WO2022075684A1 - 공중합체 및 이의 제조 방법 - Google Patents

공중합체 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022075684A1
WO2022075684A1 PCT/KR2021/013586 KR2021013586W WO2022075684A1 WO 2022075684 A1 WO2022075684 A1 WO 2022075684A1 KR 2021013586 W KR2021013586 W KR 2021013586W WO 2022075684 A1 WO2022075684 A1 WO 2022075684A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
formula
repeating unit
lactide
weight
Prior art date
Application number
PCT/KR2021/013586
Other languages
English (en)
French (fr)
Inventor
최정윤
김철웅
이연주
조수현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/918,371 priority Critical patent/US20230146000A1/en
Priority to EP21877936.1A priority patent/EP4116353A4/en
Priority to CN202180027816.1A priority patent/CN115397883B/zh
Priority to JP2022568478A priority patent/JP7486609B2/ja
Priority claimed from KR1020210131495A external-priority patent/KR102598027B1/ko
Publication of WO2022075684A1 publication Critical patent/WO2022075684A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a copolymer having a high molecular weight while maintaining the intrinsic properties of polylactic acid while improving elongation and a method for preparing the same.
  • Polylactic acid is a plant-derived resin obtained from plants such as corn, and is attracting attention as an eco-friendly material having biodegradable properties and excellent tensile strength and elastic modulus.
  • polylactic acid has poor impact resistance and heat resistance compared to conventional petroleum-based resins, thereby limiting its application range.
  • it has poor elongation to break properties and exhibits brittleness, which has limitations as a general-purpose resin.
  • the lactic acid-3HP block copolymer has several disadvantages.
  • 3HP has to be polymerized separately, but there is a problem in that it is difficult to polymerize to a high molecular weight (about 10k Da) or more only by a chemical method, and high molecular weight polymerization is possible through biosynthesis, but there is a problem in that the manufacturing cost is increased.
  • An object of the present invention is to provide a copolymer having a high molecular weight while maintaining the intrinsic properties of polylactic acid while improving elongation and a method for preparing the same.
  • the present invention includes an irregularly arranged structure of the repeating unit of Chemical Formula 1 and the repeating unit of Chemical Formula 2, wherein the repeating unit of Chemical Formula 3 is arranged at at least one end of the structure , provides a copolymer:
  • the present invention is to provide a copolymer having a high molecular weight while maintaining the intrinsic properties of polylactic acid while improving elongation, the repeating unit represented by Formula 1 derived from 3HP and Formula 2 derived from lactic acid
  • the repeating unit represented by Formula 1 derived from 3HP and Formula 2 derived from lactic acid Provided is a copolymer comprising a repeating unit and a repeating unit represented by Formula 3 derived from lactide.
  • the copolymer according to the present invention includes an irregularly arranged structure of the repeating unit of Chemical Formula 1 and the repeating unit of Chemical Formula 2, and at least one or both ends of the structure, It has a structure in which repeating units are arranged. That is, the copolymer according to the present invention has a structure of A-B or B-A-B, wherein A has a random arrangement of the repeating unit of Chemical Formula 1 and the repeating unit of Chemical Formula 2 below, and B is the repeating unit of Chemical Formula 3, respectively It is a structure with an array of
  • the repeating unit of Chemical Formula 1 and the repeating unit of Chemical Formula 2, which form the central structure of the copolymer according to the present invention, are derived from 3HP and lactic acid, respectively, and can be prepared by copolymerizing 3HP and lactic acid as will be described later. .
  • the weight ratio of the repeating unit of Formula 1 to the repeating unit of Formula 2 is 20:80 to 80:20. More preferably, the weight ratio is 30:70 to 70:30, 40:60 to 60:40. The weight ratio can be adjusted according to the amount of each material used when copolymerizing lactic acid and 3HP.
  • the copolymer according to the present invention is a copolymer including the repeating unit of Formula 1 and the repeating unit of Formula 2, that is, a random copolymer of the repeating unit of Formula 1 and the repeating unit of Formula 2 first.
  • the weight average molecular weight of the random copolymer can be measured.
  • the weight average molecular weight of the random copolymer of the repeating unit of Formula 1 and the repeating unit of Formula 2 is 10,000 to 30,000 g/mol.
  • the weight average molecular weight is higher than the previously known lactic acid-3HP block copolymer, and the present invention can prepare a high molecular weight copolymer while using 3HP as a comonomer of polylactic acid.
  • 'lactic acid' used in the present invention refers to L-lactic acid, D-lactic acid, or a mixture thereof.
  • the copolymer according to the present invention has a structure of A-B or B-A-B, where B is a structure having an arrangement of repeating units of Formula 3 above.
  • Formula 3 is derived from lactide, and is intended to additionally introduce a repeating unit as in Formula 2 into the copolymer according to the present invention, thereby increasing the weight average molecular weight of the copolymer according to the present invention, as well as poly Allows the intrinsic physical properties of lactic acid to be expressed.
  • the repeating unit 3 is included in an amount of 60 to 99% by weight.
  • the total weight of the repeating unit of Chemical Formula 1 and the repeating unit of Chemical Formula 2 is 1 to 40% by weight, based on the total weight of the copolymer according to the present invention.
  • the total weight of the repeating unit of Formula 1 and the repeating unit of Formula 2 is 2 wt% or more, 3 wt% or more, 4 wt% or more, or 5 wt% % or more, and 35 wt% or less, 30 wt% or less, 25 wt% or less, 20 wt% or less, or 15 wt% or less.
  • the content of the repeating unit 3 can be adjusted according to the amount of lactide used when copolymerizing lactide.
  • 'lactide' used in the present invention includes L-lactide, D-lactide, meso-lactide comprising one L-form and D-form, or L-lactide and D-lactide A mixture in a 50:50 weight ratio refers to D,L-lactide or rac-lactide.
  • the copolymer according to the present invention described above uses a random copolymer of a repeating unit represented by Chemical Formula 1 and a repeating unit represented by Chemical Formula 2 as an initiator, and various physical properties by adjusting the monomer ratio of the random copolymer as an initiator.
  • a random copolymer of a repeating unit represented by Chemical Formula 1 and a repeating unit represented by Chemical Formula 2 as an initiator
  • various physical properties by adjusting the monomer ratio of the random copolymer as an initiator.
  • the copolymer has a weight average molecular weight (g/mol) of 50,000 to 300,000.
  • a copolymer having a high weight average molecular weight as described above can be prepared.
  • the weight average molecular weight of the copolymer is 60,000 or more, 70,000 or more, 80,000 or more, 90,000 or more, or 100,000 or more. Meanwhile, a method for measuring the weight average molecular weight will be described later.
  • the copolymer according to the present invention has a tensile strength of 20 to 50 MPa. Further, the copolymer according to the present invention has an elongation of 4 to 200%. Compared with polylactic acid having the same weight average molecular weight, the tensile strength of the copolymer according to the present invention is at a similar level, but the elongation is improved, which is due to the partial inclusion of 3HP in the copolymer as described above. Meanwhile, a method for measuring the tensile strength and elongation will be described later.
  • the present invention also provides a method for preparing the above-mentioned copolymer comprising the steps of:
  • step 2 2) polymerizing the oligomer of step 1 and lactide.
  • Step 1 is a step for preparing a random copolymer of the repeating unit of Formula 1 and the repeating unit of Formula 2 described above.
  • step 1 is performed in the presence of an acid catalyst or a metal catalyst.
  • the acid catalyst may include an organic acid, preferably p-toluenesulfonic acid.
  • the metal catalyst may be a phosphorus-based catalyst or a tin-based catalyst.
  • the amount of the catalyst used in step 1 is 0.01 to 10 mol%, 0.1 to 5 mol%, 0.2 to 1 mol%, assuming that the total number of moles of 3-hydroxypropionic acid and lactic acid is 100 mol% can
  • step 1 is performed at 100 to 150°C.
  • step 1 is performed for 10 to 80 hours, and more preferably, 20 to 60 hours.
  • step 2 is performed at 0.01 to 50 mbar.
  • step 2 is performed in the presence of a lactide ring-opening polymerization catalyst.
  • the catalyst may be a catalyst represented by Chemical Formula 4.
  • M is Al, Mg, Zn, Ca, Sn, Fe, Y, Sm, Lu, Ti or Zr,
  • p is an integer from 0 to 2
  • a 1 and A 2 are each independently an alkoxy or carboxyl group.
  • the catalyst represented by Formula 4 may be tin(II) 2-ethylhexanoate (Sn(Oct) 2 ).
  • the amount of the catalyst used in step 2 is 0.001 to 10 mol%, 0.01 to 5 mol%, 0.03 to 1 mol%, assuming that the total number of moles of the oligomer and lactide in step 1 is 100 mol% can be
  • step 2 is performed at 150 to 200°C.
  • step 2 is performed for 5 minutes to 10 hours, more preferably for 10 minutes to 1 hour.
  • step 2 is performed at 0.5 to 1.5 atm.
  • step 2 may proceed to bulk polymerization that does not substantially use a solvent.
  • substantially no use of a solvent may include a case of using a small amount of a solvent for dissolving the catalyst, for example, up to 1 ml of the solvent per 1 kg of the monomer used.
  • the copolymer according to the present invention is characterized by improved elongation and high weight average molecular weight while maintaining the intrinsic properties of polylactic acid.
  • weight average molecular weight, tensile strength, and elongation were measured by the following method.
  • 3-hydroxypropionic acid (3HP), lactic acid (LA), and a catalyst (p-TSA; 0.3 wt% relative to the total weight of 3HP and LA) were put into a reactor, and 70 ° C and 50 It was dried for 3 hours under the condition of mbar. Then, after adjusting the temperature and pressure in the reactor to 130 °C and 20 mbar, respectively, the polycondensation reaction was carried out for 24 hours.
  • Comparative Example 1 means that it was prepared by ring-opening polymerization of only lactide without using the random copolymer prepared in Preparation Example.
  • Example 1-1 Random copolymer of Preparation Example 1 (10 wt%) Lactide (90 wt%)
  • Example 1-2 Random copolymer of Preparation Example 1 (30 wt%) Lactide (70 wt%)
  • Examples 1-3 Random copolymer of Preparation Example 1 (5 wt%) Lactide (95 wt%)
  • Example 2-1 Random copolymer of Preparation Example 2 (10 wt%) Lactide (90 wt%)
  • Example 3-1 Random copolymer of Preparation Example 3 (10 wt%) Lactide (90 wt%)
  • Example 3-2 Random copolymer of Preparation Example 3 (20 wt%) Lactide (80 wt%)
  • Example 4-1 Random copolymer of Preparation 3 (30 wt%) Lactide (70 wt%) Comparative Example 1 unused Lactide (100 wt%) Comparative Example 2 Random copolymer of Preparation Example 4 (10 wt%) Lactide (90 wt%) Lactide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

본 발명에 따른 공중합체는 폴리락트산의 고유 물성이 유지되면서도 특히 신율이 개선되며, 또한 중량평균분자량이 높다는 특징이 있다.

Description

공중합체 및 이의 제조 방법
관련 출원(들)과의 상호 인용
본 출원은 2020년 10월 5일자 한국 특허 출원 제10-2020-0128319호 및 2021년 10월 5일자 한국 특허 출원 제10-2021-0131495호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 폴리락트산의 고유의 특성을 유지하면서도 신율이 개선되면서 동시에 고분자량을 가지는 공중합체 및 이의 제조 방법에 관한 것이다.
폴리락트산(PLA; polylactic acid)은 옥수수 등의 식물로부터 얻어지는 식물 유래의 수지로서, 생분해성 특성을 갖는 동시에 인장강도 및 탄성률 또한 우수한 친환경 소재로 주목을 받고 있다.
기존에 사용되고 있는 폴리스티렌 수지, 폴리염화비닐 수지, 폴리에틸렌 등의 석유계 수지와는 달리, 석유 자원 고갈 방지, 탄산가스 배출 억제 등의 효과가 있기 때문에, 석유계 플라스틱 제품의 단점인 환경 오염을 줄일 수 있다. 따라서, 폐플라스틱 등에 따른 환경오염 문제가 사회 문제로 대두됨에 따라, 식품 포장재 및 용기, 전자제품 케이스 등 일반 플라스틱(석유계 수지)이 사용되었던 제품 분야까지 적용 범위를 확대하고자 노력하고 있다.
그러나, 폴리락트산은 기존의 석유계 수지와 비교하여, 내충격성 및 내열성이 떨어져 적용 범위에 제한이 있다. 또한, 신율(Elongation to break) 특성이 나빠 쉽게 깨지는 특성(Brittleness)을 보여 범용 수지로서 한계가 있는 상황이다.
상기와 같은 단점을 개선하기 위하여, 폴리락트산에 다른 반복단위를 포함한 공중합체에 관한 연구가 진행되고 있으며, 특히 신율의 개선을 위하여 3-하이드록시프로피온산(3HP; 3-hydroxypropionic acid)이 공단량체로 주목 받고 있다. 특히, 락트산-3HP 블록 공중합체가 주목 받고 있는데, 상기 공중합체는 폴리락트산 고유의 특성을 유지하면서도 신율이 개선되는 효과가 있다.
그러나, 락트산-3HP 블록 공중합체는 몇 가지 단점을 가지고 있다. 먼저, 3HP만 별도로 중합하여야 하는데, 화학적인 방법 만으로는 고분자량(약 10k Da) 이상으로 중합하기 어려운 문제가 있고, 생합성으로 고분자량의 중합이 가능하나 제조 단가가 높아지는 문제가 있다.
따라서, 폴리락트산의 고유의 특성을 유지하면서도 신율이 개선되면서 동시에 고분자량을 가지는 공중합체의 제조가 요구된다.
본 발명은 폴리락트산의 고유의 특성을 유지하면서도 신율이 개선되면서 동시에 고분자량을 가지는 공중합체 및 이의 제조 방법을 제공하기 위한 것이다.
상기 과제를 해결하기 위하여, 본 발명은 하기 화학식 1의 반복단위 및 하기 화학식 2의 반복단위의 불규칙하게 배열된 구조를 포함하고, 상기 구조의 적어도 하나의 말단에, 하기 화학식 3의 반복단위가 배열된, 공중합체를 제공한다:
[화학식 1]
Figure PCTKR2021013586-appb-img-000001
[화학식 2]
Figure PCTKR2021013586-appb-img-000002
[화학식 3]
Figure PCTKR2021013586-appb-img-000003
본 발명은 폴리락트산의 고유의 특성을 유지하면서도 신율이 개선되면서 동시에 고분자량을 가지는 공중합체를 제공하기 위하여, 3HP에서 유래하는 화학식 1로 표시되는 반복단위와, 락트산에서 유래하는 화학식 2로 표시되는 반복단위와, 락타이드에서 유래하는 화학식 3으로 표시되는 반복단위를 포함하는 공중합체를 제공한다.
특히, 본 발명에 따른 공중합체는, 상기 화학식 1의 반복단위 및 하기 화학식 2의 반복단위의 불규칙하게 배열된 구조를 포함하고, 상기 구조의 적어도 하나의 말단에 또는 양말단에, 상기 화학식 3의 반복단위가 배열된 구조를 가지고 있다. 즉, 본 발명에 따른 공중합체는 A-B 또는 B-A-B의 구조를 가지고 있으며, 이때 A는 상기 화학식 1의 반복단위 및 하기 화학식 2의 반복단위의 랜덤 배열을 가지고 있고, B는 각각 상기 화학식 3의 반복단위의 배열을 가지고 있는 구조이다.
이하 각 반복단위 별로 상세히 설명한다.
화학식 1의 반복단위 및 화학식 2의 반복단위
상기 화학식 1의 반복단위 및 상기 화학식 2의 반복단위는, 본 발명에 따른 공중합체의 중심 구조를 형성하는 것으로, 각각 3HP 및 락트산에서 유래하며 후술할 바와 같이 3HP와 락트산을 공중합하여 제조할 수 있다.
3HP는 폴리락트산의 공단량체로 사용할 경우 폴리락트산 고유의 물성을 유지하면서도 신율 등을 개선할 수 있으나, 3HP은 중합이 잘 진행되지 않는 문제가 있다. 따라서, 종래 락트산-3HP 블록 공중합체의 고분자량으로 공중합체를 제조하는데 한계가 있었다. 그러나, 본 발명에서는 3HP만 따로 중합하는 것이 아니라, 락트산과 함께 중합함으로써 고분자량의 공중합체를 제조할 수 있다.
바람직하게는, 상기 화학식 1의 반복단위 및 상기 화학식 2의 반복단위의 중량비는 20:80 내지 80:20이다. 보다 바람직하게는, 상기 중량비는 30:70 내지 70:30, 40:60 내지 60:40이다. 상기 중량비는 락트산과 3HP를 공중합할 때 각 물질의 사용량에 따라 조절할 수 있다.
또한, 본 발명에 따른 공중합체는 후술할 바와 같이, 상기 화학식 1의 반복단위 및 화학식 2의 반복단위를 포함하는 공중합체, 즉 화학식 1의 반복단위와 화학식 2의 반복단위의 랜덤 공중합체를 먼저 제조하고, 이어서 상기 화학식 3의 반복단위를 포함하는 공중합체를 제조하기 때문에, 상기 랜덤 공중합체의 중량평균분자량을 측정할 수 있다.
바람직하게는, 상기 화학식 1의 반복단위와 화학식 2의 반복단위의 랜덤 공중합체의 중량평균분자량은 10,000 내지 30,000 g/mol이다. 상기 중량평균분자량은 기존에 알려진 락트산-3HP 블록 공중합체에 비하여 분자량이 높은 것으로, 본 발명은 3HP를 폴리락트산의 공단량체로 사용하면서도 고분자량의 공중합체를 제조할 수 있다.
한편, 본 발명에서 사용하는 '락트산'은 L-락트산, D-락트산, 또는 이의 혼합물을 지칭한다.
화학식 3의 반복단위
상술한 바와 같이, 본 발명에 따른 공중합체는 A-B 또는 B-A-B의 구조를 가지고 있으며, 이때 B는 상기 화학식 3의 반복단위의 배열을 가지고 있는 구조이다.
구체적으로, 상술한 화학식 1의 반복단위와 화학식 2의 반복단위의 랜덤 공중합체에, 후술할 바와 같이 락타이드 개환 중합을 통하여 상기 공중합체의 적어도 하나의 말단에 또는 양말단에 화학식 3으로 표시되는 반복단위의 배열을 추가로 포함한다.
상기 화학식 3은 락타이드에서 유래하며, 본 발명에 따른 공중합체에 상기 화학식 2와 같은 반복단위를 추가로 도입하기 위한 것으로, 이를 통하여 본 발명에 따른 공중합체의 중량평균분자량을 높임은 물론, 폴리락트산 고유의 물성이 발현될 수 있도록 한다.
바람직하게는, 본 발명에 따른 공중합체 총 중량 대비, 상기 반복단위 3은 60 내지 99 중량%로 포함한다. 달리 말해, 바람직하게는 본 발명에 따른 공중합체 총 중량 대비, 상기 화학식 1의 반복단위 및 상기 화학식 2의 반복단위의 총 중량이 1 내지 40 중량%이다. 보다 바람직하게는, 본 발명에 따른 공중합체 총 중량 대비, 상기 화학식 1의 반복단위 및 상기 화학식 2의 반복단위의 총 중량이 2중량% 이상, 3중량% 이상, 4중량% 이상, 또는 5중량% 이상이고, 35 중량% 이하, 30 중량% 이하, 25 중량% 이하, 20 중량% 이하, 또는 15 중량% 이하이다.
상기 반복단위 3의 함럄은, 락타이드를 공중합할 때 락타이드의 사용량에 따라 조절할 수 있다.
한편, 본 발명에서 사용하는 '락타이드'는 L-락타이드, D-락타이드, L-형태와 D-형태가 각각 하나씩으로 이루어진 meso-락타이드, 또는 L-락타이드와 D-락타이드가 50:50중량비로 섞여있는 것을 D,L- 락타이드 또는 rac-락타이드를 지칭한다.
공중합체
상술한 본 발명에 따른 공중합체는 상대적으로 화학식 1로 표시되는 반복단위와 화학식 2로 표시되는 반복단위의 랜덤 공중합체를 개시제로 사용하는 바, 개시제인 랜덤 공중합체의 단량체 비율을 조절하여 다양한 물성을 구현할 수 있는 이점이 있다. 또한, 개시제 자체의 결정성을 조절함으로써 폴리락트산의 고유 물성이 유지되면서도 특히 신율이 개선되며, 또한 중량평균분자량이 높다는 특징이 있다.
바람직하게는, 상기 공중합체의 중량평균분자량(g/mol)은 50,000 내지 300,000이다. 상술한 바와 같이, 3HP와 락트산을 먼저 공중합한 다음, 락타이드를 개환 중합함으로써, 상기와 같은 높은 중량평균분자량을 가지는 공중합체를 제조할 수 있다. 바람직하게는, 상기 공중합체의 중량평균분자량은 60,000 이상, 70,000 이상, 80,000 이상, 90,000 이상, 또는 100,000 이상이다. 한편, 상기 중량평균분자량의 측정 방법은 후술하기로 한다.
또한, 본 발명에 따른 공중합체는, 인장강도가 20 내지 50 MPa이다. 또한, 본 발명에 따른 공중합체는, 신율이 4 내지 200%이다. 동일한 중량평균분자량의 폴리락트산과 비교하였을 때, 상기 본 발명에 따른 공중합체의 인장강도는 유사한 수준이나 신율이 개선되는 것으로, 이는 상술한 바와 같이 3HP가 공중합체 내에 일부 포함되는 것에 기인한다. 한편, 상기 인장강도 및 신율의 측정 방법은 후술하기로 한다.
공중합체의 제조 방법
또한, 본 발명은 하기의 단계를 포함하는 상술한 공중합체의 제조 방법을 제공한다:
1) 3-하이드록시프로피온산 및 락트산을 축중합하여 올리고머를 제조하는 단계; 및
2) 상기 단계 1의 올리고머, 및 락타이드를 중합하는 단계.
상기 단계 1은, 상술한 화학식 1의 반복단위와 화학식 2의 반복단위의 랜덤 공중합체를 제조하기 위한 단계이다.
바람직하게는, 상기 단계 1은 산 촉매 또는 금속 촉매의 존재 하에 수행한다. 상기 산 촉매의 예로는 유기산을 들 수 있으며, 바람직하세는 p-톨루엔술폰산을 사용할 수 있다. 상기 금속 촉매의 예로는 인계 촉매 또는 주석계 촉매를 사용할 수 있다.
바람직하게는, 상기 단계 1에서 상기 촉매의 사용량은 3-하이드록시프로피온산 및 락트산의 총 몰수를 100몰%로 가정하였을 때, 0.01 내지 10몰%, 0.1 내지 5몰%, 0.2 내지 1몰%일 수 있다.
바람직하게는, 상기 단계 1은 100 내지 150℃에서 수행한다. 바람직하게는, 상기 단계 1은 10시간 내지 80시간 동안 수행하며, 보다 바람직하게는 20시간 내지 60시간 동안 수행한다. 바람직하게는, 상기 단계 2는 0.01 내지 50 mbar에서 수행한다.
바람직하게는, 상기 단계 2는 락타이드 개환 중합 촉매의 존재 하에 수행한다. 일례로, 상기 촉매는 화학식 4로 표시되는 촉매일 수 있다.
[화학식 4]
MA1 pA2 2-p
상기 화학식 4에서,
M은 Al, Mg, Zn, Ca, Sn, Fe, Y, Sm, Lu, Ti 또는 Zr이고,
p는 0 내지 2의 정수이고,
A1과 A2는 각각 독립적으로 알콕시 또는 카르복실기이다.
보다 구체적으로, 상기 화학식 4로 표시되는 촉매는 주석(II) 2-에틸헥사노에이트(Sn(Oct)2)일 수 있다.
바람직하게는, 상기 단계 2에서 상기 촉매의 사용량은 상기 단계 1의 올리고머 및 락타이드의 총 몰수를 100몰%로 가정하였을 때, 0.001 내지 10몰%, 0.01 내지 5몰%, 0.03 내지 1몰%일 수 있다.
바람직하게는, 상기 단계 2는 150 내지 200℃에서 수행한다. 바람직하게는, 상기 단계 2는 5분 내지 10시간 동안 수행하며, 보다 바람직하게는 10분 내지 1시간 동안 수행한다. 바람직하게는, 상기 단계 2는 0.5 내지 1.5 atm에서 수행한다.
한편, 상기 단계 2는 실질적으로 용매를 사용하지 않는 벌크 중합으로 진행할 수 있다. 이때, 실질적으로 용매를 사용하지 않는다 함은 촉매를 용해시키기 위한 소량의 용매, 예를 들어, 사용 단량체 1 kg 당 최대 1 ml 미만의 용매를 사용하는 경우까지 포괄할 수 있다. 상기 단계 2를 벌크 중합으로 진행함에 따라, 중합 후 용매 제거 등을 위한 공정의 생략이 가능해지며, 이러한 용매 제거 공정에서의 수지의 분해 또는 손실 등도 억제할 수 있다.
상술한 바와 같이, 본 발명에 따른 공중합체는 폴리락트산의 고유 물성이 유지되면서도 특히 신율이 개선되며, 또한 중량평균분자량이 높다는 특징이 있다.
이하, 본 발명의 구현예를 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명의 구현예를 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
이하에서, 중량평균분자량, 인장강도 및 신율은 이하의 방법으로 측정하였다.
- 중량평균분자량: Agilent 1200 series를 이용하여 PC 스텐다드(Standard)를 이용한 GPC로 측정하였다.
- 신율, 인장강도 및 인장탄성률: ASTM D638에 따라 진행하였으며, 공중합체를 펠렛 형태로 만든 후, 도그본 시편으로 가공하여 UTM(Universal Testing Machine, 만능재료시험기)으로 측정하였다. 이때, 측정속도는 10 mm/min이었다.
- 공중합체 내 3HP 함량(wt%): 공중합체의 NMR 분석을 통하여 측정하였다.
제조예 1 내지 4
하기 표 1에 기재된 바와 같은 함량으로, 3-하이드록시프로피온산(3HP), 락트산(LA), 및 촉매(p-TSA; 3HP 및 LA 총 중량 대비 0.3 wt%)를 반응기에 넣고, 70℃ 및 50 mbar의 조건으로 3시간 동안 건조하였다. 이어, 반응기 내 온도와 압력을 각각 130℃ 및 20 mbar로 조절한 후, 24시간 동안 축중합 반응을 진행하였다.
상기 각 제조된 랜덤 공중합체에 대하여, 공중합체 내에 포함된 3HP 함량과 중량평균분자량을 측정하여, 하기 표 1에 나타내었다.
3HP 투입량(g) LA 투입량(g) 3HP 투입비율
(wt%)
공중합체 내 3HP 함량(wt%) 랜덤 공중합체의 중량평균분자량
(Mw, g/mol)
제조예 1 7 3 70 68 16,700
제조예 2 5 5 50 44 15,850
제조예 3 3 7 30 31 27,600
제조예 4 10 0 100 100 2,430
실시예 및 비교예
하기 표 2와 같이, 앞서 제조예에서 제조한 랜덤 공중합체, 락타이드, 및 촉매(Tin Octoate 락타이드 대비 0.05 mol%)를 반응기에 넣고, 170℃ 및 20 mbar로 조절한 후, 30분 동안 락타이드 개환 반응을 진행하였다.
한편, 하기 표 2에서, 비교예 1은 앞서 제조예에서 제조한 랜덤 공중합체를 사용하지 않고, 락타이드만 개환 중합하여 제조한 것을 의미한다.
랜덤 공중합체 락타이드
실시예 1-1 제조예 1의 랜덤 공중합체 (10 wt%) 락타이드 (90 wt%)
실시예 1-2 제조예 1의 랜덤 공중합체 (30 wt%) 락타이드 (70 wt%)
실시예 1-3 제조예 1의 랜덤 공중합체 (5 wt%) 락타이드 (95 wt%)
실시예 2-1 제조예 2의 랜덤 공중합체 (10 wt%) 락타이드 (90 wt%)
실시예 3-1 제조예 3의 랜덤 공중합체 (10 wt%) 락타이드 (90 wt%)
실시예 3-2 제조예 3의 랜덤 공중합체 (20 wt%) 락타이드 (80 wt%)
실시예 4-1 제조예 3의 랜덤 공중합체 (30 wt%) 락타이드 (70 wt%)
비교예 1 미사용 락타이드 (100 wt%)
비교예 2 제조예 4의 랜덤 공중합체 (10 wt%) 락타이드 (90 wt%)
실험예
상기 실시예 및 비교예에서 제조한 공중합체에 대하여 중량평균분자량, 인장강도 및 신율을 측정하여, 그 결과를 하기 표 3에 나타내었다.
공중합체 내 3HP 함량(wt%) 중량평균분자량
(Mw, g/mol)
인장강도(MPa) 신율(%)
실시예 1-1 7.2 164,650 36.80 14.90
실시예 1-2 21.0 80,900 27.7 107
실시예 1-3 3.8 214,500 44.5 3.4
실시예 2-1 5.0 190,370 32.40 5.0
실시예 3-1 2.5 255,000 41.45 4.3
실시예 3-2 7.6 179,200 32.8 66.2
실시예 4-1 9.8 108,360 28.73 152.5
비교예 1 0 239,000 50.13 2.2
비교예 2 10 31,700 분자량이 낮아 물성평가 불가
상기 표 2에 나타난 바와 같이, 락타이드만 중합한 경우(비교예 1)에 비하여, 본 발명에 따른 공중합체는 신율이 증가함을 확인할 수 있었다. 또한, 실시예 4와 락트산이 중합에 사용되지 않은 경우(비교예 2)를 비교하면, 락트산이 공중합되는 경우에 분자량 증가의 효과가 있었으며, 이에 따라 물성의 개선이 이루어짐을 확인할 수 있었다.

Claims (10)

  1. 하기 화학식 1의 반복단위 및 하기 화학식 2의 반복단위의 불규칙하게 배열된 구조를 포함하고,
    상기 구조의 적어도 하나의 말단에, 하기 화학식 3의 반복단위가 배열된,
    공중합체:
    [화학식 1]
    Figure PCTKR2021013586-appb-img-000004
    [화학식 2]
    Figure PCTKR2021013586-appb-img-000005
    [화학식 3]
    Figure PCTKR2021013586-appb-img-000006
  2. 제1항에 있어서,
    상기 화학식 1의 반복단위 및 상기 화학식 2의 반복단위의 중량비는 20:80 내지 80:20인,
    공중합체.
  3. 제1항에 있어서,
    상기 공중합체 총 중량 대비, 상기 화학식 1의 반복단위 및 상기 화학식 2의 반복단위의 총 중량이 1 내지 40 중량%인,
    공중합체.
  4. 제1항에 있어서,
    상기 공중합체 총 중량 대비, 상기 화학식 1의 반복단위 및 상기 화학식 2의 반복단위의 총 중량이 5 내지 15 중량%인,
    공중합체.
  5. 제1항에 있어서,
    상기 공중합체의 중량평균분자량은 50,000 내지 300,000 g/mol인,
    공중합체.
  6. 제1항에 있어서,
    상기 공중합체는, 인장강도가 20 내지 50 MPa인,
    공중합체.
  7. 제1항에 있어서,
    상기 공중합체는, 신율이 4 내지 200%인,
    공중합체.
  8. 1) 3-하이드록시프로피온산 및 락트산을 축중합하여 올리고머를 제조하는 단계; 및
    2) 상기 단계 1의 올리고머, 및 락타이드를 중합하는 단계를 포함하는,
    제1항 내지 제7항 중 어느 한 항에 따른 공중합체의 제조 방법.
  9. 제8항에 있어서,
    상기 단계 2의 촉매는 하기 화학식 4로 표시되는 촉매인,
    제조 방법:
    [화학식 4]
    MA1 pA2 2-p
    상기 화학식 4에서,
    M은 Al, Mg, Zn, Ca, Sn, Fe, Y, Sm, Lu, Ti 또는 Zr이고,
    p는 0 내지 2의 정수이고,
    A1과 A2는 각각 독립적으로 알콕시 또는 카르복실기이다.
  10. 제8항에 있어서,
    상기 단계 2의 촉매는 주석(II) 2-에틸헥사노에이트인,
    제조 방법.
PCT/KR2021/013586 2020-10-05 2021-10-05 공중합체 및 이의 제조 방법 WO2022075684A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/918,371 US20230146000A1 (en) 2020-10-05 2021-10-05 Copolymer and preparation method thereof
EP21877936.1A EP4116353A4 (en) 2020-10-05 2021-10-05 COPOLYMER AND ITS PREPARATION PROCESS
CN202180027816.1A CN115397883B (zh) 2020-10-05 2021-10-05 共聚物及其制备方法
JP2022568478A JP7486609B2 (ja) 2020-10-05 2021-10-05 共重合体およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200128319 2020-10-05
KR10-2020-0128319 2020-10-05
KR10-2021-0131495 2021-10-05
KR1020210131495A KR102598027B1 (ko) 2020-10-05 2021-10-05 공중합체 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2022075684A1 true WO2022075684A1 (ko) 2022-04-14

Family

ID=81125897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013586 WO2022075684A1 (ko) 2020-10-05 2021-10-05 공중합체 및 이의 제조 방법

Country Status (3)

Country Link
US (1) US20230146000A1 (ko)
JP (1) JP7486609B2 (ko)
WO (1) WO2022075684A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130184429A1 (en) * 2010-07-28 2013-07-18 The University Of Akron Functional biodegradable polymers
US20170106125A1 (en) * 2015-10-16 2017-04-20 Industrial Technology Research Institute Hydrogel composition and method for using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988619B2 (ja) 2002-10-31 2007-10-10 東レ株式会社 ポリ乳酸系樹脂組成物およびそれからなる成形品
JP5616074B2 (ja) 2010-01-28 2014-10-29 有限会社Nkリサーチ ポリエステル樹脂及び樹脂組成物、並びにこれらを用いた成型体
WO2012169791A2 (ko) 2011-06-07 2012-12-13 주식회사 엘지화학 락타이드 공중합체, 이의 제조 방법 및 이를 포함하는 수지 조성물
KR102241367B1 (ko) 2018-01-05 2021-04-15 주식회사 엘지화학 블록 공중합체
KR20200115166A (ko) 2019-03-26 2020-10-07 주식회사 엘지화학 트리블록 공중합체 및 이의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130184429A1 (en) * 2010-07-28 2013-07-18 The University Of Akron Functional biodegradable polymers
US20170106125A1 (en) * 2015-10-16 2017-04-20 Industrial Technology Research Institute Hydrogel composition and method for using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AMADOR ADRIAN G., WATTS ANNABELLE, NEITZEL ANGELIKA E., HILLMYER MARC A.: "Entropically Driven Macrolide Polymerizations for the Synthesis of Aliphatic Polyester Copolymers Using Titanium Isopropoxide", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 52, no. 6, 26 March 2019 (2019-03-26), US , pages 2371 - 2383, XP055918977, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.9b00065 *
DONG CHANG-MING, QIU KUN-YUAN, GU ZHONG-WEI, FENG XIN-DE: "Synthesis of star-shaped poly(D,L-lactic acid-alt-glycolic acid)-b-poly(L-lactic acid) with the poly(D,L-lactic acid-alt-glycolic acid) macroinitiator and stannous octoate catalyst", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, JOHN WILEY & SONS, INC., US, vol. 40, no. 3, 1 February 2002 (2002-02-01), US , pages 409 - 415, XP055918981, ISSN: 0887-624X, DOI: 10.1002/pola.10132 *
MARC A. HILLMYER: "High performing sustainable thermoplastic elastomers", UNIVERSITY OF MINNESOTA, 1 January 2019 (2019-01-01), XP055918969, Retrieved from the Internet <URL:https://core.ac.uk/download/pdf/226939724.pdf> [retrieved on 20220509] *

Also Published As

Publication number Publication date
JP2023525316A (ja) 2023-06-15
US20230146000A1 (en) 2023-05-11
JP7486609B2 (ja) 2024-05-17

Similar Documents

Publication Publication Date Title
KR20200115165A (ko) 블록 공중합체 제조 방법
WO2012144781A2 (ko) 생분해성 고분자 복합재
WO2014038896A1 (ko) 열가소성 리그닌축중합체 및 이의 제조방법
WO2021006480A1 (ko) 천연고분자 나노섬유 수분산액을 이용한 향상된 기계적 물성을 갖는 생분해성 복합소재 및 이의 제조방법
WO2020197147A1 (ko) 블록 공중합체 제조 방법
WO2017164504A1 (ko) 폴리유산 수지 조성물 및 이를 포함한 성형용품
WO2022075684A1 (ko) 공중합체 및 이의 제조 방법
WO2020197148A1 (ko) 트리블록 공중합체 및 이의 제조 방법
KR20130110777A (ko) 고분자량의 폴리알킬렌글리콜과 락티드의 블록 공중합 폴리락티드
WO2021049910A1 (ko) 블록 공중합체 제조 방법
WO2023027559A1 (ko) 블록 공중합체 및 이의 제조 방법
WO2021054721A1 (ko) 바이오폴리머 조성물, 이의 제조방법 및 이를 이용한 바이오플라스틱
WO2022182160A1 (ko) 인장강도가 우수한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이를 포함하는 물품
WO2023182687A1 (ko) 결정화 반감기가 우수한 폴리락타이드 수지 조성물, 및 이의 제조 방법
WO2022182154A1 (ko) 투명성 특성이 우수한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이를 포함하는 물품
WO2017135618A1 (ko) 물 소거제를 포함하는 유연 폴리유산 수지 조성물
WO2023182686A1 (ko) 결정화도가 우수한 폴리락타이드 수지 조성물, 및 이의 제조 방법
KR102598027B1 (ko) 공중합체 및 이의 제조 방법
WO2022050815A1 (ko) 폴리락테이트 입체이성질 복합체 및 이의 제조방법
WO2023014109A1 (ko) 폴리(3-하이드록시프로피온산)의 블록 공중합체 및 이의 제조방법 및 이를 포함하는 물품
WO2021086037A1 (ko) 무수당 알코올과 무수당 알코올-알킬렌 글리콜을 포함하는 생분해성 공중합 폴리에스테르 수지 및 이의 제조 방법
WO2023182723A1 (ko) 폴리락타이드 수지 조성물, 및 이의 제조 방법
WO2023027512A1 (ko) 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이의 제조 방법
WO2023182688A1 (ko) 결정화도가 우수한 폴리락타이드 수지 조성물, 및 이의 제조 방법
KR101355189B1 (ko) 폴리알킬렌글리콜 폴리락티드 수지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021877936

Country of ref document: EP

Effective date: 20221004

ENP Entry into the national phase

Ref document number: 2022568478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE