WO2023024730A1 - 一种聚羧酸减水剂及其制备方法 - Google Patents

一种聚羧酸减水剂及其制备方法 Download PDF

Info

Publication number
WO2023024730A1
WO2023024730A1 PCT/CN2022/104888 CN2022104888W WO2023024730A1 WO 2023024730 A1 WO2023024730 A1 WO 2023024730A1 CN 2022104888 W CN2022104888 W CN 2022104888W WO 2023024730 A1 WO2023024730 A1 WO 2023024730A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether
hydroxyethyl
vinyl
polyoxypropylene polyoxyethylene
molecular weight
Prior art date
Application number
PCT/CN2022/104888
Other languages
English (en)
French (fr)
Inventor
何新耀
仝浩胜
李玉博
Original Assignee
佳化化学科技发展(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佳化化学科技发展(上海)有限公司 filed Critical 佳化化学科技发展(上海)有限公司
Publication of WO2023024730A1 publication Critical patent/WO2023024730A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2688Copolymers containing at least three different monomers
    • C04B24/2694Copolymers containing at least three different monomers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers

Definitions

  • the application belongs to the technical field of preparation of concrete admixtures, and in particular relates to a polycarboxylate water reducer and a preparation method thereof.
  • Concrete has become the foundation of human life and is currently the most widely used building material.
  • Concrete admixture is the fifth component in concrete besides cement, sand, stone and water, and plays a very important role in the application of high performance concrete.
  • water reducing agent also known as superplasticizer (Superplasticizer)
  • Superplasticizer can reduce mixing water consumption and improve concrete strength under the condition of concrete workability and cement dosage, and become concrete admixture Research hotspots and development priorities in the field.
  • the water reducing agent hinders or destroys the flocculation structure of cement particles through surface activity, complexation, electrostatic repulsion or steric repulsion, so as to ensure the workability and strength of concrete while saving the amount of cement.
  • Polycarboxylate superplasticizer has the advantages of low dosage, high water reducing rate, large degree of freedom in molecular structure design, and environmental friendliness. It is known as the third-generation concrete superplasticizer and is widely used in high-speed rail, highways, bridges, In projects such as tunnels and high-rise buildings.
  • the polymerization conversion rate of monomer is an important reason affecting product performance.
  • the activity of each polymerized monomer directly affects the reactivity ratio. Due to its strong activity, acrylic acid is easily accompanied by self-polymerization during the copolymerization process.
  • Most of the admixtures on the market show strong polarity and high molecular weight by-product impurity peaks in the GPC spectrum, which is the product of self-polymerization of acrylic acid.
  • Chinese patent document CN108084358A discloses a preparation method of a slump-preserving polycarboxylate water reducer. The method adopts bulk polymerization and has certain requirements on the polymerization reaction temperature. The molecular weight distribution is relatively broad.
  • the technical problem to be solved in this application is to overcome the problems caused by the self-polymerization of acrylic acid monomers occurring at the same time, the slow polymerization rate, and the mismatching ratio between monomers in the prior art when preparing the water reducer.
  • the invention provides a polycarboxylate water reducer and a preparation method thereof due to defects such as low bulk conversion rate and the need for heating or cooling to control the polymerization reaction temperature.
  • the application provides a preparation method of polycarboxylate water reducer, comprising the following steps,
  • step (1) The hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether and double-ended vinyl ether small monomers prepared in step (1) are mixed, and then an initiator, an unsaturated carboxylic acid, and a chain transfer agent are added, A polymerization reaction occurs, and finally the polycarboxylate water reducer is obtained after aging and pH adjustment;
  • the hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether has the following structural formula:
  • R1 is hydrogen or methyl
  • R2 is hydrogen or methyl
  • m is 0-6, n is 10-100, p is 1 or 2;
  • the double-ended vinyl ether monomers contain alkoxy groups and double bonds at both ends; optionally, the vinyl ether monomers are ethylene glycol divinyl ether and/or diethylene glycol diethylene glycol Vinyl ether.
  • the temperature of the polymerization reaction is 15-25°C.
  • the molecular weight of the hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether is 1000-5000; optionally, the molecular weight of the hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether is 2800-3100.
  • the mass ratio of the hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether, double-ended vinyl ether small monomer, initiator, chain transfer agent and unsaturated acid is 1: (0.001-0.01): (0.001 -0.02): (0.001-0.3): (0.08-0.14).
  • the preparation method of hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether specifically includes mixing unsaturated alcohol as an initiator with an alkali catalyst, adding propylene oxide in an oxygen-free environment, and adding ethylene oxide after the reaction is complete. , After the reaction, the hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether is obtained.
  • the mass ratio of the propylene oxide and ethylene oxide is 1: (4-35);
  • the unsaturated alcohol is ethylene glycol monovinyl ether and/or diethylene glycol monovinyl ether;
  • the amount of the unsaturated alcohol is 1.76-13.2wt% of the sum of the amount of unsaturated alcohol, propylene oxide and ethylene oxide, optionally 2.74-4.71wt%;
  • reaction temperature is 100-130°C.
  • the unsaturated acid is at least one of acrylic acid, methacrylic acid, itaconic acid and maleic acid.
  • the organic amine is trihydroxypropyl hydroxyethyl ethylenediamine and/or tetrahydroxypropyl ethylenediamine.
  • the chain transfer agent is one or both of mercaptoacetic acid, mercaptopropionic acid, mercaptoethanol and sodium hypophosphite.
  • the present application also provides a polycarboxylate water reducer prepared above.
  • the preparation method of the polycarboxylate water reducer provided by the application, the method comprises (1) preparing hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether; Base terminal vinyl polyoxypropylene polyoxyethylene ether and double-terminal vinyl ether small monomers are mixed, then adding initiator, unsaturated carboxylic acid and chain transfer agent, polymerization reaction occurs, and finally the obtained product is obtained after aging and pH adjustment.
  • the polycarboxylate water reducer; the double-ended vinyl ether small monomer contains alkoxy groups and double bonds at both ends; optionally, the vinyl ether monomer is ethylene glycol divinyl ether and/or diethylene glycol divinyl ether.
  • the ultra-high molecular weight polymer content in the polycarboxylate water reducer prepared by the method is reduced, and this part of the polymer hardly contributes to the slump retention performance of the water reducer.
  • the molecular weight of the polycarboxylate water reducer obtained based on the test method of this application is normally distributed, the molecular weight distribution is narrow, and the number average molecular weight is in the range of 10000-14000> 84%.
  • the slump performance of the method plays a major role; at the same time, the reaction rate of this method is controllable during the polymerization reaction, and the exotherm is mild and stable, which avoids the local detonation phenomenon caused by high temperature during the polymerization reaction, and the monomer conversion rate can be increased to 95%.
  • the batch stability of this method is good, the performance of the prepared polycarboxylate water reducer is stable, the slump retention is good, and the water reducing rate is high.
  • the working state of the concrete is significantly improved.
  • the fluidity of the mortar is obviously increased, and the performance of the 36% solid water reducer prepared by the application is equivalent to that of the 40% solid water reducer in the prior art, which significantly reduces the cost and improves the performance.
  • the preparation method of the polycarboxylate water reducer provided by the present application greatly reduces the accumulation of acrylic monomer self-polymerization products in the stirring paddle and the reaction kettle, and reduces environmental pollution.
  • the polycarboxylate superplasticizer when used, it will not affect the molecular weight and viscosity of the product, has good stability, is easy to transport, and can be pumped in super-high-rise and super-long distances, and is suitable for industrial production.
  • hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether in combination with alkoxy-terminated vinyl ether small monomers.
  • hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether contains -OCH 2 CH 2 O- can improve the reactivity of its double bond, so that it can have a better polymerization reaction with vinyl ether monomers.
  • the combination of the two reactive monomers can optimize the reactivity of the two monomers.
  • the polymerization reaction can be carried out at normal temperature (15-25°C). The combined use of these two monomers can also ensure that the viscosity of the system will not increase sharply during the polymerization reaction.
  • the polycarboxylate superplasticizer obtained by the reaction has a polyether cross-linked structure with matching lengths, forming a good stretch structure, making the water reducing agent After the agent is adsorbed on the cement particles, it can exert a good steric hindrance effect, provide dispersion ability, and further improve the slump protection effect.
  • the preparation method of the polycarboxylate water reducer provided by this application when preparing the polycarboxylate water reducer, the polymerization reaction can be carried out at 15-25°C, the reaction rate is suitable, and the excessively fast reaction rate can be avoided. Intense heat ensures the water reducing rate of polycarboxylate superplasticizer.
  • the preparation method of the polycarboxylate superplasticizer provided by this application, by controlling the quality of hydroxyethyl-terminated vinyl polyoxypropylene polyoxyethylene ether, double-ended vinyl ether small monomers, initiators, and chain transfer agents Ratio, can ensure the high conversion rate of the polymerization reaction, control the molecular weight and molecular weight distribution of the polymer, adjust the spatial structure of the water reducer, avoid the intertwining of the side chains, ensure that the side chains form a good extended conformation, and reduce the polycarboxylic acid.
  • the steric hindrance effect of the side chain of the water agent and the electrostatic repulsion of the carboxylic acid group on the main chain of the polycarboxylate superplasticizer work together to hinder and destroy the flocculation structure of the cement particles, while ensuring the workability and strength of the concrete and reducing the amount of cement Dosage.
  • the preparation method of the polycarboxylate water reducer provided by this application can further increase the density of the crosslinked structure of the polycarboxylate water reducer by using an organic amine to control the pH value to 6-7, so that the water reducer can Continue to disperse cement particles, improve the water-reducing effect of polycarboxylic acid, and the compatibility of trihydroxypropyl hydroxyethyl ethylenediamine and/or tetrahydroxypropyl ethylenediamine with the polymerization reaction system is better, and it will not Precipitation precipitates to further increase the slump.
  • Figure 1 is the molecular weight distribution diagram of the polycarboxylate water reducer in Example 4 and Comparative Example 1 of the present application; a is the molecular weight distribution curve of the polycarboxylate water reducer in Example 4, and b is the molecular weight of the polycarboxylate water reducer in Comparative Example 1 distribution curve.
  • the E51 used in the following examples and comparative examples is a modified white block, commercially available, and the manufacturer is Brüggemann, Germany.
  • This embodiment provides a kind of preparation method of polycarboxylate water reducer, comprising the following steps,
  • This embodiment provides a kind of preparation method of polycarboxylate water reducer, comprising the following steps,
  • This embodiment provides a kind of preparation method of polycarboxylate water reducer, comprising the following steps,
  • This embodiment provides a kind of preparation method of polycarboxylate water reducer, comprising the following steps,
  • the molecular weight of the polycarboxylate water reducer is measured by GPC gel chromatography.
  • the specific test methods and instruments used in the test are as follows: the instrument is Shimadzu DGU-20A gel permeation chromatography; the detector is RID-20A differential refractive index Rate detector; chromatographic column is 2 water phase columns Shedox SB-803 and SB-802.5 connected in series, column temperature is 40°C; detection conditions: mobile phase 0.1mol/l NaNO 3 aqueous solution, flow rate is 0.8ml/min; sample preparation The concentration is 5-10mg/mL.
  • This embodiment provides a kind of preparation method of polycarboxylate water reducer, comprising the following steps,
  • This comparative example provides a preparation method of a polycarboxylate water reducer, the difference from Example 4 is that ethylene glycol divinyl ether is removed, and the others are the same as in Example 4.
  • the molecular weight distribution is shown in Table 2 and b in Figure 1 .
  • Example 4 Compared with Example 4, after removing the ethylene glycol divinyl ether, the molecular weight distribution of the polycarboxylate water reducer is broadened, and the proportion of peak 1 is increased, indicating that this preparation method will produce by-products.
  • This comparative example provides a kind of preparation method of polycarboxylate superplasticizer, and the difference with embodiment 4 is that the same amount of triethylene glycol divinyl ether is used instead of ethylene glycol divinyl ether, and the others are the same as in embodiment 4 .
  • This comparative example provides a preparation method of a polycarboxylate water reducer, the difference from Example 4 is that the same amount of isopentenyl polyoxyethylene ether (average molecular weight is 1000) is used instead of ethylene glycol divinyl ether , other with embodiment 4.
  • This test example provides the performance test and test results of the polycarboxylate water reducer prepared in each embodiment and comparative example.
  • the test method is as follows,
  • the application performance of each example, comparative example and commercially available water reducer was tested under the same dosage.
  • the amount of superplasticizer is based on the weight of the cement after folding;
  • the commercially available superplasticizers are polycarboxylate superplasticizer PC-1 with a solid content of 40% (brand name: BASF RHEOPLUS 410) and PC-2 (the brand is SILKROAD SRE110), the cement is Conch Cement P.O 42.5 grade, and the fluidity (slump when the fluidity is 0min), slump and slump of each water reducing agent is tested after being prepared with C30 concrete mix ratio. Loss during fall, the results are shown in Table 3.
  • the water reducer prepared by the method provided by the present application has no loss in slump within 30 minutes, the loss of slump is not obvious at 1 hour, and the loss of slump can be controlled at 2 hours. 15mm, indicating that the polycarboxylate water reducer prepared by the method provided by this application can solve the problem of too fast loss of concrete slump while having an ultra-high water reducing rate, and the slump retention effect is better than that of commercially available products and other products.
  • the water reducer of the comparative example The water reducer of the comparative example.
  • the method provided by this application can effectively reduce the polymerization reaction temperature of the polymerization reaction, can reasonably control the polymerization reaction rate, increase the conversion rate of the polymerization reaction, and finally synthesize a water reducing agent with an ultra-high water reducing rate and high slump retention performance to solve the problem of polycarboxylic acid
  • the problem of slump loss of water reducing agent during high temperature or long-distance transportation improves the performance of concrete, ensures the quality of construction phenomena, and is suitable for large-scale industrial promotion and application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本申请属于混凝土外加剂制备技术领域,具体涉及一种聚羧酸减水剂及其制备方法。该方法包括(1)制备羟乙基端乙烯基聚氧丙烯聚氧乙烯醚;(2)制备聚羧酸减水剂;所述双端乙烯基醚类小单体含有烷氧基且两端含有双键;可选地,所述乙烯基醚类单体为乙二醇二乙烯基醚和/或二乙二醇二乙烯基醚。该方法制备得到的聚羧酸减水剂中超高分子量共聚物含量降低,相对分子量分布成正态分布,分子量分布窄,几乎没有强极性超高分子量副产物;同时该方法在聚合反应过程中反应速率可控,放热温和平稳,避免了聚合反应过程中由于高温导致的局部爆聚现象,单体转化率可提升至95%以上。

Description

一种聚羧酸减水剂及其制备方法
交叉引用
本申请要求在2021年8月25日提交中国国家知识产权局、申请号为202110984241.4、发明名称为“一种聚羧酸减水剂及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于混凝土外加剂制备技术领域,具体涉及一种聚羧酸减水剂及其制备方法。
背景技术
混凝土已经成为人类生活的基础,是目前用量最大的建筑材料。混凝土外加剂是混凝土中除了水泥、砂、石、水之外的第五组分,在高性能混凝土的应用中扮演着非常重要的角色。作为混凝土外加剂的一种,减水剂,又称超塑化剂(Superplasticizer),在混凝土和易性、水泥用量不变的条件下,能够减少拌合用水量、提高混凝土强度,成为混凝土外加剂领域研究的热点和开发的重点。减水剂通过表面活性作用、络合作用、静电排斥力或立体排斥力等来阻碍或破坏水泥颗粒的絮凝结构,从而在节约水泥用量的同时,保证混凝土和易性及强度。聚羧酸减水剂具有掺量低、减水率高、分子结构设计自由度大,以及环境友好等优点,被誉为第三代混凝土超塑化剂,广泛应用于高铁、公路、桥梁、隧道和高层建筑等工程中。
在聚羧酸减水剂合成过程中,单体的聚合转化率是影响产品性能的重要原因。大多数研究者通过调整聚合工艺,如引发体系、链转移剂、聚合反应温度、活性匹配共聚单体等方法来提高单体的转化率。在减水剂合成中,各个聚合单 体的活性直接影响竞聚率。丙烯酸因为活性强,在共聚过程中很容易伴随发生自聚,市场上绝大多数的外加剂从GPC谱图上都显示有强极性高分子量副产物杂质峰,这是丙烯酸自聚的产物,会导致单体转化率低,聚羧酸聚合物分子量分布不均,从而影响产品性能。如何减少丙烯酸自聚,提高转化率,提升产品性能是制备减水剂的关键。中国专利文献CN108084358A公开了一种保塌型聚羧酸减水剂的制备方法,该方法采用本体聚合,对聚合反应温度有一定要求,反应过程不易控制,会引起爆聚,并且得到的产物的分子量分布相对较宽。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中在制备减水剂时,丙烯酸单体自聚反应会同时发生、聚合反应速度较慢、单体之间竞技率不匹配等原因导致单体转化率低,以及需要加热或者降温从而控制聚合反应温度等缺陷,从而提供一种聚羧酸减水剂及其制备方法。
为此,本申请提供了以下技术方案。
本申请提供了一种聚羧酸减水剂的制备方法,包括以下步骤,
(1)制备羟乙基端乙烯基聚氧丙烯聚氧乙烯醚;
(2)将步骤(1)制得的羟乙基端乙烯基聚氧丙烯聚氧乙烯醚和双端乙烯基醚类小单体混合,然后加入引发剂、不饱和羧酸、链转移剂,发生聚合反应,最后经熟化、调pH后得到所述聚羧酸减水剂;
所述羟乙基端乙烯基聚氧丙烯聚氧乙烯醚具有如下结构式:
Figure PCTCN2022104888-appb-000001
其中,R 1为氢或甲基;R 2为氢或甲基;m为0-6,n为10-100,p为1或2;
所述双端乙烯基醚类小单体含有烷氧基且两端含有双键;可选地,所述乙烯基醚类单体为乙二醇二乙烯基醚和/或二乙二醇二乙烯基醚。
所述聚合反应的温度为15-25℃。
所述羟乙基端乙烯基聚氧丙烯聚氧乙烯醚的分子量为1000-5000;可选地,所述羟乙基端乙烯基聚氧丙烯聚氧乙烯醚的分子量为2800-3100。
所述羟乙基端乙烯基聚氧丙烯聚氧乙烯醚、双端乙烯基醚类小单体、引发剂、链转移剂和不饱和酸的质量比为1:(0.001-0.01):(0.001-0.02):(0.001-0.3):(0.08-0.14)。
羟乙基端乙烯基聚氧丙烯聚氧乙烯醚的制备方法具体包括,以不饱和醇作为起始剂与碱催化剂混合,在无氧环境下加入环氧丙烷,反应完全后加入环氧乙烷,反应结束后得到羟乙基端乙烯基聚氧丙烯聚氧乙烯醚。
所述环氧丙烷和环氧乙烷的质量比为1:(4-35);
所述不饱和醇为乙二醇单乙烯基醚和/或二乙二醇单乙烯基醚;
所述不饱和醇的用量为不饱和醇、环氧丙烷和环氧乙烷用量总和的1.76-13.2wt%,可选为2.74-4.71wt%;
制备所述羟乙基端乙烯基聚氧丙烯聚氧乙烯醚时,反应温度为100-130℃。
所述不饱和酸为丙烯酸、甲基丙烯酸、衣康酸和马来酸中的至少一种。
进一步地,使用有机胺调pH至6-7,得到所述聚羧酸减水剂;
所述有机胺为三羟丙基羟乙基乙二胺和/或四羟丙基乙二胺。
所述链转移剂为巯基乙酸、巯基丙酸、巯基乙醇、次亚磷酸钠中的一种或两种。
本申请还提供了一种上述制备得到的聚羧酸减水剂。
本申请技术方案,具有如下优点:
1.本申请提供的聚羧酸减水剂的制备方法,该方法包括(1)制备羟乙基端乙烯基聚氧丙烯聚氧乙烯醚;(2)将步骤(1)制得的羟乙基端乙烯基聚氧丙烯聚氧乙烯醚和双端乙烯基醚类小单体混合,然后加入引发剂、不饱和羧酸、链转移剂,发生聚合反应,最后经熟化、调pH后得到所述聚羧酸减水剂;所述双端乙烯基醚类小单体含有烷氧基且两端含有双键;可选地,所述乙烯基醚类单体为乙二醇二乙烯基醚和/或二乙二醇二乙烯基醚。该方法制备得到的聚羧酸减水剂中超高分子量聚合物含量降低,这部分聚合物对减水剂的保塌性能几乎没有贡献。基于本申请测试方法得到的聚羧酸减水剂的分子量成正态分布,分子量分布窄,数均分子量在10000-14000区间的占比>84%,该部分聚合物含量的提升对减水剂的保塌性能起主要作用;同时该方法在聚合反应过程中反应速率可控,放热温和平稳,避免了聚合反应过程中由于高温导致的局部爆聚现象,单体转化率可提升至95%以上;该方法的批次稳定性好,制得的聚羧酸减水剂性能稳定,保塌性好,减水率高,将该减水剂用于混凝土中,混凝土的工作状态显著提升,砂浆的流动度明显增大,并且采用本申请制备的36%固含的减水剂的性能与现有技术中40%固含的减水剂的性能相当,显著降低了成本,提高了性能。
本申请提供的聚羧酸减水剂的制备方法大大降低了丙烯酸类单体自聚产物在搅拌桨、反应釜的堆积,减少了环境污染。另外,在应用该聚羧酸减水剂时,不会影响产品的分子量和粘度,稳定性好,易于运输和超高层、超远距离泵送,适合工业化生产。
在制备聚羧酸减水剂时,加入双端乙烯基醚类小单体,如乙二醇二乙烯基醚和/或二乙二醇二乙烯基醚,可以使减水剂中超高分子量聚合物含量显著降低,减水剂分子量成正态分布,提高分子量为10000-14000的聚合物的含量,同时有助于提高单体的转化率。
本申请通过羟乙基端乙烯基聚氧丙烯聚氧乙烯醚与烷氧基端乙烯基醚类小单体配合使用,一方面羟乙基端乙烯基聚氧丙烯聚氧乙烯醚中含有-OCH 2CH 2O-可以提高其双键的反应活性,使其与乙烯基醚类单体更好的发生聚合反应,两种反应单体配合使用,可以使两种单体的反应活性达到最优,该聚合反应在常温条件(15-25℃)下即可进行。这两种单体配合使用还可以保证聚合反应过程中体系粘度不会急剧增长,反应得到的聚羧酸减水剂具有长短相互搭配的聚醚交联结构,形成良好的伸展结构,使减水剂吸附到水泥颗粒上后能够发挥较好的空间位阻效应,提供分散能力,进一步提高保塌效果。
在本申请羟乙基端乙烯基聚氧丙烯聚氧乙烯醚中引入端甲基,可以有效降低减水剂的HLB值,进一步降低聚醚长链的缔合水的能力,释放出更多自由水,将减水剂用于混凝土时,降低混凝土的黏度。
2.本申请提供的聚羧酸减水剂的制备方法,在制备聚羧酸减水剂时,聚合反应可以在15-25℃条件下进行,反应速率适宜,能够避免过快的反应速率放出剧烈的热量,保证聚羧酸减水剂的减水率。
3.本申请提供的聚羧酸减水剂的制备方法,通过控制羟乙基端乙烯基聚氧丙烯聚氧乙烯醚、双端乙烯基醚类小单体、引发剂、链转移剂的质量比,可以保证聚合反应的高转化率,控制聚合物的分子量和分子量分布,调节减水剂的空间结构,避免侧链之间相互缠绕,保证侧链形成良好的伸展构象,使聚羧酸减水剂侧链的空间位阻效应与聚羧酸减水剂主链上羧酸基团的静电斥力协同作用,阻碍并破坏水泥颗粒的絮凝结构,同时保证混凝土的和易性、强度,减少 水泥用量。
4.本申请提供的聚羧酸减水剂的制备方法,通过使用有机胺控制pH值为6-7,能进一步提高聚羧酸减水剂交联结构的疏密程度,使减水剂能够持续分散水泥颗粒,提高聚羧酸减水的保塌效果,并且三羟丙基羟乙基乙二胺和/或四羟丙基乙二胺与聚合反应体系的相容性更好,不会析出沉淀,进一步提高塌落度。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例4和对比例1中聚羧酸减水剂分子量分布图;a为实施例4聚羧酸减水剂分子量分布曲线,b为对比例1聚羧酸减水剂分子量分布曲线。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
以下实施例和对比例中用到的E51为吊白块改性,市售,厂家为德国布吕格曼。
实施例1
本实施例提供了一种聚羧酸减水剂的制备方法,包括以下步骤,
(1)取100g乙二醇单乙烯基醚和0.25g氢氧化钠加入到高压反应釜中,用氮气置换三次后,开启搅拌,反应釜内温度升温至110℃,开始向反应釜内通入160g环氧丙烷,熟化反应1h,反应完全后在反应釜中加入2000g环氧乙烷,熟化反应1h,待环氧乙烷反应完全后将反应釜内温度降至90℃,加入乙酸,进行中和反应,产品调pH至6-7,制得羟乙基端乙烯基聚氧丙烯聚氧乙烯醚,分子量为2000;其中,环氧乙烷和环氧丙烷是在无氧的条件下加入到反应釜中的。
(2)取28g丙烯酸、0.2g巯基丙酸和56g水配制得到混合溶液A;取0.9g E51和60g水配制得到混合溶液B,备用;
取250g羟乙基端乙烯基聚氧丙烯聚氧乙烯醚(数均分子量为2000)、1.5g乙二醇二乙烯基醚和180g水加入到反应釜中,然后缓慢加入40%氢氧化钠中和至pH为5-5.5,再加入5.67g次亚磷酸钠链转移剂和1.2g 30%过氧化氢,搅拌溶解;在室温且搅拌的条件下,向反应釜中同时滴加混合溶液A和混合溶液B,聚合反应,混合溶液A的滴加时间为60min,混合溶液B的滴加时间为65min,滴加结束后熟化15min,加入四羟乙基乙二胺中和,调pH至6,补水稀释至固含量为40%,得到聚羧酸减水剂。
实施例2
本实施例提供了一种聚羧酸减水剂的制备方法,包括以下步骤,
(1)取120g二乙二醇单乙烯基醚和0.18g氢氧化钠加入到高压反应釜中,用氮气置换三次后,开启搅拌,反应釜内温度升温至110℃,开始向反应釜内通入120g环氧丙烷,熟化反应1h,环氧丙烷反应完全后在反应釜中加入4000g 环氧乙烷,熟化反应1h,待环氧乙烷反应完全后将反应釜内温度降至90℃,加入乙酸,进行中和反应,产品调pH至6-7,制得羟乙基端乙烯基聚氧丙烯聚氧乙烯醚,分子量为3000;其中,环氧乙烷和环氧丙烷是在无氧的条件下加入到反应釜中的。
(2)取35g丙烯酸、0.3g巯基丙酸和50g水配制得到混合溶液A;取0.8g E51和60g水配制得到混合溶液B,备用;
取280g羟乙基端乙烯基聚氧丙烯聚氧乙烯醚(数均分子量为3000)、1.8g乙二醇二乙烯基醚和200g水加入到反应釜中,然后缓慢加入40%氢氧化钠中和至pH为5-5.5,再加入6.2g次亚磷酸钠和3g过硫酸铵,搅拌溶解;在室温且搅拌的条件下,向反应釜中同时滴加混合溶液A和混合溶液B,聚合反应,混合溶液A的滴加时间为60min,混合溶液B的滴加时间为65min,滴加结束后熟化15min,加入四羟乙基乙二胺中和,调pH至6,补水稀释至固含量为40%,得到聚羧酸减水剂。
实施例3
本实施例提供了一种聚羧酸减水剂的制备方法,包括以下步骤,
(1)取180g乙二醇单乙烯基醚和0.18g氢氧化钠加入到高压反应釜中,用氮气置换三次后,开启搅拌,反应釜内温度升温至110℃,开始向反应釜内通入570g环氧丙烷,熟化反应1h,环氧丙烷反应完全后在反应釜中加入4000g环氧乙烷,熟化反应1h,待环氧乙烷反应完全后将反应釜内温度降至90℃,加入乙酸,进行中和反应,产品调pH至6-7,制得羟乙基端乙烯基聚氧丙烯聚氧乙烯醚,分子量为2200;其中,环氧乙烷和环氧丙烷是在无氧的条件下加入到反应釜中的。
(2)取35g丙烯酸、0.3g巯基丙酸和60g水配制得到混合溶液A;取0.8g E51和60g水配制得到混合溶液B,备用;
取300g羟乙基端乙烯基聚氧丙烯聚氧乙烯醚(数均分子量为2200)、1.8g乙二醇二乙烯基醚和350g水加入到反应釜中,然后缓慢加入40%氢氧化钠中和至pH为5-5.5,再加入6.2g次亚磷酸钠和3g过硫酸铵,搅拌溶解;在室温且搅拌的条件下,向反应釜中同时滴加混合溶液A和混合溶液B,聚合反应,混合溶液A的滴加时间为60min,混合溶液B的滴加时间为65min,滴加结束后熟化15min,,加入三羟丙基羟乙基乙二胺中和,调pH至6.5,补水稀释至固含量为40%,得到聚羧酸减水剂。
实施例4
本实施例提供了一种聚羧酸减水剂的制备方法,包括以下步骤,
(1)取360g乙二醇单乙烯基醚和0.28g氢氧化钠加入到高压反应釜中,用氮气置换三次后,开启搅拌,反应釜内温度升温至110℃,开始向反应釜内通入460g环氧丙烷,熟化反应1h,环氧丙烷反应完全后在反应釜中加入10800g环氧乙烷,熟化反应1h,待环氧乙烷反应完全后将反应釜内温度降至90℃,加入乙酸,进行中和反应,产品调pH至6-7,制得羟乙基端乙烯基聚氧丙烯聚氧乙烯醚,分子量为2800;其中,环氧乙烷和环氧丙烷是在无氧的条件下加入到反应釜中的。
(2)取35g丙烯酸、0.35g巯基丙酸和50g水配制得到混合溶液A;取0.9g E51和60g水配制得到混合溶液B,备用;
取260g羟乙基端乙烯基聚氧丙烯聚氧乙烯醚(数均分子量为2800)、1.8g乙二醇二乙烯基醚和200g水加入到反应釜中,然后缓慢加入40%氢氧化钠中和至pH为5-5.5,再加入4.87g次亚磷酸钠和2g过硫酸铵,搅拌溶解;在室温且搅拌的条件下,向反应釜中滴加混合溶液A和混合溶液B,聚合反应,混合溶液A的滴加时间为60min,混合溶液B的滴加时间为65min,滴加结束后熟化15min,加入三羟丙基羟乙基乙二胺中和,调pH至6,补水稀释至固含量为 36%,得到聚羧酸减水剂。
测试本实施例制备得到的聚羧酸减水剂的分子量分布,结果见图1中的a和表1,可以看出本实施例聚羧酸减水剂分子量分布窄,并且数均分子量Mn集中在11442,占比为84.8%,副产物少。
聚羧酸减水剂分子量采用GPC凝胶色谱法测得,具体测试方法和测试中用到的仪器如下:仪器为岛津DGU-20A型凝胶渗透色谱;检测器为RID-20A型示差折光率检测器;色谱柱为2根水相柱Shedox SB-803和SB-802.5串联,柱温是40℃;检测条件:流动相0.1mol/l NaNO 3水溶液,流速是0.8ml/min;配样浓度为5~10mg/mL。
表1分子量分布表
Mn Mw Mz Mz1 Mw/Mn Mz/Mw 百分比
1 59253 60793 62551 64543 1.02599 1.02893 9.1484
2 11442 18425 24349 29020 1.01032 1.0215 84.803
3 1572 1591 1610 1629 1.01221 1.01203 2.6234
4 878 919 957 991 1.04696 1.04155 3.4252
实施例5
本实施例提供了一种聚羧酸减水剂的制备方法,包括以下步骤,
(1)取100g乙二醇单乙烯基醚和0.25g氢氧化钠加入到高压反应釜中,用氮气置换三次后,开启搅拌,反应釜内温度升温至110℃,开始向反应釜内通入160g环氧丙烷,熟化反应1h,环氧丙烷反应完全后在反应釜中加入2000g环氧乙烷,熟化反应1h,待环氧乙烷反应完全后将反应釜内温度降至90℃,加入乙酸,进行中和反应,产品调pH至6-7,制得羟乙基端乙烯基聚氧丙烯聚氧乙烯醚,分子量为2000;其中,环氧乙烷和环氧丙烷是在无氧的条件下加入到反应釜中的。
(2)取28g丙烯酸、0.2g巯基丙酸和56g水配制得到混合溶液A;取0.9g E51和60g水配制得到混合溶液B,备用;
取250g羟乙基端乙烯基聚氧丙烯聚氧乙烯醚(数均分子量为2000)、1.5g二乙二醇二乙烯基醚和180g水加入到反应釜中,然后缓慢加入6g 40%氢氧化钠中和至pH为5-5.5,再加入5.67g次亚磷酸钠和1.2g 30%过氧化氢,搅拌溶解;在室温且搅拌的条件下,向反应釜中滴加混合溶液A和混合溶液B,聚合反应,混合溶液A的滴加时间为60min,混合溶液B的滴加时间为65min,滴加结束后熟化15min,加入四羟乙基乙二胺中和,调pH至6,补水稀释至固含量为40%,得到聚羧酸减水剂。
对比例1
本对比例提供了一种聚羧酸减水剂的制备方法,与实施例4的区别在于去掉乙二醇二乙烯基醚,其它同实施例4,分子量分布见表2和图1中的b。
与实施例4相比,去掉乙二醇二乙烯基醚后,聚羧酸减水剂的分子量分布变宽,且峰1位置占比增多,说明该制备方法会产生副产物。
表2分子量分布表
Mn Mw Mz Mz1 Mw/Mn Mz/Mw 百分比
1 58491 61024 63875 67021 1.0433 1.04673 21.0929
2 11661 18845 24257 28048 1.61614 1.28719 75.4966
3 1534 1545 1556 1567 1.00736 1.00715 1.447
4 886 929 968 1002 1.04782 1.04179 1.9634
对比例2
本对比例提供了一种聚羧酸减水剂的制备方法,与实施例4的区别在于用相同用量的三乙二醇二乙烯基醚代替乙二醇二乙烯基醚,其它同实施例4。
对比例3
本对比例提供了一种聚羧酸减水剂的制备方法,与实施例4的区别在于用相同用量的异戊烯基聚氧乙烯醚(平均分子量为1000)代替乙二醇二乙烯基醚,其它同实施例4。
试验例
本试验例提供了各实施例和对比例制得的聚羧酸减水剂的性能测试及测试结果,测试方法如下,
参照GB8076-2008《混凝土外加剂规范》,在相同掺量下分别检测各实施例、对比例和市售减水剂应用性能。其中,减水剂掺量以折固后水泥的重量为基准;市售减水剂分别为固含量40%的保塌型聚羧酸减水剂PC-1(牌号为:BASF RHEOPLUS 410)和PC-2(牌号为SILKROAD SRE110),水泥使用海螺水泥P.O 42.5级,以C30混凝土配合比配制后检测各减水剂的流动性(流动性为0min时的塌落度)、塌落度和塌落经时损失,结果如表3所示。
表3各实施例、对比例和市售减水剂的检测结果
Figure PCTCN2022104888-appb-000002
通过表1的结果可以知道的是,本申请提供的方法制备得到的减水剂在30min内塌落度没有损失,在1h时塌落度损失不明显,在2h时塌落度损失可以控制在15mm,说明本申请提供的方法制备得到的聚羧酸减水剂在具有超高减水率的同时还能解决混凝土塌落度损失过快的问题,且保塌效果优于市售产品和各对比例的减水剂。
本申请提供的方法可以有效降低聚合反应的聚合反应温度,能够合理控聚合反应速率,提高聚合反应的转化率,最终合成具有超高减水率且高保塌性能的减水剂,解决聚羧酸减水剂在高温或长距离运输过程中塌落度损失的问题,提高了混凝土的性能,保障了施工现象的质量,适于大规模工业化推广应用。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其 它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (10)

  1. 一种聚羧酸减水剂的制备方法,其特征在于,包括以下步骤,
    (1)制备羟乙基端乙烯基聚氧丙烯聚氧乙烯醚;
    (2)将步骤(1)制得的羟乙基端乙烯基聚氧丙烯聚氧乙烯醚和双端乙烯基醚类小单体混合,然后加入引发剂、不饱和羧酸丙烯酸、链转移剂,发生聚合反应,最后经熟化、调pH后得到所述聚羧酸减水剂;
    所述羟乙基端乙烯基聚氧丙烯聚氧乙烯醚具有如下结构式:
    Figure PCTCN2022104888-appb-100001
    其中,R 1为氢或甲基;R 2为氢或甲基;m为0-6,n为10-100,p为1或2;
    所述双端乙烯基醚类小单体为乙二醇二乙烯基醚和/或二乙二醇二乙烯基醚;
    所述羟乙基端乙烯基聚氧丙烯聚氧乙烯醚、双端乙烯基醚类小单体、引发剂和链转移剂的质量比为1:(0.001-0.01):(0.001-0.02):(0.001-0.3)。
  2. 根据权利要求1所述的方法,其特征在于,所述聚合反应的温度为15-25℃。
  3. 根据权利要求1或2所述的方法,其特征在于,所述羟乙基端乙烯基聚氧丙烯聚氧乙烯醚的数均分子量为1000-5000;可选地,所述羟乙基端乙烯基 聚氧丙烯聚氧乙烯醚的数均分子量为2800-3100。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述羟乙基端乙烯基聚氧丙烯聚氧乙烯醚、双端乙烯基醚类小单体、引发剂、链转移剂和不饱和酸的质量比为1:(0.001-0.01):(0.001-0.02):(0.001-0.3):(0.08-0.14)。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,羟乙基端乙烯基聚氧丙烯聚氧乙烯醚的制备方法具体包括,以不饱和醇作为起始剂与碱催化剂混合,在无氧环境下加入环氧丙烷,反应完全后加入环氧乙烷,反应结束后得到羟乙基端乙烯基聚氧丙烯聚氧乙烯醚。
  6. 根据权利要求5所述的方法,其特征在于,所述环氧丙烷和环氧乙烷的质量比为1:(4-35);
    所述不饱和醇为乙二醇单乙烯基醚和/或二乙二醇单乙烯基醚;
    所述不饱和醇的用量为不饱和醇、环氧丙烷和环氧乙烷用量总和的1.76-13.2wt%,可选为2.74-4.71wt%;
    制备所述羟乙基端乙烯基聚氧丙烯聚氧乙烯醚时,反应温度为100-130℃。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述不饱和酸为丙烯酸、甲基丙烯酸、衣康酸和马来酸中的至少一种。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,使用有机胺调pH至6-7,得到所述聚羧酸减水剂;
    所述有机胺为三羟丙基羟乙基乙二胺和/或四羟丙基乙二胺。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述链转移剂为巯基乙酸、巯基丙酸、巯基乙醇、次亚磷酸钠中的一种或两种。
  10. 权利要求1-9任一项所述方法制备得到的聚羧酸减水剂。
PCT/CN2022/104888 2021-08-25 2022-07-11 一种聚羧酸减水剂及其制备方法 WO2023024730A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110984241.4A CN113683738B (zh) 2021-08-25 2021-08-25 一种聚羧酸减水剂及其制备方法
CN202110984241.4 2021-08-25

Publications (1)

Publication Number Publication Date
WO2023024730A1 true WO2023024730A1 (zh) 2023-03-02

Family

ID=78582814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104888 WO2023024730A1 (zh) 2021-08-25 2022-07-11 一种聚羧酸减水剂及其制备方法

Country Status (2)

Country Link
CN (1) CN113683738B (zh)
WO (1) WO2023024730A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117534827A (zh) * 2023-12-08 2024-02-09 四川嘉兆丰新材料科技有限公司 一种减水剂用磺酸基封端乙烯基聚醚单体及其合成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683738B (zh) * 2021-08-25 2022-06-28 佳化化学科技发展(上海)有限公司 一种聚羧酸减水剂及其制备方法
CN114316157B (zh) * 2022-02-08 2023-10-31 淮北旭日新材料股份有限公司 一种绿色环保型减水剂
CN114716623A (zh) * 2022-03-30 2022-07-08 佳化化学科技发展(上海)有限公司 一种具有纳米尺寸的聚羧酸减水剂及其制备方法
CN114805829B (zh) * 2022-03-30 2023-02-10 佳化化学科技发展(上海)有限公司 一种模板剂及其制备方法和应用
CN114736341A (zh) * 2022-03-30 2022-07-12 佳化化学科技发展(上海)有限公司 一种交联型聚羧酸减水剂及其制备方法
CN115612086B (zh) * 2022-12-19 2023-03-14 石家庄市长安育才建材有限公司 双臂侧链结构单体及其制备方法和减水剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146159A (zh) * 2010-11-24 2011-08-10 辽宁奥克化学股份有限公司 一种乙烯基聚醚及其制备方法和应用
CN103183790A (zh) * 2011-12-28 2013-07-03 辽宁奥克化学股份有限公司 一种三元无规共聚物及其制备方法
CN104744684A (zh) * 2013-12-30 2015-07-01 辽宁奥克化学股份有限公司 一种嵌段聚醚、由该醚制得的引气型聚羧酸减水剂及其制备方法
CN107406321A (zh) * 2015-03-16 2017-11-28 可泰克斯公司 共聚物用于增加水硬性组合物早期机械强度的用途
US20180002231A1 (en) * 2015-03-16 2018-01-04 Coatex Novel copolymer as a water-reducing agent in a hydraulic composition and use of copolymers for improving the early mechanical strength of a hydraulic composition
CN108084358A (zh) * 2017-11-14 2018-05-29 佳化化学(茂名)有限公司 一种保塌型聚羧酸减水剂的制备方法
CN109320710A (zh) * 2018-09-29 2019-02-12 北京砼帮汇科技有限公司 一种大单体及用其制备聚羧酸减水剂的方法
CN113683738A (zh) * 2021-08-25 2021-11-23 佳化化学科技发展(上海)有限公司 一种聚羧酸减水剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107337767B (zh) * 2016-12-30 2020-05-26 江苏苏博特新材料股份有限公司 一种含磷酸基团的减水剂的制备方法
CN108102085A (zh) * 2017-12-22 2018-06-01 上海东大化学有限公司 聚醚单体、源自其的聚羧酸减水剂及其制备和应用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146159A (zh) * 2010-11-24 2011-08-10 辽宁奥克化学股份有限公司 一种乙烯基聚醚及其制备方法和应用
CN103183790A (zh) * 2011-12-28 2013-07-03 辽宁奥克化学股份有限公司 一种三元无规共聚物及其制备方法
CN104744684A (zh) * 2013-12-30 2015-07-01 辽宁奥克化学股份有限公司 一种嵌段聚醚、由该醚制得的引气型聚羧酸减水剂及其制备方法
CN107406321A (zh) * 2015-03-16 2017-11-28 可泰克斯公司 共聚物用于增加水硬性组合物早期机械强度的用途
US20180002231A1 (en) * 2015-03-16 2018-01-04 Coatex Novel copolymer as a water-reducing agent in a hydraulic composition and use of copolymers for improving the early mechanical strength of a hydraulic composition
CN108084358A (zh) * 2017-11-14 2018-05-29 佳化化学(茂名)有限公司 一种保塌型聚羧酸减水剂的制备方法
CN109320710A (zh) * 2018-09-29 2019-02-12 北京砼帮汇科技有限公司 一种大单体及用其制备聚羧酸减水剂的方法
CN113683738A (zh) * 2021-08-25 2021-11-23 佳化化学科技发展(上海)有限公司 一种聚羧酸减水剂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117534827A (zh) * 2023-12-08 2024-02-09 四川嘉兆丰新材料科技有限公司 一种减水剂用磺酸基封端乙烯基聚醚单体及其合成方法

Also Published As

Publication number Publication date
CN113683738B (zh) 2022-06-28
CN113683738A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2023024730A1 (zh) 一种聚羧酸减水剂及其制备方法
US10745510B2 (en) Phosphorylated polycondensate as high efficiency water reducing agent and preparation method thereof
JP6074517B2 (ja) スランプ保持型ポリカルボン酸塩系高性能流動化剤の製造方法
CN110642993B (zh) 一种缓凝型醚类聚羧酸减水剂的制备方法
CN112694574B (zh) 一种高抗泥高保坍聚羧酸减水剂及其制备方法
CN107964075B (zh) 一种含酰胺结构的磷酸基减水剂的制备方法
CN107474196B (zh) 小坍落度混凝土用聚羧酸减水剂及其制备方法
CN107652405B (zh) 一种酰胺/酰亚胺结构的聚羧酸减水剂及其制备方法
WO2019129307A2 (zh) 一种规整序列结构的聚羧酸减水剂的制备方法
CN101830663B (zh) 一种保坍型聚羧酸减水剂及其制备方法
CN108821633A (zh) 一种减水型固体聚羧酸减水剂及其制备方法
WO2022000306A1 (zh) 超高性能混凝土用多官能团超塑化剂及其制备方法
WO2023184785A1 (zh) 一种交联型聚羧酸减水剂及其制备方法
CN109942754B (zh) 原子转移自由基聚合制备缓凝型超塑化剂的方法
CN108047390B (zh) 一种抗泥-减缩型聚羧酸减水剂的制备方法
CN109956696B (zh) 侧链吸附型混凝土超塑化剂的合成方法
CN109734847B (zh) 一种含有叁降粘官能团的降粘型聚羧酸减水剂及其制备方法和用途
CN111348858B (zh) 一种早强型聚羧酸减水剂及其制备方法
CN109956697B (zh) 一种多吸附基团中间体,其聚合物的制备方法和应用
KR100587429B1 (ko) 그래프트 중합체 및 이의 제조 방법
CN115215972B (zh) 一种快速分散型聚羧酸减水剂的制备方法
CN111978484B (zh) 一种包含4-羟丁基聚氧乙烯醚的含硅磁性聚羧酸减水剂
CN116265500A (zh) 一种降粘型聚羧酸减水剂及其制备方法
CN113896845A (zh) 一种低敏感缓释型聚羧酸保坍剂及其制备方法
CN107722194B (zh) 一种高减水聚羧酸水泥分散剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE