WO2018120385A1 - 一种膦酸基嵌段聚合物、其制备方法及应用 - Google Patents

一种膦酸基嵌段聚合物、其制备方法及应用 Download PDF

Info

Publication number
WO2018120385A1
WO2018120385A1 PCT/CN2017/074355 CN2017074355W WO2018120385A1 WO 2018120385 A1 WO2018120385 A1 WO 2018120385A1 CN 2017074355 W CN2017074355 W CN 2017074355W WO 2018120385 A1 WO2018120385 A1 WO 2018120385A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
phosphonic acid
fragment
aldehyde
partial
Prior art date
Application number
PCT/CN2017/074355
Other languages
English (en)
French (fr)
Inventor
冉千平
王涛
刘加平
亓帅
马建峰
范士敏
王兵
韩正
Original Assignee
江苏苏博特新材料股份有限公司
博特新材料泰州有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏苏博特新材料股份有限公司, 博特新材料泰州有限公司 filed Critical 江苏苏博特新材料股份有限公司
Priority to US16/462,300 priority Critical patent/US11505496B2/en
Publication of WO2018120385A1 publication Critical patent/WO2018120385A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/30Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/06Block or graft polymers prepared by polycondensation of aldehydes or ketones on to macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/243Phosphorus-containing polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/243Phosphorus-containing polymers
    • C04B24/246Phosphorus-containing polymers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0061Block (co-)polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]

Definitions

  • the invention relates to the technical field of concrete admixtures, in particular to a phosphonic acid-based block polymer, a preparation method thereof and an application thereof.
  • high-strength concrete As a new building material, high-strength concrete has a wide range of high-rise building structures, long-span bridge structures and some special structures due to its high compressive strength, strong resistance to deformation, high density and low porosity. application.
  • the most important feature of high-strength concrete is its high compressive strength, which is generally 4 to 6 times that of ordinary strength mixed soil, so it can reduce the cross-section of components and is therefore most suitable for high-rise buildings. Therefore, the application of prestressed high-strength concrete structures is increasingly used in large-span houses and bridges worldwide.
  • the use of high-strength concrete density characteristics can be used to build structures (structures) that withstand impact and blast loads, such as atomic energy reactor foundations.
  • the high-strength concrete has strong impermeability and strong corrosion resistance, and is used to construct industrial pools with high impermeability and high anti-corrosion requirements.
  • high-strength concrete has special requirements for cement, mineral admixture, fine aggregate, coarse aggregate, admixture and water, and the admixture technology is the core technology.
  • the amount of cementitious material should be reduced as much as possible under the premise of ensuring strength.
  • High-performance concrete should adopt high-performance water reducing agent with water reduction rate of not less than 25%.
  • the water reduction rate of high performance water reducer should not be less than 28%.
  • Other properties of admixture should meet the corresponding national or industry standards.
  • Polycarboxylate admixture is a new type of high performance water reducer, also known as superplasticizer. Due to its wide range of copolymer raw materials, molecular composition can be designed, with low blending capacity, good moisture retention performance and concrete shrinkage. The outstanding advantages such as low rate, strong adjustable molecular structure and clean production process have become the hotspots of research and development of concrete admixtures at home and abroad.
  • Patent document CN105175658A relates to a method for comb-modified polycarboxylic acid water reducing agent bonded modified silica fume, comprising the following steps: (1) using TPEG (isopentenyl polyoxyethylene ether) and AA in a chain transfer agent Reversible addition-fragmentation transfer polymerization under the action of initiator, (2) reversible addition-fragmentation chain transfer polymerization of the mixture of AA and KH570 under the action of chain transfer agent and initiator, (3)
  • the reaction with the surface hydroxylated modified silica fume to prepare a comb block polycarboxylate water reducer bonded modified silica fume the invention has the advantages that the prepared polycarboxylic acid water reducing agent has a narrow molecular weight distribution and a structure Controlled, the polymer is more easily bonded to the surface hydroxylated silica fume, which can be used in batches, reducing labor intensity and making the concrete more widely used.
  • Patent document CN103482897B provides a block polycarboxylate concrete superplasticizer with an ordered structure and a preparation method thereof, and adopts atom transfer radical polymerization to prepare a block polycarboxylic acid, thereby effectively controlling the regularity of polycarboxylate structure and Its molecular weight distribution, and applied to the cement dispersion process, solves the problem that the molecular weight of the polycarboxylic acid is uncontrollable, the molecular weight distribution is wide, and the molecular structure cannot be designed.
  • Patent document CN105713150A provides a preparation method of a sulfate-resistant polycarboxylic acid water reducing agent and a reversible addition-fragment chain transfer polymerization thereof from a monomer a, a monomer b, and a monomer c.
  • the invention introduces a strong adsorption group-phosphonic acid group on the block polycarboxylic acid main chain structure with well-defined sequence structure, so that the adsorption capacity of the block polycarboxylic acid is stronger, thereby improving the resistance to sulfate.
  • the polycarboxylic acid water reducing agent prepared by the invention has the advantages of low dosage, high water reduction rate, small slump loss, good cement adaptability, sulfate resistance, etc., and the synthesis method of the invention is simple and the process requirement is low. The production cost is small and the environmental pollution is small.
  • Patent document CN105175740A discloses a preparation method of a high-pure ester polycarboxylic acid water reducing agent, which is firstly mixed with acrylic acid and a reactive monomer having high workability, added with an oxidizing agent and a co-initiator, and added at a low temperature. A mixture of a saturated monomer, a chain transfer agent, a reducing agent and water is reacted to obtain a block copolymer intermediate, followed by addition of polyethylene glycol monomethyl ether to a catalyst for esterification grafting, and finally neutralized.
  • the high-pure ester polycarboxylate water-reducing agent prepared by the invention adopts a molecular structure design, introduces a reactive monomer with good compatibility, adopts a method of high-temperature esterification after low-temperature polymerization, and the double bond destruction rate is low.
  • High degree of copolymerization, good water-reducing agent for production, high water-reducing rate; simple industrial production process and greatly shortened production cycle The production process is environmentally friendly and pollution-free.
  • the first generation of phosphonic acid-based polymers improves the initial dispersion and reduces the viscosity of the system, providing technical support for the engineering application of high-strength concrete.
  • the inventors have found that at least the following problems exist in the prior art: the existing phosphonic acid-based polymer used as a cement dispersant has insufficient interference resistance against sulfate and clay, and it is difficult to solve the initial low-water-to-plastic ratio concrete. High dispersion and reduced system viscosity.
  • the present invention provides a method for preparing a phosphonic acid-based block polymer.
  • the present invention also provides a phosphonic acid-based block polymer obtained by the preparation method.
  • Embodiments of the present invention also provide the use of the phosphonic acid-based block polymer as a cement dispersant.
  • a process for the preparation of a phosphonic acid-based block polymer which is passed through an ether type fragment A, a phosphonic acid group fragment B and a third partial aldehyde C Copolycondensation reaction,
  • the ether type fragment A is obtained by polycondensation of the polyether monomer a and the first partial aldehyde C.
  • the structural formula of the polyether monomer a is as shown in a-1, a-2, a-3, a-4 or a-5:
  • L 1 is H, C1 to C10 alkyl or NR 5 R 6 , and R 5 and R 6 are each a C1 to C3 alkyl group.
  • R1, R2, R3 and R4 are polyoxyalkylene structures independently of each other, and the polyoxyalkylene structure is composed of a polyoxyethylene structure and an optional polyoxypropylene structure, and the polyoxyethylene structure content is not lower than 60mol%,
  • the molecular weight of the polyether monomer a is 1200 to 4800, preferably 1500 to 2500;
  • the phosphonic acid group fragment B is obtained by polycondensation of the monomer b, the monomer c and the second portion of the aldehyde C in the aprotic weak polar solvent E;
  • the structural formula of the monomer b is as shown in b-1 or b-2 or b-3:
  • Monomer c is phenol, aniline, p-/o-aminobenzenesulfonic acid, p-/ortho-hydroxybenzoic acid, p-/o-aminobenzoic acid, p-/o-hydroxybenzenesulfonic acid, p-o-methylaniline or p-o-methyl. At least one of phenol;
  • the monomer c is added in an amount of 1% to 10% by mole of the monomer b;
  • the aldehyde C is a C1-C6 alkyl aldehyde, a C7-C12 aromatic aldehyde or a glyoxylic acid;
  • the ether type fragment A has a molecular weight of 2400 to 96000 and a degree of polymerization of 2 to 20;
  • the phosphonic acid group fragment B has a molecular weight of 300 to 43200 and a degree of polymerization of 2 to 100;
  • the phosphonic acid-based block polymer has a molecular weight of from 6,000 to 100,000.
  • m 1 or 2.
  • Y H, OH, -COOH or -COOR 7
  • R 7 is a C1 to C3 linear alkyl group (e.g., methyl, ethyl).
  • L 2 is a C2-C4 linear alkylene group (e.g., ethylene), and G is -N(CH 2 -PO 3 H 2 ) 2 and -NH-CH 2 PO 3 H 2 .
  • the ether type fragment A has a molecular weight of 8,000 to 60,000 and a degree of polymerization of 5 to 15;
  • the phosphonic acid group fragment B has a molecular weight of 5,000 to 30,000, a degree of polymerization of 15 to 60, more preferably, a molecular weight of 5,000 to 25,000, and a degree of polymerization of 15 to 55;
  • the phosphonic acid-based block polymer has a molecular weight of from 14,000 to 100,000.
  • the solution containing the phosphonic acid group fragment B is obtained by polycondensation of the monomer b, the monomer c and the second partial aldehyde C in the presence of the second partial acidic catalyst D in the aprotic weak polar solvent E;
  • the phosphonic acid block polymer is obtained by a solution containing an ether type fragment A, a solution of a phosphonic acid group fragment B, a third partial acid catalyst D, a second partial water mixture, and a third partial aldehyde C by a copolycondensation reaction. be made of.
  • the solution containing the ether-type fragment A is obtained by polycondensation of the polyether monomer a and the first partial aldehyde C in the presence of the first partial acidic catalyst D, using the first portion of water as a solvent.
  • the molar ratio of the polyether monomer a to the first partial aldehyde C is 1: (1.2 to 3.6),
  • the first portion of the acidic catalyst D is added in an amount of 5% to 10% by mole of the monomer a,
  • the first part of water is added in an amount of 1% to 20% of the mass of the monomer a,
  • the solution containing the ether-type fragment A is obtained by a polycondensation reaction at a temperature of 90 to 130 ° C under reflux or a sealed pressure for 1 to 6 hours;
  • the solution containing the phosphonic acid group fragment B is obtained by polycondensation of the monomer b, the monomer c and the second partial aldehyde C in the presence of the second partial acidic catalyst D in an aprotic weak polar solvent E.
  • the molar ratio of the (monomer b + monomer c) to the second partial aldehyde C is 1: (1.0 to 2.4),
  • the second portion of the catalyst D is added in an amount of from 1% to 5% by mole of the monomer b.
  • the aprotic solvent E is added in an amount of 20% to 100% by mass of the monomer b.
  • the aprotic solvent E is ethylene glycol dimethyl ether, ethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, triethylene glycol dimethyl ether or triethylene glycol methyl ether. At least one of them is preferably diethylene glycol methyl ethyl ether and/or diethylene glycol dimethyl ether.
  • the solution containing the phosphonic acid group fragment B is obtained by a polycondensation reaction at a temperature of 90 to 130 ° C under reflux or a closed pressure for 1 to 4 hours;
  • the phosphonic acid-based block polymer is co-condensed by a solution containing an ether type fragment A, a solution containing a phosphonic acid group fragment B, a third partial acidic catalyst D, a second partial water, and a third partial aldehyde C.
  • the reaction is made,
  • the molar ratio of the ether type fragment A, the phosphonic acid group fragment B and the third part aldehyde C is 1: (0.8 to 5.0): (0.8 to 2.0),
  • the third portion of the acidic catalyst D is added in an amount of 20% to 50% of the sum of the molar amounts of the polyether monomer a and the phosphonic acid monomer b.
  • the third portion of the aldehyde C is added in an amount of 30% to 50% of the sum of the molar amounts of the polyether monomer a and the phosphonic acid monomer b.
  • the second portion of water is added in an amount of 1% to 25% of the sum of the masses of the solution containing the ether type fragment A and the solution containing the phosphonic acid group fragment B,
  • the sum of the molar amounts of the polyether monomer a and the phosphonic acid monomer b refers to the molar amount of the polyether monomer a added during polycondensation to obtain a solution containing the ether type fragment A, and polycondensation to obtain the phosphonic acid.
  • the phosphonic acid-based block polymer is obtained by a total polycondensation reaction at a temperature of 90 to 130 ° C under reflux or a closed pressure for 1 to 8 hours.
  • the polyether monomer a can be a simple commercial raw material, under the catalysis of a base (NaH/NaOMe/NaOH/KOH, etc.) or a metal composite (DMC, Mg/Al composite, etc.), and epoxy B.
  • Alkoxylation of a mixture of an alkane or ethylene oxide with propylene oxide is accomplished and is well known in the art.
  • the order of feeding and the feeding mode of the two alkylene oxide monomers can be adjusted as needed to adjust the structure of the obtained polymer to a random Copolymerization or block copolymerization and the order of arrangement of the two repeating units.
  • the present invention is not particularly limited thereto.
  • the monomer b can be prepared by a phosphination or a phosphonic acid reaction using a simple commercial raw material.
  • G is -N(CH 2 -PO 3 H 2 ) 2
  • -NH-CH 2 PO 3 H 2 When the organic primary amine of the corresponding structure can be used as a substrate, the organic chemical Mannich reaction can be used, and the specific method can be referred to related literature (J. Org. Chem. 1966; 31: 1603-1607; Synthesis. 2012; 44: 1628-1630; J. Am. Chem. Soc.
  • the aldehyde C may be a C1-C6 alkyl aldehyde such as formaldehyde, acetaldehyde or propionaldehyde (if the segment is too long, the activity is weak), or a C7-C12 such as benzaldehyde, phenylacetaldehyde or phenylpropanal.
  • Aromatic aldehyde if the chain is too long, the activity is weak), it can also be glyoxylic acid.
  • the acidic catalyst D is conventionally selected from the group consisting essentially of concentrated sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, 2-naphthalenesulfonic acid, phosphonic acid, oxalic acid, concentrated hydrochloric acid, preferably concentrated sulfuric acid.
  • the aprotic weak polar solvent E may be a conventional aprotic weak polar solvent.
  • the benign solvent of b can ensure the clear and transparent reaction system, the polycondensation reaction continues, and the molecular weight is accurately controlled. Therefore, the choice of benign solvent is the key to the preparation technology of phosphonic acid-based fragment B, for example, ethylene glycol dimethyl ether, B can be selected.
  • Glycol methyl ether diethylene glycol dimethyl ether, diethylene glycol methyl ether, triethylene glycol dimethyl ether, At least one of triethylene glycol methyl ether, wherein diethylene glycol methyl ethyl ether or diethylene glycol dimethyl ether is more commonly used.
  • the mixture obtained by the reaction is directly used as a raw material for the next copolycondensation reaction, and reacts with the third part of the aldehyde C, and the acidic catalyst in the mixture obtained by the reaction is combined with the unreacted aldehyde C.
  • Copolycondensation reaction it should be noted that the third partial aldehyde C refers to a newly added aldehyde in the copolycondensation reaction, and does not include the unreacted aldehyde C in the synthesis of the ether type fragment A and the phosphonic acid group fragment B.
  • the conversion of polyether monomer a and monomer b is very high, both above 90%.
  • the present invention calculates the mass of ether type fragment A and the phosphine in the phosphonic acid group fragment B solution in the ether type fragment A solution.
  • the mass of the acid-based fragment B is regarded as 100% conversion of the polyether monomer a and the monomer b, that is, all the polyether monomers a are converted into the ether-type fragment A, and all the monomers b are converted into phosphines.
  • Acid based fragment B The molecular weight, that is, the molar amount of the ether type fragment A or the phosphonic acid group fragment B contained in the polycondensation product can be estimated.
  • the polycondensation reaction (including the copolycondensation reaction) is carried out by a conventional operation. Generally, after all the reaction materials other than the aldehyde C are mixed and dissolved, the aldehyde C is slowly added dropwise, and after the completion of the dropwise addition, the temperature is raised to carry out a polycondensation reaction.
  • the pH of the final product In order to obtain better storage stability, it is usually necessary to adjust the pH of the final product to 3.0 to 10.0 (e.g., 3.0 to 5.0) at a concentration of 20% to 50%.
  • 3.0 to 10.0 e.g., 3.0 to 5.0
  • a phosphonic acid-based block polymer obtained by the above production method.
  • the phosphonic acid-based block polymer of the present invention has three key molecular structural features: 1 molecular structure is a block polymer, polyether structure is concentrated, and steric hindrance is enhanced; 2 adsorption group is phosphonic acid or sub- The structure of phosphonic acid has a single adsorption capacity higher than that of traditional carboxylate or sulfonate, and the adsorption groups are concentrated, which realizes the leap of polymer adsorption capacity; 3 the main chain structure is aromatic alkanes, and the polymer solution is enhanced. The rigidity of the conformation is conducive to improving the adsorption efficiency.
  • the dosage is 0.05% to 0.5% by weight of the total cementitious material, and as an improvement, preferably 0.1% to 0.4%, if the dosage is too low, the initial The dispersion effect of low water-to-binder ratio cement-based materials is unsatisfactory. If the dosage is too high, the retardation time will be delayed, the strength will be affected, and economic waste will be caused.
  • the phosphonic acid-based block polymer of the invention has good compatibility with the traditional admixture, and can be combined with the known sulfamic acid-based water reducing agent, lignin-based water reducing agent and naphthalene system in the prior art.
  • a water agent and an ester type carboxylic acid water reducing agent are used in combination, and in addition to the known concrete water reducing agent proposed above, an air entraining agent, a swelling agent, a retarder, an early strengthening agent, a tackifier, and the like may also be added. Reducer and defoamer, etc.
  • the block polymer with the main chain being aromatic aryl hydrocarbon and the adsorption group being phosphonic acid or phosphinic acid functional group was designed and prepared for the first time, and the key technology for preparation was polycondensation reaction;
  • the phosphonic acid-based block polymer prepared by the technique of the present invention can significantly improve the initial dispersion ability of the low water-to-binder ratio concrete, reduce the viscosity of the system, and the sandstone bone of today's cement, high clay and high sulfate content.
  • the material has good adaptability, improves the pumpability of low water-cement ratio concrete, and has broad application prospects for high-strength concrete.
  • the reagents used are all commercially available analytical reagents except for the monomer b, and the monomer b is self-made according to the synthesis method described in the following literature: (1) J. Org. Chem. 1966; 31: 1603-1607 ;Synthesis.2012;44:1628-1630;J.Am.Chem.Soc.1952;74:1528-1531;(2)Liaoning Chemical,37(8),505-506;(3)Hebei Chemical Industry, 2004, 1,1 ⁇ 5.
  • Standard polyethylene glycol GPC standard (Sigma-Aldrich, molecular weights 1010000, 478000, 263000, 118000, 44700, 18600, 6690, 1960, 628, 232).
  • the degree of polymerization of the polycondensate is estimated based on the molecular weight test results, wherein the degree of polymerization of the phosphonic acid group fragment B is simplified as follows. Make a calculation:
  • the above calculation process is based on the premise that, from an average point of view, it is assumed that the monomer b and the monomer c enter the polymer chain according to the initial monomer molar ratio, thereby calculating the average degree of polymerization;
  • the degree of polymerization of the phosphonic acid group fragment B degree of polymerization corresponding to the repeating unit of monomer b + degree of polymerization corresponding to the repeating unit of monomer c.
  • the repeating unit corresponding to the monomer b is a structure corresponding to the monomer b and a structure corresponding thereto to the aldehyde, and the repeating unit corresponding to the monomer c is analogized.
  • the molar amount of the ether type fragment A is estimated as follows:
  • the molar amount of the monomer a added when preparing the ether type fragment A is y
  • the degree of polymerization of the ether type fragment A is z
  • the mass of the solution containing the ether type fragment A obtained when preparing the ether type fragment A is m 1
  • the unit mass In the solution containing the ether type fragment A the molar amount of the ether type fragment A is y / (z ⁇ m 1 )
  • the mass of the solution containing the ether type fragment A added during the preparation of the block polymer is m 2 , wherein The molar amount of the ether-containing fragment A contained is m 2 ⁇ y/(z ⁇ m 1 );
  • the molar amount of the monomer b added when preparing the phosphonic acid group fragment B is s, the degree of polymerization of the phosphonic acid group fragment B is t, and the degree of polymerization of the repeating unit corresponding to the monomer b is x ⁇ t/(x+1).
  • the mass of the solution containing the phosphonic acid group fragment B is m 1 ', and the molar amount of the phosphonic acid group fragment B in the solution containing the phosphate group fragment B per unit mass is s ⁇ (x+ 1) / (x ⁇ t ⁇ m 1 '), if the mass of the solution containing the phosphonic acid group-containing fragment B added during the preparation of the block polymer is m 2 ', the molar amount of the ether-type fragment A contained therein is m 2 ' ⁇ s ⁇ (x+1)/(x ⁇ t ⁇ m 1 ').
  • the cement used is Jiangnan-Ogino cement (P.O42.5), and the stone is a continuous graded gravel with a particle size of 5-20 mm.
  • the sand is shown in Table 2.0.
  • the cement paste fluidity test is carried out according to GB/T8077-2000 standard. The cement is 300g, the water content is 87g, and the fluidity of the cement paste is measured on the flat glass after stirring for 3 minutes. The results are shown in Table 1.0.
  • the properties of concrete incorporating the polymer of the present invention were tested in accordance with the relevant provisions of JC473-2001 "Concrete Pumping Agent".
  • the dosage is the amount of the solidification.
  • Body mass ratio of 23%) and concentrated sulfuric acid (catalyst) 0.03mol stirred for 10min to mix evenly, and then slowly add 0.32mol of formaldehyde, the addition time is about 30min, then the temperature is raised to 103 ° C, the reaction is 3.2h, cooling and cooling, to obtain no A color or light yellow solution, that is, a solution containing a phosphonic acid group fragment B, LC test: the conversion rate of the monomer b was 94%, and the GPC test: the weight average molecular weight Mw ⁇ 8300, and the degree of polymerization was about 30.
  • Body mass ratio of 29%) and concentrated sulfuric acid (catalyst) 0.03mol stirred for 10min to mix evenly, and then slowly add 0.30mol of formaldehyde, the addition time is about 30min, then the temperature is raised to 106 ° C, the reaction is 3.6h, cooling and cooling, to obtain no A color or light yellow solution, that is, a solution containing a phosphonic acid group fragment B, LC test: conversion of monomer b was 92%, GPC test: weight average molecular weight Mw ⁇ 7200, polymerization degree was about 18.
  • the cement paste fluidity test is carried out according to the GB/T8077-2000 standard. The water content is 87g, and the fluidity of the cement paste is measured on the flat glass after stirring for 3 minutes.
  • the slump and slump loss shall be implemented in accordance with the relevant provisions of JC473-2001 "Concrete Pumping Agent".
  • the data in Table 1 shows that the phosphonic acid-based block polymer provided by the present technology has excellent initial water reducing ability, and when the dosage is 0.12%, it is combined with a conventional ether type or ester type polycarboxylic acid water reducing agent ( Compared with the comparative sample 2), the initial initial slurry fluidity of the cement has obvious advantages, but the 60-minute heat retention performance is general, indicating that the polycondensate has an excellent initial dispersibility of the cement paste.
  • the data in Table 2 shows that the phosphonic acid block polycondensate provided by the present invention has good cement adaptability and exhibits a smooth cement paste fluidity in the production of cement in different regions, while the comparative sample exhibits a lower performance.
  • the initial cement paste fluidity shows a large fluctuation in different cements, and the adaptability of cement is poor.
  • the data in Table 3 shows that the phosphonic acid-based block polymer provided by the present invention has the ability to resist montmorillonite.
  • the liquidity value of the slurry is Compared with montmorillonite, the expansion is basically the same, and there is no obvious decrease.
  • the liquidity of the slurry decreases rapidly and decreases with the increase of montmorillonite content. The range is even more than 50%.
  • the polycondensate water reducer has a wide space for engineering application, and its anti-clay ability will gradually be recognized by the market.
  • the data in Table 4 shows that the phosphonic acid-based block polymer provided by the present invention has the ability to resist sulfate ion interference, and the adsorption capacity of the phosphonate ion is greater than that of the carboxylate ion and the phosphonic acid block, which greatly improves the adsorption efficiency.
  • the amount of adsorption, in the cement paste system when the rubber content of the cement is 0.5%, 1.0% sodium sulfate respectively, the liquidity of the slurry is not significantly lower than that when the sulfate is not mixed.
  • Phenomenon the traditional ether or ester type polycarboxylate water reducer (PCA) has a certain decrease in the liquidity of the slurry with the increase of the sulfate content, indicating that the sulfate ion and the polycarboxylate superplasticizer are in the cement. Particle surface occurs Competitive adsorption. In the poor quality and high sulfate cement system of concrete admixture, the block sulfate water reducing agent has potential application space.
  • Raw material Water to glue ratio cement Silicon powder Mechanism mountain sand 5-10mm stone 10-20mm stone water Proportion, Kg/m3 0.24 495 55 740 666 444 130
  • the concrete fluidity data in Table 6 shows that under the condition that the mud content is 1.8%, the mountain sand and the stone with 0.6% mud content are aggregate and low water-to-binder ratio, the new synthesis is similar under the condition of similar gas content.
  • the phosphonic acid-based block polymer exhibits a higher slump value and expansion than the conventional ether type or ester type polycarboxylate water reducing agent (PCA), and the collapsed slump time is reduced by more than 50%.
  • PCA polyether type or ester type polycarboxylate water reducing agent
  • the phosphonic acid block polycondensate water reducing agent has good adaptability to the mechanism sand and stone with high mud content, effectively improves the initial dispersing ability, and can reduce the viscosity by more than 50%.
  • the phosphonic acid-based block polymer provided by the invention has novel structure, and the preparation process can be industrialized.
  • the main adsorption group of the water-reducing agent is introduced by replacing the traditional carboxyl group with a phosphonate, and the main chain sequence structure is a block type, and a traditional ether.
  • the main or ester type polycarboxylic acid main chain structure is significantly different, which improves the initial dispersion ability of low water-to-binder ratio concrete, and can effectively reduce the viscosity of concrete by more than 50%, which is beneficial to high strength in super high-rise, ultra-long distance and high temperature environment.
  • Concrete pumping construction shows good cement adaptability, clay resistance and resistance to sulfate ion adsorption. In today's market environment where the quality of concrete aggregates and admixtures is poor, the water reducer has Strong advantage and market application space.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Polyethers (AREA)

Abstract

本发明实施例提供了一种膦酸基嵌段聚合物、其制备方法及应用,涉及混凝土外加剂技术领域,所述方法为,所述膦酸基嵌段聚合物由醚型片段A、膦酸基片段B和第三部分醛C通过共缩聚反应制得,醚型片段A和膦酸基片段B的摩尔比为1:(0.8~5.0);其中,醚型片段A由特定结构的聚醚单体a和第一部分醛C缩聚得到,所述聚醚单体a的分子量为1200~4800,优选为1500~2500;所述膦酸基片段B由特定结构的含膦酸基的单体b、单体c和第二部分醛C在非质子性弱极性溶剂E中缩聚得到。本发明通过制备主链为芳香基烷烃、吸附基团为膦酸或亚膦酸官能团的嵌段聚合物,提高了其抗硫酸盐和粘土干扰能力,能实现低水胶比混凝土初始高分散、降低体系粘度的目的。

Description

一种膦酸基嵌段聚合物、其制备方法及应用
本申请要求于2016年12月30日提交中国专利局、申请号为201611270709.9、发明名称为″一种膦酸基嵌段聚合物、其制备方法及应用″的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及混凝土外加剂技术领域,特别涉及一种膦酸基嵌段聚合物、其制备方法及应用。
背景技术
高强混凝土作为一种新的建筑材料,以其抗压强度高、抗变形能力强、密度大、孔隙率低的优越性,在高层建筑结构、大跨度桥梁结构以及某些特种结构中得到广泛的应用。高强混凝土最大的特点是抗压强度高,一般为普通强度混疑土的4~6倍,故可减小构件的截面,因此最适宜用于高层建筑。因此世界范围内越来越多地采用施加预应力的高强混凝土结构,应用于大跨度房屋和桥梁中。此外,利用高强混凝土密度大的特点,可用作建造承受冲击和爆炸荷载的建(构)筑物,如原子能反应堆基础等。利用高强混凝土抗渗性能强和抗腐蚀性能强的特点,建造具有高抗渗和高抗腐要求的工业用水池等。
高强混凝土的配制对水泥、矿物掺合料、细骨料、粗骨料、外加剂和水都要特殊的要求,其中外加剂技术为核心技术。为了确保高强混凝土的流动性,便于泵送施工和振捣密实,同时在保证强度的前提下尽量降低胶凝材料的用量,配制高强混凝土宜采用减水率不小于25%的高性能减水剂,配制C80及以上强度等级的混凝土时,高性能减水剂的减水率不宜小于28%,外加剂的其他性能应符合相应的国家或行业标准。
聚羧酸外加剂作为一种新型的高性能减水剂,又被称为超塑化剂,由于其共聚物原料来源广泛,分子组成可设计,具有掺量低、保坍性能好、混凝土收缩率低、分子结构可调性强、生产工艺清洁化等突出优点,成为国内外混凝土外加剂研究和开发的热点。
然而在实际应用过程中,由于国内外很多工程的特殊性和季节的变化明显,以及不同区域的砂、石材料的质量参差不齐,含泥量、含粉量差异大,导致低水胶比的混凝土(≤0.36)初始分散困难、粘度大、易泌水,流动性变差,甚至后期的强度不能达标等等,针对此现象,国内外加大了聚羧酸的分子设计与工艺研发,但效果并不明显,不能从根本上解决这一问题。
专利文献CN105175658A涉及了一种梳状聚羧酸减水剂键合改性硅灰的方法,包括如下步骤:(1)采用TPEG(异戊烯基聚氧乙烯醚)与AA在链转移剂合引发剂作用下进行可逆加成-断裂转移聚合反应,(2)再将其与AA合KH570的混合物在链转移剂和引发剂作用下进行可逆加成-断裂链转移聚合作用,(3)再与表面羟基化改性的硅灰进行反应,制备出梳状嵌段聚羧酸减水剂键合改性硅灰,该发明优点:制备的聚羧酸减水剂的分子量分布窄,结构可控,该聚合物与表面羟基化处理的硅灰更易键合,可以批量使用,减少劳动强度,使得混凝土的应用更广泛。
专利文献CN103482897B提供了一种具有有序结构的嵌段聚羧酸混凝土高效减水剂及其制备方法,采用原子转移自由基聚合制备嵌段聚羧酸,有效的控制聚羧酸结构规整性及其分子量分布,并应用于水泥分散过程中,解决了聚羧酸分子量不可控、分子量分布较宽、分子结构不可设计等难题。
专利文献CN105713150A提供一种耐硫酸盐的聚羧酸减水剂的制备方法及其应用,该减水剂由单体a、单体b、单体c进行可逆加成-断裂链转移聚合。本发明通过在序列结构分布明确的嵌段聚羧酸主链结构上引入强吸附基团-膦酸基,使得嵌段聚羧酸的吸附能力更强,因而改善其对硫酸盐的耐性。因此,本发明制备的聚羧酸减水剂具有掺量低、减水率高、坍落度损失小、水泥适应性好、耐硫酸盐等优点,并且本发明合成方法简单,工艺要求低,生产成本小,环境污染小。
专利文献CN105175740A公开了一种高和易性酯类聚羧酸减水剂的制备方法,先由丙烯酸与和易性高的活性单体混合,加入氧化剂和助引发剂,在低温下滴加不饱和单体、链转移剂、还原剂和水的混合液,反应得到嵌段共聚物中间体,后加入聚乙二醇单甲醚与催化剂进行酯化接枝,最后中和制得。本发明制备的高和易性酯类聚羧酸减水剂通过分子结构设计,引进和易性好的活性单体,采取先低温聚合后高温酯化的方法,该方法双键破坏率低,共聚程度高,生产的减水剂和易性好,减水率高;工业化生产工艺简单、生产周期大大缩短, 生产过程绿色环保、无污染。
随着国家大规模基础设施建设,自然河砂、优质粉煤灰等资源日益枯竭,人工骨料和煤矸石、脱硫灰等低活性工业废渣在现代混凝土中也开始逐步使用,在传统聚羧酸分子框架内的结构设计与优化均不能从根本上解决低水胶比混凝土初始分散效率低、坍落度损失大、体系粘度高等一系列应用问题,混凝土流动性能调控逐渐陷入瓶颈,甚至限制了混凝土技术的发展。
故有必要开发新一代高分散降粘型膦酸基聚合物,突破传统减水剂的分子结构和作用机理局限,着眼于新型吸附基团和刚性主链的分子骨架创新,大胆设想,开发新一代膦酸基聚合物,提高初始分散、降低体系粘度,为高强混凝土的工程应用提供技术支撑。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:已有的用作水泥分散剂的膦酸基聚合物抗硫酸盐和粘土干扰能力不够,难以解决低水胶比混凝土初始高分散、降低体系粘度的问题。
发明内容
为了提高膦酸基嵌段聚合物抗硫酸盐和粘土干扰能力,实现低水胶比混凝土初始高分散、降低体系粘度,本发明实施例提供了一种膦酸基嵌段聚合物的制备方法。
本发明实施例还提供了所述制备方法得到的膦酸基嵌段聚合物。
本发明实施例还提供了所述膦酸基嵌段聚合物作为水泥分散剂的应用。
所述技术方案如下:
在本发明的第一方面,提供了一种膦酸基嵌段聚合物的制备方法,所述膦酸基嵌段聚合物由醚型片段A、膦酸基片段B和第三部分醛C通过共缩聚反应制得,
其中,醚型片段A由聚醚单体a和第一部分醛C缩聚得到,
所述聚醚单体a的结构式如a-1、a-2、a-3、a-4或a-5所示:
Figure PCTCN2017074355-appb-000001
其中L1为H、C1~C10烷基或NR5R6,R5、R6均为C1~C3烷基,
R1、R2、R3和R4为聚氧化烯基结构,相互独立,所述聚氧化烯基结构由聚氧乙烯基结构和可选的聚氧丙烯基结构组成,聚氧乙烯基结构含量不低于60mol%,
聚醚单体a的分子量为1200~4800,优选为1500~2500;
所述膦酸基片段B由单体b、单体c和第二部分醛C在非质子性弱极性溶剂E中缩聚得到;
所述单体b的结构式如b-1或b-2或b-3所示:
Figure PCTCN2017074355-appb-000002
其中L2为C2~C10的直链亚烷基或(AO)m,m=1~5,AO为CH2CH2O和/或CH(CH3)CH2O,Y为H、OH、-COOH、-COOR7或C1~C8的烷基,其中R7为C1~C6的直链烷基结构;当L2为C2~C10的直链亚烷基时,G为-N(CH2-PO3H2)2和-NH-CH2PO3H2,当L2为(AO)m时,G为-PO3H2
单体c为苯酚、苯胺、对/邻氨基苯磺酸、对/邻羟基苯甲酸,对/邻氨基苯甲酸,对/邻羟基苯磺酸,对/邻甲基苯胺或对/邻甲基苯酚中的至少一种;
所述单体c的加入量为单体b摩尔量的1%~10%;
所述醛C为C1~C6的烷基醛、C7~C12的芳香醛或乙醛酸;
所述醚型片段A的分子量为2400~96000,聚合度为2~20;
所述膦酸基片段B的分子量为300~43200,聚合度为2~100;
所述膦酸基嵌段聚合物的分子量为6000~100000。
优选的,所述聚醚单体a中的R1、R2、R3和R4为端羟基聚氧化烯基结构,更优选的,R1=R2=R3=R4,最优选的,R1、R2、R3和R4优选为端羟基聚氧乙烯基结构。
优选的,R5=R6=C1~C2的烷基(例如为甲基)。
优选的,m=1或2。
优选的,Y=H、OH、-COOH或-COOR7,R7为C1~C3直链烷基(如甲基、乙基)。
优选的,L2为C2~C4的直链亚烷基(如亚乙基),G为-N(CH2-PO3H2)2和-NH-CH2PO3H2
优选的,
所述醚型片段A的分子量为8000~60000,聚合度为5~15;
所述膦酸基片段B的分子量为5000~30000,聚合度为15~60,更优选的,分子量为5000~25000,聚合度为15~55;
所述膦酸基嵌段聚合物的分子量为14000~100000。
优选的,
由聚醚单体a和第一部分醛C在第一部分酸性催化剂D存在下,以第一部分水作为溶剂,缩聚得到含所述醚型片段A的溶液;
由单体b、单体c和第二部分醛C在第二部分酸性催化剂D存在下,在非质子性弱极性溶剂E中缩聚得到含所述膦酸基片段B的溶液;
所述膦酸基嵌段聚合物由含醚型片段A的溶液、膦酸基片段B的溶液与第三部分酸性催化剂D、第二部分水混合后,和第三部分醛C通过共缩聚反应制得。
进一步优选的,
所述含醚型片段A的溶液由聚醚单体a和第一部分醛C在第一部分酸性催化剂D存在下,以第一部分水为溶剂,缩聚得到,
所述聚醚单体a和第一部分醛C的摩尔比为1∶(1.2~3.6),
第一部分酸性催化剂D的加入量为单体a的摩尔量的5%~10%,
第一部分水的加入量为单体a质量的1%~20%,
优选在90~130℃、回流状态或密闭压力条件下、缩聚反应1~6h得到含醚型片段A的溶液;
所述含膦酸基片段B的溶液由单体b、单体c和第二部分醛C在第二部分酸性催化剂D存在下,在非质子性弱极性溶剂E中缩聚得到,
所述(单体b+单体c)和第二部分醛C的摩尔比为1∶(1.0~2.4),
第二部分催化剂D的加入量为单体b的摩尔量的1%~5%,
非质子性溶剂E的加入量为单体b质量的20%~100%,
所述非质子性溶剂E为乙二醇二甲醚、乙二醇甲乙醚、二乙二醇二甲醚、二乙二醇甲乙醚、三乙二醇二甲醚或三乙二醇甲乙醚中的至少一种,优选为二乙二醇甲乙醚和/或二乙二醇二甲醚。
优选于90~130℃、回流状态或密闭压力条件下、缩聚反应1~4h得到含膦酸基片段B的溶液;
所述膦酸基嵌段聚合物由含醚型片段A的溶液、含膦酸基片段B的溶液与第三部分酸性催化剂D、第二部分水混合后,和第三部分醛C通过共缩聚反应制得,
醚型片段A、膦酸基片段B和第三部分醛C的摩尔比为1∶(0.8~5.0)∶(0.8~2.0),
第三部分酸性催化剂D的加入量为聚醚单体a和膦酸基单体b摩尔量之和的20%~50%,
第三部分醛C的加入量为聚醚单体a和膦酸基单体b摩尔量之和的30%~50%,
所述第二部分水的加入量为含醚型片段A的溶液和含膦酸基片段B的溶液质量之和的1%~25%,
所述聚醚单体a和膦酸基单体b摩尔量之和是指缩聚得到含所述醚型片段A的溶液时加入的聚醚单体a的摩尔量与缩聚得到含所述膦酸基片段B的溶液时加入的膦酸基单体b的摩尔量之和,
优选在90~130℃、回流状态或密闭压力条件下,共缩聚反应1~8h得到所述膦酸基嵌段聚合物。
所述聚醚单体a可采用商业化的简单原料,在碱(NaH/NaOMe/NaOH/KOH等)或金属复合物(DMC、Mg/Al复合物等)等催化作用下,与环氧乙烷或或环氧乙烷与环氧丙烷的混合物发生烷氧基化反应制得,该方法为业内所熟知。当与环氧乙烷和环氧丙烷的混合物发生烷氧基化反应时,可以根据需要调整两种环氧烷烃单体的进料顺序和进料方式,从而调整所得聚合物的结构为无规共聚或嵌段共聚以及两种重复单元的排列顺序。本发明对此不做特别限定。
所述单体b可采用商业化的简单原料,通过亚膦酸化或膦酸化反应制备而得,当G为-N(CH2-PO3H2)2,-NH-CH2PO3H2时,可以相应结构的有机伯胺为底物,采用有机化学的曼尼希反应制得,具体方法可参照相关文献进行(J.Org.Chem.1966;31:1603-1607;Synthesis.2012;44:1628-1630;J.Am.Chem.Soc.1952;74:1528-1531),当X为O时,采用常用的膦酸化试剂或试剂组合制备,如多聚磷酸、P2O5、磷酸等,其中常用试剂为P2O5,具体方法可参照相关文献(辽宁化工,37(8),505-506;河北化工,2004,1,1~5;等),该相关制备技术均为业内所熟知。
所述醛C可以为甲醛,乙醛,丙醛等C1~C6的烷基醛(若链段过长,则活性变弱),或苯甲醛,苯乙醛,苯丙醛等C7~C12的芳香醛(若链段过长,则活性变弱),还可以为乙醛酸。
所述酸性催化剂D为本领域常规选择,主要选自浓硫酸、甲磺酸、对甲苯磺酸、2-萘磺酸、膦酸、草酸、浓盐酸,优选浓硫酸。
所述非质子性弱极性溶剂E选用常规的非质子性弱极性溶剂即可,随着单体b的分子量增长,其水溶性逐渐下降,而非质子性弱极性溶剂E为单体b的良性溶剂,能保证反应体系澄清透明,缩聚反应持续进行,进而准确控制其分子量,故良性溶剂的选择为膦酸基片段B制备技术的关键,例如可选择乙二醇二甲醚、乙二醇甲乙醚、二乙二醇二甲醚、二乙二醇甲乙醚、三乙二醇二甲醚、 三乙二醇甲乙醚中的至少一种,其中以二乙二醇甲乙醚或二乙二醇二甲醚较为常用。
醚型片段A、膦酸基片段B合成后,直接以反应所得混合物作为下一步共缩聚反应的原料,与第三部分醛C反应,反应所得混合物中的酸性催化剂和未反应的醛C一起参与共缩聚反应。需要说明的是,上述第三部分醛C是指共缩聚反应中新加入的醛,并不包括醚型片段A、膦酸基片段B合成中未反应的醛C。聚醚单体a和单体b转化率很高,均在90%以上,出于简化的考虑,本发明在计算醚型片段A溶液中醚型片段A质量以及膦酸基片段B溶液中膦酸基片段B的质量时,视为聚醚单体a和单体b的转化率均为100%,即所有的聚醚单体a转化为醚型片段A,所有的单体b转化为膦酸基片段B。结合分子量,即可以推算出缩聚产物中所含的醚型片段A或膦酸基片段B的摩尔量。
所述缩聚反应(包括共缩聚反应)采用常规操作,一般为:将除醛C以外的所有反应原料混合溶解后,缓慢滴加醛C,滴加结束后升温、进行缩聚反应。
需要说明的是,本发明中大部分聚醚单体a和单体b参与了缩聚反应,未反应单体及副产物无需分离,可以直接进行应用,不会对其分散效果造成明显影响。
为了获得较好的储存稳定性,通常还需要调整最后的产物的pH值至3.0~10.0(如3.0~5.0),浓度为20%~50%。
根据本发明的第二个方面,还提供了上述制备方法所得膦酸基嵌段聚合物。
本发明所述的膦酸基嵌段聚合物具有三个关键分子结构特征:①分子结构为嵌段聚合物,聚醚结构集中,增强了空间位阻作用;②吸附基团为膦酸或亚膦酸结构,单个吸附能力较传统的羧酸根或磺酸根有了质的提升,且吸附基团集中,实现了聚合物吸附能力的跨越;③主链结构为芳香基烷烃,增强了聚合物溶液构象的刚性,有利于提升吸附效率。
根据本发明的第三个方面,还提供了上述制备方法所得膦酸基嵌段聚合物作为水泥分散剂的应用。
本发明所述的膦酸基嵌段聚合物的应用方法:其掺量为总胶凝材料重量的0.05%~0.5%,作为改进,优选0.1%~0.4%,若掺量过低,则初始对低水胶比水泥基材料的分散效果不能令人满意,若掺量过高,则会延迟缓凝时间,影响强度,也会造成经济浪费。
本发明所述膦酸基嵌段聚合物与传统外加剂具有很好的相容性,可以与现有技术中的已知氨基磺酸系减水剂、木质素系减水剂、萘系减水剂以及酯型羧酸减水剂相混合使用,另外,除上面提出的已知混凝土减水剂,其中也可以加入引气剂、膨胀剂、缓凝剂、早强剂、增粘剂、减缩剂和消泡剂等。
本发明实施例提供的技术方案的有益效果是:
(1)首次设计并制备了主链为芳香基烷烃、吸附基团为膦酸或亚膦酸官能团的嵌段聚合物,且制备关键技术为缩聚反应;
(2)原材料易于采购,且工艺简单可行,设备投资不大,具有可工业化前景;
(3)采用本发明的技术制备的膦酸基嵌段聚合物可显著提升低水胶比混凝土的初始分散能力,降低体系粘度,且对当今水泥、高粘土和高硫酸盐含量的砂石骨料具有良好的适应性,提升了低水胶比混凝土的可泵性,针对高强混凝土,应用前景广阔。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明实施方式作进一步地详细描述。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
本发明实施例中,所用的试剂除单体b外均为市售分析纯试剂,单体b根据以下文献所记载合成方法自制:(1)J.Org.Chem.1966;31:1603-1607;Synthesis.2012;44:1628-1630;J.Am.Chem.Soc.1952;74:1528-1531;(2)辽宁化工,37(8),505-506;(3)河北化工,2004,1,1~5。
分子量测试条件:本发明实施例中所有缩聚物的分子量使用水性凝胶色谱(GPC)进行测定,实验条件如下:
凝胶柱:Shodex SB806+803两根色谱柱串联;
流动相:0.1MNaNO3水溶液;
流动相速度:1.01ml/min;
注射:20μl 0.5%水溶液;
检测器:Shodex RI-71型示差折光检测器;
标准物:聚乙二醇GPC标样(Sigma-Aldrich,分子量1010000、478000、263000、118000、44700、18600、6690、1960、628、232)。
由于单体a、单体b、单体c转化率接近100%,因此假设单体a、单体b、单体c均100%参与缩聚反应、进入响应的缩聚物的聚合物链中,同时假设醚型片段A中对应于单体a的结构与对应于醛C的结构摩尔比为1∶1,膦酸基片段B中(对应于单体b的结构+对应于单体c的结构)与对应于醛C的结构摩尔比为1∶1,以上述假设为前提,根据所述分子量测试结果推算得到所述缩聚物的聚合度,其中,膦酸基片段B的聚合度采用如下简化过程进行推算:
设单体b与单体c的摩尔比=x,计算出x+1个聚合度对应的膦酸基片段B的分子量M0,实际测得膦酸基片段B的分子量为M,则膦酸基片段B的聚合度为(x+1)·M/M0。上述推算过程基于以下前提:从平均的角度而言,假定单体b、单体c按照初始单体摩尔比进入聚合物链,从而计算得到平均聚合度;所述膦酸基片段B的聚合度=对应于单体b的重复单元的聚合度+对应于单体c的重复单元的聚合度。所述对应于单体b的重复单元为一个对应于单体b的结构和一个与之相连的对应于醛的结构,对应于单体c的重复单元依次类推。
所述醚型片段A的摩尔量推算过程如下:
假设制备醚型片段A时加入的单体a的摩尔量为y,醚型片段A的聚合度为z,制备醚型片段A时所得含醚型片段A的溶液质量为m1,那么单位质量含醚型片段A的溶液中,醚型片段A的摩尔量为y/(z·m1),如果嵌段聚合物制 备过程中加入的含醚型片段A的溶液的质量为m2,其中所含醚型片段A的摩尔量为m2·y/(z·m1);
假设制备膦酸基片段B时加入的单体b的摩尔量为s,膦酸基片段B的聚合度为t,对应于单体b的重复单元的聚合度为x·t/(x+1),制备膦酸基片段B时所得含膦酸基片段B的溶液质量为m1’,那么单位质量含磷酸基片段B的溶液中,膦酸基片段B的摩尔量为s·(x+1)/(x·t·m1’),如果嵌段聚合物制备过程中加入的含膦酸基片段B的溶液的质量为m2’,其中所含醚型片段A的摩尔量为m2’·s·(x+1)/(x·t·m1’)。
本发明应用实施例中,除特别说明,所采用的水泥均为江南-小野田水泥(P.O42.5),石子为粒径为5~20mm连续级配的碎石。砂子如表2.0所示。水泥净浆流动度测试参照GB/T8077-2000标准进行,水泥300g,加水量为87g,搅拌3min后在平板玻璃上测定水泥净浆流动度,结果见表1.0。参照JC473-2001《混凝土泵送剂》相关规定测试掺入本发明所述聚合物的混凝土性能。所述掺量均为折固掺量。
实施例中涉及的单体a的编号与分子结构:
Figure PCTCN2017074355-appb-000003
实施例中涉及的单体b的编号与分子结构:
Figure PCTCN2017074355-appb-000004
合成实施例1
(1)醚型片段A的合成
在一个装有电动机械搅拌的1000ml四口烧瓶中,依次加入聚醚单体a1(Mw=1200)0.10mol,反应溶剂水10.0g和浓硫酸(催化剂)0.005mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.13mol,滴加时间约30min,然后升温至100℃,反应2h,冷却降温,得到无色或浅黄色溶液,即得含醚型片段A的溶液,LC(液相色谱)测试:单体a的转化率达95%,GPC测试:重均分子量Mw≈8200,聚合度约为5。
(2)膦酸基片段B的合成
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入单体b1 0.20mol、单体c苯酚0.01mol,反应溶剂E乙二醇二甲醚20.0g(与单体质量比36%)和浓硫酸(催化剂)0.01mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.22mol,滴加时间约30min,然后升温至103℃,反应1.5h,冷却降温,得到无色或浅黄色溶液,即得含膦酸基片段B的溶液,LC测试:单体b的转化率达94%,GPC测试:重均分子量Mw≈5800,聚合度约24。
(3)膦酸基嵌段聚合物的制备
在一个装有电动机械搅拌的1000ml四口烧瓶中,依次加入前述制备的含醚型片段A的溶液约145g、含膦酸基片段B的溶液约81g(其中膦酸基片段B/醚型片段A的摩尔比为4.8)、浓硫酸(催化剂)0.06mol((聚醚单体a+膦酸基单体b)的摩尔量的20%)和适量的反应溶剂水10g,搅拌10min至混合均匀,再缓慢滴加甲醛0.10mol((聚醚单体a+膦酸基单体b)的摩尔量的33%),滴加时间约30min,然后升温至108℃,反应2.5h,冷却降温,加入液碱调节PH值为4.0左右,加入水调节固含在30%左右,得到无色或浅黄色溶液,GPC测试:重均分子量Mw≈15000。
合成实施例2
(1)醚型片段A的合成
在一个装有电动机械搅拌的1000ml四口烧瓶中,依次加入聚醚大单体a2(Mw=2000)0.10mol,反应溶剂水25.0g和浓硫酸(催化剂)0.006mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.16mol,滴加时间约30min,然后升温至106℃,反应3.0h,冷却降温,得到无色或浅黄色溶液,即得含醚型片段A的溶液,LC(液相色谱)测试:单体a的转化率达93%,GPC测试:重均分子量Mw≈16000,聚合度约为7。
(2)膦酸基片段B的合成
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入单体b2 0.25mol,单体c苯胺0.02mol,反应溶剂乙二醇甲乙醚18.0g(与单体质量比26%)和浓硫酸(催化剂)0.02mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.28mol,滴加时间约30min,然后升温至103℃,反应2.2h,冷却降温,得到无色或浅黄色溶液,即得含膦酸基片段B的溶液,LC测试:单体b的转化率达95%,GPC测试:重均分子量Mw≈7100,聚合度约为28。
(3)膦酸基嵌段聚合物的制备
在一个装有电动机械搅拌的1000ml四口烧瓶中,依次加入前述制备的含醚型片段A的溶液约242g、含膦酸基片段B的溶液约103g(其中膦酸基片段B/醚型片段A的摩尔比为4)、浓硫酸(催化剂)0.08mol((聚醚单体a+膦酸基单体b)的摩尔量的23%)和适量的反应溶剂水25g,搅拌10min至混合均匀,再缓慢滴加甲醛0.12mol((聚醚单体a+膦酸基单体b)的摩尔量的34%),滴加时间约30min,然后升温至110℃,反应3.5h,冷却降温,加入液碱调节PH值 为4.0左右,加入水调节固含在30%左右,得到无色或浅黄色溶液,GPC测试:重均分子量Mw≈23800。
合成实施例3
(1)醚型片段A的合成
在一个装有电动机械搅拌的1000ml四口烧瓶中,依次加入聚醚大单体a3(Mw=2500)0.10mol,反应溶剂水28.0g和浓硫酸(催化剂)0.007mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.22mol,滴加时间约30min,然后升温至108℃,反应3.5h,冷却降温,得到无色或浅黄色溶液,即得含醚型片段A的溶液,LC(液相色谱)测试:单体a的转化率达92%,GPC测试:重均分子量Mw≈17500,聚合度约为6。
(2)膦酸基片段B的合成
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入单体b3 0.26mol,单体c对氨基苯磺酸0.01mol,反应溶剂乙二醇甲乙醚17.5g(与单体质量比23%)和浓硫酸(催化剂)0.03mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.32mol,滴加时间约30min,然后升温至103℃,反应3.2h,冷却降温,得到无色或浅黄色溶液,即得含膦酸基片段B的溶液,LC测试:单体b的转化率达94%,GPC测试:重均分子量Mw≈8300,聚合度约为30。
(3)膦酸基嵌段聚合物的制备
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入前述制备的含醚型片段A的溶液约306g、含膦酸基片段B的溶液约105g(其中膦酸基片段B/醚型片段A的摩尔比为5)、浓硫酸(催化剂)0.10mol((聚醚单体a+膦酸基单体b)的摩尔量的28%)和适量的反应溶剂水35g,搅拌10min至混合均匀,再缓慢滴加甲醛0.14mol((聚醚单体a+膦酸基单体b)的摩尔量的39%),滴加时间约30min,然后升温至115℃,反应4.2h,冷却降温,加入液碱调节PH值为4.0左右,加入水调节固含在30%左右,得到无色或浅黄色溶液,GPC测试:重均分子量Mw≈26000。
合成实施例4
(1)醚型片段A的合成
在一个装有电动机械搅拌的1000ml四口烧瓶中,依次加入聚醚大单体a4(Mw=4000)0.10mol,反应溶剂水35.0g和浓硫酸(催化剂)0.008mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.24mol,滴加时间约30min,然后升温至106℃,反应4.5h,冷却降温,得到无色或浅黄色溶液,即得含醚型片段A的溶液,LC(液相色谱)测试:单体a的转化率达91%,GPC测试:重均分子量Mw≈36000,聚合度约为8。
(2)膦酸基片段B的合成
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入单体b4 0.24mol,单体c对氨基苯甲酸0.008mol,反应溶剂二乙二醇二甲醚23.2g(与单体质量比32%)和浓硫酸(催化剂)0.04mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.34mol,滴加时间约30min,然后升温至102℃,反应4h(超出1-4h范围),冷却降温,得到无色或浅黄色溶液,即得含膦酸基片段B的溶液,LC测试:单体b的转化率达93%,GPC测试:重均分子量Mw≈9600,聚合度约为34。
(3)膦酸基嵌段聚合物的制备
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入前述制备的含醚型片段A的溶液约460g、含膦酸基片段B的溶液约100g(其中膦酸基片段B/醚型片段A的摩尔比为4.3)、浓硫酸(催化剂)0.12mol((聚醚单体a+膦酸基单体b)的摩尔量的35%)和适量的反应溶剂水43g,搅拌10min至混合均匀,再缓慢滴加甲醛0.16mol((聚醚单体a+膦酸基单体b)的摩尔量的47%),滴加时间约30min,然后升温至120℃,反应4.8h,冷却降温,加入液碱调节PH值为4.0左右,加入水调节固含在30%左右,得到无色或浅黄色溶液,GPC测试:重均分子量Mw≈48000。
合成实施例5
(1)醚型片段A的合成
在一个装有电动机械搅拌的1000ml四口烧瓶中,依次加入聚醚大单体a5(Mw=4800)0.10mol,反应溶剂水34.0g和浓硫酸(催化剂)0.010mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.23mol,滴加时间约30min,然后升温至104℃,反应5.5h,冷却降温,得到无色或浅黄色溶液,即得含醚型片段A的溶 液,LC(液相色谱)测试:单体a的转化率达92%,GPC测试:重均分子量Mw≈45000,聚合度约为9。
(2)膦酸基片段B的合成
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入单体b5 0.28mol,单体c对羟基苯甲酸0.006mol,反应溶剂三乙二醇二甲醚24.5g(与单体质量比29%)和浓硫酸(催化剂)0.05mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.32mol,滴加时间约30min,然后升温至103℃,反应3.8h(超出1-4h范围),冷却降温,得到无色或浅黄色溶液,即得含膦酸基片段B的溶液,LC测试:单体b的转化率达94%,GPC测试:重均分子量Mw≈14000,聚合度约为38。
(3)膦酸基嵌段聚合物的制备
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入前述制备的含醚型片段A的溶液约544g、含膦酸基片段B的溶液约125g(其中膦酸基片段B/醚型片段A的摩尔比为4.2)、浓硫酸(催化剂)0.14mol((聚醚单体a+膦酸基单体b)的摩尔量的50%)和适量的反应溶剂水约54g,搅拌10min至混合均匀,再缓慢滴加甲醛0.14mol((聚醚单体a+膦酸基单体b)的摩尔量的37%),滴加时间约30min,然后升温至128℃,反应4.8h,冷却降温,加入液碱调节PH值为4.0左右,加入水调节固含在30%左右,得到无色或浅黄色溶液,GPC测试:重均分子量Mw≈65000。
合成实施例6
(1)醚型片段A的合成
在一个装有电动机械搅拌的1000ml四口烧瓶中,依次加入聚醚大单体a6(Mw=4600)0.10mol,反应溶剂水36.0g和浓硫酸(催化剂)0.010mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.30mol,滴加时间约30min,然后升温至110℃,反应5.8h,冷却降温,得到无色或浅黄色溶液,即得含醚型片段A的溶液,LC(液相色谱)测试:单体a的转化率达93%,GPC测试:重均分子量Mw≈58000,聚合度约为12。
(2)膦酸基片段B的合成
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入单体b6 0.32mol,单体c对羟基苯甲酸0.01mol,反应溶剂三乙二醇甲乙醚28.5g (与单体质量比29%)和浓硫酸(催化剂)0.05mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.35mol,滴加时间约30min,然后升温至105℃,反应4.0h,冷却降温,得到无色或浅黄色溶液,即得含膦酸基片段B的溶液,LC测试:单体b的转化率达94%,GPC测试:重均分子量Mw≈24000,聚合度约为58。
(3)膦酸基嵌段聚合物的制备
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入前述制备的含醚型片段A的溶液约530g、含膦酸基片段B的溶液约148g(其中膦酸基片段B/醚型片段A的摩尔比为4.8)、浓硫酸(催化剂)0.16mol((聚醚单体a+膦酸基单体b)的摩尔量的38%)和适量的反应溶剂水约56g,搅拌10min至混合均匀,再缓慢滴加甲醛0.16mol((聚醚单体a+膦酸基单体b)的摩尔量的38%),滴加时间约30min,然后升温至125℃,反应4.8h,冷却降温,加入液碱调节PH值为4.0左右,加入水调节固含在30%左右,得到无色或浅黄色溶液,GPC测试:重均分子量Mw≈96000。
合成实施例7
(1)醚型片段A的合成
在一个装有电动机械搅拌的1000ml四口烧瓶中,依次加入聚醚大单体a7(Mw=2800)0.10mol,反应溶剂水52.0g和浓硫酸(催化剂)0.008mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.26mol,滴加时间约30min,然后升温至108℃,反应4.2h,冷却降温,得到无色或浅黄色溶液,即得含醚型片段A的溶液,LC(液相色谱)测试:单体a的转化率达93%,GPC测试:重均分子量Mw≈32000,聚合度约为10。
(2)膦酸基片段B的合成
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入单体b7 0.25mol,单体c对羟基苯磺酸0.008mol,反应溶剂乙二醇甲乙醚48.6g(与单体质量比63%)和浓硫酸(催化剂)0.04mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.30mol,滴加时间约30min,然后升温至104℃,反应4.0h,冷却降温,得到无色或浅黄色溶液,即得含膦酸基片段B的溶液,LC测试:单体b的转化率达93%,GPC测试:重均分子量Mw≈9000,聚合度约为24。
(3)膦酸基嵌段聚合物的制备
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入前述制备的含醚型片段A的溶液约360g、含膦酸基片段B的溶液约148g(其中膦酸基片段B/醚型片段A的摩尔比为2.4)、浓硫酸(催化剂)0.16mol((聚醚单体a+膦酸基单体b)的摩尔量的46%)和适量的反应溶剂水约76g,搅拌10min至混合均匀,再缓慢滴加甲醛0.16mol((聚醚单体a+膦酸基单体b)的摩尔量的46%),滴加时间约30min,然后升温至124℃,反应4.8h,冷却降温,加入液碱调节PH值为4.0左右,加入水调节固含在30%左右,得到无色或浅黄色溶液,GPC测试:重均分子量Mw≈46000。
合成实施例8
(1)醚型片段A的合成
在一个装有电动机械搅拌的1000ml四口烧瓶中,依次加入聚醚大单体a8(Mw=2000)0.10mol,反应溶剂水40.0g和浓硫酸(催化剂)0.007mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.36mol,滴加时间约30min,然后升温至106℃,反应3.6h,冷却降温,得到无色或浅黄色溶液,即得含醚型片段A的溶液,LC(液相色谱)测试:单体a的转化率达94%,GPC测试:重均分子量Mw≈28000,聚合度约为12。
(2)膦酸基片段B的合成
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入单体b8 0.29mol,单体c对氨基苯磺酸0.006mol,反应溶剂乙二醇甲乙醚26.8g(与单体质量比29%)和浓硫酸(催化剂)0.03mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.30mol,滴加时间约30min,然后升温至106℃,反应3.6h,冷却降温,得到无色或浅黄色溶液,即得含膦酸基片段B的溶液,LC测试:单体b的转化率达92%,GPC测试:重均分子量Mw≈7200,聚合度约为18。
(3)膦酸基嵌段聚合物的制备
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入前述制备的含醚型片段A的溶液约275g、含膦酸基片段B的溶液约146g(其中膦酸基片段B/醚型片段A的摩尔比为1.5)、浓硫酸(催化剂)0.15mol((聚醚单体a+膦酸基单体b)的摩尔量的38%)和适量的反应溶剂水约78g,搅拌10min至混合均匀,再缓慢滴加甲醛0.18mol((聚醚单体a+膦酸基单体b)的摩尔量的46%),滴加时间约30min,然后升温至128℃,反应4.0h,冷却降温, 加入液碱调节PH值为4.0左右,加入水调节固含在30%左右,得到无色或浅黄色溶液,GPC测试:重均分子量Mw≈37500,记为样品8。
合成实施例9
(1)醚型片段A的合成
在一个装有电动机械搅拌、恒温加热油浴(常温)的1000ml四口烧瓶中,依次加入聚醚大单体a2(Mw=1500)0.10mol,反应溶剂水28.0g和浓硫酸(催化剂)0.006mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.26mol,滴加时间约30min,然后升温至110℃,反应2.8h,冷却降温,得到无色或浅黄色溶液,即得含醚型片段A的溶液,LC(液相色谱)测试:单体a的转化率达96%,GPC测试:重均分子量Mw≈16000,聚合度约为9。
(2)膦酸基片段B的合成
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入单体b9 0.26mol,单体c邻甲基苯酚0.008mol,反应溶剂反应溶剂乙二醇甲乙醚24.6g(与单体质量比28%)和浓硫酸(催化剂)0.03mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.28mol,滴加时间约30min,然后升温至106℃,反应3.6h,冷却降温,得到无色或浅黄色溶液,即得含膦酸基片段B的溶液,LC测试:单体b的转化率达93%,GPC测试:重均分子量Mw≈6400,聚合度约为16。
(3)膦酸基嵌段聚合物的制备
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入前述制备的含醚型片段A的溶液约204g、含膦酸基片段B的溶液约136g(其中膦酸基片段B/醚型片段A的摩尔比为1.8)、浓硫酸(催化剂)0.12mol((聚醚单体a+膦酸基单体b)的摩尔量的33%)和适量的反应溶剂水约68g,搅拌10min至混合均匀,再缓慢滴加甲醛0.17mol((聚醚单体a+膦酸基单体b)的摩尔量的47%),滴加时间约30min,然后升温至120℃,反应3.6h,冷却降温,加入液碱调节PH值为4.0左右,加入水调节固含在30%左右,得到无色或浅黄色溶液,GPC测试:重均分子量Mw≈23500,记为样品9。
合成实施例10
(1)醚型片段A的合成
在一个装有电动机械搅拌的1000ml四口烧瓶中,依次加入聚醚大单体a3(Mw=1300)0.10mol,反应溶剂水25.0g和浓硫酸(催化剂)0.006mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.27mol,滴加时间约30min,然后升温至106℃,反应2.0h,冷却降温,得到无色或浅黄色溶液,即得含醚型片段A的溶液,LC(液相色谱)测试:单体a的转化率达94%,GPC测试:重均分子量Mw≈12000,聚合度约为8。
(2)膦酸基片段B的合成
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入单体b10 0.24mol,单体c对甲基苯胺0.006mol,反应溶剂二乙二醇甲乙醚18.6g(与单体质量比23%)和浓硫酸(催化剂)0.02mol,搅拌10min至混合均匀,再缓慢滴加甲醛0.28mol,滴加时间约30min,然后升温至109℃,反应3.5h,冷却降温,得到无色或浅黄色溶液,即得含膦酸基片段B的溶液,LC测试:单体b的转化率达93%,GPC测试:重均分子量Mw≈6200,聚合度约为6。
(3)膦酸基嵌段聚合物的制备
在一个装有电动机械搅拌、恒温加热油浴的1000ml四口烧瓶中,依次加入前述制备的含醚型片段A的溶液约186g、含膦酸基片段B的溶液约130(其中膦酸基片段B/醚型片段A的摩尔比为0.8)、浓硫酸(催化剂)0.10mol((聚醚单体a+膦酸基单体b)的摩尔量的29%)和适量的反应溶剂水约50g,搅拌10min至混合均匀,再缓慢滴加甲醛0.15mol((聚醚单体a+膦酸基单体b)的摩尔量的44%),滴加时间约30min,然后升温至116℃,反应3.2h,冷却降温,加入液碱调节PH值为4.0左右,加入水调节固含在30%左右,得到无色或浅黄色溶液,GPC测试:重均分子量Mw≈19400,记为样品10。
对比实施例1(传统醚型聚羧酸)
将异戊烯醇基聚氧乙烯醚(Mw=1500)300g(0.2mol)和水61g混合至1000mL的三口烧瓶中,升温至65℃,同时缓慢滴加甲基丙烯酸溶液42.5g(70%浓度,0.5mol)、过硫酸铵溶液30.6g(30%浓度)、巯基乙酸10.3g,滴加时间2h,滴加完毕后,继续反应3h,得到醚型聚羧酸母液A,为无色透明溶液,经测试,单体a的转化率达86%,醚型聚羧酸A的重均分子量为32000,记为对比样1。
对比实施例2(传统酯型聚羧酸)
将酯型聚醚大单体(Mw=1200)240g(0.2mol)和水60g混合至1000mL的三口烧瓶中,升温至65℃,同时缓慢滴加丙烯酸溶液41.8g(70%浓度,0.5mol)、过硫酸铵溶液30.0g(30%浓度)、巯基乙酸9.8g,滴加时间2h,滴加完毕后,继续反应3h,得到酯型聚羧酸母液A,为无色透明溶液,经测试,单体a的转化率达89%,酯型聚羧酸A的重均分子量为31000,记为对比样2。
应用实施例1
为了评价本发明所制备的膦酸基嵌段缩聚物对水泥净浆的分散性能,按照GB/T8077-2000标准进行了水泥净浆流动度测试,实验结果见表1。
本发明应用实施例中,除特别说明,所采用的水泥均为小野田52.5R.P.II水泥(江南小野田水泥有限公司),砂为细度模数Mx=2.6的中砂,石子粒径为5~20mm连续级配的碎石。水泥净浆流动度测试参照GB/T8077-2000标准进行,加水量87g,搅拌3分钟后在平板玻璃上测定水泥净浆流动度。坍落度及坍落度损失参照JC473-2001《混凝土泵送剂》相关规定执行。
表1中的数据表明,本发明技术提供的膦酸基嵌段聚合物具有优异的初始减水能力,当掺量均为0.12%时,与传统醚型或酯型聚羧酸减水剂(对比样1和对比样2)相比,水泥初始净浆流动度具有明显优势,但是60min的保坍性能一般,表明该缩聚物具有优异的水泥净浆初始分散能力。
表1样品的水泥净浆流动度
Figure PCTCN2017074355-appb-000005
应用实施例2
为了评价本发明的膦酸基嵌段聚合物对水泥的适应性,按照GB/T8077-2000≤混凝土外加剂匀质性试验方法≥中测定水泥净浆流动度的方法,水泥300g,加水量87g,对比样品为传统技术制备的醚型或酯型聚羧酸减水剂(PCA),采用净浆搅拌机进行测试初始净浆流动度,试验结果见表2。
表2中数据表明,本发明提供的膦酸基嵌段缩聚物具有良好的水泥适应性,在不同地区生产水泥中表现出了平稳的水泥净浆流动度,而对比样品虽然表现出了较低的初始水泥净浆流动度,在不同水泥中变现了较大的浮动,水泥的适应性较差。
表2样品对不同水泥的适应性
Figure PCTCN2017074355-appb-000006
应用实施例3
为了评价本发明的缩聚物对黏土的适应性,按照GB/T8077-2000≤混凝土外加剂匀质性试验方法≥中测定水泥净浆流动度的方法,水泥300g(鹤林水泥,江苏鹤林水泥有限公司),加水量87g,分别添加胶凝材料的0.5%和1%含量的蒙脱土,对比样品为传统醚型和酯型聚羧酸(PCA),采用净浆搅拌机进行测试初始净浆流动度,试验结果见表3。
表3中数据表明,本发明提供的膦酸基嵌段聚合物具有抗蒙脱土能力,当分别掺加胶材水泥量的0.5%、1.0%蒙脱土时,其净浆流动度值与不掺蒙脱土时相比,扩展度基本相当,无明显降低现象;对比样传统聚羧酸减水剂(PCA)随着蒙脱土掺量的增加,其净浆流动度迅速下降,下降幅度甚至达到50%以上。在混凝土骨料和掺合料品质逐渐变差的市场环境下,该缩聚物减水剂具有广阔的工程应用空间,其抗黏土能力会逐渐受到市场的认可。
表3样品的抗黏土性能测试
Figure PCTCN2017074355-appb-000007
应用实施例4
为了评价本发明的膦酸基嵌段缩聚物对硫酸盐的适应性,按照GB/T8077-2000≤混凝土外加剂匀质性试验方法≥中测定水泥净浆流动度的方法,水泥300g(鹤林水泥,江苏鹤林水泥有限公司),加水量87g,分别添加胶凝材料的0.5%和1%含量的硫酸钠,采用净浆搅拌机进行测试初始净浆流动度,试验结果见表4。
表4中数据表明,本发明提供的膦酸基嵌段聚合物具有抗硫酸根离子干扰能力,由于膦酸根离子的吸附能力大于羧酸根离子,膦酸基嵌段组合,极大提升了吸附效率和吸附量,在水泥净浆体系中,当分别掺加胶材水泥量的0.5%、1.0%硫酸钠时,其净浆流动度值与不掺硫酸盐时相比,其扩展度无明显降低现象;传统醚型或酯型聚羧酸减水剂(PCA)随着硫酸盐掺量的增加,其净浆流动度有一定程度的降低,表明硫酸根离子与聚羧酸减水剂在水泥颗粒表面发生 了竞争性吸附。在混凝土掺合料品质较差、高硫酸盐水泥体系中,该嵌段聚合物减水剂具有的抗硫酸盐性能具有潜在的巨大应用空间。
表4样品的抗硫酸盐能力测试
Figure PCTCN2017074355-appb-000008
应用实施例5
按照GB8076-2008≤混凝土外加剂≥标准中高性能减水剂的测试要求,采用鹤林水泥(江苏鹤林水泥有限公司)、含泥量为1.8%细度模数为3.3的机制山砂、含泥量为0.6%的公称粒径5-10mm和10-20mm连续级配碎石为材料,按照表5规定的配合比测试了缩聚物减水剂的减水率、含气量、坍落度保持能力等指标,测试结果见表6。
表5高强混凝土配合比
原材料 水胶比 水泥 硅粉 机制山砂 5-10mm石子 10-20mm石子
配比,Kg/m3 0.24 495 55 740 666 444 130
Figure PCTCN2017074355-appb-000009
表6新型缩聚物减水剂作用下高强混凝土性能试验
注:/表示混凝土没有坍落度和扩展度值
表6中混凝土流动性数据表明,在含泥量为1.8%机制山砂和含泥量为0.6%的石子为骨料和低水胶比的条件下,在含气量相近的情况下,新合成的膦酸基嵌段聚合物较传统醚型或酯型聚羧酸减水剂(PCA)表现出了较高的坍落度值和扩展度,倒坍落度筒时间降低50%以上,说明该膦酸基嵌段缩聚物减水剂对含泥量较高的机制砂、石子具有较好的适应能力,有效提升初始分散能力,且能降低粘度50%以上。
本发明提供的膦酸基嵌段聚合物,结构新颖,制备工艺可工业化,引入膦酸根代替传统的羧基等作为减水剂的主要吸附基团,主链序列结构为嵌段式,与传统醚型或酯型聚羧酸主链结构显著不同,全面提升了低水胶比混凝土的初始分散能力,且能有效降低混凝土粘度50%以上,有利于超高层、超远距离和高温环境下的高强混凝土泵送施工,另外,表现出了良好的水泥适应性、抗黏土能力及抗硫酸根离子竞争吸附能力,在当今混凝土骨料和掺合料品质较差的市场环境下,该减水剂具有较强的优势和市场应用空间。

Claims (10)

  1. 一种膦酸基嵌段聚合物的制备方法,其特征在于,所述膦酸基嵌段聚合物由醚型片段A、膦酸基片段B和第三部分醛C通过共缩聚反应制得,醚型片段A和膦酸基片段B的摩尔比为1∶(0.8~5.0);
    其中,醚型片段A由聚醚单体a和第一部分醛C缩聚得到,
    所述聚醚单体a的结构式如a-1、a-2、a-3、a-4或a-5所示:
    Figure PCTCN2017074355-appb-100001
    其中L1为H、C1~C10烷基或NR5R6,R5、R6均为C1~C3烷基,
    R1、R2、R3和R4为聚氧化烯基结构,相互独立,所述聚氧化烯基结构由聚氧乙烯基结构和可选的聚氧丙烯基结构组成,聚氧乙烯基结构含量不低于60mol%,
    聚醚单体a的分子量为1200~4800,优选为1500~2500;
    所述膦酸基片段B由单体b、单体c和第二部分醛C在非质子性弱极性溶剂E中缩聚得到;
    所述单体b的结构式如b-1或b-2或b-3所示:
    Figure PCTCN2017074355-appb-100002
    其中L2为C2~C10的直链亚烷基或(AO)m,m=1~5,AO为CH2CH2O和/或CH(CH3)CH2O,Y为H、OH、-COOH、-COOR7或C1~C8的烷基,其中R7为C1~C6的直链烷基结构;当L2为C2~C10的直链亚烷基时,G为-N(CH2-PO3H2)2和-NH-CH2PO3H2,当L2为(AO)m时,G为-PO3H2
    单体c为苯酚、苯胺、对/邻氨基苯磺酸、对/邻羟基苯甲酸,对/邻氨基苯甲酸,对/邻羟基苯磺酸,对/邻甲基苯胺或对/邻甲基苯酚中的至少一种;
    所述单体c的加入量为单体b摩尔量的1%~10%;
    所述醛C为C1~C6的烷基醛、C7~C12的芳香醛或乙醛酸;
    所述醚型片段A的分子量为2400~96000,聚合度为2~20;
    所述膦酸基片段B的分子量为300~43200,聚合度为2~100;
    所述膦酸基嵌段聚合物的分子量为6000~100000。
  2. 如权利要求1所述的膦酸基嵌段聚合物的制备方法,其特征在于,
    由聚醚单体a和第一部分醛C在第一部分酸性催化剂D存在下,以第一部分水作为溶剂,缩聚得到含所述醚型片段A的溶液;
    由单体b、单体c和第二部分醛C在第二部分酸性催化剂D存在下,在非质子性弱极性溶剂E中缩聚得到含所述膦酸基片段B的溶液;
    所述膦酸基嵌段聚合物由含醚型片段A的溶液、膦酸基片段B的溶液与第三部分酸性催化剂D、第二部分水混合后,和第三部分醛C通过共缩聚反应制得。
  3. 如权利要求2所述的膦酸基嵌段聚合物的制备方法,其特征在于,
    所述含醚型片段A的溶液由聚醚单体a和第一部分醛C在第一部分酸性催化剂D存在下,以第一部分水为溶剂,缩聚得到,
    所述聚醚单体a和第一部分醛C的摩尔比为1∶(1.2~3.6);
    第一部分酸性催化剂D的加入量为单体a的摩尔量的5%~10%;
    第一部分水的加入量为单体a质量的1%~20%。
  4. 如权利要求3所述的膦酸基嵌段聚合物的制备方法,其特征在于,
    所述含醚型片段A的溶液由聚醚单体a和第一部分醛C在第一部分酸性催化剂D存在下,以第一部分水为溶剂,在90~130℃、回流状态或密闭压力条件下、缩聚反应1~6h得到。
  5. 如权利要求2所述的的膦酸基嵌段聚合物的制备方法,其特征在于,
    所述含膦酸基片段B的溶液由单体b、单体c和第二部分醛C在第二部分酸性催化剂D存在下,在非质子性弱极性溶剂E中缩聚得到;
    所述(单体b+单体c)与第二部分醛C的摩尔比为1∶(1.0~2.4);
    第二部分催化剂D的加入量为单体b的摩尔量的1%~5%;
    非质子性溶剂E的加入量为单体b质量的20%~100%;
    所述非质子性溶剂E为乙二醇二甲醚、乙二醇甲乙醚、二乙二醇二甲醚、二乙二醇甲乙醚、三乙二醇二甲醚或三乙二醇甲乙醚中的至少一种,优选为二乙二醇甲乙醚和/或二乙二醇二甲醚。
  6. 如权利要求5所述的的膦酸基嵌段聚合物的制备方法,其特征在于,
    所述含膦酸基片段B的溶液由单体b、单体c和第二部分醛C在第二部分酸性催化剂D存在下,在非质子性弱极性溶剂E中于90~130℃、回流状态或密闭压力条件下、缩聚反应1~4h得到含片段B的溶液。
  7. 如权利要求2所述的膦酸基嵌段聚合物的制备方法,其特征在于,
    所述膦酸基嵌段聚合物由含醚型片段A的溶液、膦酸基片段B的溶液与第三部分酸性催化剂D、第二部分水混合后,和第三部分醛C通过共缩聚反应制得,
    醚型片段A、膦酸基片段B和第三部分醛C的摩尔比为1∶(0.8~5.0)∶(0.8~2.0);
    第三部分酸性催化剂D的加入量为聚醚单体a和膦酸基单体b摩尔量之和的20%~50%,
    第三部分醛C的加入量为聚醚单体a和膦酸基单体b摩尔量之和的30%~50%,
    所述第二部分水的加入量为片段A和片段B质量之和的1%~25%,
    所述聚醚单体a和膦酸基单体b摩尔量之和是指缩聚得到含所述醚型片段A的溶液时加入的聚醚单体a的摩尔量与缩聚得到含所述膦酸基片段B的溶液时加入的膦酸基单体b的摩尔量之和。
  8. 如权利要求7所述的膦酸基嵌段聚合物的制备方法,其特征在于,
    所述膦酸基嵌段聚合物由含醚型片段A的溶液、膦酸基片段B的溶液与第三部分酸性催化剂D、第二部分水混合后,和第三部分醛C在90~130℃、回流状态或密闭压力条件下,共缩聚反应1~8h得到。
  9. 权利要求1~8中任一项制备方法所得膦酸基嵌段聚合物。
  10. 权利要求1~8中任一项制备方法所得膦酸基嵌段聚合物作为水泥分散剂的应用。
PCT/CN2017/074355 2016-12-30 2017-02-22 一种膦酸基嵌段聚合物、其制备方法及应用 WO2018120385A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/462,300 US11505496B2 (en) 2016-12-30 2017-02-22 Phosphonato block polymer, preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611270709.9 2016-12-30
CN201611270709.9A CN108264620B (zh) 2016-12-30 2016-12-30 一种膦酸基嵌段聚合物、其制备方法及应用

Publications (1)

Publication Number Publication Date
WO2018120385A1 true WO2018120385A1 (zh) 2018-07-05

Family

ID=62706728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074355 WO2018120385A1 (zh) 2016-12-30 2017-02-22 一种膦酸基嵌段聚合物、其制备方法及应用

Country Status (3)

Country Link
US (1) US11505496B2 (zh)
CN (1) CN108264620B (zh)
WO (1) WO2018120385A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880035B (zh) * 2018-09-28 2023-05-05 江苏苏博特新材料股份有限公司 一种中低坍落度混凝土专用磷酸基保坍剂及其制备方法
WO2020113218A2 (en) 2018-11-30 2020-06-04 Ecolab Usa Inc. Surfactant compositions and use thereof
CN111377645B (zh) * 2018-12-31 2022-03-18 江苏苏博特新材料股份有限公司 一种适用于机制砂的小分子膦酸减水剂及其制备方法
CN113490652A (zh) * 2019-02-27 2021-10-08 巴斯夫欧洲公司 包含乙醛酸或其缩合产物或加成产物的混合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040612A1 (de) * 2008-10-06 2010-04-15 Construction Research & Technology Gmbh Phosphatiertes polykondensationsprodukt, verfahren zu dessen herstellung und verwendung
CA2427897C (en) * 2003-04-25 2012-08-14 Mbt Holding Ag Rheology stabilizer for cementitious compositions
WO2016030482A1 (fr) * 2014-08-28 2016-03-03 Chryso Copolymères à blocs utilisables comme fluidifiants
CN105399943A (zh) * 2015-12-31 2016-03-16 江苏苏博特新材料股份有限公司 一种抗泥土聚合物的制备方法及其应用
CN105601905A (zh) * 2015-12-31 2016-05-25 江苏苏博特新材料股份有限公司 一种聚合物添加剂的制备方法及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491078B2 (ja) * 1997-06-25 2010-06-30 ダブリユ・アール・グレイス・アンド・カンパニー・コネテイカツト スメクタイト粘土含有凝集物を含むコンクリートに対するeo/po超可塑剤の添加を最適化させるための添加剤及び方法
US7645850B2 (en) * 2005-08-11 2010-01-12 Frx Polymers, Inc. Poly(block-phosphonato-ester) and poly(block-phosphonato-carbonate) and methods of making same
CN102504238B (zh) * 2011-10-10 2014-01-22 江苏博特新材料有限公司 一种不饱和聚醚单体、采用该单体制备的梳形支化共聚物水泥分散剂及其制备方法
CN102899006A (zh) * 2012-09-20 2013-01-30 中国石油化工股份有限公司 一种含膦酸基聚合物钻井液降粘剂及其制备方法
CN105713150B (zh) * 2015-12-11 2018-06-26 江苏苏博特新材料股份有限公司 一种耐硫酸盐的聚羧酸减水剂的制备方法及其应用
CN105440276A (zh) * 2015-12-31 2016-03-30 江苏苏博特新材料股份有限公司 含亚磷酸基团聚合物的制备方法及其应用
CN105646871A (zh) * 2015-12-31 2016-06-08 江苏苏博特新材料股份有限公司 一种聚合物的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2427897C (en) * 2003-04-25 2012-08-14 Mbt Holding Ag Rheology stabilizer for cementitious compositions
WO2010040612A1 (de) * 2008-10-06 2010-04-15 Construction Research & Technology Gmbh Phosphatiertes polykondensationsprodukt, verfahren zu dessen herstellung und verwendung
WO2016030482A1 (fr) * 2014-08-28 2016-03-03 Chryso Copolymères à blocs utilisables comme fluidifiants
CN105399943A (zh) * 2015-12-31 2016-03-16 江苏苏博特新材料股份有限公司 一种抗泥土聚合物的制备方法及其应用
CN105601905A (zh) * 2015-12-31 2016-05-25 江苏苏博特新材料股份有限公司 一种聚合物添加剂的制备方法及其应用

Also Published As

Publication number Publication date
CN108264620B (zh) 2020-06-26
US20190315656A1 (en) 2019-10-17
CN108264620A (zh) 2018-07-10
US11505496B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
CN111377643B (zh) 一种高适应性降粘型聚羧酸减水剂及其制备方法和应用
AU2014213572B2 (en) Copolymer admixture system for workability retention of cementitious compositions
CN110938176B (zh) 超长保坍水泥基聚羧酸减水剂母液及其应用
WO2017113992A1 (zh) 一种磷酸化缩聚物高效减水剂及其制备方法
CN108250448B (zh) 含磷酸基团的低分子混凝土减水剂的制备方法及应用
CN102030494A (zh) 一种聚羧酸盐高性能减水剂及其低温一步法制备方法
CN108033978B (zh) 一种多元膦酸单体,其多元膦酸聚合物及其制备方法和应用
WO2014085996A1 (zh) 一种保坍型聚羧酸超塑化剂
WO2018120385A1 (zh) 一种膦酸基嵌段聚合物、其制备方法及应用
EP2334708A2 (en) Dynamic copolymers for workability retention of cementitious composition
CN109957103B (zh) 一种中低坍落度混凝土专用双齿型膦酸基减水剂及其制备方法
CN107936209A (zh) 一种高适应性快分散膦酸基减水剂及其制备方法
CN111718447B (zh) 一种荧光型聚羧酸系减水剂及其制备方法
CN107043227A (zh) 一种抗粘土型聚合物分散剂及其制备方法
CN112876667B (zh) 一种二茂铁改性聚氧乙烯醚单体以及二茂铁改性抗泥型聚羧酸系减水剂和制备方法
CN109704619B (zh) 一种氨基磺酸盐高效减水剂及其制备工艺
CN109320714B (zh) 一种中低坍落度混凝土专用小分子超塑化剂及其制备方法
CN113072665A (zh) 一种含膦酸基聚羧酸减水剂及其制备方法
CN107337788B (zh) 中低坍落度混凝土专用多元磷酸基外加剂及其制备方法
CN109485323B (zh) 早强降粘型聚羧酸减水剂在制备预制构件混凝土中的用途
CN111302692B (zh) 一种聚磷酸减水剂及其制备方法
CN109762114B (zh) 一种含有双降粘官能团的早强降粘型聚羧酸减水剂及其制备方法
CN116265500A (zh) 一种降粘型聚羧酸减水剂及其制备方法
CN109749020B (zh) 一种含烷基的早强降粘型聚羧酸减水剂及其制备方法
CN114316155B (zh) 一种树枝状早强型聚羧酸减水剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886545

Country of ref document: EP

Kind code of ref document: A1