿防止材として、透湿度が10g/m・24h以下のものを使用することが提案されている。 Further, in Patent Document 2, a moisture permeation preventive material is provided on the base film of the electrode connection portion of the flexible wiring board, and a lead electrode is formed on the base film, and the lead electrode is formed on the electrode connection portion of the flexible wiring board. such as in the form of coating between the lead electrodes in moisture proof material is described, as a moisture permeation prevention member, moisture permeability has been proposed to use the following: 10g / m 2 · 24h.
特開2000-090840号公報Japanese Unexamined Patent Publication No. 2000-090840 特開2004-327873号公報Japanese Unexamined Patent Publication No. 2004-327873
 前述の特許文献1、2に記載された方法は、配線(アウターリード)に透湿度の低い封止樹脂を使用して耐湿性を向上させるものである。しかしながら、透湿度の低い封止樹脂の使用では、材料点数の増加や材料選定の限界が生じてしまうため、耐湿性評価の試験法の一つであるHAST(Highly Accelerated Temperature and Humidity Stress Test)において、高い信頼性を得ることは困難である。 The method described in the above-mentioned Patent Documents 1 and 2 is to improve the moisture resistance by using a sealing resin having a low moisture permeability for the wiring (outer lead). However, the use of a sealing resin with low moisture permeability causes an increase in the number of materials and a limit in material selection. Therefore, in HAST (Highly Accelerated Temperature and Humidity Stress Test), which is one of the test methods for evaluating moisture resistance, , It is difficult to obtain high reliability.
 本技術は、前述した課題を解決するものであり、高い信頼性が得られる接着剤組成物を提供する。 This technology solves the above-mentioned problems and provides an adhesive composition that can obtain high reliability.
 本発明者は、デバイス内部に侵入した水分を即座に排出させるために、高い透湿度が得られる接着剤組成物の配合の研究を進めた。その結果、所定量のシリコーン系粒子と、シランカップリング剤とを配合することにより、透湿性が向上するとの知見に基づき、本技術を完成するに至った。 The present inventor has proceeded with research on the formulation of an adhesive composition that can obtain high moisture permeability in order to immediately discharge the moisture that has entered the inside of the device. As a result, the present technology has been completed based on the finding that the moisture permeability is improved by blending a predetermined amount of silicone particles and a silane coupling agent.
 すなわち、本技術に係る接着剤組成物は、シリコーン系粒子と、シランカップリング剤と、重合性化合物と、硬化剤とを含有し、前記シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、当該組成物100g当たり10×10以上である。 That is, the adhesive composition according to the present technology contains silicone-based particles, a silane coupling agent, a polymerizable compound, and a curing agent, and is a true spherical particle calculated from the average particle size of the silicone-based particles. The total surface area of the composition is 10 × 10 3 m 2 or more per 100 g of the composition.
 また、本技術に係る接続体の製造方法は、シリコーン系粒子と、シランカップリング剤と、重合性化合物と、硬化剤とを含有し、前記シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、当該組成物100g当たり10×10以上である接着剤組成物を介して第1の電子部品と第2の電子部品とを配置する配置工程と、圧着ツールにより前記第2の電子部品を前記第1の電子部品に圧着させるとともに、前記接着剤組成物を硬化させる硬化工程とを有する。 Further, the method for producing a connector according to the present technology contains silicone-based particles, a silane coupling agent, a polymerizable compound, and a curing agent, and is a true sphere calculated from the average particle size of the silicone-based particles. By the placement step of arranging the first electronic component and the second electronic component via the adhesive composition in which the total surface area of the particles is 10 × 10 3 m 2 or more per 100 g of the composition, and the crimping tool. It has a curing step of crimping the second electronic component to the first electronic component and curing the adhesive composition.
 また、本技術に係る接続体は、第1の電子部品と、第2の電子部品と、前記第1の電子部品と前記第2の電子部品とが接着された接着膜とを備え、前記接着膜は、シリコーン系粒子と、シランカップリング剤と、重合性化合物と、硬化剤とを含有し、前記シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、当該組成物100g当たり10×10以上である接着剤組成物が硬化してなり、透湿度が80g/m・24hr以上である。 Further, the connector according to the present technology includes the first electronic component, the second electronic component, and the adhesive film to which the first electronic component and the second electronic component are adhered, and the adhesion is provided. The film contains silicone-based particles, a silane coupling agent, a polymerizable compound, and a curing agent, and the total surface area of spherical particles calculated from the average particle size of the silicone-based particles is the composition. 10 × 10 3 m adhesive composition is two or more per 100g is cured, is moisture permeability 80 g / m 2 · 24 hr or more.
 本技術によれば、所定量のシリコーン系粒子と、シランカップリング剤とを配合することにより、透湿性が向上し、高い信頼性を得ることができる。 According to this technology, by blending a predetermined amount of silicone particles and a silane coupling agent, moisture permeability is improved and high reliability can be obtained.
図1は、本実施の形態に係る接続体の製造方法の配置工程を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an arrangement process of a connecting body manufacturing method according to the present embodiment.
 以下、本技術の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.接着剤組成物
2.接続体の製造方法
3.実施例
Hereinafter, embodiments of the present technology will be described in detail in the following order with reference to the drawings.
1. 1. Adhesive composition 2. Method of manufacturing the connector 3. Example
 <1.接着剤組成物>
 本実施の形態に係る接着剤組成物は、シリコーン系粒子と、シランカップリング剤と、重合性化合物と、硬化剤とを含有し、シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、当該組成物100g当たり10×10以上である。これにより、透湿性が向上し、耐湿性評価の試験法の一つであるHAST(Highly Accelerated Temperature and Humidity Stress Test)において、高い信頼性を得ることができる。
<1. Adhesive composition>
The adhesive composition according to the present embodiment contains silicone-based particles, a silane coupling agent, a polymerizable compound, and a curing agent, and is a true sphere particle calculated from the average particle size of the silicone-based particles. The total surface area is 10 × 10 3 m 2 or more per 100 g of the composition. As a result, the moisture permeability is improved, and high reliability can be obtained in HAST (Highly Accelerated Temperature and Humidity Stress Test), which is one of the test methods for evaluating the moisture resistance.
 接着剤組成物は、フィルム状、又はペースト状のいずれであってもよい。取り扱いのし易さからはフィルム状であることが好ましく、コストの面からはペースト状であることが好ましい。また、接着剤組成物の硬化型としては、熱硬化型、光硬化型、光熱併用硬化型などが挙げられ、用途に応じて適宜選択することができる。 The adhesive composition may be in the form of a film or a paste. From the viewpoint of ease of handling, it is preferably in the form of a film, and from the viewpoint of cost, it is preferably in the form of a paste. Further, examples of the curing type of the adhesive composition include a thermosetting type, a photocuring type, and a photocuring type that is combined with light heat, and can be appropriately selected depending on the intended use.
 以下、熱硬化型の接着剤組成物を例に挙げて説明する。熱硬化型としては、例えば、カチオン硬化型、アニオン硬化型、ラジカル硬化型、又はこれらを併用することができる。重合性化合物としては、イオン重合基(カチオン重合、アニオン重合)を有するエポキシ化合物、オキセタン化合物、ラジカル重合基を有する(メタ)アクリル化合物などが挙げられ、これらを単独又は2種以上を組み合わせて用いることができる。また、シランカップリング剤としては、エポキシ基、(メタ)アクリル基、ビニル基などの官能基を有するシランカップリング剤が挙げられ、重合性化合物の種類に応じて適宜選択することができる。 Hereinafter, a thermosetting adhesive composition will be described as an example. As the thermosetting type, for example, a cation curing type, an anion curing type, a radical curing type, or a combination thereof can be used. Examples of the polymerizable compound include an epoxy compound having an ionic polymerization group (cationic polymerization, anionic polymerization), an oxetane compound, a (meth) acrylic compound having a radical polymerization group, and the like, and these are used alone or in combination of two or more. be able to. In addition, examples of the silane coupling agent include silane coupling agents having a functional group such as an epoxy group, a (meth) acrylic group, and a vinyl group, which can be appropriately selected depending on the type of the polymerizable compound.
 熱硬化型の具体例として、アニオン硬化型のエポキシ系樹脂組成物を示す。具体例として示す接着剤組成物は、シリコーン系粒子と、エポキシ系シランカップリング剤と、エポキシ化合物と、エポキシ硬化剤とを含有する。これにより、高い透湿度を有するエポキシ系接着剤を得ることができる。 As a specific example of the thermosetting type, an anion curing type epoxy resin composition is shown. The adhesive composition shown as a specific example contains silicone-based particles, an epoxy-based silane coupling agent, an epoxy compound, and an epoxy curing agent. Thereby, an epoxy-based adhesive having high moisture permeability can be obtained.
 シリコーン系粒子としては、例えば、オルガノポリシロキサンを架橋した構造を有するシリコーンゴムパウダー、シロキサン結合が(RSiO3/2で表される三次元網目状に架橋した構造を有するシリコーンレジンパウダー、球状シリコーンゴムパウダーの表面をシリコーンレジンで被覆した球状粉末であるシリコーン複合パウダーなどが挙られ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも分散性の観点から、シリコーン系粒子は、シリコーン複合パウダーを含むことが好ましい。市場で入手可能なシリコーン複合パウダーの具体例としては、信越化学工業(株)の商品名「KMP-600」、「KMP-605」、「X-52-7030」などを挙げることができる。 Examples of the silicone-based particles include a silicone rubber powder having a structure in which organopolysiloxane is crosslinked, a silicone resin powder having a structure in which the siloxane bond is represented by (RSiO 3/2 ) n in a three-dimensional network, and a spherical shape. Examples thereof include silicone composite powder, which is a spherical powder in which the surface of the silicone rubber powder is coated with silicone resin, and one of these can be used alone or in combination of two or more. Among these, from the viewpoint of dispersibility, the silicone-based particles preferably contain a silicone composite powder. Specific examples of the silicone composite powder available on the market include the trade names "KMP-600", "KMP-605", and "X-52-7030" of Shin-Etsu Chemical Co., Ltd.
 シリコーン系粒子の平均粒子径は、好ましくは5μm以下、より好ましくは3μm以下、さらに好ましくは1μm以下である。これにより、接着剤組成物中のシリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計値を大きくすることが可能となる。 The average particle size of the silicone-based particles is preferably 5 μm or less, more preferably 3 μm or less, still more preferably 1 μm or less. This makes it possible to increase the total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles in the adhesive composition.
 シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計は、組成物100g当たり10×10以上、より好ましくは組成物100g当たり25×10以上150×10以下、さらに好ましくは組成物100g当たり50×10以上150×10以下である。シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が大きくなるほど、透湿度が高くなるが接着強度が低下する傾向にある。 The total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles is 10 × 10 3 m 2 or more per 100 g of the composition, more preferably 25 × 10 3 m 2 or more per 100 g of the composition 150 × 10 3 It is m 2 or less, more preferably 50 × 10 3 m 2 or more and 150 × 10 3 m 2 or less per 100 g of the composition. As the total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles increases, the moisture permeability tends to increase, but the adhesive strength tends to decrease.
 なお、接着剤組成物中のシリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計は、例えば、シリコーン系粒子の比表面積と、シリコーン系粒子の添加量とから算出することができる。また、シリコーン系粒子の比表面積は、例えば、平均粒子径より算出した粒子1個当たりの表面積と、平均粒子径及び真比重より算出した粒子1個当たりの質量とから求めることができる。 The total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles in the adhesive composition can be calculated from, for example, the specific surface area of the silicone-based particles and the amount of the silicone-based particles added. it can. Further, the specific surface area of the silicone-based particles can be obtained from, for example, the surface area per particle calculated from the average particle size and the mass per particle calculated from the average particle size and the true specific gravity.
 シリコーン系粒子の配合量は、シリコーン系粒子を除く接着剤組成物100質量部に対し、例えば1~30質量部とすることが好ましく、5~30質量部とすることがより好ましく、10~30質量部とすることがさらに好ましい。なお、接着剤組成物に導電粒子を配合する場合には、導電粒子を除く接着剤組成物100質量部に対する質量部の範囲である。 The blending amount of the silicone-based particles is, for example, preferably 1 to 30 parts by mass, more preferably 5 to 30 parts by mass, and 10 to 30 parts by mass with respect to 100 parts by mass of the adhesive composition excluding the silicone-based particles. It is more preferable to use parts by mass. When conductive particles are blended in the adhesive composition, it is in the range of parts by mass with respect to 100 parts by mass of the adhesive composition excluding the conductive particles.
 エポキシ系シランカップリング剤は、エポキシ基と、加水分解性基の両者を有する有機ケイ素化合物であり、シリコーン系粒子とマトリックス樹脂であるエポキシ樹脂とを化学結合させ、分散性を向上させる。 The epoxy-based silane coupling agent is an organosilicon compound having both an epoxy group and a hydrolyzable group, and chemically bonds the silicone-based particles and the epoxy resin which is a matrix resin to improve dispersibility.
 エポキシ系シランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ構造を有するシラン化合物を挙げることができる。市場で入手可能なエポキシ系シランカップリング剤の具体例としては、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(合)の「A-187」などを挙げることができる。 Examples of the epoxy-based silane coupling agent include silane compounds having an epoxy structure such as 3-glycidoxypropyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Specific examples of epoxy-based silane coupling agents available on the market include "A-187" from Momentive Performance Materials Japan (Go).
 エポキシ系シランカップリング剤の配合量は、シリコーン系粒子を除く接着剤組成物100質量部に対し、例えば0.1~10質量部とすることが好ましく、0.1~5質量部とすることがより好ましく、0.5~1質量部とすることがさらに好ましい。 The blending amount of the epoxy-based silane coupling agent is preferably, for example, 0.1 to 10 parts by mass, and 0.1 to 5 parts by mass, based on 100 parts by mass of the adhesive composition excluding the silicone-based particles. Is more preferable, and 0.5 to 1 part by mass is further preferable.
 エポキシ化合物としては、特に限定されず、ナフタレン型エポキシ化合物、グリシジルエーテル型エポキシ化合物、グリシジルエステル型エポキシ化合物、脂環型エポキシ化合物、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ノボラックフェノール型エポキシ化合物、ビフェニル型エポキシ化合物などが挙られ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。市場で入手可能なナフタレン型2官能性エポキシ樹脂の具体例としては、DIC(株)の「HP4032D]などを挙げることができる。 The epoxy compound is not particularly limited, and is a naphthalene type epoxy compound, a glycidyl ether type epoxy compound, a glycidyl ester type epoxy compound, an alicyclic epoxy compound, a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, and a dicyclopentadiene type epoxy. Examples include compounds, novolak phenol-type epoxy compounds, and biphenyl-type epoxy compounds, and one of these can be used alone or in combination of two or more. Specific examples of the naphthalene-type bifunctional epoxy resin available on the market include "HP4032D" of DIC Corporation.
 エポキシ化合物の配合量は、シリコーン系粒子を除く接着剤組成物100質量部に対し、例えば1~30質量部とすることが好ましく、1~20質量部とすることがより好ましく、1~10質量部とすることがさらに好ましい。 The blending amount of the epoxy compound is, for example, preferably 1 to 30 parts by mass, more preferably 1 to 20 parts by mass, and 1 to 10 parts by mass with respect to 100 parts by mass of the adhesive composition excluding the silicone-based particles. It is more preferable to use a part.
 エポキシ硬化剤としては、イミダゾール類、多価フェノール類、酸無水物類、アミン類、ヒドラジド類、ポリメルカプタン、ルイス酸-アミン錯体などが挙られ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも保存安定性と硬化物の耐熱性の観点から、エポキシ硬化剤は、イミダゾール類を含むことがより好ましい。また、保存安定性、可使時間の観点から、エポキシ硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化したマイクロカプセル型の潜在性硬化剤を用いることが好ましい。市場で入手可能なイミダゾール系の潜在性硬化剤としては、旭化成ケミカルズ(株)の「HP3941」などを挙げることができる。 Examples of the epoxy curing agent include imidazoles, polyhydric phenols, acid anhydrides, amines, hydrazides, polyethercaptans, and Lewis acid-amine complexes, and one of these may be used alone or 2 Seeds and above can be used in combination. Among these, from the viewpoint of storage stability and heat resistance of the cured product, the epoxy curing agent more preferably contains imidazoles. Further, from the viewpoint of storage stability and pot life, it is preferable to use a microcapsule type latent curing agent in which an epoxy curing agent is coated with a polyurethane-based or polyester-based polymer substance and microencapsulated. Examples of the imidazole-based latent curing agent available on the market include "HP3941" of Asahi Kasei Chemicals Co., Ltd.
 エポキシ硬化剤の配合量は、シリコーン系粒子を除く接着剤組成物100質量部に対し、例えば5~70質量部とすることが好ましく、10~60質量部とすることがより好ましく、20~50質量部とすることがさらに好ましい。 The blending amount of the epoxy curing agent is, for example, preferably 5 to 70 parts by mass, more preferably 10 to 60 parts by mass, and 20 to 50 parts by mass with respect to 100 parts by mass of the adhesive composition excluding the silicone-based particles. It is more preferable to use parts by mass.
 また、具体例として示す接着剤組成物は、ポリマー、ゴム成分を含有することが好ましい。 Further, the adhesive composition shown as a specific example preferably contains a polymer and a rubber component.
 ポリマーとしては、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールS型フェノキシ樹脂、フルオレン骨格を有するフェノキシ樹脂、ポリスチレン、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリテトラフルオロエチレン、ポリカーボネートなどが挙げられ、これらは単独又は2種以上を組み合わせて用いることができる。これらの中でも、膜形成状態、接続信頼性等の観点からビスフェノールA型フェノキシ樹脂が好適に用いられる。フェノキシ樹脂は、ビスフェノール類とエピクロルヒドリンより合成されるポリヒドロキシポリエーテルである。市場で入手可能なフェノキシ樹脂の具体例としては、新日鐵住金化学(株)の商品名「YP-50」などを挙げることができる。 Examples of the polymer include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol S type phenoxy resin, phenoxy resin having a fluorene skeleton, polystyrene, polyacrylonitrile, polyphenylene sulfide, polytetrafluoroethylene, polycarbonate and the like. It can be used alone or in combination of two or more. Among these, bisphenol A type phenoxy resin is preferably used from the viewpoint of film formation state, connection reliability and the like. Phenoxy resin is a polyhydroxypolyether synthesized from bisphenols and epichlorohydrin. Specific examples of the phenoxy resin available on the market include the trade name "YP-50" of Nippon Steel & Sumikin Chemical Co., Ltd.
 ポリマーの配合量は、シリコーン系粒子を除く接着剤組成物100質量部に対し、例えば質量部とすることが好ましく、10~60質量部とすることがより好ましく、20~50質量部とすることがさらに好ましい。 The amount of the polymer to be blended is preferably, for example, 10 to 60 parts by mass, more preferably 20 to 50 parts by mass, based on 100 parts by mass of the adhesive composition excluding the silicone-based particles. Is even more preferable.
 ゴム成分としては、アクリルゴム(ACR)、ブタジエンゴム(BR)、ニトリルゴム(NBR)などが挙げられ、これらは単独又は2種以上を組み合わせて用いることができる。これらの中でも、膜形成状態、接続信頼性等の観点からアクリルゴムが好適に用いられる。市場で入手可能なアクリルゴムの具体例としては、長瀬ケムテックス(株)の商品名「SG80H」などを挙げることができる。 Examples of the rubber component include acrylic rubber (ACR), butadiene rubber (BR), nitrile rubber (NBR), etc., which can be used alone or in combination of two or more. Among these, acrylic rubber is preferably used from the viewpoint of film formation state, connection reliability and the like. Specific examples of acrylic rubber available on the market include the trade name "SG80H" of Nagase Chemtex Co., Ltd.
 また、ゴム成分として、弾性粒子を含有することが好ましい。弾性粒子は、内部応力を吸収することができ、また、硬化阻害を起こさないため、高い接続信頼性を与えることができる。弾性粒子としては、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子、シリコーン粒子などが挙げられる。市場で入手可能な架橋アクリロニトリルブタジエンゴム粒子の具体例としては、XER-91(平均粒子径0.5μm、JSR社製)などが挙げられる。 Further, it is preferable to contain elastic particles as a rubber component. The elastic particles can absorb internal stress and do not cause hardening inhibition, so that high connection reliability can be provided. Examples of the elastic particles include crosslinked acrylonitrile-butadiene rubber particles, crosslinked styrene-butadiene rubber particles, acrylic rubber particles, and silicone particles. Specific examples of the crosslinked acrylonitrile butadiene rubber particles available on the market include XER-91 (average particle diameter 0.5 μm, manufactured by JSR Corporation).
 ゴム成分の配合量は、シリコーン系粒子を除く接着剤組成物100質量部に対し、例えば1~30質量部とすることが好ましく、5~25質量部とすることがより好ましく、10~20質量部とすることがさらに好ましい。 The amount of the rubber component to be blended is preferably, for example, 1 to 30 parts by mass, more preferably 5 to 25 parts by mass, and 10 to 20 parts by mass with respect to 100 parts by mass of the adhesive composition excluding the silicone-based particles. It is more preferable to use a part.
 接着剤組成物の最低溶融粘度は、1~100000Pa・sであることが好ましく、10~10000Pa・sであることがより好ましい。最低溶融粘度が高すぎると、熱圧着時に電極間のバインダーが十分に排除できないため、接続抵抗が上昇する傾向にある。一方、最低溶融粘度が低すぎると、熱圧着時の加重による接着剤組成物の変形が大きくなるため、加圧解放時に接着剤組成物の復元力が接続部界面等に剥離方向の力として加わる。このため、熱圧着直後に接続抵抗が上昇したり、接続部に気泡が発生したりする傾向がある。 The minimum melt viscosity of the adhesive composition is preferably 1 to 100,000 Pa · s, and more preferably 10 to 10000 Pa · s. If the minimum melt viscosity is too high, the binder between the electrodes cannot be sufficiently removed during thermocompression bonding, and the connection resistance tends to increase. On the other hand, if the minimum melt viscosity is too low, the deformation of the adhesive composition due to the load during thermocompression bonding becomes large, so that the restoring force of the adhesive composition is applied to the interface of the connecting portion as a force in the peeling direction when the pressure is released. .. For this reason, the connection resistance tends to increase immediately after thermocompression bonding, and bubbles tend to be generated at the connection portion.
 このような構成の接着剤組成物は、硬化後の40℃の温度及び90%の相対湿度の条件で測定される透湿度が、好ましくは80g/m・24hr以上、より好ましくは85g/m・24hr以上、さらに好ましくは90g/m・24hr以上である。これにより、接着剤組成物で接着したデバイス内部に侵入した水分を即座に排出させることができ、HASTにおいて、高い信頼性を得ることができる。なお、透湿度は、JIS Z 0208の防湿包装材料の透湿度試験方法(カップ法)に準拠し、40℃、相対湿度90%の条件で測定することができる。 The adhesive composition of such a construction is the moisture permeability measured under conditions of temperature and 90% relative humidity 40 ° C. after curing, preferably 80g / m 2 · 24hr or more, more preferably 85 g / m 2 · 24 hr or more, and more preferably 90g / m 2 · 24hr or more. As a result, the moisture that has entered the inside of the device bonded with the adhesive composition can be immediately discharged, and high reliability can be obtained in HAST. The moisture permeability can be measured under the conditions of 40 ° C. and 90% relative humidity in accordance with the moisture permeability test method (cup method) of the moisture-proof packaging material of JIS Z 0208.
 このような接着剤組成物によれば、デバイス内部に侵入した水分を即座に排出させることができるため、優れた接続信頼性を得ることができる。耐水性を持たせた場合には、浸入した水分が滞留することになる。本発明態様を換言すると、一定の水分の浸入を許容する代わりに、接着性の劣化を過度に進行させる水分の保持は許容しないものとも言える。求められる耐水条件を調整できる点で、デバイス及びそれを組み込む機器類の設計条件の選択性を広げる効果がある。例えば、耐候性が求められる携帯端末やウェアラブル端末の他にも、より高い耐候性が求められると想定されるバイクや自動車、飛行装置(ドローンや飛行機など)、船舶類といった移動体、乗り物の電装に使用できる利点が挙げられる。 According to such an adhesive composition, the moisture that has entered the inside of the device can be immediately discharged, so that excellent connection reliability can be obtained. If water resistance is provided, the infiltrated water will stay. In other words, it can be said that, instead of allowing a certain amount of water to enter, it does not allow the retention of water that causes excessive deterioration of adhesiveness. The ability to adjust the required water resistance conditions has the effect of expanding the selectivity of the design conditions of the device and the equipment in which it is incorporated. For example, in addition to mobile terminals and wearable terminals that require weather resistance, motorcycles and automobiles that are expected to require higher weather resistance, flying devices (drones, airplanes, etc.), moving objects such as ships, and electrical equipment for vehicles. There are advantages that can be used for.
 また、接着剤組成物は、シリコーン系粒子の平均粒子径よりも大きい平均粒子径を有する導電粒子をさらに含有した導電性接着剤としてもよい。導電粒子を含有する場合、導電粒子の平均粒子径は、挟持を阻害しないよう、導電粒子以外の固形配合物の平均粒子径よりも大きいことが好ましい。シリコーン粒子の平均粒子径に対する導電粒子の平均粒子径の比は、導電性の観点から、好ましくは1.5以上、より好ましくは2.0以上、さらに好ましくは3.5以上である。これは、シリコーン系粒子が導電粒子の圧縮や扁平化を阻害しないためには数値は大きい方がよい。一方、導電粒子が電極間に挟持される場合に、電極上の酸化物などを突き破るのを補助するためには、圧縮や扁平化した導電粒子と一緒にシリコーン系粒子を挟持することが好ましい場合もあるため、数値は小さい方がよい場合もある。好ましくは1.1以下、より好ましくは1.07以下、更により好ましくは1.05以下である。これらは、目的に合わせて適宜調整すればよい。 Further, the adhesive composition may be a conductive adhesive further containing conductive particles having an average particle diameter larger than the average particle diameter of the silicone-based particles. When conductive particles are contained, the average particle size of the conductive particles is preferably larger than the average particle size of the solid composition other than the conductive particles so as not to hinder the sandwiching. From the viewpoint of conductivity, the ratio of the average particle size of the conductive particles to the average particle size of the silicone particles is preferably 1.5 or more, more preferably 2.0 or more, still more preferably 3.5 or more. The value should be large so that the silicone-based particles do not hinder the compression and flattening of the conductive particles. On the other hand, when the conductive particles are sandwiched between the electrodes, it is preferable to sandwich the silicone-based particles together with the compressed or flattened conductive particles in order to assist in breaking through the oxides on the electrodes. Therefore, it may be better to have a small number. It is preferably 1.1 or less, more preferably 1.07 or less, and even more preferably 1.05 or less. These may be appropriately adjusted according to the purpose.
 導電性接着剤は、フィルム状の導電性フィルム、又はペースト状の導電性ペーストのいずれであってもよい。取り扱いのし易さからは導電性フィルムが好ましく、コストの面からは導電性ペーストが好ましい。また、導電接着剤及び導電性フィルムは、異方性導電接着剤及び異方性導電フィルムとして用いることもできる。また、これらの構造体は、異方性接続構造体であってもよい。 The conductive adhesive may be either a film-like conductive film or a paste-like conductive paste. A conductive film is preferable from the viewpoint of ease of handling, and a conductive paste is preferable from the viewpoint of cost. Further, the conductive adhesive and the conductive film can also be used as the anisotropic conductive adhesive and the anisotropic conductive film. Further, these structures may be anisotropic connection structures.
 導電粒子としては、導電性フィルムにおいて使用されている公知の導電粒子を用いることができる。例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、これらの粒子の表面に更に絶縁薄膜をコートさせる、絶縁性微粒子を付着させる、といった絶縁処理をしたもの等が挙げられる。これらの中から2種以上を混在させてもよい。樹脂粒子の表面に金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を用いることができる。 As the conductive particles, known conductive particles used in the conductive film can be used. For example, on the surface of particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver and gold, and particles of metal oxides, carbon, graphite, glass, ceramics and plastics. Examples thereof include those coated with metal, those coated with an insulating thin film on the surface of these particles, and those subjected to an insulating treatment such as adhering insulating fine particles. Two or more of these may be mixed. When the surface of the resin particles is coated with metal, the resin particles include, for example, epoxy resin, phenol resin, acrylic resin, acrylonitrile-styrene (AS) resin, benzoguanamine resin, divinylbenzene resin, styrene resin and the like. Particles can be used.
 導電粒子の平均粒径としては、通常1~30μm、好ましくは2~20μm、より好ましくは2.5~15μmである。また、バインダー樹脂中の導電粒子の平均粒子密度は、接続信頼性及び絶縁信頼性の観点から、好ましくは100~100000個/mm、より好ましくは500~80000個/mmである。例えば、フィルム状にしてフィルム面を光学顕微鏡や金属顕微鏡により得られた観察結果を、画像解析ソフトWinROOF(三谷商事(株))により、求めることができる。 The average particle size of the conductive particles is usually 1 to 30 μm, preferably 2 to 20 μm, and more preferably 2.5 to 15 μm. The average particle density of the conductive particles in the binder resin, connected in terms of reliability and insulation reliability, and preferably from 100 to 100,000 / mm 2, more preferably from 500 to 80,000 pieces / mm 2. For example, the observation result obtained by forming a film and forming the film surface with an optical microscope or a metallurgical microscope can be obtained by the image analysis software WinROOF (Mitani Shoji Co., Ltd.).
 また、導電粒子は、絶縁性樹脂中に分散されていてもよく、フィルム状の場合では、フィルム平面視において個々に独立していてもよく、また任意に配置されて存在していてもよい。導電粒子が配置される場合、接続される電極のサイズやレイアウトに応じて、個数密度や導電粒子間距離などを設定することができる。このため、捕捉向上、ショート抑制などに効果があり、歩留まりの向上などコスト削減効果も見込まれる。 Further, the conductive particles may be dispersed in the insulating resin, and in the case of a film, they may be individually independent in the plan view of the film, or may be arbitrarily arranged and present. When the conductive particles are arranged, the number density, the distance between the conductive particles, and the like can be set according to the size and layout of the connected electrodes. For this reason, it is effective in improving capture and suppressing short circuits, and is expected to have cost reduction effects such as improvement in yield.
 導電性接着剤の最低溶融粘度は、1~100000Pa・sであることが好ましく、10~10000Pa・sであることがより好ましい。最低溶融粘度の適性化は、導電粒子の圧縮変形特性にも依存するが、最低溶融粘度が高すぎると、熱圧着時に導電粒子と電極との間のバインダーが十分に排除できないため、接続抵抗が上昇する傾向にある。特に、突起を有する導電粒子は、熱圧着時に導電粒子と電極との間のバインダーを十分に排除するのが困難となる。一方、最低溶融粘度が低すぎると、熱圧着時の加重による導電性接着剤の変形が大きくなるため、加圧解放時に導電性接着剤の復元力が接続部界面等に剥離方向の力として加わる。このため、熱圧着直後に接続抵抗が上昇したり、接続部に気泡が発生したりする傾向がある。 The minimum melt viscosity of the conductive adhesive is preferably 1 to 100,000 Pa · s, and more preferably 10 to 10000 Pa · s. The optimization of the minimum melt viscosity also depends on the compressive deformation characteristics of the conductive particles, but if the minimum melt viscosity is too high, the binder between the conductive particles and the electrodes cannot be sufficiently removed during thermocompression bonding, resulting in connection resistance. It tends to rise. In particular, the conductive particles having protrusions make it difficult to sufficiently remove the binder between the conductive particles and the electrodes during thermocompression bonding. On the other hand, if the minimum melt viscosity is too low, the deformation of the conductive adhesive due to the load during thermocompression bonding becomes large, so that the restoring force of the conductive adhesive is applied to the interface of the connection portion as a force in the peeling direction when the pressure is released. .. For this reason, the connection resistance tends to increase immediately after thermocompression bonding, and bubbles tend to be generated at the connection portion.
 このような構成の導電性接着剤は、硬化後の40℃の温度及び90%の相対湿度の条件で測定される透湿度が、好ましくは80g/m・24hr以上、より好ましくは85g/m・24hr以上、さらに好ましくは90g/m・24hr以上である。これにより、導電性接着剤で接着したデバイス内部に侵入した水分を即座に排出させることができ、HASTにおいて、高い信頼性を得ることができる。なお、透湿度は、JIS Z 0208の防湿包装材料の透湿度試験方法(カップ法)に準拠し、40℃、相対湿度90%の条件で測定することができる。 Such configuration of the conductive adhesive, moisture permeability is measured under the conditions of temperature and 90% relative humidity 40 ° C. after curing, preferably 80g / m 2 · 24hr or more, more preferably 85 g / m 2 · 24 hr or more, and more preferably 90g / m 2 · 24hr or more. As a result, the moisture that has entered the inside of the device adhered with the conductive adhesive can be immediately discharged, and high reliability can be obtained in HAST. The moisture permeability can be measured under the conditions of 40 ° C. and 90% relative humidity in accordance with the moisture permeability test method (cup method) of the moisture-proof packaging material of JIS Z 0208.
 このような導電性接着剤によれば、デバイス内部に侵入した水分を即座に排出させることができるため、優れた接続信頼性を得ることができる。 With such a conductive adhesive, the moisture that has entered the inside of the device can be immediately discharged, so that excellent connection reliability can be obtained.
 <2.接続体の製造方法>
 本実施の形態に係る接続体の製造方法は、シリコーン系粒子と、シランカップリング剤と、重合性化合物と、硬化剤とを含有し、シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、組成物100g当たり10×10以上である接着剤組成物を介して第1の電子部品と第2の電子部品とを配置する配置工程と、圧着ツールにより第2の電子部品を第1の電子部品に圧着させるとともに、接着剤組成物を硬化させる硬化工程とを有する。ここで、圧着ツールとは、第1の電子部品もしくは第2の電子部品、またはその両方から加圧するものを指す。また、圧着ツールの形状や材質は特に限定はされないが、一例として、加熱機構を備えた金属製の平坦状のものが挙げられる。これは、公知の熱圧着装置に使用されるものであってもよい。また、光を照射する機構を備えてもよい。
<2. Manufacturing method of connector>
The method for producing a connector according to the present embodiment contains silicone-based particles, a silane coupling agent, a polymerizable compound, and a curing agent, and is a true spherical particle calculated from the average particle size of the silicone-based particles. The first electronic component and the second electronic component are arranged via the adhesive composition having a total surface area of 10 × 10 3 m 2 or more per 100 g of the composition, and the second by the crimping tool. It has a curing step of crimping the electronic component of No. 1 to the first electronic component and curing the adhesive composition. Here, the crimping tool refers to a tool that pressurizes from a first electronic component, a second electronic component, or both. The shape and material of the crimping tool are not particularly limited, but an example thereof is a flat metal having a heating mechanism. This may be used in known thermocompression bonding devices. Further, a mechanism for irradiating light may be provided.
 また、本実施の形態に係る接続体は、第1の電子部品と、第2の電子部品と、第1の電子部品と第2の電子部品とが接着された接着膜とを備え、接着膜は、シリコーン系粒子と、シランカップリング剤と、重合性化合物と、硬化剤とを含有し、シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、当該組成物100g当たり10×10以上である接着剤組成物が硬化してなり、透湿度が80g/m・24hr以上である。 Further, the connector according to the present embodiment includes an adhesive film in which the first electronic component, the second electronic component, and the first electronic component and the second electronic component are adhered to each other. Contains silicone particles, a silane coupling agent, a polymerizable compound, and a curing agent, and the total surface area of true sphere particles calculated from the average particle size of the silicone particles is per 100 g of the composition. the adhesive composition is 10 × 10 3 m 2 or more is cured, is moisture permeability 80g / m 2 · 24hr or more.
 本実施の形態に係る接続体は、第1の電子部品と第2の電子部品とが接着された接着膜が、高い透湿度を有するため、デバイス内部に侵入した水分を即座に排出させることができ、HASTにおいて、高い信頼性を得ることができる。 In the connecting body according to the present embodiment, since the adhesive film in which the first electronic component and the second electronic component are bonded has high moisture permeability, the moisture that has entered the inside of the device can be immediately discharged. It can be done, and high reliability can be obtained in HAST.
 以下、接着フィルムを用いた接続体の製造方法について説明する。図1は、本実施の形態に係る接続体の製造方法の配置工程を模式的に示す断面図である。なお、接着フィルムを構成する接着剤組成物は、前述と同様のため、ここでは説明を省略する。 Hereinafter, a method for manufacturing a connector using an adhesive film will be described. FIG. 1 is a cross-sectional view schematically showing an arrangement process of a connecting body manufacturing method according to the present embodiment. Since the adhesive composition constituting the adhesive film is the same as described above, description thereof will be omitted here.
 [配置工程(S1)]
 図1に示すように、配置工程(S1)では、第1の電子部品10上にシリコーン系粒子21を含有する接着フィルム20を配置する。第1の電子部品10は、第1の端子列11を備える。第1の電子部品10は、特に制限はなく、目的に応じて適宜選択することができる。第1の電子部品10としては、例えば、LCD(Liquid Crystal Display)パネル、有機EL(OLED)などのフラットパネルディスプレイ(FPD)用途、タッチパネル用途などの透明基板、プリント配線板(PWB)、フレキシブル基板(FPC:Flexible Printed Circuits)などが挙げられる。プリント配線板の材質は、特に限定されず、例えば、FR-4基材などのガラエポでもよく、熱可塑性樹脂などのプラスチック、セラミックなども用いることができる。また、透明基板は、透明性の高いものであれば特に限定はなく、ガラス基板、プラスチック基板などが挙げられる。これらの中でも、耐熱性の観点からセラミック基板が好適に用いられる。
[Arrangement step (S1)]
As shown in FIG. 1, in the arrangement step (S1), the adhesive film 20 containing the silicone-based particles 21 is arranged on the first electronic component 10. The first electronic component 10 includes a first terminal row 11. The first electronic component 10 is not particularly limited and may be appropriately selected depending on the intended purpose. The first electronic component 10 includes, for example, an LCD (Liquid Crystal Display) panel, a flat panel display (FPD) application such as an organic EL (OLED), a transparent substrate for a touch panel application, a printed wiring board (PWB), and a flexible substrate. (FPC: Flexible Printed Circuits) and the like. The material of the printed wiring board is not particularly limited, and for example, a glass epoxy such as a FR-4 base material may be used, and plastic such as a thermoplastic resin, ceramic or the like can also be used. The transparent substrate is not particularly limited as long as it has high transparency, and examples thereof include a glass substrate and a plastic substrate. Among these, a ceramic substrate is preferably used from the viewpoint of heat resistance.
 また、第1の電子部品に対向する第2の電子部品としては、ICやフレキシブル基板等のメッキバンプが形成されていることが好ましい。メッキバンプは、ディンプルが低い、もしくはないことが好ましく、又は表面がフラットであることが好ましい。また、メッキバンプの表面は、圧着時に接触面積を増大させる観点からレベリングされていることが好ましい。また、配線基板には、スタッドバンプが形成されていてもよい。 Further, as the second electronic component facing the first electronic component, it is preferable that a plated bump such as an IC or a flexible substrate is formed. The plated bumps preferably have low or no dimples, or preferably have a flat surface. Further, the surface of the plated bump is preferably leveled from the viewpoint of increasing the contact area at the time of crimping. Further, stud bumps may be formed on the wiring board.
 接着フィルム20は、前述した接着剤組成物をフィルム状にしてものであるため、ここでは詳細な説明を省略する。接着フィルム20の厚みは、1~100μmであることが好ましく、10~50μmであることがより好ましい。単層の場合にも、多層にした場合においても、この範囲は同様となる。また、ペースト状の場合には、接続に使用する際の厚みを指す。 Since the adhesive film 20 is made by forming the above-mentioned adhesive composition into a film, detailed description thereof will be omitted here. The thickness of the adhesive film 20 is preferably 1 to 100 μm, more preferably 10 to 50 μm. This range is the same regardless of whether it is a single layer or a multi-layer structure. In the case of a paste, it refers to the thickness when used for connection.
 [硬化工程(S2)]
 硬化工程(S2)では、接着フィルム20上に第2の電子部品を配置し、圧着ツールにより第2の電子部品を第1の電子部品10に加圧して、熱を加えながら圧着させる。また、硬化工程(S2)では、圧着ツールを用いて、好ましくは250℃以下の温度、より好ましくは220℃以下の温度、さらに好ましくは200℃以下の温度で押圧する。これにより、圧着ツールの熱により樹脂が溶融し、圧着ツールにより第2の電子部品が十分に押し込まれ、樹脂が熱硬化するため、優れた接着性を得ることができる。この場合、圧着ツールには、加熱機構が組み込まれていることを前提としているが、圧着ツールに加熱機構が組み込まれていない方法により接着フィルム20を加熱させ硬化させてもよい。
[Curing step (S2)]
In the curing step (S2), the second electronic component is placed on the adhesive film 20, and the second electronic component is pressed against the first electronic component 10 by a crimping tool to be crimped while applying heat. Further, in the curing step (S2), pressing is performed using a crimping tool at a temperature of preferably 250 ° C. or lower, more preferably 220 ° C. or lower, and further preferably 200 ° C. or lower. As a result, the resin is melted by the heat of the crimping tool, the second electronic component is sufficiently pushed by the crimping tool, and the resin is thermoset, so that excellent adhesiveness can be obtained. In this case, although it is assumed that the crimping tool incorporates a heating mechanism, the adhesive film 20 may be heated and cured by a method in which the crimping tool does not incorporate a heating mechanism.
 第2の電子部品は、第1の端子列11に対向する第2の端子列を備える。第2の電子部品は、特に制限はなく、目的に応じて適宜選択することができる。第2の電子部品としては、例えば、IC(Integrated Circuit)、フレキシブル基板(FPC:Flexible Printed Circuits)、テープキャリアパッケージ(TCP)基板などが挙げられる。ICをFPCに実装した場合には、COF(Chip On Film)となる。 The second electronic component includes a second terminal row facing the first terminal row 11. The second electronic component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples of the second electronic component include an IC (Integrated Circuit), a flexible printed circuit board (FPC: Flexible Printed Circuits), a tape carrier package (TCP) board, and the like. When the IC is mounted on the FPC, it becomes COF (Chip On Film).
 また、硬化工程(S2)では、圧着ツールと第2の電子部品との間に緩衝材を使用してもよい。緩衝材としては、ポリテトラフルオロエチレン(PTFE:polytetrafluoroethylene)、ポリイミド、ガラスクロス、シリコンラバーなどを用いることができる。 Further, in the curing step (S2), a cushioning material may be used between the crimping tool and the second electronic component. As the cushioning material, polytetrafluoroethylene (PTFE: polytetrafluoroethylene), polyimide, glass cloth, silicon rubber or the like can be used.
 このような接続体の製造方法によれば、第1の電子部品と第2の電子部品とを接着させる接着膜が、高い透湿度を有するものとなるため、デバイス内部に侵入した水分を即座に排出させることができ、HASTにおいて、高い信頼性を得ることができる。 According to the method for manufacturing such a connector, the adhesive film that adheres the first electronic component and the second electronic component has high moisture permeability, so that the moisture that has entered the inside of the device can be immediately removed. It can be discharged, and high reliability can be obtained in HAST.
 [変形例]
 なお、上述した実施の形態では、接着フィルムを用いて第1の電子部品と第2の電子部品とを接続することとしたが、これに限られることなく、導電粒子を含有した導電性接着フィルムを用いて第1の電子部品と第2の電子部品とを接続するようにしてもよい。また、導電性接着フィルムは、導電粒子を含有する層(便宜的に、導電粒子含有層とする)と、導電粒子を含有しない層(便宜的に、導電粒子非含有層とする)からなる2層以上の構成であってもよい。また、ペースト状の場合にも、接続時に同様の構成をとることができる。
 <3.実施例>
[Modification example]
In the above-described embodiment, the first electronic component and the second electronic component are connected by using an adhesive film, but the present invention is not limited to this, and the conductive adhesive film containing conductive particles. May be used to connect the first electronic component and the second electronic component. Further, the conductive adhesive film is composed of a layer containing conductive particles (for convenience, a layer containing conductive particles) and a layer not containing conductive particles (for convenience, a layer containing no conductive particles). It may have a structure of layers or more. Further, even in the case of a paste, the same configuration can be taken at the time of connection.
<3. Example>
 以下、本技術の実施例について説明する。第1の実施例では、接着剤組成物の一形態として接着フィルムを作製し、接続体を作製した。そして、硬化後の接着フィルムの透湿度、接続体の初期の接着強度、及び信頼性試験後の接着強度、並びに、接続体の初期の導通抵抗、及び信頼性試験後の導通抵抗を測定した。 Hereinafter, examples of this technology will be described. In the first embodiment, an adhesive film was produced as one form of the adhesive composition, and a connector was produced. Then, the moisture permeability of the adhesive film after curing, the initial adhesive strength of the connector, the adhesive strength after the reliability test, the initial conduction resistance of the connector, and the conduction resistance after the reliability test were measured.
 [接着フィルムの作製、及び透湿度の測定]
 表1に示す材料を配合して厚み35μmの接着フィルムを作製した。また、透湿度の測定のために、接着フィルムを温度200℃で硬化させて試料フィルムを作製した。透湿度は、JIS Z 0208の防湿包装材料の透湿度試験方法(カップ法)に準拠し、40℃、相対湿度90%の条件で測定した。具体的には、カップに塩化カルシウム(無水)を封入し、試料フィルムでカバーしたカップを、恒温恒湿状態に静置し、一定時間毎に秤量操作を繰り返し、カップの質量増加を水蒸気の透過量として評価した。
[Preparation of adhesive film and measurement of moisture permeability]
The materials shown in Table 1 were blended to prepare an adhesive film having a thickness of 35 μm. Further, in order to measure the moisture permeability, the adhesive film was cured at a temperature of 200 ° C. to prepare a sample film. The moisture permeability was measured under the conditions of 40 ° C. and 90% relative humidity in accordance with the moisture permeability test method (cup method) of the moisture-proof packaging material of JIS Z 0208. Specifically, calcium chloride (anhydrous) is sealed in the cup, the cup covered with the sample film is allowed to stand in a constant temperature and humidity state, and the weighing operation is repeated at regular intervals to permeate the mass increase of the cup with water vapor. Evaluated as a quantity.
 [接続体の作製]
 ベアチップ(ICチップ)は、厚み0.4mm、幅6mm、長さ6mm(6mm×6mm)であり、導通測定用配線(バンプサイズ:50×50μm、ピッチ:85μm(バンプ間スペース35μm)、金バンプ高さh=15μm)を形成した測定用TEG(Test Element Group)を用いた。金バンプは、メッキバンプであり、ディンプルのない平滑なものを用いた。
[Making a connector]
The bare chip (IC chip) has a thickness of 0.4 mm, a width of 6 mm, and a length of 6 mm (6 mm × 6 mm), and is a wiring for continuity measurement (bump size: 50 × 50 μm, pitch: 85 μm (space between bumps 35 μm), gold bump. A TEG (Test Element Group) for measurement having a height h = 15 μm) was used. The gold bump was a plated bump and was smooth without dimples.
 フレキシブル配線板(FPC:Flexible Printed Circuits)は、基材がポリイミドであり、厚みが25μm、ピッチ:85μm(L/S=45/40)、Top:40μmである導通測定用配線を形成した測定用TEGを用いた。 The flexible wiring board (FPC: Flexible Printed Circuits) is for measurement in which the base material is polyimide, the thickness is 25 μm, the pitch is 85 μm (L / S = 45/40), and the Top: 40 μm. TEG was used.
 接着フィルムを用いてフレキシブル配線板上にベアチップを実装した。熱圧着条件は、温度200℃、圧力100MPa、10secとした。また、熱圧着時に、緩衝材として厚み50μmのポリテトラフルオロエチレンシートをベアチップ上に配置した。 A bare chip was mounted on a flexible wiring board using an adhesive film. The thermocompression bonding conditions were a temperature of 200 ° C., a pressure of 100 MPa, and 10 sec. Further, at the time of thermocompression bonding, a polytetrafluoroethylene sheet having a thickness of 50 μm was placed on the bare chip as a cushioning material.
 [接着強度の測定]
 接続体のフレキシブル配線板を引っ張り速度50mm/secで90°方向に引き剥がし、その引き剥がしに要したピール強度の最大値を接着強度とした。初期の接続体、及び信頼性試験後の接続体について測定した。信頼性試験は、JEDEC(JESD22-A110)に準拠し、温度110℃、湿度85%、時間264hrの条件とした。
[Measurement of adhesive strength]
The flexible wiring board of the connecting body was peeled off in the 90 ° direction at a pulling speed of 50 mm / sec, and the maximum value of the peel strength required for the peeling was defined as the adhesive strength. The initial connection and the connection after the reliability test were measured. The reliability test was based on JEDEC (JEDEC22-A110), and the conditions were a temperature of 110 ° C., a humidity of 85%, and a time of 264 hr.
 [導通抵抗の測定]
 ベアチップとフレキシブル配線板との接続状態について、デジタルマルチメータを使用して、接続初期及び信頼性試験後における導通抵抗(Ω)を測定した。導通抵抗値の測定は、ベアチップのバンプに接続されたフレキシブル配線板の配線にデジタルマルチメータを接続し、4端子法にて電流を1mA流して導通抵抗値を測定した。信頼性試験は、JEDEC(JESD22-A110)に準拠し、温度110℃、湿度85%、時間264hrの条件とした。
[Measurement of conduction resistance]
Regarding the connection state between the bare chip and the flexible wiring board, the conduction resistance (Ω) was measured at the initial stage of connection and after the reliability test using a digital multimeter. To measure the conduction resistance value, a digital multimeter was connected to the wiring of the flexible wiring board connected to the bump of the bare chip, and a current of 1 mA was passed by the 4-terminal method to measure the conduction resistance value. The reliability test was based on JEDEC (JEDEC22-A110), and the conditions were a temperature of 110 ° C., a humidity of 85%, and a time of 264 hr.
Figure JPOXMLDOC01-appb-T000001

ポリマー:YP-50(新日鐵住金化学(株))
エポキシ硬化剤:HP3941(旭化成ケミカルズ(株))
エポキシ化合物:HP4032D(DIC(株))
ゴム粒子:XER-91(JSR(株))
ゴム成分:SG80H(ナガセケムテックス(株))
カップリング剤:A-187(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(合))
シリコーン系粒子A:X-52-7030(信越シリコーン(株))、平均粒子径0.8μm、真比重1.01
シリコーン系粒子B:KMP-605(信越シリコーン(株)))、平均粒子径2μm、真比重0.99
シリコーン系粒子C:KMP-600(信越シリコーン(株)))、平均粒子径5μm、真比重0.99
Figure JPOXMLDOC01-appb-T000001

Polymer: YP-50 (Nippon Steel & Sumikin Chemical Co., Ltd.)
Epoxy curing agent: HP3941 (Asahi Kasei Chemicals Co., Ltd.)
Epoxy compound: HP4032D (DIC Corporation)
Rubber particles: XER-91 (JSR Corporation)
Rubber component: SG80H (Nagase Chemtex Co., Ltd.)
Coupling agent: A-187 (Momentive Performance Materials Japan (Go))
Silicone particles A: X-52-7030 (Shinetsu Silicone Co., Ltd.), average particle diameter 0.8 μm, true specific gravity 1.01
Silicone particles B: KMP-605 (Shinetsu Silicone Co., Ltd.), average particle diameter 2 μm, true specific gravity 0.99
Silicone particles C: KMP-600 (Shinetsu Silicone Co., Ltd.), average particle diameter 5 μm, true specific gravity 0.99
 なお、シリコーン系粒子の比表面積は、平均粒子径より算出した粒子1個当たりの表面積と、平均粒子径及び真比重より算出した粒子1個当たりの質量とから求めた。 The specific surface area of the silicone-based particles was determined from the surface area per particle calculated from the average particle size and the mass per particle calculated from the average particle size and the true specific gravity.
 表1に示すように、シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、組成物100g当たり10×10以上であることにより(実施例1~8)、80g/m・24hr以上の透湿度を得ることができた。また、シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、組成物100g当たり50×10以上であることにより(実施例5~7)、90g/m・24hr以上の透湿度を得ることができた。シリコーン系粒子を配合しない場合、透湿度は75g/m・24hrとなった(比較例1)。 As shown in Table 1, the total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles is 10 × 10 3 m 2 or more per 100 g of the composition (Examples 1 to 8). It could be obtained 80g / m 2 · 24hr or more moisture permeability. Further, the total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles is 50 × 10 3 m 2 or more per 100 g of the composition (Examples 5 to 7), so that 90 g / m 2 ·. A moisture permeability of 24 hr or more could be obtained. If not blended silicone particles, moisture permeability became 75g / m 2 · 24hr (Comparative Example 1).
 [第2の実施例]
 第2の実施例では、接着剤組成物の一形態として導電性フィルムを作製し、接続体を作製した。そして、硬化後の導電性フィルムの透湿度、接続体の初期の接着強度、及び信頼性試験後の接着強度、並びに、接続体の初期の導通抵抗、及び信頼性試験後の導通抵抗を測定した。
[Second Example]
In the second embodiment, a conductive film was prepared as one form of the adhesive composition, and a connector was prepared. Then, the moisture permeability of the conductive film after curing, the initial adhesive strength of the connector, the adhesive strength after the reliability test, the initial conduction resistance of the connector, and the conduction resistance after the reliability test were measured. ..
 [導電性フィルムの作製、及び透湿度の測定]
 表1に示す材料を配合して厚み35μmの導電性フィルムを作製した。また、透湿度の測定のために、導電性フィルムを温度200℃で硬化させて試料フィルムを作製した。透湿度は、JIS Z 0208の防湿包装材料の透湿度試験方法(カップ法)に準拠し、40℃、相対湿度90%の条件で測定した。具体的には、カップに塩化カルシウム(無水)を封入し、試料フィルムでカバーしたカップを、恒温恒湿状態に静置し、一定時間毎に秤量操作を繰り返し、カップの質量増加を水蒸気の透過量として評価した。
[Preparation of conductive film and measurement of moisture permeability]
The materials shown in Table 1 were blended to prepare a conductive film having a thickness of 35 μm. Further, in order to measure the moisture permeability, a conductive film was cured at a temperature of 200 ° C. to prepare a sample film. The moisture permeability was measured under the conditions of 40 ° C. and 90% relative humidity in accordance with the moisture permeability test method (cup method) of the moisture-proof packaging material of JIS Z 0208. Specifically, calcium chloride (anhydrous) is sealed in the cup, the cup covered with the sample film is allowed to stand in a constant temperature and humidity state, and the weighing operation is repeated at regular intervals to permeate the mass increase of the cup with water vapor. Evaluated as a quantity.
 [接続体の作製]
 ベアチップ(ICチップ)は、厚み0.4mm、幅6mm、長さ6mm(6mm×6mm)であり、導通測定用配線(バンプサイズ:50×50μm、ピッチ:85μm(バンプ間スペース35μm)、金バンプ高さh=15μm)を形成した測定用TEG(Test Element Group)を用いた。金バンプは、メッキバンプであり、ディンプルのない平滑なものを用いた。
[Making a connector]
The bare chip (IC chip) has a thickness of 0.4 mm, a width of 6 mm, and a length of 6 mm (6 mm × 6 mm), and is a wiring for continuity measurement (bump size: 50 × 50 μm, pitch: 85 μm (space between bumps 35 μm), gold bump. A TEG (Test Element Group) for measurement having a height h = 15 μm) was used. The gold bump was a plated bump and was smooth without dimples.
 導電性フィルムを用いてフレキシブル配線板上にベアチップを実装した。熱圧着条件は、温度200℃、圧力100MPa、10secとした。また、熱圧着時に、緩衝材として厚み200μmのシリコンラバーをベアチップ上に配置した。 A bare chip was mounted on a flexible wiring board using a conductive film. The thermocompression bonding conditions were a temperature of 200 ° C., a pressure of 100 MPa, and 10 sec. Further, at the time of thermocompression bonding, a silicon rubber having a thickness of 200 μm was placed on the bare chip as a cushioning material.
 [接着強度の測定]
 接続体のフレキシブル配線板を引っ張り速度50mm/secで90°方向に引き剥がし、その引き剥がしに要したピール強度の最大値を接着強度とした。初期の接続体、及び信頼性試験後の接続体について測定した。信頼性試験は、JEDEC(JESD22-A110)に準拠し、温度110℃、湿度85%、時間264hrの条件とした。
[Measurement of adhesive strength]
The flexible wiring board of the connecting body was peeled off in the 90 ° direction at a pulling speed of 50 mm / sec, and the maximum value of the peel strength required for the peeling was defined as the adhesive strength. The initial connection and the connection after the reliability test were measured. The reliability test was based on JEDEC (JEDEC22-A110), and the conditions were a temperature of 110 ° C., a humidity of 85%, and a time of 264 hr.
 [導通抵抗の測定]
 ベアチップとフレキシブル配線板との接続状態について、デジタルマルチメータを使用して、接続初期及び信頼性試験後における導通抵抗(Ω)を測定した。導通抵抗値の測定は、ベアチップのバンプに接続されたフレキシブル配線板の配線にデジタルマルチメータを接続し、4端子法にて電流を1mA流して導通抵抗値を測定した。信頼性試験は、JEDEC(JESD22-A110)に準拠し、温度110℃、湿度85%、時間264hrの条件とした。
[Measurement of conduction resistance]
Regarding the connection state between the bare chip and the flexible wiring board, the conduction resistance (Ω) was measured at the initial stage of connection and after the reliability test using a digital multimeter. To measure the conduction resistance value, a digital multimeter was connected to the wiring of the flexible wiring board connected to the bump of the bare chip, and a current of 1 mA was passed by the 4-terminal method to measure the conduction resistance value. The reliability test was based on JEDEC (JEDEC22-A110), and the conditions were a temperature of 110 ° C., a humidity of 85%, and a time of 264 hr.
Figure JPOXMLDOC01-appb-T000002

 
ポリマー:YP-50(新日鐵住金化学(株))
エポキシ硬化剤:HP3941(旭化成ケミカルズ(株))
エポキシ化合物:HP4032D(DIC(株))
ゴム粒子:XER-91(JSR(株))
ゴム成分:SG80H(ナガセケムテックス(株))
カップリング剤:A-187(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(合))
導電粒子A:Ni/Auメッキアクリル樹脂粒子、平均粒子径5μm、日本化学(株)
導電粒子B:Ni/Auメッキアクリル樹脂粒子、平均粒子径3.5μm、日本化学(株)
導電粒子C:Ni/Auメッキアクリル樹脂粒子、平均粒子径3μm、日本化学(株)
シリコーン系粒子A:X-52-7030(信越シリコーン(株))、平均粒子径0.8μm、真比重1.01
シリコーン系粒子B:KMP-605(信越シリコーン(株)))、平均粒子径2μm、真比重0.99
シリコーン系粒子C:KMP-600(信越シリコーン(株)))、平均粒子径5μm、真比重0.99
Figure JPOXMLDOC01-appb-T000002


Polymer: YP-50 (Nippon Steel & Sumikin Chemical Co., Ltd.)
Epoxy curing agent: HP3941 (Asahi Kasei Chemicals Co., Ltd.)
Epoxy compound: HP4032D (DIC Corporation)
Rubber particles: XER-91 (JSR Corporation)
Rubber component: SG80H (Nagase Chemtex Co., Ltd.)
Coupling agent: A-187 (Momentive Performance Materials Japan (Go))
Conductive particles A: Ni / Au plated acrylic resin particles, average particle diameter 5 μm, Nippon Kagaku Co., Ltd.
Conductive particles B: Ni / Au plated acrylic resin particles, average particle diameter 3.5 μm, Nippon Kagaku Co., Ltd.
Conductive particles C: Ni / Au plated acrylic resin particles, average particle diameter 3 μm, Nippon Kagaku Co., Ltd.
Silicone particles A: X-52-7030 (Shinetsu Silicone Co., Ltd.), average particle diameter 0.8 μm, true specific gravity 1.01
Silicone particles B: KMP-605 (Shinetsu Silicone Co., Ltd.), average particle diameter 2 μm, true specific gravity 0.99
Silicone particles C: KMP-600 (Shinetsu Silicone Co., Ltd.), average particle diameter 5 μm, true specific gravity 0.99
 なお、シリコーン系粒子の比表面積は、平均粒子径より算出した粒子1個当たりの表面積と、平均粒子径及び真比重より算出した粒子1個当たりの質量とから求めた。 The specific surface area of the silicone-based particles was determined from the surface area per particle calculated from the average particle size and the mass per particle calculated from the average particle size and the true specific gravity.
 表2に示すように、シリコーン系粒子の平均粒子径が、導電粒子の平均粒子径よりも小さく、シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、組成物100g当たり10×10以上であることにより(実施例9~17)、80g/m・24hr以上の透湿度を得ることができた。また、シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、100g当たり50×10以上であることにより(実施例13~15)、90g/m・24hr以上の透湿度を得ることができた。シリコーン系粒子を配合しない場合、透湿度は75g/m・24hrとなった(比較例2)。また、シリコーン系粒子の平均粒子径が、導電粒子の平均粒子径以上である場合、抵抗値が高くなった(比較例3、4)。 As shown in Table 2, the average particle size of the silicone-based particles is smaller than the average particle size of the conductive particles, and the total surface area of the true sphere particles calculated from the average particle size of the silicone-based particles is per 100 g of the composition. by at 10 × 10 3 m 2 or more (examples 9-17), it was possible to obtain a more moisture permeability 80g / m 2 · 24hr. The total surface area of a sphere particles is calculated from an average particle size of the silicone-based particles, (Examples 13-15) by at 50 × 10 3 m 2 or more per 100g, 90g / m 2 · 24hr or more I was able to obtain the moisture permeability of. If not blended silicone particles, moisture permeability became 75g / m 2 · 24hr (Comparative Example 2). Further, when the average particle size of the silicone-based particles was equal to or larger than the average particle size of the conductive particles, the resistance value became high (Comparative Examples 3 and 4).
 実施例9~17のように導電膜の透湿度を80g/m・24hr以上とすることにより、信頼性試験後の抵抗上昇を抑制することができた。これは、導電膜の高い透湿度により、デバイス内部に侵入した水分を即座に排出させることができたためであると考えられる。 The moisture permeability of the conductive film as in Examples 9-17 by a 80g / m 2 · 24hr or more, it was possible to suppress the increase in resistance after reliability testing. It is considered that this is because the high humidity permeability of the conductive film made it possible to immediately discharge the moisture that had entered the inside of the device.
 10 第1の電子部品、11 第1の端子列、20 接着フィルム、21 シリコーン系粒子、
 
10 1st electronic component, 11 1st terminal row, 20 adhesive film, 21 silicone particles,

Claims (11)

  1.  シリコーン系粒子と、シランカップリング剤と、重合性化合物と、硬化剤とを含有し、
     前記シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、当該組成物100g当たり10×10以上である接着剤組成物。
    Contains silicone particles, a silane coupling agent, a polymerizable compound, and a curing agent.
    An adhesive composition in which the total surface area of true spherical particles calculated from the average particle size of the silicone-based particles is 10 × 10 3 m 2 or more per 100 g of the composition.
  2.  前記シリコーン系粒子の平均粒子径が、5μm以下である請求項1記載の接着剤組成物。 The adhesive composition according to claim 1, wherein the average particle size of the silicone-based particles is 5 μm or less.
  3.  前記シリコーン系粒子が、球状シリコーンゴムパウダーの表面をシリコーンレジンで被覆した球状粉末であるシリコーン複合パウダーを含む請求項1又は2記載の接着剤組成物。 The adhesive composition according to claim 1 or 2, wherein the silicone-based particles contain a silicone composite powder which is a spherical powder in which the surface of a spherical silicone rubber powder is coated with a silicone resin.
  4.  前記重合性化合物が、エポキシ化合物であり、
     前記硬化剤が、エポキシ硬化剤であり、
     前記シランカップリング剤が、エポキシ系シランカップリング剤である請求項1乃至3のいずれか1項に記載の接着剤組成物。
    The polymerizable compound is an epoxy compound,
    The curing agent is an epoxy curing agent.
    The adhesive composition according to any one of claims 1 to 3, wherein the silane coupling agent is an epoxy-based silane coupling agent.
  5.  当該組成物の硬化後の40℃の温度及び90%の相対湿度の条件で測定される透湿度が、80g/m・24hr以上である請求項4記載の接着剤組成物。 Moisture permeability as measured under conditions of 40 ° C. temperature and 90% relative humidity after curing of the composition, according to claim 4 An adhesive composition according is 80g / m 2 · 24hr or more.
  6.  導電粒子をさらに含有し、
     前記シリコーン系粒子の平均粒子径が、前記導電粒子の平均粒子径よりも小さい請求項1乃至3のいずれか1項に記載の接着剤組成物。
    Contains more conductive particles
    The adhesive composition according to any one of claims 1 to 3, wherein the average particle size of the silicone-based particles is smaller than the average particle size of the conductive particles.
  7.  フィルム状である請求項1乃至6のいずれか1項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 6, which is in the form of a film.
  8.  シリコーン系粒子と、シランカップリング剤と、重合性化合物と、硬化剤とを含有し、
     前記シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、当該組成物100g当たり10×10以上である接着剤組成物を介して第1の電子部品と第2の電子部品とを配置する配置工程と、
     圧着ツールにより前記第2の電子部品を前記第1の電子部品に圧着させるとともに、前記接着剤組成物を硬化させる硬化工程と
     を有する接続体の製造方法。
    Contains silicone particles, a silane coupling agent, a polymerizable compound, and a curing agent.
    The total surface area of the true spherical particles calculated from the average particle size of the silicone-based particles is 10 × 10 3 m 2 or more per 100 g of the composition. The placement process for arranging the electronic components of
    A method for manufacturing a connector, which comprises a curing step of crimping the second electronic component to the first electronic component with a crimping tool and curing the adhesive composition.
  9.  前記接着剤組成物が、導電粒子をさらに含有する請求項8記載の接続体の製造方法。 The method for producing a connector according to claim 8, wherein the adhesive composition further contains conductive particles.
  10.  第1の電子部品と、第2の電子部品と、前記第1の電子部品と前記第2の電子部品とが接着された接着膜とを備え、
     前記接着膜は、シリコーン系粒子と、シランカップリング剤と、重合性化合物と、硬化剤とを含有し、前記シリコーン系粒子の平均粒子径から算出される真球粒子の表面積の合計が、当該組成物100g当たり10×10以上である接着剤組成物が硬化してなり、透湿度が80g/m・24hr以上である接続体。
    A first electronic component, a second electronic component, and an adhesive film to which the first electronic component and the second electronic component are bonded are provided.
    The adhesive film contains silicone-based particles, a silane coupling agent, a polymerizable compound, and a curing agent, and the total surface area of true sphere particles calculated from the average particle size of the silicone-based particles is the said. the adhesive composition is the composition 100g per 10 × 10 3 m 2 or more is cured, is moisture permeability 80g / m 2 · 24hr or more connectors.
  11.  前記接着剤組成物が、導電粒子をさらに含有する請求項10記載の接続体。
     
     
     
    The connector according to claim 10, wherein the adhesive composition further contains conductive particles.


PCT/JP2020/011982 2019-03-29 2020-03-18 Adhesive composition WO2020203295A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217030338A KR20210129169A (en) 2019-03-29 2020-03-18 adhesive composition
CN202080026360.2A CN113785027B (en) 2019-03-29 2020-03-18 Adhesive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068612A JP2020164722A (en) 2019-03-29 2019-03-29 Adhesive composition
JP2019-068612 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203295A1 true WO2020203295A1 (en) 2020-10-08

Family

ID=72668769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011982 WO2020203295A1 (en) 2019-03-29 2020-03-18 Adhesive composition

Country Status (4)

Country Link
JP (1) JP2020164722A (en)
KR (1) KR20210129169A (en)
CN (1) CN113785027B (en)
WO (1) WO2020203295A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180334A (en) * 2009-02-06 2010-08-19 Shin-Etsu Chemical Co Ltd Adhesive composition, adhesive sheet, and dicing die attach film
JP2012023025A (en) * 2010-06-14 2012-02-02 Hitachi Chem Co Ltd Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP2015185399A (en) * 2014-03-25 2015-10-22 デクセリアルズ株式会社 Anisotropic conductive film, connection method and joined body
JP2016021033A (en) * 2014-07-16 2016-02-04 ナミックス株式会社 Adhesive for camera module
JP2018104653A (en) * 2016-12-28 2018-07-05 日立化成株式会社 Adhesive composition selection method, circuit member connection method, connection structure, adhesive composition, and film-shaped adhesive
JP2019077740A (en) * 2017-10-20 2019-05-23 日本化薬株式会社 Resin composition and adhesive for electronic component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353719B2 (en) 1998-09-16 2002-12-03 日本電気株式会社 Electrode terminal extraction structure for plasma display panel
JP4086296B2 (en) 2003-04-28 2008-05-14 オプトレックス株式会社 Lead electrode connection structure
EP2182585B1 (en) * 2003-06-25 2011-08-10 Hitachi Chemical Company, Ltd. Circuit member connecting structure
NZ581889A (en) * 2007-06-29 2011-05-27 Pfizer Benzimidazole derivatives
JP2018168345A (en) * 2017-03-30 2018-11-01 デクセリアルズ株式会社 Anisotropic electroconductive adhesive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180334A (en) * 2009-02-06 2010-08-19 Shin-Etsu Chemical Co Ltd Adhesive composition, adhesive sheet, and dicing die attach film
JP2012023025A (en) * 2010-06-14 2012-02-02 Hitachi Chem Co Ltd Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP2015185399A (en) * 2014-03-25 2015-10-22 デクセリアルズ株式会社 Anisotropic conductive film, connection method and joined body
JP2016021033A (en) * 2014-07-16 2016-02-04 ナミックス株式会社 Adhesive for camera module
JP2018104653A (en) * 2016-12-28 2018-07-05 日立化成株式会社 Adhesive composition selection method, circuit member connection method, connection structure, adhesive composition, and film-shaped adhesive
JP2019077740A (en) * 2017-10-20 2019-05-23 日本化薬株式会社 Resin composition and adhesive for electronic component

Also Published As

Publication number Publication date
KR20210129169A (en) 2021-10-27
CN113785027B (en) 2024-01-12
JP2020164722A (en) 2020-10-08
CN113785027A (en) 2021-12-10

Similar Documents

Publication Publication Date Title
KR101183317B1 (en) Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body
JP4775377B2 (en) Adhesive film for circuit connection, circuit member connection structure, and circuit member connection method
JP6025532B2 (en) Conductive film and electronic component package
KR101886909B1 (en) Anisotropic conductive connection material, connection structure, manufacturing method and connection method for connection structure
JP5558140B2 (en) Insulating resin film, joined body using the same, and manufacturing method thereof
JP2009074020A (en) Anisotropic conductive film
JP2009242508A (en) Adhesive and bonded body
JP6237855B2 (en) Adhesive film, circuit member connection structure, and circuit member connection method
JP2010067360A (en) Anisotropic conductive film and its use method
JP5563932B2 (en) Anisotropic conductive film
JP6196131B2 (en) Metal foil for press bonding and electronic component package
WO2020222301A1 (en) Connection structure, manufacturing method for connection structure, connection material, and coated conductive particle
WO2020203295A1 (en) Adhesive composition
CN113728402B (en) Connection structure, method for manufacturing connection structure, connection material, and coated conductive particle
JP4055583B2 (en) Adhesive composition for circuit connection, circuit terminal connection method using the same, and circuit terminal connection structure
JP2001064619A (en) Film-like adhesive for connection to circuit
JP5581734B2 (en) Conductive connection sheet, connection method between terminals, formation method of connection terminal, semiconductor device and electronic device
KR101227795B1 (en) Connection structure
JP4487996B2 (en) Electrode connection structure
JP4605186B2 (en) Substrate manufacturing method
JP2021089894A (en) Anisotropically conducting film and connection structure
JP2017203165A (en) Connection film, production method of connection film, connection structure, production method of connection structure and connection method
JP2012079525A (en) Method of connecting terminals, method of forming connection terminal
JP2015067627A (en) Connecting film, connecting structure, manufacturing method of connecting structure, and connecting method
JP2008112733A (en) Imparting method of repairability, and connecting member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783140

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20217030338

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783140

Country of ref document: EP

Kind code of ref document: A1