WO2022078046A1 - 具有分散功能的聚合物和聚羧酸水泥分散剂及其制备方法和应用 - Google Patents

具有分散功能的聚合物和聚羧酸水泥分散剂及其制备方法和应用 Download PDF

Info

Publication number
WO2022078046A1
WO2022078046A1 PCT/CN2021/112586 CN2021112586W WO2022078046A1 WO 2022078046 A1 WO2022078046 A1 WO 2022078046A1 CN 2021112586 W CN2021112586 W CN 2021112586W WO 2022078046 A1 WO2022078046 A1 WO 2022078046A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polymer
structural unit
monomer
carbon atoms
Prior art date
Application number
PCT/CN2021/112586
Other languages
English (en)
French (fr)
Inventor
苗霞
周仕明
魏浩光
杨广国
王立双
王其春
王牧
汪晓静
曾敏
刘建
李小江
吴雪鹏
刘浩亚
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油工程技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油工程技术研究院 filed Critical 中国石油化工股份有限公司
Priority to EP21879093.9A priority Critical patent/EP4212494A4/en
Priority to JP2023522522A priority patent/JP2023545806A/ja
Priority to CA3198678A priority patent/CA3198678A1/en
Priority to US18/248,371 priority patent/US20230391941A1/en
Publication of WO2022078046A1 publication Critical patent/WO2022078046A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/142Polyethers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/32Polyethers, e.g. alkylphenol polyglycolether
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/161Macromolecular compounds comprising sulfonate or sulfate groups
    • C04B24/163Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/165Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2688Copolymers containing at least three different monomers
    • C04B24/2694Copolymers containing at least three different monomers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/40Compounds containing silicon, titanium or zirconium or other organo-metallic compounds; Organo-clays; Organo-inorganic complexes
    • C04B24/42Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0059Graft (co-)polymers
    • C04B2103/006Comb polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the invention relates to the technical field of well cementing, in particular to a polymer and polycarboxylate cement dispersant with dispersing function, a preparation method thereof and an application in cement cementing.
  • the cementing operation requires pumping cement slurry in the annulus between the casing and the wellbore, which requires the pumped cement slurry to have good flow properties.
  • admixtures or external admixtures to the cement slurry, such as retarders, fluid loss additives, weighting agents, latex materials, etc., which often lead to poor fluidity of the slurry and difficulty in pumping. deliver.
  • the dispersants for oil well cement slurry at home and abroad are mainly sulfonated aldehyde ketone polycondensate dispersants. Since their introduction in the 1970s, they have been widely used in oil fields. The disadvantages of the dispersant are exposed: first, it is not compatible with new additives; second, the dispersion efficiency is low for cement slurry added with complex particles (such as latex, rubber particles, etc.); third, its raw materials contain formaldehyde, which is currently in the Limit production.
  • polycarboxylate superplasticizers are widely used in the construction industry, and the patents for polycarboxylate superplasticizers are mainly distributed in the construction industry.
  • the oil well cement industry has also tried to introduce polycarboxylic acid dispersants to replace sulfonated aldehyde ketone polycondensate dispersants.
  • polycarboxylate superplasticizers in the construction industry often cannot be directly applied to the oil well cement industry due to the problems of temperature resistance and compatibility.
  • Patents for polycarboxylate dispersants in the oil well cement industry are rare, because in addition to high temperature resistance, polycarboxylate dispersants are also compatible with retarders and water loss reducers for oil well cement. It is also difficult to solve the incompatibility problem of , early strength agent, etc.
  • the temperature resistance of foreign polycarboxylate dispersants is generally lower than 120 °C, and they often need to be used together with the supporting fluid loss agent. Therefore, in practical production, a polycarboxylic acid dispersant with high temperature resistance, high efficiency, environmental protection and good compatibility is urgently needed to replace the existing sulfonated aldehyde ketone polycondensate dispersant.
  • CN105754045A discloses a silane coupling agent-modified polycarboxylate water reducer and a preparation method thereof, wherein all the examples mention that the upper limit of the preparation temperature is 45°C.
  • the specific steps are as follows, wherein the parts of raw materials are by weight: 1) 350 parts of polyether macromonomers are placed in the reaction vessel, 5-15 parts of acrylic acid are added and stirred evenly, and then 0.5-5 parts of double bond-containing silane coupling Linking agent, stir until the solution has no obvious lumps or flakes; the polyether macromonomer is methallyl polyoxyethylene ether, prenol polyoxyethylene ether, modified prenol polyoxyethylene One or more of vinyl ethers; 2) The solution obtained in step 1) is added dropwise with 2.5-6 parts of oxidizing agent, 2.5-3.5 parts of initiator and 20-37 parts of small monomers successively under stirring, and the small monomer solution is added dropwise The addition time is 1-4h; the small monomer is a kind of acrylic acid, sodium me
  • CN107245131A discloses a method for preparing slump-preserving polycarboxylate water-reducing agent by silanizing amino polyether end groups, using silane coupling agent, polyether compound, unsaturated carboxylic acid monomer, etc.
  • a polycarboxylate water-reducing agent is prepared by the method of Williamson etherification, condensation and then copolymerization, that is, the halogenated silane coupling agent is hydrolyzed first, and then Williamson etherification reaction occurs with polyether compounds, and the etherified product is obtained.
  • CN108250370A discloses polycarboxylic acid and its use in cement, which adopts unsaturated polyether monomer, unsaturated carboxylic acid monomer and functional monomer as main reaction raw materials, among which 3 mentioned in functional monomer -Methacryloxypropyltrimethoxysilane, but its dosage is 0 to 5, preferably 0.5 to 4, of the molar ratio of the polyester monomer, and in the high temperature use environment of oil well cement, the preferred dosage is After the polycarboxylate synthesized from the silane is added to the oil well cement slurry, when used at high temperature (70-150°C, especially above 120°C), the thickening curve in the thickening experiment will be bulged, and in severe cases, it will be unusable.
  • the present invention provides a new oil well cement dispersant, which has high temperature resistance, excellent dispersing ability, and greatly reduced retardation, especially at high temperatures higher than 120°C.
  • Retarding it has excellent dispersing ability when used with other oil well cement additives under the condition of 120-180 °C, and the raw materials, production and use process are environmentally friendly, which overcomes the low efficiency, heavy pollution and high pollution of sulfonated aldehyde and ketone polycondensate dispersants.
  • the disadvantage of poor temperature resistance of polycarboxylic acid dispersants are examples of polycarboxylic acid dispersants.
  • a first aspect of the present invention provides a polymer with a dispersing function, the polymer contains a structural unit a, a structural unit b, and a structural unit c, wherein the structural unit a is provided by an unsaturated polyether, and the structural unit b is provided Provided by unsaturated acid and/or its salt and/or its acid anhydride, the structural unit c is provided by silane and/or siloxane containing a polymerizable group and not less than 5 carbon atoms; wherein, the structural unit a.
  • the molar ratio of the structural unit b and the structural unit c is 1:(1-20):(0.01-0.5); the weight average molecular weight of the polymer is 20000-90000.
  • a second aspect of the present invention provides a method for preparing a dispersant.
  • a monomer mixture is polymerized in water, wherein the monomer polymer contains monomer A. , monomer B and monomer C, the monomer A is an unsaturated polyether, the monomer B is an unsaturated carboxylic acid and/or its salt and/or its anhydride, and the monomer C is a polymerizable silanes and/or siloxanes with groups and carbon atoms not less than 5; and in the monomer mixture, the molar ratio of the monomer A, the monomer B and the monomer C is 1:(1-20 ): (0.01-0.5), the polymerization conditions are such that the weight-average molecular weight of the obtained polymer is 20,000-90,000.
  • the third aspect of the present invention provides the application of the aforementioned polymer or the dispersant prepared by the aforementioned method in cement slurry for well cementing.
  • the polymer and dispersant provided by the present invention can maintain a relatively high acid dosage due to the siloxane with long hydrophobic chain (for example, the length of carbon atoms is 5-25).
  • the dispersibility of the polycarboxylic acid is greatly reduced, and the retardation of the polycarboxylic acid is greatly reduced, especially at a high temperature higher than 120 ° C, which has no retardation.
  • Fig. 1 is the gel chromatographic analysis figure of the polymer obtained in Example 1;
  • Fig. 2 is the infrared spectrogram of the polymer obtained in Example 1;
  • Fig. 3 is the hydrogen nuclear magnetic spectrum of the polymer obtained in Example 1;
  • Fig. 4 is the thermogravimetric analysis diagram of the polymer obtained in Example 1;
  • Fig. 5 is the DSC spectrogram of the polymer obtained in Example 1;
  • Figure 6 is a linear diagram of the thickening of the dispersant prepared in Example 1 in the cement slurry of Table 3 at 150°C.
  • a first aspect of the present invention provides a polymer with a dispersing function, the polymer contains a structural unit a, a structural unit b, and a structural unit c, wherein the structural unit a is provided by an unsaturated polyether, and the structural unit b is provided by an unsaturated acid and/or its salt and/or its acid anhydride, and the structural unit c is provided by a silane and/or siloxane containing a polymerizable group and not less than 5 carbon atoms; wherein, the structural unit a.
  • the molar ratio of the structural unit b and the structural unit c is 1:(1-20):(0.01-0.5); the weight average molecular weight of the polymer is 20000-90000.
  • the polymerizable group can be various groups that can react with other monomers under required conditions, such as carbon-carbon double bonds, carbon-carbon triple bonds, epoxy groups one or more of.
  • the silane and/or siloxane has a structure represented by formula (I):
  • R 1 , R 2 , R 3 , R 1 ', and R 2 ' are each independently selected from H, C1-C4 alkyl, and R a , R b and R c are each independently selected from H, C1-C4 alkyl or alkoxy, n is an integer of 5-25, preferably an integer of 8-18.
  • silanes and/or siloxanes used in the present invention are silanes or siloxanes containing unsaturated double bonds with not less than 7 carbon atoms, wherein n can be 8, 9, 10, 11, 12, 13, 14, 15 , 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25.
  • the C1-C4 alkyl group can be methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, or tert-butyl.
  • the alkoxy group of C1-C4 may be methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy and tert-butoxy.
  • silane and/or siloxane used in the present invention can be, for example, vinyloctadecyltrimethoxysilane (that is, in formula (I), n is 18, and the following is similar), vinylhexadecyltrimethoxysilane, Vinyltetradecyltrimethoxysilane, vinyldodecyltrimethoxysilane, vinyldodecyldimethoxysilane, vinyloctyldimethoxysilane, 7-octenyltrimethoxysilane Silane, vinylhexyldimethoxysilane, vinyloctadecyldimethoxysilane, vinylhexadecyldimethoxysilane, vinyltetradecyldimethoxysilane, vinyl Dodecyldimethoxysilane, vinyldecyldimethoxysilane, vinyloctyldimethoxysilane, vinylhexyl
  • the provision of the structural unit a by the unsaturated polyether refers to a structural unit pattern formed by the opening of the double bond of the unsaturated polyether and polymerization. Others are similar.
  • the weight average molecular weight of the polymer is preferably 25000-55000.
  • the weight average molecular weight is measured by the GPC method.
  • the molar ratio of the structural unit a, the structural unit b and the structural unit c is 1:(4-12)(0.05-0.3).
  • the amount of silane and/or siloxane in the polymer of the present invention is small, which can effectively prevent the cross-linking of silicon (oxy) alkyl groups that may occur when the amount is large, so that when used as a cement dispersant, it can effectively prevent The cement paste thickens.
  • the presence and molar content of the structural unit a, the structural unit b and the structural unit c can be measured by infrared spectroscopy combined with 1 H-NMR method.
  • the polymer has a comb-like structure.
  • the comb-like structure means that the structure formed by the polymerization of carbon-carbon double bonds is a skeleton structure, and the structure where each structural unit is connected with the carbon-carbon double bond forms a pendulous structure similar to comb teeth.
  • the polymer is a random copolymer. It can be verified that the polymer of the present invention is a random copolymer by the fact that the DSC of the polymer is unimodal.
  • the unsaturated polyether has a structure represented by formula (2):
  • E represents an alkylene group having 2 to 4 carbon atoms such as ethylene-CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, -CH 2 CH (CH 3 )-, -CH 2 C(CH 3 ) 2 -, -CH(CH 3 )CH(CH 3 )-;
  • F represents an alkylene group having 2-4 carbon atoms and is different from E;
  • R 4 and R 5 each independently represent H or an alkyl group having 1-5 carbon atoms, preferably a methyl group
  • R 6 represents a C1-C4 alkyl group
  • Y represents an alkylene group having 1-5 carbon atoms
  • p represents an integer of 0-200, preferably 20-140;
  • q represents an integer of 0-200, preferably 20-140;
  • the alkyl group having 1 to 5 carbon atoms may be methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl and pentyl.
  • the unsaturated polyether is selected from the group consisting of methallyl alcohol polyoxyethylene ether (HPEG), methallyl alcohol polyoxypropylene ether, prenyl alcohol polyoxyethylene ether (TPEG) and at least one of isobutenol polyoxyethylene ether.
  • HPEG methallyl alcohol polyoxyethylene ether
  • TPEG prenyl alcohol polyoxyethylene ether
  • isobutenol polyoxyethylene ether isobutenol polyoxyethylene ether.
  • the unsaturated carboxylic acid has a structure represented by formula (II):
  • R 1 , R 2 and R 3 are each independently selected from hydrogen, C1-C6 alkyl and -COOH, X is (CH 2 ) n , and n is 0, 1, 2, 3, 4, 5 or 6.
  • unsaturated acid or its salt or its anhydride refers to an unsaturated acid, or a sodium, potassium, or ammonium salt of an unsaturated acid, or an anhydride of an unsaturated acid.
  • the unsaturated acid is selected from acrylic acid, methacrylic acid, vinylsulfonic acid, vinylphosphoric acid, maleic acid, itaconic acid, fumaric acid, 2-acrylamido-2-methylpropanesulfonic acid, At least one of styrene sulfonic acid and allyl sulfonic acid.
  • the content of each structural unit in the polymer and the structural characteristics of the polymer can be tested by conventional methods in the prior art, such as characterization by infrared spectroscopy, nuclear magnetic resonance, gel chromatography, TGA-DSC and the like.
  • the content of each structural unit and the amount of -CH 2 - in the long chain of long linear silanes and/or siloxanes can be quantified by the areas of peaks at different positions in the hydrogen NMR spectrum.
  • thermogravimetric (TGA) analysis indicates the thermal stability of the polymer.
  • the molecular weight of the polymer and its distribution were determined by gel chromatography (GPC) analysis.
  • the above-mentioned polymer can be used as a cement dispersant, and the cement slurry can achieve the best performance by adjusting the amount of the dispersant.
  • 1.35; 110°C, 24h compressive strength index is not less than 0.8, preferably 0.95-1.1, more preferably 1.0-1.1; 85°C consistency coefficient is not more than 0.8, preferably 0.4-0.75; 85°C fluidity index n is not less than 0.6, preferably 0.7-0.95.
  • the polymer provided by the invention it not only has controllable retardation at 120° C. and compatibility with other additives, but also the higher the temperature, the better the retardation controllability and the longer the thickening time. Short, for example, the thickening index at 150 ° C can reach 0.95-1.5, preferably 0.98-1.2, so it is very suitable for high-temperature working environments.
  • the thickening index refers to the ratio of the thickening time of the cement-based slurry after adding the cement dispersant to the thickening time of the cement-based slurry before adding the cement dispersant.
  • the cement-based slurry can be a slurry obtained by mixing various cements and water for well cementing.
  • the thickening time, the consistency coefficient K, the fluidity index n and the compressive strength are all measured by the GB/T19139-2003 standard.
  • the content of the polymer is 10-90% by weight, preferably 20-40% by weight.
  • the total amount of the polycarboxylate cement dispersant includes the amount of the solvent used for the polymerization reaction.
  • the content of the polymer is not less than 90% by weight, preferably more than 95% by weight.
  • a second aspect of the present invention provides a method for preparing a dispersant, the method comprising: polymerizing a monomer mixture in water in the presence of an initiator under solution polymerization conditions, the monomer polymer containing the monomer A , monomer B and monomer C, the monomer A is an unsaturated polyether, the monomer B is an unsaturated acid, the monomer C is a polymerizable group containing a polymerizable group and the number of carbon atoms is not less than 5 Silane and/or siloxane; and in the monomer mixture, the molar ratio of the monomer A, the monomer B and the monomer C is 1:(1-20):(0.01-0.5); polymerization conditions
  • the weight-average molecular weight of the obtained polymer is preferably 20,000-90,000, preferably 25,000-55,000.
  • the molar ratio of the monomer A, the monomer B and the monomer C is 1:(4-12):(0.05-0.3).
  • the silane coupling agent can be prepared by referring to a conventional method in the art.
  • long-chain chlorosilane can be obtained by reacting a Grignard reagent with a structure represented by formula (I') with tetrachlorosilane, and then the obtained
  • the silane coupling agent of the present invention is obtained by alcoholysis of the long-chain chlorosilane.
  • the preparation conditions of the silane coupling agent are not particularly limited, as long as the requirements of the present invention can be met,
  • R 1 , R 2 , R 3 , R 1 ', R 2 ', Ra, Rb, Rc and n have the same definitions as in formula (I).
  • Grignard reagents hydrocarbyl magnesium halides (R-MgX)
  • R-MgX hydrocarbyl magnesium halides
  • silane coupling agents used in the examples of the present invention are prepared by the above-mentioned known methods.
  • the conditions of the polymerization reaction include: a temperature of 40-80° C., preferably 50-70° C.; a time of 1-10 hours, preferably 2-8 hours.
  • the initiator is selected from at least one of hydrogen peroxide-ascorbic acid (oxidizing agent-reducing agent), sodium bisulfite, sodium formaldehyde sulfoxylate and sodium hydrosulfite, wherein the oxidizing agent is selected from At least one of hydrogen peroxide, peracetic acid, ammonium persulfate, sodium persulfate and potassium persulfate.
  • the concentration of the hydrogen peroxide is 25-35% by weight.
  • the content of the initiator accounts for 0.01-2 wt % of the total amount of the monomer mixture, preferably 0.1-1 wt %.
  • the polymerization reaction is carried out in the presence of a chain transfer agent.
  • the amount of the chain transfer agent is not particularly limited, as long as it can meet the requirements of the present invention, for example, the content of the chain transfer agent accounts for 0.01-2% by weight of the total amount of the monomer mixture.
  • the chain transfer agent is selected from thioglycolic acid and/or 3-mercaptopropionic acid.
  • the polymerized material (containing the solvent) can be directly used as a cement slurry dispersant.
  • the polymer when performing relevant structural characterization, the polymer can be purified accordingly according to the characterization requirements.
  • the specific operations of the method of the present invention include: respectively mixing a solution containing an oxidant, a solution containing an unsaturated acid or its salt or its acid anhydride.
  • the solution, silane coupling agent (silane and/or siloxane containing polymerizable groups and not less than 5 carbon atoms), solution containing initiator and chain transfer agent were added dropwise to the unsaturated polyether at the same time.
  • the polymerization reaction is carried out under polymerization conditions.
  • the time of the above-mentioned polymerization reaction includes the dropwise addition time, that is, the time of the polymerization reaction is counted from the start of the dropwise addition.
  • the reaction is continued for 0.5-1.5 hours after the dropwise addition of the materials is completed.
  • the dropwise addition time of the solution containing the unsaturated acid and/or its salt and/or its acid anhydride is 2-4 hours, and the dropwise addition of the solution of the silane coupling agent and the unsaturated polyether The time is 2-4 hours, and the dropping time of the solution containing the initiator and the chain transfer agent and the solution of the unsaturated polyether is 2.5-4.5 hours.
  • the concentration of the oxidant is 9-40% by weight.
  • the total concentration of the solution of unsaturated acid and its salt and acid anhydride is 2-80% by weight.
  • the concentration of the initiator is 1-10 wt %
  • the concentration of the chain transfer agent is 1-10 wt %, preferably 2-6 wt %.
  • the concentration of unsaturated polyether is 10-60% by weight.
  • the solvent in the solution containing oxidizing agent, the solution containing unsaturated acid and/or its salt and/or its acid anhydride, the solution containing initiator and chain transfer agent, and the solution containing unsaturated polyether monomer may be water .
  • the method comprises the following steps:
  • the mixed aqueous solution of the aqueous solution of unsaturated acid and/or its salt or/and its acid anhydride, silane and/or siloxane and initiator and chain transfer agent is added dropwise simultaneously; the first two materials are added dropwise 2- 4 hours, the mixed aqueous solution of initiator and chain transfer agent is added dropwise for 2.5-4.5 hours;
  • the present invention also provides the oil well cement dispersant prepared by the above preparation method.
  • the dispersant provided by the present invention has better dispersibility and lower retardation, and can be used in combination with other additives to achieve different purposes in different occasions.
  • the dosage of the dispersant is preferably 0.1-5% by weight of the cement slurry.
  • the polymer with dispersing function provided by the present invention contains long linear silane or siloxane structural units, it can increase the anchoring site while reducing the retarding effect brought by the same amount of carboxylic acid adsorbed. Therefore, , when used as a dispersant, compared with a dispersant that simply uses a carboxylic acid group as an adsorption group, it has excellent dispersibility and greatly reduced retardation; Compared with silane coupling agents, it has the advantages of less retardation or even no retardation and better compatibility with other additives such as fluid loss additives and retarders.
  • the dispersant can effectively prevent the agglomeration of cement particles and improve the fluidity of the cement slurry, and the applicable temperature can reach 150°C.
  • the dispersant of the present invention uses polyether macromonomer as the skeleton, and the obtained polycarboxylic acid dispersant has a comb-like structure, which can not only significantly improve the dispersion efficiency, but also can withstand higher temperatures than polyester.
  • the polymer of the present invention can use a higher carboxylic acid content, so as a dispersant, it can greatly improve the dispersion efficiency, and reduce its retardation from the perspective of reducing the integrity of the hydration film on the surface of the cement particle from the long hydrophobic chain.
  • the present invention adopts different technical ideas to solve the dispersion efficiency and retardation caused by carboxylic acid. conflicting issues.
  • the dispersant of the present invention has a smaller retardation type or even no retardation at higher temperatures.
  • the thickening time at 150°C is the same as that at 120°C.
  • the dispersant of the present invention can not only be used in a high temperature environment, but also has lower setting retardation and better effect at high temperature.
  • the raw materials used in the present invention are all commercially available products.
  • a round bottom flask was charged with 100 g (0.0417 mol) of TPEG 2400 and 150 g of deionized water, stirred and heated to 70°C. Add 1.5 g of hydrogen peroxide to 15 g of deionized water, stir evenly, and add it to the reaction kettle.
  • the mixed aqueous solution of initiator and chain transfer agent was added dropwise in 4.5 hours. After the dropwise addition of all the materials, the heat preservation and stirring were continued for 0.5 hours to prepare a high temperature polycarboxylate oil well cement dispersant sample S1, with an actual solid content of 39.8% by weight.
  • NMR spectrum (Fig. 3): the characteristic proton absorption peak at 0ppm corresponds to siloxane; 0.74ppm corresponds to side chain end group -CH 3 ; 1.20ppm corresponds to -CH 2 - of long chain silane; 1.62ppm and 2.26ppm correspond to AA, respectively 3.73ppm corresponds to -CH 2 -CH 2 -O- in TPEG; 4.69ppm corresponds to water peak;
  • Trimethoxysilane was added dropwise in 2 hours, and the mixed aqueous solution of initiator and chain transfer agent was added dropwise in 2.5 hours. After the dropwise addition of all the materials, the heat preservation and stirring were continued for 1 hour to prepare a sample S2 of a high temperature polycarboxylate oil well cement dispersant with an actual solid content of 39.7% by weight. The weight-average molecular weight of the polymer was 29,340 as determined by gel chromatography.
  • a round bottom flask was charged with 100 g (0.025 mol) of HPEG 4000 and 140 g of deionized water, stirred and heated to 65°C. Add 0.9 g of hydrogen peroxide to 4.5 g of deionized water, stir evenly, and add it to the reaction kettle.
  • 0.35g of ascorbic acid and 0.8g of 3-mercaptopropionic acid were added to 11g of deionized water to make a mixed aqueous solution of initiator and chain transfer agent; 14.4g of acrylic acid (AA) was added to 22g of deionized water to make an aqueous solution of acrylic acid;
  • the mixed aqueous solution of chain transfer agent, 1.85 g of vinyloctadecyldimethylmethoxysilane, and acrylic acid aqueous solution were added dropwise to the round-bottomed flask at the same time, and the acrylic acid aqueous solution and propenyloctadecyldimethoxysilane were added dropwise through a peristaltic pump.
  • the dropwise addition was completed in 3 hours, and the mixed aqueous solution of initiator and chain transfer agent was added dropwise in 3.5 hours. After the dropwise addition of all the materials, keep stirring for 1 hour to prepare a high temperature polycarboxylate oil well cement dispersant sample S3 with an actual solid content of 39.6% by weight. The weight average molecular weight of the polymer was 31090 as measured by gel chromatography.
  • the difference is that 37g of acrylic acid (AA) is added to 40g of deionized water instead of 3g of acrylic acid (AA) is added to 74g of deionized water to prepare an acrylic acid aqueous solution.
  • the oil well cement dispersant sample S4 was prepared, and the actual solid content was 39.8% by weight.
  • the weight-average molecular weight of the polymer was 34,222 as measured by gel chromatography.
  • the difference is that 37g of acrylic acid (AA) is added to 40g of deionized water instead of 62g of acrylic acid (AA) is added to 15g of deionized water to prepare an acrylic acid aqueous solution.
  • the actual solid content of the oil well cement dispersant sample S5 was 39.8% by weight.
  • the weight-average molecular weight of the polymer was 36,143 as measured by gel chromatography.
  • Example 3 The procedure was carried out as in Example 3, except that an equimolar amount of 7-octenyltrimethoxysilane was used instead of vinyloctadecyldimethylmethoxysilane.
  • the oil well cement dispersant sample S6 was prepared, and the actual solid content was 39.6% by weight.
  • the weight average molecular weight of the polymer was 33412 as measured by gel chromatography.
  • Example 3 Carry out in the manner of Example 3, except that the amount of vinyloctadecyldimethylmethoxysilane is 0.2 g.
  • the oil well cement dispersant sample S7 was prepared, and the actual solid content was 39.5% by weight.
  • the weight-average molecular weight of the polymer was 35,898 as measured by gel chromatography.
  • Example 3 It is carried out in the same way as in Example 3, except that an equimolar amount of KH-570 is used instead of vinyloctadecyldimethylmethoxysilane to make oil well cement dispersant comparative sample D1, and the actual solid content is 39.8% by weight.
  • the weight-average molecular weight of the polymer was 32,347 as measured by gel chromatography.
  • Example 1-7 and Comparative Example 1-2 are in different The results in the base slurry system are shown in Table 2 and Table 3 (the dosage of dispersant accounts for 0.5% of the cement quality, and the thickening linear diagram of the polymer prepared in Example 1 at 150 ° C in the cement slurry in Table 3 is shown in Figure 6. shown) and Table 4, in which the ratio of thickening time is measured at 120°C and 150°C, to illustrate that the dispersant of the present invention overcomes the disadvantage of polycarboxylate dispersant retarded at high temperature.
  • the cement used is Sichuan Jiahua Grade G cement
  • the fluid loss reducer and retarder are SCF-180L fluid loss reducer and SCR-3 retarder purchased from Sinopec Petroleum Engineering Technology Research Institute, of which the fluid loss reducer is 2 -Acrylamide-2-methylpropanesulfonic acid (AMPS) type fluid loss reducer, the retarder is an acid type retarder, and the comparative dispersant (Comparative Example 2) is a dispersant purchased from BASF, Germany. It is a polycarboxylic acid dispersant.
  • the first formula of base slurry is 100 parts by weight of cement + 44 parts by weight of water
  • the second formula of base slurry is 100 parts by weight of cement + 4 parts by weight of water loss agent + 40 parts by weight of water
  • the third formula of base slurry is 450g of cement + 225g of silica fume + 225g weighting material micromanganese powder + 31.5g fluid loss reducer + 27g nano liquid silicon + 27g latex + 14g retarder + 2.3g dispersant + 200g field water.
  • the fluidity index n of the cement slurry is used to measure the rheological properties of the cement slurry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明提供一种具有分散功能的聚合物及其制备方法和作为水泥分散剂的应用,该聚合物含有结构单元a、结构单元b、结构单元c,其中,所述结构单元a由不饱和聚醚提供,所述结构单元b由不饱和酸和/或其盐和/或其酸酐提供,所述结构单元c由含有可聚合基团且碳原子数不低于5的硅烷和/或硅氧烷提供;其中,结构单元a、结构单元b和结构单元c的摩尔比为1:(1-20):(0.01-0.5);所述聚合物的重均分子量为20000-90000。与现有技术相比,本发明提供的聚合物和分散剂能够在保持较高酸的用量从而保持较高的分散性的同时大幅降低聚羧酸的缓凝性尤其在高于120℃高温下完全不具有缓凝性。另外,本发明提供的分散剂与其他外加的添加剂配伍性好。

Description

具有分散功能的聚合物和聚羧酸水泥分散剂及其制备方法和应用
相关申请的交叉引用
本申请要求2020年10月13日提交的中国专利申请202011092106.0的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及固井技术领域,具体涉及一种具有分散功能的聚合物和聚羧酸水泥分散剂及其制备方法和在水泥固井中的应用。
背景技术
固井作业需要在套管和井筒之间的环空中泵入水泥浆,要求所泵送的水泥浆具备良好的流动性能,然而在实际施工中,尤其在高温、高压、复杂井的固井施工中,为了保证固井需求,需要在水泥浆中添加多种外加剂或外掺料,例如缓凝剂、降失水剂、加重剂、胶乳材料等,往往导致浆体流动性变差、难以泵送。因此往往需要在水泥浆中加入分散剂,使得水泥浆在固定的水灰比条件下粘度下降、流动性能增加、实现低速下紊流注水泥浆。
目前国内外油井水泥浆分散剂主要是磺化醛酮缩聚物分散剂,自七十年代问世以来,在油田得到广泛应用,但随着油井水泥其他助剂的日新月异及环保标准的日益提高,这类分散剂的缺点暴露出来:一是与新型助剂不配伍;二是对于添加了复杂颗粒(如胶乳、橡胶颗粒等)的水泥浆,其分散效率低;三是其原料含甲醛,目前处于限制生产。
目前聚羧酸减水剂在建筑行业应用普遍,聚羧酸类减水剂的专利,也主要分布在建筑行业。近年来油井水泥行业也尝试引入聚羧酸类分散剂来代替磺化醛酮缩聚物分散剂。然而建筑行业的聚羧酸减水剂往往由于耐温、配伍性的问题,无法直接应用与油井水泥行业。针对油井水泥行业的聚羧酸类分散剂(在建筑行业成为减水剂)专利不多见,因为聚羧酸分散剂除了耐高温问题外,与油井水泥专用的缓凝剂、降失水剂、早强剂等的不配伍问题,也难以解决。目前国外聚羧酸类分散剂耐温一般低于120℃,且往往需要与配套的降失水剂一同使用。因此, 实际生产中急需一种耐高温、高效、环保、配伍性好的聚羧酸分散剂,取代现有的磺化醛酮缩聚物分散剂。
CN105754045A公开了一种硅烷偶联剂改性聚羧酸减水剂及其制备方法,其中全部的实施例中都提到制备的温度上限为45℃。具体步骤如下,其中原料份数按重量计:1)将350份的聚醚大单体置于反应容器中,加入5-15份丙烯酸搅拌均匀后,再加入0.5-5份含双键硅烷偶联剂,搅拌至溶液无明显块状或片状物料;所述聚醚大单体为甲基烯丙基聚氧乙烯醚、异戊烯醇聚氧乙烯醚、改性异戊烯醇聚氧乙烯醚的一种或几种;2)步骤1)所得的溶液,在搅拌下依次滴加2.5-6份氧化剂、2.5-3.5份引发剂和20-37份小单体,小单体溶液滴加时间为1-4h;所述的小单体为丙烯酸、甲基丙烯磺酸钠、2-丙烯酰胺-2-甲基丙磺酸、衣康酸、富马酸、马来酸酐的一种或几种;3)步骤2)的溶液熟化1-2h后,加入液碱中和,稳定pH值在6,再加入1-3份不含双键硅烷偶联剂搅拌均匀。该专利申请制备的减水剂的分散能力不高,这与反应温度不高,所用小分子中使用了2-丙烯酰胺-2-甲基丙磺酸有关。
CN107245131A公开了氨基聚醚端基硅烷化制备保坍型聚羧酸减水剂的方法,采用硅烷偶联剂、聚醚类化合物、不饱和羧酸类单体等为主要反应原料,通过先水解再威廉姆森醚化再缩合而后共聚合的方法制备一种聚羧酸减水剂,即卤代硅烷偶联剂先水解,再与聚醚类化合物发生威廉姆森醚化反应,醚化产物与烯基硅烷偶联剂水解产物缩合,缩合产物再与不饱和聚氧乙烯醚、分子量调节剂、不饱和羧酸类单体在引发剂的作用下通过自由基共聚合反应制得具有多条分支状的硅烷偶联剂改性聚醚侧链的聚羧酸减水剂。但是该制备方法复杂。
CN108250370A公开了聚羧酸及其在水泥中的用途,其采用了不饱和聚醚类单体、不饱和羧酸类单体和功能单体等为主要反应原料,其中功能单体中提及3-甲基丙烯酰氧基丙基三甲氧基硅烷,但其用量为聚酯单体的摩尔比的0~5,优选为0.5~4,而在油井水泥的高温使用环境中,该优选加量下的硅烷合成的聚羧酸加入油井水泥浆后,高温(70~150℃,尤其是120℃以上)使用时会导致稠化实验中的稠化曲线鼓包,严重时导致无法使用。
文献“含硅烷官能团聚羧酸减水剂对水泥浆体流动性和力学性能的影响”(孔祥明等,硅酸盐学报,第42卷第5期,2014年5月),该文献采用KH570、丙烯酸 (AA)单体、大单体HPEG,通过自由基聚合合成硅烷改性聚羧酸减水剂,评价了其对水泥砂浆强度发展的影响。该减水剂保坍性、适应性差,且HPEG夏季容易变质,不易保存。
因此,需要寻求一种分散性能好且不缓凝的分散剂。
发明内容
针对现有技术存在的上述问题,本发明提供一种新的油井水泥分散剂,该分散剂具有耐高温及优异的分散能力以及大幅降低的缓凝性尤其在高于120℃高温下完全不具有缓凝性,在120-180℃的条件下与其他油井水泥添加剂配合使用具有优异的分散能力,且原料、生产及使用过程环保,克服了磺化醛酮缩聚物分散剂效率低、污染重和聚羧酸分散剂耐温性较差的缺点。
本发明第一方面提供一种具有分散功能的聚合物,该聚合物含有结构单元a、结构单元b、结构单元c,其中,所述结构单元a由不饱和聚醚提供,所述结构单元b由不饱和酸和/或其盐和/或或其酸酐提供,所述结构单元c由含有可聚合基团且碳原子数不低于5的硅烷和/或硅氧烷提供;其中,结构单元a、结构单元b和结构单元c的摩尔比为1:(1-20):(0.01-0.5);所述聚合物的重均分子量为20000-90000。
本发明第二方面提供一种分散剂的制备方法,在溶液聚合条件下,在引发剂存在下,使单体混合物在水中进行聚合反应,其特征在于,所述单体聚合物含有单体A、单体B和单体C,所述单体A为不饱和聚醚,所述单体B为不饱和羧酸和/或其盐和/或其酸酐,所述单体C为含有可聚合基团且碳原子数不低于5的硅烷和/或硅氧烷;且所述单体混合物中,所述单体A、单体B和单体C的摩尔比为1:(1-20):(0.01-0.5),聚合的条件使得所得聚合物的重均分子量为20000-90000。
本发明第三方面提供前述聚合物或前述方法制备的分散剂在固井用水泥浆中的应用。
与现有技术相比,本发明提供的聚合物和分散剂,因具有疏水长链的硅氧烷(例如碳原子的长度为5-25),能够在保持较高酸的用量从而保持较高的分散性的同时大幅降低聚羧酸的缓凝性尤其在高于120℃高温下完全不具有缓凝性,另 外,本发明提供的分散剂与其他外加的添加剂配伍性好。
附图说明
图1是实施例1制得的聚合物的凝胶色谱分析图;
图2是实施例1制得的聚合物的红外光谱图;
图3是实施例1制得的聚合物的核磁氢谱图;
图4是实施例1制得的聚合物的热重分析图;
图5是实施例1制得的聚合物的DSC谱图;
图6是实施例1制得的分散剂在表3的水泥浆中150℃的稠化线性图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供了一种具有分散功能的聚合物,该聚合物含有结构单元a、结构单元b、结构单元c,其中,所述结构单元a由不饱和聚醚提供,所述结构单元b由不饱和酸和/或其盐和/或其酸酐提供,所述结构单元c由含有可聚合基团且碳原子数不低于5的硅烷和/或硅氧烷提供;其中,结构单元a、结构单元b和结构单元c的摩尔比为1:(1-20):(0.01-0.5);所述聚合物的重均分子量为20000-90000。
本发明中,所述可聚合基团可以是各种能够在所需条件下与其他单体发生键合反应的基团,例如可以是碳碳双键、碳碳叁键、环氧基团中的一种或多种。
优选地,所述硅烷和/或硅氧烷具有式(I)所示的结构:
Figure PCTCN2021112586-appb-000001
式(I)中,R 1、R 2、R 3、R 1’、和R 2’各自独立地选自H、C1-C4的烷基, R a、R b和R c各自独立地选自H、C1-C4的烷基或烷氧基,n为5-25的整数优选8-18的整数。
本发明使用的硅烷和/或硅氧烷为碳原子数不小于7的含不饱和双键的硅烷或硅氧烷,其中n可以为8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25。
本发明中,C1-C4的烷基可以为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基。
本发明中,C1-C4的烷氧基可以为甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、叔丁氧基。
本发明使用的硅烷和/或硅氧烷例如可以是乙烯基十八烷基三甲氧基硅烷(即式(I)中n为18,以下类似)、乙烯基十六烷基三甲氧基硅烷、乙烯基十四烷基三甲氧基硅烷、乙烯基十二烷基三甲氧基硅烷、乙烯基十烷基二甲氧基硅烷、乙烯基辛基二甲氧基硅烷、7-辛烯基三甲氧基硅烷、乙烯基己基二甲氧基硅烷、乙烯基十八烷基二甲氧基硅烷、乙烯基十六烷基二甲氧基硅烷、乙烯基十四烷基二甲氧基硅烷、乙烯基十二烷基二甲氧基硅烷、乙烯基十烷基二甲氧基硅烷、乙烯基辛基二甲氧基硅烷、乙烯基己基二甲氧基硅烷、乙烯基十八烷基三甲基硅烷、乙烯基十六烷基三甲基硅烷、乙烯基十四烷基三甲基硅烷、乙烯基十二烷基三甲基硅烷、乙烯基十烷基三甲基硅烷、乙烯基辛基三甲基硅烷、乙烯基己基三甲基硅烷、乙烯基十八烷基二甲基硅烷、乙烯基十六烷基二甲基硅烷、乙烯基十四烷基二甲基硅烷、乙烯基十二烷基二甲基硅烷、乙烯基十烷基二甲基硅烷、乙烯基辛基二甲基硅烷、乙烯基己基二甲基硅烷、丙烯基十八烷基三甲氧基硅烷、丙烯基十六烷基三甲氧基硅烷、丙烯基十四烷基三甲氧基硅烷、丙烯基十二烷基三甲氧基硅烷、丙烯基十烷基二甲氧基硅烷、丙烯基辛基二甲氧基硅烷、丙烯基己基二甲氧基硅烷、丙烯基十八烷基二甲氧基硅烷、丙烯基十六烷基二甲氧基硅烷、丙烯基十四烷基二甲氧基硅烷、丙烯基十二烷基二甲氧基硅烷、丙烯基十烷基二甲氧基硅烷、丙烯基辛基二甲氧基硅烷、丙烯基己基二甲氧基硅烷、丙烯基十八烷基三甲基硅烷、丙烯基十六烷基三甲基硅烷、丙烯基十四烷基三甲基硅烷、丙烯基十二烷基三甲基硅烷、丙烯基十烷基三甲基硅烷、丙烯基辛基三甲基硅烷、丙烯基己基三甲基硅烷、丙烯基十八烷基二甲基硅烷、丙烯基十六烷基二甲基硅 烷、丙烯基十四烷基二甲基硅烷、丙烯基十二烷基二甲基硅烷、丙烯基十烷基二甲基硅烷、丙烯基辛基二甲基硅烷、丙烯基己基二甲基硅烷中的一种或多种。
本发明中,所述结构单元a由不饱和聚醚提供是指由不饱和聚醚的双键打开进行聚合形成的结构单元模式。其他与之类似。
本发明中,所述聚合物的重均分子量优选为25000-55000。重均分子量通过GPC方法测得。
根据本发明的一些实施方式,所述结构单元a、结构单元b和结构单元c的摩尔比为1:(4-12)(0.05-0.3)。
本发明的聚合物中硅烷和/或硅氧烷的用量较小,可以有效防止用量较大情况下可能发生的硅(氧)烷基交联的情况,从而用作水泥分散剂时可以有效防止水泥浆体增稠。
本发明中,所述结构单元a、结构单元b和结构单元c的存在及其摩尔含量可以通过红外光谱结合 1H-NMR方法测得。
根据本发明的一些实施方式,所述聚合物具有梳状结构。梳状结构是指碳碳双键聚合形成的结构为骨架结构,各结构单元与碳碳双键相连的结构形成类似于梳齿的下垂结构。
根据本发明的一些实施方式,所述聚合物为无规共聚物。可以通过该聚合物的DSC为单峰来验证本发明的聚合物为无规共聚物。
根据本发明的一些实施方式,所述不饱和聚醚具有式(2)所示的结构:
Figure PCTCN2021112586-appb-000002
式(2)中,
E表示碳原子数为2-4的亚烷基例如亚乙基-CH 2CH 2-、-CH 2CH 2CH 2-、-CH 2CH 2CH 2CH 2-、-CH 2CH(CH 3)-、-CH 2C(CH 3) 2-、-CH(CH 3)CH(CH 3)-;
F表示碳原子数为2-4且不同于E的亚烷基;
R 4和R 5各自独立的表示H或碳原子数为1-5的烷基优选甲基;
R 6表示C1-C4的烷基;
Y表示碳原子数为1-5的亚烷基;
p表示0-200的整数,优选20-140;
q表示0-200的整数,优选20-140;
p+q>10优选p+q≥40。
本发明中,碳原子数为1-5的烷基可以是甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、戊基。
根据本发明的一些实施方式,所述不饱和聚醚选自甲基烯丙醇聚氧乙烯醚(HPEG)、甲基烯丙醇聚氧丙烯醚、异戊烯醇聚氧乙烯醚(TPEG)和异丁烯醇聚氧乙烯醚中的至少一种。
根据本发明的一些实施方式,所述不饱和羧酸具有式(II)所示的结构:
Figure PCTCN2021112586-appb-000003
式(II)中,R 1、R 2和R 3各自独立选自氢、C1-C6烷基和-COOH,X为(CH 2) n,n为0、1、2、3、4、5或6。
根据本发明的一些实施方式,“不饱和酸或其盐或其酸酐”是指不饱和酸,或不饱和酸的钠盐、钾盐、铵盐,或不饱和酸的酸酐。优选地,所述不饱和酸选自丙烯酸、甲基丙烯酸、乙烯基磺酸、乙烯基磷酸、马来酸、衣康酸、富马酸、2-丙烯酰胺-2-甲基丙磺酸、苯乙烯磺酸和丙烯基磺酸中的至少一种。
本发明中,可以采用现有技术中常规的方法测试聚合物中各结构单元的含量和聚合物的结构特征,例如通过红外光谱、核磁、凝胶色谱、TGA-DSC等进行表征。具体地,例如,红外光谱分析,3442cm -1和1110cm -1对应不饱和聚醚单体(如TPEG)的-OH和-C-O-C-,2882cm -1对应-CH 3;1593cm -1对应不饱和酸(如丙烯酸)的-COO-;1465cm -1和2882cm -1对应长直链硅烷和/或硅氧烷的长链中的-CH 2-,1347cm -1对应-Si-C-,1100cm -1对应-C-O-或-Si-O-;另外,1645-1620cm -1间没有吸收峰代表无“-C=C-”剩余。通过氢核磁谱图中不同位置的峰的面积可以定量各结构单元的含量以及长直链硅烷和/或硅氧烷的长链中的-CH 2-的数量。
热重(TGA)分析中峰对应的温度表明聚合物的热稳定性。
通过凝胶色谱(GPC)分析测定聚合物的分子量及其分布。
上述聚合物可以用作水泥分散剂,通过调节分散剂用量可使水泥浆达到最佳性能,该聚羧酸水泥分散剂在120℃及以上温度的稠化指数为不超过1.5,优选为1-1.35;110℃、24h抗压强度指数不小于0.8,优选0.95-1.1更优选1.0-1.1;85℃的稠度系数为不超过0.8,优选为0.4-0.75;85℃的流性指数n为不小于0.6,优选0.7-0.95。本发明提供的聚合物用作水泥分散剂时,不仅在120℃下具有可控的缓凝性和与其他添加剂的配伍性,而且温度越高,缓凝可控性越好,稠化时间越短,比如在150℃下的稠化指数可以达到0.95-1.5优选0.98-1.2,因而非常适合用于高温作业环境。
本发明中,稠化指数是指添加水泥分散剂后的水泥基浆与添加水泥分散剂之前的水泥基浆的稠化时间之比。其中水泥基浆可以是各种固井用水泥与水混合得到的浆料。
本发明中,稠化时间、稠度系数K、流性指数n以及抗压强度均通过GB/T19139-2003标准测得。
由上述数据可以看出,本发明提供的聚合物用作聚羧酸水泥分散剂时,在高温下几乎不具有缓凝性,从而能够满足不同的应用需求,例如,可以用于固井、常规建筑等各种需要缓凝或不需要缓凝的水泥应用场合。
优选地,以该聚羧酸水泥分散剂的总量为基准,聚合物的含量为10-90重量%,优选为20-40重量%。其中,聚羧酸水泥分散剂的总量包括用于聚合反应的溶剂的量。
优选地,相对于该聚羧酸水泥分散剂的固含量,聚合物的含量不少于90重量%优选95重量%以上。
本发明第二方面提供一种制备分散剂的方法,该方法包括:在溶液聚合条件下,在引发剂存在下,使单体混合物在水中进行聚合反应,所述单体聚合物含有单体A、单体B和单体C,所述单体A为不饱和聚醚,所述单体B为不饱和酸,所述单体C为含有可聚合基团且碳原子数不低于5的硅烷和/或硅氧烷;且所述单体混合物中,所述单体A、单体B和单体C的摩尔比为1:(1-20):(0.01-0.5);聚合的条件使得所得聚合物的重均分子量为20000-90000优选为25000-55000。
所述单体A、单体B和单体C的摩尔比为1:(4-12):(0.05-0.3)。
有关单体A、单体B和单体C已在上文中进行描述,在此不再赘述。
本发明中,所述硅烷偶联剂可以参照本领域常规的方式制备得到,例如,可 以先通过具有式(I’)所示结构的格式试剂与四氯硅烷反应得到长链氯硅烷,之后所得的长链氯硅烷经醇解得到本发明的硅烷偶联剂。其中,对硅烷偶联剂的制备条件没有特别的限定,只要能够满足本发明的需求即可,
Figure PCTCN2021112586-appb-000004
式(I’)中,R 1、R 2、R 3、R 1’、R 2’、Ra、Rb、Rc以及n与式(I)中的定义相同。或者通过长链氯硅烷与格式试剂(烃基卤化镁(R-MgX))反应得到,例如通过Cl(CH 2) 16SiH(CH 3) 2+H 2C=CH–CH 2MgCl→H 2C=CH–CH 2–(CH 2) 16SiH(CH 3) 2+MgCl 2反应可以得到对应的长链硅烷。
虽然该长链硅烷可以自行研制,但具体反应条件已为本领域技术人员所公知,在此不再赘述。除非另有说明,本发明实施例中所用硅烷偶联剂为采用上述公知方法制备得到。
根据本发明的一些实施方式,所述聚合反应的条件包括:温度为40-80℃,优选为50-70℃;时间为1-10小时,优选为2-8小时。
根据本发明的一些实施方式,所述引发剂选自双氧水-抗坏血酸(氧化剂-还原剂)、亚硫酸氢钠、甲醛次硫酸钠和连二亚硫酸钠中的至少一种,其中,所述氧化剂选自双氧水、过氧乙酸、过硫酸铵、过硫酸钠和过硫酸钾中的至少一种。优选地,所述双氧水的浓度为25-35重量%。
根据本发明的一些实施方式,所述引发剂的含量占所述单体混合物总量的0.01-2重量%优选0.1-1重量%。
根据本发明的一些实施方式,所述聚合反应在链转移剂的存在下进行。其中,对所述链转移剂的用量没有特别的限制,只要能够满足本发明的需求即可,例如,所述链转移剂的含量占所述单体混合物总量的0.01-2重量%。
本发明中,所述链转移剂选自巯基乙酸和/或3-巯基丙酸。
本发明中,所述聚合反应后不做进一步的后处理,聚合后的物料(含溶剂)可直接用作水泥浆分散剂。但进行相关结构表征时,可以根据表征要求对聚合物进行相应的纯化处理。
根据本发明优选的实施方式,为了防止自聚和爆聚,确保梳状结构更均匀、 规整,本发明方法的具体操作包括:分别将含有氧化剂的溶液、含有不饱和酸或其盐或其酸酐的溶液、硅烷偶联剂(含有可聚合基团且碳原子数不低于5的硅烷和/或硅氧烷)、含有引发剂和链转移剂的溶液分别同时滴加到不饱和聚醚的溶液中,在聚合条件下进行聚合反应。
本发明中,采用滴加方式时,上述聚合反应的时间包括滴加时间,也即聚合反应的时间从开始滴加起算。优选地,为了使聚合更充分的进行,在物料滴加完毕后继续保温反应0.5-1.5小时。
根据本发明的一些实施方式,含有不饱和酸和/或其盐和/或其酸酐的溶液的滴加时间为2-4小时,所述硅烷偶联剂与不饱和聚醚的溶液的滴加时间为2-4小时,含有引发剂和链转移剂的溶液与不饱和聚醚的溶液的滴加时间为2.5-4.5小时。
本发明中,在含有氧化剂的溶液中,氧化剂的浓度为9-40重量%。
本发明中,在含有不饱和酸和/或其盐和/或其酸酐的溶液中,不饱和酸及其盐和酸酐的溶液的总浓度为2-80重量%。
本发明中,在含有引发剂和链转移剂的溶液中,引发剂的浓度为1-10重量%,链转移剂的浓度1-10重量%优选为2-6重量%。
本发明中,在不饱和聚醚的溶液中,不饱和聚醚的浓度为10-60重量%。
本发明中,含有氧化剂的溶液、含有不饱和酸和/或其盐和/或其酸酐的溶液、含有引发剂和链转移剂的溶液、不饱和聚醚单体的溶液中的溶剂可以为水。
按照本发明更优选的实施方式,所述方法包括以下步骤:
(1)将不饱和聚醚与去离子水加入反应釜,充分搅拌均匀;
(2)开始升温,温度升至50-70℃,并保持该温度直至反应结束;
(3)将氧化剂或引发剂加入去离子水中,搅匀后加入反应釜中;
(4)配制还原剂或引发剂和链转移剂的混合水溶液:将还原剂或引发剂和链转移剂加入去离子水中,充分搅拌溶解;
(5)配制不饱和酸和/或其盐和/或其酸酐的水溶液:不饱和酸和/或其盐和/或其酸酐加入去离子水中,充分搅拌溶解;
(6)将不饱和酸和/或其盐或和/其酸酐的水溶液、硅烷和/或硅氧烷和引发剂和链转移剂的混合水溶液同时进行滴加;前两种物料滴加2-4小时,引发剂和 链转移剂的混合水溶液滴加时间2.5-4.5小时;
(7)滴加完毕后继续保温搅拌0.5-1小时,降温放料。
本发明还提供了由上述的制备方法制得的油井水泥分散剂。如上所述,本发明提供的分散剂具有较好的分散性和较低的缓凝性,能够与其他助剂配合,用于不同的场合,实现不同的用途。
本发明中,所述分散剂用量优选为水泥浆重量的0.1-5%。
本发明的有益效果至少体现在以下方面:
1、本发明提供的具有分散功能的聚合物,因为含有长直链硅烷或硅氧烷结构单元,可以在增加锚固点位的同时减小同等吸附量的羧酸带来的缓凝作用,因此,在用作分散剂时,与单纯的使用羧酸基团作为吸附基团的分散剂相比,具有优异的分散性和大幅降低的缓凝性;与使用常规碳原子数小于5的短链硅烷偶联剂相比,具有缓凝性更小甚至不缓凝和与其他助剂如降失水剂、缓凝剂更好的配伍性的优势。该分散剂可有效防止水泥颗粒发生团聚,改善水泥浆的流动性能,适用温度可达150℃。
2、本发明的分散剂采用聚醚大单体做骨架,所得聚羧酸分散剂为梳状结构,既能显著提高分散效率,同时相比于聚酯能耐受较高温度。
3、本发明的聚合物可以采用更高的羧酸含量,因此作为分散剂可以大大提高分散效率,从疏水长链降低水泥颗粒表面水化膜完整性角度降低其缓凝性,与以往发明中使用2-丙烯酰胺-2-甲基丙磺酸代替部分羧酸以降低羧酸带来的缓凝性相比,本发明采取了不同的技术思路解决羧酸带来的分散效率与缓凝性的矛盾问题。
4、实验证明,本发明的分散剂在较高的温度下缓凝型更小甚至不缓凝,例如与基浆本身的稠化时间相比,在150℃下的稠化时间与120℃下相比变化更小,说明本发明的分散剂不仅能够用于高温环境下,而且高温下的缓凝性更低,效果更好。
为使本发明更加容易理解,下面将结合实施例来详细说明本发明,这些实施例仅起说明性作用,并不局限于本发明的应用范围。
本发明所采用原料均为市售产品。
以下实施例和对比例中,采用单体投料量确定聚合物中各结构单元的含量, 具体的,通过测试未反应单体的含量确定实际参与聚合的各单体的投料比,进而确定聚合物中各结构单元的含量,固含量是根据投料量计算得到的,即固含量=除溶剂外的投料量(重量)/含溶剂的投料量(重量)*100%。实施例中聚合物的DSC谱图中均仅出现单峰,表明聚合物均为无规共聚物。
【实施例1】
在圆底烧瓶中加入100g(0.0417mol)的TPEG 2400和150g去离子水,搅拌并加热至70℃。将双氧水1.5g加入15g去离子水中,搅匀后加入反应釜中。将0.7g抗坏血酸和1g的3-巯基丙酸加入17g去离子水中制成引发剂和链转移剂混合水溶液;将37g丙烯酸(AA)加入40g去离子水中制成丙烯酸水溶液;将引发剂和链转移剂混合水溶液、5g的乙烯基十八烷基三甲氧基硅烷、丙烯酸水溶液同时分别滴加入圆底烧瓶,通过蠕动泵控制丙烯酸水溶液和乙烯基十八烷基二甲基硅烷在4小时滴加完毕,引发剂和链转移剂混合水溶液在4.5小时滴加完毕。全部物料滴加完毕后继续保温搅拌0.5小时,制成高温型聚羧酸油井水泥分散剂样品S1,实际固含量39.8重量%。
对样品S1进行结构表征,其中核磁谱图采用的是纯化后的样品:
凝胶色谱分析(图1):聚合物的重均分子量为35000;
红外光谱测试(图2):聚醚TPEG:3442cm -1和1110cm -1对应-OH和-C-O-C-,2882cm -1对应-CH 3;丙烯酸:1593cm -1对应-COO-;长链硅烷:1461cm -1和2882cm -1对应长直链的-CH 2-,1347cm -1对应-Si-C-,1100cm -1对应-C-O-C-或-Si-O-Si-,无残余双键:1645-1620cm -1间无-C=C-;
核磁氢谱(图3):0ppm处特征质子吸收峰对应硅氧烷;0.74ppm对应侧链端基-CH 3;1.20ppm对应长链硅烷的-CH 2-;1.62ppm和2.26ppm分别对应AA的甲基和次甲基;3.73ppm对应TPEG中的-CH 2-CH 2-O-;4.69ppm对应水峰;
热重分析测试(图4):仅在295℃处出现吸收峰,表明耐高温性较好;
DSC谱图中,49.22℃出现单峰,表明该聚合物为无规共聚物。
【实施例2】
在圆底烧瓶中加入100g的TPEG1500和160g去离子水,搅拌并加热至50℃。 将双氧水0.5g加入5g去离子水中,搅匀后加入反应釜中。将0.25g抗坏血酸和0.2g的3-巯基丙酸加入5.5g去离子水中制成引发剂和链转移剂混合水溶液;将34.6g衣康酸(IA)加入34g去离子水中制成衣康酸水溶液;将引发剂和链转移剂混合水溶液、0.85g的乙烯基辛烷基三甲氧基硅烷、衣康酸水溶液同时分别滴加入圆底烧瓶,通过蠕动泵控制衣康酸水溶液和乙烯基辛烷基三甲氧基硅烷在2小时滴加完毕,引发剂和链转移剂混合水溶液在2.5小时滴加完毕。全部物料滴加完毕后继续保温搅拌1小时,制成高温型聚羧酸油井水泥分散剂样品S2,实际固含量39.7重量%。凝胶色谱测得其中聚合物的重均分子量为29340。
【实施例3】
在圆底烧瓶中加入100g(0.025mol)的HPEG 4000和140g去离子水,搅拌并加热至65℃。将双氧水0.9g加入4.5g去离子水中,搅匀后加入反应釜中。将0.35g抗坏血酸和0.8g的3-巯基丙酸加入11g去离子水中制成引发剂和链转移剂混合水溶液;将14.4g丙烯酸(AA)加入22g去离子水中制成丙烯酸水溶液;将引发剂和链转移剂混合水溶液、1.85g的乙烯基十八烷基二甲基甲氧基硅烷、丙烯酸水溶液同时分别滴加入圆底烧瓶,通过蠕动泵丙烯酸水溶液和丙烯基十八烷基二甲氧基硅烷在3小时滴加完毕,引发剂和链转移剂混合水溶液在3.5小时滴加完毕。全部物料滴加完毕后继续保温搅拌1小时,制成高温型聚羧酸油井水泥分散剂样品S3,实际固含量39.6重量%。凝胶色谱测得其中聚合物的重均分子量为31090。
【实施例4】
按照实施例1的方法,不同的是,将37g丙烯酸(AA)加入40g去离子水中替换为将3g丙烯酸(AA)加入74g去离子水中制成丙烯酸水溶液。制成油井水泥分散剂样品S4,实际固含量39.8重量%。凝胶色谱测得其中聚合物的重均分子量为34222。
【实施例5】
按照实施例1的方法,不同的是,将37g丙烯酸(AA)加入40g去离子水中替换为将62g丙烯酸(AA)加入15g去离子水中制成丙烯酸水溶液。制成油井水 泥分散剂样品S5实际固含量39.8重量%。凝胶色谱测得其中聚合物的重均分子量为36143。
【实施例6】
按照实施例3的方式进行,不同的是,用等摩尔量的7-辛烯基三甲氧基硅烷代替乙烯基十八烷基二甲基甲氧基硅烷。制成油井水泥分散剂样品S6,实际固含量39.6重量%。凝胶色谱测得其中聚合物的重均分子量为33412。
【实施例7】
按照实施例3的方式进行,不同的是,乙烯基十八烷基二甲基甲氧基硅烷的用量为0.2g。制成油井水泥分散剂样品S7,实际固含量39.5重量%。凝胶色谱测得其中聚合物的重均分子量为35898。
【对比例1】
按照实施例3的方式进行,不同的是,使用等摩尔量KH-570代替乙烯基十八烷基二甲基甲氧基硅烷制成油井水泥分散剂对比样品D1,实际固含量39.8重量%。凝胶色谱测得其中聚合物的重均分子量为32347。
【测试例】
按GB/T 19139-2003标准制备水泥浆,评定流变性能、稳定性、稠化时间、抗压强度,技术指标要求见表1,实施例1-7和对比例1-2的样品在不同基浆体系中的结果见表2、表3(分散剂掺量均占水泥质量的0.5%,实施例1制得的聚合物在表3的水泥浆中150℃的稠化线性图如图6所示)和表4,其中稠化时间之比测定温度为120℃和150℃,以说明本发明分散剂克服了聚羧酸类分散剂高温下缓凝的缺点。所用水泥为四川嘉华G级水泥,降失水剂和缓凝剂为购自中国石化石油工程技术研究院的SCF-180L降失水剂和SCR-3缓凝剂,其中降失水剂为2-丙烯酰胺-2-甲基丙磺酸(AMPS)类降失水剂,缓凝剂为酸类缓凝剂,对比分散剂(对比例2)为购自德国BASF的分散剂,该分散剂为聚羧酸分散剂。基浆一配方为100重量份水泥+44重量份水,基浆二配方为100重量份水泥+4重量份降失水剂+40重量份水,基浆三配方为450g水泥+225g硅粉+225g加重材 料微锰粉+31.5g降失水剂+27g纳米液硅+27g胶乳+14g缓凝剂+2.3g分散剂+200g现场水。
水泥浆流性指数n用以衡量水泥浆流变性能,n越大流动性越好;稠度系数K用以衡量流体黏度,K越大越稠,流动性越差;稠化指数是指添加分散剂的水泥浆的稠化时间(分钟)与不添加分散剂的空白水泥浆的稠化时间(分钟)之比。
表1使用温度高于80℃的分散剂水泥浆和水泥石的性能要求
Figure PCTCN2021112586-appb-000005
表2
Figure PCTCN2021112586-appb-000006
Figure PCTCN2021112586-appb-000007
表3
Figure PCTCN2021112586-appb-000008
表4
Figure PCTCN2021112586-appb-000009
Figure PCTCN2021112586-appb-000010
由表2和表3和表4的评价结果可见,本发明提供的分散剂具有较好的分散性,超过120℃时不缓凝,与降失水剂、缓凝剂等配伍良好。
以上所述的仅是本发明的优选实例。应当指出对于本领域的普通技术人员来说,在本发明所提供的技术启示下,根据本领域的公知常识,还可以做出其它等同变型和改进,也应视为本发明的保护范围。

Claims (20)

  1. 一种具有分散功能的聚合物,其特征在于,该聚合物含有结构单元a、结构单元b、结构单元c,其中,所述结构单元a由不饱和聚醚提供,所述结构单元b由不饱和酸和/或其盐和/或其酸酐提供,所述结构单元c由含有可聚合基团且碳原子数不低于5的硅烷和/或硅氧烷提供;其中,结构单元a、结构单元b和结构单元c的摩尔比为1:(1-20):(0.01-0.5);
    所述聚合物的重均分子量为20000-90000。
  2. 根据权利要求1所述的聚合物,其中,所述结构单元a、结构单元b和结构单元c的摩尔比为1:(4-12):(0.05-0.3),所述聚合物的重均分子量为25000-55000。
  3. 根据权利要求1或2所述的聚合物,其中,所述可聚合基团为碳碳双键、碳碳叁键、环氧基团中的一种或多种;优选地,所述结构单元c具有式(I)所示的结构:
    Figure PCTCN2021112586-appb-100001
    式(I)中,R 1、R 2、R 3、R 1’、和R 2’各自独立地选自H、C1-C4的烷基,Ra、Rb和Rc各自独立地选自H、C1-C4的烷基或烷氧基,n为5-25的整数;
    进一步优选R 1、R 2、R 3、R 1’、和R 2’各自独立地选自H、C1-C2的烷基,R a、R b和R c各自独立地选自H、甲基、乙基、甲氧基、乙氧基,n为8-18的整数。
  4. 根据权利要求1-3中任意一项所述的聚合物,其中,所述硅烷和/或硅氧烷为7-辛烯基三甲氧基硅烷、乙烯基十二烷基三甲氧基硅烷、乙烯基十六烷基三甲氧基硅烷、乙烯基十八烷基三甲氧基硅烷中的至少一种。
  5. 根据权利要求1-4中任意一项所述的聚合物,其中,所述聚合物具有梳 状结构;
    优选地,所述聚合物为无规共聚物,该聚合物的DSC峰为单峰。
  6. 根据权利要求1-5中任意一项所述的聚合物,其中,所述不饱和聚醚具有式(2)所示的结构:
    Figure PCTCN2021112586-appb-100002
    式(2)中,
    E表示碳原子数为2-4的亚烷基;
    F表示碳原子数为2-4且不同于E的亚烷基;
    R 4和R 5各自独立的表示H或碳原子数为1-5的烷基优选甲基;
    R 6表示碳原子数为1-4的烷基;
    Y表示碳原子数为1-5的亚烷基;
    p表示0-200的整数,优选20-140;
    q表示0-200的整数,优选20-140;
    p+q>10优选p+q≥40;
    优选地,所述不饱和聚醚选自甲基烯丙基聚氧乙烯醚、甲基烯丙基聚氧丙烯醚、异戊烯基聚氧乙烯醚和异丁烯基聚氧乙烯醚中的至少一种。
  7. 根据权利要求1-6中任意一项所述的聚合物,其中,所述不饱和酸选自丙烯酸、甲基丙烯酸、乙烯基磺酸、乙烯基磷酸、马来酸、衣康酸、富马酸、2-丙烯酰胺-2-甲基丙磺酸、苯乙烯磺酸和丙烯基磺酸中的至少一种。
  8. 一种聚羧酸水泥分散剂,该聚羧酸水泥分散剂在120℃及以上温度的稠化指数为不超过1.5,优选为1-1.35;110℃、24h抗压强度指数不小于0.8,优选0.95-1.1更优选1.0-1.1;85℃的稠度系数为不超过0.8,优选为0.4-0.75;85℃的流性指数n为不小于0.6,优选0.7-0.95。
  9. 根据权利要求8所述的聚羧酸水泥分散剂,其中,该聚羧酸水泥分散剂在150℃的稠化指数为0.95-1.5优选0.98-1.2。
  10. 根据权利要求8或9所述的聚羧酸水泥分散剂,其中,该聚羧酸水泥分散剂含有权利要求1-7中任意一项所述的聚合物,且以该聚羧酸水泥分散剂的总量为基准,聚合物的含量为10-90重量%,优选为20-40重量%。
  11. 一种制备聚羧酸水泥分散剂的方法,该方法包括:在溶液聚合条件下,在引发剂存在下,使单体混合物在水中进行聚合反应,其特征在于,所述单体聚合物含有单体A、单体B和单体C,所述单体A为不饱和聚醚,所述单体B为不饱和酸和/或其酸酐和/或其盐,所述单体C为含有可聚合基团且碳原子数不低于5的硅烷和/或硅氧烷;且所述单体混合物中,所述单体A、单体B和单体C的摩尔比为1:(1-20):(0.01-0.5);聚合的条件使得所得聚合物的重均分子量为20000-90000。
  12. 根据权利要求11所述的方法,其中,所述可聚合基团为碳碳双键、碳碳叁键、环氧基团中的一种或多种;优选地,所述硅烷偶联剂具有式(I)所示的结构:
    Figure PCTCN2021112586-appb-100003
    式(I)中,R 1、R 2、R 3、R 1’、和R 2’、各自独立地选自H、C1-C4的烷基,Ra、Rb和Rc各自独立地选自H、C1-C4的烷基或烷氧基,n为5-25优选8-18的整数。
  13. 根据权利要求11或12所述的方法,其中,所述单体A、单体B和单体C的摩尔比为1:(4-12):(0.05-0.3)。
  14. 根据权利要求11-13中任意一项所述的方法,其中,所述不饱和聚醚具 有式(2)所示的结构:
    Figure PCTCN2021112586-appb-100004
    式(2)中,
    E表示碳原子数为2-4的亚烷基;
    F表示碳原子数为2-4且不同于E的亚烷基;
    R 4和R 5各自独立的表示H或碳原子数为1-5的烷基优选甲基;
    R 6表示碳原子数为1-4的烷基;
    Y表示碳原子数为1-5的亚烷基;
    p表示0-200的整数,优选20-140;
    q表示0-200的整数,优选20-140;
    p+q>10优选p+q≥40;
    优选地,所述不饱和聚醚选自甲基烯丙醇聚氧乙烯醚、甲基烯丙醇聚氧丙烯醚、异戊烯醇聚氧乙烯醚和异丁烯醇聚氧乙烯醚中的至少一种。
  15. 根据权利要求11-14中任意一项所述的方法,其中,所述不饱和酸选自丙烯酸、甲基丙烯酸、乙烯基磺酸、乙烯基磷酸、马来酸、衣康酸、富马酸、2-丙烯酰胺-2-甲基丙磺酸、苯乙烯磺酸和丙烯基磺酸中的至少一种。
  16. 根据权利要求11-15中任意一项所述的方法,其中,所述聚合反应的条件包括:温度为40-80℃,优选为50-70℃;时间为1-10小时,优选为2-5小时。
  17. 根据权利要求11-16中任意一项所述的方法,其中,所述引发剂选自抗坏血酸、甲醛次硫酸钠和连二亚硫酸钠中的至少一种;
    优选地,所述引发剂的含量占所述单体混合物总量的0.1-1重量%。
  18. 根据权利要求11-17中任意一项所述的方法,其中,所述聚合反应在氧化剂和/或链转移剂的存在下进行,
    所述氧化剂选自双氧水、过氧乙酸、过硫酸铵、过硫酸钠和过硫酸钾中的至少一种;
    和/或,所述链转移剂选自巯基乙酸和/或3-巯基丙酸。
  19. 由权利要求11-18中任意一项所述的方法制得的聚羧酸水泥分散剂。
  20. 权利要求1-7中任意一项所述的聚合物、权利要求8-10以及权利要求19中任意一项所述的聚羧酸水泥分散剂在固井用水泥浆中的应用,优选地,所述应用在不低于120℃下的高温井中进行。
PCT/CN2021/112586 2020-10-13 2021-08-13 具有分散功能的聚合物和聚羧酸水泥分散剂及其制备方法和应用 WO2022078046A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21879093.9A EP4212494A4 (en) 2020-10-13 2021-08-13 POLYMER HAVING A DISPERSION FUNCTION, POLYCARBOXYLIC ACID CEMENT DISPERSANT, ASSOCIATED PREPARATION METHOD AND USE THEREOF
JP2023522522A JP2023545806A (ja) 2020-10-13 2021-08-13 分散機能を有する重合体、ポリカルボン酸セメント分散剤、その製造方法及び使用
CA3198678A CA3198678A1 (en) 2020-10-13 2021-08-13 Polymer having dispersing function, polycarboxylic acid cement dispersant, preparation method therefor and use thereof
US18/248,371 US20230391941A1 (en) 2020-10-13 2021-08-13 Polymer having dispersing function, polycarboxylic acid cement dispersant, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011092106.0A CN114426408B (zh) 2020-10-13 2020-10-13 一种油井水泥分散剂及其制备方法和应用
CN202011092106.0 2020-10-13

Publications (1)

Publication Number Publication Date
WO2022078046A1 true WO2022078046A1 (zh) 2022-04-21

Family

ID=81207679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112586 WO2022078046A1 (zh) 2020-10-13 2021-08-13 具有分散功能的聚合物和聚羧酸水泥分散剂及其制备方法和应用

Country Status (6)

Country Link
US (1) US20230391941A1 (zh)
EP (1) EP4212494A4 (zh)
JP (1) JP2023545806A (zh)
CN (1) CN114426408B (zh)
CA (1) CA3198678A1 (zh)
WO (1) WO2022078046A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058149A (zh) * 2022-06-29 2022-09-16 深圳市凌普鑫科技有限公司 一种快干型复合水基油墨及其制备方法
CN115417616A (zh) * 2022-10-08 2022-12-02 临沂海螺新材料科技有限公司 一种立磨水泥用助磨剂及其制备方法
CN116515047A (zh) * 2023-05-30 2023-08-01 广州砼奇杰建材科技有限公司 一种水泥废浆分散剂、制备方法及其应用
CN115746217B (zh) * 2022-11-14 2024-04-26 清华大学 碱激发胶凝材料减水剂及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117946321A (zh) * 2022-10-31 2024-04-30 中国石油化工股份有限公司 堵漏材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272553A (ja) * 2004-03-24 2005-10-06 Toagosei Co Ltd ポリカルボン酸マクロモノマー組成物の製造方法
CN103030334A (zh) * 2012-12-11 2013-04-10 马清沛 一种聚羧酸减水剂
CN105754045A (zh) 2016-03-02 2016-07-13 海南太和科技有限公司 一种硅烷偶联剂改性聚羧酸减水剂及其制备方法
CN107245131A (zh) 2017-07-10 2017-10-13 北京工业大学 氨基聚醚端基硅烷化制备保坍型聚羧酸减水剂的方法
CN108250370A (zh) 2017-12-25 2018-07-06 清华大学 聚羧酸及其在水泥中的用途
CN109942757A (zh) * 2017-12-20 2019-06-28 中冶建筑研究总院有限公司 一种聚羧酸减水剂
CN111171245A (zh) * 2019-12-27 2020-05-19 安徽海螺新材料科技有限公司 保坍型聚羧酸减水剂用丙烯酸酯化合物的制备方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863624A (en) * 1987-09-09 1989-09-05 Exxon Chemical Patents Inc. Dispersant additives mixtures for oleaginous compositions
DE19513126A1 (de) * 1995-04-07 1996-10-10 Sueddeutsche Kalkstickstoff Copolymere auf Basis von Oxyalkylenglykol-Alkenylethern und ungesättigten Dicarbonsäure-Derivaten
CN108129611A (zh) * 2017-12-26 2018-06-08 中科院广州化学有限公司 一种有机硅改性的聚羧酸减水剂及其制备方法
CN109749019A (zh) * 2018-12-13 2019-05-14 天津大学 一种油井水泥用硅烷改性聚羧酸分散剂及制备方法与应用
CN114075314A (zh) * 2020-08-14 2022-02-22 中国石油化工股份有限公司 油井水泥用分散剂及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272553A (ja) * 2004-03-24 2005-10-06 Toagosei Co Ltd ポリカルボン酸マクロモノマー組成物の製造方法
CN103030334A (zh) * 2012-12-11 2013-04-10 马清沛 一种聚羧酸减水剂
CN105754045A (zh) 2016-03-02 2016-07-13 海南太和科技有限公司 一种硅烷偶联剂改性聚羧酸减水剂及其制备方法
CN107245131A (zh) 2017-07-10 2017-10-13 北京工业大学 氨基聚醚端基硅烷化制备保坍型聚羧酸减水剂的方法
CN109942757A (zh) * 2017-12-20 2019-06-28 中冶建筑研究总院有限公司 一种聚羧酸减水剂
CN108250370A (zh) 2017-12-25 2018-07-06 清华大学 聚羧酸及其在水泥中的用途
CN111171245A (zh) * 2019-12-27 2020-05-19 安徽海螺新材料科技有限公司 保坍型聚羧酸减水剂用丙烯酸酯化合物的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4212494A4
XIANGMING KONG ET AL., JOURNAL OF THE CHINESE CERAMIC SOCIETY, vol. 42, no. 5, May 2014 (2014-05-01)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058149A (zh) * 2022-06-29 2022-09-16 深圳市凌普鑫科技有限公司 一种快干型复合水基油墨及其制备方法
CN115417616A (zh) * 2022-10-08 2022-12-02 临沂海螺新材料科技有限公司 一种立磨水泥用助磨剂及其制备方法
CN115417616B (zh) * 2022-10-08 2023-09-22 临沂海螺新材料科技有限公司 一种立磨水泥用助磨剂及其制备方法
CN115746217B (zh) * 2022-11-14 2024-04-26 清华大学 碱激发胶凝材料减水剂及其应用
CN116515047A (zh) * 2023-05-30 2023-08-01 广州砼奇杰建材科技有限公司 一种水泥废浆分散剂、制备方法及其应用
CN116515047B (zh) * 2023-05-30 2024-03-12 广州砼奇杰建材科技有限公司 一种水泥废浆分散剂、制备方法及其应用

Also Published As

Publication number Publication date
CA3198678A1 (en) 2022-04-21
EP4212494A4 (en) 2024-03-27
EP4212494A1 (en) 2023-07-19
US20230391941A1 (en) 2023-12-07
CN114426408A (zh) 2022-05-03
JP2023545806A (ja) 2023-10-31
CN114426408B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2022078046A1 (zh) 具有分散功能的聚合物和聚羧酸水泥分散剂及其制备方法和应用
JP6074517B2 (ja) スランプ保持型ポリカルボン酸塩系高性能流動化剤の製造方法
CN105418857B (zh) 含磷酸酯基的聚羧酸减水剂的制备方法及应用
CN107337765B (zh) 具有强适应性和保坍性能的膦酸基聚合物及其制备方法和应用
CN105601839B (zh) 含磷酸类基团的聚羧酸减水剂的制备方法及应用
CN108059697B (zh) 一种规整序列结构的聚羧酸减水剂的制备方法
WO2023024730A1 (zh) 一种聚羧酸减水剂及其制备方法
CN111978001B (zh) 一种含硅烷聚合物油井水泥分散剂及其制备方法和应用
JP5656863B2 (ja) 酸構成単位及び様々なポリエーテル構成単位を含有するコポリマー
CN107043227A (zh) 一种抗粘土型聚合物分散剂及其制备方法
WO2022033588A1 (zh) 具有分散功能的聚合物和油井水泥用分散剂及其制备方法和应用
CN111349199B (zh) 一种具有核壳结构的稳态聚羧酸超塑化剂及其制备方法
JP5559192B2 (ja) 半連続的に運転されるコポリマーの製造方法
CA2715098A1 (en) Copolymer comprising polyether side chains and hydroxyalkyl and acid structural units
CN109535341A (zh) 疏水改性降粘型聚羧酸减水剂及其制备方法
WO2018120385A1 (zh) 一种膦酸基嵌段聚合物、其制备方法及应用
US8907016B2 (en) Dispersing agent containing copolymer mixture
CN109503781A (zh) 一种无机-有机聚合物油井水泥缓凝剂、其制备方法和应用
CN109956696B (zh) 侧链吸附型混凝土超塑化剂的合成方法
CN109956697B (zh) 一种多吸附基团中间体,其聚合物的制备方法和应用
CN111087422B (zh) 一种(2-膦酸-亚丙基)丙二酸的制备方法
CN107722194B (zh) 一种高减水聚羧酸水泥分散剂及其制备方法
CN113943401B (zh) 一种油井水泥分散剂及其制备方法
CN111560105A (zh) 一种降粘型单宁酸基星形聚羧酸减水剂及其制备方法
CN109749074B (zh) 一种含有烷基的降粘型聚羧酸减水剂及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18248371

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3198678

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023522522

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021879093

Country of ref document: EP

Effective date: 20230413

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523440365

Country of ref document: SA