WO2020184636A1 - Adhesive film for circuit connection, method for producing circuit connected structure, and adhesive film housing set - Google Patents

Adhesive film for circuit connection, method for producing circuit connected structure, and adhesive film housing set Download PDF

Info

Publication number
WO2020184636A1
WO2020184636A1 PCT/JP2020/010657 JP2020010657W WO2020184636A1 WO 2020184636 A1 WO2020184636 A1 WO 2020184636A1 JP 2020010657 W JP2020010657 W JP 2020010657W WO 2020184636 A1 WO2020184636 A1 WO 2020184636A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
circuit
adhesive
adhesive film
conductive particles
Prior art date
Application number
PCT/JP2020/010657
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 彰浩
友美子 大當
直 工藤
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN202080019596.3A priority Critical patent/CN113574130A/en
Priority to JP2021505115A priority patent/JPWO2020184636A1/ja
Priority to KR1020217031914A priority patent/KR20210141955A/en
Publication of WO2020184636A1 publication Critical patent/WO2020184636A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors

Definitions

  • the present invention relates to an adhesive film for circuit connection, a method for manufacturing a circuit connection structure, and an adhesive film accommodating set.
  • circuit connection As an adhesive material for connecting a liquid crystal display and a tape carrier package (TCP), a flexible printed wiring board (FPC) and TCP, or a connection between FPC and a printed wiring board, conductive particles in an adhesive.
  • An adhesive film for circuit connection having an anisotropic conductivity in which is dispersed is used. Specifically, the circuit members are bonded to each other by the circuit connection portion formed of the circuit connection adhesive film, and the electrodes on the circuit members are electrically connected to each other via the conductive particles in the circuit connection portion. By doing so, a circuit connection structure is obtained.
  • the circuit connection adhesive film contains, for example, an adhesive component containing a thermosetting resin or the like and conductive particles to be blended as necessary, and adheres to a substrate such as a polyethylene terephthalate (PET) film. It is formed in the form of a film as an agent layer. Further, the adhesive film may be used in the state of a reel in which a film-like raw fabric is cut into a tape having a width suitable for the intended use, and the tape is wound around a winding core to form a winding body (for example, a patent). Reference 1).
  • PET polyethylene terephthalate
  • the present invention has been made to solve the above problems, and even when the circuit is connected by first attaching it to a flexible substrate, the circuit connection structure has excellent connection reliability between the opposing circuit members. It is an object of the present invention to provide an adhesive film for circuit connection from which a body can be obtained, a method for manufacturing a circuit connection structure using the same, and an adhesive film accommodating set.
  • the adhesive film for circuit connection on one side of the present invention includes a peelable support film, a first adhesive layer containing conductive particles provided on the support film, and the first adhesive layer.
  • a second adhesive layer is provided, and the thickness of the first adhesive layer is 0.1 to 1.0 times the average particle size of the conductive particles.
  • a circuit connection structure having excellent connection reliability between opposing circuit members can be obtained even when the circuit is connected by first attaching to the flexible substrate. ..
  • the first adhesive layer it is preferable that 90% or more of the conductive particles are separated from other conductive particles.
  • the first adhesive layer may consist of a cured product of the first curable composition, and the first curable composition may contain a radically polymerizable compound having a radically polymerizable group.
  • the second adhesive layer may consist of a second curable composition, and the second curable composition may contain a radically polymerizable compound having a radically polymerizable group.
  • the above-mentioned circuit connection bonding is performed between the first circuit member having the first electrode and the second circuit member having the second electrode.
  • a first adhesive layer and a second adhesive layer of the agent film are interposed, and the first circuit member and the second circuit member are heat-bonded to electrically attach the first electrode and the second electrode to each other. It is provided with a process of connecting to.
  • the first circuit member has a flexible substrate
  • the circuit connection adhesive film is in contact with the first circuit member
  • the second adhesive layer is in contact with the first circuit member. May be provided with a step of attaching to the first circuit member.
  • the adhesive film accommodating set on one side of the present invention includes the above-mentioned adhesive film for circuit connection and an accommodating member accommodating the adhesive film, and the accommodating member can visually recognize the inside of the accommodating member from the outside. It has a visible portion, and the transmittance of light having a wavelength of 365 nm in the visible portion is 10% or less.
  • a circuit connection adhesive capable of obtaining a circuit connection structure having excellent connection reliability between opposing circuit members even when the circuit is connected by first attaching to a flexible substrate.
  • a film, a method of manufacturing a circuit connection structure using the film, and an adhesive film accommodating set can be provided.
  • FIG. 1 It is a schematic cross-sectional view which shows one Embodiment of the adhesive film for circuit connection which concerns on this invention. It is a schematic cross-sectional view which shows the process of the manufacturing method of a circuit connection structure. It is a schematic cross-sectional view which shows the laminated body obtained through the process of FIG. It is a schematic cross-sectional view which shows the subsequent process of FIG. It is a schematic cross-sectional view which shows the circuit connection structure obtained through the process of FIG. It is the schematic which shows the manufacturing process of the adhesive film for circuit connection shown in FIG. It is a schematic diagram which shows the state of the magnetic field application process. It is a schematic cross-sectional view which shows the state of the adhesive film for circuit connection after going through a magnetic field application process and a drying process. It is a schematic cross-sectional view which shows the laminating process which follows FIG. It is a perspective view which shows one Embodiment of the adhesive film accommodating set which concerns on this invention.
  • (meth) acrylate means at least one of acrylate and the corresponding methacrylate. The same is true for other similar expressions such as "(meth) acryloyl”.
  • FIG. 1 is a schematic cross-sectional view showing an adhesive film for circuit connection according to an embodiment.
  • the circuit connection adhesive film 11 (hereinafter, also simply referred to as “adhesive film 11”) has a peelable support film 12 and a first adhesive provided on the support film 12. It includes an agent layer 13 and a second adhesive layer 14 laminated on the first adhesive layer 13.
  • the first adhesive layer 13 contains conductive particles P.
  • the adhesive film 11 is an anisotropically conductive adhesive film having anisotropic conductivity.
  • the adhesive film 11 has a first adhesive layer and a second adhesive layer interposed between the first circuit member having the first electrode and the second circuit member having the second electrode. , The first circuit member and the second circuit member are heat-bonded to electrically connect the first electrode and the second electrode to each other.
  • circuit connection adhesive film 11 when the circuit member to be connected has a flexible substrate, the circuit connection adhesive film 11 is first contacted with the circuit connection adhesive film so that the second adhesive layer is in contact with the first circuit member. Can be attached to the circuit member of.
  • the thickness of the first adhesive layer 13 is 0.1 to 1.0 times, more preferably 0.1 to 0.7 times, the average particle size of the conductive particles P. Good. Further, in the first adhesive layer 13, 90% or more of the conductive particles P may be in a state of being separated from other conductive particles.
  • the ratio of the melt viscosity X of the first adhesive layer 13 to the minimum melt viscosity Y of the second adhesive layer 14 at a temperature Ty at which the second adhesive layer 14 exhibits the lowest melt viscosity Y. (X / Y) may be 10 or more.
  • the melt viscosity ratio (X / Y) is preferably 10 or more, more preferably 20 or more, still more preferably 50 or more, and particularly preferably 50 or more, from the viewpoint of improving the adhesion to the circuit member. Is 100 or more.
  • the ratio of melt viscosity (X / Y) may be 10000 or less, 5000 or less, or 1000 or less from the viewpoint of wettability to circuit members. From these viewpoints, the melt viscosity ratio (X / Y) may be 10 to 10000, 20 to 5000, 50 to 5000, or 100 to 1000.
  • the melt viscosity X and the minimum melt viscosity Y first show the minimum melt viscosity Y of the second adhesive layer (and the second adhesive layer shows the minimum melt viscosity Y) by measuring the melt viscosity of the second adhesive layer. After determining the temperature Ty), it can be confirmed by determining the melt viscosity X of the first adhesive layer at the temperature Ty by measuring the melt viscosity of the first adhesive layer. The melt viscosity can also be measured after the adhesive film is obtained.
  • the support film 12 is made of, for example, polyethylene terephthalate (PET), polyethylene, polypropylene, or the like.
  • PET polyethylene terephthalate
  • the support film 12 may contain any filler. Further, the surface of the support film 12 may be subjected to a mold release treatment, a plasma treatment, or the like.
  • the support film 12 can be peeled off after transferring the first adhesive layer and the second adhesive layer to the circuit member.
  • the first adhesive layer comprises, for example, a cured product of the first curable composition.
  • the first curable composition may be a photocurable composition, a thermosetting composition, or a mixture of a photocurable composition and a thermosetting composition.
  • the first curable composition is, for example, (A) a polymerizable compound (hereinafter, also referred to as “(A) component”), (B) a polymerization initiator (hereinafter, also referred to as “(B) component”). , And (C) conductive particles (hereinafter, also referred to as “(C) component”).
  • the first curable composition When the first curable composition is a photocurable composition, the first curable composition contains a photopolymerization initiator as the component (B), and the first curable composition is a thermosetting composition. In the case of a product, the first curable composition contains a thermosetting initiator as the component (B).
  • the component (A) is polymerized by irradiating or heating the layer made of the first curable composition with light to obtain the first curable composition. Obtained by curing. That is, the first adhesive layer may consist of conductive particles and an adhesive component obtained by photocuring the first curable composition.
  • the first adhesive layer may be a cured product obtained by completely curing the first curable composition, or may be a cured product obtained by partially curing the first curable composition. .. That is, when the first curable composition contains the component (A) and the component (B), the adhesive component may contain the unreacted component (A) and the component (B). You don't have to.
  • the first adhesive layer may be made of a resin composition other than the cured product of the curable composition.
  • the first adhesive layer may consist of a resin composition containing a resin component such as a phenoxy resin such as PKHC, a polyester urethane resin, a polyurethane resin, or an acrylic rubber.
  • the melt viscosity at a temperature (for example, 100 ° C.) at which the second adhesive layer exhibits the minimum melt viscosity can be adjusted to about 100,000 to 10,000,000,000 Pa ⁇ s, and the ratio of the melt viscosity (for example, 100,000 Pa ⁇ s) can be adjusted.
  • X / Y) can be 10 or more.
  • the component (A) is, for example, a compound polymerized by a radical, cation or anion generated by a polymerization initiator (photopolymerization initiator or thermal polymerization initiator) by irradiation or heating with light (for example, ultraviolet light).
  • the component (A) may be any of a monomer, an oligomer or a polymer.
  • one kind of compound may be used alone, or a plurality of kinds of compounds may be used in combination.
  • the component (A) has at least one polymerizable group.
  • the polymerizable group is, for example, a group containing a polymerizable unsaturated double bond (ethylenically unsaturated bond).
  • the polymerizable radical further improves the viewpoint that the desired melt viscosity can be easily obtained, the viewpoint that peeling between the circuit member and the circuit connection portion is less likely to occur in a high temperature and high humidity environment, and the effect of reducing the connection resistance. From the viewpoint of being more excellent in connection reliability, a radically polymerizable group that reacts with radicals is preferable. That is, the component (A) is preferably a radically polymerizable compound.
  • Examples of the radically polymerizable group include a vinyl group, an allyl group, a styryl group, an alkenyl group, an alkenylene group, a (meth) acryloyl group, a maleimide group and the like.
  • the number of polymerizable groups contained in the component (A) may be 2 or more from the viewpoint that a desired melt viscosity can be easily obtained after polymerization and from the viewpoint of easily controlling the physical properties of the resin after curing, and at the time of polymerization. It may be 10 or less from the viewpoint of suppressing the curing shrinkage of. Further, in order to balance the crosslink density and the curing shrinkage, a polymerizable compound having a number of polymerizable groups within the above range may be used, and then a polymerizable compound outside the above range may be additionally used.
  • component (A) examples include (meth) acrylate compound, maleimide compound, vinyl ether compound, allyl compound, styrene derivative, acrylamide derivative, nadiimide derivative, natural rubber, isoprene rubber, butyl rubber, nitrile rubber, butadiene rubber, and styrene-.
  • examples thereof include butadiene rubber, acrylonitrile-butadiene rubber, and carboxylated nitrile rubber.
  • Examples of the (meth) acrylate compound include epoxy (meth) acrylate, (poly) urethane (meth) acrylate, methyl (meth) acrylate, polyether (meth) acrylate, polyester (meth) acrylate, polybutadiene (meth) acrylate, and silicone acrylate.
  • Maleimide compounds include 1-methyl-2,4-bismaleimidebenzene, N, N'-m-phenylene bismaleimide, N, N'-p-phenylene bismaleimide, N, N'-m-toluylene bismaleimide.
  • N, N'-4,4-biphenylene bismaleimide N, N'-4,4- (3,3'-dimethyl-biphenylene) bismaleimide, N, N'-4,4- (3,3' -Dimethyldiphenylmethane) bismaleimide, N, N'-4,4- (3,3'-diethyldiphenylmethane) bismaleimide, N, N'-4,4-diphenylmethane bismaleimide, N, N'-4,4- Diphenylpropane bismaleimide, N, N'-4,4-diphenyl ether bismaleimide, N, N'-3,3-diphenylsulfone bismaleimide, 2,2-bis (4- (4-maleimidephenoxy) phenyl) propane, 2,2-bis (3-s-butyl-4-8 (4-maleimidephenoxy) phenyl) propane, 1,1-bis (4- (4-maleimidephenoxy) phenyl) de
  • vinyl ether compound examples include diethylene glycol divinyl ether, dipropylene glycol divinyl ether, cyclohexanedimethanol divinyl ether, and trimethylolpropane trivinyl ether.
  • allyl compound examples include 1,3-diallyl phthalate, 1,2-diallyl phthalate, and triallyl isocyanurate.
  • the component (A) is preferably a (meth) acrylate compound from the viewpoint that a desired melt viscosity can be easily obtained and compounds having various structures can be selected and easily obtained.
  • the component (A) may be a (poly) urethane (meth) acrylate compound (urethane (meth) acrylate compound or polyurethane (meth) acrylate compound) from the viewpoint of obtaining more excellent adhesive properties.
  • the component (A) may be a (meth) acrylate compound having a high Tg skeleton such as a dicyclopentadiene skeleton from the viewpoint of obtaining more excellent adhesive properties.
  • the component (A) is an acrylic resin or a phenoxy resin from the viewpoint of easily obtaining the desired melt viscosity and from the viewpoint of balancing the crosslink density and the curing shrinkage, further reducing the connection resistance, and improving the connection reliability.
  • a compound for example, polyurethane (meth) acrylate) in which a polymerizable group such as a vinyl group, an allyl group, or a (meth) acryloyl group is introduced into the terminal or side chain of a thermoplastic resin such as a polyurethane resin may be used.
  • the weight average molecular weight of the component (A) may be 3000 or more, 5000 or more, or 10,000 or more from the viewpoint of excellent balance between the crosslink density and the curing shrinkage. Further, the weight average molecular weight of the component (A) may be 1 million or less, 500,000 or less, or 250,000 or less from the viewpoint of excellent compatibility with other components.
  • the weight average molecular weight refers to a value measured from a gel permeation chromatograph (GPC) using a calibration curve using standard polystyrene according to the conditions described in Examples.
  • the component (A) preferably contains, as the (meth) acrylate compound, a radically polymerizable compound having a phosphoric acid ester structure represented by the following general formula (1).
  • a radically polymerizable compound having a phosphoric acid ester structure represented by the following general formula (1).
  • n represents an integer of 1 to 3
  • R represents a hydrogen atom or a methyl group.
  • the radically polymerizable compound having the above phosphoric acid ester structure can be obtained, for example, by reacting anhydrous phosphoric acid with 2-hydroxyethyl (meth) acrylate.
  • Specific examples of the radically polymerizable compound having a phosphoric acid ester structure include mono (2- (meth) acryloyloxyethyl) acid phosphate, di (2- (meth) acryloyloxyethyl) acid phosphate and the like.
  • the content of the component (A) is 5% by mass or more based on the total mass of the first curable composition from the viewpoint that the desired melt viscosity can be easily obtained and the desired cured physical properties can be easily obtained. It may be 10% by mass or more, and may be 20% by mass or more.
  • the content of the component (A) may be 90% by mass or less, 80% by mass or less, based on the total mass of the first curable composition, from the viewpoint of suppressing curing shrinkage during polymerization. It may be 70% by mass or less.
  • Component (B): Polymerization Initiator The component (B) is radically irradiated by irradiation with light having a wavelength in the range of 150 to 750 nm, preferably light having a wavelength in the range of 254 to 405 nm, and more preferably light having a wavelength in the range of 365 nm (for example, ultraviolet light).
  • a photopolymerization initiator that generates cations or anions photoradical polymerization initiator, photocationic polymerization initiator or photoanionic polymerization initiator
  • a thermal polymerization initiator that generates radicals, cations or anions by heat It may be a thermal radical polymerization initiator, a thermal cationic polymerization initiator or a thermal anion polymerization initiator.
  • the component (B) is a radical from the viewpoint that the desired melt viscosity can be easily obtained, the effect of reducing the connection resistance is further improved, the connection reliability is improved, and the curing at a low temperature in a short time becomes easier.
  • the first curable composition may contain both a photopolymerization initiator and a thermal polymerization initiator as the component (B).
  • the photoradical polymerization initiator is decomposed by light to generate free radicals. That is, the photoradical polymerization initiator is a compound that generates radicals by applying light energy from the outside.
  • the photoradical polymerization initiator include an oxime ester structure, a bisimidazole structure, an acrydin structure, an ⁇ -aminoalkylphenone structure, an aminobenzophenone structure, an N-phenylglycine structure, an acylphosphine oxide structure, a benzyl dimethyl ketal structure, and an ⁇ -hydroxy. Examples thereof include compounds having a structure such as an alkylphenone structure.
  • the photoradical polymerization initiator is selected from the group consisting of an oxime ester structure, an ⁇ -aminoalkylphenone structure and an acylphosphine oxide structure from the viewpoint that the desired melt viscosity can be easily obtained and the effect of reducing the connection resistance is excellent. It is preferable to have at least one kind of structure.
  • the compound having an oxime ester structure examples include 1-phenyl-1,2-butandion-2- (o-methoxycarbonyl) oxime and 1-phenyl-1,2-propanedione-2- (o-methoxycarbonyl).
  • Oxime 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2-o-benzoyloxime, 1,3-diphenylpropanthrion- 2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxypropanetrione-2- (o-benzoyl) oxime, 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2-( o-benzoyloxime)], etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (o-acetyloxime) and the like.
  • the compound having an ⁇ -aminoalkylphenone structure include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-benzyl-2-dimethylamino-1. -Morphorinophenyl) -butanone-1 and the like.
  • the compound having an acylphosphine oxide structure include bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide and bis (2,4,6-trimethylbenzoyl)-.
  • examples thereof include phenylphosphine oxide and 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • the thermal radical polymerization initiator decomposes by heat to generate free radicals. That is, the thermal radical polymerization initiator is a compound that generates radicals by applying thermal energy from the outside.
  • the thermal radical polymerization initiator can be arbitrarily selected from conventionally known organic peroxides and azo compounds.
  • an organic peroxide having a 1-minute half-life temperature of 90 to 175 ° C. and a weight average molecular weight of 180 to 1000 is preferably used from the viewpoint of stability, reactivity and compatibility. Be done. When the half-life temperature for 1 minute is in this range, the storage stability is further excellent, the radical polymerization property is sufficiently high, and curing can be performed in a short time.
  • organic peroxides include 1,1,3,3-tetramethylbutylperoxyneodecanoate, di (4-t-butylcyclohexyl) peroxydicarbonate, and di (2-ethylhexyl) peroxy.
  • azo compound examples include 2,2'-azobis-2,4-dimethylvaleronitrile, 1,1'-azobis (1-acetoxy-1-phenylethane), and 2,2'-azobisisobutyro.
  • examples thereof include nitrile, 2,2'-azobis (2-methylbutyronitrile), 4,4'-azobis (4-cyanovalerolic acid), and 1,1'-azobis (1-cyclohexanecarbonitrile).
  • the content of the component (B) is 0.1% by mass or more based on the total mass of the first curable composition from the viewpoint of excellent quick-curing property and excellent effect of reducing connection resistance. It may be 0.5% by mass or more.
  • the content of the component (B) may be 15% by mass or less based on the total mass of the first curable composition from the viewpoint of improving storage stability and excellent effect of reducing connection resistance. It may be 10% by mass or less, and may be 5% by mass or less.
  • the first curable composition preferably contains at least one of a photopolymerization initiator and a thermal polymerization initiator as the component (B), and adheres for circuit connection. It is more preferable to contain a photopolymerization initiator from the viewpoint of facilitating the production of the agent film.
  • the component (C) is not particularly limited as long as it is a conductive particle, and is a metal particle made of a metal such as Au, Ag, Ni, Cu, or solder, a conductive carbon particle made of conductive carbon, or the like. It may be.
  • the component (C) may be a coated conductive particle containing a nucleus containing non-conductive glass, ceramic, plastic (polystyrene, etc.) and the like, and a coating layer containing the metal or conductive carbon and coating the nucleus. Good.
  • coated conductive particles including metal particles formed of a heat-meltable metal or a core containing plastic and a coating layer containing metal or conductive carbon and coating the core are preferably used.
  • the contact area between the electrodes and the component (C) is set when the electrodes are electrically connected to each other. It can be increased to further improve the conductivity between the electrodes.
  • the component (C) may be an insulating coated conductive particle containing the above-mentioned metal particles, conductive carbon particles, or coated conductive particles and an insulating material such as a resin and having an insulating layer covering the surface of the particles. Good.
  • the component (C) is an insulating coated conductive particle, even when the content of the component (C) is large, the surface of the particle is coated with a resin, so that a short circuit due to contact between the components (C) occurs. Occurrence can be suppressed, and the insulation between adjacent electrode circuits can be improved.
  • the component (C) one of the various conductive particles described above may be used alone or in combination of two or more.
  • the maximum particle size of the component (C) needs to be smaller than the minimum distance between the electrodes (the shortest distance between adjacent electrodes).
  • the maximum particle size of the component (C) may be 1.0 ⁇ m or more, 2.0 ⁇ m or more, or 2.5 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity.
  • the maximum particle size of the component (C) may be 50 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less from the viewpoint of excellent dispersibility and conductivity.
  • the particle size of 300 arbitrary conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the largest value obtained is the maximum particle size of the component (C).
  • SEM scanning electron microscope
  • the particle size of the component (C) is the diameter of a circle circumscribing the conductive particles in the SEM image.
  • the average particle size of the component (C) may be 1.0 ⁇ m or more, 2.0 ⁇ m or more, or 2.5 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity.
  • the average particle size of the component (C) may be 50 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less from the viewpoint of excellent dispersibility and conductivity.
  • the particle size of 300 arbitrary conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the average value of the obtained particle sizes is taken as the average particle size.
  • the component (C) is preferably uniformly dispersed.
  • Particle density of the component (C) in the first adhesive layer from the viewpoint of stable connection resistance is obtained, it may be at 100pcs / mm 2 or more, may be at 1000pcs / mm 2 or more, 2000pcs / mm 2 That may be the above.
  • Particle density of the component (C) in the first adhesive layer, from the viewpoint of improving the insulating property between adjacent electrodes may be at 100000pcs / mm 2 or less, may be at 50000pcs / mm 2 or less, 10000pcs It may be / mm 2 or less.
  • the content of the component (C) may be 0.1% by volume or more based on the total volume in the first adhesive layer from the viewpoint of further improving the conductivity, and is 1% by volume or more. It may be 5% by volume or more.
  • the content of the component (C) may be 50% by volume or less, 30% by volume or less, and 20% by volume based on the total volume in the first adhesive layer from the viewpoint of easily suppressing a short circuit. It may be less than or equal to%.
  • the content of the component (C) in the first curable composition (based on the total product of the first curable composition) may be the same as the above range.
  • the first curable composition may further contain other components other than the component (A), the component (B) and the component (C).
  • Other components include, for example, thermoplastic resins, coupling agents and fillers. These components may be contained in the first adhesive layer.
  • thermoplastic resin examples include phenoxy resin, polyester resin, polyamide resin, polyurethane resin, polyester urethane resin, acrylic rubber and the like.
  • the first curable composition contains a thermoplastic resin
  • the first adhesive layer can be easily formed.
  • the first curable composition contains a thermoplastic resin
  • the stress of the first adhesive layer generated at the time of curing of the first curable composition can be relieved.
  • the thermoplastic resin has a functional group such as a hydroxyl group, the adhesiveness of the first adhesive layer is likely to be improved.
  • the content of the thermoplastic resin may be, for example, 5% by mass or more and 80% by mass or less based on the total mass of the first curable composition.
  • the coupling agent examples include a silane coupling agent having an organic functional group such as a (meth) acryloyl group, a mercapto group, an amino group, an imidazole group and an epoxy group, a silane compound such as tetraalkoxysilane, a tetraalkoxy titanate derivative and a polydialkyl. Examples thereof include titanate derivatives.
  • the adhesiveness can be further improved.
  • the content of the coupling agent may be, for example, 0.1% by mass or more and 20% by mass or less based on the total mass of the first curable composition.
  • the filler examples include non-conductive fillers (for example, non-conductive particles).
  • the filler may be either an inorganic filler or an organic filler.
  • the inorganic filler include metal oxide fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles; and inorganic fine particles such as nitride fine particles.
  • the organic filler include organic fine particles such as silicone fine particles, methacrylate-butadiene-styrene fine particles, acrylic-silicone fine particles, polyamide fine particles, and polyimide fine particles.
  • These fine particles may have a uniform structure or may have a core-shell type structure.
  • the maximum diameter of the filler is preferably less than the minimum particle size of the conductive particles.
  • the content of the filler may be, for example, 0.1% by volume or more and 50% by volume or less based on the total volume of the first curable composition.
  • the first curable composition may contain other additives such as softeners, accelerators, deterioration inhibitors, colorants, flame retardants, thixotropic agents and the like.
  • the content of these additives may be, for example, 0.1 to 10% by mass based on the total mass of the first curable composition. These additives may be contained in the first adhesive layer.
  • the first curable composition may contain a thermosetting resin in place of the components (A) and (B), or in addition to the components (A) and (B).
  • a thermosetting resin is a resin that is cured by heat and has at least one or more thermosetting groups.
  • a thermosetting resin is, for example, a compound that crosslinks by reacting with a curing agent by heat.
  • the thermosetting resin one kind of compound may be used alone, or a plurality of kinds of compounds may be used in combination.
  • thermosetting group is, for example, an epoxy group, an oxetane group, an isocyanate group, or the like from the viewpoint that the desired melt viscosity can be easily obtained and the effect of reducing the connection resistance is further improved and the connection reliability is improved. Good.
  • thermosetting resin examples include bisphenol type epoxy resin which is a reaction product of epichlorohydrin and bisphenol A, F, AD and the like, and epoxy which is a reaction product of epichlorohydrin and phenol novolac, cresol novolac and the like.
  • examples thereof include novolak resins, naphthalene-based epoxy resins having a skeleton containing a naphthalene ring, and epoxy resins such as various epoxy compounds having two or more glycidyl groups in one molecule such as glycidylamine and glycidyl ether.
  • the content of the thermosetting resin in the first curable composition is, for example, the total mass of the first curable composition. As a reference, it may be 20% by mass or more and 80% by mass or less.
  • the content of the thermosetting resin in the first curable composition is, for example, the total mass of the first curable composition. As a reference, it may be 30% by mass or more and 70% by mass or less.
  • the first curable composition may contain the above-mentioned curing agent for the thermosetting resin.
  • the curing agent for the thermosetting resin include a thermal radical generator, a thermal cation generator, and a thermal anion generator.
  • the content of the curing agent may be, for example, 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the thermosetting resin.
  • the first adhesive layer may contain components derived from the first curable composition such as unreacted component (A) and component (B).
  • the unreacted component (B) remains in the first adhesive layer during storage and transportation.
  • a part of the second curable composition in the second adhesive layer is cured, and the adhesive film is easily peeled off between the circuit member and the circuit connection portion in a high temperature and high humidity environment. It is presumed that problems such as a decrease in the resistance reduction effect will occur. Therefore, from the viewpoint of suppressing the occurrence of the above-mentioned defects, the content of the component (B) in the first adhesive layer may be 15% by mass or less based on the total mass of the first adhesive layer.
  • the content of the component (B) in the first adhesive layer may be 0.1% by mass or more based on the total mass of the first adhesive layer.
  • the melt viscosity X of the first adhesive layer at a temperature Ty at which the second adhesive layer exhibits the minimum melt viscosity Y may be 1000 Pa ⁇ s or more from the viewpoint of making peeling less likely to occur, and may be 10,000 Pa ⁇ s. It may be more than 50,000 Pa ⁇ s or more.
  • the melt viscosity X may be 1000000 Pa ⁇ s or less, 1000000 Pa ⁇ s or less, and 500000 Pa ⁇ s or less from the viewpoint of excellent wettability to the substrate.
  • the melt viscosity X can be adjusted by changing the composition of the first curable composition, changing the curing conditions of the first curable composition, and the like.
  • the thickness of the first adhesive layer may be 0.1 times or more the average particle size of the conductive particles from the viewpoint that the conductive particles can be easily captured between the electrodes and the connection resistance can be further reduced. It may be 2 times or more, and may be 0.3 times or more.
  • the thickness of the first adhesive layer 2 is the average of the conductive particles from the viewpoint that the conductive particles are more easily crushed when they are sandwiched between the electrodes facing each other during thermocompression bonding, and the connection resistance can be further reduced.
  • the particle size may be 1.0 times or less, 0.8 times or less, and 0.7 times or less. From these viewpoints, the thickness of the first adhesive layer may be 0.1 to 0.7 times the average particle size of the conductive particles, 0.2 to 0.8 times, and 0.
  • the thickness of the adhesive layer refers to the thickness of the adhesive layer located at the separated portion of the adjacent conductive particles.
  • the thickness of the first adhesive layer and the average particle size of the conductive particles satisfy the above relationship, for example, as shown in FIG. 1, a part of the conductive particles P in the first adhesive layer 13 However, it may protrude from the first adhesive layer 13 toward the second adhesive layer 14.
  • the boundary S between the first adhesive layer 13 and the second adhesive layer 14 is located at the separated portion of the adjacent conductive particles P.
  • the conductive particles P are not exposed on the surface of the first adhesive layer 13 opposite to the side of the second adhesive layer 14, and the surface on the opposite side may be a flat surface.
  • the thickness of the first adhesive layer may be appropriately set according to the height of the electrodes of the circuit member to be adhered.
  • the thickness of the first adhesive layer may be, for example, 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the length of the exposed portion of the conductive particles may be, for example, 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the adhesive layer can be measured by the following method. The adhesive film is sandwiched between two sheets of glass (thickness: about 1 mm), 100 g of bisphenol A type epoxy resin (trade name: JER811, manufactured by Mitsubishi Chemical Co., Ltd.) and a curing agent (trade name: Epomount curing agent, Refine Tech). After casting with a resin composition consisting of 10 g (manufactured by Hitachi, Ltd.), cross-section polishing is performed using a polishing machine, and a scanning electron microscope (SEM, trade name: SE-8020, manufactured by Hitachi High-Tech Science Co., Ltd.) is used. Measure the thickness of each adhesive layer.
  • SEM scanning electron microscope
  • the second adhesive layer comprises, for example, a second curable composition.
  • the second curable composition contains, for example, (a) a polymerizable compound (hereinafter, also referred to as (a) component) and (b) a polymerization initiator (hereinafter, also referred to as (b) component).
  • the second curable composition may be a thermosetting composition containing a thermosetting initiator as a component (b), and may be a photocurable composition containing a photopolymerization initiator as a component (b). It may be a mixture of a thermosetting composition and a photocurable composition.
  • the second curable composition constituting the second adhesive layer is an uncured curable composition that can flow when connected to a circuit, and is, for example, an uncured curable composition.
  • the component (a) is, for example, a compound polymerized by a radical, cation or anion generated by a polymerization initiator (photopolymerization initiator or thermal polymerization initiator) by irradiation or heating with light (for example, ultraviolet light).
  • a polymerization initiator photopolymerization initiator or thermal polymerization initiator
  • light for example, ultraviolet light
  • the compound exemplified as the component (A) can be used.
  • the component (a) reacts with radicals from the viewpoint of facilitating connection at a low temperature for a short time and easily obtaining a desired melt viscosity, further improving the effect of reducing connection resistance, and improving connection reliability. It is preferably a radically polymerizable compound having a radically polymerizable group.
  • Examples of the preferred radically polymerizable compound in the component (a) and the combination of the preferred radically polymerizable compound are the same as those in the component (A).
  • the component (a) is a radically polymerizable compound
  • the component (B) in the first adhesive layer is a photoradical polymerization initiator, it is adhered by accommodating the adhesive film in an accommodating member described later. Curing of the second curable composition during storage or transportation of the agent film tends to be significantly suppressed.
  • the component (a) may be any of a monomer, an oligomer or a polymer.
  • the component (a) one kind of compound may be used alone, or a plurality of kinds of compounds may be used in combination.
  • the component (a) may be the same as or different from the component (A).
  • the content of the component (a) is 10% by mass based on the total mass of the second curable composition from the viewpoint that the crosslink density required for reducing the connection resistance and improving the connection reliability can be easily obtained. It may be more than 20% by mass, and may be 30% by mass or more.
  • the content of the component (a) may be 90% by mass or less based on the total mass of the second curable composition, from the viewpoint of suppressing curing shrinkage during polymerization and obtaining good reliability, 80% by mass. It may be 70% by mass or less, and may be 70% by mass or less.
  • Component (b): Polymerization initiator As the component (b), the same polymerization initiator as the polymerization initiator exemplified as the component (B) can be used.
  • the component (b) is preferably a radical polymerization initiator. Examples of the preferred radical polymerization initiator in the component (b) are the same as those in the component (B).
  • the content of the component (b) is 0.1% by mass or more based on the total mass of the second curable composition from the viewpoint of facilitating connection at low temperature for a short time and being more excellent in connection reliability. It may be 0.5% by mass or more, and may be 1% by mass or more. The content of the component (b) may be 30% by mass or less, 20% by mass or less, and 10% by mass or less based on the total mass of the second curable composition from the viewpoint of pot life. It may be.
  • the second curable composition may further contain a component (a) and other components other than the component (b).
  • other components include thermoplastic resins, coupling agents, fillers, softeners, accelerators, deterioration inhibitors, colorants, flame retardants, thixotropic agents and the like.
  • the details of the other components are the same as the details of the other components in the first adhesive layer.
  • the second curable composition may contain a thermosetting resin in place of the components (a) and (b), or in addition to the components (a) and (b).
  • the second curable composition may contain a curing agent used to cure the thermosetting resin.
  • the thermosetting resin and the curing agent the same thermosetting resin and the curing agent as the thermosetting resin and the curing agent exemplified as other components in the first curable composition can be used.
  • the content of the thermosetting resin in the second curable composition is, for example, the total mass of the second curable composition. As a reference, it may be 20% by mass or more and 80% by mass or less.
  • the content of the thermosetting resin in the second curable composition is, for example, the total mass of the second curable composition. As a reference, it may be 20% by mass or more and 80% by mass or less.
  • the content of the curing agent may be the same as the range described as the content of the curing agent in the first curable composition.
  • the content of the conductive particles in the second adhesive layer may be, for example, 1% by mass or less, or 0% by mass, based on the total mass of the second adhesive layer.
  • the second adhesive layer preferably does not contain conductive particles.
  • the minimum melt viscosity Y of the second adhesive layer may be 50 Pa ⁇ s or more, 100 Pa ⁇ s or more, or 300 Pa ⁇ s or more from the viewpoint of obtaining excellent blocking resistance.
  • the minimum melt viscosity Y may be 100,000 Pa ⁇ s or less, may be 10,000 Pa ⁇ s or less, or may be 5000 Pa ⁇ s or less, from the viewpoint of obtaining excellent filling property between electrodes (resin filling property). ..
  • the minimum melt viscosity Y can be adjusted by changing the composition of the second curable composition or the like.
  • the thickness of the second adhesive layer may be appropriately set according to the height of the electrodes of the circuit member to be adhered.
  • the thickness of the second adhesive layer may be 5 ⁇ m or more and 200 ⁇ m or less from the viewpoint that the space between the electrodes can be sufficiently filled to seal the electrodes and better reliability can be obtained. It may be.
  • the first adhesive layer side in the second adhesive layer The thickness of the second adhesive layer is the distance from the surface on the opposite side to the boundary S between the first adhesive layer and the second adhesive layer located at the separated portion of the adjacent conductive particles. ..
  • the ratio of the thickness of the first adhesive layer 2 to the thickness of the second adhesive layer determines the space between the electrodes. From the viewpoint that the electrode can be sufficiently filled and the electrode can be sealed and better reliability can be obtained, the number may be 1 or more, and may be 1000 or less.
  • the thickness of the adhesive film (the total thickness of all the layers constituting the adhesive film) may be, for example, 5 ⁇ m or more, and may be 200 ⁇ m or less.
  • the above-mentioned adhesive film for circuit connection includes a peelable support film and an adhesive layer containing an adhesive component and conductive particles provided on the support film, and the conductive particles are unevenly distributed on the support film side.
  • the adhesive layer is dispersed in a direction orthogonal to the thickness direction of the adhesive layer, and the adhesive layer is a cured product of the above-mentioned first curable composition in the thickness direction of the adhesive layer from the support film side. It may have a first region containing the first region and a second region containing the second curable composition described above.
  • the ranges of the first region and the second region in the thickness direction of the adhesive layer can be set in the same manner as the thicknesses of the first adhesive layer and the second adhesive layer described above, respectively.
  • the conductive particles can also be set in the same manner as described above.
  • circuit connection adhesive film of the present embodiment has been described above, the present invention is not limited to the above embodiment.
  • the method for manufacturing the circuit connection structure of the present embodiment is a second circuit provided with a first circuit member provided with a first circuit electrode and a second circuit electrode corresponding to the first circuit electrode. This is a method for manufacturing a circuit connection structure formed by connecting members via the circuit connection adhesive film of the present embodiment described above.
  • the method of the present embodiment includes, for example, the preparatory step of preparing the adhesive film for circuit connection of the present embodiment described above.
  • the circuit connection adhesive film is placed on the first circuit member so that the second adhesive layer side of the circuit connection adhesive film faces the surface of the first circuit member where the circuit electrode is provided. Laminating process and laminating
  • the second circuit member is arranged on the first circuit member on which the circuit connection adhesive film is laminated so that the first circuit electrode and the second circuit electrode face each other, and the circuit connection adhesive film is arranged.
  • a heating and pressurizing step of pressurizing the first circuit member and the second circuit member in the direction in which the first circuit electrode and the second circuit electrode face each other while heating. To be equipped.
  • the above-described circuit connection adhesive film of the present embodiment can be manufactured.
  • the method for producing the circuit connection adhesive film of the present embodiment is, for example, a preparation step for preparing the first adhesive layer described above (first preparation step) and a first preparation step described above on the first adhesive layer. It may include a laminating step of laminating the adhesive layer of 2.
  • the method for manufacturing the adhesive film for circuit connection may further include a preparation step (second preparation step) for preparing the second adhesive layer.
  • the first adhesive layer is prepared by forming the first adhesive layer on the support film to obtain the first adhesive film.
  • the component (A), the component (B) and the component (C), and other components added as needed are added to the organic solvent and dissolved by stirring and mixing, kneading and the like.
  • disperse to prepare a varnish composition are added onto the release-treated substrate using a knife coater, roll coater, applicator, comma coater, die coater, etc., and then the organic solvent is volatilized by heating to form the substrate.
  • the layer composed of the first curable composition is irradiated with light or heated to cure the first curable composition and form the first adhesive layer on the substrate (). Curing process).
  • the first adhesive film is obtained.
  • the organic solvent used for preparing the varnish composition preferably has the property of uniformly dissolving or dispersing each component, and for example, toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate and the like. Can be mentioned. These organic solvents can be used alone or in combination of two or more. Stirring and mixing and kneading in the preparation of the varnish composition can be carried out by using, for example, a stirrer, a raft machine, a triple roll, a ball mill, a bead mill or a homodisper.
  • the support film is not particularly limited as long as it has heat resistance that can withstand the heating conditions when volatilizing the organic solvent when the first curable composition is cured by light, and the first curable film is curable.
  • the composition is cured by heating, there is no particular limitation as long as it has heat resistance that can withstand the heating conditions for volatilizing the organic solvent and the heating conditions for curing the first curable composition. ..
  • the supporting film examples include stretched polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polyvinylidene terephthalate, polyolefin, polyacetate, polycarbonate, polyvinylidene sulfate, polyamide, polyimide, cellulose, ethylene / acetic acid.
  • a base material for example, a film
  • polyethylene terephthalate can be preferably used.
  • the heating conditions for volatilizing the organic solvent from the varnish composition applied to the support film are preferably conditions in which the organic solvent volatilizes sufficiently.
  • the heating conditions may be, for example, 40 ° C. or higher and 120 ° C. or lower for 0.1 minute or longer and 10 minutes or shorter.
  • irradiation light for example, ultraviolet light
  • Light irradiation can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, or the like.
  • the amount of light irradiation may be adjusted so that the ratio of melt viscosity (X / Y) is 10 or more.
  • the amount of light irradiation may be, for example, the integrated light amount of light having a wavelength of 365 nm, which may be 100 mJ / cm 2 or more, 200 mJ / cm 2 or more, or 300 mJ / cm 2 or more.
  • the dose of light for example, an accumulated light quantity of the wavelength 365nm light, may be at 10000 mJ / cm 2 or less, may be at 5000 mJ / cm 2 or less, may be at 3000 mJ / cm 2 or less.
  • the larger the light irradiation amount (integrated light amount of light) the larger the melt viscosity X tends to be, and the larger the melt viscosity ratio (X / Y) tends to be.
  • the heating conditions in the curing step may be adjusted so that the melt viscosity ratio (X / Y) is 10 or more.
  • the heating conditions may be, for example, 30 ° C. or higher and 300 ° C. or lower for 0.1 minutes or more and 5000 minutes or less, and 50 ° C. or higher and 150 ° C. or lower for 0.1 minutes or longer and 3000 minutes or shorter.
  • the higher the heating temperature the larger the melt viscosity X tends to be, and the higher the melt viscosity ratio (X / Y) tends to be.
  • the longer the heating time the larger the melt viscosity X tends to be, and the melt viscosity ratio (X / Y) tends to be larger.
  • the second preparation step other than using the components (a) and (b) and other components added as needed, and not performing the curing step (no light irradiation and heating).
  • the base material the same base material as the above-mentioned support film can be used.
  • the second adhesive layer may be laminated on the first adhesive layer by laminating the first adhesive film and the second adhesive film, and the first adhesive may be laminated.
  • the first adhesive is formed by applying a varnish composition obtained by using the components (a) and (b) and other components added as needed on the layer and volatilizing the organic solvent.
  • a second adhesive layer may be laminated on the layer.
  • Examples of the method of adhering the first adhesive film and the second adhesive film include methods such as heat pressing, roll laminating, and vacuum laminating. Lamination may be performed, for example, under heating conditions of 0 to 80 ° C.
  • a circuit connection adhesive film in which 90% or more of the conductive particles P are separated from other conductive particles is used in the first adhesive layer, such a dispersed state is used.
  • the conductive particles P nickel-containing particles are preferably used from the viewpoint of carrying out dispersion by the magnetic field application step.
  • iron, cobalt, and nickel are ferromagnets and are known to be magnetized by an external magnetic field. Among them, the use of nickel is significant in that both conductivity and dispersibility by applying a magnetic field can be achieved. Is.
  • the surface layer of the conductive particles P may be a white metal noble metal such as gold or silver instead of nickel.
  • the surface of nickel may be coated with a precious metal such as Au.
  • a non-conductive glass, ceramic, plastic or the like coated with a conductive substance such as the metal may be used, and in this case as well, a nickel layer may be provided to form a multilayer structure.
  • the magnetism of nickel is affected by the phosphorus concentration contained in nickel plating, it is preferable to adjust the magnetism required for dispersion of the conductive particles P by a magnetic field in a timely manner.
  • the magnetism of the conductive particles P can be measured for saturation magnetization by, for example, a vibrating sample magnetmeter (VSM).
  • VSM vibrating sample magnetmeter
  • the saturation magnetization is preferably in the range of 5.0 emu / g to 50 emu / g in VSM measurement. When it is 5.0 emu / g or more, it becomes easy to sufficiently disperse the conductive particles P.
  • the magnetization of the conductive particles P does not become too large, the conduction of the conductive particles P in the thickness direction of the first adhesive layer 13 is suppressed, and the dispersibility of the conductive particles P becomes high. It tends to be higher.
  • the average particle size of the conductive particles P is preferably 1.0 ⁇ m or more and 10.0 ⁇ m or less.
  • the average particle size of the conductive particles P is 1.0 ⁇ m or more, the coating accuracy on the support film is high, and the conductive particles P can be easily dispersed in the first adhesive layer.
  • the average particle size of the conductive particles P is 10.0 ⁇ m or less, good insulation between adjacent circuit electrodes of the connecting structure tends to be obtained.
  • the average particle size of the conductive particles P is more preferably 2.0 ⁇ m or more, and further preferably 2.5 ⁇ m or more.
  • the average particle size of the conductive particles P is more preferably 8.5 ⁇ m or less, further preferably 7 ⁇ m or less. Even more preferably, it is 6.0 ⁇ m or less.
  • the blending amount of the conductive particles P is preferably 1 part by volume to 100 parts by volume with respect to 100 parts by volume of the components other than the conductive particles P in the first adhesive layer. From the viewpoint of preventing short-circuiting of adjacent circuit electrodes due to the excessive presence of the conductive particles P, the blending amount of the conductive particles P is more preferably 10 parts by volume to 50 parts by volume. Furthermore, to the extent the average particle diameter is less 1.0 ⁇ m or 10.0 ⁇ m of the conductive particles, it is preferred particle density of the conductive particles is 1000 / mm 2 or more 50000 / mm 2 or less. In this case, the dispersibility of the conductive particles P and the insulating property between the adjacent circuit electrodes can be more preferably compatible with each other.
  • FIG. 2 is a schematic cross-sectional view showing a laminating step in the method for manufacturing a connection structure of the present embodiment.
  • the second adhesive layer 14 side of the circuit connection adhesive film 11 faces the surface of the first circuit member 2 where the first circuit electrode 6 is provided.
  • the circuit connection adhesive film 11 is laminated on the first circuit member 2.
  • the second adhesive layer 14 is the first after or while the release film is peeled off. It can be laminated so as to be in close contact with the circuit member 2.
  • the first circuit member 2 has a circuit electrode 6 on the mounting surface 5a side of the main body 5.
  • Examples of the first circuit member 2 include a member having a flexible substrate such as COP, FCP, and polyimide.
  • Examples of the circuit electrode 6 include copper plated with a metal such as tin.
  • An insulating layer may be formed on the mounting surface 5a where the circuit electrode 6 is not formed.
  • a known laminator can be used as the laminating means.
  • Laminating conditions can be set as appropriate.
  • FIG. 3 is a schematic cross-sectional view showing a laminated body obtained through a laminating step.
  • FIG. 4 is a schematic cross-sectional view showing a heating and pressurizing step in the method for manufacturing the connection structure of the present embodiment.
  • the circuit connection adhesive film (second adhesive layer 14 and the first adhesive) is adhered so that the first circuit electrode 6 and the second circuit electrode 8 face each other.
  • the second circuit member 3 is arranged on the first circuit member 2 on which the agent layer 13) is laminated, and the circuit connection adhesive film (second adhesive layer 14 and first adhesive layer 13) is applied. While heating, the first circuit member 2 and the second circuit member 3 are pressurized in the direction in which the first circuit electrode 6 and the second circuit electrode 8 face each other.
  • the second circuit member 3 is, for example, a glass substrate or a plastic substrate whose circuit is formed of ITO, IZO, metal or the like used for a liquid crystal display, a ceramic wiring board, or the like. As shown in FIG. 4, the second circuit member 3 has a second circuit electrode 8 corresponding to the first circuit electrode 6 on the mounting surface 7a side of the main body 7.
  • the circuit electrode 8 has, for example, a rectangular shape in a plan view, and has a thickness of, for example, about 100 nm to 1000 nm.
  • the surface of the circuit electrode 8 is one selected from, for example, gold, silver, copper, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, indium tin oxide (ITO), and indium zinc oxide (IZO). It is composed of two or more kinds of materials.
  • the mounting surface 7a may also have an insulating layer formed on a portion where the circuit electrode 8 is not formed.
  • thermocompression bonding device can be used as the heating means.
  • the heating temperature of the circuit connection adhesive film (second adhesive layer 14 and first adhesive layer 13) is equal to or higher than the temperature at which polymerization active species are generated in the curing agent and the polymerization of the polymerization monomer is started. Is preferable.
  • This heating temperature is, for example, 80 ° C. to 200 ° C., preferably 100 ° C. to 180 ° C.
  • the heating time is, for example, 0.1 seconds to 30 seconds, preferably 1 second to 20 seconds.
  • the heating temperature is 80 ° C. or higher, a sufficient curing rate is likely to be obtained, and when the heating temperature is 200 ° C. or lower, unwanted side reactions are less likely to proceed.
  • the heating time is 0.1 seconds or more, the curing reaction is likely to proceed sufficiently, and when the heating time is 30 seconds or less, the productivity of the cured product is easily maintained, and undesired side reactions are less likely to proceed.
  • thermocompression bonding device can be used as the pressurizing means.
  • the pressure and time of pressurization can be set as appropriate.
  • FIG. 5 is a schematic cross-sectional view showing a circuit connection structure obtained through a heating and pressurizing step.
  • the adhesive components of the circuit connection adhesive film (second adhesive layer 14 and first adhesive layer 13) flow, and the first circuit electrode 6 and the second circuit electrode 8 flow.
  • the second adhesive layer and the first adhesive layer are cured in a state where the distance between the two and the conductive particles P is reduced.
  • the first circuit electrode 6 and the second circuit electrode 8 are electrically connected, and the adjacent circuit electrodes 6 and 6 are adjacent to each other and adjacent to each other.
  • a cured product 4 of the circuit connection adhesive film (second adhesive layer 14 and first adhesive layer 13) is formed in a state where the circuit electrodes 8 and 8 are electrically insulated from each other, and is shown in FIG.
  • the circuit connection structure 1 is obtained.
  • the first circuit electrode 6 and the second circuit electrode are formed by the cured product 4 of the circuit connection adhesive film (second adhesive layer 14 and first adhesive layer 13).
  • the time-dependent change of the distance from 8 can be sufficiently prevented, and the long-term reliability of the electrical characteristics can be ensured.
  • the cured product 4 of the circuit connection adhesive film (second adhesive layer 14 and first adhesive layer 13) has a first region 9 formed by curing the first adhesive layer 13 and a second region 9. It has a second region 10 formed by curing the adhesive layer 14 of the above.
  • the first region 9 is located on the second circuit member 3 side
  • the second region 10 is located on the first circuit member 2 side.
  • the conductive particles P are interposed between the first circuit electrode 6 and the second circuit electrode 8 in a state of being slightly flattened by crimping. As a result, an electrical connection between the first circuit electrode 6 and the second circuit electrode 8 is realized. Further, the conductive particles P are separated between the adjacent first circuit electrodes 6 and 6 and between the adjacent second circuit electrodes 8 and 8, and between the adjacent first circuit electrodes 6 and 6. And electrical insulation between the adjacent second circuit electrodes 8 and 8 is realized.
  • FIG. 6 is a schematic view showing a manufacturing process of the adhesive film for circuit connection shown in FIG.
  • the long support film 12 is conveyed at a predetermined speed by the feeding roller 21 and the winding roller 22.
  • a coater 23 for applying the adhesive paste W which is a material for forming the first adhesive layer 13, is arranged on the transport path of the support film 12, and the adhesive paste in which the conductive particles P are dispersed by the coater 23 is arranged. W is applied onto the support film 12 (coating step).
  • the thickness of the adhesive paste W applied on the support film 12 by the coater 23 varies from time to time depending on the proportion of the solvent contained in the resin composition, but is less than 1.6 times the average particle size of the conductive particles P. It is preferable that
  • the viscosity of the adhesive paste W can be varied depending on the application and coating method, but is usually preferably 10 mPa ⁇ s to 10000 mPa ⁇ s. From the viewpoint of suppressing separation of the compound in the adhesive paste W and improving compatibility, it is more preferably 50 mPa ⁇ s to 5000 mPa ⁇ s. Further, in order to improve the appearance of the circuit connection adhesive film 11, it is preferably 100 mPa ⁇ s to 3000 mPa ⁇ s.
  • the coating method of the adhesive paste W is not limited to the above, and a known method can be used.
  • the law etc. can be mentioned.
  • the bar coating method, the die coating method, the microgravure coating method and the like are suitable for producing the adhesive film 11 for circuit connection, and the microgravure coating method is particularly suitable from the viewpoint of the accuracy of the film thickness.
  • a pair of magnets 24 and 25 are arranged vertically facing each other so as to sandwich the support film 12.
  • the magnet 24 arranged on the upper side has an N pole and the magnet 25 arranged on the lower side has an S pole, and the magnet 24 is oriented substantially vertically toward the magnet 25.
  • a magnetic field is formed. Therefore, when the support film 12 is conveyed between the magnets 24 and 25, the conductive particles P in the adhesive paste W are magnetized, and the conductive particles P and P are separated from each other in the in-plane direction of the adhesive paste W by a repulsive force. A state is formed (magnetic field application step).
  • the adhesive paste W is dried by hot air or the like while the support film 12 passes between the magnets 24 and 25 (drying step).
  • the viscosity of the adhesive paste W is increased, and as shown in FIG. 8, 70% or more, preferably 90% or more of the conductive particles P are separated from the other adjacent conductive particles P.
  • the adhesive layer 13 of the above is formed on the support film 12.
  • the thickness of the adhesive paste W decreases due to the drying step, and as described above, the thickness of the adhesive paste W is set to less than 1.6 times the average particle size of the conductive particles P, so that the first method is performed.
  • the thickness of the adhesive layer 13 can be easily set to 0.6 times or more and less than 1.0 times the average particle size of the conductive particles P. Further, by using an adhesive paste (varnish) diluted with an organic solvent (for example, methyl ethyl ketone), the thickness of the adhesive layer can be reduced to about 0.1 times the average particle size of the conductive particles P. Become.
  • the amount of the organic solvent to be diluted is not particularly limited, but it is preferable to add 50 to 500 parts by mass with respect to 100 parts by mass of the adhesive component.
  • the drying temperature of the adhesive paste W is preferably, for example, 20 ° C to 80 ° C.
  • the transport speed of the support film 12 is preferably, for example, 30 mm / s to 160 mm / s.
  • the thickness of the adhesive paste W is preferably 5 ⁇ m to 10 ⁇ m, for example, when conductive particles P having an average particle size of 3 ⁇ m are used.
  • the adhesive paste W dries in a state where the conductive particles P are sufficiently separated from each other, so that the dispersion tends to be sufficient.
  • the transport speed of the support film 12 is 160 mm / s or less, the application of the magnetic field tends to end after drying, and the reaggregation of the conductive particles P can be suppressed.
  • the thickness of the adhesive paste W is 5 ⁇ m or more, it is possible to suppress the shortage of the gap of the coater 23 and the shortage of the number of conductive particles P in the first adhesive layer 13.
  • the thickness of the adhesive paste W is 10 ⁇ m or less, it is possible to suppress an excessive gap of the coater 23, and it is possible to suppress an excessive number of conductive particles P in the first adhesive layer 13.
  • the second adhesive layer 14 separately formed on the release film 15 is laminated on the first adhesive layer 13 (lamination step). ).
  • the circuit connection adhesive film 11 shown in FIG. 2 is obtained.
  • a hot roll laminator can be used for laminating the second adhesive layer 14.
  • the present invention is not limited to laminating, and an adhesive paste used as a material for the second adhesive layer 14 may be applied and dried on the first adhesive layer 13.
  • the thickness of the first adhesive layer 13 is 0.1 times or more and 1.0 times or less and 0.1 times or more and 0.7 times the average particle size of the conductive particles P.
  • It can be less than or equal to, or 0.6 times or more and less than 1.0 times. In this case, the flow of the conductive particles P during crimping is suppressed, and the capture efficiency of the conductive particles P between the first circuit electrode 6 and the second circuit electrode 8 can be improved. Therefore, the connection reliability between the first circuit member 2 and the second circuit member 3 can be ensured.
  • FIG. 10 is a perspective view showing an adhesive film accommodating set of one embodiment.
  • the adhesive film accommodating set 120 includes an adhesive film 11 for circuit connection, a reel 121 around which the adhesive film 11 is wound, and an accommodating member 122 accommodating the adhesive film 11 and the reel 121. And.
  • the adhesive film 11 is, for example, in the form of a tape.
  • the tape-shaped adhesive film 11 is produced, for example, by cutting a sheet-shaped raw fabric into a long length with a width suitable for the intended use.
  • the adhesive film 11 may have a support film 12 on the side of the first adhesive layer.
  • a base material such as the PET film described above can be used.
  • the reel 121 has a first side plate 124 having a winding core 123 around which the adhesive film 11 is wound, and a second side plate 125 arranged so as to face the first side plate 124 with the winding core 123 interposed therebetween. Be prepared.
  • the first side plate 124 is, for example, a disk made of plastic, and an opening having a circular cross section is provided in the central portion of the first side plate 124.
  • the winding core 123 of the first side plate 124 is a portion around which the adhesive film 11 is wound.
  • the winding core 123 is made of, for example, plastic, and has an annular shape having a thickness similar to the width of the adhesive film 11.
  • the winding core 123 is fixed to the inner surface of the first side plate 124 so as to surround the opening of the first side plate 124.
  • a shaft hole 126 is provided in the central portion of the reel 121, which is a portion into which a rotating shaft of a winding device or a feeding device (not shown) is inserted. When the rotating shaft is driven with the rotating shaft of the winding device or the feeding device inserted into the shaft hole 126, the reel 121 rotates without idling.
  • a desiccant container containing a desiccant may be fitted in the shaft hole 126.
  • the second side plate 125 is a disk made of, for example, plastic, and the central portion of the second side plate 125 has a circular cross section having the same diameter as the opening of the first side plate 124. The opening is provided.
  • the accommodating member 122 has a bag shape, for example, and accommodates the adhesive film 11 and the reel 121.
  • the accommodating member 122 has an insertion port 127 for accommodating (inserting) the adhesive film 11 and the reel 121 inside the accommodating member 122.
  • the accommodating member 122 has a visual recognition portion 128 that makes the inside of the accommodating member 122 visible from the outside.
  • the accommodating member 122 shown in FIG. 10 is configured such that the entire accommodating member 122 becomes a visual recognition portion 128.
  • the visual recognition unit 128 has transparency to visible light. For example, when the light transmittance in the visual recognition unit 128 is measured in the wavelength range of 450 to 750 nm, the average value of the light transmittance is 30% or more between the wavelengths of 450 to 750 nm, and the wavelength width is 50 nm. There is at least one region.
  • the light transmittance of the visual recognition unit 28 is obtained by preparing a sample obtained by cutting the visual recognition unit 128 to a predetermined size and measuring the light transmittance of the sample with an ultraviolet-visible spectrophotometer.
  • the accommodating member 122 has such a visual recognition portion 128, various information such as the product name, lot number, and expiration date affixed to the reel 121 inside the accommodating member 122 can be confirmed from the outside of the accommodating member 122. be able to. This can be expected to prevent mixing of different products and improve the efficiency of sorting work.
  • the transmittance of light having a wavelength of 365 nm in the visual recognition unit 128 is 10% or less. Since the transmittance of the light having a wavelength of 365 nm in the visual recognition unit 128 is 10% or less, the light incident from the outside to the inside of the accommodating member 122 when the photopolymerization initiator is used as the component (B) and the first Curing of the second curable composition due to the photopolymerization initiator remaining in the adhesive layer can be suppressed.
  • the transmittance of light having a wavelength of 365 nm in the visible portion 128 is preferably 10% or less, more preferably 5% or less, still more preferably. Is 1% or less, particularly preferably 0.1% or less.
  • the maximum value of the light transmittance in the wavelength region in which the above-mentioned photopolymerization initiator (component (B)) can generate radicals, cations or anions in the visual recognition unit 128 is preferable. It is 10% or less, more preferably 5% or less, still more preferably 1% or less, and particularly preferably 0.1% or less.
  • the maximum value of the light transmittance in the viewing unit 128 at a wavelength of 254 to 405 nm is preferably 10% or less, more preferably 5% or less, still more preferably 1% or less, and particularly preferably 0.1%. It is as follows.
  • the visual recognition portion 128 (accommodating member 122) is formed of, for example, a sheet having a thickness of 10 to 5000 ⁇ m.
  • the sheet is made of a material having a transmittance of light having a wavelength of 365 nm in the visible portion 128 of 10% or less.
  • a material may consist of one type of component or may consist of a plurality of types of components. Examples of the material include low-density polyethylene, linear low-density polyethylene, polycarbonate, polyester, acrylic resin, polyamide, glass and the like. These materials may contain UV absorbers.
  • the visual recognition unit 128 may have a laminated structure formed by laminating a plurality of layers having different light transmission properties. In this case, each layer constituting the visual recognition unit 128 may be made of the above-mentioned material.
  • the insertion port 127 may be sealed by, for example, being closed by a sealing machine or the like in order to prevent air from entering from the outside during accommodation. In this case, it is preferable to suck and remove the air in the accommodating member 122 before closing the insertion port 127. It can be expected that the humidity inside the accommodating member 122 will be reduced from the initial stage of accommodating and that air will be prevented from entering from the outside. Further, when the inner surface of the accommodating member 122 and the reel 121 are in close contact with each other, the inner surface of the accommodating member 122 and the surface of the reel 121 rub against each other due to vibration during transportation to generate foreign matter, and the side plate 124 of the reel 121 , 125 can be prevented from being scratched on the outer surface.
  • the accommodating member is configured so that the entire accommodating member serves as a visible portion, but in another embodiment, the accommodating member has a visible portion as a part of the accommodating member. May be good.
  • the accommodating member may have a rectangular visible portion substantially in the center of the side surface of the accommodating member.
  • the portion of the accommodating member other than the visible portion may be black, for example, so as not to transmit ultraviolet light and visible light.
  • the shape of the accommodating member is bag-shaped, but the accommodating member may be, for example, box-shaped.
  • the accommodating member preferably has a notch for opening. In this case, the opening work at the time of use becomes easy.
  • ⁇ Preparation method of polyester urethane resin 48 parts by mass of isophthalic acid and 37 parts by mass of neopentyl glycol were put into a heated stainless steel autoclave equipped with a stirrer, a thermometer, a condenser, a vacuum generator and a nitrogen gas introduction tube, and tetrabutoxy as a catalyst. 0.02 parts by mass of titanate was added. Then, the temperature was raised to 220 ° C. under a nitrogen stream, and the mixture was stirred as it was for 8 hours. Then, the pressure was reduced to atmospheric pressure (760 mmHg), the mixture was cooled to room temperature, the white precipitate was taken out, washed with water, and vacuum dried to obtain a polyester polyol.
  • the polyester polyol obtained by the above-mentioned reaction between the dicarboxylic acid and the diol is sufficiently dried, then dissolved in MEK, and placed in a four-necked flask equipped with a stirrer, a dropping funnel, a reflux cooler and a nitrogen gas introduction tube. did. Further, dibutyltin laurate was added as a catalyst in an amount of 0.05 parts by mass with respect to 100 parts by mass of the polyester polyol, and 4,4′-diphenylmethane diisocyanate dissolved in MEK was 50 parts by mass with respect to 100 parts by mass of the polyester polyol.
  • the desired polyester urethane resin was obtained by adding the above amount with a dropping funnel and stirring at 80 ° C. for 4 hours.
  • polyurethane acrylate (UA1) was obtained.
  • the weight average molecular weight of the polyurethane acrylate (UA1) was 15,000.
  • the weight average molecular weight was measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve according to the following conditions.
  • GPC gel permeation chromatography
  • ⁇ Making conductive particles> A layer made of nickel was formed on the surface of the polystyrene particles so that the thickness of the layer was 0.2 ⁇ m. In this way, conductive particles having an average particle size of 4 ⁇ m, a maximum particle size of 4.5 ⁇ m, and a specific gravity of 2.5 were obtained.
  • A1 Dicyclopentadiene type diacrylate (trade name: DCP-A, manufactured by Toagosei Co., Ltd.)
  • A2 Polyurethane acrylate synthesized as described above (UA1)
  • A3 2-methacryloyloxyethyl acid phosphate (trade name: Light Ester P-2M, manufactured by Kyoeisha Chemical Co., Ltd.)
  • B1 B1: 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyloxime)] (trade name: Irgacure (registered trademark) OXE01, manufactured by BASF)
  • C1 Benzoyl peroxide (trade name: Niper BMT-K40, manufactured by NOF CORPORATION) (Conductive particles)
  • D1 Conductive particles (thermoplastic resin) prepared as described above
  • E1 Polyester
  • thermosetting composition varnish (varnish composition)> As polymerizable compounds a1 to a3, thermoplastic resin e1, coupling agent f1, filler g1 and solvent h1, the polymerizable compounds A1 to A3, the thermoplastic resin E1, the coupling agent F1 and the filler in the photocurable composition. Using the same G1 and solvent H1, these components and the thermal polymerization initiator shown below were mixed in the blending amounts (parts by mass) shown in Table 2 to prepare a varnish for the thermosetting composition 1. The content (% by volume) of the filler shown in Table 2 is a content based on the total volume of the thermosetting composition. (Thermal polymerization initiator) c1: Benzoyl peroxide (trade name: Niper BMT-K40, manufactured by NOF CORPORATION)
  • Example 1 [Preparation of the first adhesive film]
  • the varnish of the photocurable composition 1 was applied onto a PET film having a thickness of 50 ⁇ m using a coating device.
  • hot air drying was performed at 70 ° C. for 3 minutes, and a magnetic field was applied at the same time to form a layer made of the photocurable composition 1 having a thickness (thickness after drying) of 4 ⁇ m on the PET film.
  • the thickness was measured using a contact type thickness gauge. When a contact type thickness gauge is used, the size of the conductive particles is reflected, and the thickness of the region where the conductive particles are present is measured.
  • the thickness of the first adhesive layer located at the separated portion of the adjacent conductive particles is obtained by the method described later.
  • the layer made of the photocurable composition 1 was irradiated with light using a metal halide lamp so that the integrated light amount was 1500 mJ / cm 2 , and the polymerizable compound was polymerized.
  • the photocurable composition 1 was cured to form a first adhesive layer.
  • a first adhesive film having a first adhesive layer having a thickness of 4 ⁇ m (thickness of the region where the conductive particles are present) on the PET film was obtained.
  • the conductive particle density at this time was about 7000 pcs / mm 2 .
  • the monodispersity of the conductive particles (the ratio at which the conductive particles exist in a state of being separated from other adjacent conductive particles (monodisperse state)) was evaluated.
  • the monodispersity rate was 70% or more.
  • the monodisperse rate, the monodispersion ratio (%) (2500 ⁇ m 2 in conductive particle number monodisperse / 2500 [mu] m conductive particle count in 2) ⁇ 100, was calculated using.
  • the conductive particles were actually measured using a metallurgical microscope at a magnification of 200 times.
  • thermosetting composition 1 The varnish of the thermosetting composition 1 was applied onto a PET film having a thickness of 50 ⁇ m using a coating device. Next, hot air drying was performed at 70 ° C. for 3 minutes to form a second adhesive layer (layer composed of the thermosetting composition 1) having a thickness of 8 ⁇ m on the PET film. By the above operation, a second adhesive film having a second adhesive layer on the PET film was obtained.
  • An adhesive film for circuit connection is sandwiched between two sheets of glass (thickness: about 1 mm), and 100 g of bisphenol A type epoxy resin (trade name: JER811, manufactured by Mitsubishi Chemical Corporation) and a curing agent (trade name: Epomount curing agent) , Made by Refine Tech Co., Ltd.)
  • a resin composition consisting of 10 g the cross section is polished using a polishing machine, and a scanning electron microscope (SEM, trade name: SE-8020, manufactured by Hitachi High-Tech Science Co., Ltd.)
  • SEM scanning electron microscope
  • the width of the glass substrate with a glass substrate (manufactured by Geomatec) is heated and pressurized at 170 ° C. and 6 MPa for 4 seconds using a heat crimping device (heating method: constant heat type, manufactured by Taiyo Kikai Co., Ltd.).
  • a circuit connection structure (connection structure) was produced by connecting over 1 mm. At the time of connection, the circuit connection adhesive film was first attached to the COF substrate from the second adhesive layer side, and after the separator was peeled off, the separator was opposed to the glass substrate to heat and pressurize.
  • connection resistance value between the opposing electrodes immediately after the connection was measured with a multimeter.
  • the connection resistance value was determined as the average value of 16 resistance points between the opposing electrodes.
  • the results are shown in Table 3.
  • the particle dispersibility after mounting was observed using a microscope. The one in which the state before mounting was maintained was evaluated as 1, the one in which the state before mounting was not maintained as 3, and the intermediate was evaluated as 2. Levels 1 and 2 are practically acceptable levels.
  • Example 2 An adhesive film for circuit connection and a circuit connection structure were produced in the same manner as in Example 1 except that the thickness of the first adhesive layer was changed to 1.5 ⁇ m and 3.0 ⁇ m.
  • the prepared circuit connection structure was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • the monodispersity of the conductive particles in the first adhesive layer was 70% or more, respectively.

Abstract

An adhesive film 11 for circuit connection is provided with: a peelable support film 12, a first adhesive layer 13 containing conductive particles P, the first adhesive layer being disposed on the support film; and a second adhesive layer 14 disposed on the first adhesive layer 13. The thickness of the first adhesive layer is 0.1 to 1.0-times the average particle diameter of the conductive particles.

Description

回路接続用接着剤フィルム、回路接続構造体の製造方法及び接着剤フィルム収容セットAdhesive film for circuit connection, manufacturing method of circuit connection structure and adhesive film storage set
 本発明は、回路接続用接着剤フィルム、回路接続構造体の製造方法及び接着剤フィルム収容セットに関する。 The present invention relates to an adhesive film for circuit connection, a method for manufacturing a circuit connection structure, and an adhesive film accommodating set.
 従来、回路接続を行うために各種の接着材料が使用されている。例えば、液晶ディスプレイとテープキャリアパッケージ(TCP)との接続、フレキシブルプリント配線基板(FPC)とTCPとの接続、又はFPCとプリント配線板との接続のための接着材料として、接着剤中に導電粒子が分散された異方導電性を有する回路接続用接着剤フィルムが使用されている。具体的には、回路接続用接着剤フィルムにより形成される回路接続部によって、回路部材同士が接着されると共に、回路部材上の電極同士が回路接続部中の導電粒子を介して電気的に接続されることで、回路接続構造体が得られる。 Conventionally, various adhesive materials have been used for circuit connection. For example, as an adhesive material for connecting a liquid crystal display and a tape carrier package (TCP), a flexible printed wiring board (FPC) and TCP, or a connection between FPC and a printed wiring board, conductive particles in an adhesive. An adhesive film for circuit connection having an anisotropic conductivity in which is dispersed is used. Specifically, the circuit members are bonded to each other by the circuit connection portion formed of the circuit connection adhesive film, and the electrodes on the circuit members are electrically connected to each other via the conductive particles in the circuit connection portion. By doing so, a circuit connection structure is obtained.
 回路接続用接着剤フィルムは、例えば、熱硬化性樹脂等を含有する接着剤成分と、必要により配合される導電性粒子とを含有し、ポリエチレンテレフタレート(PET)フィルム等の基材上に、接着剤層としてフィルム状に形成される。さらに、接着剤フィルムは、フィルム状の原反を用途に適した幅のテープ状に裁断し、このテープを巻芯に巻き付けて巻重体にしたリールの状態で使用される場合がある(例えば特許文献1参照)。 The circuit connection adhesive film contains, for example, an adhesive component containing a thermosetting resin or the like and conductive particles to be blended as necessary, and adheres to a substrate such as a polyethylene terephthalate (PET) film. It is formed in the form of a film as an agent layer. Further, the adhesive film may be used in the state of a reel in which a film-like raw fabric is cut into a tape having a width suitable for the intended use, and the tape is wound around a winding core to form a winding body (for example, a patent). Reference 1).
特開2003-34468号公報JP-A-2003-34468
 ところで、接着剤フィルムを用いてドライバーIC等をLCDモジュールに接続する場合、従来は先にガラスパネルに対して接着剤フィルムを転写していたが、近年、LCDの製造コスト削減を目的として接着剤フィルムの使用量を低減させる動きや、狭額縁なパネルデザインが求められているなどの事情から、COF又はFPC等のフレキシブル基板に先に接着剤フィルムを貼り付ける製造方式が採用されるようになっている。 By the way, when connecting a driver IC or the like to an LCD module using an adhesive film, the adhesive film has been transferred to the glass panel first, but in recent years, an adhesive has been used for the purpose of reducing the manufacturing cost of the LCD. Due to the movement to reduce the amount of film used and the demand for a narrow frame panel design, a manufacturing method in which an adhesive film is first attached to a flexible substrate such as COF or FPC has been adopted. ing.
 しかしながら、従来の接着剤フィルムを用いた場合、回路電極間に効率的に導電粒子を捕捉させることが難しく、導通信頼性が悪化したり、回路間に捕捉されなかった導電粒子が集まることで短絡のリスクが高くなる問題があった。 However, when a conventional adhesive film is used, it is difficult to efficiently capture the conductive particles between the circuit electrodes, the conduction reliability deteriorates, and the conductive particles that are not captured between the circuits are collected to cause a short circuit. There was a problem that the risk of.
 本発明は、上記課題の解決のためになされたものであり、フレキシブル基板に先に貼り付けて回路接続を行う場合であっても、対向する回路部材間の接続信頼性に優れた回路接続構造体を得ることができる回路接続用接着剤フィルム、及びそれを用いる回路接続構造体の製造方法、並びに接着剤フィルム収容セットを提供することを目的とする。 The present invention has been made to solve the above problems, and even when the circuit is connected by first attaching it to a flexible substrate, the circuit connection structure has excellent connection reliability between the opposing circuit members. It is an object of the present invention to provide an adhesive film for circuit connection from which a body can be obtained, a method for manufacturing a circuit connection structure using the same, and an adhesive film accommodating set.
 本発明の一側面の回路接続用接着剤フィルムは、剥離可能な支持フィルムと、該支持フィルム上に設けられた導電粒子を含有する第1の接着剤層と、該第1の接着剤層上に積層された、第2の接着剤層と、を備え、第1の接着剤層の厚みが、導電粒子の平均粒径の0.1~1.0倍である。 The adhesive film for circuit connection on one side of the present invention includes a peelable support film, a first adhesive layer containing conductive particles provided on the support film, and the first adhesive layer. A second adhesive layer is provided, and the thickness of the first adhesive layer is 0.1 to 1.0 times the average particle size of the conductive particles.
 この回路接続用接着剤フィルムによれば、フレキシブル基板に先に貼り付けて回路接続を行う場合であっても、対向する回路部材間の接続信頼性に優れた回路接続構造体を得ることができる。第1の接着剤層において、導電粒子の90%以上が他の導電粒子と離間した状態となっていることが好ましい。 According to this adhesive film for circuit connection, a circuit connection structure having excellent connection reliability between opposing circuit members can be obtained even when the circuit is connected by first attaching to the flexible substrate. .. In the first adhesive layer, it is preferable that 90% or more of the conductive particles are separated from other conductive particles.
 第1の接着剤層は第1の硬化性組成物の硬化物からなっていてよく、第1の硬化性組成物は、ラジカル重合性基を有するラジカル重合性化合物を含有してよい。 The first adhesive layer may consist of a cured product of the first curable composition, and the first curable composition may contain a radically polymerizable compound having a radically polymerizable group.
 第2の接着剤層は第2の硬化性組成物からなっていてよく、第2の硬化性組成物は、ラジカル重合性基を有するラジカル重合性化合物を含有してよい。 The second adhesive layer may consist of a second curable composition, and the second curable composition may contain a radically polymerizable compound having a radically polymerizable group.
 本発明の一側面の回路接続構造体の製造方法は、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に、上述した回路接続用接着剤フィルムの第1の接着剤層及び第2の接着剤層を介在させ、第1の回路部材及び第2の回路部材を熱圧着して、第1の電極及び第2の電極を互いに電気的に接続する工程を備える。 In the method for manufacturing the circuit connection structure on one side of the present invention, the above-mentioned circuit connection bonding is performed between the first circuit member having the first electrode and the second circuit member having the second electrode. A first adhesive layer and a second adhesive layer of the agent film are interposed, and the first circuit member and the second circuit member are heat-bonded to electrically attach the first electrode and the second electrode to each other. It is provided with a process of connecting to.
 この方法によれば、回路接続用接着剤フィルムをフレキシブル基板に先に貼り付けて回路接続を行う場合であっても、対向する回路部材間の接続信頼性に優れた回路接続構造体を得ることができる。 According to this method, even when the circuit connection adhesive film is first attached to the flexible substrate to connect the circuits, a circuit connection structure having excellent connection reliability between the opposing circuit members can be obtained. Can be done.
 すなわち、本発明に係る回路接続構造体の製造方法は、第1の回路部材がフレキシブル基板を有し、回路接続用接着剤フィルムを、第2の接着剤層が第1の回路部材と接するように第1の回路部材に貼り付ける工程を備えていてもよい。 That is, in the method for manufacturing a circuit connection structure according to the present invention, the first circuit member has a flexible substrate, the circuit connection adhesive film is in contact with the first circuit member, and the second adhesive layer is in contact with the first circuit member. May be provided with a step of attaching to the first circuit member.
 本発明の一側面の接着剤フィルム収容セットは、上述した回路接続用接着剤フィルムと、該接着剤フィルムを収容する収容部材と、を備え、収容部材は、収容部材の内部を外部から視認可能とする視認部を有し、視認部における波長365nmの光の透過率が10%以下である。 The adhesive film accommodating set on one side of the present invention includes the above-mentioned adhesive film for circuit connection and an accommodating member accommodating the adhesive film, and the accommodating member can visually recognize the inside of the accommodating member from the outside. It has a visible portion, and the transmittance of light having a wavelength of 365 nm in the visible portion is 10% or less.
 本発明によれば、フレキシブル基板に先に貼り付けて回路接続を行う場合であっても、対向する回路部材間の接続信頼性に優れた回路接続構造体を得ることができる回路接続用接着剤フィルム、及びそれを用いる回路接続構造体の製造方法、並びに接着剤フィルム収容セットを提供することができる。 According to the present invention, a circuit connection adhesive capable of obtaining a circuit connection structure having excellent connection reliability between opposing circuit members even when the circuit is connected by first attaching to a flexible substrate. A film, a method of manufacturing a circuit connection structure using the film, and an adhesive film accommodating set can be provided.
本発明に係る回路接続用接着剤フィルムの一実施形態を示す模式的断面図である。It is a schematic cross-sectional view which shows one Embodiment of the adhesive film for circuit connection which concerns on this invention. 回路接続構造体の製造方法の工程を示す模式的断面図である。It is a schematic cross-sectional view which shows the process of the manufacturing method of a circuit connection structure. 図2の工程を経て得られる積層体を示す模式的断面図である。It is a schematic cross-sectional view which shows the laminated body obtained through the process of FIG. 図2の後続の工程を示す模式的断面図である。It is a schematic cross-sectional view which shows the subsequent process of FIG. 図4の工程を経て得られる回路接続構造体を示す模式的断面図である。It is a schematic cross-sectional view which shows the circuit connection structure obtained through the process of FIG. 図1に示した回路接続用接着剤フィルムの製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the adhesive film for circuit connection shown in FIG. 磁場印加工程の様子を示す模式図である。It is a schematic diagram which shows the state of the magnetic field application process. 磁場印加工程及び乾燥工程を経た後の回路接続用接着剤フィルムの状態を示す模式的断面図である。It is a schematic cross-sectional view which shows the state of the adhesive film for circuit connection after going through a magnetic field application process and a drying process. 図7に後続する積層工程を示す模式的断面図である。It is a schematic cross-sectional view which shows the laminating process which follows FIG. 本発明に係る接着剤フィルム収容セットの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the adhesive film accommodating set which concerns on this invention.
 以下、場合により図面を参照しつつ本発明の実施形態について詳細に説明する。なお、本明細書中、個別に記載した上限値及び下限値は任意に組み合わせ可能である。また、本明細書において、「(メタ)アクリレート」とは、アクリレート、及び、それに対応するメタクリレートの少なくとも一方を意味する。「(メタ)アクリロイル」等の他の類似の表現においても同様である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings in some cases. In addition, in this specification, the upper limit value and the lower limit value described individually can be arbitrarily combined. Further, in the present specification, "(meth) acrylate" means at least one of acrylate and the corresponding methacrylate. The same is true for other similar expressions such as "(meth) acryloyl".
<回路接続用接着剤フィルム>
 図1は、一実施形態の回路接続用接着剤フィルムを示す模式断面図である。図1に示すように、回路接続用接着剤フィルム11(以下、単に「接着剤フィルム11」ともいう。)は、剥離可能な支持フィルム12と、支持フィルム12上に設けられた第1の接着剤層13と、第1の接着剤層13上に積層された第2の接着剤層14と、を備える。第1の接着剤層13は導電粒子Pを含有する。
<Adhesive film for circuit connection>
FIG. 1 is a schematic cross-sectional view showing an adhesive film for circuit connection according to an embodiment. As shown in FIG. 1, the circuit connection adhesive film 11 (hereinafter, also simply referred to as “adhesive film 11”) has a peelable support film 12 and a first adhesive provided on the support film 12. It includes an agent layer 13 and a second adhesive layer 14 laminated on the first adhesive layer 13. The first adhesive layer 13 contains conductive particles P.
 接着剤フィルム11では、導電粒子Pが第1の接着剤層13中に分散されている。そのため、接着剤フィルム11は、異方導電性を有する異方導電性接着剤フィルムである。接着剤フィルム11は、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に第1の接着剤層及び第2の接着剤層を介在させ、第1の回路部材及び前記第2の回路部材を熱圧着して、第1の電極及び第2の電極を互いに電気的に接続するために用いられる。 In the adhesive film 11, the conductive particles P are dispersed in the first adhesive layer 13. Therefore, the adhesive film 11 is an anisotropically conductive adhesive film having anisotropic conductivity. The adhesive film 11 has a first adhesive layer and a second adhesive layer interposed between the first circuit member having the first electrode and the second circuit member having the second electrode. , The first circuit member and the second circuit member are heat-bonded to electrically connect the first electrode and the second electrode to each other.
 また、回路接続用接着剤フィルム11は、接続する回路部材がフレキシブル基板を有する場合には、回路接続用接着剤フィルムを、第2の接着剤層が第1の回路部材と接するように第1の回路部材に貼り付けることができる。 Further, in the circuit connection adhesive film 11, when the circuit member to be connected has a flexible substrate, the circuit connection adhesive film 11 is first contacted with the circuit connection adhesive film so that the second adhesive layer is in contact with the first circuit member. Can be attached to the circuit member of.
 本実施形態では、第1の接着剤層13の厚みが、導電粒子Pの平均粒径の0.1~1.0倍であり、より好ましくは0.1~0.7倍であってもよい。また、第1の接着剤層13において、導電粒子Pの90%以上が他の導電粒子と離間した状態となっているものであってもよい。 In the present embodiment, even if the thickness of the first adhesive layer 13 is 0.1 to 1.0 times, more preferably 0.1 to 0.7 times, the average particle size of the conductive particles P. Good. Further, in the first adhesive layer 13, 90% or more of the conductive particles P may be in a state of being separated from other conductive particles.
 また本実施形態では、第2の接着剤層14の最低溶融粘度Yに対する、第2の接着剤層14が最低溶融粘度Yを示す温度Tyにおける第1の接着剤層13の溶融粘度Xの比(X/Y)が10以上であってもよい。 Further, in the present embodiment, the ratio of the melt viscosity X of the first adhesive layer 13 to the minimum melt viscosity Y of the second adhesive layer 14 at a temperature Ty at which the second adhesive layer 14 exhibits the lowest melt viscosity Y. (X / Y) may be 10 or more.
 溶融粘度の比(X/Y)は、回路部材との密着性を向上させる観点から、好ましくは10以上であり、より好ましくは、20以上であり、更に好ましくは、50以上であり、特に好ましくは100以上である。溶融粘度の比(X/Y)は、回路部材への濡れ性の観点から、10000以下であってよく、5000以下であってよく、1000以下であってよい。これらの観点から、溶融粘度の比(X/Y)は、10~10000であってよく、20~5000であってよく、50~5000であってよく、100~1000であってよい。溶融粘度X及び最低溶融粘度Yは、まず、第2の接着剤層の溶融粘度測定により、第2の接着剤層の最低溶融粘度Y(及び第2の接着剤層が最低溶融粘度Yを示す温度Ty)を求めた後、第1の接着剤層の溶融粘度測定により、温度Tyにおける第1の接着剤層の溶融粘度Xを求めることにより確認することができる。なお、溶融粘度の測定は、接着剤フィルムを得た後に行うこともできる。 The melt viscosity ratio (X / Y) is preferably 10 or more, more preferably 20 or more, still more preferably 50 or more, and particularly preferably 50 or more, from the viewpoint of improving the adhesion to the circuit member. Is 100 or more. The ratio of melt viscosity (X / Y) may be 10000 or less, 5000 or less, or 1000 or less from the viewpoint of wettability to circuit members. From these viewpoints, the melt viscosity ratio (X / Y) may be 10 to 10000, 20 to 5000, 50 to 5000, or 100 to 1000. The melt viscosity X and the minimum melt viscosity Y first show the minimum melt viscosity Y of the second adhesive layer (and the second adhesive layer shows the minimum melt viscosity Y) by measuring the melt viscosity of the second adhesive layer. After determining the temperature Ty), it can be confirmed by determining the melt viscosity X of the first adhesive layer at the temperature Ty by measuring the melt viscosity of the first adhesive layer. The melt viscosity can also be measured after the adhesive film is obtained.
(支持フィルム)
 支持フィルム12は、例えばポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン等によって形成されている。支持フィルム12には、任意の充填剤を含有させてもよい。また、支持フィルム12の表面には、離型処理やプラズマ処理等が施されていてもよい。支持フィルム12は、回路部材に第1の接着剤層及び第2の接着剤層を転写した後に剥離することができる。
(Support film)
The support film 12 is made of, for example, polyethylene terephthalate (PET), polyethylene, polypropylene, or the like. The support film 12 may contain any filler. Further, the surface of the support film 12 may be subjected to a mold release treatment, a plasma treatment, or the like. The support film 12 can be peeled off after transferring the first adhesive layer and the second adhesive layer to the circuit member.
(第1の接着剤層)
 第1の接着剤層は、例えば、第1の硬化性組成物の硬化物からなる。第1の硬化性組成物は光硬化性組成物であってよく、熱硬化性組成物であってよく、光硬化性組成物及び熱硬化性組成物の混合物であってもよい。第1の硬化性組成物は、例えば、(A)重合性化合物(以下、「(A)成分」ともいう。)、(B)重合開始剤(以下、「(B)成分」ともいう。)、及び(C)導電粒子(以下、「(C)成分」ともいう。)を含有する。第1の硬化性組成物が光硬化性組成物である場合、第1の硬化性組成物は(B)成分として光重合開始剤を含有し、第1の硬化性組成物が熱硬化性組成物である場合、第1の硬化性組成物は(B)成分として熱重合開始剤を含有する。このような第1の接着剤層は、例えば、第1の硬化性組成物からなる層に対して光照射又は加熱を行うことで(A)成分を重合させ、第1の硬化性組成物を硬化させることで得られる。つまり、第1の接着剤層は、導電粒子と、第1の硬化性組成物を光硬化させてなる接着剤成分と、からなっていてよい。第1の接着剤層は、第1の硬化性組成物を完全に硬化させた硬化物であってもよく、第1の硬化性組成物を部分的に硬化させた硬化物であってもよい。すなわち、第1の硬化性組成物が(A)成分及び(B)成分を含有する場合、接着剤成分は、未反応の(A)成分及び(B)成分を含有していてもよく、含有していなくてもよい。なお、第1の接着剤層は硬化性組成物の硬化物以外の樹脂組成物からなっていてもよい。例えば、第1の接着剤層は、PKHC等のフェノキシ樹脂、ポリエステルウレタン樹脂、ポリウレタン樹脂、アクリルゴムなどの樹脂成分を含む樹脂組成物からなっていてよい。このような樹脂成分を用いることで、第2の接着剤層が最低溶融粘度を示す温度(例えば100℃)における溶融粘度を100000~10000000Pa・s程度に調整することができ、溶融粘度の比(X/Y)を10以上とすることができる。
(First adhesive layer)
The first adhesive layer comprises, for example, a cured product of the first curable composition. The first curable composition may be a photocurable composition, a thermosetting composition, or a mixture of a photocurable composition and a thermosetting composition. The first curable composition is, for example, (A) a polymerizable compound (hereinafter, also referred to as “(A) component”), (B) a polymerization initiator (hereinafter, also referred to as “(B) component”). , And (C) conductive particles (hereinafter, also referred to as “(C) component”). When the first curable composition is a photocurable composition, the first curable composition contains a photopolymerization initiator as the component (B), and the first curable composition is a thermosetting composition. In the case of a product, the first curable composition contains a thermosetting initiator as the component (B). In such a first adhesive layer, for example, the component (A) is polymerized by irradiating or heating the layer made of the first curable composition with light to obtain the first curable composition. Obtained by curing. That is, the first adhesive layer may consist of conductive particles and an adhesive component obtained by photocuring the first curable composition. The first adhesive layer may be a cured product obtained by completely curing the first curable composition, or may be a cured product obtained by partially curing the first curable composition. .. That is, when the first curable composition contains the component (A) and the component (B), the adhesive component may contain the unreacted component (A) and the component (B). You don't have to. The first adhesive layer may be made of a resin composition other than the cured product of the curable composition. For example, the first adhesive layer may consist of a resin composition containing a resin component such as a phenoxy resin such as PKHC, a polyester urethane resin, a polyurethane resin, or an acrylic rubber. By using such a resin component, the melt viscosity at a temperature (for example, 100 ° C.) at which the second adhesive layer exhibits the minimum melt viscosity can be adjusted to about 100,000 to 10,000,000,000 Pa · s, and the ratio of the melt viscosity (for example, 100,000 Pa · s) can be adjusted. X / Y) can be 10 or more.
[(A)成分:重合性化合物]
 (A)成分は、例えば、光(例えば紫外光)の照射又は加熱によって重合開始剤(光重合開始剤又は熱重合開始剤)が発生させたラジカル、カチオン又はアニオンにより重合する化合物である。(A)成分は、モノマー、オリゴマー又はポリマーのいずれであってもよい。(A)成分として、一種の化合物を単独で用いてよく、複数種の化合物を組み合わせて用いてもよい。
[Component (A): Polymerizable compound]
The component (A) is, for example, a compound polymerized by a radical, cation or anion generated by a polymerization initiator (photopolymerization initiator or thermal polymerization initiator) by irradiation or heating with light (for example, ultraviolet light). The component (A) may be any of a monomer, an oligomer or a polymer. As the component (A), one kind of compound may be used alone, or a plurality of kinds of compounds may be used in combination.
 (A)成分は、少なくとも一つ以上の重合性基を有する。重合性基は、例えば、重合性不飽和二重結合(エチレン性不飽和結合)を含む基である。重合性基は、所望の溶融粘度が得られやすい観点、高温高湿環境下において回路部材と回路接続部との間での剥離が生じにくくなる観点、及び、接続抵抗の低減効果が更に向上し、接続信頼性により優れる観点から、ラジカルにより反応するラジカル重合性基であることが好ましい。すなわち、(A)成分は、ラジカル重合性化合物であることが好ましい。ラジカル重合性基としては、例えば、ビニル基、アリル基、スチリル基、アルケニル基、アルケニレン基、(メタ)アクリロイル基、マレイミド基等が挙げられる。(A)成分が有する重合性基の数は、重合後、所望の溶融粘度が得られやすい観点、及び、硬化後の樹脂の物性を制御しやすい観点から、2以上であってよく、重合時の硬化収縮を抑える観点から、10以下であってよい。また、架橋密度と硬化収縮のバランスをとるために、重合性基の数が上記範囲内の重合性化合物を使用した上で、上記範囲外の重合性化合物を追加で使用してもよい。 The component (A) has at least one polymerizable group. The polymerizable group is, for example, a group containing a polymerizable unsaturated double bond (ethylenically unsaturated bond). The polymerizable radical further improves the viewpoint that the desired melt viscosity can be easily obtained, the viewpoint that peeling between the circuit member and the circuit connection portion is less likely to occur in a high temperature and high humidity environment, and the effect of reducing the connection resistance. From the viewpoint of being more excellent in connection reliability, a radically polymerizable group that reacts with radicals is preferable. That is, the component (A) is preferably a radically polymerizable compound. Examples of the radically polymerizable group include a vinyl group, an allyl group, a styryl group, an alkenyl group, an alkenylene group, a (meth) acryloyl group, a maleimide group and the like. The number of polymerizable groups contained in the component (A) may be 2 or more from the viewpoint that a desired melt viscosity can be easily obtained after polymerization and from the viewpoint of easily controlling the physical properties of the resin after curing, and at the time of polymerization. It may be 10 or less from the viewpoint of suppressing the curing shrinkage of. Further, in order to balance the crosslink density and the curing shrinkage, a polymerizable compound having a number of polymerizable groups within the above range may be used, and then a polymerizable compound outside the above range may be additionally used.
 (A)成分の具体例としては、(メタ)アクリレート化合物、マレイミド化合物、ビニルエーテル化合物、アリル化合物、スチレン誘導体、アクリルアミド誘導体、ナジイミド誘導体、天然ゴム、イソプレンゴム、ブチルゴム、ニトリルゴム、ブタジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、カルボキシル化ニトリルゴム等が挙げられる。 Specific examples of the component (A) include (meth) acrylate compound, maleimide compound, vinyl ether compound, allyl compound, styrene derivative, acrylamide derivative, nadiimide derivative, natural rubber, isoprene rubber, butyl rubber, nitrile rubber, butadiene rubber, and styrene-. Examples thereof include butadiene rubber, acrylonitrile-butadiene rubber, and carboxylated nitrile rubber.
 (メタ)アクリレート化合物としては、エポキシ(メタ)アクリレート、(ポリ)ウレタン(メタ)アクリレート、メチル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリブタジエン(メタ)アクリレート、シリコーンアクリレート、エチル(メタ)アクリレート、2-シアノエチル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリール(メタ)アクリレート、2-(メタ)アクリロイロキシエチルフォスフェート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリアルキレングリコールジ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、イソシアヌル酸変性2官能(メタ)アクリレート、イソシアヌル酸変性3官能(メタ)アクリレート、トリシクロデカニルアクリレート、ジメチロール-トリシクロデカンジアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス〔4-(アクリロキシメトキシ)フェニル〕プロパン、2,2-ビス[4-(アクリロキシポリエトキシ)フェニル]プロパン、2,2-ジ(メタ)アクリロイロキシジエチルフォスフェート、2-(メタ)アクリロイロキシエチルアシッドフォスフェート等が挙げられる。 Examples of the (meth) acrylate compound include epoxy (meth) acrylate, (poly) urethane (meth) acrylate, methyl (meth) acrylate, polyether (meth) acrylate, polyester (meth) acrylate, polybutadiene (meth) acrylate, and silicone acrylate. , Ethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, 2- (2-ethoxyethoxy) ethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-hexyl ( Meta) acrylate, 2-hydroxyethyl (meth) acrylate, isopropyl (meth) acrylate, hydroxypropyl (meth) acrylate, isobutyl (meth) acrylate, isobornyl (meth) acrylate, isodecyl (meth) acrylate, isooctyl (meth) acrylate, n-lauryl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, tetrahydrofurfreel (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate, N, N -Dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethyl propantri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, polyethylene glycol Di (meth) acrylate, polyalkylene glycol di (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, neopentyl glycol di (meth) acrylate, penta Elythritol (meth) acrylate, dipentaerythritol hexa (meth) acrylate, isocyanuric acid-modified bifunctional (meth) acrylate, isocyanuric acid-modified trifunctional (meth) acrylate, tricyclodecanyl acrylate, dimethylol-tricyclodecanediacrylate, 2 -Hydroxy-1,3-diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, 2,2 -Di (meth) acryloyloxydiethyl phosphate, 2- (meta) ) Acryloyloxyethyl acid phosphate and the like can be mentioned.
 マレイミド化合物としては、1-メチル-2,4-ビスマレイミドベンゼン、N,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-m-トルイレンビスマレイミド、N,N’-4,4-ビフェニレンビスマレイミド、N,N’-4,4-(3,3’-ジメチル-ビフェニレン)ビスマレイミド、N,N’-4,4-(3,3’-ジメチルジフェニルメタン)ビスマレイミド、N,N’-4,4-(3,3’-ジエチルジフェニルメタン)ビスマレイミド、N,N’-4,4-ジフェニルメタンビスマレイミド、N,N’-4,4-ジフェニルプロパンビスマレイミド、N,N’-4,4-ジフェニルエーテルビスマレイミド、N,N’-3,3-ジフェニルスルホンビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン、2,2-ビス(3-s-ブチル-4-8(4-マレイミドフェノキシ)フェニル)プロパン、1,1-ビス(4-(4-マレイミドフェノキシ)フェニル)デカン、4,4’-シクロヘキシリデン-ビス(1-(4マレイミドフェノキシ)-2-シクロヘキシルベンゼン、2,2’-ビス(4-(4-マレイミドフェノキシ)フェニル)ヘキサフルオロプロパン等が挙げられる。 Maleimide compounds include 1-methyl-2,4-bismaleimidebenzene, N, N'-m-phenylene bismaleimide, N, N'-p-phenylene bismaleimide, N, N'-m-toluylene bismaleimide. , N, N'-4,4-biphenylene bismaleimide, N, N'-4,4- (3,3'-dimethyl-biphenylene) bismaleimide, N, N'-4,4- (3,3' -Dimethyldiphenylmethane) bismaleimide, N, N'-4,4- (3,3'-diethyldiphenylmethane) bismaleimide, N, N'-4,4-diphenylmethane bismaleimide, N, N'-4,4- Diphenylpropane bismaleimide, N, N'-4,4-diphenyl ether bismaleimide, N, N'-3,3-diphenylsulfone bismaleimide, 2,2-bis (4- (4-maleimidephenoxy) phenyl) propane, 2,2-bis (3-s-butyl-4-8 (4-maleimidephenoxy) phenyl) propane, 1,1-bis (4- (4-maleimidephenoxy) phenyl) decane, 4,4'-cyclohexyli Examples thereof include den-bis (1- (4 maleimide phenoxy) -2-cyclohexylbenzene, 2,2'-bis (4- (4-maleimide phenoxy) phenyl) hexafluoropropane and the like.
 ビニルエーテル化合物としては、ジエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。 Examples of the vinyl ether compound include diethylene glycol divinyl ether, dipropylene glycol divinyl ether, cyclohexanedimethanol divinyl ether, and trimethylolpropane trivinyl ether.
 アリル化合物としては、1,3-ジアリルフタレート、1,2-ジアリルフタレート、トリアリルイソシアヌレート等が挙げられる。 Examples of the allyl compound include 1,3-diallyl phthalate, 1,2-diallyl phthalate, and triallyl isocyanurate.
 (A)成分は、所望の溶融粘度が得られやすい観点、及び、種々の構造の化合物が選択でき、入手しやすい観点から、(メタ)アクリレート化合物であることが好ましい。(A)成分は、更に優れた上記接着特性が得られる観点から、(ポリ)ウレタン(メタ)アクリレート化合物(ウレタン(メタ)アクリレート化合物又はポリウレタン(メタ)アクリレート化合物)であってよい。また、(A)成分は、更に優れた上記接着特性が得られる観点から、ジシクロペンタジエン骨格等の高Tg骨格を有する(メタ)アクリレート化合物であってよい。 The component (A) is preferably a (meth) acrylate compound from the viewpoint that a desired melt viscosity can be easily obtained and compounds having various structures can be selected and easily obtained. The component (A) may be a (poly) urethane (meth) acrylate compound (urethane (meth) acrylate compound or polyurethane (meth) acrylate compound) from the viewpoint of obtaining more excellent adhesive properties. Further, the component (A) may be a (meth) acrylate compound having a high Tg skeleton such as a dicyclopentadiene skeleton from the viewpoint of obtaining more excellent adhesive properties.
 (A)成分は、所望の溶融粘度が得られやすい観点、及び、架橋密度と硬化収縮とのバランスをとり、接続抵抗をより低減させ、接続信頼性を向上させる観点から、アクリル樹脂、フェノキシ樹脂、ポリウレタン樹脂等の熱可塑性樹脂の末端又は側鎖にビニル基、アリル基、(メタ)アクリロイル基等の重合性基を導入した化合物(例えば、ポリウレタン(メタ)アクリレート)であってよい。この場合、(A)成分の重量平均分子量は、架橋密度と硬化収縮のバランスに優れる観点から、3000以上であってよく、5000以上であってよく、1万以上であってよい。また、(A)成分の重量平均分子量は、他成分との相溶性に優れる観点から、100万以下であってよく、50万以下であってよく、25万以下であってよい。なお、重量平均分子量は、実施例に記載の条件に従って、ゲル浸透クロマトグラフ(GPC)より標準ポリスチレンによる検量線を用いて測定した値をいう。 The component (A) is an acrylic resin or a phenoxy resin from the viewpoint of easily obtaining the desired melt viscosity and from the viewpoint of balancing the crosslink density and the curing shrinkage, further reducing the connection resistance, and improving the connection reliability. , A compound (for example, polyurethane (meth) acrylate) in which a polymerizable group such as a vinyl group, an allyl group, or a (meth) acryloyl group is introduced into the terminal or side chain of a thermoplastic resin such as a polyurethane resin may be used. In this case, the weight average molecular weight of the component (A) may be 3000 or more, 5000 or more, or 10,000 or more from the viewpoint of excellent balance between the crosslink density and the curing shrinkage. Further, the weight average molecular weight of the component (A) may be 1 million or less, 500,000 or less, or 250,000 or less from the viewpoint of excellent compatibility with other components. The weight average molecular weight refers to a value measured from a gel permeation chromatograph (GPC) using a calibration curve using standard polystyrene according to the conditions described in Examples.
 (A)成分は、(メタ)アクリレート化合物として、下記一般式(1)で表されるリン酸エステル構造を有するラジカル重合性化合物を含むことが好ましい。この場合、無機物(金属等)の表面に対する接着強度が向上するため、例えば、電極同士(例えば回路電極同士)の接着に好適である。
Figure JPOXMLDOC01-appb-C000001
[式中、nは1~3の整数を示し、Rは、水素原子又はメチル基を示す。]
The component (A) preferably contains, as the (meth) acrylate compound, a radically polymerizable compound having a phosphoric acid ester structure represented by the following general formula (1). In this case, since the adhesive strength to the surface of the inorganic substance (metal or the like) is improved, it is suitable for, for example, bonding electrodes to each other (for example, circuit electrodes).
Figure JPOXMLDOC01-appb-C000001
[In the formula, n represents an integer of 1 to 3, and R represents a hydrogen atom or a methyl group. ]
 上記リン酸エステル構造を有するラジカル重合性化合物は、例えば、無水リン酸と2-ヒドロキシエチル(メタ)アクリレートとを反応させることにより得られる。リン酸エステル構造を有するラジカル重合性化合物の具体例としては、モノ(2-(メタ)アクリロイルオキシエチル)アシッドフォスフェート、ジ(2-(メタ)アクリロイルオキシエチル)アシッドフォスフェート等が挙げられる。 The radically polymerizable compound having the above phosphoric acid ester structure can be obtained, for example, by reacting anhydrous phosphoric acid with 2-hydroxyethyl (meth) acrylate. Specific examples of the radically polymerizable compound having a phosphoric acid ester structure include mono (2- (meth) acryloyloxyethyl) acid phosphate, di (2- (meth) acryloyloxyethyl) acid phosphate and the like.
 (A)成分の含有量は、所望の溶融粘度が得られやすい観点、及び、所望の硬化物物性が得られやすい観点から、第1の硬化性組成物の全質量基準で、5質量%以上であってよく、10質量%以上であってよく、20質量%以上であってよい。(A)成分の含有量は、重合時の硬化収縮を抑える観点から、第1の硬化性組成物の全質量基準で、90質量%以下であってよく、80質量%以下であってよく、70質量%以下であってよい。 The content of the component (A) is 5% by mass or more based on the total mass of the first curable composition from the viewpoint that the desired melt viscosity can be easily obtained and the desired cured physical properties can be easily obtained. It may be 10% by mass or more, and may be 20% by mass or more. The content of the component (A) may be 90% by mass or less, 80% by mass or less, based on the total mass of the first curable composition, from the viewpoint of suppressing curing shrinkage during polymerization. It may be 70% by mass or less.
[(B)成分:重合開始剤]
 (B)成分は、150~750nmの範囲内の波長を含む光、好ましくは254~405nmの範囲内の波長を含む光、更に好ましくは365nmの波長を含む光(例えば紫外光)の照射によってラジカル、カチオン又はアニオンを発生する光重合開始剤(光ラジカル重合開始剤、光カチオン重合開始剤又は光アニオン重合開始剤)であってよく、熱によってラジカル、カチオン又はアニオンを発生する熱重合開始剤(熱ラジカル重合開始剤、熱カチオン重合開始剤又は熱アニオン重合開始剤)であってよい。(B)成分は、所望の溶融粘度が得られやすい観点、接続抵抗の低減効果が更に向上し、接続信頼性により優れる観点、及び、低温短時間での硬化がより容易となる観点から、ラジカル重合開始剤(光ラジカル重合開始剤又は熱ラジカル重合開始剤)であることが好ましい。(B)成分として、一種の化合物を単独で用いてよく、複数種の化合物を組み合わせて用いてもよい。例えば、第1の硬化性組成物が(B)成分として光重合開始剤及び熱重合開始剤の両方を含有していてもよい。
[Component (B): Polymerization Initiator]
The component (B) is radically irradiated by irradiation with light having a wavelength in the range of 150 to 750 nm, preferably light having a wavelength in the range of 254 to 405 nm, and more preferably light having a wavelength in the range of 365 nm (for example, ultraviolet light). , A photopolymerization initiator that generates cations or anions (photoradical polymerization initiator, photocationic polymerization initiator or photoanionic polymerization initiator), and a thermal polymerization initiator that generates radicals, cations or anions by heat ( It may be a thermal radical polymerization initiator, a thermal cationic polymerization initiator or a thermal anion polymerization initiator). The component (B) is a radical from the viewpoint that the desired melt viscosity can be easily obtained, the effect of reducing the connection resistance is further improved, the connection reliability is improved, and the curing at a low temperature in a short time becomes easier. It is preferably a polymerization initiator (photoradical polymerization initiator or thermal radical polymerization initiator). As the component (B), one kind of compound may be used alone, or a plurality of kinds of compounds may be used in combination. For example, the first curable composition may contain both a photopolymerization initiator and a thermal polymerization initiator as the component (B).
 光ラジカル重合開始剤は、光により分解して遊離ラジカルを発生する。つまり、光ラジカル重合開始剤は、外部からの光エネルギーの付与によりラジカルを発生する化合物である。光ラジカル重合開始剤としては、オキシムエステル構造、ビスイミダゾール構造、アクリジン構造、α-アミノアルキルフェノン構造、アミノベンゾフェノン構造、N-フェニルグリシン構造、アシルフォスフィンオキサイド構造、ベンジルジメチルケタール構造、α-ヒドロキシアルキルフェノン構造等の構造を有する化合物が挙げられる。光ラジカル重合開始剤は、所望の溶融粘度が得られやすい観点、及び、接続抵抗の低減効果により優れる観点から、オキシムエステル構造、α-アミノアルキルフェノン構造及びアシルフォスフィンオキサイド構造からなる群より選択される少なくとも一種の構造を有することが好ましい。 The photoradical polymerization initiator is decomposed by light to generate free radicals. That is, the photoradical polymerization initiator is a compound that generates radicals by applying light energy from the outside. Examples of the photoradical polymerization initiator include an oxime ester structure, a bisimidazole structure, an acrydin structure, an α-aminoalkylphenone structure, an aminobenzophenone structure, an N-phenylglycine structure, an acylphosphine oxide structure, a benzyl dimethyl ketal structure, and an α-hydroxy. Examples thereof include compounds having a structure such as an alkylphenone structure. The photoradical polymerization initiator is selected from the group consisting of an oxime ester structure, an α-aminoalkylphenone structure and an acylphosphine oxide structure from the viewpoint that the desired melt viscosity can be easily obtained and the effect of reducing the connection resistance is excellent. It is preferable to have at least one kind of structure.
 オキシムエステル構造を有する化合物の具体例としては、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-o-ベンゾイルオキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)等が挙げられる。 Specific examples of the compound having an oxime ester structure include 1-phenyl-1,2-butandion-2- (o-methoxycarbonyl) oxime and 1-phenyl-1,2-propanedione-2- (o-methoxycarbonyl). ) Oxime, 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2-o-benzoyloxime, 1,3-diphenylpropanthrion- 2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxypropanetrione-2- (o-benzoyl) oxime, 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2-( o-benzoyloxime)], etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (o-acetyloxime) and the like.
 α-アミノアルキルフェノン構造を有する化合物の具体例としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-モルフォリノフェニル)-ブタノン-1等が挙げられる。 Specific examples of the compound having an α-aminoalkylphenone structure include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-benzyl-2-dimethylamino-1. -Morphorinophenyl) -butanone-1 and the like.
 アシルフォスフィンオキサイド構造を有する化合物の具体例としては、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6,-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド等が挙げられる。 Specific examples of the compound having an acylphosphine oxide structure include bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide and bis (2,4,6-trimethylbenzoyl)-. Examples thereof include phenylphosphine oxide and 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
 熱ラジカル重合開始剤は、熱により分解して遊離ラジカルを発生する。つまり、熱ラジカル重合開始剤は、外部からの熱エネルギーの付与によりラジカルを発生する化合物である。熱ラジカル重合開始剤としては、従来から知られている有機過酸化物及びアゾ化合物から任意に選択することができる。熱ラジカル重合開始剤としては、安定性、反応性及び相溶性の観点から、1分間半減期温度が90~175℃であり、且つ、重量平均分子量が180~1000の有機過酸化物が好ましく用いられる。1分間半減期温度がこの範囲にあることで、貯蔵安定性に更に優れ、ラジカル重合性も十分に高く、短時間での硬化が可能となる。 The thermal radical polymerization initiator decomposes by heat to generate free radicals. That is, the thermal radical polymerization initiator is a compound that generates radicals by applying thermal energy from the outside. The thermal radical polymerization initiator can be arbitrarily selected from conventionally known organic peroxides and azo compounds. As the thermal radical polymerization initiator, an organic peroxide having a 1-minute half-life temperature of 90 to 175 ° C. and a weight average molecular weight of 180 to 1000 is preferably used from the viewpoint of stability, reactivity and compatibility. Be done. When the half-life temperature for 1 minute is in this range, the storage stability is further excellent, the radical polymerization property is sufficiently high, and curing can be performed in a short time.
 有機過酸化物の具体例としては、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、クミルパーオキシネオデカノエート、ジラウロイルパーオキサイド、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシネオヘプタノエート、t-アミルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキシヘキサヒドロテレフタレート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、3-ヒドロキシ-1,1-ジメチルブチルパーオキシネオデカノエート、t-アミルパーオキシネオデカノエート、t-アミルパーオキシ-2-エチルヘキサノエート、ジ(3-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、ジ(4-メチルベンゾイル)パーオキサイド、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(3-メチルベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシベンゾエート、ジブチルパーオキシトリメチルアジペート、t-アミルパーオキシノルマルオクトエート、t-アミルパーオキシイソノナノエート、t-アミルパーオキシベンゾエート等が挙げられる。 Specific examples of organic peroxides include 1,1,3,3-tetramethylbutylperoxyneodecanoate, di (4-t-butylcyclohexyl) peroxydicarbonate, and di (2-ethylhexyl) peroxy. Dicarbonate, cumylperoxyneodecanoate, dilauroyl peroxide, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxyneodecanoate , T-Butylperoxypivalate, 1,1,3,3-Tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) Hexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyneoheptanoate, t-amylperoxy-2-ethylhexanoate , Di-t-butylperoxyhexahydroterephthalate, t-amylperoxy-3,5,5-trimethylhexanoate, 3-hydroxy-1,1-dimethylbutylperoxyneodecanoate, t-amylper Oxyneodecanoate, t-amylperoxy-2-ethylhexanoate, di (3-methylbenzoyl) peroxide, dibenzoyl peroxide, di (4-methylbenzoyl) peroxide, t-hexylperoxyisopropyl Monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl-2,5-di (3-) Methylbenzoylperoxy) hexane, t-butylperoxy-2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxybenzoate , Dibutylperoxytrimethyl adipate, t-amylperoxynormal octoate, t-amylperoxyisononanoate, t-amylperoxybenzoate and the like.
 アゾ化合物の具体例としては、2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、4,4’-アゾビス(4-シアノバレリン酸)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)等が挙げられる。 Specific examples of the azo compound include 2,2'-azobis-2,4-dimethylvaleronitrile, 1,1'-azobis (1-acetoxy-1-phenylethane), and 2,2'-azobisisobutyro. Examples thereof include nitrile, 2,2'-azobis (2-methylbutyronitrile), 4,4'-azobis (4-cyanovalerolic acid), and 1,1'-azobis (1-cyclohexanecarbonitrile).
 (B)成分の含有量は、速硬化性に優れる観点、及び、接続抵抗の低減効果に優れる観点から、第1の硬化性組成物の全質量基準で、0.1質量%以上であってよく、0.5質量%以上であってよい。(B)成分の含有量は、貯蔵安定性が向上する観点、及び、接続抵抗の低減効果に優れる観点から、第1の硬化性組成物の全質量基準で、15質量%以下であってよく、10質量%以下であってよく、5質量%以下であってよい。 The content of the component (B) is 0.1% by mass or more based on the total mass of the first curable composition from the viewpoint of excellent quick-curing property and excellent effect of reducing connection resistance. It may be 0.5% by mass or more. The content of the component (B) may be 15% by mass or less based on the total mass of the first curable composition from the viewpoint of improving storage stability and excellent effect of reducing connection resistance. It may be 10% by mass or less, and may be 5% by mass or less.
 第1の硬化性組成物は、容易に所望の粘度が得られる観点から、(B)成分として、光重合開始剤及び熱重合開始剤のうち少なくとも一方を含有することが好ましく、回路接続用接着剤フィルムの製造が容易となる観点から、光重合開始剤を含有することがより好ましい。 From the viewpoint that a desired viscosity can be easily obtained, the first curable composition preferably contains at least one of a photopolymerization initiator and a thermal polymerization initiator as the component (B), and adheres for circuit connection. It is more preferable to contain a photopolymerization initiator from the viewpoint of facilitating the production of the agent film.
[(C)成分:導電粒子]
 (C)成分は、導電性を有する粒子であれば特に制限されず、Au、Ag、Ni、Cu、はんだ等の金属で構成された金属粒子、導電性カーボンで構成された導電性カーボン粒子などであってよい。(C)成分は、非導電性のガラス、セラミック、プラスチック(ポリスチレン等)などを含む核と、上記金属又は導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子であってもよい。これらの中でも、熱溶融性の金属で形成された金属粒子、又はプラスチックを含む核と、金属又は導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子が好ましく用いられる。この場合、第1の硬化性組成物の硬化物を加熱又は加圧により変形させることが容易であるため、電極同士を電気的に接続する際に、電極と(C)成分との接触面積を増加させ、電極間の導電性をより向上させることができる。
[Component (C): Conductive particles]
The component (C) is not particularly limited as long as it is a conductive particle, and is a metal particle made of a metal such as Au, Ag, Ni, Cu, or solder, a conductive carbon particle made of conductive carbon, or the like. It may be. The component (C) may be a coated conductive particle containing a nucleus containing non-conductive glass, ceramic, plastic (polystyrene, etc.) and the like, and a coating layer containing the metal or conductive carbon and coating the nucleus. Good. Among these, coated conductive particles including metal particles formed of a heat-meltable metal or a core containing plastic and a coating layer containing metal or conductive carbon and coating the core are preferably used. In this case, since the cured product of the first curable composition can be easily deformed by heating or pressurizing, the contact area between the electrodes and the component (C) is set when the electrodes are electrically connected to each other. It can be increased to further improve the conductivity between the electrodes.
 (C)成分は、上記の金属粒子、導電性カーボン粒子、又は被覆導電粒子と、樹脂等の絶縁材料を含み、該粒子の表面を被覆する絶縁層とを備える絶縁被覆導電粒子であってもよい。(C)成分が絶縁被覆導電粒子であると、(C)成分の含有量が多い場合であっても、粒子の表面が樹脂で被覆されているため、(C)成分同士の接触による短絡の発生を抑制でき、また、隣り合う電極回路間の絶縁性を向上させることもできる。(C)成分は、上述した各種導電粒子の1種を単独で又は2種以上を組み合わせて用いられる。 The component (C) may be an insulating coated conductive particle containing the above-mentioned metal particles, conductive carbon particles, or coated conductive particles and an insulating material such as a resin and having an insulating layer covering the surface of the particles. Good. When the component (C) is an insulating coated conductive particle, even when the content of the component (C) is large, the surface of the particle is coated with a resin, so that a short circuit due to contact between the components (C) occurs. Occurrence can be suppressed, and the insulation between adjacent electrode circuits can be improved. As the component (C), one of the various conductive particles described above may be used alone or in combination of two or more.
 (C)成分の最大粒径は、電極の最小間隔(隣り合う電極間の最短距離)よりも小さいことが必要である。(C)成分の最大粒径は、分散性及び導電性に優れる観点から、1.0μm以上であってよく、2.0μm以上であってよく、2.5μm以上であってよい。(C)成分の最大粒径は、分散性及び導電性に優れる観点から、50μm以下であってよく、30μm以下であってよく、20μm以下であってよい。本明細書では、任意の導電粒子300個(pcs)について、走査型電子顕微鏡(SEM)を用いた観察により粒径の測定を行い、得られた最も大きい値を(C)成分の最大粒径とする。なお、(C)成分が突起を有する場合等、(C)成分が球形ではない場合、(C)成分の粒径は、SEMの画像における導電粒子に外接する円の直径とする。 The maximum particle size of the component (C) needs to be smaller than the minimum distance between the electrodes (the shortest distance between adjacent electrodes). The maximum particle size of the component (C) may be 1.0 μm or more, 2.0 μm or more, or 2.5 μm or more from the viewpoint of excellent dispersibility and conductivity. The maximum particle size of the component (C) may be 50 μm or less, 30 μm or less, or 20 μm or less from the viewpoint of excellent dispersibility and conductivity. In the present specification, the particle size of 300 arbitrary conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the largest value obtained is the maximum particle size of the component (C). And. When the component (C) is not spherical, such as when the component (C) has protrusions, the particle size of the component (C) is the diameter of a circle circumscribing the conductive particles in the SEM image.
 (C)成分の平均粒径は、分散性及び導電性に優れる観点から、1.0μm以上であってよく、2.0μm以上であってよく、2.5μm以上であってよい。(C)成分の平均粒径は、分散性及び導電性に優れる観点から、50μm以下であってよく、30μm以下であってよく、20μm以下であってよい。本明細書では、任意の導電粒子300個(pcs)について、走査型電子顕微鏡(SEM)を用いた観察により粒径の測定を行い、得られた粒径の平均値を平均粒径とする。 The average particle size of the component (C) may be 1.0 μm or more, 2.0 μm or more, or 2.5 μm or more from the viewpoint of excellent dispersibility and conductivity. The average particle size of the component (C) may be 50 μm or less, 30 μm or less, or 20 μm or less from the viewpoint of excellent dispersibility and conductivity. In the present specification, the particle size of 300 arbitrary conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the average value of the obtained particle sizes is taken as the average particle size.
 第1の接着剤層において、(C)成分は均一に分散されていることが好ましい。第1の接着剤層における(C)成分の粒子密度は、安定した接続抵抗が得られる観点から、100pcs/mm以上であってよく、1000pcs/mm以上であってよく、2000pcs/mm以上であってよい。第1の接着剤層における(C)成分の粒子密度は、隣り合う電極間の絶縁性を向上する観点から、100000pcs/mm以下であってよく、50000pcs/mm以下であってよく、10000pcs/mm以下であってよい。 In the first adhesive layer, the component (C) is preferably uniformly dispersed. Particle density of the component (C) in the first adhesive layer, from the viewpoint of stable connection resistance is obtained, it may be at 100pcs / mm 2 or more, may be at 1000pcs / mm 2 or more, 2000pcs / mm 2 That may be the above. Particle density of the component (C) in the first adhesive layer, from the viewpoint of improving the insulating property between adjacent electrodes may be at 100000pcs / mm 2 or less, may be at 50000pcs / mm 2 or less, 10000pcs It may be / mm 2 or less.
 (C)成分の含有量は、導電性をより向上させることができる観点から、第1の接着剤層中の全体積基準で、0.1体積%以上であってよく、1体積%以上であってよく、5体積%以上であってよい。(C)成分の含有量は、短絡を抑制しやすい観点から、第1の接着剤層中の全体積基準で、50体積%以下であってよく、30体積%以下であってよく、20体積%以下であってよい。なお、第1の硬化性組成物中の(C)成分の含有量(第1の硬化性組成物の全体積基準)は上記範囲と同じであってよい。 The content of the component (C) may be 0.1% by volume or more based on the total volume in the first adhesive layer from the viewpoint of further improving the conductivity, and is 1% by volume or more. It may be 5% by volume or more. The content of the component (C) may be 50% by volume or less, 30% by volume or less, and 20% by volume based on the total volume in the first adhesive layer from the viewpoint of easily suppressing a short circuit. It may be less than or equal to%. The content of the component (C) in the first curable composition (based on the total product of the first curable composition) may be the same as the above range.
[その他の成分]
 第1の硬化性組成物は、(A)成分、(B)成分及び(C)成分以外のその他の成分を更に含有していてよい。その他の成分としては、例えば、熱可塑性樹脂、カップリング剤及び充填材が挙げられる。これらの成分は、第1の接着剤層に含有されていてもよい。
[Other ingredients]
The first curable composition may further contain other components other than the component (A), the component (B) and the component (C). Other components include, for example, thermoplastic resins, coupling agents and fillers. These components may be contained in the first adhesive layer.
 熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリルゴム等が挙げられる。第1の硬化性組成物が熱可塑性樹脂を含有する場合、第1の接着剤層を容易に形成することができる。また、第1の硬化性組成物が熱可塑性樹脂を含有する場合、第1の硬化性組成物の硬化時に発生する、第1の接着剤層の応力を緩和することができる。また、熱可塑性樹脂が水酸基等の官能基を有する場合、第1の接着剤層の接着性が向上しやすい。熱可塑性樹脂の含有量は、例えば、第1の硬化性組成物の全質量基準で、5質量%以上であってよく、80質量%以下であってよい。 Examples of the thermoplastic resin include phenoxy resin, polyester resin, polyamide resin, polyurethane resin, polyester urethane resin, acrylic rubber and the like. When the first curable composition contains a thermoplastic resin, the first adhesive layer can be easily formed. Further, when the first curable composition contains a thermoplastic resin, the stress of the first adhesive layer generated at the time of curing of the first curable composition can be relieved. Further, when the thermoplastic resin has a functional group such as a hydroxyl group, the adhesiveness of the first adhesive layer is likely to be improved. The content of the thermoplastic resin may be, for example, 5% by mass or more and 80% by mass or less based on the total mass of the first curable composition.
 カップリング剤としては、(メタ)アクリロイル基、メルカプト基、アミノ基、イミダゾール基、エポキシ基等の有機官能基を有するシランカップリング剤、テトラアルコキシシラン等のシラン化合物、テトラアルコキシチタネート誘導体、ポリジアルキルチタネート誘導体などが挙げられる。第1の硬化性組成物がカップリング剤を含有する場合、接着性を更に向上することができる。カップリング剤の含有量は、例えば、第1の硬化性組成物の全質量基準で、0.1質量%以上であってよく、20質量%以下であってよい。 Examples of the coupling agent include a silane coupling agent having an organic functional group such as a (meth) acryloyl group, a mercapto group, an amino group, an imidazole group and an epoxy group, a silane compound such as tetraalkoxysilane, a tetraalkoxy titanate derivative and a polydialkyl. Examples thereof include titanate derivatives. When the first curable composition contains a coupling agent, the adhesiveness can be further improved. The content of the coupling agent may be, for example, 0.1% by mass or more and 20% by mass or less based on the total mass of the first curable composition.
 充填材としては、例えば、非導電性のフィラー(例えば、非導電粒子)が挙げられる。第1の硬化性組成物が充填材を含有する場合、接続信頼性の向上が更に期待できる。充填材は、無機フィラー及び有機フィラーのいずれであってもよい。無機フィラーとしては、例えば、シリカ微粒子、アルミナ微粒子、シリカ-アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等の金属酸化物微粒子;窒化物微粒子などの無機微粒子が挙げられる。有機フィラーとしては、例えば、シリコーン微粒子、メタクリレート-ブタジエン-スチレン微粒子、アクリル-シリコーン微粒子、ポリアミド微粒子、ポリイミド微粒子等の有機微粒子が挙げられる。これらの微粒子は、均一な構造を有していてもよく、コア-シェル型構造を有していてもよい。充填材の最大径は、導電粒子の最小粒径未満であることが好ましい。充填材の含有量は、例えば、第1の硬化性組成物の全体積を基準として、0.1体積%以上であってよく、50体積%以下であってよい。 Examples of the filler include non-conductive fillers (for example, non-conductive particles). When the first curable composition contains a filler, further improvement in connection reliability can be expected. The filler may be either an inorganic filler or an organic filler. Examples of the inorganic filler include metal oxide fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles; and inorganic fine particles such as nitride fine particles. Examples of the organic filler include organic fine particles such as silicone fine particles, methacrylate-butadiene-styrene fine particles, acrylic-silicone fine particles, polyamide fine particles, and polyimide fine particles. These fine particles may have a uniform structure or may have a core-shell type structure. The maximum diameter of the filler is preferably less than the minimum particle size of the conductive particles. The content of the filler may be, for example, 0.1% by volume or more and 50% by volume or less based on the total volume of the first curable composition.
 第1の硬化性組成物は、軟化剤、促進剤、劣化防止剤、着色剤、難燃化剤、チキソトロピック剤等のその他の添加剤を含有していてもよい。これらの添加剤の含有量は、第1の硬化性組成物の全質量基準で、例えば0.1~10質量%であってよい。これらの添加剤は、第1の接着剤層に含有されていてもよい。 The first curable composition may contain other additives such as softeners, accelerators, deterioration inhibitors, colorants, flame retardants, thixotropic agents and the like. The content of these additives may be, for example, 0.1 to 10% by mass based on the total mass of the first curable composition. These additives may be contained in the first adhesive layer.
 第1の硬化性組成物は、(A)成分及び(B)成分に代えて、又は、(A)成分及び(B)成分に加えて、熱硬化性樹脂を含有していてもよい。熱硬化性樹脂は、熱により硬化する樹脂であり、少なくとも一つ以上の熱硬化性基を有する。熱硬化性樹脂は、例えば、熱によって硬化剤と反応することにより架橋する化合物である。熱硬化性樹脂として一種の化合物を単独で用いてよく、複数種の化合物を組み合わせて用いてもよい。 The first curable composition may contain a thermosetting resin in place of the components (A) and (B), or in addition to the components (A) and (B). A thermosetting resin is a resin that is cured by heat and has at least one or more thermosetting groups. A thermosetting resin is, for example, a compound that crosslinks by reacting with a curing agent by heat. As the thermosetting resin, one kind of compound may be used alone, or a plurality of kinds of compounds may be used in combination.
 熱硬化性基は、所望の溶融粘度が得られやすい観点、及び、接続抵抗の低減効果が更に向上し、接続信頼性により優れる観点から、例えば、エポキシ基、オキセタン基、イソシアネート基等であってよい。 The thermosetting group is, for example, an epoxy group, an oxetane group, an isocyanate group, or the like from the viewpoint that the desired melt viscosity can be easily obtained and the effect of reducing the connection resistance is further improved and the connection reliability is improved. Good.
 熱硬化性樹脂の具体例としては、エピクロルヒドリンと、ビスフェノールA、F、AD等と、の反応生成物であるビスフェノール型エポキシ樹脂、エピクロルヒドリンと、フェノールノボラック、クレゾールノボラック等との反応生成物であるエポキシノボラック樹脂、ナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物などのエポキシ樹脂が挙げられる。 Specific examples of the thermosetting resin include bisphenol type epoxy resin which is a reaction product of epichlorohydrin and bisphenol A, F, AD and the like, and epoxy which is a reaction product of epichlorohydrin and phenol novolac, cresol novolac and the like. Examples thereof include novolak resins, naphthalene-based epoxy resins having a skeleton containing a naphthalene ring, and epoxy resins such as various epoxy compounds having two or more glycidyl groups in one molecule such as glycidylamine and glycidyl ether.
(A)成分及び(B)成分に代えて熱硬化性樹脂を用いる場合、第1の硬化性組成物における熱硬化性樹脂の含有量は、例えば、第1の硬化性組成物の全質量を基準として、20質量%以上であってよく、80質量%以下であってよい。(A)成分及び(B)成分に加えて熱硬化性樹脂を用いる場合、第1の硬化性組成物における熱硬化性樹脂の含有量は、例えば、第1の硬化性組成物の全質量を基準として、30質量%以上であってよく、70質量%以下であってよい。 When a thermosetting resin is used instead of the component (A) and the component (B), the content of the thermosetting resin in the first curable composition is, for example, the total mass of the first curable composition. As a reference, it may be 20% by mass or more and 80% by mass or less. When a thermosetting resin is used in addition to the component (A) and the component (B), the content of the thermosetting resin in the first curable composition is, for example, the total mass of the first curable composition. As a reference, it may be 30% by mass or more and 70% by mass or less.
 第1の硬化性組成物が熱硬化性樹脂を含有する場合、第1の硬化性組成物は、上述した熱硬化性樹脂の硬化剤を含有していてもよい。熱硬化性樹脂の硬化剤としては、例えば、熱ラジカル発生剤、熱カチオン発生剤、熱アニオン発生剤等が挙げられる。硬化剤の含有量は、例えば、熱硬化性樹脂100質量部に対して、0.1質量部以上であってよく、20質量部以下であってよい。 When the first curable composition contains a thermosetting resin, the first curable composition may contain the above-mentioned curing agent for the thermosetting resin. Examples of the curing agent for the thermosetting resin include a thermal radical generator, a thermal cation generator, and a thermal anion generator. The content of the curing agent may be, for example, 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the thermosetting resin.
 第1の接着剤層は、未反応の(A)成分、(B)成分等の第1の硬化性組成物由来の成分を含んでいてもよい。本実施形態の接着剤フィルムを従来の収容部材に収容して保管及び運搬を行った場合、第1の接着剤層に未反応の(B)成分が残留することにより、保管中及び運搬中において、第2の接着剤層における第2の硬化性組成物の一部が硬化し、高温高湿環境下において回路部材と回路接続部との間での剥離が生じやすくなる、接着剤フィルムの接続抵抗の低減効果が減少する等の不具合が生じると推察される。そのため、上記不具合の発生を抑制できる観点から、第1の接着剤層における(B)成分の含有量は、第1の接着剤層の全質量を基準として、15質量%以下であってよく、10質量%以下であってよく、5質量%以下であってよい。第1の接着剤層における(B)成分の含有量は、第1の接着剤層の全質量を基準として、0.1質量%以上であってよい。なお、第1の接着剤層が(B)成分として光重合開始剤を含む場合、後述の収容部材に接着剤フィルムを収容することで、上記不具合の発生を抑制し得る。 The first adhesive layer may contain components derived from the first curable composition such as unreacted component (A) and component (B). When the adhesive film of the present embodiment is housed in a conventional storage member and stored and transported, the unreacted component (B) remains in the first adhesive layer during storage and transportation. , A part of the second curable composition in the second adhesive layer is cured, and the adhesive film is easily peeled off between the circuit member and the circuit connection portion in a high temperature and high humidity environment. It is presumed that problems such as a decrease in the resistance reduction effect will occur. Therefore, from the viewpoint of suppressing the occurrence of the above-mentioned defects, the content of the component (B) in the first adhesive layer may be 15% by mass or less based on the total mass of the first adhesive layer. It may be 10% by mass or less, and may be 5% by mass or less. The content of the component (B) in the first adhesive layer may be 0.1% by mass or more based on the total mass of the first adhesive layer. When the first adhesive layer contains a photopolymerization initiator as the component (B), the occurrence of the above-mentioned problems can be suppressed by accommodating the adhesive film in the accommodating member described later.
 第2の接着剤層が最低溶融粘度Yを示す温度Tyにおける第1の接着剤層の溶融粘度Xは、より剥離が発生しにくくなる観点から、1000Pa・s以上であってよく、10000Pa・s以上であってよく、50000Pa・s以上であってよい。溶融粘度Xは、基板への濡れ性が優れる観点から、10000000Pa・s以下であってよく、1000000Pa・s以下であってよく、500000Pa・s以下であってよい。溶融粘度Xは、第1の硬化性組成物の組成を変更すること、第1の硬化性組成物の硬化条件を変更すること等によって調整できる。 The melt viscosity X of the first adhesive layer at a temperature Ty at which the second adhesive layer exhibits the minimum melt viscosity Y may be 1000 Pa · s or more from the viewpoint of making peeling less likely to occur, and may be 10,000 Pa · s. It may be more than 50,000 Pa · s or more. The melt viscosity X may be 1000000 Pa · s or less, 1000000 Pa · s or less, and 500000 Pa · s or less from the viewpoint of excellent wettability to the substrate. The melt viscosity X can be adjusted by changing the composition of the first curable composition, changing the curing conditions of the first curable composition, and the like.
 第1の接着剤層の厚さは、導電粒子が電極間で捕捉されやすくなり、接続抵抗を一層低減できる観点から、導電粒子の平均粒径の0.1倍以上であってよく、0.2倍以上であってよく、0.3倍以上であってよい。第1の接着剤層2の厚さは、熱圧着時に導電粒子が対向する電極間ではさまれた際に、より導電粒子が潰れやすくなり、接続抵抗を一層低減できる観点から、導電粒子の平均粒径の1.0倍以下であってよく、0.8倍以下であってよく、0.7倍以下であってよい。これらの観点から、第1の接着剤層の厚さは、導電粒子の平均粒径の0.1~0.7倍であってよく、0.2~0.8倍であってよく、0.3~0.7倍であってよい。なお、接着剤層の厚さは、隣り合う導電粒子の離間部分に位置する接着剤層の厚さをいう。第1の接着剤層の厚さと導電粒子の平均粒径とが上記のような関係を満たす場合、例えば、図1に示すように、第1の接着剤層13中の導電粒子Pの一部が、第1の接着剤層13から第2の接着剤層14側に突出していてよい。この場合、隣り合う導電粒子Pの離間部分には、第1の接着剤層13と第2の接着剤層14との境界Sが位置している。導電粒子Pは、第1の接着剤層13における第2の接着剤層14側とは反対側の面には露出しておらず、反対側の面は平坦面となっていてよい。 The thickness of the first adhesive layer may be 0.1 times or more the average particle size of the conductive particles from the viewpoint that the conductive particles can be easily captured between the electrodes and the connection resistance can be further reduced. It may be 2 times or more, and may be 0.3 times or more. The thickness of the first adhesive layer 2 is the average of the conductive particles from the viewpoint that the conductive particles are more easily crushed when they are sandwiched between the electrodes facing each other during thermocompression bonding, and the connection resistance can be further reduced. The particle size may be 1.0 times or less, 0.8 times or less, and 0.7 times or less. From these viewpoints, the thickness of the first adhesive layer may be 0.1 to 0.7 times the average particle size of the conductive particles, 0.2 to 0.8 times, and 0. It may be 3 to 0.7 times. The thickness of the adhesive layer refers to the thickness of the adhesive layer located at the separated portion of the adjacent conductive particles. When the thickness of the first adhesive layer and the average particle size of the conductive particles satisfy the above relationship, for example, as shown in FIG. 1, a part of the conductive particles P in the first adhesive layer 13 However, it may protrude from the first adhesive layer 13 toward the second adhesive layer 14. In this case, the boundary S between the first adhesive layer 13 and the second adhesive layer 14 is located at the separated portion of the adjacent conductive particles P. The conductive particles P are not exposed on the surface of the first adhesive layer 13 opposite to the side of the second adhesive layer 14, and the surface on the opposite side may be a flat surface.
 第1の接着剤層の厚さは、接着する回路部材の電極の高さ等に応じて適宜設定してよい。第1の接着剤層の厚さは、例えば、0.5μm以上であってよく、20μm以下であってよい。なお、導電粒子の一部が第1の接着剤層の表面から露出(例えば、第2の接着剤層側に突出)している場合、第1の接着剤層における第2の接着剤層側とは反対側の面から、隣り合う導電粒子の離間部分に位置する第1の接着剤層と第2の接着剤層との境界Sまでの距離が第1の接着剤層の厚さであり、導電粒子の露出部分は第1の接着剤層の厚さには含まれない。導電粒子の露出部分の長さは、例えば、0.1μm以上であってよく、20μm以下であってよい。接着剤層の厚さは、以下の方法により測定することができる。
 接着剤フィルムを2枚のガラス(厚み:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:JER811、三菱ケミカル株式会社製)100gと、硬化剤(商品名:エポマウント硬化剤、リファインテック株式会社製)10gとからなる樹脂組成物で注型後に、研磨機を用いて断面研磨を行い、走査型電子顕微鏡(SEM、商品名:SE-8020、株式会社日立ハイテクサイエンス製)を用いて各接着剤層の厚さを測定する。
The thickness of the first adhesive layer may be appropriately set according to the height of the electrodes of the circuit member to be adhered. The thickness of the first adhesive layer may be, for example, 0.5 μm or more and 20 μm or less. When a part of the conductive particles is exposed from the surface of the first adhesive layer (for example, protruding toward the second adhesive layer side), the second adhesive layer side in the first adhesive layer The thickness of the first adhesive layer is the distance from the surface on the opposite side to the boundary S between the first adhesive layer and the second adhesive layer located at the separated portion of the adjacent conductive particles. The exposed portion of the conductive particles is not included in the thickness of the first adhesive layer. The length of the exposed portion of the conductive particles may be, for example, 0.1 μm or more and 20 μm or less. The thickness of the adhesive layer can be measured by the following method.
The adhesive film is sandwiched between two sheets of glass (thickness: about 1 mm), 100 g of bisphenol A type epoxy resin (trade name: JER811, manufactured by Mitsubishi Chemical Co., Ltd.) and a curing agent (trade name: Epomount curing agent, Refine Tech). After casting with a resin composition consisting of 10 g (manufactured by Hitachi, Ltd.), cross-section polishing is performed using a polishing machine, and a scanning electron microscope (SEM, trade name: SE-8020, manufactured by Hitachi High-Tech Science Co., Ltd.) is used. Measure the thickness of each adhesive layer.
(第2の接着剤層)
 第2の接着剤層は、例えば、第2の硬化性組成物からなる。第2の硬化性組成物は、例えば、(a)重合性化合物(以下、(a)成分ともいう。)及び(b)重合開始剤(以下、(b)成分ともいう。)を含有する。第2の硬化性組成物は、(b)成分として熱重合開始剤を含有する熱硬化性組成物であってよく、(b)成分として光重合開始剤を含有する光硬化性組成物であってもよく、熱硬化性組成物及び光硬化性組成物の混合物であってもよい。第2の接着剤層を構成する第2の硬化性組成物は、回路接続時に流動可能な未硬化の硬化性組成物であり、例えば、未硬化の硬化性組成物である。
(Second adhesive layer)
The second adhesive layer comprises, for example, a second curable composition. The second curable composition contains, for example, (a) a polymerizable compound (hereinafter, also referred to as (a) component) and (b) a polymerization initiator (hereinafter, also referred to as (b) component). The second curable composition may be a thermosetting composition containing a thermosetting initiator as a component (b), and may be a photocurable composition containing a photopolymerization initiator as a component (b). It may be a mixture of a thermosetting composition and a photocurable composition. The second curable composition constituting the second adhesive layer is an uncured curable composition that can flow when connected to a circuit, and is, for example, an uncured curable composition.
[(a)成分:重合性化合物]
 (a)成分は、例えば、光(例えば紫外光)の照射又は加熱によって重合開始剤(光重合開始剤又は熱重合開始剤)が発生させたラジカル、カチオン又はアニオンにより重合する化合物である。(a)成分としては、(A)成分として例示した化合物を用いることができる。(a)成分は、低温短時間での接続が容易となり、所望の溶融粘度が得られやすい観点、及び、接続抵抗の低減効果が更に向上し、接続信頼性により優れる観点から、ラジカルにより反応するラジカル重合性基を有するラジカル重合性化合物であることが好ましい。(a)成分における好ましいラジカル重合性化合物の例及び好ましいラジカル重合性化合物の組み合わせは、(A)成分と同様である。(a)成分がラジカル重合性化合物であり、且つ、第1の接着剤層における(B)成分が光ラジカル重合開始剤である場合、接着剤フィルムを後述する収容部材に収容することで、接着剤フィルムの保管時又は運搬時における第2の硬化性組成物の硬化が顕著に抑制される傾向がある。
[Component (a): polymerizable compound]
The component (a) is, for example, a compound polymerized by a radical, cation or anion generated by a polymerization initiator (photopolymerization initiator or thermal polymerization initiator) by irradiation or heating with light (for example, ultraviolet light). As the component (a), the compound exemplified as the component (A) can be used. The component (a) reacts with radicals from the viewpoint of facilitating connection at a low temperature for a short time and easily obtaining a desired melt viscosity, further improving the effect of reducing connection resistance, and improving connection reliability. It is preferably a radically polymerizable compound having a radically polymerizable group. Examples of the preferred radically polymerizable compound in the component (a) and the combination of the preferred radically polymerizable compound are the same as those in the component (A). When the component (a) is a radically polymerizable compound and the component (B) in the first adhesive layer is a photoradical polymerization initiator, it is adhered by accommodating the adhesive film in an accommodating member described later. Curing of the second curable composition during storage or transportation of the agent film tends to be significantly suppressed.
 (a)成分はモノマー、オリゴマー又はポリマーのいずれであってもよい。(a)成分として、一種の化合物を単独で用いてよく、複数種の化合物を組み合わせて用いてもよい。(a)成分は、(A)成分と同一であっても異なっていてもよい。 The component (a) may be any of a monomer, an oligomer or a polymer. As the component (a), one kind of compound may be used alone, or a plurality of kinds of compounds may be used in combination. The component (a) may be the same as or different from the component (A).
 (a)成分の含有量は、接続抵抗を低減し、接続信頼性を向上させるために必要な架橋密度が得られやすい観点から、第2の硬化性組成物の全質量基準で、10質量%以上であってよく、20質量%以上であってよく、30質量%以上であってよい。(a)成分の含有量は、重合時の硬化収縮を抑え、良好な信頼性が得られる観点から、第2の硬化性組成物の全質量基準で、90質量%以下であってよく、80質量%以下であってよく、70質量%以下であってよい。 The content of the component (a) is 10% by mass based on the total mass of the second curable composition from the viewpoint that the crosslink density required for reducing the connection resistance and improving the connection reliability can be easily obtained. It may be more than 20% by mass, and may be 30% by mass or more. The content of the component (a) may be 90% by mass or less based on the total mass of the second curable composition, from the viewpoint of suppressing curing shrinkage during polymerization and obtaining good reliability, 80% by mass. It may be 70% by mass or less, and may be 70% by mass or less.
[(b)成分:重合開始剤]
 (b)成分としては、(B)成分として例示した重合開始剤と同様の重合開始剤を用いることができる。(b)成分は、ラジカル重合開始剤であることが好ましい。(b)成分における好ましいラジカル重合開始剤の例は、(B)成分と同様である。(b)成分として、一種の化合物を単独で用いてよく、複数種の化合物を組み合わせて用いてもよい。
[Component (b): Polymerization initiator]
As the component (b), the same polymerization initiator as the polymerization initiator exemplified as the component (B) can be used. The component (b) is preferably a radical polymerization initiator. Examples of the preferred radical polymerization initiator in the component (b) are the same as those in the component (B). As the component (b), one kind of compound may be used alone, or a plurality of kinds of compounds may be used in combination.
 (b)成分の含有量は、低温短時間での接続が容易になる観点、及び、接続信頼性により優れる観点から、第2の硬化性組成物の全質量基準で、0.1質量%以上であってよく、0.5質量%以上であってよく、1質量%以上であってよい。(b)成分の含有量は、ポットライフの観点から、第2の硬化性組成物の全質量基準で、30質量%以下であってよく、20質量%以下であってよく、10質量%以下であってよい。 The content of the component (b) is 0.1% by mass or more based on the total mass of the second curable composition from the viewpoint of facilitating connection at low temperature for a short time and being more excellent in connection reliability. It may be 0.5% by mass or more, and may be 1% by mass or more. The content of the component (b) may be 30% by mass or less, 20% by mass or less, and 10% by mass or less based on the total mass of the second curable composition from the viewpoint of pot life. It may be.
[その他の成分]
 第2の硬化性組成物は、(a)成分及び(b)成分以外のその他の成分を更に含有していてよい。その他の成分としては、例えば、熱可塑性樹脂、カップリング剤、充填材、軟化剤、促進剤、劣化防止剤、着色剤、難燃化剤、チキソトロピック剤等が挙げられる。その他の成分の詳細は、第1の接着剤層におけるその他の成分の詳細と同じである。
[Other ingredients]
The second curable composition may further contain a component (a) and other components other than the component (b). Examples of other components include thermoplastic resins, coupling agents, fillers, softeners, accelerators, deterioration inhibitors, colorants, flame retardants, thixotropic agents and the like. The details of the other components are the same as the details of the other components in the first adhesive layer.
 第2の硬化性組成物は、(a)成分及び(b)成分に代えて、又は、(a)成分及び(b)成分に加えて、熱硬化性樹脂を含有していてもよい。第2の硬化性組成物が熱硬化性樹脂を含有する場合、第2の硬化性組成物は、熱硬化性樹脂を硬化するために用いられる硬化剤を含有していてもよい。熱硬化性樹脂及び硬化剤としては、第1の硬化性組成物におけるその他の成分として例示した熱硬化性樹脂及び硬化剤と同様の熱硬化性樹脂及び硬化剤を用いることができる。(a)成分及び(b)成分に代えて熱硬化性樹脂を用いる場合、第2の硬化性組成物における熱硬化性樹脂の含有量は、例えば、第2の硬化性組成物の全質量を基準として、20質量%以上であってよく、80質量%以下であってよい。(a)成分及び(b)成分に加えて熱硬化性樹脂を用いる場合、第2の硬化性組成物における熱硬化性樹脂の含有量は、例えば、第2の硬化性組成物の全質量を基準として、20質量%以上であってよく、80質量%以下であってよい。硬化剤の含有量は、第1の硬化性組成物における硬化剤の含有量として記載した範囲と同じであってよい。 The second curable composition may contain a thermosetting resin in place of the components (a) and (b), or in addition to the components (a) and (b). When the second curable composition contains a thermosetting resin, the second curable composition may contain a curing agent used to cure the thermosetting resin. As the thermosetting resin and the curing agent, the same thermosetting resin and the curing agent as the thermosetting resin and the curing agent exemplified as other components in the first curable composition can be used. When a thermosetting resin is used in place of the component (a) and the component (b), the content of the thermosetting resin in the second curable composition is, for example, the total mass of the second curable composition. As a reference, it may be 20% by mass or more and 80% by mass or less. When a thermosetting resin is used in addition to the components (a) and (b), the content of the thermosetting resin in the second curable composition is, for example, the total mass of the second curable composition. As a reference, it may be 20% by mass or more and 80% by mass or less. The content of the curing agent may be the same as the range described as the content of the curing agent in the first curable composition.
 第2の接着剤層における導電粒子の含有量は、例えば、第2の接着剤層の全質量基準で、1質量%以下であってよく、0質量%であってもよい。第2の接着剤層は、導電粒子を含まないことが好ましい。 The content of the conductive particles in the second adhesive layer may be, for example, 1% by mass or less, or 0% by mass, based on the total mass of the second adhesive layer. The second adhesive layer preferably does not contain conductive particles.
 第2の接着剤層の最低溶融粘度Yは、優れたブロッキング耐性が得られる観点から、50Pa・s以上であってよく、100Pa・s以上であってよく、300Pa・s以上であってよい。最低溶融粘度Yは、優れた電極間の充填性(樹脂充填性)が得られる観点から、100000Pa・s以下であってよく、10000Pa・s以下であってよく、5000Pa・s以下であってよい。最低溶融粘度Yは、第2の硬化性組成物の組成を変更すること等によって調整できる。 The minimum melt viscosity Y of the second adhesive layer may be 50 Pa · s or more, 100 Pa · s or more, or 300 Pa · s or more from the viewpoint of obtaining excellent blocking resistance. The minimum melt viscosity Y may be 100,000 Pa · s or less, may be 10,000 Pa · s or less, or may be 5000 Pa · s or less, from the viewpoint of obtaining excellent filling property between electrodes (resin filling property). .. The minimum melt viscosity Y can be adjusted by changing the composition of the second curable composition or the like.
 第2の接着剤層の厚さは、接着する回路部材の電極の高さ等に応じて適宜設定してよい。第2の接着剤層の厚さは、電極間のスペースを十分に充填して電極を封止することができ、より良好な信頼性が得られる観点から、5μm以上であってよく、200μm以下であってよい。なお、導電粒子の一部が第1の接着剤層の表面から露出(例えば、第2の接着剤層側に突出)している場合、第2の接着剤層における第1の接着剤層側とは反対側の面から、隣り合う導電粒子の離間部分に位置する第1の接着剤層と第2の接着剤層との境界Sまでの距離が第2の接着剤層の厚さである。 The thickness of the second adhesive layer may be appropriately set according to the height of the electrodes of the circuit member to be adhered. The thickness of the second adhesive layer may be 5 μm or more and 200 μm or less from the viewpoint that the space between the electrodes can be sufficiently filled to seal the electrodes and better reliability can be obtained. It may be. When a part of the conductive particles is exposed from the surface of the first adhesive layer (for example, protruding toward the second adhesive layer side), the first adhesive layer side in the second adhesive layer The thickness of the second adhesive layer is the distance from the surface on the opposite side to the boundary S between the first adhesive layer and the second adhesive layer located at the separated portion of the adjacent conductive particles. ..
 第2の接着剤層の厚さに対する第1の接着剤層2の厚さの比(第1の接着剤層の厚さ/第2の接着剤層の厚さ)は、電極間のスペースを十分に充填して電極を封止することができ、より良好な信頼性が得られる観点から、1以上であってよく、1000以下であってよい。 The ratio of the thickness of the first adhesive layer 2 to the thickness of the second adhesive layer (thickness of the first adhesive layer / thickness of the second adhesive layer) determines the space between the electrodes. From the viewpoint that the electrode can be sufficiently filled and the electrode can be sealed and better reliability can be obtained, the number may be 1 or more, and may be 1000 or less.
 接着剤フィルムの厚さ(接着剤フィルムを構成するすべての層の厚さの合計。)は、例えば5μm以上であってよく、200μm以下であってよい。 The thickness of the adhesive film (the total thickness of all the layers constituting the adhesive film) may be, for example, 5 μm or more, and may be 200 μm or less.
 上述した回路接続用接着剤フィルムは、剥離可能な支持フィルムと、支持フィルム上に設けられた、接着剤成分及び導電粒子を含む接着剤層と、を備え、導電粒子は、支持フィルム側に偏在するとともに接着剤層の厚み方向に対して直交する方向に分散しており、接着剤層は、支持フィルム側から接着剤層の厚み方向に、上述した第1の硬化性組成物の硬化物を含む第1の領域と、上述した第2の硬化性組成物を含む第2の領域とを有するものであってもよい。第1の領域及び第2の領域の接着剤層の厚み方向における範囲はそれぞれ、上述した第1の接着剤層及び第2の接着剤層の厚みと同様に設定することができる。導電粒子についても上述した条件と同様に設定することができる。 The above-mentioned adhesive film for circuit connection includes a peelable support film and an adhesive layer containing an adhesive component and conductive particles provided on the support film, and the conductive particles are unevenly distributed on the support film side. The adhesive layer is dispersed in a direction orthogonal to the thickness direction of the adhesive layer, and the adhesive layer is a cured product of the above-mentioned first curable composition in the thickness direction of the adhesive layer from the support film side. It may have a first region containing the first region and a second region containing the second curable composition described above. The ranges of the first region and the second region in the thickness direction of the adhesive layer can be set in the same manner as the thicknesses of the first adhesive layer and the second adhesive layer described above, respectively. The conductive particles can also be set in the same manner as described above.
 以上、本実施形態の回路接続用接着剤フィルムについて説明したが、本発明は上記実施形態に限定されない。 Although the circuit connection adhesive film of the present embodiment has been described above, the present invention is not limited to the above embodiment.
[回路接続構造体の製造方法]
 本実施形態の回路接続構造体の製造方法は、第1の回路電極が設けられた第1の回路部材と、第1の回路電極に対応する第2の回路電極が設けられた第2の回路部材とを、上述した本実施形態の回路接続用接着剤フィルムを介して接続してなる回路接続構造体を製造する方法である。
[Manufacturing method of circuit connection structure]
The method for manufacturing the circuit connection structure of the present embodiment is a second circuit provided with a first circuit member provided with a first circuit electrode and a second circuit electrode corresponding to the first circuit electrode. This is a method for manufacturing a circuit connection structure formed by connecting members via the circuit connection adhesive film of the present embodiment described above.
 本実施形態の方法は、例えば、上述した本実施形態の回路接続用接着剤フィルムを準備する準備工程と、
 回路接続用接着剤フィルムの第2の接着剤層側が、第1の回路部材の回路電極が設けられている面と対向するようにして、回路接続用接着剤フィルムを第1の回路部材上にラミネートするラミネート工程と、
 第1の回路電極と第2の回路電極とが対向するように、回路接続用接着剤フィルムがラミネートされた第1の回路部材上に第2の回路部材を配置し、回路接続用接着剤フィルムを加熱しながら、第1の回路部材と第2の回路部材とを第1の回路電極と第2の回路電極が対向する方向に加圧する加熱加圧工程と、
を備える。
The method of the present embodiment includes, for example, the preparatory step of preparing the adhesive film for circuit connection of the present embodiment described above.
The circuit connection adhesive film is placed on the first circuit member so that the second adhesive layer side of the circuit connection adhesive film faces the surface of the first circuit member where the circuit electrode is provided. Laminating process and laminating
The second circuit member is arranged on the first circuit member on which the circuit connection adhesive film is laminated so that the first circuit electrode and the second circuit electrode face each other, and the circuit connection adhesive film is arranged. A heating and pressurizing step of pressurizing the first circuit member and the second circuit member in the direction in which the first circuit electrode and the second circuit electrode face each other while heating.
To be equipped.
(準備工程)
 この工程では、上述した本実施形態の回路接続用接着剤フィルムを製造することができる。
 本実施形態の回路接続用接着剤フィルムの製造方法は、例えば、上述した第1の接着剤層を用意する用意工程(第1の用意工程)と、第1の接着剤層上に上述した第2の接着剤層を積層する積層工程と、を備えていてもよい。回路接続用接着剤フィルムの製造方法は、第2の接着剤層を用意する用意工程(第2の用意工程)を更に備えていてもよい。
(Preparation process)
In this step, the above-described circuit connection adhesive film of the present embodiment can be manufactured.
The method for producing the circuit connection adhesive film of the present embodiment is, for example, a preparation step for preparing the first adhesive layer described above (first preparation step) and a first preparation step described above on the first adhesive layer. It may include a laminating step of laminating the adhesive layer of 2. The method for manufacturing the adhesive film for circuit connection may further include a preparation step (second preparation step) for preparing the second adhesive layer.
 第1の用意工程では、例えば、支持フィルム上に第1の接着剤層を形成して第1の接着剤フィルムを得ることにより、第1の接着剤層を用意する。具体的には、まず、(A)成分、(B)成分及び(C)成分、並びに必要に応じて添加される他の成分を、有機溶媒中に加え、攪拌混合、混錬等により、溶解又は分散させて、ワニス組成物を調製する。その後、離型処理を施した基材上に、ワニス組成物をナイフコーター、ロールコーター、アプリケーター、コンマコーター、ダイコーター等を用いて塗布した後、加熱により有機溶媒を揮発させて、基材上に第1の硬化性組成物からなる層を形成する。続いて、第1の硬化性組成物からなる層に対して光照射又は加熱を行うことにより、第1の硬化性組成物を硬化させ、基材上に第1の接着剤層を形成する(硬化工程)。これにより、第1の接着剤フィルムが得られる。 In the first preparation step, for example, the first adhesive layer is prepared by forming the first adhesive layer on the support film to obtain the first adhesive film. Specifically, first, the component (A), the component (B) and the component (C), and other components added as needed are added to the organic solvent and dissolved by stirring and mixing, kneading and the like. Alternatively, disperse to prepare a varnish composition. Then, the varnish composition is applied onto the release-treated substrate using a knife coater, roll coater, applicator, comma coater, die coater, etc., and then the organic solvent is volatilized by heating to form the substrate. To form a layer of the first curable composition. Subsequently, the layer composed of the first curable composition is irradiated with light or heated to cure the first curable composition and form the first adhesive layer on the substrate (). Curing process). As a result, the first adhesive film is obtained.
 ワニス組成物の調製に用いる有機溶媒としては、各成分を均一に溶解又は分散し得る特性を有するものが好ましく、例えば、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。これらの有機溶媒は、単独で又は2種以上を組み合わせて使用することができる。ワニス組成物の調製の際の攪拌混合及び混錬は、例えば、攪拌機、らいかい機、3本ロール、ボールミル、ビーズミル又はホモディスパーを用いて行うことができる。 The organic solvent used for preparing the varnish composition preferably has the property of uniformly dissolving or dispersing each component, and for example, toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate and the like. Can be mentioned. These organic solvents can be used alone or in combination of two or more. Stirring and mixing and kneading in the preparation of the varnish composition can be carried out by using, for example, a stirrer, a raft machine, a triple roll, a ball mill, a bead mill or a homodisper.
 支持フィルムとしては、第1の硬化性組成物を光により硬化させる場合には有機溶媒を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限はなく、第1の硬化性組成物を加熱により硬化させる場合には、有機溶媒を揮発させる際の加熱条件及び第1の硬化性組成物を硬化させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限はない。支持フィルムとしては、例えば、延伸ポリプロピレン(OPP)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリオレフィン、ポリアセテート、ポリカーボネート、ポリフェニレンサルファイド、ポリアミド、ポリイミド、セルロース、エチレン・酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、合成ゴム系、液晶ポリマー等からなる基材(例えばフィルム)を用いることができる。汎用性が高い観点から、ポリエチレンテレフタレートを好適に用いることができる。 The support film is not particularly limited as long as it has heat resistance that can withstand the heating conditions when volatilizing the organic solvent when the first curable composition is cured by light, and the first curable film is curable. When the composition is cured by heating, there is no particular limitation as long as it has heat resistance that can withstand the heating conditions for volatilizing the organic solvent and the heating conditions for curing the first curable composition. .. Examples of the supporting film include stretched polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polyvinylidene terephthalate, polyolefin, polyacetate, polycarbonate, polyvinylidene sulfate, polyamide, polyimide, cellulose, ethylene / acetic acid. A base material (for example, a film) made of a vinyl copolymer, polyvinyl chloride, polyvinylidene chloride, synthetic rubber, liquid crystal polymer or the like can be used. From the viewpoint of high versatility, polyethylene terephthalate can be preferably used.
 支持フィルムへ塗布したワニス組成物から有機溶媒を揮発させる際の加熱条件は、有機溶媒が十分に揮発する条件とすることが好ましい。加熱条件は、例えば、40℃以上120℃以下で0.1分間以上10分間以下であってよい。 The heating conditions for volatilizing the organic solvent from the varnish composition applied to the support film are preferably conditions in which the organic solvent volatilizes sufficiently. The heating conditions may be, for example, 40 ° C. or higher and 120 ° C. or lower for 0.1 minute or longer and 10 minutes or shorter.
 硬化工程における光の照射には、150~750nmの範囲内の波長を含む照射光(例えば紫外光)を用いることが好ましい。光の照射は、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプ等を使用して行うことができる。光の照射量は、溶融粘度の比(X/Y)が10以上となるように調整してよい。光の照射量は、例えば、波長365nmの光の積算光量で、100mJ/cm以上であってよく、200mJ/cm以上であってよく、300mJ/cm以上であってよい。光の照射量は、例えば、波長365nmの光の積算光量で、10000mJ/cm以下であってよく、5000mJ/cm以下であってよく、3000mJ/cm以下であってよい。光の照射量(光の積算光量)が大きいほど溶融粘度Xが大きくなる傾向があり、溶融粘度の比(X/Y)が大きくなる傾向がある。 For the irradiation of light in the curing step, it is preferable to use irradiation light (for example, ultraviolet light) having a wavelength in the range of 150 to 750 nm. Light irradiation can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, or the like. The amount of light irradiation may be adjusted so that the ratio of melt viscosity (X / Y) is 10 or more. The amount of light irradiation may be, for example, the integrated light amount of light having a wavelength of 365 nm, which may be 100 mJ / cm 2 or more, 200 mJ / cm 2 or more, or 300 mJ / cm 2 or more. The dose of light, for example, an accumulated light quantity of the wavelength 365nm light, may be at 10000 mJ / cm 2 or less, may be at 5000 mJ / cm 2 or less, may be at 3000 mJ / cm 2 or less. The larger the light irradiation amount (integrated light amount of light), the larger the melt viscosity X tends to be, and the larger the melt viscosity ratio (X / Y) tends to be.
 硬化工程における加熱条件は、溶融粘度の比(X/Y)が10以上となるように調整してよい。加熱条件は、例えば、30℃以上300℃以下で0.1分間以上5000分間以下であってよく、50℃以上150℃以下で0.1分間以上3000分間以下であってよい。加熱温度が高いほど溶融粘度Xが大きくなる傾向があり、溶融粘度の比(X/Y)が大きくなる傾向がある。また、加熱時間が長いほど溶融粘度Xが大きくなる傾向があり、溶融粘度の比(X/Y)が大きくなる傾向がある。 The heating conditions in the curing step may be adjusted so that the melt viscosity ratio (X / Y) is 10 or more. The heating conditions may be, for example, 30 ° C. or higher and 300 ° C. or lower for 0.1 minutes or more and 5000 minutes or less, and 50 ° C. or higher and 150 ° C. or lower for 0.1 minutes or longer and 3000 minutes or shorter. The higher the heating temperature, the larger the melt viscosity X tends to be, and the higher the melt viscosity ratio (X / Y) tends to be. Further, the longer the heating time, the larger the melt viscosity X tends to be, and the melt viscosity ratio (X / Y) tends to be larger.
 第2の用意工程では、(a)成分及び(b)成分、並びに必要に応じて添加される他の成分を用いること、及び、硬化工程を実施しない(光照射及び加熱を行わない)こと以外は、第1の用意工程と同様に、基材上に第2の接着剤層を形成して第2の接着剤フィルムを得ることにより、第2の接着剤層を用意する。基材は、上述した支持フィルムと同様のものを用いることができる。 In the second preparation step, other than using the components (a) and (b) and other components added as needed, and not performing the curing step (no light irradiation and heating). Prepares a second adhesive layer by forming a second adhesive layer on a base material to obtain a second adhesive film in the same manner as in the first preparation step. As the base material, the same base material as the above-mentioned support film can be used.
 積層工程では、第1の接着剤フィルムと、第2の接着剤フィルムとを貼り合わせることにより、第1の接着剤層上に第2の接着剤層を積層してよく、第1の接着剤層上に、(a)成分及び(b)成分、並びに必要に応じて添加される他の成分を用いて得られるワニス組成物を塗布し、有機溶媒を揮発させることにより、第1の接着剤層上に第2の接着剤層を積層してもよい。 In the laminating step, the second adhesive layer may be laminated on the first adhesive layer by laminating the first adhesive film and the second adhesive film, and the first adhesive may be laminated. The first adhesive is formed by applying a varnish composition obtained by using the components (a) and (b) and other components added as needed on the layer and volatilizing the organic solvent. A second adhesive layer may be laminated on the layer.
 第1の接着剤フィルムと、第2の接着剤フィルムとを貼り合わせる方法としては、例えば、加熱プレス、ロールラミネート、真空ラミネート等の方法が挙げられる。ラミネートは、例えば、0~80℃の加熱条件下で行ってよい。 Examples of the method of adhering the first adhesive film and the second adhesive film include methods such as heat pressing, roll laminating, and vacuum laminating. Lamination may be performed, for example, under heating conditions of 0 to 80 ° C.
 また、本実施形態において、第1の接着剤層において、導電粒子Pの90%以上が他の導電粒子と離間した状態となっている回路接続用接着剤フィルムを用いる場合、そのような分散状態は、後述の磁場印加工程によって形成することができる。この場合、導電粒子Pとしては、磁場印加工程による分散化を実施する観点から、ニッケルを含有する粒子が好適に用いられる。一般的に、鉄・コバルト・ニッケルは強磁性体であり、外部磁場によって磁化することが知られているが、この中でもニッケルを用いることが導電性及び磁場印加による分散性を両立できる点で有意である。また、導電粒子Pの保存安定性を得るため、導電粒子Pの表層は、ニッケルではなく、金、銀のような白金属の貴金属類としてもよい。また、ニッケルの表面をAu等の貴金属類で被覆してもよい。さらに、非導電性のガラス、セラミック、プラスチック等を上記金属等の導電物質で被覆したものを用いてもよく、この場合にもニッケル層を設けて多層構造とすることも可能である。 Further, in the present embodiment, when a circuit connection adhesive film in which 90% or more of the conductive particles P are separated from other conductive particles is used in the first adhesive layer, such a dispersed state is used. Can be formed by the magnetic field application step described later. In this case, as the conductive particles P, nickel-containing particles are preferably used from the viewpoint of carrying out dispersion by the magnetic field application step. In general, iron, cobalt, and nickel are ferromagnets and are known to be magnetized by an external magnetic field. Among them, the use of nickel is significant in that both conductivity and dispersibility by applying a magnetic field can be achieved. Is. Further, in order to obtain the storage stability of the conductive particles P, the surface layer of the conductive particles P may be a white metal noble metal such as gold or silver instead of nickel. Further, the surface of nickel may be coated with a precious metal such as Au. Further, a non-conductive glass, ceramic, plastic or the like coated with a conductive substance such as the metal may be used, and in this case as well, a nickel layer may be provided to form a multilayer structure.
 また、ニッケルの磁性は、ニッケルめっき中に含有するリン濃度に影響されるため、磁場による導電粒子Pの分散に必要な磁性は適時調整することが好ましい。導電粒子Pの磁性は、例えば試料振動型磁力計(VSM:Vibrating Sample Magnetmeter)によって飽和磁化を測定することが可能である。外部磁場によって導電粒子Pを分散するためには、VSM測定にて飽和磁化が5.0emu/g~50emu/gの範囲であることが好ましい。5.0emu/g以上であると、充分に導電粒子Pの分散を行うことが容易となる。一方、50emu/g以下であると、導電粒子Pの磁化が大きくなりすぎず、導電粒子Pが第1の接着剤層13の厚み方向に結合することが抑制され、導電粒子Pの分散性が高くなる傾向にある。 Further, since the magnetism of nickel is affected by the phosphorus concentration contained in nickel plating, it is preferable to adjust the magnetism required for dispersion of the conductive particles P by a magnetic field in a timely manner. The magnetism of the conductive particles P can be measured for saturation magnetization by, for example, a vibrating sample magnetmeter (VSM). In order to disperse the conductive particles P by an external magnetic field, the saturation magnetization is preferably in the range of 5.0 emu / g to 50 emu / g in VSM measurement. When it is 5.0 emu / g or more, it becomes easy to sufficiently disperse the conductive particles P. On the other hand, when it is 50 emu / g or less, the magnetization of the conductive particles P does not become too large, the conduction of the conductive particles P in the thickness direction of the first adhesive layer 13 is suppressed, and the dispersibility of the conductive particles P becomes high. It tends to be higher.
 導電粒子Pの平均粒径は、1.0μm以上10.0μm以下であることが好ましい。導電粒子Pの平均粒径が1.0μm以上である場合には、支持フィルムへの塗工精度が高く、導電粒子Pを第1の接着剤層に良好に分散させることが容易となる。導電粒子Pの平均粒径が10.0μm以下の場合には、接続構造体の隣接する回路電極間での良好な絶縁性が得られる傾向にある。導電粒子Pの良好な分散性を得るためには、導電粒子Pの平均粒径は、2.0μm以上であることがより好ましく、2.5μm以上であることが更に好ましい。一方、接続構造体の隣接する回路電極間での絶縁性の確保の観点から、導電粒子Pの平均粒径は、8.5μm以下であることがより好ましく、7μm以下であることが更に好ましく、6.0μm以下であることが更により好ましい。 The average particle size of the conductive particles P is preferably 1.0 μm or more and 10.0 μm or less. When the average particle size of the conductive particles P is 1.0 μm or more, the coating accuracy on the support film is high, and the conductive particles P can be easily dispersed in the first adhesive layer. When the average particle size of the conductive particles P is 10.0 μm or less, good insulation between adjacent circuit electrodes of the connecting structure tends to be obtained. In order to obtain good dispersibility of the conductive particles P, the average particle size of the conductive particles P is more preferably 2.0 μm or more, and further preferably 2.5 μm or more. On the other hand, from the viewpoint of ensuring the insulating property between the adjacent circuit electrodes of the connection structure, the average particle size of the conductive particles P is more preferably 8.5 μm or less, further preferably 7 μm or less. Even more preferably, it is 6.0 μm or less.
 導電粒子Pの配合量は、第1の接着剤層の導電粒子P以外の成分100体積部に対して1体積部~100体積部とすることが好ましい。導電粒子Pが過剰に存在することによる隣接する回路電極の短絡を防止する観点から、導電粒子Pの配合量は、10体積部~50体積部とすることがより好ましい。さらに、導電粒子の平均粒径が1.0μm以上10.0μm以下の範囲において、導電粒子の粒子密度が1000個/mm以上50000個/mm以下であることが好ましい。この場合、導電粒子Pの分散性と隣接する回路電極間での絶縁性とをより好適に両立できる。 The blending amount of the conductive particles P is preferably 1 part by volume to 100 parts by volume with respect to 100 parts by volume of the components other than the conductive particles P in the first adhesive layer. From the viewpoint of preventing short-circuiting of adjacent circuit electrodes due to the excessive presence of the conductive particles P, the blending amount of the conductive particles P is more preferably 10 parts by volume to 50 parts by volume. Furthermore, to the extent the average particle diameter is less 1.0μm or 10.0μm of the conductive particles, it is preferred particle density of the conductive particles is 1000 / mm 2 or more 50000 / mm 2 or less. In this case, the dispersibility of the conductive particles P and the insulating property between the adjacent circuit electrodes can be more preferably compatible with each other.
(ラミネート工程)
 図2は、本実施形態の接続構造体の製造方法におけるラミネート工程を示す模式的断面図である。この工程では、同図に示すように、回路接続用接着剤フィルム11の第2の接着剤層14側が、第1の回路部材2の第1の回路電極6が設けられている面と対向するようにして、回路接続用接着剤フィルム11を第1の回路部材2上にラミネートする。なお、回路接続用接着剤フィルム11が第2の接着剤層14上に設けられた剥離フィルムを有する場合には、剥離フィルムを剥がしてから又は剥がしながら第2の接着剤層14が第1の回路部材2に密着するようにラミネートすることができる。
(Laminating process)
FIG. 2 is a schematic cross-sectional view showing a laminating step in the method for manufacturing a connection structure of the present embodiment. In this step, as shown in the figure, the second adhesive layer 14 side of the circuit connection adhesive film 11 faces the surface of the first circuit member 2 where the first circuit electrode 6 is provided. In this way, the circuit connection adhesive film 11 is laminated on the first circuit member 2. When the circuit connection adhesive film 11 has a release film provided on the second adhesive layer 14, the second adhesive layer 14 is the first after or while the release film is peeled off. It can be laminated so as to be in close contact with the circuit member 2.
 第1の回路部材2は、本体部5の実装面5a側に回路電極6を有している。第1の回路部材2としては、例えば、COP、FCP、ポリイミドなどのフレキシブル基板を有する部材が挙げられる。回路電極6は、例えば、スズ等の金属でメッキされた銅が挙げられる。なお、実装面5aにおいて、回路電極6が形成されていない部分には、絶縁層が形成されていてもよい。 The first circuit member 2 has a circuit electrode 6 on the mounting surface 5a side of the main body 5. Examples of the first circuit member 2 include a member having a flexible substrate such as COP, FCP, and polyimide. Examples of the circuit electrode 6 include copper plated with a metal such as tin. An insulating layer may be formed on the mounting surface 5a where the circuit electrode 6 is not formed.
 ラミネートの手段としては、公知のラミネーターを用いることができる。ラミネートの条件は、適宜設定することができる。 A known laminator can be used as the laminating means. Laminating conditions can be set as appropriate.
 図3は、ラミネート工程を経て得られる積層体を示す模式的断面図である。 FIG. 3 is a schematic cross-sectional view showing a laminated body obtained through a laminating step.
(加熱加圧工程)
 図4は、本実施形態の接続構造体の製造方法における加熱加圧工程を示す模式的断面図である。この工程では、同図に示すように、第1の回路電極6と第2の回路電極8とが対向するように、回路接続用接着剤フィルム(第2の接着剤層14及び第1の接着剤層13)がラミネートされた第1の回路部材2上に第2の回路部材3を配置し、回路接続用接着剤フィルム(第2の接着剤層14及び第1の接着剤層13)を加熱しながら、第1の回路部材2と第2の回路部材3とを第1の回路電極6と第2の回路電極8が対向する方向に加圧する。
(Heating and pressurizing process)
FIG. 4 is a schematic cross-sectional view showing a heating and pressurizing step in the method for manufacturing the connection structure of the present embodiment. In this step, as shown in the figure, the circuit connection adhesive film (second adhesive layer 14 and the first adhesive) is adhered so that the first circuit electrode 6 and the second circuit electrode 8 face each other. The second circuit member 3 is arranged on the first circuit member 2 on which the agent layer 13) is laminated, and the circuit connection adhesive film (second adhesive layer 14 and first adhesive layer 13) is applied. While heating, the first circuit member 2 and the second circuit member 3 are pressurized in the direction in which the first circuit electrode 6 and the second circuit electrode 8 face each other.
 第2の回路部材3は、例えば液晶ディスプレイに用いられるITO、IZO、若しくは金属等で回路が形成されたガラス基板又はプラスチック基板、セラミック配線板などである。第2の回路部材3は、図4に示すように、本体部7の実装面7a側に第1の回路電極6に対応する第2の回路電極8を有している。 The second circuit member 3 is, for example, a glass substrate or a plastic substrate whose circuit is formed of ITO, IZO, metal or the like used for a liquid crystal display, a ceramic wiring board, or the like. As shown in FIG. 4, the second circuit member 3 has a second circuit electrode 8 corresponding to the first circuit electrode 6 on the mounting surface 7a side of the main body 7.
 回路電極8は、例えば平面視で矩形状をなしており、厚みは例えば100nm~1000nm程度となっている。回路電極8の表面は、例えば金、銀、銅、錫、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、インジウム錫酸化物(ITO)、及びインジウム亜鉛酸化物(IZO)から選ばれる1種或いは2種以上の材料で構成されている。なお、実装面7aにおいても、回路電極8が形成されていない部分に絶縁層が形成されていてもよい。 The circuit electrode 8 has, for example, a rectangular shape in a plan view, and has a thickness of, for example, about 100 nm to 1000 nm. The surface of the circuit electrode 8 is one selected from, for example, gold, silver, copper, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, indium tin oxide (ITO), and indium zinc oxide (IZO). It is composed of two or more kinds of materials. The mounting surface 7a may also have an insulating layer formed on a portion where the circuit electrode 8 is not formed.
 加熱手段としては、公知の熱圧着装置を用いることができる。回路接続用接着剤フィルム(第2の接着剤層14及び第1の接着剤層13)の加熱温度は、硬化剤において重合活性種が発生し、重合モノマーの重合が開始される温度以上であることが好ましい。この加熱温度は、例えば80℃~200℃であり、好ましくは100℃~180℃である。また、加熱時間は、例えば0.1秒~30秒、好ましくは1秒~20秒である。加熱温度が80℃以上であると充分な硬化速度が得られやすく、200℃以下であると望まない副反応が進行しにくくなる。また、加熱時間が0.1秒以上であると硬化反応を十分に進行させやすくなり、30秒以下であると硬化物の生産性を維持しやすくなり、更に望まない副反応も進みにくくなる。 A known thermocompression bonding device can be used as the heating means. The heating temperature of the circuit connection adhesive film (second adhesive layer 14 and first adhesive layer 13) is equal to or higher than the temperature at which polymerization active species are generated in the curing agent and the polymerization of the polymerization monomer is started. Is preferable. This heating temperature is, for example, 80 ° C. to 200 ° C., preferably 100 ° C. to 180 ° C. The heating time is, for example, 0.1 seconds to 30 seconds, preferably 1 second to 20 seconds. When the heating temperature is 80 ° C. or higher, a sufficient curing rate is likely to be obtained, and when the heating temperature is 200 ° C. or lower, unwanted side reactions are less likely to proceed. Further, when the heating time is 0.1 seconds or more, the curing reaction is likely to proceed sufficiently, and when the heating time is 30 seconds or less, the productivity of the cured product is easily maintained, and undesired side reactions are less likely to proceed.
 加圧手段としては、公知の熱圧着装置を用いることができる。加圧の圧力及び時間は、適宜設定することができる。 A known thermocompression bonding device can be used as the pressurizing means. The pressure and time of pressurization can be set as appropriate.
 図5は、加熱加圧工程を経て得られる回路接続構造体を示す模式的断面図である。加熱加圧工程では、回路接続用接着剤フィルム(第2の接着剤層14及び第1の接着剤層13)の接着剤成分が流動し、第1の回路電極6と第2の回路電極8との距離が縮まって導電粒子Pが噛合した状態で、第2の接着剤層及び第1の接着剤層が硬化する。第2の接着剤層及び第1の接着剤層の硬化により、第1の回路電極6と第2の回路電極8とが電気的に接続され、かつ隣接する回路電極6,6同士及び隣接する回路電極8,8同士が電気的に絶縁された状態で回路接続用接着剤フィルム(第2の接着剤層14及び第1の接着剤層13)の硬化物4が形成され、図5に示した回路接続構造体1が得られる。得られた回路接続構造体1では、回路接続用接着剤フィルム(第2の接着剤層14及び第1の接着剤層13)の硬化物4によって第1の回路電極6と第2の回路電極8との間の距離の経時的変化が十分に防止されると共に、電気的特性の長期信頼性も確保できる。 FIG. 5 is a schematic cross-sectional view showing a circuit connection structure obtained through a heating and pressurizing step. In the heating and pressurizing step, the adhesive components of the circuit connection adhesive film (second adhesive layer 14 and first adhesive layer 13) flow, and the first circuit electrode 6 and the second circuit electrode 8 flow. The second adhesive layer and the first adhesive layer are cured in a state where the distance between the two and the conductive particles P is reduced. By curing the second adhesive layer and the first adhesive layer, the first circuit electrode 6 and the second circuit electrode 8 are electrically connected, and the adjacent circuit electrodes 6 and 6 are adjacent to each other and adjacent to each other. A cured product 4 of the circuit connection adhesive film (second adhesive layer 14 and first adhesive layer 13) is formed in a state where the circuit electrodes 8 and 8 are electrically insulated from each other, and is shown in FIG. The circuit connection structure 1 is obtained. In the obtained circuit connection structure 1, the first circuit electrode 6 and the second circuit electrode are formed by the cured product 4 of the circuit connection adhesive film (second adhesive layer 14 and first adhesive layer 13). The time-dependent change of the distance from 8 can be sufficiently prevented, and the long-term reliability of the electrical characteristics can be ensured.
 回路接続用接着剤フィルム(第2の接着剤層14及び第1の接着剤層13)の硬化物4は、第1の接着剤層13を硬化してなる第1の領域9と、第2の接着剤層14を硬化してなる第2の領域10とを有している。本実施形態では、第1の領域9が第2の回路部材3側に位置し、第2の領域10が第1の回路部材2側に位置している。 The cured product 4 of the circuit connection adhesive film (second adhesive layer 14 and first adhesive layer 13) has a first region 9 formed by curing the first adhesive layer 13 and a second region 9. It has a second region 10 formed by curing the adhesive layer 14 of the above. In the present embodiment, the first region 9 is located on the second circuit member 3 side, and the second region 10 is located on the first circuit member 2 side.
 導電粒子Pは、圧着によって僅かに扁平に変形した状態で第1の回路電極6と第2の回路電極8との間に介在している。これにより、第1の回路電極6と第2の回路電極8との間の電気的な接続が実現されている。また、隣接する第1の回路電極6,6間及び隣接する第2の回路電極8,8間では、導電粒子Pが離間した状態となっており、隣接する第1の回路電極6,6間及び隣接する第2の回路電極8,8間の電気的な絶縁が実現されている。 The conductive particles P are interposed between the first circuit electrode 6 and the second circuit electrode 8 in a state of being slightly flattened by crimping. As a result, an electrical connection between the first circuit electrode 6 and the second circuit electrode 8 is realized. Further, the conductive particles P are separated between the adjacent first circuit electrodes 6 and 6 and between the adjacent second circuit electrodes 8 and 8, and between the adjacent first circuit electrodes 6 and 6. And electrical insulation between the adjacent second circuit electrodes 8 and 8 is realized.
[回路接続用接着剤フィルムの製造方法]
 図6は、図1に示した回路接続用接着剤フィルムの製造工程を示す概略図である。同図に示す例では、長尺の支持フィルム12を繰出ローラ21及び巻取ローラ22によって所定の速度で搬送している。支持フィルム12の搬送経路上には、第1の接着剤層13の形成材料となる接着剤ペーストWを塗布するコータ23が配置されており、コータ23によって導電粒子Pが分散された接着剤ペーストWが支持フィルム12上に塗布される(塗布工程)。コータ23によって支持フィルム12上に塗布される接着剤ペーストWの厚みは、樹脂組成物中に含まれる溶剤の割合によって適時変動するが、導電粒子Pの平均粒径の1.6倍未満となっていることが好適である。
[Manufacturing method of adhesive film for circuit connection]
FIG. 6 is a schematic view showing a manufacturing process of the adhesive film for circuit connection shown in FIG. In the example shown in the figure, the long support film 12 is conveyed at a predetermined speed by the feeding roller 21 and the winding roller 22. A coater 23 for applying the adhesive paste W, which is a material for forming the first adhesive layer 13, is arranged on the transport path of the support film 12, and the adhesive paste in which the conductive particles P are dispersed by the coater 23 is arranged. W is applied onto the support film 12 (coating step). The thickness of the adhesive paste W applied on the support film 12 by the coater 23 varies from time to time depending on the proportion of the solvent contained in the resin composition, but is less than 1.6 times the average particle size of the conductive particles P. It is preferable that
 接着剤ペーストWの粘度は、用途、塗布方法に応じて変動させることができるが、通常は、10mPa・s~10000mPa・sとすることが好ましい。接着剤ペーストW中の配合物の分離の抑制や相溶性向上の観点から、50mPa・s~5000mPa・sとすることがより好ましい。また、回路接続用接着剤フィルム11の外観向上のためには、100mPa・s~3000mPa・sとすることが好ましい。10000mPa・s以下であると、後続する磁場印加工程での導電粒子Pの分散が抑制されにくくなり、10mPa・s以上では接着剤ペーストWの配合物の分離が生じにくくなる。 The viscosity of the adhesive paste W can be varied depending on the application and coating method, but is usually preferably 10 mPa · s to 10000 mPa · s. From the viewpoint of suppressing separation of the compound in the adhesive paste W and improving compatibility, it is more preferably 50 mPa · s to 5000 mPa · s. Further, in order to improve the appearance of the circuit connection adhesive film 11, it is preferably 100 mPa · s to 3000 mPa · s. When it is 10000 mPa · s or less, it becomes difficult to suppress the dispersion of the conductive particles P in the subsequent magnetic field application step, and when it is 10 mPa · s or more, it becomes difficult to separate the composition of the adhesive paste W.
 接着剤ペーストWの塗工方法は、上記に限られず、公知の方法を利用することができる。例えばスピンコート法、ローラーコート法、バーコート法、ディップコート法、マイクログラビアコート法、カーテンコート法、ダイコート法、スプレーコート法、ドクターコート法、ニーダーコート法、フローコーティング法、スクリーン印刷法、キャスト法などが挙げられる。バーコート法、ダイコート法、マイクログラビアコート法などが回路接続用接着剤フィルム11の作製に適しており、フィルム膜厚の精度の観点からは、マイクログラビアコート法が特に好適である。 The coating method of the adhesive paste W is not limited to the above, and a known method can be used. For example, spin coating method, roller coating method, bar coating method, dip coating method, microgravure coating method, curtain coating method, die coating method, spray coating method, doctor coating method, kneader coating method, flow coating method, screen printing method, cast. The law etc. can be mentioned. The bar coating method, the die coating method, the microgravure coating method and the like are suitable for producing the adhesive film 11 for circuit connection, and the microgravure coating method is particularly suitable from the viewpoint of the accuracy of the film thickness.
 コータ23の後段側には、支持フィルム12を挟むように一対の磁石24,25が上下に対向配置されている。本実施形態では、図7に示すように、上側に配置された磁石24がN極、下側に配置された磁石25がS極となっており、磁石24から磁石25に向かう略垂直方向に磁場が形成されている。したがって、磁石24,25間に支持フィルム12が搬送されると、接着剤ペーストW中の導電粒子Pが磁化され、斥力によって導電粒子P,P同士が接着剤ペーストWの面内方向に離間した状態が形成される(磁場印加工程)。 On the rear side of the coater 23, a pair of magnets 24 and 25 are arranged vertically facing each other so as to sandwich the support film 12. In the present embodiment, as shown in FIG. 7, the magnet 24 arranged on the upper side has an N pole and the magnet 25 arranged on the lower side has an S pole, and the magnet 24 is oriented substantially vertically toward the magnet 25. A magnetic field is formed. Therefore, when the support film 12 is conveyed between the magnets 24 and 25, the conductive particles P in the adhesive paste W are magnetized, and the conductive particles P and P are separated from each other in the in-plane direction of the adhesive paste W by a repulsive force. A state is formed (magnetic field application step).
 また、磁場印加工程における導電粒子Pの離間状態を保持するため、支持フィルム12が磁石24,25間を通過している間に熱風等によって接着剤ペーストWの乾燥を行う(乾燥工程)。これにより、接着剤ペーストWの粘度が上昇し、図8に示すように、導電粒子Pの70%以上、好ましくは90%以上が隣接する他の導電粒子Pと離間した状態となった第1の接着剤層13が支持フィルム12上に形成される。また、乾燥工程によって接着剤ペーストWの厚みが減少していき、上述したように、接着剤ペーストWの厚みを導電粒子Pの平均粒径の1.6倍未満としておくことで、第1の接着剤層13の厚みを導電粒子Pの平均粒径の0.6倍以上1.0倍未満とすることが容易となる。また、有機溶媒(例えば、メチルエチルケトンなど)で希釈した接着剤ペースト(ワニス)を用いることで、接着剤層の厚みを導電粒子Pの平均粒径の0.1倍程度まで薄くすることも可能となる。希釈する有機溶剤の量は特に制限はないが、接着剤成分100質量部に対して50~500質量部を加えるのが好ましい。 Further, in order to maintain the separated state of the conductive particles P in the magnetic field application step, the adhesive paste W is dried by hot air or the like while the support film 12 passes between the magnets 24 and 25 (drying step). As a result, the viscosity of the adhesive paste W is increased, and as shown in FIG. 8, 70% or more, preferably 90% or more of the conductive particles P are separated from the other adjacent conductive particles P. The adhesive layer 13 of the above is formed on the support film 12. Further, the thickness of the adhesive paste W decreases due to the drying step, and as described above, the thickness of the adhesive paste W is set to less than 1.6 times the average particle size of the conductive particles P, so that the first method is performed. The thickness of the adhesive layer 13 can be easily set to 0.6 times or more and less than 1.0 times the average particle size of the conductive particles P. Further, by using an adhesive paste (varnish) diluted with an organic solvent (for example, methyl ethyl ketone), the thickness of the adhesive layer can be reduced to about 0.1 times the average particle size of the conductive particles P. Become. The amount of the organic solvent to be diluted is not particularly limited, but it is preferable to add 50 to 500 parts by mass with respect to 100 parts by mass of the adhesive component.
 なお、接着剤ペーストWの乾燥温度は、例えば20℃~80℃であることが好ましい。また、支持フィルム12の搬送速度は、例えば30mm/s~160mm/sであることが好ましい。接着剤ペーストWの厚みは、例えば平均粒径が3μmの導電粒子Pを用いる場合には、5μm~10μmであることが好ましい。支持フィルム12の搬送速度が30mm/s以上である場合、導電粒子Pが充分に離間した状態で接着剤ペーストWが乾燥するので、分散が充分となる傾向にある。支持フィルム12の搬送速度が160mm/s以下である場合、乾燥後に磁場の印加が終了する傾向にあり、導電粒子Pの再凝集を抑制することができる。また、接着剤ペーストWの厚みが5μm以上である場合、コータ23のギャップが不足することを抑制でき、第1の接着剤層13中の導電粒子Pの数が不足することを抑制できる。接着剤ペーストWの厚みが10μm以下である場合、コータ23のギャップが過剰となることを抑制でき、第1の接着剤層13中の導電粒子Pの数が過剰となることを抑制できる。 The drying temperature of the adhesive paste W is preferably, for example, 20 ° C to 80 ° C. The transport speed of the support film 12 is preferably, for example, 30 mm / s to 160 mm / s. The thickness of the adhesive paste W is preferably 5 μm to 10 μm, for example, when conductive particles P having an average particle size of 3 μm are used. When the transport speed of the support film 12 is 30 mm / s or more, the adhesive paste W dries in a state where the conductive particles P are sufficiently separated from each other, so that the dispersion tends to be sufficient. When the transport speed of the support film 12 is 160 mm / s or less, the application of the magnetic field tends to end after drying, and the reaggregation of the conductive particles P can be suppressed. Further, when the thickness of the adhesive paste W is 5 μm or more, it is possible to suppress the shortage of the gap of the coater 23 and the shortage of the number of conductive particles P in the first adhesive layer 13. When the thickness of the adhesive paste W is 10 μm or less, it is possible to suppress an excessive gap of the coater 23, and it is possible to suppress an excessive number of conductive particles P in the first adhesive layer 13.
 第1の接着剤層13の形成の後、図9に示すように、別途、剥離フィルム15上に形成した第2の接着剤層14を第1の接着剤層13上にラミネートする(積層工程)。これにより、図2に示した回路接続用接着剤フィルム11が得られる。なお、第2の接着剤層14のラミネートには、例えばホットロールラミネータを用いることができる。また、ラミネートに限られず、第2の接着剤層14の材料となる接着剤ペーストを第1の接着剤層13上に塗布・乾燥してもよい。 After the formation of the first adhesive layer 13, as shown in FIG. 9, the second adhesive layer 14 separately formed on the release film 15 is laminated on the first adhesive layer 13 (lamination step). ). As a result, the circuit connection adhesive film 11 shown in FIG. 2 is obtained. For laminating the second adhesive layer 14, for example, a hot roll laminator can be used. Further, the present invention is not limited to laminating, and an adhesive paste used as a material for the second adhesive layer 14 may be applied and dried on the first adhesive layer 13.
 以上説明したように、回路接続用接着剤フィルム11では、第1の接着剤層13において、導電粒子Pの70%以上、好ましくは90%以上が隣接する他の導電粒子Pと離間した状態にすることができる。この場合、第1の回路部材2と第2の回路部材3との接続にあたって隣接する導電粒子P,P同士の凝集が抑えられ、隣接する第1の回路電極6,6同士及び隣接する第2の回路電極8,8同士の絶縁性を良好に確保できる。また、この回路接続用接着剤フィルム11では、第1の接着剤層13の厚みを導電粒子Pの平均粒径の0.1倍以上1.0倍以下、0.1倍以上0.7倍以下、又は0.6倍以上1.0倍未満とすることできる。この場合、圧着時における導電粒子Pの流動が抑えられ、第1の回路電極6と第2の回路電極8との間の導電粒子Pの捕捉効率を向上できる。したがって、第1の回路部材2と第2の回路部材3との間の接続信頼性を確保できる。 As described above, in the circuit connection adhesive film 11, in the first adhesive layer 13, 70% or more, preferably 90% or more of the conductive particles P are separated from the other adjacent conductive particles P. can do. In this case, in connecting the first circuit member 2 and the second circuit member 3, the agglomeration of adjacent conductive particles P and P is suppressed, and the adjacent first circuit electrodes 6 and 6 and the adjacent second circuit electrodes 6 and 6 are suppressed. Good insulation between the circuit electrodes 8 and 8 can be ensured. Further, in the circuit connection adhesive film 11, the thickness of the first adhesive layer 13 is 0.1 times or more and 1.0 times or less and 0.1 times or more and 0.7 times the average particle size of the conductive particles P. It can be less than or equal to, or 0.6 times or more and less than 1.0 times. In this case, the flow of the conductive particles P during crimping is suppressed, and the capture efficiency of the conductive particles P between the first circuit electrode 6 and the second circuit electrode 8 can be improved. Therefore, the connection reliability between the first circuit member 2 and the second circuit member 3 can be ensured.
<接着剤フィルム収容セット>
 図10は、一実施形態の接着剤フィルム収容セットを示す斜視図である。図10に示すように、接着剤フィルム収容セット120は、回路接続用接着剤フィルム11と、該接着剤フィルム11が巻き付けられたリール121と、接着剤フィルム11及びリール121を収容する収容部材122と、を備える。
<Adhesive film storage set>
FIG. 10 is a perspective view showing an adhesive film accommodating set of one embodiment. As shown in FIG. 10, the adhesive film accommodating set 120 includes an adhesive film 11 for circuit connection, a reel 121 around which the adhesive film 11 is wound, and an accommodating member 122 accommodating the adhesive film 11 and the reel 121. And.
 図10に示すように、接着剤フィルム11は、例えばテープ状である。テープ状の接着剤フィルム11は、例えば、シート状の原反を用途に応じた幅で長尺に切り出すことによって作製される。接着剤フィルム11は第1の接着剤層側に支持フィルム12を有していてもよい。支持フィルム12としては、上述したPETフィルム等の基材を用いることができる。 As shown in FIG. 10, the adhesive film 11 is, for example, in the form of a tape. The tape-shaped adhesive film 11 is produced, for example, by cutting a sheet-shaped raw fabric into a long length with a width suitable for the intended use. The adhesive film 11 may have a support film 12 on the side of the first adhesive layer. As the support film 12, a base material such as the PET film described above can be used.
 リール121は、接着剤フィルム11が巻き付けられる巻芯123を有する第1の側板124と、巻芯123を挟んで第1の側板124と対向するように配置された第2の側板125と、を備える。 The reel 121 has a first side plate 124 having a winding core 123 around which the adhesive film 11 is wound, and a second side plate 125 arranged so as to face the first side plate 124 with the winding core 123 interposed therebetween. Be prepared.
 第1の側板124は、例えばプラスチックからなる円板であり、第1の側板124の中央部分には、断面円形の開口部が設けられている。 The first side plate 124 is, for example, a disk made of plastic, and an opening having a circular cross section is provided in the central portion of the first side plate 124.
 第1の側板124が有する巻芯123は、接着剤フィルム11を巻き付ける部分である。巻芯123は、例えばプラスチックからなり、接着剤フィルム11の幅と同様の厚みの円環状をなしている。巻芯123は、第1の側板124の開口部を囲うように、第1の側板124の内側面に固定されている。また、リール121の中央部には、巻付装置又は繰出装置(不図示)の回転軸が挿入される部分である軸穴126が設けられている。この軸穴126に巻付装置又は繰出装置の回転軸を差し込んだ状態で回転軸を駆動した場合に、空回りすることなくリール121が回転するようになっている。軸穴126には、乾燥剤が収容された乾燥剤収容容器が嵌め込まれていてもよい。 The winding core 123 of the first side plate 124 is a portion around which the adhesive film 11 is wound. The winding core 123 is made of, for example, plastic, and has an annular shape having a thickness similar to the width of the adhesive film 11. The winding core 123 is fixed to the inner surface of the first side plate 124 so as to surround the opening of the first side plate 124. Further, a shaft hole 126 is provided in the central portion of the reel 121, which is a portion into which a rotating shaft of a winding device or a feeding device (not shown) is inserted. When the rotating shaft is driven with the rotating shaft of the winding device or the feeding device inserted into the shaft hole 126, the reel 121 rotates without idling. A desiccant container containing a desiccant may be fitted in the shaft hole 126.
 第2の側板125は、第1の側板124と同様に、例えばプラスチックからなる円板であり、第2の側板125の中央部分には、第1の側板124の開口部と同径の断面円形の開口部が設けられている。 Like the first side plate 124, the second side plate 125 is a disk made of, for example, plastic, and the central portion of the second side plate 125 has a circular cross section having the same diameter as the opening of the first side plate 124. The opening is provided.
 収容部材122は、例えば袋状をなしており、接着剤フィルム11及びリール121を収容している。収容部材122は、収容部材122の内部に接着剤フィルム11及びリール121を収容(挿入)するための、挿入口127を有している。 The accommodating member 122 has a bag shape, for example, and accommodates the adhesive film 11 and the reel 121. The accommodating member 122 has an insertion port 127 for accommodating (inserting) the adhesive film 11 and the reel 121 inside the accommodating member 122.
 収容部材122は、収容部材122の内部を外部から視認可能とする視認部128を有する。図10に示す収容部材122は、収容部材122の全体が視認部128となるように構成されている。 The accommodating member 122 has a visual recognition portion 128 that makes the inside of the accommodating member 122 visible from the outside. The accommodating member 122 shown in FIG. 10 is configured such that the entire accommodating member 122 becomes a visual recognition portion 128.
 視認部128は、可視光に対する透過性を有している。例えば、視認部128における光の透過率を波長450~750nmの範囲で測定した場合、波長450~750nmの間に、光の透過率の平均値が30%以上となる、波長幅が50nmである領域が少なくとも1つ存在する。視認部28の光の透過率は、視認部128を所定の大きさに切り取った試料を作製し、試料の光の透過率を紫外可視分光光度計で測定することにより得られる。収容部材122がこのような視認部128を有するため、収容部材122の内部の例えばリール121に貼り付けてある製品名、ロットナンバー、有効期限等の各種情報を収容部材122の外部からでも確認することができる。これにより、違う製品の混入を防止すること、及び、仕分け作業の効率が向上することが期待できる。 The visual recognition unit 128 has transparency to visible light. For example, when the light transmittance in the visual recognition unit 128 is measured in the wavelength range of 450 to 750 nm, the average value of the light transmittance is 30% or more between the wavelengths of 450 to 750 nm, and the wavelength width is 50 nm. There is at least one region. The light transmittance of the visual recognition unit 28 is obtained by preparing a sample obtained by cutting the visual recognition unit 128 to a predetermined size and measuring the light transmittance of the sample with an ultraviolet-visible spectrophotometer. Since the accommodating member 122 has such a visual recognition portion 128, various information such as the product name, lot number, and expiration date affixed to the reel 121 inside the accommodating member 122 can be confirmed from the outside of the accommodating member 122. be able to. This can be expected to prevent mixing of different products and improve the efficiency of sorting work.
 視認部128における波長365nmの光の透過率は、10%以下である。視認部128における波長365nmの光の透過率が10%以下であるため、(B)成分として光重合開始剤を用いた場合における、収容部材122の外部から内部へ入射する光と、第1の接着剤層中に残留した光重合開始剤と、に起因する第2の硬化性組成物の硬化を抑制することができる。光重合開始剤からの活性種(例えばラジカル)の発生が一層抑制される観点から、視認部128における波長365nmの光の透過率は、好ましくは10%以下、より好ましくは5%以下、更に好ましくは1%以下、特に好ましくは0.1%以下である。 The transmittance of light having a wavelength of 365 nm in the visual recognition unit 128 is 10% or less. Since the transmittance of the light having a wavelength of 365 nm in the visual recognition unit 128 is 10% or less, the light incident from the outside to the inside of the accommodating member 122 when the photopolymerization initiator is used as the component (B) and the first Curing of the second curable composition due to the photopolymerization initiator remaining in the adhesive layer can be suppressed. From the viewpoint of further suppressing the generation of active species (for example, radicals) from the photopolymerization initiator, the transmittance of light having a wavelength of 365 nm in the visible portion 128 is preferably 10% or less, more preferably 5% or less, still more preferably. Is 1% or less, particularly preferably 0.1% or less.
 同様の観点から、視認部128における、上述の光重合開始剤((B)成分)からラジカル、カチオン又はアニオンを発生させることが可能な波長領域での光の透過率の最大値は、好ましくは10%以下、より好ましくは5%以下、更に好ましくは1%以下、特に好ましくは0.1%以下である。具体的には、視認部128における波長254~405nmにおける光の透過率の最大値は、好ましくは10%以下、より好ましくは5%以下、更に好ましくは1%以下、特に好ましくは0.1%以下である。 From the same viewpoint, the maximum value of the light transmittance in the wavelength region in which the above-mentioned photopolymerization initiator (component (B)) can generate radicals, cations or anions in the visual recognition unit 128 is preferable. It is 10% or less, more preferably 5% or less, still more preferably 1% or less, and particularly preferably 0.1% or less. Specifically, the maximum value of the light transmittance in the viewing unit 128 at a wavelength of 254 to 405 nm is preferably 10% or less, more preferably 5% or less, still more preferably 1% or less, and particularly preferably 0.1%. It is as follows.
 視認部128(収容部材122)は、例えば厚さ10~5000μmのシートで形成されている。当該シートは、視認部128における波長365nmの光の透過率が10%以下となる材料によって構成されている。このような材料は、一種の成分からなっていてよく、複数種の成分からなっていてもよい。当該材料としては、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリカーボネート、ポリエステル、アクリル樹脂、ポリアミド、ガラス等が挙げられる。これらの材料は、紫外線吸収剤を含んでいてもよい。視認部128は、光透過性の異なる複数の層を積層することにより形成される積層構造を有していてもよい。この場合、視認部128を構成する各層は、上述した材料からなっていてよい。 The visual recognition portion 128 (accommodating member 122) is formed of, for example, a sheet having a thickness of 10 to 5000 μm. The sheet is made of a material having a transmittance of light having a wavelength of 365 nm in the visible portion 128 of 10% or less. Such a material may consist of one type of component or may consist of a plurality of types of components. Examples of the material include low-density polyethylene, linear low-density polyethylene, polycarbonate, polyester, acrylic resin, polyamide, glass and the like. These materials may contain UV absorbers. The visual recognition unit 128 may have a laminated structure formed by laminating a plurality of layers having different light transmission properties. In this case, each layer constituting the visual recognition unit 128 may be made of the above-mentioned material.
 挿入口127は、収容に際し、外部からの空気の侵入を防ぐために、例えばシール機等により閉じられることによって、密閉されていてよい。この場合、挿入口127を閉じる前に収容部材122内の空気を吸引除去しておくことが好ましい。収容した初期の段階から収容部材122内の湿気が少なくなり、かつ外部からの空気の進入を防ぐことが期待できる。また、収容部材122の内面とリール121とが密着することにより、運搬時の振動で収容部材122の内面とリール121の表面とがこすれあって異物が発生すること、及び、リール121の側板124,125の外側面への傷つきを防止できる。 The insertion port 127 may be sealed by, for example, being closed by a sealing machine or the like in order to prevent air from entering from the outside during accommodation. In this case, it is preferable to suck and remove the air in the accommodating member 122 before closing the insertion port 127. It can be expected that the humidity inside the accommodating member 122 will be reduced from the initial stage of accommodating and that air will be prevented from entering from the outside. Further, when the inner surface of the accommodating member 122 and the reel 121 are in close contact with each other, the inner surface of the accommodating member 122 and the surface of the reel 121 rub against each other due to vibration during transportation to generate foreign matter, and the side plate 124 of the reel 121 , 125 can be prevented from being scratched on the outer surface.
 上記実施形態では、収容部材は、収容部材の全体が視認部となるように構成されていたが、他の一実施形態では、収容部材は、収容部材の一部に視認部を有していてもよい。例えば、収容部材は、収容部材の側面の略中央に矩形状の視認部を有していてよい。この場合、収容部材の視認部以外の部分は、例えば紫外光及び可視光を透過させないように黒色を呈していてよい。 In the above embodiment, the accommodating member is configured so that the entire accommodating member serves as a visible portion, but in another embodiment, the accommodating member has a visible portion as a part of the accommodating member. May be good. For example, the accommodating member may have a rectangular visible portion substantially in the center of the side surface of the accommodating member. In this case, the portion of the accommodating member other than the visible portion may be black, for example, so as not to transmit ultraviolet light and visible light.
 また、上記実施形態では、収容部材の形状は袋状であったが、収容部材は、例えば箱状であってもよい。収容部材には、開封のための切り込みがついていることが好ましい。この場合、使用時の開封作業が容易になる。 Further, in the above embodiment, the shape of the accommodating member is bag-shaped, but the accommodating member may be, for example, box-shaped. The accommodating member preferably has a notch for opening. In this case, the opening work at the time of use becomes easy.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
<ポリエステルウレタン樹脂の調製方法>
 撹拌機、温度計、コンデンサー、真空発生装置及び窒素ガス導入管が備え付けられたヒーター付きステンレス製オートクレーブに、イソフタル酸48質量部及びネオペンチルグリコール37質量部を投入し、更に、触媒としてのテトラブトキシチタネート0.02質量部を投入した。次いで、窒素気流下220℃まで昇温し、そのまま8時間撹拌した。その後、大気圧(760mmHg)まで減圧し、室温まで冷却した後、白色沈殿を取り出し、水洗後、真空乾燥することでポリエステルポリオールを得た。
<Preparation method of polyester urethane resin>
48 parts by mass of isophthalic acid and 37 parts by mass of neopentyl glycol were put into a heated stainless steel autoclave equipped with a stirrer, a thermometer, a condenser, a vacuum generator and a nitrogen gas introduction tube, and tetrabutoxy as a catalyst. 0.02 parts by mass of titanate was added. Then, the temperature was raised to 220 ° C. under a nitrogen stream, and the mixture was stirred as it was for 8 hours. Then, the pressure was reduced to atmospheric pressure (760 mmHg), the mixture was cooled to room temperature, the white precipitate was taken out, washed with water, and vacuum dried to obtain a polyester polyol.
 上述したジカルボン酸とジオールとの反応によって得られたポリエステルポリオールを十分に乾燥した後、MEKに溶解し、撹拌機、滴下漏斗、還流冷却機及び窒素ガス導入管を取り付けた四つ口フラスコに投入した。また、触媒としてジブチル錫ラウレートをポリエステルポリオール100質量部に対して0.05質量部となる量投入し、MEKに溶解した4,4’-ジフェニルメタンジイソシアネートをポリエステルポリオール100質量部に対して50質量部となる量を滴下漏斗で投入し80℃で4時間撹拌することで目的とするポリエステルウレタン樹脂を得た。 The polyester polyol obtained by the above-mentioned reaction between the dicarboxylic acid and the diol is sufficiently dried, then dissolved in MEK, and placed in a four-necked flask equipped with a stirrer, a dropping funnel, a reflux cooler and a nitrogen gas introduction tube. did. Further, dibutyltin laurate was added as a catalyst in an amount of 0.05 parts by mass with respect to 100 parts by mass of the polyester polyol, and 4,4′-diphenylmethane diisocyanate dissolved in MEK was 50 parts by mass with respect to 100 parts by mass of the polyester polyol. The desired polyester urethane resin was obtained by adding the above amount with a dropping funnel and stirring at 80 ° C. for 4 hours.
<ポリウレタンアクリレート(UA1)の合成>
 攪拌機、温度計、塩化カルシウム乾燥管を有する還流冷却管、及び、窒素ガス導入管を備えた反応容器に、ポリ(1,6-ヘキサンジオールカーボネート)(商品名:デュラノール T5652、旭化成ケミカルズ株式会社製、数平均分子量1000)2500質量部(2.50mol)と、イソホロンジイソシアネート(シグマアルドリッチ社製)666質量部(3.00mol)とを3時間かけて均一に滴下した。次いで、反応容器に充分に窒素ガスを導入した後、反応容器内を70~75℃に加熱して反応させた。次に、反応容器に、ハイドロキノンモノメチルエーテル(シグマアルドリッチ社製)0.53質量部(4.3mmol)と、ジブチルスズジラウレート(シグマアルドリッチ社製)5.53質量部(8.8mmol)とを添加した後、2-ヒドロキシエチルアクリレート(シグマアルドリッチ社製)238質量部(2.05mol)を加え、空気雰囲気下70℃で6時間反応させた。これにより、ポリウレタンアクリレート(UA1)を得た。ポリウレタンアクリレート(UA1)の重量平均分子量は15000であった。なお、重量平均分子量は、下記の条件に従って、ゲル浸透クロマトグラフ(GPC)より標準ポリスチレンによる検量線を用いて測定した。
(測定条件)
 装置:東ソー株式会社製 GPC-8020
 検出器:東ソー株式会社製 RI-8020
 カラム:日立化成株式会社製 Gelpack GLA160S+GLA150S
 試料濃度:120mg/3mL
 溶媒:テトラヒドロフラン
 注入量:60μL
 圧力:2.94×10Pa(30kgf/cm
 流量:1.00mL/min
<Synthesis of polyurethane acrylate (UA1)>
Poly (1,6-hexanediol carbonate) (trade name: Duranol T5652, manufactured by Asahi Kasei Chemicals Co., Ltd.) in a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser having a calcium chloride drying tube, and a nitrogen gas introduction tube. , 2500 parts by mass (2.50 mol) with a number average molecular weight of 1000) and 666 parts by mass (3.00 mol) of isophorone diisocyanate (manufactured by Sigma Aldrich) were uniformly added dropwise over 3 hours. Then, after sufficiently introducing nitrogen gas into the reaction vessel, the inside of the reaction vessel was heated to 70 to 75 ° C. for reaction. Next, 0.53 parts by mass (4.3 mmol) of hydroquinone monomethyl ether (manufactured by Sigma-Aldrich) and 5.53 parts by mass (8.8 mmol) of dibutyltin dilaurate (manufactured by Sigma-Aldrich) were added to the reaction vessel. After that, 238 parts by mass (2.05 mol) of 2-hydroxyethyl acrylate (manufactured by Sigma-Aldrich) was added, and the mixture was reacted at 70 ° C. for 6 hours in an air atmosphere. As a result, polyurethane acrylate (UA1) was obtained. The weight average molecular weight of the polyurethane acrylate (UA1) was 15,000. The weight average molecular weight was measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve according to the following conditions.
(Measurement condition)
Equipment: GPC-8020 manufactured by Tosoh Corporation
Detector: RI-8020 manufactured by Tosoh Corporation
Column: Gelpack GLA160S + GLA150S manufactured by Hitachi Chemical Company, Ltd.
Sample concentration: 120 mg / 3 mL
Solvent: Tetrahydrofuran Injection volume: 60 μL
Pressure: 2.94 x 10 6 Pa (30 kgf / cm 2 )
Flow rate: 1.00 mL / min
<導電粒子の作製>
 ポリスチレン粒子の表面上に、層の厚さが0.2μmとなるようにニッケルからなる層を形成した。このようにして、平均粒径4μm、最大粒径4.5μm、比重2.5の導電粒子を得た。
<Making conductive particles>
A layer made of nickel was formed on the surface of the polystyrene particles so that the thickness of the layer was 0.2 μm. In this way, conductive particles having an average particle size of 4 μm, a maximum particle size of 4.5 μm, and a specific gravity of 2.5 were obtained.
<導電粒子含有層のワニス(ワニス組成物)の調製>
 以下に示す成分を表1に示す配合量(質量部)で混合し、光硬化性組成物1のワニスを調製した。なお、表1に記載の導電粒子の含有量(体積%)及び充填材の含有量(体積%)は、光硬化性組成物の全体積を基準とした含有量である。
(重合性化合物)
 A1:ジシクロペンタジエン型ジアクリレート(商品名:DCP-A、東亞合成株式会社製)
 A2:上述のとおり合成したポリウレタンアクリレート(UA1)
 A3:2-メタクリロイルオキシエチルアシッドフォスフェート(商品名:ライトエステルP-2M、共栄社化学株式会社製)
(光重合開始剤)
 B1: B1:1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)](商品名:Irgacure(登録商標)OXE01、BASF社製)
(熱重合開始剤)
 C1:ベンゾイルパーオキサイド(商品名:ナイパーBMT-K40、日油株式会社製)
(導電粒子)
 D1:上述のとおり作製した導電粒子
(熱可塑性樹脂)
 E1:上記で合成したポリエステルウレタン樹脂
(カップリング剤)
 F1:3-メタクリロキシプロピルトリメトキシシラン(商品名:KBM503、信越化学工業株式会社製)
(充填材)
 G1:シリカ微粒子(商品名:R104、日本エアロジル株式会社製、平均粒径(一次粒径):12nm)
(溶剤)
 H1:メチルエチルケトン
<Preparation of varnish (varnish composition) of conductive particle-containing layer>
The components shown below were mixed in the blending amounts (parts by mass) shown in Table 1 to prepare a varnish for the photocurable composition 1. The content of the conductive particles (% by volume) and the content of the filler (% by volume) shown in Table 1 are based on the total volume of the photocurable composition.
(Polymerizable compound)
A1: Dicyclopentadiene type diacrylate (trade name: DCP-A, manufactured by Toagosei Co., Ltd.)
A2: Polyurethane acrylate synthesized as described above (UA1)
A3: 2-methacryloyloxyethyl acid phosphate (trade name: Light Ester P-2M, manufactured by Kyoeisha Chemical Co., Ltd.)
(Photopolymerization initiator)
B1: B1: 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyloxime)] (trade name: Irgacure (registered trademark) OXE01, manufactured by BASF)
(Thermal polymerization initiator)
C1: Benzoyl peroxide (trade name: Niper BMT-K40, manufactured by NOF CORPORATION)
(Conductive particles)
D1: Conductive particles (thermoplastic resin) prepared as described above
E1: Polyester urethane resin (coupling agent) synthesized above
F1: 3-methacryloxypropyltrimethoxysilane (trade name: KBM503, manufactured by Shin-Etsu Chemical Co., Ltd.)
(Filler)
G1: Silica fine particles (trade name: R104, manufactured by Nippon Aerosil Co., Ltd., average particle size (primary particle size): 12 nm)
(solvent)
H1: Methyl ethyl ketone
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<熱硬化性組成物のワニス(ワニス組成物)の調製>
 重合性化合物a1~a3、熱可塑性樹脂e1、カップリング剤f1、充填材g1及び溶剤h1として、光硬化性組成物における重合性化合物A1~A3、熱可塑性樹脂E1、カップリング剤F1、充填材G1及び溶剤H1と同じものを用い、これらの成分及び以下に示す熱重合開始剤を表2に示す配合量(質量部)で混合し、熱硬化性組成物1のワニスを調製した。なお、表2に記載の充填材の含有量(体積%)は、熱硬化性組成物の全体積を基準とした含有量である。
(熱重合開始剤)
 c1:ベンゾイルパーオキサイド(商品名:ナイパーBMT-K40、日油株式会社製)
<Preparation of thermosetting composition varnish (varnish composition)>
As polymerizable compounds a1 to a3, thermoplastic resin e1, coupling agent f1, filler g1 and solvent h1, the polymerizable compounds A1 to A3, the thermoplastic resin E1, the coupling agent F1 and the filler in the photocurable composition. Using the same G1 and solvent H1, these components and the thermal polymerization initiator shown below were mixed in the blending amounts (parts by mass) shown in Table 2 to prepare a varnish for the thermosetting composition 1. The content (% by volume) of the filler shown in Table 2 is a content based on the total volume of the thermosetting composition.
(Thermal polymerization initiator)
c1: Benzoyl peroxide (trade name: Niper BMT-K40, manufactured by NOF CORPORATION)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例1)
[第1の接着剤フィルムの作製]
 光硬化性組成物1のワニスを、厚さ50μmのPETフィルム上に塗工装置を用いて塗布した。次いで、70℃、3分間の熱風乾燥を行い、同時に磁場印加をすることでPETフィルム上に厚さ(乾燥後の厚さ)が4μmの光硬化性組成物1からなる層を形成した。ここでの厚さは接触式厚み計を用いて測定した。なお、接触式厚み計を用いると導電粒子の大きさが反映され、導電粒子が存在する領域の厚みが測定される。そのため、第2の接着剤層を積層し、二層構成の回路接続用接着剤フィルムを作製した後に、後述の方法により、隣り合う導電粒子の離間部分に位置する第1の接着剤層の厚さを測定した。
 次に、光硬化性組成物1からなる層に対し、メタルハライドランプを用いて積算光量が1500mJ/cmとなるように光照射を行い、重合性化合物を重合させた。これにより、光硬化性組成物1を硬化させ、第1の接着剤層を形成した。以上の操作により、PETフィルム上に厚さ4μm(導電粒子が存在する領域の厚み)の第1の接着剤層を備える第1の接着剤フィルムを得た。このときの導電粒子密度は約7000pcs/mmであった。
(Example 1)
[Preparation of the first adhesive film]
The varnish of the photocurable composition 1 was applied onto a PET film having a thickness of 50 μm using a coating device. Next, hot air drying was performed at 70 ° C. for 3 minutes, and a magnetic field was applied at the same time to form a layer made of the photocurable composition 1 having a thickness (thickness after drying) of 4 μm on the PET film. The thickness here was measured using a contact type thickness gauge. When a contact type thickness gauge is used, the size of the conductive particles is reflected, and the thickness of the region where the conductive particles are present is measured. Therefore, after laminating the second adhesive layer to prepare an adhesive film for circuit connection having a two-layer structure, the thickness of the first adhesive layer located at the separated portion of the adjacent conductive particles is obtained by the method described later. Was measured.
Next, the layer made of the photocurable composition 1 was irradiated with light using a metal halide lamp so that the integrated light amount was 1500 mJ / cm 2 , and the polymerizable compound was polymerized. As a result, the photocurable composition 1 was cured to form a first adhesive layer. By the above operation, a first adhesive film having a first adhesive layer having a thickness of 4 μm (thickness of the region where the conductive particles are present) on the PET film was obtained. The conductive particle density at this time was about 7000 pcs / mm 2 .
[導電粒子の単分散率の評価]
 第1の接着剤フィルムについて、導電粒子の単分散率(導電粒子が隣接する他の導電粒子と離間した状態(単分散状態)で存在している比率)を評価した。単分散率は70%以上であった。
 なお、単分散率は、単分散率(%)=(2500μm中の単分散状態の導電粒子数/2500μm中の導電粒子数)×100、を用いて求めた。導電粒子の実測には、金属顕微鏡を用いて200倍の倍率で観察した。
[Evaluation of monodispersity of conductive particles]
For the first adhesive film, the monodispersity of the conductive particles (the ratio at which the conductive particles exist in a state of being separated from other adjacent conductive particles (monodisperse state)) was evaluated. The monodispersity rate was 70% or more.
Incidentally, the monodisperse rate, the monodispersion ratio (%) = (2500μm 2 in conductive particle number monodisperse / 2500 [mu] m conductive particle count in 2) × 100, was calculated using. The conductive particles were actually measured using a metallurgical microscope at a magnification of 200 times.
[第2の接着剤フィルムの作製]
 熱硬化性組成物1のワニスを、厚さ50μmのPETフィルム上に塗工装置を用いて塗布した。次いで、70℃、3分間の熱風乾燥を行い、PETフィルム上に厚さが8μmの第2の接着剤層(熱硬化性組成物1からなる層)を形成した。以上の操作により、PETフィルム上に第2の接着剤層を備える第2の接着剤フィルムを得た。
[Preparation of second adhesive film]
The varnish of the thermosetting composition 1 was applied onto a PET film having a thickness of 50 μm using a coating device. Next, hot air drying was performed at 70 ° C. for 3 minutes to form a second adhesive layer (layer composed of the thermosetting composition 1) having a thickness of 8 μm on the PET film. By the above operation, a second adhesive film having a second adhesive layer on the PET film was obtained.
[回路接続用接着剤フィルムの作製]
 第1の接着剤フィルムと第2の接着剤フィルムとを、基材であるPETフィルムと共に40℃で加熱しながら、ロールラミネータでラミネートした。このときに第2の接着剤フィルム側のPETフィルムを剥がした。これにより、PETフィルムと、第1の接着剤層と、第2の接着剤層とがこの順に積層された積層構成の回路接続用接着剤フィルムを作製した。
 作製した回路接続用接着剤フィルムの第1の接着剤層の厚さを前述の方法により測定した。具体的には、以下の方法で測定した。回路接続用接着剤フィルムを2枚のガラス(厚み:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:JER811、三菱ケミカル株式会社製)100gと、硬化剤(商品名:エポマウント硬化剤、リファインテック株式会社製)10gとからなる樹脂組成物で注型後に、研磨機を用いて断面研磨を行い、走査型電子顕微鏡(SEM、商品名:SE-8020、株式会社日立ハイテクサイエンス製)を用いて、隣り合う導電粒子の離間部分に位置する第1の接着剤層の厚さを測定した。第1の接着剤層の厚さは2μmであった。
[Preparation of adhesive film for circuit connection]
The first adhesive film and the second adhesive film were laminated with a roll laminator while heating at 40 ° C. together with the PET film as a base material. At this time, the PET film on the second adhesive film side was peeled off. As a result, a circuit connection adhesive film having a laminated structure in which the PET film, the first adhesive layer, and the second adhesive layer were laminated in this order was produced.
The thickness of the first adhesive layer of the produced adhesive film for circuit connection was measured by the method described above. Specifically, it was measured by the following method. An adhesive film for circuit connection is sandwiched between two sheets of glass (thickness: about 1 mm), and 100 g of bisphenol A type epoxy resin (trade name: JER811, manufactured by Mitsubishi Chemical Corporation) and a curing agent (trade name: Epomount curing agent) , Made by Refine Tech Co., Ltd.) After casting with a resin composition consisting of 10 g, the cross section is polished using a polishing machine, and a scanning electron microscope (SEM, trade name: SE-8020, manufactured by Hitachi High-Tech Science Co., Ltd.) The thickness of the first adhesive layer located at the separated portion of the adjacent conductive particles was measured using. The thickness of the first adhesive layer was 2 μm.
[回路接続構造体の作製]
 作製した回路接続用接着剤フィルムを介して、ピッチ25μmのCOF(FLEXSEED社製)と、ガラス基板上に非結晶酸化インジウム錫(ITO)からなる薄膜電極(高さ:1200Å)を備える、薄膜電極付きガラス基板(ジオマテック社製)とを、熱圧着装置(加熱方式:コンスタントヒート型、株式会社太陽機械製作所製)を用いて、170℃、6MPaで4秒間の条件で加熱加圧を行って幅1mmにわたり接続し、回路接続構造体(接続構造体)を作製した。なお、接続の際には、まず回路接続用接着剤フィルムを第2の接着剤層側からCOF基板に貼り付けをし、セパレータを剥離後にガラス基板と対向させて加熱加圧を行った。
[Manufacturing of circuit connection structure]
A thin film electrode provided with a COF (manufactured by FLEXSEED) having a pitch of 25 μm and a thin film electrode (height: 1200Å) made of non-crystalline indium tin oxide (ITO) on a glass substrate via the produced adhesive film for circuit connection. The width of the glass substrate with a glass substrate (manufactured by Geomatec) is heated and pressurized at 170 ° C. and 6 MPa for 4 seconds using a heat crimping device (heating method: constant heat type, manufactured by Taiyo Kikai Co., Ltd.). A circuit connection structure (connection structure) was produced by connecting over 1 mm. At the time of connection, the circuit connection adhesive film was first attached to the COF substrate from the second adhesive layer side, and after the separator was peeled off, the separator was opposed to the glass substrate to heat and pressurize.
[回路接続構造体の評価]
 得られた回路接続構造体について、接続直後の対向する電極間の接続抵抗値を、マルチメーターで測定した。接続抵抗値は、対向する電極間の抵抗16点の平均値として求めた。
 次に、各電極上の10μm×200μm(=2000μm)の領域の捕捉数を計測し、20ラインの平均値を求めた。結果を表3に示す。
 また、実装後の粒子分散性を顕微鏡を用いて観察した。実装前の状態が維持されているものを1、全く維持されていないものを3として、その中間を2として評価した。
1及び2は実用上は問題ないレベルである。
[Evaluation of circuit connection structure]
For the obtained circuit connection structure, the connection resistance value between the opposing electrodes immediately after the connection was measured with a multimeter. The connection resistance value was determined as the average value of 16 resistance points between the opposing electrodes.
Next, the number of captures in the region of 10 μm × 200 μm (= 2000 μm 2 ) on each electrode was measured, and the average value of 20 lines was calculated. The results are shown in Table 3.
In addition, the particle dispersibility after mounting was observed using a microscope. The one in which the state before mounting was maintained was evaluated as 1, the one in which the state before mounting was not maintained as 3, and the intermediate was evaluated as 2.
Levels 1 and 2 are practically acceptable levels.
(参考例1)
 第1の接着剤層と第2の接着剤層をラミネートした後で第1の接着剤層側のPETフィルムを剥がすことで第1の接着剤層と第2の接着剤層とPETフィルムとがこの順に積層された積層構成の回路接続用接着剤フィルムを作製した以外は実施例1と同様に評価を行った。なお、接続の際には、まず回路接続用接着剤フィルムを第1の接着剤層側からCOF基板に貼り付けをし、セパレータを剥離後にガラス基板と対向させて加熱加圧を行った。結果を表3に示す。
(Reference example 1)
After laminating the first adhesive layer and the second adhesive layer, the PET film on the first adhesive layer side is peeled off to form the first adhesive layer, the second adhesive layer, and the PET film. The evaluation was carried out in the same manner as in Example 1 except that an adhesive film for circuit connection having a laminated structure laminated in this order was produced. At the time of connection, the circuit connection adhesive film was first attached to the COF substrate from the first adhesive layer side, and after the separator was peeled off, the separator was opposed to the glass substrate to heat and pressurize. The results are shown in Table 3.
(実施例2及び3)
 第1の接着剤層の厚さを1.5μm及び3.0μmに変更したこと以外は実施例1と同様にして回路接続用接着剤フィルム及び回路接続構造体を作製した。作製した回路接続構造体について、実施例1と同様の評価を行った。結果を表3に示す。なお、第1の接着剤層における導電粒子の単分散率はそれぞれ70%以上であった。
(Examples 2 and 3)
An adhesive film for circuit connection and a circuit connection structure were produced in the same manner as in Example 1 except that the thickness of the first adhesive layer was changed to 1.5 μm and 3.0 μm. The prepared circuit connection structure was evaluated in the same manner as in Example 1. The results are shown in Table 3. The monodispersity of the conductive particles in the first adhesive layer was 70% or more, respectively.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1で得られた回路接続用接着剤フィルムを用いて先にCOF基板に貼り付けをして実装した場合は、参考例1と比較して導電粒子捕捉数が多くなり、粒子の流動性も抑制されていることが明らかとなった。 When the circuit connection adhesive film obtained in Example 1 was first attached to the COF substrate for mounting, the number of conductive particles captured was larger than that in Reference Example 1, and the fluidity of the particles was increased. Was also suppressed.
 1…回路接続構造体、2…第1の回路部材、3…第2の回路部材、6…第1の回路電極、8…第2の回路電極、11…回路接続用接着剤フィルム、12,15…支持フィルム(剥離フィルム)、13…第1の接着剤層、14…第2の接着剤層、P…導電粒子、W…接着剤ペースト。 1 ... circuit connection structure, 2 ... first circuit member, 3 ... second circuit member, 6 ... first circuit electrode, 8 ... second circuit electrode, 11 ... circuit connection adhesive film, 12, 15 ... Support film (release film), 13 ... First adhesive layer, 14 ... Second adhesive layer, P ... Conductive particles, W ... Adhesive paste.

Claims (6)

  1.  剥離可能な支持フィルムと、該支持フィルム上に設けられた導電粒子を含有する第1の接着剤層と、該第1の接着剤層上に積層された、第2の接着剤層と、を備え、
     前記第1の接着剤層の厚みが、前記導電粒子の平均粒径の0.1~1.0倍である、回路接続用接着剤フィルム。
    A peelable support film, a first adhesive layer containing conductive particles provided on the support film, and a second adhesive layer laminated on the first adhesive layer. Prepare,
    An adhesive film for circuit connection, wherein the thickness of the first adhesive layer is 0.1 to 1.0 times the average particle size of the conductive particles.
  2.  前記第1の接着剤層は第1の硬化性組成物の硬化物からなり、
     前記第1の硬化性組成物は、ラジカル重合性基を有するラジカル重合性化合物を含有する、請求項1に記載の回路接続用接着剤フィルム。
    The first adhesive layer comprises a cured product of the first curable composition.
    The adhesive film for circuit connection according to claim 1, wherein the first curable composition contains a radically polymerizable compound having a radically polymerizable group.
  3.  前記第2の接着剤層は第2の硬化性組成物からなり、
     前記第2の硬化性組成物は、ラジカル重合性基を有するラジカル重合性化合物を含有する、請求項1又は2に記載の回路接続用接着剤フィルム。
    The second adhesive layer comprises a second curable composition.
    The adhesive film for circuit connection according to claim 1 or 2, wherein the second curable composition contains a radically polymerizable compound having a radically polymerizable group.
  4.  第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に、請求項1~3のいずれか一項に記載の回路接続用接着剤フィルムの前記第1の接着剤層及び前記第2の接着剤層を介在させ、前記第1の回路部材及び前記第2の回路部材を熱圧着して、前記第1の電極及び前記第2の電極を互いに電気的に接続する工程を備える、回路接続構造体の製造方法。 The circuit connection adhesive film according to any one of claims 1 to 3 between a first circuit member having a first electrode and a second circuit member having a second electrode. The first electrode layer and the second adhesive layer are interposed, the first circuit member and the second circuit member are heat-bonded, and the first electrode and the second electrode are attached to each other. A method of manufacturing a circuit connection structure, which comprises a step of electrically connecting.
  5.  前記第1の回路部材がフレキシブル基板を有し、
     前記回路接続用接着剤フィルムを、前記第2の接着剤層が前記第1の回路部材と接するように前記第1の回路部材に貼り付ける工程を備える、請求項4に記載の回路接続構造体の製造方法。
    The first circuit member has a flexible substrate and has a flexible substrate.
    The circuit connection structure according to claim 4, further comprising a step of attaching the circuit connection adhesive film to the first circuit member so that the second adhesive layer is in contact with the first circuit member. Manufacturing method.
  6.  請求項1~3のいずれか一項に記載の回路接続用接着剤フィルムと、該接着剤フィルムを収容する収容部材と、を備え、
     前記収容部材は、前記収容部材の内部を外部から視認可能とする視認部を有し、
     前記視認部における波長365nmの光の透過率は10%以下である、接着剤フィルム収容セット。
    The circuit connection adhesive film according to any one of claims 1 to 3 and an accommodating member for accommodating the adhesive film are provided.
    The accommodating member has a visual recognition portion that makes the inside of the accommodating member visible from the outside.
    An adhesive film accommodating set in which the transmittance of light having a wavelength of 365 nm in the visible portion is 10% or less.
PCT/JP2020/010657 2019-03-13 2020-03-11 Adhesive film for circuit connection, method for producing circuit connected structure, and adhesive film housing set WO2020184636A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080019596.3A CN113574130A (en) 2019-03-13 2020-03-11 Adhesive film for circuit connection, method for manufacturing circuit connection structure, and adhesive film housing set
JP2021505115A JPWO2020184636A1 (en) 2019-03-13 2020-03-11
KR1020217031914A KR20210141955A (en) 2019-03-13 2020-03-11 Adhesive film for circuit connection, manufacturing method of circuit connection structure, and adhesive film accommodation set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-046548 2019-03-13
JP2019046548 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020184636A1 true WO2020184636A1 (en) 2020-09-17

Family

ID=72426660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010657 WO2020184636A1 (en) 2019-03-13 2020-03-11 Adhesive film for circuit connection, method for producing circuit connected structure, and adhesive film housing set

Country Status (5)

Country Link
JP (1) JPWO2020184636A1 (en)
KR (1) KR20210141955A (en)
CN (1) CN113574130A (en)
TW (1) TW202039764A (en)
WO (1) WO2020184636A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124948B1 (en) 2021-12-15 2022-08-24 株式会社リコー Active energy ray-curable composition, active energy ray-curable ink composition, inkjet ink composition, composition container, two-dimensional or three-dimensional image forming apparatus, two-dimensional or three-dimensional image forming method, cured product , decorative body, laminated body, flexible device member, and flexible device
WO2024034464A1 (en) * 2022-08-10 2024-02-15 株式会社レゾナック Adhesive film for circuit connection, circuit connection structure, and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111855755A (en) * 2019-04-26 2020-10-30 纳博特斯克有限公司 Sensor with a sensor element
EP3961201A4 (en) * 2019-04-26 2022-11-09 Nabtesco Corporation Sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290269A (en) * 2006-04-26 2007-11-08 Dainippon Printing Co Ltd Packaging material and packaging container for medicine for promoting nutrition using it
JP2011192651A (en) * 2011-04-28 2011-09-29 Sony Chemical & Information Device Corp Anisotropic conductive film, connection method, and connection structure
WO2019050005A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film housing set, and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3959247B2 (en) 2001-02-16 2007-08-15 ソニーケミカル&インフォメーションデバイス株式会社 Reel member and film winding method
JP2016033021A (en) * 2014-07-31 2016-03-10 株式会社Adeka Ultraviolet blocking container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290269A (en) * 2006-04-26 2007-11-08 Dainippon Printing Co Ltd Packaging material and packaging container for medicine for promoting nutrition using it
JP2011192651A (en) * 2011-04-28 2011-09-29 Sony Chemical & Information Device Corp Anisotropic conductive film, connection method, and connection structure
WO2019050005A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film housing set, and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124948B1 (en) 2021-12-15 2022-08-24 株式会社リコー Active energy ray-curable composition, active energy ray-curable ink composition, inkjet ink composition, composition container, two-dimensional or three-dimensional image forming apparatus, two-dimensional or three-dimensional image forming method, cured product , decorative body, laminated body, flexible device member, and flexible device
JP2023088774A (en) * 2021-12-15 2023-06-27 株式会社リコー Active energy ray-curable composition, active energy ray-curable ink composition, ink composition for inkjet, composition storage container, two-dimensional or three-dimensional image formation device, two-dimensional or three-dimensional image formation method, cured product, decorative body, laminate, member for flexible device, and flexible device
JP2023088831A (en) * 2021-12-15 2023-06-27 株式会社リコー Active energy ray-curable composition, active energy ray-curable ink composition, ink composition for inkjet, composition storage container, two-dimensional or three-dimensional image formation device, two-dimensional or three-dimensional image formation method, cured product, decorative body, laminate, member for flexible device, and flexible device
JP7452587B2 (en) 2021-12-15 2024-03-19 株式会社リコー Active energy ray curable composition, active energy ray curable ink composition, inkjet ink composition, composition storage container, two-dimensional or three-dimensional image forming apparatus, two-dimensional or three-dimensional image forming method, cured product , decorated body, laminate, member for flexible device, and flexible device
WO2024034464A1 (en) * 2022-08-10 2024-02-15 株式会社レゾナック Adhesive film for circuit connection, circuit connection structure, and manufacturing method therefor

Also Published As

Publication number Publication date
CN113574130A (en) 2021-10-29
JPWO2020184636A1 (en) 2020-09-17
TW202039764A (en) 2020-11-01
KR20210141955A (en) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2020184636A1 (en) Adhesive film for circuit connection, method for producing circuit connected structure, and adhesive film housing set
KR102631317B1 (en) Adhesive film for circuit connection and manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodation set
WO2020184583A1 (en) Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodating set
JP7210846B2 (en) Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
JP7264054B2 (en) Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
JP2021134262A (en) Adhesive film for circuit connection, circuit connection structure and manufacturing method thereof
KR102603157B1 (en) Adhesive film receiving set and method for manufacturing the same
WO2022059647A1 (en) Adhesive film for circuit connection and manufacturing method thereof, and circuit connection structure manufacturing
WO2020184585A1 (en) Adhesive film for circuit connection and method for producing same, method for producing circuit connected structure, and adhesive film housing set
JP2022048788A (en) Circuit connection adhesive tape, reel body, as well as, circuit connection structure and manufacturing method thereof
WO2020184584A1 (en) Circuit-connecting adhesive film and method for manufacturing same, circuit-connecting structure manufacturing method, and adhesive film housing set
JP2022048793A (en) Adhesive material reel and manufacturing method of circuit connection structure
JP2022048791A (en) Circuit connection adhesive film, as well as, circuit connection structure and manufacturing method thereof
JP2023134038A (en) Adhesive film for connecting circuits, and circuit connection structure and method for manufacturing the same
JP2022098985A (en) Adhesive film for circuit connection and method for producing the same, and method for producing circuit connection structure
JP2022133758A (en) Adhesive film for circuit connection, production method of circuit connection structure, and circuit connection structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20771152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217031914

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.12.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 20771152

Country of ref document: EP

Kind code of ref document: A1