WO2019129307A2 - 一种规整序列结构的聚羧酸减水剂的制备方法 - Google Patents

一种规整序列结构的聚羧酸减水剂的制备方法 Download PDF

Info

Publication number
WO2019129307A2
WO2019129307A2 PCT/CN2019/076183 CN2019076183W WO2019129307A2 WO 2019129307 A2 WO2019129307 A2 WO 2019129307A2 CN 2019076183 W CN2019076183 W CN 2019076183W WO 2019129307 A2 WO2019129307 A2 WO 2019129307A2
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polycarboxylate water
sequence structure
reducing agent
regular sequence
Prior art date
Application number
PCT/CN2019/076183
Other languages
English (en)
French (fr)
Other versions
WO2019129307A3 (zh
Inventor
翟树英
杨勇
周栋梁
舒鑫
冉千平
严涵
赵红霞
Original Assignee
江苏苏博特新材料股份有限公司
博特建材(天津)有限公司
南京博特新材料有限公司
博特新材料泰州有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏苏博特新材料股份有限公司, 博特建材(天津)有限公司, 南京博特新材料有限公司, 博特新材料泰州有限公司 filed Critical 江苏苏博特新材料股份有限公司
Priority to US16/958,709 priority Critical patent/US11548967B2/en
Publication of WO2019129307A2 publication Critical patent/WO2019129307A2/zh
Publication of WO2019129307A3 publication Critical patent/WO2019129307A3/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • C04B24/2647Polyacrylates; Polymethacrylates containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2652Nitrogen containing polymers, e.g. polyacrylamides, polyacrylonitriles
    • C04B24/2658Nitrogen containing polymers, e.g. polyacrylamides, polyacrylonitriles containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/32Superplasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Definitions

  • the invention relates to a polycarboxylate water reducing agent with a regular sequence structure and a preparation method thereof, and belongs to the technical field of concrete admixtures.
  • polycarboxylic acid high-performance water reducing agent has been popularized, with its advantages such as low dosage, high water reduction rate, excellent moisture retention performance, low shrinkage, energy saving and environmental protection, etc. It has been widely used in many projects.
  • polycarboxylate water reducers tend to have adaptive problems with cement and mineral admixtures (fly ash, mineral powder, etc.).
  • due to the shortage of resources a large number of projects use mechanical sand instead of natural river sand, causing new adaptation problems between polycarboxylate water reducer and machine sand.
  • the adaptability problem is mainly manifested in the fact that the slump does not meet the design requirements or the slump is excessively lost over time, and may even cause abnormal condensation or severe bleeding, etc., which ultimately leads to the mechanical properties of the concrete.
  • the durability is reduced.
  • the compatibility problem with the concrete constituent materials not only increases the difficulty of the construction control process using the polycarboxylate superplasticizer, but also greatly increases the use cost of the polycarboxylate superplasticizer in the concrete, and the polycarboxylate superplasticizer is The widespread use of engineering has had a major negative impact.
  • polycarboxylate superplasticizers are widely used in free radical polymerization.
  • the disadvantages of conventional radical polymerization are that the obtained polymer exhibits polydispersity and uncontrollable microstructure, and its root cause and slow initiation.
  • the mechanism of rapid growth and rapid termination is related.
  • the researchers found that the further performance enhancement and functionalization of the comb copolymer enter the bottleneck state, which is currently used.
  • the comb polymer dispersant has been difficult to meet the new and higher requirements of concrete, and the development space is not large.
  • CN104311761A uses a reversible addition-fragmentation chain transfer polymerization method to prepare a comb-like polyether block polyacrylic acid copolymer dispersant and is applied to the dispersion of a cement system.
  • the copolymer dispersant is composed of a polyether block and a polyacrylic acid block.
  • the composition is simple, the structure is simple, and the solution conformation has less adjustment factors, so the adaptability to the concrete constituent material is poor in actual use.
  • CN104371077A discloses the synthesis of a star-shaped polycarboxylate water-reducing agent by atom transfer radical polymerization, which has the disadvantage that the preparation of the initiator is difficult and expensive.
  • CN101580353 discloses a hyperbranched polycarboxylic acid superplasticizer and a preparation method thereof, comprising: tert-butyl (meth)acrylate, sodium methacrylate, allyl polyoxyethylene ether in an initiator azodicyanide The main chain of the copolymer is formed by the action of valeric acid, and then the (br)acrylic acid reacts with ethylenediamine to form a hyperbranched copolymer.
  • the product has the advantages of low dosage, high water reduction rate, small slump loss, etc., but the preparation process is complicated, and requires polymerization, vacuum distillation, condensation, hydrolysis reflux, separation and purification, etc., and various organic solvents are used at the same time.
  • the production cost is high and it is easy to cause environmental pollution.
  • the invention provides a preparation method of a polycarboxylic acid high-performance water reducing agent with a regular sequence structure, aiming at the problem that the existing random structure polycarboxylate water reducing agent has insufficient water reducing effect, quick slump loss and poor cement adaptability,
  • the produced products have the advantages of low dosage, high water reduction rate, small slump loss and strong adaptability, and the preparation process is simple and the production cost is small.
  • a polymer when a polymer is composed of two or more structural units, the chain structure of the polymer has a plurality of arrangement and combination, that is, a plurality of sequence structures exist.
  • a polymer consists of two structural units, A and B.
  • the structural unit is randomly arranged in the molecular chain (-AAABBABBAAABBBBAABAB-)
  • its sequence structure is a random structure, which is the traditional comb-shaped polycarboxylic acid minus
  • the structure of the aqueous liquid belongs to the category; when the A unit and the B unit of the polymer are arranged by alternating copolymerization (-ABABABABABAB-), the sequence structure is a regular alternating copolymer structure.
  • the invention provides a preparation method of a polycarboxylate water reducing agent with a structured sequence structure, comprising the following steps:
  • the molar ratio of the polyglycol ether ester macromonomer A, the amino group-containing carboxylic acid B and the acryloyl chloride is 1: (1 to 1.2): (1 to 1.2);
  • the molar ratio of the small molecule RAFT agent, the carboxyl group-containing polyether macromonomer C, and the initiator is (3 to 5): (150 to 400): 1;
  • the polyglycol ether ester macromonomer A in the step (1) is acrylic acid polyethylene glycol monomethyl ether, acrylic polyethylene glycol monoethyl ether, acrylic polyethylene glycol mono-n-butyl ether, acrylic poly poly polyethylene Any one of the alcohol monoisobutyl ethers, the poly(ethylene glycol ether ester) macromonomer A has a weight average molecular weight of 500 to 1200, and the molecular weight is too small or too large, which may result in poor product performance;
  • the amino group-containing carboxylic acid B in the step (1) is 3-aminopropionic acid, 4-aminobutyric acid, 5-aminopentanoic acid, 2-aminosuccinic acid, 2-amino-3-hydroxysuccinic acid, Any one of 2-amino-3-methyl-succinic acid and DL-2-aminoglutaric acid;
  • the polycarboxylate water reducing agent of the regular sequence structure described in the step (2) has the structural formula:
  • R 1 is a C1-C3 alkyl group
  • R 2 is -CH 2 CH 2 -, -CH 2 CH 2 CH 2 - or -CH 2 CH 2 CH 2 CH 2 -
  • R 3 is -CH 2 -, -CH 2 CH 2 -, -CH(-OH)- or -CH(-CH 3 )-
  • n, m represents the number of repeating units of each repeating unit
  • the weight of the polycarboxylate water reducing agent of the regular sequence structure The average molecular weight is 20,000 to 60,000; if the molecular weight is too low, the initial dispersing ability of the admixture is lowered; if the molecular weight is too high, the initial dispersing ability and the post-protecting ability of the admixture are weakened.
  • the small molecule RAFT reagent in the step (2) is S, S'-bis(2-methyl-2-propionic acid) trithiocarbonate (BDMAT), (4-cyano-4-[(B) Any one of thioalkylthiocarbonylsulfonyl]pentanoic acid (CETPA).
  • the initiator in the step (2) is potassium persulfate, ammonium persulfate, azobisisobutylphosphonium hydrochloride (V-50), azobisisobutyrazoline hydrochloride (VA-044), even Any one of nitrogen dicyanovaleric acid (V-501) and azodiisopropyl imidazoline (VA-061), these initiators are all soluble in water and have high initiation efficiency.
  • the polymerization concentration is 30-60%, the polymerization temperature is 60-80 °C, the concentration or temperature is too low, the reaction conversion rate is too low, too high, the small-molecule RAFT reagent can not control the reaction well, which will have adverse effects on the next step. .
  • the reaction time in the step (2) is 2 to 5 hours, and the reaction time is too short, the reaction conversion rate is low, too long, energy is wasted, and production efficiency is lowered.
  • the invention also provides the application of the regular sequence structure polycarboxylate water reducing agent in the preparation of concrete, the prepared sequence structure polycarboxylate water reducing agent can be used directly, or according to the actual situation of the project, a certain proportion of the elimination can be selected.
  • Functional additives such as foaming agents, retarders, air entraining agents and thickeners are mixed by compounding to adjust the gas content, setting time and cohesiveness of cement-based materials, and improve the synthesis of cement-based materials. performance.
  • the polycarboxylate water reducing agent of the regular sequence structure of the present invention is added in an amount of 0.1% to 0.5% by weight of the total gelling material. If the dosage is too low, the dispersion effect on the cement is unsatisfactory; if the dosage is too high, the bleeding phenomenon is prone to occur, and economic waste is also caused. Engineers can be preferred within this range based on actual conditions.
  • the regular sequence structure polycarboxylate water-reducing agent of the invention is suitable for the area with high mud content of sand and gravel aggregate, and has the advantages of low dosage, high water reduction and high moisture retention; the regular sequence structure polycarboxylic acid reduction of the invention
  • the preparation process of the water agent is simple, the production process is green and environmentally friendly, and the cost is low.
  • the weight average molecular weight and polymerization conversion ratio of the polycarboxylic acid water reducing agent in the examples were measured by a high performance gel chromatography (GPC).
  • the separation column was connected by two pairs of Shodex SB806+803 gel columns, the column temperature was 40 ° C, the mobile phase was 0.1 M NaNO 3 aqueous solution, the flow rate was 1.0 ml/min, and the injection volume was 20 ⁇ l 0.5% aqueous solution; detector: Shodex RI-71 type refractive index detector; standard curve was made using polyethylene glycol GPC standard (Sigma-Aldrich, molecular weight 1010000, 478000, 263000, 118000, 44700, 18600, 6690, 1960, 628, 232).
  • the raw material small molecule RAFT reagent (>97%) used in the examples of the present invention was purchased from Sigma-Aldrich, and the polyethylene glycol monomethyl ether monomethacrylate macromonomer (double bond retention value >98%) was Nanjing Bote. New Materials Co., Ltd. produces other raw materials that are commercially available as general analytical purification reagents.
  • the cement paste fluidity test was carried out on the synthesis examples and the comparative examples with reference to the GB/T8077-2012 standard, and tested for 30 minutes and 1 time. Net pulp flow after hours.
  • the test cement was made of Jiangnan Xiaoyetian P.II52.5 cement, and 300 g of cement was weighed, and the amount of water added was 87 g.
  • a small amount of montmorillonite was used to replace the corresponding quality of cement, and the montmorillonite was a 250 mesh powder sample produced in Tangshan, Hebei.
  • the test results are shown in Table 3.
  • the embodiment only needs to increase the amount of the mixture to keep the liquidity of the slurry unchanged; while the comparative example needs to increase the amount of the mixture to increase the fluidity, and The loss is faster, and there is almost no fluidity after 60 minutes, indicating that the regular sequence structure of the polycarboxylate superplasticizer has a more significant advantage in the anti-mud performance than the random sequence structure.
  • the mortar fluidity test is carried out on the synthesis examples and comparative examples with reference to the GB/T8077-2012 standard, and test 1 Mortar fluidity after hours and 2 hours.
  • the test cement is Jiangnan Xiaoyetian P.II52.5 cement; the fly ash is Nanning second-grade ash; the fine aggregate is selected from the mechanism sands of Guizhou, Sichuan and Zhejiang (the mud content and the time stone powder content are different), among which the Guizhou mechanism sand Stone powder content 15%, MB value 0.50, fineness modulus 2.8, Sichuan mechanism sandstone content 11%, MB value 0.75, fineness modulus 3.0, Zhejiang mechanism sandstone content 12%, MB value 1.35, fineness modulus 2.9 .
  • the samples of Example 2, Example 4, Example 7, Comparative Example 1 and Comparative Example 2 were selected for the adaptive comparison experiment.
  • the mortar mix ratio is: cement 280, fly ash 70, machine sand 750, water 155.
  • the test results are shown in Table 4.
  • the polycarboxylate superplasticizer of the regular sequence structure described in the examples has good adaptability to the mechanism sand in different regions, and the comparative proportion needs to be greatly increased to increase the fluidity. And the loss is faster, and there is almost no fluidity after 2 hours; from the overall example and the comparative example, the polycarboxylate water-reducing agent of the regular sequence structure synthesized by the invention has good dispersing property to the mechanical sand of different regions and Adaptability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyethers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种规整序列结构的聚羧酸减水剂的制备方法。本发明所述制备方法包括:将丙烯酸聚乙二醇醚酯大单体A和含氨基的羧酸B进行迈克尔加成反应,反应5~12h后,之后降温至0℃,缓慢匀速滴加丙烯酰氯,滴加结束后,在常温条件下继续反应12h,即得到含羧基的聚醚大单体C;将含羧基的聚醚大单体C、小分子RAFT试剂、引发剂和水充分混合,保持聚合质量浓度30~60%,在N 2气氛下,升温至60~80℃,反应2~5h后即得规整序列结构的聚羧酸减水剂。本发明制得的聚羧酸减水剂适用于砂石骨料含泥量高的地区,并且具有低掺量、高减水和高保坍的优点;本发明的制备工艺简单,生产过程绿色环保、成本低。

Description

一种规整序列结构的聚羧酸减水剂的制备方法 技术领域
本发明涉及一种规整序列结构的聚羧酸减水剂及其制备方法,属于混凝土外加剂技术领域。
背景技术
近年来,随着混凝土技术的发展,聚羧酸高性能减水剂的应用不断普及,以其掺量低、减水率高、保坍性能优、收缩低、节能环保等诸多优点,逐渐在众多工程中获得了广泛应用。但在实际工程使用中聚羧酸减水剂往往会与水泥、矿物掺合料(粉煤灰、矿粉等)之间产生适应性问题。与此同时由于资源短缺,大量工程采用机制砂代替天然河砂,引起聚羧酸减水剂与机制砂之间新的适应性问题。
目前,适应性问题主要表现为坍落度达不到设计要求或者坍落度经时损失偏大,甚至可能产生急凝、假凝等不正常凝结或者严重泌水等现象,最终导致混凝土力学性能、耐久性下降。与混凝土组成材料存在相容性问题不仅增加了使用聚羧酸减水剂施工控制过程的难度,而且大大增加了聚羧酸减水剂在混凝土中的使用成本,对聚羧酸减水剂在工程中的广泛应用产生了很大的负面影响。
而从聚合方法来看,聚羧酸高性能减水剂广泛采用自由基聚合方法,传统自由基聚合的缺点是得到的聚合物呈现多分散性及微结构无法控制,其根本原因与慢引发、快增长、速终止的机理相关。随着无规结构的聚羧酸减水剂构效关系的深度挖掘和梳形共聚物外加剂性能的极限优化,研究者发现梳形共聚物进一步的性能提升和功能化进入瓶颈状态,目前使用的梳形聚合物分散剂已难以满足混凝土新的、更高的要求,且发展空间不大。
为此,许多国内外研究者不断探索新的拓扑结构的高性能聚合物分散剂。嵌段、星形、超支化等结构都被应用于聚羧酸减水剂中。CN104311761A采用可逆加成-断裂链转移聚合法制备了梳状聚醚嵌段聚丙烯酸共聚物分散剂并应用于水泥体系的分散。但所述的共聚物分散剂由聚醚嵌段和聚丙烯酸嵌段组成,组分简单、结构单一、溶液构象可调节因素较少,因此在实际的使用过程中与混凝土组成材料的适应性差。 CN104371077A公开了采用原子转移自由基聚合法合成星形聚羧酸减水剂,该方法存在引发剂制备困难、价格昂贵的缺点。CN101580353公开了一种超支化聚羧酸超塑化剂及其制备方法,由(甲基)丙烯酸叔丁酯、甲基丙烯磺酸钠、烯丙基聚氧乙烯醚在引发剂偶氮二氰基戊酸作用下生成共聚物主链,再由(甲基)丙烯酸与乙二胺反应形成超支化共聚物。该产品具有掺量低、减水率高、坍落度损失小等优点,但是制备工艺复杂,需经聚合、减压蒸馏、缩合、水解回流、分离提纯等步骤,同时用到多种有机溶剂,生产成本较高,也容易造成环境污染。
综上所述,提供一种合成掺量低、减水率高、坍落度损失小、适应性强的聚羧酸的方法是十分必要的。
发明内容
本发明针对现有无规结构聚羧酸减水剂减水效果不足、坍落度损失快、水泥适应性差的问题,提供一种规整序列结构的聚羧酸高性能减水剂的制备方法,生产出的产品具有掺量低、减水率高、坍落度损失小、适应性强等优点,而且制备工艺过程简单,生产成本小。
一般而言,当高分子由两种或两种以上的结构单元组成时,高分子的链结构存在多种排列组合方式,即存在多种序列结构。如某一高分子由A、B两种结构单元组成,当结构单元在分子链中无规排列(-AAABBABBAAABBBBAABAB-)时,其序列结构为无规结构,即为传统的梳形聚羧酸减水剂的结构所属类别;当聚合物的A单元和B单元采用交替共聚的方式进行排列(-ABABABABABAB-)时,其序列结构为规整的交替共聚结构。
本发明提供了一种规整序列结构的聚羧酸减水剂的制备方法,包括如下步骤:
(1)将丙烯酸聚乙二醇醚酯大单体A和含氨基的羧酸B在10~50℃条件下进行迈克尔加成反应,反应5~12h后,之后降温至0℃,缓慢匀速滴加丙烯酰氯,滴加时间为30min,滴加结束后,升温至室温,在常温条件下继续反应12h,即得到含羧基的聚醚大单体C;
所述丙烯酸聚乙二醇醚酯大单体A、含氨基的羧酸B和丙烯酰氯的摩尔比为1:(1~1.2):(1~1.2);
(2)将步骤(1)制得的含羧基的聚醚大单体C、小分子RAFT试剂、引发剂和水充分混合,保持聚合质量浓度30~60%,在N 2气氛下,升温至60~80℃,反应 2~5h后即得规整序列结构的聚羧酸减水剂;
所述小分子RAFT试剂、含羧基的聚醚大单体C、引发剂的摩尔比为(3~5):(150~400):1;
步骤(1)中所述丙烯酸聚乙二醇醚酯大单体A为丙烯酸聚乙二醇单甲醚、丙烯酸聚乙二醇单乙醚、丙烯酸聚乙二醇单正丁醚、丙烯酸聚乙二醇单异丁基醚中的任意一种,所述丙烯酸聚乙二醇醚酯大单体A的重均分子量为500~1200,分子量过小或过大都会导致产品性能不佳;
步骤(1)中所述含氨基的羧酸B为3-氨基丙酸、4-氨基丁酸、5-氨基戊酸、2-氨基丁二酸、2-氨基-3-羟基丁二酸、2-氨基-3-甲基-丁二酸、DL-2-氨基戊二酸中的任意一种;
步骤(2)所述的规整序列结构的聚羧酸减水剂,其结构式为:
Figure PCTCN2019076183-appb-000001
其中,R 1为C1~C3的烷基,R 2为-CH 2CH 2-、-CH 2CH 2CH 2-或-CH 2CH 2CH 2CH 2-,R 3为-CH 2-、-CH 2CH 2-、-CH(-OH)-或-CH(-CH 3)-,n、m表示各重复单元的重复单元数;所述规整序列结构的聚羧酸减水剂的重均分子量为20000~60000;分子量太低,则外加剂的初始分散能力降低;分子量太高,则外加剂的初始分散能力和后期保坍能力都会减弱。
步骤(2)中所述小分子RAFT试剂为S,S'-双(2-甲基-2-丙酸基)三硫代碳酸酯(BDMAT)、(4-氰基-4-[(乙基硫烷基硫羰基)硫烷基]戊酸(CETPA)中的任意一种。
步骤(2)中所述引发剂为过硫酸钾、过硫酸铵、偶氮二异丁脒盐酸盐(V-50),偶氮二异丁咪唑啉盐酸盐(VA-044),偶氮二氰基戊酸(V-501),偶氮二异丙基咪唑啉(VA-061)中的任意一种,这些引发剂均溶于水,且引发效率高。
聚合质量浓度30~60%,聚合温度为60~80℃,浓度或温度过低会使反应转化率偏低,过高导致小分子RAFT试剂不能很好的控制反应,都会对下一步造成不良影响。
步骤(2)中反应时间为2~5h,反应时间过短会使反应转化率低,过长浪费能源、降低生产效率。
本发明还提供了规整序列结构聚羧酸减水剂在混凝土制备中的应用,所制备的规整序列结构聚羧酸减水剂可以直接使用,也可以根据工程实际情况,选择加入一定比例的消泡剂、缓凝剂、引气剂和增稠剂等功能型助剂,通过复配方式进行混合,用以调节水泥基材料的含气量、凝结时间和粘聚性,提高水泥基材料的综合性能。
本发明所述一种规整序列结构的聚羧酸减水剂的掺量为总胶凝材料重量的0.1%~0.5%。掺量过低,则对水泥的分散效果不能令人满意;掺量过高,则容易出现泌水现象,也造成经济上的浪费。工程人员可以根据实际情况在此范围内优选。
本发明的规整序列结构聚羧酸减水剂适用于砂石骨料含泥量高的地区,并且具有低掺量、高减水和高保坍的优点;本发明的规整序列结构聚羧酸减水剂的制备工艺简单,生产过程绿色环保、成本低。
具体实施方式
以下结合具体实施例对本发明进行具体说明,以便更好理解本发明创造的内容,但实施例的内容并不限制本发明创造的保护范围。
实施例中所述聚羧酸减水剂的重均分子量和聚合转化率是采用高效凝胶色谱仪(GPC)进行测定。其中分离柱采用Shodex SB806+803两根凝胶色谱柱串联,柱温40℃,流动相为0.1M NaNO 3水溶液,流速为1.0ml/min,进样量为20μl 0.5%水溶液;检测器:Shodex RI-71型示差折光检测器;标准曲线制作采用聚乙二醇GPC标准物(Sigma-Aldrich,分子量1010000,478000,263000,118000,44700,18600,6690,1960,628,232)。
本发明实施例中所用原料小分子RAFT试剂(>97%)购于Sigma-Aldrich公司,甲基丙烯酸聚乙二醇单甲醚酯大单体(双键保留值>98%)为南京博特新材料有限公司生产,其它原料均为市售普通分析纯化学试剂。
在实施例中用到的原材料列于表1,如下:
表1合成实施例中的化合物代号
代号 化合物名称 来源
A-1 丙烯酸聚乙二醇单甲醚(Mw=500) 商购
A-2 丙烯酸聚乙二醇单乙醚(Mw=750) 商购
A-3 丙烯酸聚乙二醇单正丁醚(Mw=1000) 商购
A-4 丙烯酸聚乙二醇单异丁基醚(Mw=1200) 商购
B-1 3-氨基丙酸 商购
B-2 4-氨基丁酸 商购
B-3 5-氨基戊酸 商购
B-4 2-氨基丁二酸 商购
B-5 2-氨基-3-羟基丁二酸 商购
B-6 2-氨基-3-甲基-丁二酸 商购
B-7 DL-2-氨基戊二酸 商购
实施例1
向装有搅拌器的烧瓶中加入100g A-1和17.82g B-1,在10℃条件下进行迈克尔加成反应5h后,降温至0℃,向其中缓慢滴加18.1g丙烯酰氯,滴加30min结束后,在室温下继续反应12h;继续向烧瓶中投入小分子RAFT试剂BDMAT 1.18g、引发剂过硫酸钾0.36g和水320g,此时聚合浓度为30%,在N 2气氛下,升温至60℃,反应2h后即得规整序列结构的聚羧酸减水剂,重均分子量为25300。
实施例2
向装有搅拌器的烧瓶中加入187.5g A-2和30.93g B-2,在30℃条件下进行迈克尔加成反应7h后,降温至0℃,向其中缓慢滴加27.15g丙烯酰氯,滴加30min结束后,在室温下继续反应12h;继续向烧瓶中投入小分子RAFT试剂BDMAT 0.92g、引发剂过硫酸铵0.14g和水250g,此时聚合浓度为50%,在N 2气氛下,升温至70℃,反应3h后即得规整序列结构的聚羧酸减水剂,重均分子量为37600。
实施例3
向装有搅拌器的烧瓶中加入165g A-3和39.83g B-3,在50℃条件下进行迈克尔加成反应12h后,降温至0℃,向其中缓慢滴加15.08g丙烯酰氯,滴加30min结束后,在室温下继续反应12h;继续向烧瓶中投入小分子RAFT试剂CETPA 1.01g、引发剂V-50 0.23g和水330g,此时聚合浓度为40%,在N 2气氛下,升温至80℃, 反应5h后即得规整序列结构的聚羧酸减水剂,重均分子量为52300。
实施例4
向装有搅拌器的烧瓶中加入240g A-4和26.62g B-4,在25℃条件下进行迈克尔加成反应8h后,降温至0℃,向其中缓慢滴加21.72g丙烯酰氯,滴加30min结束后,在室温下继续反应12h;继续向烧瓶中投入小分子RAFT试剂BDMAT 1.96g、引发剂VA-044 0.43g和水195g,此时聚合浓度为60%,在N 2气氛下,升温至65℃,反应4h后即得规整序列结构的聚羧酸减水剂,重均分子量为42800。
实施例5
向装有搅拌器的烧瓶中加入100g A-1和29.82g B-5,在35℃条件下进行迈克尔加成反应6h后,降温至0℃,向其中缓慢滴加18.1g丙烯酰氯,滴加30min结束后,在室温下继续反应12h;继续向烧瓶中投入小分子RAFT试剂CETPA 1.21g、引发剂V-501 0.28g和水350g,此时聚合浓度为30%,在N 2气氛下,升温至75℃,反应3h后即得规整序列结构的聚羧酸减水剂,重均分子量为37900。
实施例6
向装有搅拌器的烧瓶中加入125g A-1和44.14g B-6,在45℃条件下进行迈克尔加成反应5h后,降温至0℃,向其中缓慢滴加27.15g丙烯酰氯,滴加30min结束后,在室温下继续反应12h;继续向烧瓶中投入小分子RAFT试剂CETPA 1.01g、引发剂VA-061 0.16g和水360g,此时聚合浓度为35%,在N 2气氛下,升温至70℃,反应4h后即得规整序列结构的聚羧酸减水剂,重均分子量为58700。
实施例7
向装有搅拌器的烧瓶中加入125g A-1和40.46g B-7,在10℃条件下进行迈克尔加成反应11h后,降温至0℃,向其中缓慢滴加27.15g丙烯酰氯,滴加30min结束后,在室温下继续反应12h;继续向烧瓶中投入小分子RAFT试剂BDMAT 1.1g、引发剂V-50 0.34g和水290g,此时聚合浓度为40%,在N 2气氛下,升温至80℃,反应5h后即得规整序列结构的聚羧酸减水剂,重均分子量为32300。
实施例8
向装有搅拌器的烧瓶中加入250g A-2和35.64g B-1,在50℃条件下进行迈克尔加成反应12h后,降温至0℃,向其中缓慢滴加30.17g丙烯酰氯,滴加30min结束后,在室温下继续反应12h;继续向烧瓶中投入小分子RAFT试剂CETPA 4.48g、引发剂V-50 0.60g和水215g,此时聚合浓度为60%,在N 2气氛下,升温至70℃, 反应3h后即得规整序列结构的聚羧酸减水剂,重均分子量为46900。
对比例1
在装有搅拌器的烧瓶中加入185g水和275.5g烯丙基聚氧乙烯醚(分子量为2400),搅拌升温溶解,升温至90℃,然后将54g丙烯酸、1.26g 3-巯基丙酸和100g水混合搅拌制成均匀的单体水溶液,将其匀速滴加至烧瓶中,滴加时间为3h。同时匀速滴加由160g水与8.1g过硫酸钾配制的引发剂溶液,滴加时间为3.5h。全部溶液滴加完毕后继续恒温保温3h,即得无规共聚的聚羧酸减水剂,重均分子量为38400。
对比例2
按照专利CN107337766A中的实施例8所示方法合成。
应用实施例1
参照JC473-2001《混凝土泵送剂》相关规定测定了本发明的规整序列结构的聚羧酸减水剂对新拌混凝土的影响,固定水灰比0.43,调整减水剂掺量使混凝土的初始坍落度为22±1cm,混凝土重量配合比:水泥267,矿粉53,粉煤灰60,砂767,大石800,小石260,水163。实验结果见表2。
表2混凝土性能测试结果
Figure PCTCN2019076183-appb-000002
从上述试验结果可以看出:实施例在掺量均低于对比例的情况下,其混凝土初始和30min流动度都与对比例大致相同,这表明本发明所述的规整序列结构的聚羧 酸减水剂具有优良的减水和保坍性能。
应用实施例2
为评价本发明制备的规整序列结构的聚羧酸减水剂的黏土适应性,参考GB/T8077-2012标准对合成实施例和比较例进行水泥净浆流动度的测试,并测试30分钟及1小时后的净浆流动度。测试水泥采用江南小野田P.Ⅱ52.5水泥,称取水泥300g,加水量为87g。实际测试中采用少量蒙脱土替代相应质量的水泥,蒙脱土为河北唐山产的250目粉样。测试结果如表3。
表3水泥净浆对比结果
Figure PCTCN2019076183-appb-000003
从试验结果来看:随着蒙脱土含量的增加,实施例仅需提高些许掺量就能保持净浆流动度不变;而对比例则需要大幅度提高掺量才能勉强提高流动度,并且损失较快,60分钟后已基本无流动度,说明聚羧酸减水剂的规整序列结构要比无规序列结构在抗泥性能方面具有更加显著的优势。
应用实施例3
为进一步评价本发明制备的规整序列结构的聚羧酸减水剂对不同地区机制砂的适应性,参考GB/T8077-2012标准对合成实施例和比较例进行砂浆流动度的测试, 并测试1小时及2小时后的砂浆流动度。测试水泥采用江南小野田P.Ⅱ52.5水泥;粉煤灰为南宁二级灰;细骨料分别选取贵州、四川及浙江的机制砂(其含泥量和时石粉含量不同),其中贵州机制砂石粉含量15%、MB值0.50、细度模数2.8,四川机制砂石粉含量11%、MB值0.75、细度模数3.0,浙江机制砂石粉含量12%、MB值1.35、细度模数2.9。选取实施例2、实施例4、实施例7、对比例1和对比例2的样品来进行适应性对比实验。砂浆配合比为:水泥280,粉煤灰70,机制砂750,水155。测试结果如表4。
表4砂浆对比结果
Figure PCTCN2019076183-appb-000004
从试验结果来看,实施例所述的规整序列结构的聚羧酸减水剂对不同地区的机制砂都有很好的适应性,而对比例需要大幅度提高掺量才能勉强提高流动度,并且损失较快,2h后已基本无流动度;从整体实施例和对比例来看,本发明合成的规整序列结构的聚羧酸减水剂对不同地区的机制砂具有很好的分散性能和适应性。

Claims (4)

  1. 一种规整序列结构的聚羧酸减水剂的制备方法,其特征在于,包括如下步骤:
    (1)将丙烯酸聚乙二醇醚酯大单体A和含氨基的羧酸B在10~50℃条件下进行迈克尔加成反应,反应5~12h后,之后降温至0℃,缓慢匀速滴加丙烯酰氯,滴加时间为30min,滴加结束后,升温至室温,在常温条件下继续反应12h,即得到含羧基的聚醚大单体C;
    所述丙烯酸聚乙二醇醚酯大单体A、含氨基的羧酸B和丙烯酰氯的摩尔比为1:(1~1.2):(1~1.2);
    (2)将步骤(1)制得的含羧基的聚醚大单体C、小分子RAFT试剂、引发剂和水充分混合,保持聚合质量浓度30~60%,在N 2气氛下,升温至60~80℃,反应2~5h后即得规整序列结构的聚羧酸减水剂;
    所述小分子RAFT试剂、含羧基的聚醚大单体C、引发剂的摩尔比为(3~5):(150~400):1;
    步骤(1)中所述丙烯酸聚乙二醇醚酯大单体A为丙烯酸聚乙二醇单甲醚、丙烯酸聚乙二醇单乙醚、丙烯酸聚乙二醇单正丁醚、丙烯酸聚乙二醇单异丁基醚中的任意一种,所述丙烯酸聚乙二醇醚酯大单体A的重均分子量为500~1200;
    步骤(1)中所述含氨基的羧酸B为3-氨基丙酸、4-氨基丁酸、5-氨基戊酸、2-氨基丁二酸、2-氨基-3-羟基丁二酸、2-氨基-3-甲基-丁二酸、DL-2-氨基戊二酸中的任意一种;
    步骤(2)所述的规整序列结构的聚羧酸减水剂,其结构式为:
    Figure PCTCN2019076183-appb-100001
    其中,R 1为C1~C3的烷基,R 2为-CH 2CH 2-、-CH 2CH 2CH 2-或-CH 2CH 2CH 2CH 2-,R 3为-CH 2-、-CH 2CH 2-、-CH(-OH)-或-CH(-CH 3)-,n、m表示各重复单元的重复单元数;所述规整序列结构的聚羧酸减水剂的重均分子量为20000~60000。
  2. 根据权利要求1所述的一种规整序列结构的聚羧酸减水剂的制备方法,其特征在于,步骤(2)中所述小分子RAFT试剂为S,S'-双(2-甲基-2-丙酸基)三硫代碳酸酯(BDMAT)、(4-氰基-4-[(乙基硫烷基硫羰基)硫烷基]戊酸(CETPA)中的任意一种。
  3. 根据权利要求2所述的一种规整序列结构的聚羧酸减水剂的制备方法,其特征在于,步骤(2)中所述引发剂为过硫酸钾、过硫酸铵、偶氮二异丁脒盐酸盐(V-50),偶氮二异丁咪唑啉盐酸盐(VA-044),偶氮二氰基戊酸(V-501),偶氮二异丙基咪唑啉(VA-061)中的任意一种。
  4. 权利要求1至3任一项所述的制备方法制得的一种规整序列结构的聚羧酸减水剂的应用方法,其特征在于,所述规整序列结构的聚羧酸减水剂的掺量为总胶凝材料重量的0.1%~0.5%。
PCT/CN2019/076183 2017-12-29 2019-02-26 一种规整序列结构的聚羧酸减水剂的制备方法 WO2019129307A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/958,709 US11548967B2 (en) 2017-12-29 2019-02-26 Preparation method for polycarboxylate water reducer having regular sequence structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711470052.5 2017-12-29
CN201711470052.5A CN108059697B (zh) 2017-12-29 2017-12-29 一种规整序列结构的聚羧酸减水剂的制备方法

Publications (2)

Publication Number Publication Date
WO2019129307A2 true WO2019129307A2 (zh) 2019-07-04
WO2019129307A3 WO2019129307A3 (zh) 2019-08-08

Family

ID=62140833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076183 WO2019129307A2 (zh) 2017-12-29 2019-02-26 一种规整序列结构的聚羧酸减水剂的制备方法

Country Status (3)

Country Link
US (1) US11548967B2 (zh)
CN (1) CN108059697B (zh)
WO (1) WO2019129307A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354641A (zh) * 2023-04-03 2023-06-30 徐州科建环保科技有限公司 一种高性能矿渣微粉

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108059697B (zh) 2017-12-29 2019-12-27 江苏苏博特新材料股份有限公司 一种规整序列结构的聚羧酸减水剂的制备方法
CN111362612B (zh) * 2018-12-26 2022-03-18 江苏苏博特新材料股份有限公司 一种堆石坝c15自密实混凝土专用聚羧酸减水剂
CN109678383B (zh) * 2019-01-19 2021-02-12 浙江吉盛化学建材有限公司 一种大分子单酯减水剂制备工艺
CN113336740B (zh) * 2021-06-29 2022-05-03 广西云鹰建材有限公司 一种环状可微交联聚羧酸聚合中间体、其制备方法及聚羧酸减水剂
CN114014993A (zh) * 2021-11-16 2022-02-08 北京化工大学 一种低温聚合高性能聚羧酸减水剂的制备方法
CN114213604B (zh) * 2021-12-31 2023-09-12 山西新恒隆建材有限公司 一种用于装配式混凝土构件的减水剂及其制备方法
CN116239766A (zh) * 2022-12-27 2023-06-09 科顺防水科技股份有限公司 水溶性raft试剂及其制备方法、聚羧酸减水剂及其制备方法
CN116333231B (zh) * 2023-05-25 2023-08-18 中建材中岩科技有限公司 一种超高分散型减水剂及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3387080B2 (ja) * 1999-03-16 2003-03-17 日本製紙株式会社 セメント分散剤及びその製造方法
US6908955B2 (en) * 1999-07-09 2005-06-21 Construction Research & Technology Gmbh Oligomeric dispersant
DE102006021200A1 (de) * 2006-05-06 2007-11-15 Byk-Chemie Gmbh Verwendung von Copolymeren als Haftvermittler in Lacken
CN101580353B (zh) 2009-06-01 2012-10-10 厦门路桥翔通建材科技有限公司 一种超支化型聚羧酸盐高效减水剂及其制备方法
CN103482897B (zh) * 2013-09-09 2015-08-05 江苏苏博特新材料股份有限公司 一种嵌段聚羧酸混凝土高效减水剂及其制备方法
CN104016610B (zh) * 2014-05-16 2016-06-22 魏中原 一种硫酸盐低敏感型聚羧酸系超塑化剂及其制备方法
CN104371077A (zh) 2014-05-23 2015-02-25 江苏省建筑科学研究院有限公司 一种星形聚羧酸水泥分散剂的制备方法
CN104031216B (zh) * 2014-05-26 2016-10-05 中科院广州化学有限公司 一种聚醚-酰胺型聚羧酸高效减水剂及其制备方法
CN104311761A (zh) * 2014-10-13 2015-01-28 南京大学 梳状聚醚嵌段聚丙烯酸共聚物及其制备方法
CN105153375B (zh) * 2015-09-21 2018-06-22 华南理工大学 一种用raft法合成聚羧酸减水剂的方法
CN105175658B (zh) * 2015-10-28 2017-09-29 武汉理工大学 一种梳状嵌段聚羧酸减水剂键合改性硅灰的方法
CN105713150B (zh) * 2015-12-11 2018-06-26 江苏苏博特新材料股份有限公司 一种耐硫酸盐的聚羧酸减水剂的制备方法及其应用
CN105669913B (zh) * 2016-03-03 2018-03-13 江苏中铁奥莱特新材料股份有限公司 一种分子结构可控的星型聚羧酸系减水剂的制备方法
CN107337766B (zh) * 2016-12-30 2020-05-26 江苏苏博特新材料股份有限公司 一种高适应性聚羧酸减水剂及其制备方法
CN107286298B (zh) * 2017-07-07 2019-12-31 江苏奥莱特新材料股份有限公司 一种缓释型聚羧酸减水剂及其制备方法
CN108059697B (zh) * 2017-12-29 2019-12-27 江苏苏博特新材料股份有限公司 一种规整序列结构的聚羧酸减水剂的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354641A (zh) * 2023-04-03 2023-06-30 徐州科建环保科技有限公司 一种高性能矿渣微粉
CN116354641B (zh) * 2023-04-03 2023-11-10 徐州科建环保科技有限公司 一种高性能矿渣微粉

Also Published As

Publication number Publication date
CN108059697B (zh) 2019-12-27
WO2019129307A3 (zh) 2019-08-08
US11548967B2 (en) 2023-01-10
CN108059697A (zh) 2018-05-22
US20210009741A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2019129307A2 (zh) 一种规整序列结构的聚羧酸减水剂的制备方法
CN109312032B (zh) 一种掺量低敏感型聚羧酸的快速低温制备方法
CN112694574B (zh) 一种高抗泥高保坍聚羧酸减水剂及其制备方法
CN109627397B (zh) 一种改善水泥浆体流变特性的聚羧酸减水剂及其制备方法
WO2014085996A1 (zh) 一种保坍型聚羧酸超塑化剂
CN103613308B (zh) 减水型聚羧酸类混凝土保坍剂及其制备方法
WO2023024730A1 (zh) 一种聚羧酸减水剂及其制备方法
CN103897116A (zh) 一种抗泥型聚羧酸减水剂及其制备方法
CN109627396B (zh) 一种改善流变特性的醚酯共聚型聚羧酸减水剂的制备方法
CN103992442A (zh) 一种阴阳两性聚羧酸减水剂的制备方法及应用
CN108585596A (zh) 一种高石粉含量人工砂混凝土用减胶剂及其制备方法
CN110642994A (zh) 一种石粉适应型聚羧酸减水剂的制备方法
CN111100253A (zh) 一种混凝土抗敏感型聚羧酸减水剂及其制备方法
CN111892685A (zh) 一种抗泥型聚羧酸减水剂及其制备方法
CN108047390B (zh) 一种抗泥-减缩型聚羧酸减水剂的制备方法
CN112979214B (zh) 一种聚醚型保水剂及其制备方法和水泥基建筑材料
CN112194762B (zh) 一种非交联网状聚羧酸减水剂制备方法
CN109734847B (zh) 一种含有叁降粘官能团的降粘型聚羧酸减水剂及其制备方法和用途
CN111348858B (zh) 一种早强型聚羧酸减水剂及其制备方法
CN104926184B (zh) 一种聚羧酸系减水剂及其制备方法
WO2014059766A1 (zh) 一种混凝土预制构件用超塑化剂
CN111087552A (zh) 一种兼具高减水率和抗泥性的聚羧酸系减水剂的合成方法
CN114195953B (zh) 一种低敏感高保水型聚羧酸减水剂及其制备方法
CN113683736B (zh) 一种高强混凝土用降粘型聚羧酸减水剂及其制备方法
CN104961868A (zh) 一种改善水泥浆体流变特性的减水剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19733931

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19733931

Country of ref document: EP

Kind code of ref document: A2