WO2022077865A1 - 一种低模垢无卤阻燃热塑性聚酰胺组合物及其制备方法和应用 - Google Patents

一种低模垢无卤阻燃热塑性聚酰胺组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2022077865A1
WO2022077865A1 PCT/CN2021/082797 CN2021082797W WO2022077865A1 WO 2022077865 A1 WO2022077865 A1 WO 2022077865A1 CN 2021082797 W CN2021082797 W CN 2021082797W WO 2022077865 A1 WO2022077865 A1 WO 2022077865A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
thermoplastic polyamide
halogen
polyamide composition
free flame
Prior art date
Application number
PCT/CN2021/082797
Other languages
English (en)
French (fr)
Inventor
金雪峰
黄险波
叶南飚
王丰
胡泽宇
易新
吴长波
郑一泉
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Priority to JP2023522342A priority Critical patent/JP2023545149A/ja
Priority to EP21878921.2A priority patent/EP4227366A4/en
Publication of WO2022077865A1 publication Critical patent/WO2022077865A1/zh
Priority to US18/134,034 priority patent/US20230312921A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/287Calcium, strontium or barium nitrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to the field of polymer materials, in particular to a low mold scale halogen-free flame retardant thermoplastic polyamide composition and a preparation method and application thereof.
  • Polyamides are collectively referred to as nylons, which are named after the repeating amide group -[NHCO]- on the main chain of the molecule. Due to the polar amide group in the molecular structure, a strong hydrogen bond is formed between the molecular chains. It has high crystallinity and excellent mechanical properties. Polyamide is a kind of basic resin with the largest output, the most variety, the most widely used and the excellent comprehensive performance among the five general engineering plastics.
  • diethyl phosphinate As a general-purpose halogen-free flame retardant, diethyl phosphinate not only has good flame retardant performance, but also has a small addition amount, and has little influence on the physical and electrical properties of the base resin.
  • the flame retardant material is highly valued by the industry due to its characteristics of less smoke than halogen-based flame retardants and high CTI during combustion; It is more and more favored by manufacturers in the electrical and electrical industry, and the market application prospect is very broad.
  • Diethyl phosphinate flame retardant PA66 due to the strong acidity of diethyl phosphinate, and because polyamide has more polar amide groups, polyamide is easier to absorb water, and the water absorption rate is high. For example, under the condition of 23°C and 50% humidity, the water absorption rate of PA66 resin can reach 2.7%.
  • the temperature is high (for some hot runner molds, the temperature is higher than 300 ° C), it is easy to promote the decomposition of the system, resulting in a lot of gas.
  • serious mold scale often occurs on the mold, which affects the appearance of the product.
  • frequent cleaning of the mold is required, resulting in low efficiency, which makes it difficult to promote the product well.
  • the main method to solve the problem of mold fouling in the injection molding of diethylphosphinate flame retardant polyamide materials is to add acid absorbers to the system to reduce the acidity of the system.
  • European patent EP2417191A1 by adding calcium oxide to the system to neutralize some acidic substances in the system, reducing the acidity of the system and reducing the decomposition of the matrix resin, thereby effectively reducing the corrosion of the mold during high temperature injection molding; although this method It is helpful to reduce mold scale, but calcium oxide is easy to absorb moisture, resulting in a high water absorption rate of the system, which is difficult to control during processing.
  • the above-mentioned patent has a certain improvement of the mold scale of the diethylphosphinic acid flame retardant polyamide, but it is difficult to avoid the control of the water content during the use process, resulting in the contact between the diethylphosphinate and water, and the existence of The instability of quality can easily lead to the enhancement of acidity of the material and the deterioration of mold scale.
  • thermoplastic polyamide composition with low mold scale which can reduce the acidity and water absorption of the system at the same time, reduce the generation of mold scale during the preparation process, and at the same time have excellent flame retardant properties and electrical properties.
  • the object of the present invention is to overcome the insufficiency of phosphinate halogen-free flame retardant polyamide material system in the prior art, which is highly acidic, easy to corrode the mold and cause the decomposition of the system at high temperature to generate small molecular substances, resulting in mold scale, and provides a A low mold scale halogen free flame retardant thermoplastic polyamide composition.
  • the low mold scale halogen-free flame retardant thermoplastic polyamide composition has excellent flame retardant properties and electrical properties, and generates less mold scale during the production process.
  • Another object of the present invention is to provide a preparation method of the low mold scale halogen-free flame retardant thermoplastic polyamide composition.
  • Another object of the present invention is to provide an application of the low mold scale halogen-free flame retardant thermoplastic polyamide composition in preparing parts of electronic, electrical or electrical products.
  • the present invention adopts the following technical solutions:
  • thermoplastic polyamide composition comprising the following components calculated in parts by weight:
  • the flame retardant includes a phosphinate flame retardant, and does not include red phosphorus;
  • the adsorbent includes an ethylene copolymer obtained by copolymerizing the following components by weight:
  • the functional monomer is one of epoxide, ethylenically unsaturated monocarboxylic acid, ethylenically unsaturated monocarboxylic acid anhydride, ethylenically unsaturated dicarboxylic acid or ethylenically unsaturated dicarboxylic acid anhydride. one or a combination of several.
  • the ethylene copolymer is usually mixed with PA and used as a toughening agent.
  • the inventor creatively found that adding it to the halogen-free flame retardant polyamide composition containing phosphinate, in a certain range of addition amount, can reduce the generation of mold scale in the preparation process of the composition, The injection molding efficiency is improved without affecting the flame retardancy and electrical properties of the material.
  • the halogen-free flame retardant thermoplastic polyamide composition includes the following components calculated in parts by weight:
  • thermoplastic polyamide resin of the present invention is obtained by condensation polymerization of dicarboxylic acid and diamine, or by ring-opening polymerization of lactam.
  • the dibasic carboxylic acid is aliphatic dibasic acid oxalic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanoic acid, octadecanoic acid, aromatic dibasic acid p-benzene One or a combination of dicarboxylic acid, phthalic acid or naphthalene diacid.
  • the diamine is ethylenediamine, butanediamine, hexamethylenediamine, nonanediamine, decanediamine, undecylamine, dodecylamine, hexadecylamine, octadecylamine, p-phenylenediamine, One or a combination of m-phenylenediamine, o-phenylenediamine or 4,4'-diaminodiphenylmethane.
  • the lactam is one of butyrolactam, valerolactam, caprolactam, enantholactam, capryllactam, nonanolactam, caprolactam, laurolactam, hexadecanolactam or octadecolactam one or a combination of several.
  • the thermoplastic polyamide resin is one or a combination of nylon 6, nylon 66, nylon 46, nylon 6/66, nylon 610, nylon 611, nylon 612, nylon 6T or nylon 9T.
  • the phosphinate flame retardant is a phosphinate with the following structure:
  • R 1 and R 2 are independently selected from linear or branched C1-C6 alkyl groups and/or aryl groups; M is selected from one or more of alkali metals, alkaline earth metals, Al, Zn, Fe or Ti The combination of ; m is 1 ⁇ 4.
  • R 1 , R 2 are independently selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-pentyl and /or phenyl; M is selected from Al or Zn.
  • the phosphinate-based flame retardant further contains a melamine derivative.
  • the melamine derivative is melamine polyphosphate, wherein the phosphorus content is 10-15 wt%, the water content is less than 0.3 wt%, the density is 1.83-1.86 g/cm 3 , and its water slurry with a concentration of 10 wt% (as prepared in EP1095030B1) pH>4.5 (select a pH tester for measurement).
  • the melamine derivative is melamine polyphosphate, wherein the phosphorus content is 12-14 wt %, the water content is less than 0.3 wt %, the density is 1.83-1.86 g/cm 3 , and its 10 wt % concentration is water slurry
  • the pH of the body (as prepared in EP1095030B1) is >5.
  • the melamine derivative is a melamine polyphosphate of a 1,3,5-triazine compound
  • the 1,3,5-triazine compound is specifically melamine, melam, melem, cyanide 1,3,5-triazine compounds of uramide (melon), melamine diamide, melamine monoamide, 2-ureidomelamine, acyl melamine, benzoic melamine or diaminophenyl triazine, wherein 1,3
  • the phosphorus content in the 5-triazine compound is 1.1 to 2.0 mol of phosphorus atoms per 1 mol of the compound, more preferably 1.2 to 1.8 mol of phosphorus atoms per 1 mol of the compound.
  • the weight ratio of the phosphinate flame retardant and the melamine derivative is 1:0.05-20.
  • the weight ratio of the phosphinate-based flame retardant to the melamine derivative is 1:0.06-0.2.
  • the flame retardant synergist is one or a combination of zinc borate, zinc stannate, zinc sulfide or boehmite.
  • the reinforcing material is E glass fiber, B glass fiber, carbon fiber, polyaramid fiber, asbestos fiber, wollastonite fiber, ceramic fiber, potassium titanate whisker, basic magnesium sulfate whisker, silicon carbide crystal whiskers, aluminum borate whiskers, silica, aluminum silicate, silica, calcium carbonate, titanium dioxide, talc, wollastonite, diatomaceous earth, clay, kaolin, spherical glass, mica, gypsum, iron oxide, magnesium oxide or One or a combination of zinc oxides.
  • the halogen-free flame retardant thermoplastic polyamide composition with low mold scale of the present invention further comprises a processing aid, wherein the processing aid is a heat stabilizer, a lubricant, a mold release agent, a color additive, an impact modifier or an antioxidant one or a combination of several.
  • the processing aid is a heat stabilizer, a lubricant, a mold release agent, a color additive, an impact modifier or an antioxidant one or a combination of several.
  • the lubricant is one or a combination of montanic ester/salt, stearate, fatty amide, polyol, polyol ester or piperidine ester. Further preferred is one or a combination of Licowax OP, A-C540A, EBS, TAF, PETS or S-EED.
  • the antioxidant is a compound of hindered phenolic antioxidant and phosphite antioxidant, and hindered phenol includes but is not limited to antioxidant 1098, antioxidant 1010 or antioxidant 245.
  • hindered phenol includes but is not limited to antioxidant 1098, antioxidant 1010 or antioxidant 245.
  • phosphite antioxidants include but are not limited to one or more combinations of antioxidant 168, antioxidant S9228 or antioxidant P-EPQ. Further preferred is a mixture of antioxidant 1098 and antioxidant P-EPQ.
  • the preparation method of the halogen-free flame-retardant thermoplastic polyamide composition with low mold scale is obtained by blending, cooling, air-drying and pelletizing by using a melt-blending extrusion process.
  • the melt-blending extrusion process is as follows: after adding the polyamide resin, adsorbent and other processing aids to the mixer for mixing, then adding it to the extruder from the main feeding port; the reinforcing material is fed from the first side The feed port is added to the extruder; the flame retardant and the flame retardant synergist are mixed and added from the second side feed port. After melt blending at 230-270° C., cooling, air-drying and pelletizing, a series of low mold scale halogen-free flame retardant polyamide compositions are obtained.
  • thermoplastic polyamide composition The application of the low mold scale halogen-free flame retardant thermoplastic polyamide composition in the preparation of electronic, electrical or electrical product parts.
  • the present invention has the following beneficial effects:
  • the low mold scale halogen-free flame-retardant thermoplastic polyamide composition of the present invention is added with ethylene copolymer as an adsorbent, and by controlling its addition amount, the prepared low mold-scale halogen-free flame-retardant thermoplastic polyamide composition not only has excellent properties It has flame retardant properties and electrical properties, and can effectively reduce the release of small molecules during the injection molding process, greatly reduce the amount of mold scale generated during the injection molding process, and improve the injection molding efficiency of the material and the appearance of the product. It is suitable for electronic, electrical and electrical products. and other parts.
  • the present invention is further described below in conjunction with specific embodiments, but the embodiments do not limit the present invention in any form.
  • the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
  • the reagents and materials used in the present invention are commercially available.
  • PA66 resin PA66EPR27, Shenma Co., Ltd.;
  • PA6 resin PA6M2800, Guangdong Xinhui Meida Nylon Co., Ltd.;
  • PA9T resin Vicnyl 400, Zhubai Wantong Special Engineering Plastics Co., Ltd.;
  • E glass fiber glass fiber ECS301CL-3, Chongqing International Composite Materials Co., Ltd.;
  • Phosphinate flame retardant aluminum diethylphosphinate, Exolit OP 1230, Clariant;
  • Zinc phenylphosphinate purchased from Yishida International Trading (Shanghai) Co., Ltd.;
  • Melamine polyphosphate Melapur 200/70, phosphorus content 12-14wt%, purchased from BASF SE;
  • Flame retardant synergist anhydrous zinc borate, ZB-500, Kaifei Company;
  • Sorbent Ethylene-methyl acrylate copolymer (containing 75 wt% ethylene and 25 wt% methyl acrylate): AC resin 1125, purchased from DuPont, USA;
  • Sorbent Ethylene-methyl acrylate-glycidyl methacrylate random terpolymer (comprising about 70 wt% ethylene, 20 wt% methyl acrylate and 10 wt% glycidyl methacrylate): PTW, purchased from Du Pont Company in the United States;
  • Adsorbent ethylene-vinyl alcohol copolymer (containing 75wt% ethylene and 25wt% vinyl alcohol): purchased from Shanghai Zhenzhun Biotechnology Co., Ltd.;
  • POE toughening agent Fusabond N493, DuPont;
  • Red phosphorus purchased from Changzhou Chuanlin Chemical Co., Ltd.;
  • Antioxidant Irganox@1098, BASF;
  • This example provides a series of low mold scale halogen free flame retardant polyamide compositions.
  • This comparative example provides a halogen-free flame retardant polyamide composition.
  • Example 1 the adsorbent in Example 1 was replaced with POE toughening agent, and other formulations were the same as those in the example.
  • This comparative example provides a halogen-free flame retardant polyamide composition.
  • the amount of adsorbent used is 0.3 parts by weight.
  • This comparative example provides a halogen-free flame retardant polyamide composition.
  • the amount of adsorbent used is 7 parts by weight.
  • This comparative example provides a halogen-free flame retardant polyamide composition.
  • the flame retardant is compounded with red phosphorus and a phosphinate flame retardant.
  • This comparative example provides a halogen-free flame retardant polyamide composition.
  • Example 2 ethylene-vinyl alcohol copolymer was selected as the adsorbent.
  • Flame retardant performance 125 ⁇ 13 ⁇ 1.6mm square plate is made by injection molding, and tested according to ANSI/UL-94-1985 standard.
  • Mold scale evaluation Use an injection molding machine to continuously inject 100 molds at the injection temperature of 290 ° C, 285 ° C, 280 ° C, and 265 ° C, collect small molecular substances in the mold, that is, mold scale, and weigh the quality of the mold scale (mg).
  • Comparative Examples 1 and 5 do not add the adsorbent of the present invention, under the same processing conditions, compared with Example 1, the mold scale content is the same as that of Example 1.
  • the scale content is 3.54 and 1.85 times that of the comparative example 2; the mold scale problem is still obvious in the comparative example 2 due to the small amount of adsorbent added; the flame retardant performance of the comparative example 3 is reduced due to the high adsorbent content; the comparative example 4 uses red phosphorus It is compounded with phosphinate flame retardant, but it has no effect on the reduction of mold scale, and also reduces the flame retardant performance; Comparative Example 5 does not select the components of the ethylene copolymer of the present invention, and its impact on mold scale poor.
  • the prepared low mold scale halogen-free flame retardant polyamide composition not only has excellent flame retardant properties, but also can significantly inhibit the formation of small molecules in the injection molding process. Release amount, significantly reduce the amount of mold deposits in injection molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种低模垢无卤阻燃热塑性聚酰胺组合物及其制备方法和应用。本发明的低模垢无卤阻燃热塑性聚酰胺组合物,包括如下按重量份计算的组分:20~82份热塑性聚酰胺树脂;13~25份阻燃剂;1~5份阻燃协效剂;5~50份增强材料;0.5~5份吸附剂;其中,所述阻燃剂包括次膦酸盐类阻燃剂;所述吸附剂为乙烯共聚物。本发明的低模垢无卤燃热塑性聚酰胺组合物,加入乙烯共聚物作为吸附剂,并通过控制其加入量,制备得到的低模垢无卤燃热塑性聚酰胺组合物,不仅具有优异的阻燃性能和电性能,而且能够有效降低注塑过程中小分子物的释放量,大幅度减少注塑过程产生的模垢量。

Description

一种低模垢无卤阻燃热塑性聚酰胺组合物及其制备方法和应用 技术领域
本发明涉及高分子材料领域,具体涉及一种低模垢无卤阻燃热塑性聚酰胺组合物及其制备方法和应用。
背景技术
聚酰胺统称尼龙,因分子主链上含有重复酰胺基团-[NHCO]-而得名,由于在分子结构上带有极性的酰胺基团,使得分子链间形成较强的氢键作用,具有较高的结晶性,优越的力学性能。聚酰胺是五大通用工程塑料中产量最大、品种最多、用途最广、综合性能优良的一类基础树脂。
二乙基次膦酸盐作为一种通用的无卤阻燃剂,其不但阻燃性能好,添加量小,对基础树脂的物理性能和电气性能影响小,而且二乙基次膦酸盐阻燃材料由于具有在燃烧时发烟量较卤系阻燃剂小,CTI高等特点,受到业界的高度重视;同时,二乙基次膦酸盐阻燃聚酰胺具有优越的力学性能及电性能,越来越得到电工电器行业制造商的青睐,市场使用前景非常广阔。
二乙基次膦酸盐阻燃PA66,由于二乙基次膦酸盐酸性较强,同时由于聚酰胺有较多的极性酰胺基团,使得聚酰胺比较容易吸水,且吸水率较高,如PA66树脂在23℃,50%湿度条件下,吸水率可以到达2.7%。在挤出加工或者注塑加工过程中,温度较高(某些热流道模具,温度高于300℃),很容易促进体系分解,导致瓦斯气非常多。在注塑过程中经常会在模具上出现严重的模垢,影响制品的外观。同时需要频繁的清理模具,导致效率低下,从而使得产品难以较好的推广使用。
目前,解决二乙基次膦酸盐阻燃聚酰胺材料注塑成型中模垢问题的主要方法是在该体系中加入吸酸剂,降低体系的酸性。如欧洲专利EP2417191A1,通过在体系中加入氧化钙,与体系中一些酸性物质进行中和,降低体系酸性,减少基体树脂的分解,从而有效降低了高温注塑过程中对模具的腐蚀性;该方法虽然对降低模垢有一定帮助,但是氧化钙很容易吸湿,导致体系吸水率较高,在加工过程中较难管控。
上述专利对二乙基次膦酸阻燃聚酰胺的模垢有一定的模垢改善,但较难避免在使用过程中水份的控制,导致二乙基次膦酸盐与水的接触,存在品质的不稳定 性,容易导致材料的酸性增强,模垢的恶化。
因此,急需开发一种可以同时降低体系酸性和吸水性,减少制备过程中模垢的产生,同时具有优良的阻燃性能和电性能的低模垢无卤阻燃热塑性聚酰胺组合物。
发明内容
本发明的目的在于,克服现有技术中次膦酸盐无卤阻燃聚酰胺材料体系酸性较强,易对模具腐蚀以及高温下引发体系分解产生小分子物质,造成模垢的不足,提供一种低模垢无卤阻燃热塑性聚酰胺组合物。所述低模垢无卤燃热塑性聚酰胺组合物具有优异的阻燃性能和电性能,并且生产过程中产生的模垢量少。
本发明的另一目的在于,提供所述低模垢无卤阻燃热塑性聚酰胺组合物的制备方法。
本发明的另一目的在于,提供所述低模垢无卤阻燃热塑性聚酰胺组合物在制备电子、电器或电工产品的零部件中的应用。
为实现上述目的,本发明采用如下技术方案:
一种低模垢无卤阻燃热塑性聚酰胺组合物,包括如下按重量份计算的组分:
Figure PCTCN2021082797-appb-000001
其中,所述阻燃剂包括次膦酸盐类阻燃剂,且不包括红磷;所述吸附剂包括如下重量份的组分共聚而成的乙烯共聚物:
乙烯                               48~85份;
1~18个碳原子的(甲基)丙烯酸酯      10~35份;
官能单体                           0.1~15份;
所述官能单体为环氧化物、烯键式不饱和一元羧酸、烯键式不饱和一元羧酸酐、烯键式不饱和二元羧酸或烯键式不饱和二元羧酸酐中的一种或几种的组合。
现有技术中,所述乙烯共聚物通常与PA混合作为增韧剂使用。本发明人创造性地发现,将其加入到含有次膦酸盐的无卤阻燃聚酰胺组合物中,在一定范围的添加量中,可以降低所述组合物在制备过程中模垢的产生,提高了注塑效率, 同时还不会影响材料的阻燃性能和电性能。
进一步优选地,所述无卤阻燃热塑性聚酰胺组合物,包括如下按重量份计算的组分:
Figure PCTCN2021082797-appb-000002
本发明所述的热塑性聚酰胺树脂由二元羧酸与二元胺进行缩合聚合反应得到,或由内酰胺开环聚合得到。
优选地,所述二元羧酸为脂肪族二元酸乙二酸、丁二酸、己二酸、壬二酸、癸二酸、十二酸、十八酸、芳香族二元酸对苯二甲酸、邻苯二甲酸或萘二酸中的一种或几种的组合。
优选地,所述二元胺为乙二胺、丁二胺、己二胺、壬二胺、癸二胺、十一胺、十二胺、十六胺、十八胺、对苯二胺、间苯二胺、邻苯二胺或4,4’-二氨基二苯基甲烷中的一种或几种的组合。
优选地,所述内酰胺为丁内酰胺、戊内酰胺、己内酰胺、庚内酰胺、辛内酰胺、壬内酰胺、癸内酰胺、十二内酰胺、十六内酰胺或十八内酰胺中的一种或几种的组合。
优选地,所述热塑性聚酰胺树脂为尼龙6、尼龙66、尼龙46、尼龙6/66、尼龙610、尼龙611、尼龙612、尼龙6T或尼龙9T中的一种或几种的组合。
优选地,所述次膦酸盐类阻燃剂为次膦酸盐,具有如下所示结构:
Figure PCTCN2021082797-appb-000003
其中,R 1、R 2独立地选自线性或支化的C1~C6烷基和/或芳基;M选自碱金属、碱土金属、Al、Zn、Fe或Ti中的一种或几种的组合;m为1~4。
进一步优选地,所述次膦酸盐类阻燃剂,R 1、R 2独立地选自甲基、乙基、 正丙基、异丙基、正丁基、叔丁基、正戊基和/或苯基;M选自Al或Zn。
优选地,所述次膦酸盐类阻燃剂还含有三聚氰胺衍生物。
优选地,所述三聚氰胺衍生物为三聚氰胺多聚磷酸盐,其中,磷含量为10~15wt%,水含量<0.3wt%,密度为1.83~1.86g/cm 3,其10wt%浓度的水浆体(如EP1095030B1中制备)的pH>4.5(选用pH测试仪进行测量)。
进一步优选地,所述三聚氰胺衍生物为三聚氰胺多聚磷酸盐,其中,磷含量为12~14wt%,水含量<0.3wt%,密度为1.83~1.86g/cm 3,其10wt%浓度的水浆体(如EP1095030B1中制备)的pH>5。
进一步优选地,所述三聚氰胺衍生物为1,3,5-三嗪化合物的三聚氰胺多聚磷酸盐,所述1,3,5-三嗪化合物具体为三聚氰胺、蜜白胺、蜜勒胺、氰尿酰胺(melon)、三聚氰胺二酰胺、三聚氰胺一酰胺、2-脲基三聚氰胺、酰代三聚氰胺、苯代三聚氰胺或二氨苯基三嗪的1,3,5-三嗪化合物,其中,1,3,5-三嗪化合物中的磷含量为每1mol化合物中含有1.1~2.0mol磷原子,进一步优选为每1mol化合物中含有1.2~1.8mol磷原子。
优选地,所述阻燃剂中,次膦酸盐类阻燃剂与三聚氰胺衍生物重量比为1:0.05~20。
优选地,所述阻燃剂中,次膦酸盐类阻燃剂与三聚氰胺衍生物重量比为1:0.06~0.2。
优选地,所述阻燃协效剂为硼酸锌、锡酸锌、硫化锌或勃姆石中的一种或几种的组合。
优选地,所述增强材料为E玻璃纤维、B玻璃纤维、碳纤维、聚芳酰胺纤维、石棉纤维、硅灰石纤维、陶瓷纤维、钛酸钾晶须、碱式硫酸镁晶须、碳化硅晶须、硼酸铝晶须、二氧化硅、硅酸铝、氧化硅、碳酸钙、二氧化钛、滑石、硅灰石、硅藻土、粘土、高岭土、球状玻璃、云母、石膏、氧化铁、氧化镁或氧化锌中的一种或几种的组合。
本发明的低模垢无卤阻燃热塑性聚酰胺组合物,还包括加工助剂,所述加工助剂为热稳定剂、润滑剂、脱模剂、颜色添加剂、冲击改性剂或抗氧剂中的一种或几种的组合。
优选地,所述润滑剂为褐煤酸酯/盐、硬脂酸盐、脂肪酰胺、多元醇、多元醇酯或哌啶酯等中的一种或几种的组合。进一步优选为Licowax OP、A-C540A、 EBS、TAF、PETS或S-EED中的一种或几种的组合。
优选地,所述抗氧剂为受阻酚类抗氧剂与亚磷酸酯类抗氧剂的复配物,受阻酚包括但不限于抗氧剂1098、抗氧剂1010或抗氧剂245中的一种或几种的组合;亚磷酸酯类抗氧剂包括但不限于抗氧剂168、抗氧剂S9228或抗氧剂P-EPQ中的一种或几种的组合。进一步优选为抗氧剂1098和抗氧剂P-EPQ的混合物。
所述低模垢无卤阻燃热塑性聚酰胺组合物的制备方法,采用熔融共混挤出工艺经共混、冷却、风干、造粒得到。
优选地,所述熔融共混挤出工艺具体为:将聚酰胺树脂、吸附剂及其它加工助剂加入混合机混合后,从主喂料口加入挤出机;增强材料由第一个侧喂料口加入挤出机;将阻燃剂、阻燃协效剂混合后从第二个侧喂料口加入。在230~270℃下熔融共混后,经冷却、风干和造粒,得到一系列低模垢无卤阻燃聚酰胺组合物。
所述低模垢无卤阻燃热塑性聚酰胺组合物在制备电子、电器或电工产品零部件中的应用。
与现有技术相比,本发明具有如下有益效果:
本发明的低模垢无卤燃热塑性聚酰胺组合物中加入了乙烯共聚物作为吸附剂,并通过控制其添加量,制备得到的低模垢无卤燃热塑性聚酰胺组合物,不仅具有优异的阻燃性能和电性能,而且能够有效降低注塑过程中小分子物的释放量,大幅度减少注塑过程产生的模垢量,提升材料的注塑效率以及制品的外观,适合用于电子、电器、电工产品等零部件。
具体实施方式
以下结合具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。除非特别说明,本发明所用试剂和材料均为市购。
本发明的实施例采用以下原料:
PA66树脂:PA66EPR27,神马股份有限公司;
PA6树脂:PA6M2800,广东新会美达锦纶股份有限公司;
PA9T树脂:Vicnyl 400,珠海万通特种工程塑料有限公司;
E玻纤:玻纤ECS301CL-3,重庆国际复合材料股份有限公司;
高岭土:Translink 445,BASF公司;
次膦酸盐类阻燃剂:二乙基次膦酸铝,Exolit OP 1230,Clariant公司;
苯基次膦酸锌:购自宜事达国际贸易(上海)有限公司;
三聚氰胺多聚磷酸盐:Melapur 200/70,磷含量12~14wt%,购自BASF SE;
阻燃协效剂:无水硼酸锌,ZB-500,开飞公司;
吸附剂乙烯-丙烯酸甲酯共聚物(包含75wt%的乙烯和25wt%的丙烯酸甲酯):
Figure PCTCN2021082797-appb-000004
AC resin 1125,购自美国DuPont公司;
吸附剂乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯无规三元共聚物(包含约70wt%的乙烯、20wt%的丙烯酸甲酯和10wt%的甲基丙烯酸缩水甘油酯):
Figure PCTCN2021082797-appb-000005
PTW,购自美国Du Pont公司;
吸附剂乙烯-乙烯醇共聚物(包含75wt%的乙烯和25wt%的乙烯醇):购自上海甄准生物科技有限公司;
POE增韧剂:Fusabond N493,DuPont;
红磷:购自常州市川磷化工有限公司;
抗氧剂:Irganox@1098,BASF;
颜色添加剂苯胺黑:TN-870,Orient Chem.Limited,Japan;
润滑剂:A-C540A,霍尼韦尔。
实施例1~9
本实施例提供一系列低模垢无卤阻燃聚酰胺组合物。
按照表1中的配方,将聚酰胺树脂、吸附剂及其它加工助剂加入混合机混合后,从主喂料口加入挤出机;增强材料由第一个侧喂料口加入挤出机;将阻燃剂、阻燃协效剂混合后从第二个侧喂料口加入。在230~270℃下熔融共混后,经冷却、风干和造粒,得到一系列低模垢无卤阻燃聚酰胺组合物。
对比例1
本对比例提供一种无卤阻燃聚酰胺组合物。
本对比例中,用POE增韧剂替换掉实施例1中的吸附剂,其它配方与实施例相同。
对比例2
本对比例提供一种无卤阻燃聚酰胺组合物。
本对比例中,与实施例1相比,吸附剂的用量为0.3重量份。
对比例3
本对比例提供一种无卤阻燃聚酰胺组合物。
本对比例中,与实施例1相比,吸附剂的用量为7重量份。
对比例4
本对比例提供一种无卤阻燃聚酰胺组合物。
本对比例中,与实施例1相比,阻燃剂选用红磷与次膦酸盐类阻燃剂进行复配。
对比例5
本对比例提供一种无卤阻燃聚酰胺组合物。
本对比例中,与实施例1相比,吸附剂选用乙烯-乙烯醇共聚物。
表1 实施例及对比例中各组合物的组份配比(重量份)
Figure PCTCN2021082797-appb-000006
Figure PCTCN2021082797-appb-000007
对上述实施例和对比例的性能进行测试,具体测试项目及测试方法如下:
1.阻燃性能:通过注射成型制成125×13×1.6mm方板,根据ANSI/UL-94-1985标准进行测试。
2模垢评估:采用注塑机,在290℃,285℃,280℃,265℃的注塑温度下,连续注塑100模,收集模具中的小分子物质,即模垢,并称取模垢的质量(mg)。
测试结果如表2所示。
表2 实施例及对比例中各组合物的性能测试
Figure PCTCN2021082797-appb-000008
由上述表1、表2中数据可以看出:对比例1、5由于未添加本发明的吸附剂,在相同的加工条件下,与实施例1相比,其模垢含量为实施例1模垢含量的3.54以及1.85倍;而对比例2由于吸附剂添加量少,其模垢问题仍然很明显;对比例3由于吸附剂含量太高,导致其阻燃性能下降;对比例4选用红磷与次膦酸盐阻燃剂复配,但是对模垢减少并未有影响,同时还降低了阻燃性能;对比例5未选用本发明的乙烯共聚物的组分,其对模垢的影响较差。
因此,可以看出,通过在聚酰胺中加入特定含量的吸附剂,制备得到的低模垢无卤阻燃聚酰胺组合物不仅具有优异的阻燃性能,而且会明显抑制注塑过程中小分子物的释放量,显著降低注塑中模垢的产生量。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种低模垢无卤阻燃热塑性聚酰胺组合物,其特征在于,包括如下按重量份计算的组分:
    Figure PCTCN2021082797-appb-100001
    其中,所述阻燃剂包括次膦酸盐类阻燃剂,且不包括红磷;
    所述吸附剂包括如下重量份的组分共聚而成的乙烯共聚物:
    乙烯                              48~85份;
    1~18个碳原子的(甲基)丙烯酸酯      10~35份;
    官能单体                           0~15份;
    所述官能单体为环氧化物、烯键式不饱和一元羧酸、烯键式不饱和一元羧酸酐、烯键式不饱和二元羧酸或烯键式不饱和二元羧酸酐中的一种或几种的组合。
  2. 根据权利要求1所述低模垢无卤阻燃热塑性聚酰胺组合物,其特征在于,所述热塑性聚酰胺树脂为尼龙6、尼龙66、尼龙46、尼龙6/66、尼龙610、尼龙611、尼龙612、尼龙6T或尼龙9T中的一种或几种的组合。
  3. 根据权利要求1所述低模垢无卤阻燃热塑性聚酰胺组合物,其特征在于,所述次膦酸盐类阻燃剂为次膦酸盐,具有如下所示结构:
    Figure PCTCN2021082797-appb-100002
    其中,R 1、R 2独立地选自线性或支化的C 1~C 6烷基和/或芳基;M选自碱金属、碱土金属、Al、Zn、Fe或Ti中的一种或多种的组合;m为1~4。
  4. 根据权利要求1所述低模垢无卤阻燃热塑性聚酰胺组合物,其特征在于,所述阻燃剂还含有三聚氰胺衍生物。
  5. 根据权利要求4所述低模垢无卤阻燃热塑性聚酰胺组合物,其特征在于,所述三聚氰胺衍生物为三聚氰胺多聚磷酸盐,其中,磷含量为10~15wt%。
  6. 根据权利要求4所述低模垢无卤阻燃热塑性聚酰胺组合物,其特征在于,所述阻燃剂中,次膦酸盐类阻燃剂与三聚氰胺衍生物的重量比为1:0.05~20。
  7. 根据权利要求1所述低模垢无卤阻燃热塑性聚酰胺组合物,其特征在于,所述阻燃协效剂为硼酸锌、锡酸锌、硫化锌或勃姆石中的一种或几种的组合。
  8. 根据权利要求1所述低模垢无卤阻燃热塑性聚酰胺组合物,其特征在于,所述增强材料为E玻璃纤维、B玻璃纤维、碳纤维、聚芳酰胺纤维、石棉纤维、硅灰石纤维、陶瓷纤维、钛酸钾晶须、碱式硫酸镁晶须、碳化硅晶须、硼酸铝晶须、二氧化硅、硅酸铝、氧化硅、碳酸钙、二氧化钛、滑石、硅灰石、硅藻土、粘土、高岭土、球状玻璃、云母、石膏、氧化铁、氧化镁或氧化锌中的一种或几种的组合。
  9. 权利要求1~8任一项所述低模垢无卤阻燃热塑性聚酰胺组合物的制备方法,其特征在于,采用熔融共混挤出工艺经共混、冷却、风干、造粒得到。
  10. 权利要求1~8任一项所述低模垢无卤阻燃热塑性聚酰胺组合物在制备电子、电器或电工产品零部件中的应用。
PCT/CN2021/082797 2020-10-12 2021-03-24 一种低模垢无卤阻燃热塑性聚酰胺组合物及其制备方法和应用 WO2022077865A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023522342A JP2023545149A (ja) 2020-10-12 2021-03-24 低モールドデポジット性ハロゲンフリー難燃性熱可塑性ポリアミド組成物およびその製造方法と使用
EP21878921.2A EP4227366A4 (en) 2020-10-12 2021-03-24 HALOGEN-FREE FLAME RETARDANT THERMOPLASTIC POLYAMIDE COMPOSITION WITH LOW MOLD DEPOSITION AND PRODUCTION METHOD AND USE THEREOF
US18/134,034 US20230312921A1 (en) 2020-10-12 2023-04-12 Low-mold deposit halogen-free flame-retardant thermoplastic polyamide composition, and preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011086083.2A CN112409786B (zh) 2020-10-12 2020-10-12 一种低模垢无卤阻燃热塑性聚酰胺组合物及其制备方法和应用
CN202011086083.2 2020-10-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/134,034 Continuation US20230312921A1 (en) 2020-10-12 2023-04-12 Low-mold deposit halogen-free flame-retardant thermoplastic polyamide composition, and preparation method and use thereof

Publications (1)

Publication Number Publication Date
WO2022077865A1 true WO2022077865A1 (zh) 2022-04-21

Family

ID=74854362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082797 WO2022077865A1 (zh) 2020-10-12 2021-03-24 一种低模垢无卤阻燃热塑性聚酰胺组合物及其制备方法和应用

Country Status (5)

Country Link
US (1) US20230312921A1 (zh)
EP (1) EP4227366A4 (zh)
JP (1) JP2023545149A (zh)
CN (1) CN112409786B (zh)
WO (1) WO2022077865A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216142A (zh) * 2022-08-16 2022-10-21 横店集团得邦工程塑料有限公司 一种抗静电无卤阻燃增强尼龙复合材料及其制备方法
CN115304913A (zh) * 2022-08-24 2022-11-08 横店集团得邦工程塑料有限公司 具备高灼热丝起燃温度的增强阻燃次磷酸盐/尼龙复合材料及其制备方法
CN115466508A (zh) * 2022-09-30 2022-12-13 珠海万通特种工程塑料有限公司 一种无卤阻燃半芳香族聚酰胺复合材料及其制备方法与应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409786B (zh) * 2020-10-12 2022-05-20 金发科技股份有限公司 一种低模垢无卤阻燃热塑性聚酰胺组合物及其制备方法和应用
CN114213761B (zh) * 2021-11-23 2023-12-22 江苏金发科技新材料有限公司 一种高光泽低析出阻燃聚丙烯组合物及其制备方法和应用
CN116355402A (zh) * 2021-12-28 2023-06-30 金发科技股份有限公司 一种聚酰胺模塑组合物及其制备方法和应用
CN115819844B (zh) * 2022-12-05 2024-07-12 金发科技股份有限公司 一种烷基亚膦酸复合盐及其制备方法和应用
CN116355405A (zh) * 2023-04-18 2023-06-30 金发科技股份有限公司 一种低模垢无卤阻燃增强尼龙材料及其制备方法
CN116535850A (zh) * 2023-04-21 2023-08-04 金发科技股份有限公司 一种聚酰胺组合物及其制备方法和应用
CN117659689A (zh) * 2023-12-05 2024-03-08 江苏金发科技新材料有限公司 一种聚酰胺组合物及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345034A (ja) * 1999-06-03 2000-12-12 Asahi Chem Ind Co Ltd 難燃性ポリアミド樹脂組成物
CN1860168A (zh) * 2003-10-03 2006-11-08 E.I.内穆尔杜邦公司 阻燃芳族聚酰胺树脂组合物以及使用该组合物制造的制品
EP1095030B1 (en) 1998-07-08 2007-08-22 Ciba SC Holding AG Polyphosphate salt of a 1,3,5-triazine compound with a high degree of condensation and its use as flame retardant in polymer compositions
CN101891953A (zh) * 2010-06-24 2010-11-24 金发科技股份有限公司 一种无卤阻燃增强聚酰胺组合物及其模制品
EP2417191A1 (en) 2009-04-09 2012-02-15 Solvay Specialty Polymers USA, LLC. Improved halogen free flame retardant polyamide composition
US20120289634A1 (en) * 2011-05-10 2012-11-15 Basf Se Flame-retardant thermoplastic molding composition
CN103534314A (zh) * 2011-05-10 2014-01-22 巴斯夫欧洲公司 阻燃型热塑性模塑组合物
CN103602061A (zh) * 2013-11-01 2014-02-26 广东聚石化学股份有限公司 一种高灼热丝起燃温度无卤阻燃增强尼龙复合材料及其制备方法
CN105121552A (zh) * 2013-04-15 2015-12-02 巴斯夫欧洲公司 耐灼热丝的聚酰胺
CN106916441A (zh) * 2015-12-28 2017-07-04 黑龙江鑫达企业集团有限公司 一种碳纤维增强无卤系阻燃pa66复合材料及制备方法
CN109265992A (zh) * 2018-09-18 2019-01-25 吴立国 低成本高强度高耐热无卤阻燃pa66组合物及其制备方法
CN112409786A (zh) * 2020-10-12 2021-02-26 金发科技股份有限公司 一种低模垢无卤阻燃热塑性聚酰胺组合物及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1012176C2 (nl) * 1999-05-28 2000-11-30 Dsm Nv Halogeenvrije brandvertragende samenstelling.
JP4620734B2 (ja) * 2004-06-08 2011-01-26 ランクセス・ドイチュランド・ゲーエムベーハー 改良された流動性を有するポリアミド成形用組成物
DE102010062886A1 (de) * 2009-12-16 2011-06-22 Basf Se, 67063 Polyarylenethersulfone als Schlagzähmodifier
CN102604377B (zh) * 2012-02-17 2015-09-09 金发科技股份有限公司 一种阻燃热塑性聚酰胺组合物
EP2813524A1 (de) * 2013-06-10 2014-12-17 Basf Se Phosphorylierte Polymere
FR3071965B1 (fr) * 2017-10-02 2019-10-25 Arkema France Coffre a batterie
CN109957240B (zh) * 2017-12-14 2021-09-28 上海凯赛生物技术股份有限公司 一种热塑性无卤低磷阻燃增强生物基pa56和pa66复合材料及其制备方法
CN111484739A (zh) * 2019-12-26 2020-08-04 重庆会通科技有限公司 一种阻燃增强聚酰胺组合物及其制备方法
CN111635629B (zh) * 2020-06-30 2022-11-25 重庆科聚孚工程塑料有限责任公司 一种低吸水率玻纤增强无卤阻燃聚酰胺材料及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1095030B1 (en) 1998-07-08 2007-08-22 Ciba SC Holding AG Polyphosphate salt of a 1,3,5-triazine compound with a high degree of condensation and its use as flame retardant in polymer compositions
JP2000345034A (ja) * 1999-06-03 2000-12-12 Asahi Chem Ind Co Ltd 難燃性ポリアミド樹脂組成物
CN1860168A (zh) * 2003-10-03 2006-11-08 E.I.内穆尔杜邦公司 阻燃芳族聚酰胺树脂组合物以及使用该组合物制造的制品
EP2417191A1 (en) 2009-04-09 2012-02-15 Solvay Specialty Polymers USA, LLC. Improved halogen free flame retardant polyamide composition
CN101891953A (zh) * 2010-06-24 2010-11-24 金发科技股份有限公司 一种无卤阻燃增强聚酰胺组合物及其模制品
US20120289634A1 (en) * 2011-05-10 2012-11-15 Basf Se Flame-retardant thermoplastic molding composition
CN103534314A (zh) * 2011-05-10 2014-01-22 巴斯夫欧洲公司 阻燃型热塑性模塑组合物
CN105121552A (zh) * 2013-04-15 2015-12-02 巴斯夫欧洲公司 耐灼热丝的聚酰胺
CN103602061A (zh) * 2013-11-01 2014-02-26 广东聚石化学股份有限公司 一种高灼热丝起燃温度无卤阻燃增强尼龙复合材料及其制备方法
CN106916441A (zh) * 2015-12-28 2017-07-04 黑龙江鑫达企业集团有限公司 一种碳纤维增强无卤系阻燃pa66复合材料及制备方法
CN109265992A (zh) * 2018-09-18 2019-01-25 吴立国 低成本高强度高耐热无卤阻燃pa66组合物及其制备方法
CN112409786A (zh) * 2020-10-12 2021-02-26 金发科技股份有限公司 一种低模垢无卤阻燃热塑性聚酰胺组合物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4227366A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216142A (zh) * 2022-08-16 2022-10-21 横店集团得邦工程塑料有限公司 一种抗静电无卤阻燃增强尼龙复合材料及其制备方法
CN115304913A (zh) * 2022-08-24 2022-11-08 横店集团得邦工程塑料有限公司 具备高灼热丝起燃温度的增强阻燃次磷酸盐/尼龙复合材料及其制备方法
CN115466508A (zh) * 2022-09-30 2022-12-13 珠海万通特种工程塑料有限公司 一种无卤阻燃半芳香族聚酰胺复合材料及其制备方法与应用
CN115466508B (zh) * 2022-09-30 2023-06-16 珠海万通特种工程塑料有限公司 一种无卤阻燃半芳香族聚酰胺复合材料及其制备方法与应用

Also Published As

Publication number Publication date
EP4227366A1 (en) 2023-08-16
CN112409786B (zh) 2022-05-20
CN112409786A (zh) 2021-02-26
US20230312921A1 (en) 2023-10-05
JP2023545149A (ja) 2023-10-26
EP4227366A4 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
WO2022077865A1 (zh) 一种低模垢无卤阻燃热塑性聚酰胺组合物及其制备方法和应用
KR102460868B1 (ko) 난연성 및 우수한 장기 내열노화성을 가진 폴리아미드 성형 화합물
KR101025120B1 (ko) 차아인산 알루미늄으로 방염된 폴리아미드 조성물
TW201120140A (en) Flame-retardant semiaromatic polyamide molding compositions
US20160009918A1 (en) Flame-Retardant Polyamide Composition
KR20170137847A (ko) 난연성, 비부식성, 및 안정한 폴리아미드 성형 조성물의 제조방법
JPWO2015019882A1 (ja) 難燃性ポリアミド樹脂組成物
JP5448426B2 (ja) ジオルガニルホスフィン酸およびカルボン酸の混合塩
JP5871900B2 (ja) 耐蝕性および耐応力亀裂性のポリアミドの使用
JP2012522116A (ja) 難燃性半芳香族ポリアミド樹脂組成物およびそれからの物品
CN110770300B (zh) 含磷和Al-膦酸盐的聚酰胺
JP7280146B2 (ja) ポリアミド組成物及びその製造方法、並びに、成形品
US5332777A (en) Unreinforced polyamide molding materials
JP2005171232A (ja) 難燃性ポリアミド樹脂組成物
US20180244899A1 (en) Flame-Retardant Polyamide Composition
JP2023506497A (ja) 難燃性ポリアミド組成物を含む工業用ファン又はブロア
JP2019011388A (ja) 強化ポリアミド樹脂組成物および成形体
JP2004292532A (ja) 難燃強化ポリアミド樹脂組成物
JP2020033412A (ja) 樹脂組成物及び成形品
JP6420995B2 (ja) 難燃性ポリアミド樹脂組成物およびその成形体
JPS62195043A (ja) 難燃性ポリアミド樹脂組成物
JP5130765B2 (ja) 難燃性ポリアミド樹脂組成物、およびこの難燃性樹脂組成物より製造された成形品
JPWO2014132883A1 (ja) 表面実装型電気電子部品に使用する難燃性ポリアミド樹脂組成物
JP2003171549A (ja) 耐候性に優れたポリアミド樹脂組成物
JP2002275372A (ja) 強化難燃性ポリアミド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023522342

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021878921

Country of ref document: EP

Effective date: 20230512