WO2022099905A1 - 具有耐高温特性的锂离子电池隔膜、其制备方法及由其制得的锂离子电池 - Google Patents

具有耐高温特性的锂离子电池隔膜、其制备方法及由其制得的锂离子电池 Download PDF

Info

Publication number
WO2022099905A1
WO2022099905A1 PCT/CN2020/142169 CN2020142169W WO2022099905A1 WO 2022099905 A1 WO2022099905 A1 WO 2022099905A1 CN 2020142169 W CN2020142169 W CN 2020142169W WO 2022099905 A1 WO2022099905 A1 WO 2022099905A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
stretching
temperature
polypropylene
separator
Prior art date
Application number
PCT/CN2020/142169
Other languages
English (en)
French (fr)
Inventor
刘鹏
Original Assignee
青岛蓝科途膜材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛蓝科途膜材料有限公司 filed Critical 青岛蓝科途膜材料有限公司
Priority to JP2023517269A priority Critical patent/JP2023536551A/ja
Priority to KR1020237010901A priority patent/KR102584617B1/ko
Priority to EP20961457.7A priority patent/EP4203166A4/en
Publication of WO2022099905A1 publication Critical patent/WO2022099905A1/zh
Priority to US18/183,981 priority patent/US20230216140A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0041Anti-odorant agents, e.g. active carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium ion battery separators, in particular to a lithium ion battery separator with high temperature resistance characteristics;
  • the present invention also provides a method for preparing the above-mentioned lithium ion battery separator with high temperature resistance
  • the present invention also provides a lithium ion battery prepared from the above-mentioned lithium ion battery separator with high temperature resistance characteristics.
  • the main technical routes are divided into two major routes: polypropylene dry film and polyethylene wet film.
  • the dry separator uses polypropylene as the main raw material, adopts the melt stretching process, and is subdivided. Dry uniaxial stretching, dry biaxial stretching.
  • the main raw material of the wet diaphragm is polyethylene, which is divided into wet bidirectional synchronous stretching and asynchronous stretching according to different stretching methods.
  • the pore-making mechanism of the dry film is that the polymer is crystallized under the action of high stress during melt extrusion to form lamellae perpendicular to the stretching direction, and then heat-treated to obtain a hard elastic material, and then stretched to form lamellae. They are dislocated and separated to form micropores, and finally a microporous film can be obtained by heat setting.
  • the pore size is a straight hole, and the porosity is generally 35 to 45%. Since this method forms a straight through hole, the degree of tortuosity of the hole is low, and there are problems of large equivalent pore diameter and short equivalent hole length, which can easily cause micro-short circuit between positive and negative electrodes and large self-discharge problems. Based on the above problems, dry film can only be mainly used in low-end products with large thickness films, and it is difficult to apply to high-end fields.
  • the conventional wet-process diaphragm uses polyethylene with higher molecular weight as the main material, and the diaphragm has higher biaxial tensile strength and puncture strength. Since the pore-making principle adopts the principle of thermally induced phase separation combined with oil film stretching, the pores are superimposed by the multi-layer network structure formed by the stretching and dislocation of fine and uniform spherical crystals and continuous fibrillation. The pore size distribution Small and uniform, with small equivalent pore diameter and large equivalent pore length, it can still maintain good resistance characteristics in the range of ultra-thin thickness (for example, 4-9 ⁇ m), and has a wider range of high-end applications.
  • the heat resistance of the wet-processed polyethylene diaphragm is relatively poor, and the film breaking temperature is low.
  • the typical wet-processed polyethylene diaphragm can only guarantee thermal shrinkage stability within 120 °C. and film breaking temperature within 140°C.
  • a large proportion of high-end lithium-ion battery products use a high-nickel ternary system, and the active properties of the positive active material have high requirements on the thermal stability of the separator.
  • the existing technologies mainly include increasing the transverse stretching ratio to increase transverse strength, and coating small particle size ceramics to compensate for the larger pore size. Problems and other remedial measures, but the level of strength improvement is limited, and the uniformity of pores cannot reach the level of wet-process polyethylene diaphragms.
  • the existing technology mainly coats inorganic or organic substances on wet-process polyethylene separators, such as ceramics, aramid fibers, boehmite, PI, etc.
  • the mechanical strength of the polyethylene diaphragm itself under high heat conditions will rapidly decrease, which will also lead to the deterioration of the skin without the hair will be attached.
  • the layer protection prevents shrinkage, and also causes a large area short circuit of the positive and negative electrodes due to the melting of the separator itself.
  • a lithium ion battery separator with high temperature stability, excellent mechanical properties, high porosity, and uniformly adjustable pore size is required to solve the above technical problems.
  • the purpose of the present invention is to provide a lithium ion battery separator with high temperature resistance and a preparation method thereof to solve the above problems.
  • a lithium ion battery separator with high temperature resistance has a thickness of 3.5-30 ⁇ m, a porosity of 30-80%, an adjustable pore diameter of 20-2000nm, a biaxial tensile strength of ⁇ 50MPa, and a gas permeability value of ⁇ 400s/100cc , film breaking temperature ⁇ 160 °C.
  • the thickness of the membrane is 3.5-20 ⁇ m
  • the porosity is 35-60%
  • the pore size is 30-100 nm
  • the biaxial tensile strength is ⁇ 100 MPa
  • the air permeability is ⁇ 300s/100cc
  • the membrane breaking temperature is ⁇ 170°C.
  • the present invention also provides the preparation method of the above-mentioned lithium ion battery separator with high temperature resistance:
  • the mass percentages of the polypropylene main material, solubilizer, solvent, nucleation aid and antioxidant are 25%-40%, 3%-6%, 50%-70%, 0.2%-3%, respectively. % and 0.1% to 0.5%.
  • polypropylene is a single composition with a melt index within 20 g/10min, or a compound of multiple polypropylenes with different melt indexes.
  • the polypropylene is a single composition with a melt index within 2 g/10min, or is compounded with polypropylene with a melt index within 0.5 g/10min.
  • the solubilizer is a solubilizer component that has good compatibility with long straight-chain hydrocarbon segments and/or branched hydrocarbon segments at the same time.
  • the solubilizer comprises polyolefin copolymer and/or polyolefin wax;
  • the solubilizer includes one of polyethylene/propylene copolymer, polypropylene/ethylene-butene copolymer, polypropylene/ethylene-hexene copolymer, polyethylene wax, polypropylene wax and polyester wax or a mixture of various.
  • the solubilizer of the system can greatly improve the plasticizing effect.
  • the solvent includes a mixture of one or more of alkanes, esters, ethers, and aromatic compounds.
  • the solvent includes liquid paraffin, solid paraffin, paraffin oil, natural vegetable oil, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate , a mixture of one or more of dioctyl sebacate, methyl salicylate, diphenyl ether and diphenylmethane.
  • the solvent is suitable for thermally induced phase separation.
  • the nucleation aids include one or more of adipic acid, calcium stearate, aluminum stearate, benzylidene derivatives of sorbitol, sodium benzoate and bis(p-tert-butylbenzoate) carboxyaluminum. mixture.
  • the nucleation aid is bis(3,4-dimethylbenzylidene)sorbitol.
  • the nucleating aid is generally only used in the production of dry diaphragms, and the present invention can balance and ensure normal operation by using the polypropylenes or complexes with different melt indices and the matching system of the solubilizer and the solvent.
  • the plasticizing effect and casting effect can also help to control the nucleation and crystallization effects, control the crystal form and size during the wet thermally induced phase separation process, and facilitate subsequent stretching and other treatments.
  • the combination of main material, solubilizer, solvent and nucleation aid can form a delicate balance, so that while maintaining the bidirectional high strength of the diaphragm, it also has the advantages of high porosity and uniform pore size adjustment.
  • the antioxidant auxiliary includes one of antioxidant 1076, antioxidant 1010 and antioxidant 168.
  • the pre-extrusion feeding method adopts synchronous feeding and/or asynchronous feeding.
  • the temperature of the screw is 140°C-240°C
  • the temperature of the melt pipe is 190°C-230°C
  • the temperature of the die head is 180°C-220°C.
  • the thickness of the extruded melt is 0.7mm-5mm.
  • the co-rotating twin-screw rotates at 60-100 rmp.
  • a cooling process is also included after the extrusion, and the cooling methods are: chilled roll cooling at 10°C-80°C, chilled roll cooling + roller cooling at 10°C-80°C, chilled roll + water cooling for 5 °C-80°C, water cooling + bottom roller cooling 5°C-80°C, chilling roller + oil cooling 5°C-80°C and/or oil cooling + bottom roller cooling 5°C-80°C.
  • the air temperature of 130°C-165°C and the film surface temperature of 124°C-140°C are maintained, and the stretching speed of 3m/min-40m/min is longitudinally stretched for 1- 30 times, transverse stretching 1-30 times and/or bidirectional simultaneous stretching (1-30)*(1-30) times, "1 times stretching” means no stretching in this direction.
  • the stretching process can be achieved through longitudinal stretching, transverse stretching, longitudinal and transverse simultaneous stretching, and different combination methods of multiple longitudinal and transverse stretching stacking and different wind temperatures, wind speeds, and stretching speeds.
  • the lamellae After stretching, the lamellae unfold, dislocate, slip, and finally realize a fibrillated spatial network structure, thereby obtaining oil film precursors of high temperature-resistant polyolefin porous membranes with different porosity, different pore sizes, and different strengths.
  • the stretch edge material is not cut off in advance.
  • the stretched edge material is not removed in advance, and the larger tension force of the thick edge material is used to suppress the lateral shrinkage of the film during the extraction process, because the extraction shrinkage will lead to an increase in the lateral range of the film and poor uniformity, etc. problem, which seriously affects the stability of polypropylene film.
  • the post-treatment includes dry film biaxial stretching and shrinkage heat setting.
  • the post-treatment includes performing longitudinal and transverse biaxial stretching of the dry film, longitudinal and transverse bidirectional retraction treatment and heat setting in sequence.
  • longitudinal and transverse bidirectional retraction treatment and heat setting By stretching and retracting the extracted dry film, the secondary crystallization of microfibrillated polypropylene, the fine denier of microscopic fibers, and the elimination of internal stress can be achieved, so as to achieve the purpose of hole expansion and heat setting, and improve the diaphragm. permeability and improved thermal stability.
  • Vertical and horizontal two-way shrinkage treatment and heat setting on the basis of the traditional horizontal one-way shrinkage treatment method, allow the longitudinal direction of the film material to be retracted at the same time, which can simultaneously improve the two-way heat shrinkage stability.
  • the specific method is as follows: the longitudinal and transverse stretching of the dry film after extraction needs to maintain the air temperature of 130 °C-175 °C and the film surface temperature of 125 °C-150 °C, and longitudinally stretch at the stretching speed of 3m/min-40m/min (1 -30) times, transverse stretching (1-30) times and/or bidirectional synchronous stretching (1-30)*(1-30) times, "1 times stretching” means no stretching in this direction, stretching
  • the process can achieve the required stretch ratio through longitudinal stretching, transverse stretching, longitudinal and transverse simultaneous stretching, and multiple longitudinal and transverse stretching stacking methods; Mild film surface temperature of 125°C-150°C, 1-3 times longitudinal retraction, 1-3 times lateral retraction and/or two-way simultaneous retraction at retraction speed of 3m/min-20m/min (1-3) *(1-3) times, "1-fold retraction” means no retraction in this direction.
  • the present invention also provides a lithium ion battery, which is prepared by using the lithium ion battery separator with high temperature resistance characteristics.
  • the invention pioneers and realizes the high magnification of the wet-process biaxially oriented membrane.
  • the product made of stretched polypropylene diaphragm realizes the uniform and controllable balance of heat resistance, mechanical strength and microscopic pore structure.
  • the diaphragm involved in the present invention can also be used in the fields of liquid, gas dust particle filtration and waterproof breathable membrane due to its high temperature resistance, high porosity and pore size controllable characteristics.
  • Fig. 1 is the scanning electron microscope picture of the polypropylene microporous film of the embodiment of the present invention 2;
  • Example 2 is a scanning electron microscope image of the polypropylene microporous film of Example 4 of the present invention.
  • compositions, step, method, article or device comprising the listed elements is not necessarily limited to those elements, but may include other elements not expressly listed or inherent to such composition, step, method, article or device elements.
  • a and/or B includes (A and B) and (A or B).
  • the melt is extruded from the die to form a sheet, and the gel-like sheet is immediately passed through the pre-set gap between the setting roll (chilling roll) and the backing roll of the casting machine (the surface temperature setting of the setting roll and the backing roll) 15°C).
  • a cooling tank (the cooling medium is water) is also added to forcibly cool the reverse side of the melt, and the temperature of the cooling tank is 20° C., and it is formed into a slab with a thickness of 1.5 mm.
  • the cast sheet was stretched 6 times in the machine direction (MD) at a speed of 30m/min at a film surface temperature of 130°C using a longitudinal stretcher, and then used a transverse stretcher along the machine direction (MD).
  • the width direction (TD) was stretched 6 times at a speed of 30 m/min at a film surface temperature of 140°C.
  • the stretched oil film is trimmed and cut into three sections with a slitting machine, each with a width of 800mm, and then the stretched oil film is passed through an extraction tank containing dichloromethane to extract the white oil in the oil film. Dry the oil film.
  • the obtained dried microporous film entered a transverse stretching machine, stretched 1.2 times along the TD direction at 135°C, and then retracted to 1.1 times along the TD direction, while heat-setting at 135°C. Next, it was wound up with a take-up roll to obtain a polypropylene microporous film with a thickness of 15.6 ⁇ m.
  • the corresponding high temperature resistant lithium ion battery can be prepared by using the polypropylene microporous membrane.
  • polypropylene is a polypropylene compound with a melt index of 0.5g/10min and 2g/10min respectively, and the ratio is 8:2; the screw temperature is 210°C, the melt pipe temperature is 200°C, and the die temperature is 195°C; The co-rotating twin-screw speed is 80rmp.
  • the melt is extruded from the die to form a sheet, and the gel-like sheet is immediately passed through the pre-set gap between the setting roll (chilling roll) and the backing roll of the casting machine (the surface temperature setting of the setting roll and the backing roll) 10°C).
  • a cooling tank (the cooling medium is water) is also added to forcibly cool the reverse side of the melt.
  • the temperature of the cooling tank is 15° C., and it is formed into a slab with a thickness of 0.8 mm.
  • the cast sheet was stretched 9 times in the machine direction (MD) at a speed of 35m/min at a film surface temperature of 130°C using a longitudinal stretching machine, and then using a transverse stretching machine along the machine direction (MD).
  • the width direction (TD) was stretched 7 times at a speed of 35 m/min at a film surface temperature of 140°C.
  • the stretched oil film is cut into three sections with a slitter, each with a width of 800mm, and then the stretched oil film is passed through an extraction tank containing dichloromethane to extract the white oil in the oil film and remove the oil film. Dry.
  • the obtained dried microporous film entered a transverse stretching machine, stretched 1.2 times along the TD direction at 135°C, and then retracted to 1.1 times along the TD direction, while heat-setting at 135°C. Next, it was wound up with a take-up roll to obtain a polypropylene microporous film with a thickness of 9.4 ⁇ m.
  • the thickness, tensile strength, puncture strength, porosity, air permeability and thermal shrinkage of the prepared polypropylene microporous film were measured respectively.
  • the corresponding high temperature resistant lithium ion battery can be prepared by using the polypropylene microporous membrane.
  • polypropylene is a polypropylene compound with a melt index of 0.5g/10min and 2g/10min respectively, and the ratio is 6:4; the screw temperature is 205°C, the melt pipe temperature is 205°C, and the die temperature is 190°C;
  • the co-rotating twin-screw speed is 100rmp.
  • the melt is extruded from the die to form a sheet, and the gel-like sheet is immediately passed through the pre-set gap between the setting roll (chilling roll) and the backing roll of the casting machine (the surface temperature setting of the setting roll and the backing roll) 20°C).
  • a cooling tank (the cooling medium is water) is also added to force the reverse side of the melt to be cooled, and the temperature of the cooling tank is 15° C., and it is formed into a slab with a thickness of 0.9 mm.
  • the cast sheet was stretched 9 times in the machine direction (MD) at a speed of 40m/min at a film surface temperature of 130°C using a longitudinal stretcher, and then used a transverse stretcher along the machine direction (MD).
  • the width direction (TD) was stretched 7 times at a speed of 40 m/min at a film surface temperature of 140°C.
  • the stretched oil film is trimmed and cut into three sections with a slitting machine, each with a width of 800mm, and then the stretched oil film is passed through an extraction tank containing dichloromethane to extract the white oil in the oil film. Dry the oil film.
  • the obtained dried microporous film entered a transverse stretching machine, stretched 1.2 times along the TD direction at 135°C, and then retracted to 1.1 times along the TD direction, while heat-setting at 135°C. Next, it was wound up with a take-up roll to obtain a polypropylene microporous film with a thickness of 10.7 m.
  • the corresponding high temperature resistant lithium ion battery can be prepared by using the polypropylene microporous membrane.
  • the melt is extruded from the die to form a sheet, and the gel-like sheet is immediately passed through the pre-set gap between the setting roll (chilling roll) and the backing roll of the casting machine (the surface temperature setting of the setting roll and the backing roll) 40°C).
  • a cooling tank (the cooling medium is water) is also added to forcibly cool the reverse side of the melt.
  • the temperature of the cooling tank is 20° C., and it is formed into a slab with a thickness of 0.7 mm.
  • the obtained slabs were then extracted through a pure dichloromethane ultrasonic extraction tank at a speed of 2 m/min.
  • the cast sheet after extraction was stretched 7 times in the machine direction (MD) at a speed of 30 m/min at a film surface temperature of 133°C using a longitudinal stretcher, and then a transverse stretcher was used. 7-fold stretching was performed at a film surface temperature of 140° C. at a speed of 30 m/min in the width direction (TD). Then, the stretched waterproof and breathable film was trimmed, and the resulting trimmed film entered a transverse stretching machine, stretched 1.2 times in the TD direction at 135 ° C, and then retracted to 1.1 times in the TD direction, while at 135 Heat setting at °C. Next, it was wound up with a take-up roll to obtain a polypropylene microporous film with a thickness of 14.3 ⁇ m.
  • the thickness, tensile strength, puncture strength, porosity, air permeability and thermal shrinkage of the prepared polypropylene microporous film were measured respectively.
  • the corresponding high-porosity membrane material can be prepared by using the polypropylene microporous membrane.
  • the melt is extruded from the die to form a sheet, and the gel-like sheet is immediately passed through the pre-set gap between the setting roll (chilling roll) and the backing roll of the casting machine (the surface temperature setting of the setting roll and the backing roll) 15°C).
  • a cooling tank (the cooling medium is water) is also added to forcibly cool the reverse side of the melt.
  • the temperature of the cooling tank is 20° C., and it is formed into a slab with a thickness of 1.9 mm.
  • the cast piece was stretched 3*3 times along the machine direction (MD*TD) at a speed of 10m/min at a film surface temperature of 130°C using a biaxially synchronous stretching machine to obtain a thick oil film.
  • the thick oil film obtained by stretching was stretched 7 times in the machine direction (MD) at a speed of 60 m/min at a film surface temperature of 129 °C using a longitudinal stretching machine at an air temperature of 158 °C, and then using the transverse direction.
  • the stretching machine performed 7-fold stretching at a speed of 60 m/min at a film surface temperature of 137° C. in the width direction (TD).
  • the stretched oil film is trimmed and cut into three sections with a slitting machine, each with a width of 800mm, and then the stretched oil film is passed through an extraction tank containing dichloromethane to extract the white oil in the oil film. Dry the oil film.
  • the obtained dried microporous membrane entered a transverse stretching machine, stretched 1.2 times in the TD direction at 135°C, and then retracted to 1.1 times in the TD direction, while heat-setting at 135°C. Next, it was wound up with a winding roll to obtain a polypropylene microporous film with a thickness of 3.9 ⁇ m.
  • the corresponding high temperature resistant lithium ion battery can be prepared by using the polypropylene microporous membrane.
  • the main material is PE, which is obtained by wet process.
  • the main material is PP, which is obtained by dry process.
  • the polypropylene separator of the present invention has good heat resistance, uniform microstructure and high strength.
  • the heat resistance, mechanical strength and microscopic uniformity and controllability are taken into account, and a new type of lithium-ion battery separator with high temperature resistance, bidirectional high strength, uniform pore size, and high specific resistance is obtained.
  • the process has fast speed and low processing cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种具有耐高温特性的锂离子电池隔膜、其制备方法及由其制得的锂离子电池,属于锂离子电池隔膜领域。该隔膜厚度为3.5-30μm,孔隙率为30-80%,孔径为20-2000nm可调,双向拉伸强度≥50MPa,透气值≤400s/100cc,破膜温度≥160℃。该制备方法为:将聚丙烯主材20%~60%、增溶剂2%~10%、溶剂30%~80%、成核助剂0.1%~5%和/或抗氧剂0.1%~1%混合熔融塑化,双螺杆挤出后热致相分离得到铸片,然后经铸片拉伸、萃取及后处理或直接经萃取和后处理即得。该隔膜具有耐高温、双向高强度、孔径均匀、高比电阻等特性;同时,得益于该产品的耐高温特性、高孔隙率特性和孔径易调整特性,该隔膜制造的电池具有更高的安全性和更好的电化学性能。

Description

具有耐高温特性的锂离子电池隔膜、其制备方法及由其制得的锂离子电池
本申请基于申请号为202011277996.2、申请日为2020年11月16日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及锂离子电池隔膜领域,尤其涉及一种具有耐高温特性的锂离子电池隔膜;
本发明还提供上述具有耐高温特性的锂离子电池隔膜的制备方法;
本发明同时还提供一种由上述具有耐高温特性的锂离子电池隔膜制得的锂离子电池。
背景技术
锂离子电池隔膜发展至今,主要技术路线分为聚丙烯干法膜和聚乙烯湿法膜两大路线,其中干法隔膜采用聚丙烯为主要原材料,采用的是熔融拉伸法工艺,又细分干法单向拉伸、干法双向拉伸。湿法隔膜主要原材料为聚乙烯,按照拉伸方式不同又分为湿法双向同步拉伸与异步拉伸。
常规干法隔膜因采用熔点较高的聚丙烯为主材,因此隔膜具有较高的熔点、破膜温度,耐热性能相对较好,典型的干法聚丙烯膜可以保持140℃以上热收缩稳定性和超过160℃的破膜温度。但因成型工艺原因,主流干法隔膜还是以纵横向小倍率拉伸,或者单向拉伸为主,隔膜存在明显的纵横向异性,横向拉伸强度不足,穿刺强度相对较低,只能以增加厚度的方式进行弥补。干法膜的造孔机理是,聚合物熔融挤出时在高应力作用下进行结晶,形成垂直于拉伸方向的片晶,之后再经热处理得到硬弹性材料,然后再经拉伸,片晶之间错移分离,从而形成微孔,最后经过热定型就可得到微孔膜。孔径为直通孔,孔隙率一般为35~45%。由于该方法形成的是直通孔,孔的曲折程度低,存在等效孔径大和等效孔长度短的问题,极易造成正负极之间的微短路和自放电偏大问题。基于以上问题,干法膜只能以大厚度膜低端产品为主,很难应用到高端领域。
常规湿法隔膜因采用分子量较高的聚乙烯为主材,隔膜具有较高的双向拉伸强度及穿刺强度。由于造孔原理采取的是热致相分离原理配合油膜拉伸,孔是由细密均匀的球晶片晶拉伸错位并不断的进行纤维化而形成的多层网状结构叠合而成,孔径分布细小均匀,等效孔径小,等效孔长度大,可以在超薄厚度(例如4~9μm)范围仍然保持较好的电阻特性,具有更广泛的高端应用。但基于主材聚乙烯本身较低的软化点和熔点,湿法聚乙烯隔膜的耐热性相对较差,破膜温度低,典型的湿法聚乙烯隔膜只能保证120℃以内热收缩稳定性和140℃以内的破膜温度。而高端锂离子电池产品很大比例采用的是高镍三元体系,正极活性材料的活泼特性对隔膜的热稳定性具有很高要求,这些矛盾造成了电池安全风险的提升。
为同时兼顾耐温性、力学性能,电化学功能等因素,对于干法聚丙烯隔膜的改善,现有技术主要有增大横向拉伸倍率提高横向强度、涂覆小粒径陶瓷弥补孔径偏大问题等补救措施,但强度提升水平有限,孔的均匀程度更是无法达到湿法聚乙烯隔膜水平。对于湿法聚乙烯隔膜的改善,现有技术主要通过在湿法聚乙烯隔膜上涂覆无机物或有机物,如陶瓷、芳纶、勃姆石、PI等,但除却隔膜表面涂覆无机物或有机物势必造成一定程度孔径堵塞的问题以外,聚乙烯隔膜本身在高热条件下的力学强度快速下降也会导致皮之不存毛将安附的劣化效果,接近140℃熔点附近时,隔膜即使有涂层保护防止收缩,也会因为隔膜本身的熔化而造成正负极大面积短路。
因此,需要一种兼顾高温稳定性、优良的力学性能、孔隙率高、孔径均匀可调的锂离子电池隔膜以解决上述技术问题。
有鉴于此,特提出本申请。
发明内容
本发明的目的在于提供一种具有耐高温特性的锂离子电池隔膜、其制备方法,以解决上述问题。
为实现以上目的,本发明特采用以下技术方案:
一种具有耐高温特性的锂离子电池隔膜,所述隔膜厚度为3.5-30μm,孔隙率为30-80%,孔径为20-2000nm可调,双向拉伸强度≥50MPa,透气值≤400s/100cc,破膜温度≥160℃。
优选地,所述隔膜厚度为3.5-20μm,孔隙率为35-60%,孔径为30-100nm,双向拉伸强度≥100MPa,透气值≤300s/100cc,破膜温度≥170℃。
本发明还提供了上述的具有耐高温特性的锂离子电池隔膜的制备方法:
以质量百分比计,将聚丙烯主材20%~60%、增溶剂2%~10%、溶剂30%~80%、成核助剂0.1%~5%和/或抗氧剂0.1%~1%混合熔融塑化,双螺杆挤出后热致相分离得到铸片,然后经铸片拉伸、萃取及萃取后干膜拉伸、回缩、热定型等后处理即得;或者,也可以将热致相分离得到的铸片直接萃取及萃取后干膜拉伸、回缩、热定型等后处理得到。
优选地,所述聚丙烯主材、增溶剂、溶剂、成核助剂和抗氧剂的质量百分比分别为25%~40%、3%~6%、50%~70%、0.2%~3%和0.1%~0.5%。
进一步地,所述聚丙烯为熔融指数在20g/10min以内的单一组成,或为多种不同熔融指数的聚丙烯复配而成。
优选地,所述聚丙烯为熔融指数在2g/10min以内的单一组成,或为其与熔融指数在0.5g/10min以内的聚丙烯复配而成。
所述增溶剂为具有对长直链碳氢链段和/或带支链的碳氢链段且同时具有良好共融性的增溶剂组分。
优选地,所述增溶剂包括聚烯烃共聚物和/或聚烯烃蜡;
优选地,所述增溶剂包括聚乙烯/丙烯共聚物、聚丙烯/乙烯-丁烯共聚物、聚丙烯/乙烯-己烯共聚物、聚乙烯蜡、聚丙烯蜡和聚酯蜡中的一种或多种的混合物。该体系的增溶剂能够极大提升塑化效果。
所述溶剂包括烷烃类、酯类、醚类和芳烃类化合物中的一种或多种的混合物。
优选地,所述溶剂包括液体石蜡、固体石蜡、石蜡油、天然植物油、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、癸二酸二辛酯、水杨酸甲酯、二苯醚和二苯基甲烷中的一种或多种的混合物。所述溶剂适宜热致相分离。
所述成核助剂包括己二酸、硬脂酸钙、硬脂酸铝、山梨醇苄叉衍生物、苯甲酸钠和双(对叔丁基苯甲酸)羧基铝中的一种或多种的混合物。
优选地,所述成核助剂为双(3,4-二甲基苯亚甲基)山梨醇。
所述成核助剂一般只用在干法隔膜生产中,本发明通过采用所述不同熔融指数的聚丙烯或复配体,以及所述增溶剂和溶剂的搭配体系,既能平衡和保证正常的塑化效果和流延效果,又能有助于湿法热致相分离过程中控制成核与结晶效果,控制晶型及尺寸,有利于后续的拉伸等处理。主材原料、增溶剂、溶剂和成核助剂的搭配能够形成一种微妙的平衡,从而在保持隔膜双向高强度的同时,还具有孔隙率高、孔径均匀可调等优点。
所述抗氧助剂包括抗氧剂1076、抗氧剂1010和抗氧剂168中的一种。
所述挤出前喂料方式采取同步喂料和/或异步喂料。
优选地,所述双螺杆挤出过程中,螺杆温度为140℃-240℃,熔体管道温度190℃-230℃,模头温度180℃-220℃。
优选地,所述挤出的熔体的厚度为0.7mm-5mm。
优选地,所述铸片的制备过程中,同向双螺杆转速60-100rmp。
优选地,所述挤出后还包括冷却过程,所述冷却的方式为激冷辊冷却10℃-80℃、激冷辊冷却+靠辊冷却10℃-80℃、激冷辊+水冷冷却5℃-80℃、水冷+底辊冷却5℃-80℃、激冷辊+油冷冷却5℃-80℃和/或油冷+底辊冷却5℃-80℃。
优选地,所述对铸片的拉伸过程中,保持130℃-165℃的风温和124℃-140℃的膜面温度,以3m/min-40m/min的拉伸速度纵向拉伸1-30倍、横向拉伸1-30倍和/或双向同步拉伸(1-30)*(1-30)倍,“拉伸1倍”表示该方向不进行拉伸。拉伸过程可以通过纵向拉伸、横向拉伸、纵横向同步拉伸,以及多次纵横向拉伸叠加的不同组合方法和不同风温、风速、拉伸速度,可以实现对于铸片内晶体的拉伸,片晶发生展开、错位、滑移,并最终实现纤维化的空间网络结构,从而得到不同孔隙率、不同孔径、不同强度的耐高温的聚烯烃多孔隔膜的油膜前驱体。
优选地,所述萃取时,拉伸边料不提前切除。萃取干燥时,拉伸边料不提前切除,通过厚边料更大的张紧力,抑制薄膜在萃取过程中的横向收缩,因为萃取收缩会导致薄膜横向极差增大、均一性较差等问题,严重影响聚丙烯薄膜的稳定性。
优选地,所述后处理包括干膜双向拉伸及回缩热定型。
更优选地,所述后处理包括依次进行干膜纵横双向拉伸,纵横双向回缩处理和热定型。通过对萃取后的干膜进行拉伸和回缩,可以实现微观纤维化聚丙烯的二次结晶、微观纤维细旦化,消除内应力等作用,从而实现扩孔和热定型的目的,提升隔膜通透性和提高热稳定性。纵横向双向回缩处理和热定型,在传统的横向单向回缩处理方法基础上,让膜材料的纵向方向同时得到回缩处理,可以同时提升双向的热收缩稳定性。具体方法如下:萃取后干膜的纵横向拉伸需要保持130℃-175℃的风温和125℃-150℃的膜面温度,以3m/min-40m/min的拉伸速度纵向拉伸(1-30)倍、横向拉伸(1-30)倍和/或双向同步拉伸(1-30)*(1-30)倍,“拉伸1倍”表示该方向不进行拉伸,拉伸过程可以通过纵向拉伸、横向拉伸、纵横向同步拉伸,以及多次纵横向拉伸叠加的不同组合方法实现所需的拉伸倍数;纵横双向回缩需要保持130℃-175℃的风温和125℃-150℃的膜面温度,以3m/min-20m/min的回缩速度纵向回缩1-3倍、横向回缩1-3倍和/或双向同步回缩(1-3)*(1-3)倍,“回缩1倍”表示该方向不进行回缩。
本发明还提供一种锂离子电池,使用所述的具有耐高温特性的锂离子电池隔膜制得。
与现有技术相比,本发明通过结合干法聚丙烯隔膜主材耐热性好以及湿法双向拉伸聚乙烯隔膜微观结构均匀、强度高的优势,开创性的实现了湿法双向大倍率拉伸聚丙烯隔膜的产品制成,实现了耐热性、力学强度与微观孔结构均匀可控的兼顾,获得了具有耐高温、双向高强度、高孔隙率、孔径均匀可调、高比电阻等特性的新型锂离子电池隔膜;同时,本发明涉及的隔膜由于其耐高温特性、高孔隙率和孔径可控特性,还可以应用在液体、气体粉尘颗粒过滤和防水透气膜等领域。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例2的聚丙烯微孔膜的扫描电镜图;
图2为本发明实施例4的聚丙烯微孔膜的扫描电镜图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
如本文所用之术语:
“由……制备”与“包含”同义。本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、 步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
连接词“由……组成”排除任何未指出的要素、步骤或组分。如果用于权利要求中,此短语将使权利要求为封闭式,使其不包含除那些描述的材料以外的材料,但与其相关的常规杂质除外。当短语“由……组成”出现在权利要求主体的子句中而不是紧接在主题之后时,其仅限定在该子句中描述的要素;其它要素并不被排除在作为整体的所述权利要求之外。
当量、浓度、或者其它值或参数以范围、优选范围、或一系列上限优选值和下限优选值限定的范围表示时,这应当被理解为具体公开了由任何范围上限或优选值与任何范围下限或优选值的任一配对所形成的所有范围,而不论该范围是否单独公开了。例如,当公开了范围“1~5”时,所描述的范围应被解释为包括范围“1~4”、“1~3”、“1~2”、“1~2和4~5”、“1~3和5”等。当数值范围在本文中被描述时,除非另外说明,否则该范围意图包括其端值和在该范围内的所有整数和分数。
在这些实施例中,除非另有指明,所述的份和百分比均按质量计。
“和/或”用于表示所说明的情况的一者或两者均可能发生,例如,A和/或B包括(A和B)和(A或B)。
实施例1
以同步喂料和异步喂料的方式,按质量百分比将30%的0.5g/10min熔融指数的聚丙烯、5%的聚乙烯/丙烯共聚物与63.8%的100#白油经粉体秤和柱塞泵分别投入到双螺杆挤出机,另加入1%的双(3,4-二甲基苯亚甲基)山梨醇(即3988成核剂)和2‰的1076抗氧剂在190℃条件下进行熔融塑化。其中,螺杆温度为220℃,熔体管道温度200℃,模头温度195℃;同向双螺杆转速90rmp。
将熔体从模头挤出形成片状,立即将凝胶状片材通过流延机的定型辊(激冷辊)和靠辊之间的预置缝隙(定型辊和靠辊的表面温度设置为15℃)。本实施例还增加冷却槽(冷却介质为水)对熔体反面进行强制冷却,冷却槽温度为20℃,成形为厚度1.5mm的铸片。随后在160℃的风温下,将该铸片使用纵向拉伸机在130℃膜面温度下以30m/min的速度沿机械方向(MD)进行6倍拉伸,再使用横向拉伸机沿宽度方向(TD)在140℃膜面温度下以30m/min的速度进行6倍拉伸。然后将拉伸形成的油膜切边后使用分切机分切为三段,每段幅宽800mm,随后将拉伸的油膜经过含有二氯甲烷的萃取槽,将油膜中的白油萃取出来并对油膜进行干燥。所得干燥后的微孔膜进入横向拉伸机,在135℃下沿TD方向拉伸1.2倍,然后再沿TD方向回缩至1.1倍,同时在135℃下进行热定型。接着,用卷取辊进行收卷,得到厚度为15.6μm的聚丙烯微孔膜。
对所制备聚丙烯微孔膜的厚度、拉伸强度、穿刺强度、孔隙率、透气性以及热收缩率分别进行了测定,所得测定结果如表1所示。同时,使用该聚丙烯微孔膜可制得相应的耐高温锂离子电池。
实施例2
以同步喂料和异步喂料的方式,按质量百分比将31%的聚丙烯、6%的聚丙烯/乙烯-丁烯共聚物与61.55%的100#白油经粉体秤和柱塞泵分别投入到双螺杆挤出机,另加入1.1%的双(3,4-二甲基苯亚甲基)山梨醇(即3988成核剂)和3.5‰的1076抗氧剂在185℃条件下进行熔融塑化。其中,聚丙烯为熔融指数分别为0.5g/10min与2g/10min的聚丙烯复配物,配比为8:2;螺杆温度为210℃,熔体管道温度200℃,模头温度195℃;同向双螺杆转速80rmp。
将熔体从模头挤出形成片状,立即将凝胶状片材通过流延机的定型辊(激冷辊)和靠辊之间的预置缝隙(定型辊和靠辊的表面温度设置为10℃)。本实施例还增加冷却槽(冷却介质为水)对熔体反面进行强制冷却,冷却槽温度为15℃,成形为厚度0.8mm的铸片。随后在130℃的风温下,将该铸片使用纵向拉伸机在130℃膜面温度下以35m/min的速度沿机械方向(MD)进行9倍拉伸,再使用横向拉伸机沿宽度方向(TD)在140℃膜面温度下以35m/min的速度进行7倍拉伸。然后将拉伸形成的油膜,使用分切机分切为三段,每段幅宽800mm,随后将拉伸的油膜经过含有二氯甲烷的萃取槽,将油膜中的白油萃取出来并对油膜进行干燥。所得干燥后的微孔膜进入横向拉伸机,在135℃下沿TD方向拉伸1.2倍,然后再沿TD方向回缩至1.1倍,同时在135℃下进行热定型。接着,用卷取辊进行收卷,得到厚度为9.4μm的聚丙烯微孔膜。
对所制备聚丙烯微孔膜的厚度、拉伸强度、穿刺强度、孔隙率、透气性以及热收缩率分别进行了测定,所得测定结果如表1所示,其电镜照片如图1所示。同时,使用该聚丙烯微孔膜可制得相应的耐高温锂离子电池。
实施例3
以同步喂料的方式,按质量百分比将35%的聚丙烯、3%的聚乙烯蜡与59.5%的液体石蜡经粉体秤和柱塞泵分别投入到双螺杆挤出机,另加入2%的己二酸和5‰的1010抗氧剂在190℃条件下进行熔融塑化。其中,聚丙烯为熔融指数分别为0.5g/10min与2g/10min的聚丙烯复配物,配比为6:4;螺杆温度为205℃,熔体管道温度205℃,模头温度190℃;同向双螺杆转速100rmp。
将熔体从模头挤出形成片状,立即将凝胶状片材通过流延机的定型辊(激冷辊)和靠辊之间的预置缝隙(定型辊和靠辊的表面温度设置为20℃)。本实施例还增加冷却槽(冷却介质为水)对熔体反面进行强制冷却,冷却槽温度为15℃,成形为厚度0.9mm的铸片。随后在165℃的风温下,将该铸片使用纵向拉伸机在130℃膜面温度下以40m/min的速度沿机械方向(MD)进行9倍拉伸,再使用横向拉伸机沿宽度方向(TD)在140℃膜面温度下以40m/min的速度进行7倍拉伸。然后将拉伸形成的油膜切边后使用分切机分切为三段,每段幅宽800mm,随后将拉伸的油膜经过含有二氯甲烷的萃取槽,将油膜中的白油萃取出来并对油膜进行干燥。所得干燥后的微孔膜进入横向拉伸机,在135℃下沿TD方向拉伸1.2倍,然后再沿TD方向回缩至1.1倍,同时在135℃下进行热定型。接着,用卷 取辊进行收卷,得到厚度为10.7μm的聚丙烯微孔膜。
对所制备聚丙烯微孔膜的厚度、拉伸强度、穿刺强度、孔隙率、透气性以及热收缩率分别进行了测定,所得测定结果如表1所示。同时,使用该聚丙烯微孔膜可制得相应的耐高温锂离子电池。
实施例4
以同步喂料和异步喂料的方式,按质量百分比将30%的0.5g/10min熔融指数的聚丙烯、5%的聚乙烯/丙烯共聚物与63.8%的100#白油经粉体秤和柱塞泵分别投入到双螺杆挤出机,另加入1%的双(3,4-二甲基苯亚甲基)山梨醇(即3988成核剂)和2‰的1076抗氧剂在190℃条件下进行熔融塑化。其中,螺杆温度为220℃,熔体管道温度200℃,模头温度195℃;同向双螺杆转速90rmp。
将熔体从模头挤出形成片状,立即将凝胶状片材通过流延机的定型辊(激冷辊)和靠辊之间的预置缝隙(定型辊和靠辊的表面温度设置为40℃)。本实施例还增加冷却槽(冷却介质为水)对熔体反面进行强制冷却,冷却槽温度为20℃,成形为厚度0.7mm的铸片。随后将所得铸片按照2m/min的速度经过纯净的二氯甲烷超声萃取槽进行萃取。在162℃的风温下,将该萃取后铸片使用纵向拉伸机在133℃膜面温度下以30m/min的速度沿机械方向(MD)进行7倍拉伸,再使用横向拉伸机沿宽度方向(TD)在140℃膜面温度下以30m/min的速度进行7倍拉伸。然后将拉伸形成的防水透气膜切边,所得切边后的膜进入横向拉伸机,在135℃下沿TD方向拉伸1.2倍,然后再沿TD方向回缩至1.1倍,同时在135℃下进行热定型。接着,用卷取辊进行收卷,得到厚度为14.3μm的聚丙烯微孔膜。
对所制备聚丙烯微孔膜的厚度、拉伸强度、穿刺强度、孔隙率、透气性以及热收缩率分别进行了测定,所得测定结果如表1所示,其电镜照片如图2所示。同时,使用该聚丙烯微孔膜可制得相应的高孔隙率膜材料。
实施例5
以同步喂料和异步喂料的方式,按质量百分比将30%的0.5g/10min熔融指数的聚丙烯、5%的聚乙烯/丙烯共聚物与63.8%的100#白油经粉体秤和柱塞泵分别投入到双螺杆挤出机,另加入1%的双(3,4-二甲基苯亚甲基)山梨醇(即3988成核剂)和2‰的1076抗氧剂在190℃条件下进行熔融塑化。其中,螺杆温度为220℃,熔体管道温度200℃,模头温度195℃;同向双螺杆转速90rmp。
将熔体从模头挤出形成片状,立即将凝胶状片材通过流延机的定型辊(激冷辊)和靠辊之间的预置缝隙(定型辊和靠辊的表面温度设置为15℃)。本实施例还增加冷却槽(冷却介质为水)对熔体反面进行强制冷却,冷却槽温度为20℃,成形为厚度1.9mm的铸片。随后在160℃风温下,将该铸片使用双向同步拉伸机在130℃膜面温度下以10m/min的速度沿机械方向(MD*TD)进行3*3倍拉伸得到厚油膜。拉伸所得厚油膜在158℃的风温下,将该铸片使用纵向拉伸机在129℃膜面温度下以60m/min的速度沿机械方向(MD)进行7倍拉伸,再使用横向拉伸机沿宽度方向(TD)在137℃膜面温度下以60m/min的速度进行 7倍拉伸。然后将拉伸形成的油膜切边后使用分切机分切为三段,每段幅宽800mm,随后将拉伸的油膜经过含有二氯甲烷的萃取槽,将油膜中的白油萃取出来并对油膜进行干燥。所得干燥后的微孔膜进入横向拉伸机,在135℃下沿TD方向拉伸1.2倍,然后再沿TD方向回缩至1.1倍,同时在135℃下进行热定型。接着,用卷取辊进行收卷,得到厚度为3.9μm的聚丙烯微孔膜。
对所制备聚丙烯微孔膜的厚度、拉伸强度、穿刺强度、孔隙率、透气性以及热收缩率分别进行了测定,所得测定结果如表1所示。同时,使用该聚丙烯微孔膜可制得相应的耐高温锂离子电池。
对比例1
与实施例1相比,主材为PE,湿法工艺制得。
对比例2
与实施例1相比,主材为PP,干法工艺制得。
表1实施例及对比例测试结果
Figure PCTCN2020142169-appb-000001
通过表1数据对比以及图1可知,本发明的聚丙烯隔膜耐热性好,微观结构均匀,强度高,开创性的实现了湿法双向大倍率拉伸聚丙烯隔膜的产品制成,实现了耐热性、力学强度与微观均匀可控的兼顾,获得了具有耐高温、双向高强度、孔径均匀、高比电阻等特性的新型锂离子电池隔膜;同时,该工艺车速快,加工成本低。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种具有耐高温特性的锂离子电池隔膜,其特征在于,所述隔膜厚度为3.5-30μm,孔隙率为30-80%,孔径为20-2000nm可调,双向拉伸强度≥50MPa,透气值≤400s/100cc,破膜温度≥160℃。
  2. 根据权利要求1所述的具有耐高温特性的锂离子电池隔膜,其特征在于,所述隔膜厚度为3.5-20μm,孔隙率为35-60%,孔径为30-100nm,双向拉伸强度≥100MPa,透气值≤300s/100cc,破膜温度≥170℃。
  3. 一种权利要求1或2所述的具有耐高温特性的锂离子电池隔膜的制备方法,其特征在于,以质量百分比计,将聚丙烯主材20%~60%、增溶剂2%~10%、溶剂30%~80%、成核助剂0.1%~5%和/或抗氧剂0.1%~1%混合熔融塑化,双螺杆挤出后热致相分离得到铸片;
    然后经铸片拉伸、萃取及后处理即得;或,
    直接经萃取及后处理即得;
    优选地,所述聚丙烯主材、增溶剂、溶剂、成核助剂和抗氧剂的质量百分比分别为25%~40%、3%~6%、50%~70%、0.2%~3%和0.1%~0.5%。
  4. 根据权利要求3所述的制备方法,其特征在于,所述聚丙烯为熔融指数在20g/10min以内的单一组成,或为多种不同熔融指数的聚丙烯复配而成;
    优选地,所述聚丙烯为熔融指数在2g/10min以内的单一组成,或为其与熔融指数在0.5g/10min以内的聚丙烯复配而成。
  5. 根据权利要求3所述的制备方法,其特征在于,所述增溶剂为具有对长直链碳氢链段和/或带支链的碳氢链段且同时具有良好共融性的增溶剂组分;
    优选地,所述增溶剂包括聚烯烃共聚物和/或聚烯烃蜡;
    优选地,所述增溶剂包括聚乙烯/丙烯共聚物、聚丙烯/乙烯-丁烯共聚物、聚丙烯/乙烯-己烯共聚物、聚乙烯蜡、聚丙烯蜡和聚酯蜡中的一种或多种的混合物。
  6. 根据权利要求3所述的制备方法,其特征在于,所述溶剂包括烷烃类、酯类、醚类和芳烃类化合物中的一种或多种的混合物;
    优选地,所述溶剂包括液体石蜡、固体石蜡、石蜡油、天然植物油、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲酸二辛酯、癸二酸二辛酯、水杨酸甲酯、二苯醚和二苯基甲烷中的一种或多种的混合物。
  7. 根据权利要求3所述的制备方法,其特征在于,所述成核助剂包括己二酸、硬脂酸钙、硬脂酸铝、山梨醇苄叉衍生物、苯甲酸钠和双(对叔丁基苯甲酸)羧基铝中的一种或多种的混合物;
    优选地,所述成核助剂为双(3,4-二甲基苯亚甲基)山梨醇。
  8. 根据权利要求3所述的制备方法,其特征在于,所述抗氧助剂包括抗氧剂1076、抗氧剂1010和抗氧剂168中的一种。
  9. 根据权利要求3-8任一项所述的制备方法,其特征在于,所述挤出前喂料方式采取同步喂料和/或异步喂料;
    优选地,所述双螺杆挤出过程中,螺杆温度为140℃-240℃,熔体管道温度190℃-230℃,模头温度180℃-220℃;
    优选地,所述挤出的熔体的厚度为0.7mm-5mm;
    优选地,所述铸片的制备过程中,同向双螺杆转速60-100rmp;
    优选地,所述挤出后还包括冷却过程,所述冷却的方式为激冷辊冷却10℃-80℃、激冷辊冷却+靠辊冷却10℃-80℃、激冷辊+水冷冷却5℃-80℃、水冷+底辊冷却5℃-80℃、激冷辊+油冷冷却5℃-80℃和/或油冷+底辊冷却5℃-80℃;
    优选地,所述铸片拉伸过程中,保持130℃-165℃的风温和124℃-140℃的膜面温度,以3m/min-60m/min的拉伸速度纵向拉伸1-30倍、横向拉伸1-30倍和/或双向同步拉伸(1-30)*(1-30)倍;
    优选地,所述萃取时,拉伸边料不提前切除;
    优选地,所述后处理包括干膜双向拉伸及回缩热定型;
    优选地,所述后处理包括依次进行干膜纵横双向拉伸、纵横双向回缩和热定型;所述干膜纵横向拉伸过程中,保持130℃-175℃的风温和125℃-150℃的膜面温度,以3m/min-40m/min的拉伸速度纵向拉伸(1-30)倍、横向拉伸(1-30)倍和/或双向同步拉伸(1-30)*(1-30)倍;所述纵横双向回缩过程中保持130℃-175℃的风温和125℃-150℃的膜面温度,以3m/min-20m/min的回缩速度纵向回缩1-3倍、横向回缩1-3倍和/或双向同步回缩(1-3)*(1-3)倍。
  10. 一种锂离子电池,其特征在于,使用权利要求1或2所述的具有耐高温特性的锂离子电池隔膜制得。
PCT/CN2020/142169 2020-11-16 2020-12-31 具有耐高温特性的锂离子电池隔膜、其制备方法及由其制得的锂离子电池 WO2022099905A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023517269A JP2023536551A (ja) 2020-11-16 2020-12-31 リチウムイオン電池用セパレータ、その製造方法及びそれによって製造されたリチウムイオン電池
KR1020237010901A KR102584617B1 (ko) 2020-11-16 2020-12-31 리튬 이온 배터리 세퍼레이터, 이의 제조방법 및 이에 의해 제조되는 리튬 이온 배터리
EP20961457.7A EP4203166A4 (en) 2020-11-16 2020-12-31 LITHIUM-ION BATTERY SEPARATOR HAVING HIGH TEMPERATURE-RESISTANT PROPERTY, PREPARATION METHOD THEREFOR, AND LITHIUM-ION BATTERY PREPARED USING SAID SEPARATOR
US18/183,981 US20230216140A1 (en) 2020-11-16 2023-03-15 Lithium-ion battery separator, preparation method thereof, and lithium-ion battery prepared therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011277996.2 2020-11-16
CN202011277996.2A CN114512767B (zh) 2020-11-16 2020-11-16 锂离子电池隔膜、其制备方法及由其制得的锂离子电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/183,981 Continuation US20230216140A1 (en) 2020-11-16 2023-03-15 Lithium-ion battery separator, preparation method thereof, and lithium-ion battery prepared therefrom

Publications (1)

Publication Number Publication Date
WO2022099905A1 true WO2022099905A1 (zh) 2022-05-19

Family

ID=81547184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142169 WO2022099905A1 (zh) 2020-11-16 2020-12-31 具有耐高温特性的锂离子电池隔膜、其制备方法及由其制得的锂离子电池

Country Status (6)

Country Link
US (1) US20230216140A1 (zh)
EP (1) EP4203166A4 (zh)
JP (1) JP2023536551A (zh)
KR (1) KR102584617B1 (zh)
CN (1) CN114512767B (zh)
WO (1) WO2022099905A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425361A (zh) * 2022-08-15 2022-12-02 奎达高分子材料科技(宜兴)有限公司 一种低粘附的pp隔离膜及其制备方法
CN115501762A (zh) * 2022-10-27 2022-12-23 上海恩捷新材料科技有限公司 孔径小、孔径集中度高的滤膜及制备方法
WO2024087536A1 (zh) * 2022-10-28 2024-05-02 宁德时代新能源科技股份有限公司 聚烯烃基膜及其制备方法、隔离膜、二次电池及用电装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116864916B (zh) * 2023-07-18 2024-04-16 河北金力新能源科技股份有限公司 极薄高强锂离子电池隔膜及其制备方法
CN117559081B (zh) * 2024-01-08 2024-04-05 中材锂膜(内蒙古)有限公司 一种超薄聚烯烃锂电池隔膜及其制备方法、锂离子电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897329A (zh) * 2005-09-20 2007-01-17 上海盛超自动化科技有限公司 锂离子电池用聚烯微多孔多层隔膜及其制造方法
CN101000952A (zh) * 2006-11-02 2007-07-18 许贵斌 一种锂离子电池用聚烯微多孔隔膜及其制造方法
CN102064299A (zh) * 2010-12-25 2011-05-18 佛山塑料集团股份有限公司 一种锂离子电池用聚烯烃多层多孔隔膜及其制备方法
CN102241832A (zh) * 2011-05-14 2011-11-16 中材科技股份有限公司 聚烯烃薄膜及其制备方法
CN102320133A (zh) * 2011-05-18 2012-01-18 新乡市中科科技有限公司 一种聚烯烃电池隔膜及其制备方法
CN105355811A (zh) * 2015-10-29 2016-02-24 乐凯胶片股份有限公司 一种聚烯烃微孔膜、制备方法及锂离子电池
CN108242523A (zh) * 2016-12-27 2018-07-03 上海恩捷新材料科技股份有限公司 一种电池隔离膜
CN109449349A (zh) * 2018-09-06 2019-03-08 深圳中兴新材技术股份有限公司 一种聚丙烯微孔膜及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2672546T3 (pl) * 2009-03-09 2018-08-31 Asahi Kasei Kabushiki Kaisha Mikroporowata membrana poliolefinowa
JP5861832B2 (ja) * 2011-06-30 2016-02-16 Jnc株式会社 微多孔膜
CN106317620B (zh) * 2016-08-19 2019-06-04 中国科学院化学研究所 一种增溶型超高分子量超细丙烯聚合物制备的膜及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1897329A (zh) * 2005-09-20 2007-01-17 上海盛超自动化科技有限公司 锂离子电池用聚烯微多孔多层隔膜及其制造方法
CN101000952A (zh) * 2006-11-02 2007-07-18 许贵斌 一种锂离子电池用聚烯微多孔隔膜及其制造方法
CN102064299A (zh) * 2010-12-25 2011-05-18 佛山塑料集团股份有限公司 一种锂离子电池用聚烯烃多层多孔隔膜及其制备方法
CN102241832A (zh) * 2011-05-14 2011-11-16 中材科技股份有限公司 聚烯烃薄膜及其制备方法
CN102320133A (zh) * 2011-05-18 2012-01-18 新乡市中科科技有限公司 一种聚烯烃电池隔膜及其制备方法
CN105355811A (zh) * 2015-10-29 2016-02-24 乐凯胶片股份有限公司 一种聚烯烃微孔膜、制备方法及锂离子电池
CN108242523A (zh) * 2016-12-27 2018-07-03 上海恩捷新材料科技股份有限公司 一种电池隔离膜
CN109449349A (zh) * 2018-09-06 2019-03-08 深圳中兴新材技术股份有限公司 一种聚丙烯微孔膜及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4203166A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425361A (zh) * 2022-08-15 2022-12-02 奎达高分子材料科技(宜兴)有限公司 一种低粘附的pp隔离膜及其制备方法
CN115501762A (zh) * 2022-10-27 2022-12-23 上海恩捷新材料科技有限公司 孔径小、孔径集中度高的滤膜及制备方法
CN115501762B (zh) * 2022-10-27 2023-08-08 上海恩捷新材料科技有限公司 孔径小、孔径集中度高的滤膜及制备方法
WO2024087536A1 (zh) * 2022-10-28 2024-05-02 宁德时代新能源科技股份有限公司 聚烯烃基膜及其制备方法、隔离膜、二次电池及用电装置
WO2024087132A1 (zh) * 2022-10-28 2024-05-02 宁德时代新能源科技股份有限公司 聚烯烃基膜及其制备方法、隔离膜、二次电池及用电装置

Also Published As

Publication number Publication date
EP4203166A4 (en) 2024-02-21
EP4203166A1 (en) 2023-06-28
CN114512767A (zh) 2022-05-17
KR102584617B1 (ko) 2023-10-05
US20230216140A1 (en) 2023-07-06
CN114512767B (zh) 2022-11-15
KR20230052985A (ko) 2023-04-20
JP2023536551A (ja) 2023-08-25

Similar Documents

Publication Publication Date Title
WO2022099905A1 (zh) 具有耐高温特性的锂离子电池隔膜、其制备方法及由其制得的锂离子电池
WO2021098110A1 (zh) 制备高强度高模量的聚烯烃薄膜的设备及方法和高强度高模量的聚烯烃薄膜
JP7273415B2 (ja) 複合多孔質膜及びその製造方法と用途
CN110350155B (zh) 一种含沿横向拉伸方向取向的纳米纤维状多孔层的复合微孔膜
KR100928898B1 (ko) 미세다공성 고분자 분리막의 제조방법 및 상기 방법으로 제조된 미세다공성 고분자 분리막
KR101782189B1 (ko) 고다공성 분리막 포일
CN107808943B (zh) 一种多层聚烯烃微孔隔膜及其制备方法
CN110343278B (zh) 一种复合聚丙烯微孔膜及其制法和包括该膜的锂离子电池隔膜
JP5194476B2 (ja) 多孔性ポリプロピレンフィルム
CN109192902A (zh) 一种多级安全防护锂电池隔膜的制备方法及锂电池隔膜
US11101524B2 (en) Method for preparing lithium-ion battery separator
CN103618055A (zh) 一种聚烯烃锂离子电池隔膜制备方法
CN104327351B (zh) 一种微孔聚乙烯膜
JP6100022B2 (ja) ポリオレフィン微多孔膜の製造方法
KR20160014557A (ko) 폴리프로필렌 미세 다공성막 및 그 제조방법
CN104835930A (zh) 一种聚烯烃微孔隔膜的制备方法
CN108819279B (zh) 一种高孔隙率聚丙烯微孔膜及其制备方法
CN115483499B (zh) 一种湿法多层复合锂离子电池隔膜及其制备方法和应用
CN103178230A (zh) 一种锂离子电池隔膜的生产方法
CN110350131B (zh) 一种相转化法制备复合聚丙烯微孔膜的方法及其制品和用途
JP2011162669A (ja) 多孔性ポリプロピレンフィルムロールおよびその製造方法
JP6596270B2 (ja) ポリオレフィン微多孔膜の製造方法
JPWO2022099905A5 (ja) リチウムイオン電池用セパレータ、及びその製造方法
KR20120075835A (ko) 다공성 폴리프로필렌 필름
CN113845676B (zh) 一种聚丙烯医用微孔滤膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023517269

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020961457

Country of ref document: EP

Effective date: 20230322

ENP Entry into the national phase

Ref document number: 20237010901

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE