WO2022182160A1 - 인장강도가 우수한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이를 포함하는 물품 - Google Patents

인장강도가 우수한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이를 포함하는 물품 Download PDF

Info

Publication number
WO2022182160A1
WO2022182160A1 PCT/KR2022/002705 KR2022002705W WO2022182160A1 WO 2022182160 A1 WO2022182160 A1 WO 2022182160A1 KR 2022002705 W KR2022002705 W KR 2022002705W WO 2022182160 A1 WO2022182160 A1 WO 2022182160A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
acid
block copolymer
lactic acid
hydroxypropionic acid
Prior art date
Application number
PCT/KR2022/002705
Other languages
English (en)
French (fr)
Inventor
최정윤
이연주
박솔이
조수현
강동균
김철웅
김응원
조정현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP22760076.4A priority Critical patent/EP4163316A4/en
Priority to CN202280005484.1A priority patent/CN115803359A/zh
Priority to US18/016,127 priority patent/US20230279215A1/en
Priority to JP2023512216A priority patent/JP2023538390A/ja
Priority claimed from KR1020220024171A external-priority patent/KR20220121216A/ko
Publication of WO2022182160A1 publication Critical patent/WO2022182160A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a poly(lactic acid-b-3-hydroxypropionic acid) block copolymer having excellent tensile strength and an article comprising the same.
  • Polylactic acid is a plant-derived resin obtained from plants such as corn, and has been attracting attention as an excellent eco-friendly material because it has biodegradable properties. Unlike petroleum-based resins such as polystyrene resin, polyvinyl chloride resin, and polyethylene, which are used in the past, polylactic acid has the effect of preventing the depletion of petroleum resources and suppressing carbon dioxide emissions. can reduce Therefore, as the environmental pollution problem caused by waste plastics has emerged as a social problem, efforts are being made to expand the scope of application of polylactic acid to products where general plastics (petroleum-based resins) have been used, such as food packaging materials, containers, and electronic product cases. .
  • polylactic acid has poor impact resistance and heat resistance compared to conventional petroleum-based resins, thereby limiting its application range.
  • the tensile strength is weak, the elongation characteristic is poor, and it shows a brittleness property, which is a situation where there is a limit as a general-purpose resin.
  • the present invention by controlling the degree of introduction of the 3-hydroxypropionic acid-derived monomer, it is intended to provide a block copolymer having improved physical properties such as tensile strength while maintaining the intrinsic properties of polylactic acid.
  • An object of the present invention is to provide a copolymer having improved physical properties, such as tensile strength, while maintaining the intrinsic properties of polylactic acid, and articles including the same.
  • the present invention provides a poly(lactic acid-b-3-hydroxypropionic acid) block copolymer represented by the following Chemical Formula 1, wherein the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer Provided is a poly(lactic acid-b-3-hydroxypropionic acid) block copolymer having a tensile strength of at least 30 MPa:
  • n is an integer from 100 to 1000
  • n is an integer from 500 to 4000.
  • poly(lactic acid-b-3-hydroxypropionic acid) block copolymer' used in the present invention refers to a polymerization of a lactide-derived monomer and a 3-hydroxypropionic acid-derived monomer as shown in Formula 1 above.
  • a block copolymer in particular, by introducing a monomer derived from 3-hydroxypropionic acid, it refers to a block copolymer in which various physical properties such as tensile strength of polylactic acid are improved.
  • the 3-hydroxypropionic acid-derived monomer When the 3-hydroxypropionic acid-derived monomer is introduced as a comonomer of polylactic acid, various physical properties of polylactic acid may be improved, but the expressed properties differ depending on the degree of introduction. Accordingly, in the present invention, by controlling the degree of introduction of the 3-hydroxypropionic acid-derived monomer, physical properties such as tensile strength are improved while maintaining the intrinsic properties of polylactic acid.
  • m is from 250 to 650.
  • m means the number of repeats of the monomer derived from 3-hydroxypropionic acid, and when introduced within the above range, physical properties such as tensile strength can be improved while maintaining the intrinsic properties of polylactic acid.
  • m is at least 260, at least 270, or at least 280; 640 or less, 600 or less, 500 or less, or 400 or less.
  • n is 600 to 1400.
  • n means the number of repeats of the lactide-derived monomer. More preferably, n is 700 or more, 800 or more, 900 or more, or 1000 or more; 1300 or less, or 1200 or less.
  • the relative ratio of the monomers is important, and preferably, the m/n is 0.20 to 0.60. In the range of m/n, it is possible to improve physical properties such as tensile strength while maintaining the intrinsic properties of polylactic acid. More preferably, m/n is 0.21 or more, 0.22 or more, 0.23 or more, 0.24 or more, or 0.25 or more; 0.55 or less, 0.50 or less, 0.45 or less, 0.40 or less, 0.35 or less, or 0.30 or less.
  • the tensile strength of the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer according to the present invention is 30 MPa or more.
  • the method of measuring the tensile strength will be specified in Examples to be described later.
  • the tensile strength of the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer according to the present invention is 31 MPa or more, 32 MPa or more, 33 MPa or more, 34 MPa or more, 35 MPa or more, 36 MPa or more. , 37 MPa or more, 38 MPa or more, 39 MPa or more, or 40 MPa or more.
  • the tensile strength of the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer according to the present invention is 60 MPa or less. More preferably, the tensile strength of the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer according to the present invention is 59 MPa or less, 58 MPa or less, 57 MPa or less, 56 MPa or less, 55 MPa or less, 54 MPa or less or less, 53 MPa or less, 52 MPa or less, 51 MPa or less, or 50 MPa or less.
  • the elongation of the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer according to the present invention is 30% to 250%.
  • the method of measuring the elongation will be specified in Examples to be described later.
  • the elongation of the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer according to the present invention is 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 100% or more, 110% or more, 120% or more, 130% or more, 140% or more, 150% or more, 160% or more, 170% or more, 180% or more, 190% or more, or 200% or more.
  • the elongation of the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer according to the present invention is 240% or less, 230% or less, 220% or less, or 210% or less.
  • the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer according to the present invention has a tensile modulus of elasticity of 1.0 to 2.0 GPa.
  • the method for measuring the tensile modulus of elasticity will be specified in Examples to be described later.
  • the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer has a weight average molecular weight of 50,000 to 350,000. More preferably, the weight average molecular weight of the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer is 60,000 or more, 70,000 or more, 80,000 or more, 90,000 or more, 100,000 or more, 110,000 or more, 120,000 or more, or 130,000 or more. ego; 300,000 or less, 250,000 or less, 200,000 or less, 190,000 or less, 180,000 or less, or 170,000 or less.
  • the present invention provides a method for preparing the above-described poly(lactic acid-b-3-hydroxypropionic acid) block copolymer comprising the steps of: polymerizing 3-hydroxypropionic acid polymer, lactide and a catalyst It provides a method for producing a poly (lactic acid-b-3-hydroxypropionic acid) block copolymer.
  • the 3-hydroxypropionic acid polymer refers to a homopolymer of 3-hydroxypropionic acid, and one prepared by controlling the polymerization degree in consideration of the above-described ranges of m and n is used.
  • the preparation method is accompanied by a lactide ring-opening polymerization reaction, it is carried out in the presence of a lactide ring-opening catalyst.
  • the catalyst may be a catalyst represented by Chemical Formula 2.
  • M is Al, Mg, Zn, Ca, Sn, Fe, Y, Sm, Lu, Ti or Zr,
  • p is an integer from 0 to 2
  • a 1 and A 2 are each independently an alkoxy group or a carboxyl group.
  • the catalyst represented by Formula 2 may be tin(II) 2-ethylhexanoate (Sn(Oct) 2 ).
  • the amount of the catalyst used may be 0.001 to 10 mol%, 0.01 to 5 mol%, or 0.03 to 1 mol%, assuming that the total number of moles of lactide is 100 mol%.
  • the manufacturing method is carried out at 150 to 200 °C.
  • the manufacturing method is carried out for 5 minutes to 10 hours, more preferably for 10 minutes to 1 hour.
  • the manufacturing method is carried out at 0.5 to 1.5 atm.
  • the present invention also provides an article comprising the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer described above.
  • the poly(lactic acid-b-3-hydroxypropionic acid) block copolymer according to the present invention has various physical properties such as tensile strength of polylactic acid by introducing a monomer derived from 3-hydroxypropionic acid into polylactic acid. It has the characteristic of being able to expand the field of application by improving it.
  • poly(3-hydroxypropionic acid) (hereinafter, 'P(3HP)') was fermented and produced using the prepared 3-hydroxypropionate as a substrate.
  • a 5L fermenter (internal volume: 3L) was specifically used, and as microorganisms for fermentation, the RecC gene and Clostridium, a polyhydroxyalkanoate synthase (PHA synthase) derived from Ralstonia eutropha in pBLuescript II KS+ vector
  • a recombinant vector cloning the mutant 540 (CPPCT_540) gene of propionyl-CoA transferase derived from propionicum was transformed into XL1-Blue Escherichia coli, and recombinant E. coli reconstituted was used.
  • the CPPCT_540 gene has a nucleotide sequence substituted so that the 193rd amino acid, Valine, is expressed as Alanin (V194A), and in addition, silent mutation (T669C, A1125G, T1158C) consisting of only DNA substitution without amino acid change is an improved gene consisting of three (WO) 09/022797).
  • a fermentation broth (2.0 g/L) containing glucose (20 g/L) and the above-prepared 3-hydroxypropionate as a substrate (2.0 g/L) was added to MR (Modified Riesenberg) medium.
  • the prepared poly(3-hydroxypropionate) was put in distilled water and hydrolyzed at 100° C. for 18 hours, 24 hours, and 72 hours, respectively, and the weight average molecular weight (Agilent 1200 series was used, calibrated by PC standard) measurement) of 30,000 g/mol, 60,000 g/mol and 80,000 g/mol, respectively) were obtained.
  • lactide (25 g), a poly(3-hydroxypropionate) oligomer having a weight average molecular weight of 30,000 g/mol (5 g) prepared in Preparation Example above, and Tin(II) Ethylhexanoate (0.014) as a catalyst g) and toluene (100 uL) were added and dried for about 30 minutes to 1 hour. Then, the reactor was placed in an oil bath pre-heated to 180° C. and polymerization was performed for 1.5 hours. After removing the product from the reactor, the product was devolitilized at 140° C. under 1 to 5 torr reduced pressure for about 3 hours to remove the monomer, and finally a poly(lactic acid-b-3-hydroxypropionic acid) block copolymer was prepared.
  • a poly(lactic acid-b-3-hydroxypropionic acid) block copolymer was prepared in the same manner as in Example 1, except that starting materials were changed as shown in Table 1 below.
  • Lactide (g) P(3HP) Tin(II) Ethylhexanoate (g) Weight average molecular weight (g/mol) Usage (g)
  • Example 1 25 30,000 7.5 0.014
  • Example 2 25 30,000 10.0 0.014
  • Example 3 25 60,000 7.5 0.014
  • Example 4 25 60,000 12.5 0.014
  • Example 5 25 24,000 5.0 0.014
  • Example 6 25 32,000 7.5 0.014
  • Example 7 25 65,000 7.5 0.014
  • lactide 25 g
  • 1-octanol 0.027 g
  • Tin(II) Ethylhexanoate 0.014 g
  • toluene 100 uL
  • the reactor was placed in an oil bath pre-heated to 180° C. and polymerization was performed for 1.5 hours.
  • the product was devolitilized at 140° C. under 1 to 5 torr reduced pressure for about 3 hours to remove monomers, and finally a polylactic acid homopolymer was prepared.
  • Example 1 290 1,100 1,380 0.26 152,100 33.0 103 1.66
  • Example 2 290 800 1,090 0.36 114,370 32.0 34 2.00
  • Example 3 360 1,300 1,660 0.28 161,100 46.5 220 1.26
  • Example 4 360 700 1,060 0.51 83,800 36.8 130 1.17
  • Example 5 180 680 860 0.27 132,300 48.8 139 2.00
  • Example 6 530 1,230 1,760 0.43 148,700 40.1 207 0.75
  • Example 7 300 660 960 0.45 63,200 40.5 69 1.47 comparative example 0 1,600 1,600 - 156,000 50.7 2.1 2.80

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명에 따른 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체는, 폴리락트산에 3-하이드록시프로피온산 유래의 단량체를 도입함으로써, 폴리락트산의 인장강도 등 다양한 물성을 개선하여 그 응용 분야를 확대할 수 있다는 특징이 있다.

Description

인장강도가 우수한 폴리(락트산-B-3-하이드록시프로피온산) 블록 공중합체 및 이를 포함하는 물품
관련 출원(들)과의 상호 인용
본 출원은 2021년 2월 24일자 한국 특허 출원 제10-2021-0024928호 및 2022년 2월 24일자 한국 특허 출원 제10-2022-0024171호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 인장강도가 우수한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이를 포함하는 물품에 관한 것이다.
폴리락트산(PLA; polylactic acid)은 옥수수 등의 식물로부터 얻어지는 식물 유래의 수지로서, 생분해성 특성을 가지고 있어 우수한 친환경 소재로 주목을 받고 있다. 기존에 사용되고 있는 폴리스티렌 수지, 폴리염화비닐 수지, 폴리에틸렌 등의 석유계 수지와는 달리, 폴리락트산은 석유 자원 고갈 방지, 탄산가스 배출 억제 등의 효과가 있기 때문에, 석유계 플라스틱 제품의 단점인 환경 오염을 줄일 수 있다. 따라서, 폐플라스틱 등에 따른 환경오염 문제가 사회 문제로 대두됨에 따라, 식품 포장재 및 용기, 전자제품 케이스 등 일반 플라스틱(석유계 수지)이 사용되었던 제품 분야까지 폴리락트산의 적용 범위를 확대하고자 노력하고 있다.
그러나, 폴리락트산은 기존의 석유계 수지와 비교하여, 내충격성 및 내열성이 떨어져 적용 범위에 제한이 있다. 또한, 인장강도가 약하고, 신율 특성이 나빠 쉽게 깨지는 특성(Brittleness)을 보여 범용 수지로서 한계가 있는 상황이다.
상기와 같은 단점을 개선하기 위하여, 폴리락트산에 다른 반복단위를 포함한 공중합체에 관한 연구가 진행되고 있으며, 특히 신율의 개선을 위하여 3-하이드록시프로피온산(3-hydroxypropionic acid)이 공단량체로 주목 받고 있다. 그러나, 3-하이드록시프로피온산이 도입되는 정도에 따라 발현되는 물성이 상이하게 나타나며, 이의 도입 정도를 조절하지 않으면 폴리락트산의 고유 물성이 저해될 우려가 있다.
이에 본 발명에서는 상기 3-하이드록시프로피온산 유래의 단량체의 도입 정도를 조절하여, 폴리락트산 고유의 물성을 유지하면서도 인장강도 등의 물성을 개선한 블록 공중합체를 제공하고자 한다.
본 발명은 폴리락트산의 고유의 특성을 유지하면서도 인장강도 등의 물성이 개선된 공중합체 및 이를 포함하는 물품을 제공하기 위한 것이다.
상기 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체에 있어서, 상기 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 인장강도가 30 MPa 이상인, 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체를 제공한다:
[화학식 1]
Figure PCTKR2022002705-appb-img-000001
상기 화학식 1에서,
m은 100 내지 1000의 정수이고,
n은 500 내지 4000의 정수이다.
본 발명에서 사용하는 용어 '폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체'는, 상기 화학식 1로 표시되는 바와 같이 락타이드 유래의 단량체와 3-하이드록시프로피온산 유래의 단량체가 중합된 블록 공중합체로서, 특히 3-하이드록시프로피온산 유래의 단량체가 도입됨으로써, 폴리락트산의 인장강도 등 다양한 물성이 개선된 블록 공중합체를 의미한다.
3-하이드록시프로피온산 유래의 단량체가 폴리락트산의 공단량체로 도입되는 경우, 폴리락트산의 다양한 물성이 개선될 수 있으나, 도입되는 정도에 따라 발현되는 물성이 상이하게 나타난다. 이에 본 발명에서는 상기 3-하이드록시프로피온산 유래의 단량체의 도입 정도를 조절하여, 폴리락트산 고유의 물성을 유지하면서도 인장강도 등의 물성을 개선한다.
바람직하게는, m은 250 내지 650이다. 상기 m은 3-하이드록시프로피온산 유래의 단량체의 반복수를 의미하며, 상기의 범위로 도입됨에 따라 폴리락트산 고유의 물성을 유지하면서도 인장강도 등의 물성을 개선할 수 있다. 보다 바람직하게는, m은 260 이상, 270 이상, 또는 280이상이고; 640 이하, 600 이하, 500 이하, 또는 400 이하이다.
바람직하게는, n은 600 내지 1400이다. 상기 n은 락타이드 유래의 단량체의 반복수를 의미한다. 보다 바람직하게는, n은 700 이상, 800 이상, 900 이상, 또는 1000 이상이고; 1300 이하, 또는 1200 이하이다.
또한, 본 발명에서는 상기 단량체의 상대적인 비율이 중요하며, 바람직하게는 상기 m/n은 0.20 내지 0.60이다. 상기 m/n의 범위에서, 폴리락트산 고유의 물성을 유지하면서도 인장강도 등의 물성을 개선할 수 있다. 보다 바람직하게는, 상기 m/n은 0.21 이상, 0.22 이상, 0.23 이상, 0.24 이상, 또는 0.25 이상이고; 0.55 이하, 0.50 이하, 0.45 이하, 0.40 이하, 0.35 이하, 또는 0.30 이하이다.
본 발명에 따른 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 인장강도는 30 MPa 이상이다. 상기 인장강도의 측정 방법은 후술할 실시예에서 구체화한다. 바람직하게는, 본 발명에 따른 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 인장강도는 31 MPa 이상, 32 MPa 이상, 33 MPa 이상, 34 MPa 이상, 35 MPa 이상, 36 MPa 이상, 37 MPa 이상, 38 MPa 이상, 39 MPa 이상, 또는 40 MPa 이상이다. 한편, 상기 인장강도는 그 값이 높을수록 우수한 것이나, 그 값이 지나치게 높으면 공중합체의 응용분야가 제한될 수 있다. 이러한 관점에서, 바람직하게는, 본 발명에 따른 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 인장강도는 60 MPa 이하이다. 보다 바람직하게는, 본 발명에 따른 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 인장강도는 59 MPa 이하, 58 MPa 이하, 57 MPa 이하, 56 MPa 이하, 55 MPa 이하, 54 MPa 이하, 53 MPa 이하, 52 MPa 이하, 51 MPa 이하, 또는 50 MPa 이하이다.
또한, 바람직하게는, 본 발명에 따른 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 신율이 30% 내지 250%이다. 상기 신율의 측정 방법은 후술할 실시예에서 구체화한다. 바람직하게는, 본 발명에 따른 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 신율은 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 100% 이상, 110% 이상, 120% 이상, 130% 이상, 140% 이상, 150% 이상, 160% 이상, 170% 이상, 180% 이상, 190% 이상, 또는 200% 이상이다. 또한, 바람직하게는, 본 발명에 따른 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 신율은 240 % 이하, 230% 이하, 220% 이하, 또는 210 % 이하이다.
또한, 바람직하게는, 본 발명에 따른 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 인장탄성률이 1.0 내지 2.0 GPa이다. 상기 인장탄성률이 측정 방법은 후술할 실시예에서 구체화한다.
또한, 바람직하게는, 상기 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 중량평균분자량은 50,000 내지 350,000이다. 보다 바람직하게는, 상기 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 중량평균분자량은 60,000 이상, 70,000 이상, 80,000 이상, 90,000 이상, 100,000 이상, 110,000 이상, 120,000 이상, 또는 130,000 이상이고; 300,000 이하, 250,000 이하, 200,000 이하, 190,000 이하, 180,000 이하, 또는 170,000 이하이다.
또한, 본 발명은 하기의 단계를 포함하는 상술한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 제조 방법으로서, 3-하이드록시프로피온산 중합체, 락타이드 및 촉매를 중합하는 단계를 포함하는, 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 제조 방법을 제공한다.
상기 3-하이드록시프로피온산 중합체는, 3-하이드록시프로피온산의 호모 중합체를 의미하며, 상술한 m과 n의 범위를 감안하여 중합 정도를 조절하여 제조한 것을 사용한다.
한편, 상기 제조 방법은 락타이드 개환 중합 반응이 수반되므로, 락타이드 개환 촉매의 존재 하에 수행한다. 일례로, 상기 촉매는 화학식 2로 표시되는 촉매일 수 있다.
[화학식 2]
MA1 pA2 2-p
상기 화학식 2에서,
M은 Al, Mg, Zn, Ca, Sn, Fe, Y, Sm, Lu, Ti 또는 Zr이고,
p는 0 내지 2의 정수이고,
A1과 A2는 각각 독립적으로 알콕시 또는 카르복실기이다.
보다 구체적으로, 상기 화학식 2로 표시되는 촉매는 주석(II) 2-에틸헥사노에이트(Sn(Oct)2)일 수 있다.
바람직하게는, 상기 촉매의 사용량은 락타이드의 총 몰수를 100몰%로 가정하였을 때, 0.001 내지 10몰%, 0.01 내지 5몰%, 0.03 내지 1몰%일 수 있다.
바람직하게는, 상기 제조 방법은 150 내지 200℃에서 수행한다. 바람직하게는, 상기 제조 방법은 5분 내지 10시간 동안 수행하며, 보다 바람직하게는 10분 내지 1시간 동안 수행한다. 바람직하게는, 상기 제조 방법은 0.5 내지 1.5 atm에서 수행한다.
또한, 본 발명은 상술한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체를 포함하는 물품을 제공한다.
상술한 바와 같이, 본 발명에 따른 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체는, 폴리락트산에 3-하이드록시프로피온산 유래의 단량체를 도입함으로써, 폴리락트산의 인장강도 등 다양한 물성을 개선하여 그 응용 분야를 확대할 수 있다는 특징이 있다.
이하, 본 발명의 구현예를 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명의 구현예를 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
제조예: 폴리(3-하이드록시프로피오네이트) 올리고머의 제조
본 발명에 따른 고분자량의 폴리(3-하이드록시프로피오네이트)의 생합성을 위해 우선 발효 기질로서 3-하이드록시프로피오네이트를 포함하는 발효액을 제조하고자 다음의 조건에 따라 발효를 수행하였다. 구체적으로, 발효를 위한 균주로서 GDH 및 ALDH 효소 유전자를 갖는 E. coli W3110를 사용하였다. 배지로는 M9를 사용하였고, 글리세롤 70 g/L를 기질로 사용하여 발효시켜 3-하이드록시프로피오네이트를 생산하였다.
이후, 상기 제조된 3-하이드록시프로피오네이트를 기질로 하여 폴리(3-하이드록시프로피온산)(이하, 'P(3HP)')를 발효 생산하였다. 발효를 위해, 구체적으로 5L 발효기(내부 부피: 3L)를 사용하였고, 발효를 위한 미생물로는 pBLuescript II KS+ 벡터에 Ralstonia eutropha 유래의 폴리하이드록시알카노에이트 합성효소(PHA synthase)인 RecC 유전자 및 Clostridium propionicum 유래의 프로피오닐 CoA 트랜스퍼레이즈(propionyl-CoA transferase)의 변이체 540(CPPCT_540) 유전자를 클로닝한 재조합 벡터를 XL1-Blue 대장균에 형질전환하여 재조한 재조합 대장균을 사용하였다.
상기 CPPCT_540 유전자는 193번째 아미노산인 Valine을 Alanin(V194A)으로 발현하도록 염기 서열이 치환되었으며, 그 외에 아미노산 변화없이 DNA 치환만 이루어진 silent mutation (T669C, A1125G, T1158C)이 세 군데 이루어진 개량 유전자이다(WO 09/022797).
배지로는 MR(Modified Riesenberg) 배지에 글루코오스(20 g/L) 및 기질로서 상기 제조된 3-하이드록시프로피오네이트를 포함하는 발효액(2.0 g/L)을 투입하였다. 이를 300 rpm, 1 vvm의 조건으로 에어레이션(aeration)하여 발효시켜 최종적으로 고분자량의 폴리(3-하이드록시프로피오네이트)를 생산하였다(Mn: 136,645; Mw: 354,615; PDI: 2.60; Agilent 1200 series를 이용, PC standard로 검량하여 측정).
상기 제조된 폴리(3-하이드록시프로피오네이트)를 증류수에 넣고, 100℃에서 각각 18시간, 24시간, 및 72시간 동안 가수 분해하여 중량평균분자량(Agilent 1200 series를 이용, PC standard로 검량하여 측정)이 각각 30,000 g/mol, 60,000 g/mol 및 80,000 g/mol인 폴리(3-하이드록시프로피오네이트) 올리고머를 수득하였다.
실시예 1: 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 제조
반응기에, 락타이드(25 g), 앞서 제조예에서 제조한 중량평균분자량이 30,000 g/mol인 폴리(3-하이드록시프로피오네이트) 올리고머(5 g), 촉매로서 Tin(II) Ethylhexanoate (0.014 g) 및 톨루엔(100 uL)을 첨가하고, 30분 내지 1시간 정도 건조시켰다. 이어, 상기 반응기를 180℃로 pre-heating된 오일 배스에 넣고 1.5시간 동안 중합을 진행하였다. 반응기에서 생성물을 꺼낸 다음 생성물을 140℃에서 1 내지 5 torr 감압 조건에서 약 3시간 동안 devolitilization하여 모노머를 제거하여, 최종적으로 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체를 제조하였다.
실시예 2 내지 7: 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 제조
상기 실시예 1과 동일하게 제조하되, 출발물질을 하기 표 1과 같이 변경하여 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체를 제조하였다.
Lactide
(g)
P(3HP) Tin(II) Ethylhexanoate
(g)
중량평균분자량 (g/mol) 사용량 (g)
실시예 1 25 30,000 7.5 0.014
실시예 2 25 30,000 10.0 0.014
실시예 3 25 60,000 7.5 0.014
실시예 4 25 60,000 12.5 0.014
실시예 5 25 24,000 5.0 0.014
실시예 6 25 32,000 7.5 0.014
실시예 7 25 65,000 7.5 0.014
비교예: 폴리락트산의 제조
반응기에, 락타이드(25 g), 1-옥타놀(0.027 g), 촉매로서 Tin(II) Ethylhexanoate (0.014 g) 및 톨루엔(100 uL)을 첨가하고, 30분 내지 1시간 정도 건조시켰다. 이어, 상기 반응기를 180℃로 pre-heating된 오일 배스에 넣고 1.5시간 동안 중합을 진행하였다. 반응기에서 생성물을 꺼낸 다음 생성물을 140℃에서 1 내지 5 torr 감압 조건에서 약 3시간 동안 devolitilization하여 모노머를 제거하여, 최종적으로 폴리락트산 호모중합체를 제조하였다.
실험예
상기 실시예 및 비교예에서 제조한 공중합체에 대하여 하기와 같이 그 특성을 평가하였다.
- 중량평균분자량: Agilent 1200 series를 이용하여 PC 스텐다드(Standard)를 이용한 GPC로 측정하였다.
- 신율, 인장강도 및 인장탄성률: ASTM D638에 따라 진행하였으며, Hot-press 기기(Limotem QM900S)로 ASTM D536 V Type 시편 제작 후, UTM 기기(Universal Testing Machine, 만능재료시험기)로 10 mm/s, 60 kg/f 하중으로 측정하였다.
- 블록 공중합체 내 3-하이드록시프로피온산 함량(wt%): 블록 공중합체의 NMR 분석을 통하여 측정하였다.
상기 측정된 결과를 하기 표 2에 나타내었다.
m n m+n m/n 중량평균분자량(g/mol) 인장강도(MPa) 신율(%) 인장탄성률(GPa)
실시예 1 290 1,100 1,380 0.26 152,100 33.0 103 1.66
실시예 2 290 800 1,090 0.36 114,370 32.0 34 2.00
실시예 3 360 1,300 1,660 0.28 161,100 46.5 220 1.26
실시예 4 360 700 1,060 0.51 83,800 36.8 130 1.17
실시예 5 180 680 860 0.27 132,300 48.8 139 2.00
실시예 6 530 1,230 1,760 0.43 148,700 40.1 207 0.75
실시예 7 300 660 960 0.45 63,200 40.5 69 1.47
비교예 0 1,600 1,600 - 156,000 50.7 2.1 2.80

Claims (11)

  1. 하기 화학식 1로 표시되는 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체에 있어서,
    상기 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 인장강도가 30 MPa 이상인,
    폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체:
    [화학식 1]
    Figure PCTKR2022002705-appb-img-000002
    상기 화학식 1에서,
    m은 100 내지 1000의 정수이고,
    n은 500 내지 4000의 정수이다.
  2. 제1항에 있어서,
    m은 250 내지 650인,
    폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체.
  3. 제1항에 있어서,
    n은 600 내지 1400인,
    폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체.
  4. 제1항에 있어서,
    상기 m/n은 0.20 내지 0.60인,
    폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체.
  5. 제1항에 있어서,
    상기 m/n은 0.25 내지 0.30인,
    폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체.
  6. 제1항에 있어서,
    상기 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 인장강도가 60 MPa 이하인,
    폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체.
  7. 제1항에 있어서,
    상기 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 신율이 30% 내지 250%인,
    폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체.
  8. 제1항에 있어서,
    상기 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 인장탄성률이 1.0 내지 2.0 GPa인,
    폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체.
  9. 제1항에 있어서,
    상기 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 중량평균분자량은 50,000 내지 350,000인,
    폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체.
  10. 제1항에 있어서,
    상기 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체의 중량평균분자량은 130,000 내지 170,000인,
    폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체.
  11. 제1항 내지 제10항 중 어느 한 항의 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체를 포함하는, 물품.
PCT/KR2022/002705 2021-02-24 2022-02-24 인장강도가 우수한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이를 포함하는 물품 WO2022182160A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22760076.4A EP4163316A4 (en) 2021-02-24 2022-02-24 POLY(LACTIC ACID-B-3-HYDROXYPROPIONIC ACID) BLOCK COPOLYMER HAVING EXCELLENT TENSILE STRENGTH, AND PRODUCT COMPRISING SAME
CN202280005484.1A CN115803359A (zh) 2021-02-24 2022-02-24 具有优异的拉伸强度的聚(乳酸-b-3-羟基丙酸)嵌段共聚物和包含其的制品
US18/016,127 US20230279215A1 (en) 2021-02-24 2022-02-24 Poly(lactic acid-b-3-hydroxypropionic acid) block copolymer having excellent tensile strength and products containing the same
JP2023512216A JP2023538390A (ja) 2021-02-24 2022-02-24 引張強度に優れたポリ(乳酸-b-3-ヒドロキシプロピオン酸)ブロック共重合体およびそれを含む物品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210024928 2021-02-24
KR10-2021-0024928 2021-02-24
KR1020220024171A KR20220121216A (ko) 2021-02-24 2022-02-24 인장강도가 우수한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이를 포함하는 물품
KR10-2022-0024171 2022-02-24

Publications (1)

Publication Number Publication Date
WO2022182160A1 true WO2022182160A1 (ko) 2022-09-01

Family

ID=83049478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002705 WO2022182160A1 (ko) 2021-02-24 2022-02-24 인장강도가 우수한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이를 포함하는 물품

Country Status (4)

Country Link
US (1) US20230279215A1 (ko)
JP (1) JP2023538390A (ko)
CN (1) CN115803359A (ko)
WO (1) WO2022182160A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050024295A (ko) * 2002-05-29 2005-03-10 히카일 비.브이. 고 분지화된 중합체
KR20080046795A (ko) * 2006-11-23 2008-05-28 주식회사 엘지화학 신규 3­하이드록시프로피오네이트­락테이트 공중합체 및 그제조방법
WO2009022797A1 (en) 2007-08-14 2009-02-19 Lg Chem, Ltd. Mutant of propionyl-coa transferase from clostridium propionicum and preparing method for pla or pla copolymer using the same
KR20190078387A (ko) * 2017-12-26 2019-07-04 주식회사 엘지화학 생분해성 고분자 조성물의 제조방법
KR20200115165A (ko) * 2019-03-26 2020-10-07 주식회사 엘지화학 블록 공중합체 제조 방법
KR20200126790A (ko) * 2019-04-30 2020-11-09 주식회사 엘지화학 블록 공중합체 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020197147A1 (ko) * 2019-03-26 2020-10-01 주식회사 엘지화학 블록 공중합체 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050024295A (ko) * 2002-05-29 2005-03-10 히카일 비.브이. 고 분지화된 중합체
KR20080046795A (ko) * 2006-11-23 2008-05-28 주식회사 엘지화학 신규 3­하이드록시프로피오네이트­락테이트 공중합체 및 그제조방법
WO2009022797A1 (en) 2007-08-14 2009-02-19 Lg Chem, Ltd. Mutant of propionyl-coa transferase from clostridium propionicum and preparing method for pla or pla copolymer using the same
KR20190078387A (ko) * 2017-12-26 2019-07-04 주식회사 엘지화학 생분해성 고분자 조성물의 제조방법
KR20200115165A (ko) * 2019-03-26 2020-10-07 주식회사 엘지화학 블록 공중합체 제조 방법
KR20200126790A (ko) * 2019-04-30 2020-11-09 주식회사 엘지화학 블록 공중합체 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JULIEN RAMIER, RENARD ESTELLE, GRANDE DANIEL: "Microwave-Assisted Synthesis and Characterization of Biodegradable Block Copolyesters Based on Poly(3-hydroxyalkanoate)s and Poly(D,L-lactide", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, vol. 50, no. 7, 1 April 2012 (2012-04-01), US , pages 1445 - 1455, XP055743447, ISSN: 0887-624X, DOI: 10.1002/pola.25916 *

Also Published As

Publication number Publication date
JP2023538390A (ja) 2023-09-07
US20230279215A1 (en) 2023-09-07
CN115803359A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
EP2478031A2 (en) Polyester resin and method for preparing the same
WO2012144781A2 (ko) 생분해성 고분자 복합재
KR20180072481A (ko) 바이오폴리머 조성물
WO2011145899A2 (ko) 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
WO2013100473A1 (ko) 바이오 플라스틱 조성물
WO2022182154A1 (ko) 투명성 특성이 우수한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이를 포함하는 물품
WO2019203542A1 (ko) 무수당 알코올 유도체를 포함하는 친환경 열가소성 폴리에테르 에스테르 엘라스토머 및 이의 제조 방법
WO2021086037A1 (ko) 무수당 알코올과 무수당 알코올-알킬렌 글리콜을 포함하는 생분해성 공중합 폴리에스테르 수지 및 이의 제조 방법
WO2024205209A1 (ko) 생분해도가 우수한 방향족 폴리아미드-방향족 폴리에스테르 공중합체 및 이의 제조 방법
WO2022182160A1 (ko) 인장강도가 우수한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이를 포함하는 물품
KR20220121216A (ko) 인장강도가 우수한 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이를 포함하는 물품
WO2020197147A1 (ko) 블록 공중합체 제조 방법
WO2021054721A1 (ko) 바이오폴리머 조성물, 이의 제조방법 및 이를 이용한 바이오플라스틱
WO2021049910A1 (ko) 블록 공중합체 제조 방법
WO2016186470A1 (ko) 신축성이 현저히 개선된 폴리락트산 공중합체 및 그 제조방법
WO2022075684A1 (ko) 공중합체 및 이의 제조 방법
WO2018105914A2 (ko) 무수당 알코올 유도체를 포함하는 열가소성 폴리에테르 에스테르 엘라스토머 및 이의 제조 방법
CN114621568A (zh) 一种快速降解的酯类组合物及其制备方法
KR102598027B1 (ko) 공중합체 및 이의 제조 방법
WO2024185973A1 (ko) 용융 강도가 우수한 폴리락타이드 수지 조성물, 및 이의 제조방법
WO2021066512A1 (ko) 디에스테르 화합물과 무수당 알코올을 포함하는 폴리에스테르 수지 및 그 제조 방법
WO2023182687A1 (ko) 결정화 반감기가 우수한 폴리락타이드 수지 조성물, 및 이의 제조 방법
KR100683941B1 (ko) 전단 담화와 강인성이 향상된 신규한 폴리락티드/클레이나노 복합체의 제조방법
WO2022255615A1 (ko) 향상된 기계적 물성을 갖는 생분해성 퓨란계 복합체 및 이의 제조방법
KR20230029566A (ko) 폴리(락트산-b-3-하이드록시프로피온산) 블록 공중합체 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22760076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022760076

Country of ref document: EP

Effective date: 20230105

ENP Entry into the national phase

Ref document number: 2023512216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE