WO2021006480A1 - 천연고분자 나노섬유 수분산액을 이용한 향상된 기계적 물성을 갖는 생분해성 복합소재 및 이의 제조방법 - Google Patents

천연고분자 나노섬유 수분산액을 이용한 향상된 기계적 물성을 갖는 생분해성 복합소재 및 이의 제조방법 Download PDF

Info

Publication number
WO2021006480A1
WO2021006480A1 PCT/KR2020/006880 KR2020006880W WO2021006480A1 WO 2021006480 A1 WO2021006480 A1 WO 2021006480A1 KR 2020006880 W KR2020006880 W KR 2020006880W WO 2021006480 A1 WO2021006480 A1 WO 2021006480A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
biodegradable composite
natural polymer
nanofibers
aqueous dispersion
Prior art date
Application number
PCT/KR2020/006880
Other languages
English (en)
French (fr)
Inventor
황성연
박제영
오동엽
제갈종건
김태호
이시경
신명숙
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to EP20837139.3A priority Critical patent/EP3985061A4/en
Priority to US17/597,430 priority patent/US11753510B2/en
Priority to JP2022500573A priority patent/JP7203274B2/ja
Priority to CN202080048009.3A priority patent/CN114127187B/zh
Publication of WO2021006480A1 publication Critical patent/WO2021006480A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/81Preparation processes using solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/018Additives for biodegradable polymeric composition

Definitions

  • the present invention relates to a biodegradable composite material and a manufacturing method thereof.
  • Biodegradable plastics are drawing attention as part of that. It can be decomposed naturally during land reclamation, so there is little environmental load. Examples of such biodegradable plastics include poly lactic acid (PLA), poly butylene succinate (PBS), poly butylene adipate-co-terephthalate (PBAT), and the like.
  • PLA poly lactic acid
  • PBS poly butylene succinate
  • PBAT poly butylene adipate-co-terephthalate
  • biodegradable plastics are still unreasonable to replace general-purpose plastics due to lack of mechanical properties. Therefore, in order to expand the market of biodegradable materials, its thermal mechanical properties must be resolved.
  • the inventors have provided a biodegradable PBS composite material having improved mechanical properties, as can be seen in Korean Patent Publication No. 10-1897180.
  • An object of the present invention is to solve the above-described problem, and to provide a biodegradable composite material having improved mechanical properties and a method for manufacturing the same.
  • the present invention includes an aqueous dispersion of natural polymer nanofibers comprising at least one selected from chitin nanofibers and cellulose nanofibers; Dicarboxylic acids or derivatives thereof; And a diol; it provides a biodegradable composite material prepared by polymerization.
  • the amount of the natural polymer nanofibers in the aqueous dispersion of the natural polymer nanofibers may be 0.005 to 2% by weight relative to the total 100% by weight of the biodegradable composite material.
  • the concentration of the natural polymer nanofibers in the aqueous dispersion of the natural polymer nanofibers may be 0.1 to 50% by weight.
  • the natural polymer nanofibers may have a diameter of 1 to 200 nm and a length of 100 nm to 100 ⁇ m.
  • the biodegradable composite material trifunctional or higher alcohol; Trifunctional or higher carboxylic acid or a derivative thereof; And trifunctional or more hydroxy acids or derivatives thereof; may be prepared by polymerization further comprising any one or more selected from.
  • the biodegradable composite material may be one that satisfies Equation 1 below.
  • TS 1 is the tensile strength of the biodegradable composite material
  • TS 0 is the tensile strength in the case of polymerization excluding the aqueous dispersion of the natural polymer nanofibers.
  • the biodegradable composite material may be one that satisfies Equation 2 below.
  • TT 1 is the tear strength of the biodegradable composite material
  • TT 0 is the tear strength in the case of polymerization excluding the aqueous dispersion of the natural polymer nanofibers.
  • the present invention comprises the steps of preparing a mixed dispersion comprising an aqueous dispersion of natural polymer nanofibers, a dicarboxylic acid or a derivative thereof, and a diol including any one or more selected from chitin nanofibers and cellulose nanofibers;
  • It provides a method for producing a biodegradable composite material comprising; polymerizing the mixed dispersion.
  • the mixed dispersion further comprises any one or more selected from a trifunctional or higher alcohol, a trifunctional or higher carboxylic acid or a derivative thereof, and a trifunctional or higher hydroxy acid or a derivative thereof.
  • a trifunctional or higher alcohol e.g., a trifunctional or higher alcohol, a trifunctional or higher carboxylic acid or a derivative thereof, and a trifunctional or higher hydroxy acid or a derivative thereof.
  • preparing the mixed dispersion comprises: preparing a slurry containing a dicarboxylic acid or a derivative thereof, and a diol;
  • Mixing the homogenized slurry with an aqueous dispersion of natural polymer nanofibers including any one or more selected from chitin nanofibers and cellulose nanofibers; may include.
  • the present invention is a step of preparing a mixed dispersion comprising an aqueous dispersion of natural polymer nanofibers, a first dicarboxylic acid or a derivative thereof, and a first diol comprising any one or more selected from chitin nanofibers and cellulose nanofibers ;
  • It provides a method for producing a biodegradable composite material comprising the step of further adding and polymerizing a second dicarboxylic acid or a derivative thereof, and a second diol to the oligomer.
  • the present invention can provide a biodegradable composite material with remarkably improved mechanical properties, for example, tensile strength, elongation and tear strength, and a method for manufacturing the same.
  • the present invention relates to a composite material having excellent biodegradability and mechanical properties.
  • the present invention is an aqueous dispersion of natural polymer nanofibers; Dicarboxylic acids or derivatives thereof; And it relates to a biodegradable composite material produced by polymerization, including;
  • the biodegradable composite material of the present invention is prepared by polymerizing a dicarboxylic acid or a derivative thereof, and a diol from a monomer phase with an aqueous dispersion of natural polymer nanofibers. Accordingly, natural polymer nanofibers may be uniformly interspersed between chains derived from dicarboxylic acid or a derivative thereof, and diol to form a crosslinking point, and remarkably improved mechanical properties may be implemented.
  • the present invention has a big feature in that it employs an aqueous dispersion thereof, not the natural polymer nanofiber itself.
  • the present inventor has provided a biodegradable PBS composite material prepared by in-situ polymerization of 1,4-butanediol, succinic acid, and cellulose nanofibers in the preceding patent (Korean Patent Publication No. 10-1897180).
  • the present inventors have continuously conducted in-depth research to provide a biodegradable composite material having more excellent mechanical properties. As a result, it was found that the mechanical properties of the biodegradable composite material were remarkably improved when an aqueous dispersion thereof was used instead of the cellulose nanofiber itself.
  • the biodegradable composite material of the present invention manufactured using an aqueous dispersion of natural polymer nanofibers
  • tensile strength, elongation and tear strength compared to the biodegradable composite material manufactured using the natural polymer nanofiber itself.
  • a high value of about 20% or more was shown.
  • the tensile strength, elongation and tear strength were more than twice as high.
  • the biodegradable composite material of the present invention is characterized by having excellent biodegradability as well as remarkably improved mechanical properties by employing an aqueous dispersion of natural polymer nanofibers in its manufacture. Accordingly, it is believed that the biodegradable composite material of the present invention can have a tremendous effect on the expansion of the biodegradable material market and prevention of environmental pollution.
  • the biodegradable composite material of the present invention is not prepared by first preparing a polyester from dicarboxylic acid or a derivative thereof and a diol, and then combining it with natural polymer nanofibers by a melt mixing method or a solution mixing method.
  • a biodegradable composite material it has been disclosed in detail in the previous inventor's patent (Korean Patent Publication No. 10-1897180) that its physical properties are inferior, and thus, it is not described in detail in this specification.
  • the aqueous dispersion of the natural polymer nanofibers may be an aqueous dispersion using natural polymer nanofibers as a dispersion medium and water, for example, distilled water as a dispersion medium.
  • the natural polymer nanofibers may mean those derived from natural polymers existing in nature, such as chitin or cellulose.
  • the natural polymer nanofiber may be obtained by converting a natural polymer such as chitin or cellulose into nanofibers by a physical or chemical method that can be adopted and applied in the art.
  • the natural polymer nanofiber may be any one or more selected from chitin nanofibers, cellulose nanofibers, and the like.
  • the aqueous dispersion of the natural polymer nanofibers may include any one or more natural polymer nanofibers selected from chitin nanofibers and cellulose nanofibers.
  • the amount of the natural polymer nanofibers in the aqueous dispersion of the natural polymer nanofibers is 0.005 to 2% by weight, more preferably 0.01 to 1% by weight, based on the total 100% by weight of the biodegradable composite material. , More preferably from 0.05 to 0.5% by weight.
  • the biodegradable composite material can exhibit excellent mechanical properties. In particular, in the case of having a range of 0.05 to 0.5% by weight, it shows remarkably improved mechanical properties and may be more preferred in the present invention.
  • the concentration of the natural polymer nanofibers in the aqueous dispersion of the natural polymer nanofibers may be 0.1 to 50% by weight.
  • the natural polymer nanofibers may have a diameter of 1 to 200 nm, more preferably 1 to 100 nm, and even more preferably 1 to 50 nm.
  • the length may be 100 nm to 100 ⁇ m, more preferably 100 nm to 10 ⁇ m. In this case, the mechanical properties of the biodegradable composite material can be further improved.
  • the dicarboxylic acid may be any one or more selected from aliphatic dicarboxylic acids and aromatic dicarboxylic acids.
  • the aliphatic dicarboxylic acid is oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, server acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, 1 It may be any one or more selected from, 4-cyclohexanedicarboxylic acid and the like.
  • the diol may be an aliphatic diol, for example, ethaneol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-isobutyl-1,3-propanediol, 1,2-butanediol, 1 ,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 1,6-hexanediol, 2-ethyl-1 ,3-hexanediol, 2,4-dimethyl-2-ethyl-1,3-hexanediol, 2,2,4-dimethyl-2-eth
  • the biodegradable composite material may be prepared by polymerizing further comprising a compound having a trivalent or higher functional group.
  • the mechanical properties of the biodegradable composite material can be further improved. This is not certain, but it is believed to be an effect exhibited by the compound supplementing the part where the crosslinking point was not formed by the natural polymer nanofiber.
  • the compound having a trivalent or higher functional group may be any one or more selected from a trifunctional or higher alcohol, a trifunctional or higher carboxylic acid or a derivative thereof, a trifunctional or higher hydroxy acid, or a derivative thereof.
  • the trifunctional or higher hydroxy acid may be any one or more selected from malic acid, tartaric acid, and citric acid.
  • the compound having a trivalent or higher functional group may be included in an amount of 0.01 to 0.5 mol% relative to 100 mol% of the diol.
  • the compound is faithful to the role of supplementing natural polymer nanofibers, so that the biodegradable composite material can have excellent mechanical properties.
  • the biodegradable composite material may satisfy Equation 1 below.
  • TS 1 is the tensile strength of the biodegradable composite material
  • TS 0 is the tensile strength in the case of polymerization excluding the aqueous dispersion of the natural polymer nanofibers.
  • the biodegradable composite material may satisfy Equation 2 below.
  • TT 1 is the tear strength of the biodegradable composite material
  • TT 0 is the tear strength in the case of polymerization excluding the aqueous dispersion of the natural polymer nanofibers.
  • the present invention comprises the steps of preparing a mixed dispersion comprising an aqueous dispersion of natural polymer nanofibers, a dicarboxylic acid or a derivative thereof, and a diol; And it provides a method for producing a biodegradable composite material comprising; and polymerizing the mixed dispersion.
  • a dicarboxylic acid or a derivative thereof, and a diol are polymerized to first prepare a polyester, and then a melt mixing method or a solution mixing method is used to combine this with natural polymer nanofibers.
  • a dicarboxylic acid or a derivative thereof, and a diol are polymerized from a monomer phase together with an aqueous dispersion of natural polymer nanofibers. Accordingly, since natural polymer nanofibers can form crosslinking points uniformly distributed in the biodegradable composite material, the produced biodegradable composite material can exhibit remarkably improved mechanical properties.
  • the manufacturing method of the present invention has a great feature in employing an aqueous dispersion thereof, not the natural polymer nanofiber itself.
  • a biodegradable composite material having remarkably excellent mechanical properties can be manufactured. This can be confirmed in more detail in Examples and Comparative Examples described later.
  • aqueous dispersion of natural polymer nanofibers there is no particular limitation on the order of mixing the aqueous dispersion of natural polymer nanofibers, dicarboxylic acid or derivatives thereof, and diols.
  • an aqueous dispersion of natural polymer nanofibers may be mixed with a diol, and then mixed with a dicarboxylic acid or a derivative thereof.
  • an aqueous dispersion of a natural polymer nanofiber is first mixed with a dicarboxylic acid or a derivative thereof, and then a diol It can also be mixed with.
  • the step of preparing the mixed dispersion may include stirring, ultrasonic treatment, and homogenization in order to further improve the dispersion degree of the natural polymer nanofibers.
  • the aqueous dispersion of the natural polymer nanofiber, the dicarboxylic acid, and the diol may be the same as described above, and thus, a detailed description thereof will be omitted.
  • the mixed dispersion may further include a compound having a trivalent or higher functional group.
  • a biodegradable composite material having more improved mechanical properties can be prepared by supplementing the portion of the natural polymer nanofibers in which the crosslinking point has not yet been formed.
  • the compound having a trivalent or higher functional group may be the same as described above, and thus, a detailed description thereof will be omitted.
  • preparing the mixed dispersion comprises: preparing a slurry containing a dicarboxylic acid or a derivative thereof, and a diol; Homogenizing the slurry; And mixing the homogenized slurry and the aqueous dispersion of natural polymer nanofibers.
  • the dispersion of the dicarboxylic acid or a derivative thereof is also improved, so that the natural polymer nanofiber can form a crosslinking point more evenly distributed in the biodegradable composite material.
  • the step of homogenizing the slurry may be performed by various homogenization methods that can be commonly employed in the art.
  • it may be made by physical methods such as mechanical dispersion, ultrasonic treatment, and the like.
  • homogenizing the slurry may include heating the slurry.
  • the dicarboxylic acid or a derivative thereof may have a better degree of dispersion, and thus the above-described effect may be increased.
  • heating the slurry may be performed in a temperature range in which esterification or transesterification of the slurry does not proceed. However, it may be within the temperature range in which some esterification or transesterification proceeds. Since the specific temperature range differs depending on the dicarboxylic acid or its derivative and diol to be employed, it is difficult to predict it in advance. However, for example, in the case of adipic acid and 1,4-butanediol, heating may be performed in a temperature range of 80 to 130°C.
  • the polymerization conditions in the step of polymerizing the mixed dispersion are not particularly limited. That is, depending on the employed dicarboxylic acid or derivative thereof, and diol, polymerization conditions known in the art may be adopted and applied.
  • the step of polymerizing the mixed dispersion comprises: forming an oligomer by esterifying or transesterifying the mixed dispersion; And polycondensation reaction of the oligomer.
  • the step of polymerizing the mixed dispersion may be using a catalyst to promote polymerization and to perform stable polymerization.
  • the catalyst is, for example, calcium acetate, manganese acetate, magnesium acetate, zinc acetate, monobutyl tin oxide, dibutyl tin oxide, dibutyl tin dichloride, tetraphenyl tin, tetrabutyl tin, octylated tin, tetramethyl It may be any one or more selected from titanate, tetraisopropyl titanate, tetrabutyl titanate, tetra(2-ethylhexyl) titanate, and the like.
  • the present invention comprises the steps of preparing a mixed dispersion comprising an aqueous dispersion of natural polymer nanofibers, a first dicarboxylic acid or a derivative thereof, and a first diol; Forming an oligomer by performing esterification or transesterification reaction of the mixed dispersion; And adding a second dicarboxylic acid or a derivative thereof, and a second diol to the oligomer, followed by polymerization.
  • the step of preparing the mixed dispersion may be performed in the same manner as described above, and a detailed description thereof will be omitted.
  • the natural polymer nanofiber aqueous dispersion may be the same as described above, and thus, a detailed description thereof will be omitted.
  • first dicarboxylic acid and the second dicarboxylic acid a dicarboxylic acid as described above may be employed, and a diol as described above may be employed for the first and second diols. Omit it.
  • the first dicarboxylic acid and the second dicarboxylic acid may be the same or different from each other.
  • the first diol and the second diol may be the same or different from each other.
  • a catalyst may be used for smooth and stable reaction.
  • the same catalyst as described above may be employed, and a detailed description thereof will be omitted.
  • the polymerization step may be an esterification or transesterification reaction of the oligomer and the additionally added second dicarboxylic acid or derivative thereof, and a second diol, and then polycondensation reaction.
  • the polymerization step may be an esterification or transesterification reaction of the oligomer and the additionally added second dicarboxylic acid or derivative thereof, and a second diol, and then polycondensation reaction.
  • Tensile strength and elongation were measured according to ASTM D638-Type V using Intstron 5943 equipment. It was measured at 25°C with a load cell of 10 kN and a crosshead speed of 100 mm/min. The average value measured 5 times was obtained.
  • the temperature was raised to 170° C. in a nitrogen atmosphere. After the product was completely melted, the temperature was raised to 240° C. while stirring at 50 rpm (10° C./min), and the temperature was set to 100 mTorr through gradual reduced pressure. When the viscosity of the internal reactant increased by measuring torque through an overhead stirrer, the stirring speed was reduced to 30 rpm and maintained for 60 minutes.
  • the final product was quenched with water, and dried for 48 hours in a vacuum oven at room temperature to prepare a biodegradable composite material.
  • the tensile strength, elongation, and tear strength of the prepared biodegradable composite material were measured and shown in Table 1 below.
  • Example 1 Instead of chitin nanofibers in Example 1, 0.05 wt% of cellulose nanofibers (0.05 g, 10 to 20 nm in diameter, 1 to 3 ⁇ m in length) compared to the theoretical final product yield (100 g) was added to distilled water, A biodegradable composite material was prepared in the same manner as in Example 1, except that an aqueous fiber dispersion (2.5 g) was prepared and used.
  • the biodegradable composite material was added by repeating the above process by varying only the input amount of cellulose nanofibers to 0.5 wt% (Example 6), 0.005 wt% (Example 7) and 2.0 wt% (Example 8), respectively. It was prepared with.
  • the tensile strength, elongation, and tear strength of the prepared biodegradable composite material were measured and shown in Table 1 below.
  • 1,4-butanediol (0.38 mol, 34.15 g) and adipic acid (0.24 mol, 34.61 g) were added to the reactor, followed by heating and stirring at 90°C to prepare a uniform slurry.
  • Example 2 The aqueous dispersion of chitin nanofibers prepared in Example 1 was added to the prepared slurry, and treated with an ultrasonic generator for 10 minutes. This was stirred for 1 hour at 10 rpm in a nitrogen atmosphere to obtain a mixed dispersion.
  • 1,4-butanediol (0.38 mol, 34.15 g) and dimethyl terephthalate (0.24 mol, 45.99 g) were additionally added to the reactor. Thereafter, the temperature was raised to 210° C. and maintained for 2 hours, and then by-products were removed.
  • the temperature was raised to 170° C. in a nitrogen atmosphere. After the product was completely melted, the temperature was raised to 240° C. while stirring at 50 rpm (10° C./min), and the temperature was set to 100 mTorr through gradual decompression. When the viscosity of the internal reactant increased by measuring torque through an overhead stirrer, the stirring speed was reduced to 30 rpm and maintained for 60 minutes.
  • the final product was quenched with water, and dried for 48 hours in a vacuum oven at room temperature to prepare a biodegradable composite material.
  • the tensile strength, elongation, and tear strength of the prepared biodegradable composite material were measured and shown in Table 1 below.
  • Example 9 a biodegradable composite material was prepared in the same manner as in Example 9, except that the aqueous dispersion of cellulose nanofibers prepared in Example 5 was used instead of the aqueous dispersion of chitin nanofibers prepared in Example 1. I did.
  • the tensile strength, elongation, and tear strength of the prepared biodegradable composite material were measured and shown in Table 1 below.
  • Example 1 a biodegradable composite material was prepared in the same manner as in Example 1, except that 0.05 mol% of tartaric acid (0.38 mmol) compared to 1,4-butanediol was added to 1,4-butanediol. .
  • the tensile strength, elongation, and tear strength of the prepared biodegradable composite material were measured and shown in Table 1 below.
  • Example 1 a biodegradable composite material was prepared in the same manner as in Example 1, except that 0.05 mol% of citric acid (0.38 mmol) compared to 1,4-butanediol was added to 1,4-butanediol. .
  • the tensile strength, elongation, and tear strength of the prepared biodegradable composite material were measured and shown in Table 1 below.
  • Example 1 a poly butylene adipate-co-terephthalate (PBAT) was prepared in the same manner as in Example 1, except that an aqueous dispersion of chitin nanofibers was not used.
  • PBAT poly butylene adipate-co-terephthalate
  • the tensile strength, elongation, and tear strength of the prepared PBAT were measured and shown in Table 2 below.
  • Example 1 a biodegradable composite material was prepared in the same manner as in Example 1, except that 0.05 wt% of chitin nanofibers themselves were added to 1,4-butanediol instead of an aqueous dispersion of chitin nanofibers.
  • the tensile strength, elongation, and tear strength of the prepared biodegradable composite material were measured and shown in Table 2 below.
  • Examples 9 to 10 after heating and homogenizing a slurry of 1,4-butanediol and adipic acid, mixing it with an aqueous dispersion of natural polymer nanofibers to form an oligomer to form an oligomer, then dimethyl terephthalate and 1, It is a secondary reaction by adding 4-butanediol. In this case, as can be seen from the above table, it showed an effect of further improving mechanical properties compared to Example 1. This is not certain, but it is believed that the natural polymer nanofibers formed a more evenly distributed crosslinking point due to the improvement of the dispersion degree of adipic acid by heating and homogenization and the sequential reaction consisting of the first and second steps.
  • Examples 11 to 12 which further included tartaric acid or citric acid when preparing the mixed dispersion, showed an additional synergistic effect of about 10% in tensile strength and tear strength, and about 5% in elongation compared to Example 1. This is not clear, but it is believed to be an effect that appears when tartaric acid or citric acid supplements the part where the crosslinking point is not formed by the natural polymer nanofiber.
  • Example 1 More specifically, comparing Example 1 and Comparative Example 2, Example 2 and Comparative Example 3, etc., using the same amount of chitin nanofibers, the case of Example is about 20% higher in tensile strength, elongation and tear strength. You can see that it represents the value.
  • the mechanical properties of the biodegradable composite material can be more remarkably improved when the natural polymer nanofiber itself is used, but an aqueous dispersion thereof is used.

Abstract

본 발명은 키틴 나노섬유 및 셀룰로오스 나노섬유에서 선택되는 어느 하나 이상을 포함하는 천연고분자 나노섬유의 수분산액, 디카복실산 또는 이의 유도체, 및 디올을 포함하여 중합함으로써 제조되는 생분해성 복합소재에 관한 것이다. 본 발명의 생분해성 복합소재는 우수한 생분해성 및 기계적 물성을 갖는 특징이 있다.

Description

천연고분자 나노섬유 수분산액을 이용한 향상된 기계적 물성을 갖는 생분해성 복합소재 및 이의 제조방법
본 발명은 생분해성 복합소재 및 이의 제조방법에 관한 것이다.
현재 상용화된 범용 플라스틱, 예를 들어, 폴리에틸렌, 폴리프로필렌 등은 자연 상태에서의 분해성이 매우 열위하여, 폐기 시 환경에 치명적인 악영향을 미치는 문제가 있다.
그러함에도, 범용 플라스틱은 그 뛰어난 물성으로 인해 이를 이용한 제품의 비중은 오히려 점진적으로 늘어나는 추세이다. 이에, 환경 오염 방지의 일환으로 범용 플라스틱을 대체할 수 있는 소재의 개발이 끊임없이 촉구되고 있다.
그 일환으로 주목 받고 있는 것이 생분해성 플라스틱이다. 이는 토양 매립 시 자연 분해될 수 있어, 환경 부하가 거의 없다. 이러한 생분해성 플라스틱으로는, 예를 들어, PLA(poly lactic acid), PBS(poly butylene succinate), PBAT(poly butylene adipate-co-terephthalate) 등이 있다.
그러나, 생분해성 플라스틱은 그 뛰어난 생분해성에도 불구하고 기계적 물성의 부족으로 범용 플라스틱을 대체하기엔 아직 무리가 있다. 따라서, 생분해성 소재의 시장 확대를 위해서는 반드시 그 열위한 기계적 물성이 해결되어야 한다.
이에, 본 발명자는 앞서 한국등록특허공보 제10-1897180호에서 확인할 수 있듯이, 개선된 기계적 물성을 갖는 생분해성 PBS 복합소재를 제공한 바 있다.
그러함에도, 본 발명자는 보다 우수한 기계적 물성을 갖는 생분해성 복합소재의 제공을 위해 심도있는 연구를 지속적으로 수행하였고, 그 결과, 본 발명의 완성에 이르게 되었다.
본 발명은 상술한 문제를 해결하기 위한 것으로, 향상된 기계적 물성을 갖는 생분해성 복합소재 및 이의 제조방법을 제공하는 데 그 목적이 있다.
본 발명은 상술한 목적을 달성하기 위하여, 키틴 나노섬유 및 셀룰로오스 나노섬유에서 선택되는 어느 하나 이상을 포함하는 천연고분자 나노섬유의 수분산액; 디카복실산 또는 이의 유도체; 및 디올;을 포함하여 중합함으로써 제조되는 생분해성 복합소재를 제공한다.
본 발명의 일 실시예에 있어서, 상기 천연고분자 나노섬유의 수분산액 내 천연고분자 나노섬유의 양은, 상기 생분해성 복합소재 전체 100중량% 대비 0.005 내지 2중량%일 수 있다.
본 발명의 일 실시예에 있어서, 상기 천연고분자 나노섬유의 수분산액 내 천연고분자 나노섬유의 농도는, 0.1 내지 50중량%일 수 있다.
본 발명의 일 실시예에 있어서, 상기 천연고분자 나노섬유는, 직경이 1 내지 200 nm, 길이가 100 nm 내지 100 ㎛일 수 있다.
본 발명의 일 실시예에 있어서, 상기 생분해성 복합소재는, 3관능 이상의 알코올; 3관능 이상의 카복실산 또는 이의 유도체; 및 3관능 이상의 히드록시산 또는 이의 유도체;에서 선택되는 어느 하나 이상을 더 포함하여 중합함으로써 제조되는 것일 수 있다.
본 발명의 일 실시예에 있어서, 상기 생분해성 복합소재는, 하기 식 1을 만족하는 것일 수 있다.
[식 1]
Figure PCTKR2020006880-appb-img-000001
상기 식 1에서, TS 1은 상기 생분해성 복합소재의 인장강도이고, TS 0는 상기 천연고분자 나노섬유의 수분산액을 제외하고 중합한 경우의 인장강도이다.
본 발명의 일 실시예에 있어서, 상기 생분해성 복합소재는, 하기 식 2를 만족하는 것일 수 있다.
[식 2]
Figure PCTKR2020006880-appb-img-000002
상기 식 2에서, TT 1은 상기 생분해성 복합소재의 인열강도이고, TT 0는 상기 천연고분자 나노섬유의 수분산액을 제외하고 중합한 경우의 인열강도이다.
또한, 본 발명은 키틴 나노섬유 및 셀룰로오스 나노섬유에서 선택되는 어느 하나 이상을 포함하는 천연고분자 나노섬유의 수분산액, 디카복실산 또는 이의 유도체, 및 디올을 포함하는 혼합 분산액을 준비하는 단계; 및
상기 혼합 분산액을 중합하는 단계;를 포함하는 생분해성 복합소재의 제조방법을 제공한다.
본 발명의 제조방법의 일 실시예에 있어서, 상기 혼합 분산액은, 3관능 이상의 알코올, 3관능 이상의 카복실산 또는 이의 유도체, 및 3관능 이상의 히드록시산 또는 이의 유도체에서 선택되는 어느 하나 이상을 더 포함하는 것일 수 있다.
본 발명의 제조방법의 일 실시예에 있어서, 상기 혼합 분산액을 준비하는 단계는, 디카복실산 또는 이의 유도체, 및 디올을 포함하는 슬러리를 준비하는 단계;
상기 슬러리를 균질화하는 단계; 및
상기 균질화된 슬러리와 키틴 나노섬유 및 셀룰로오스 나노섬유에서 선택되는 어느 하나 이상을 포함하는 천연고분자 나노섬유의 수분산액을 혼합하는 단계;를 포함하는 것일 수 있다.
또한, 본 발명은 키틴 나노섬유 및 셀룰로오스 나노섬유에서 선택되는 어느 하나 이상을 포함하는 천연고분자 나노섬유의 수분산액, 제 1디카복실산 또는 이의 유도체, 및 제 1디올을 포함하는 혼합 분산액을 준비하는 단계;
상기 혼합 분산액을 에스테르화 또는 트랜스에스테르화 반응시켜 올리고머를 형성시키는 단계; 및
상기 올리고머에 제 2디카복실산 또는 이의 유도체, 및 제 2디올을 추가로 투입하고 중합하는 단계;를 포함하는 생분해성 복합소재의 제조방법을 제공한다.
본 발명은 기계적 물성, 예를 들어, 인장강도, 신율 및 인열강도가 현저히 향상된 생분해성 복합소재 및 이의 제조방법을 제공할 수 있다.
이하, 본 발명에 대하여 구체적으로 설명한다.
본 발명은 우수한 생분해성 및 기계적 물성을 갖는 복합소재에 관한 것이다.
구체적으로 본 발명은, 천연고분자 나노섬유의 수분산액; 디카복실산 또는 이의 유도체; 및 디올;을 포함하여 중합함으로써 제조되는 생분해성 복합소재에 관한 것이다.
본 발명의 생분해성 복합소재는, 디카복실산 또는 이의 유도체, 및 디올을 단량체 상에서부터 천연고분자 나노섬유의 수분산액과 함께 중합함으로써 제조되는 것이다. 이에, 디카복실산 또는 이의 유도체, 및 디올로부터 유래되는 사슬 사이사이에 천연고분자 나노섬유가 균일하게 산재되어 가교점을 형성할 수 있고, 현저히 향상된 기계적 물성이 구현될 수 있다.
특히, 본 발명은 천연고분자 나노섬유 그 자체가 아닌, 이의 수분산액을 채용한다는 점에 큰 특징이 있다.
본 발명자는 앞선 특허(한국등록특허공보 제10-1897180호)에서 1,4-부탄디올, 숙신산 및 셀룰로오스 나노섬유를 in-situ 중합함으로써 제조되는 생분해성 PBS 복합소재를 제공한 바 있다.
그러함에도 본 발명자는, 보다 우수한 기계적 물성을 갖는 생분해성 복합소재의 제공을 위해 심도있는 연구를 지속적으로 수행하였다. 그 결과, 셀룰로오스 나노섬유 그 자체가 아닌, 이의 수분산액을 사용하는 경우, 생분해성 복합소재의 기계적 물성이 현저히 향상되는 것을 발견하였다.
구체적으로, 천연고분자 나노섬유의 수분산액을 사용하여 제조된 본 발명의 생분해성 복합소재의 경우, 천연고분자 나노섬유 자체를 사용하여 제조된 생분해성 복합소재에 비해, 인장강도, 신율 및 인열강도에서 약 20% 이상의 높은 값을 나타냈다. 더욱이, 천연고분자 나노섬유를 사용하지 않은 생분해성 플라스틱에 비해서는 무려 2배 이상의 인장강도, 신율 및 인열강도 값을 나타냈다.
즉, 본 발명의 생분해성 복합소재는, 그 제조 시 천연고분자 나노섬유의 수분산액을 채용함으로써, 우수한 생분해성뿐만 아니라 현저히 향상된 기계적 물성을 갖는 특징이 있다. 따라서 본 발명의 생분해성 복합소재는, 생분해성 소재 시장의 확대 및 환경 오염 방지에 막대한 영향을 미칠 수 있을 것으로 생각된다.
참고적으로, 본 발명의 생분해성 복합소재는, 디카복실산 또는 이의 유도체 및 디올로부터 폴리에스테르를 먼저 제조하고, 용융 혼합법 또는 용액 혼합법으로 이를 천연고분자 나노섬유와 복합화한 것이 아니다. 이러한 생분해성 복합소재의 경우, 그 물성이 열위하다는 것을 앞선 본 발명자의 특허(한국등록특허공보 제10-1897180호)에서 상세히 밝힌 바 있으므로, 본 명세서에서는 이에 대해 구체적으로 설명하지는 않는다.
이하, 본 발명의 각 구성요소에 대해 보다 구체적으로 설명한다.
본 발명에서, 상기 천연고분자 나노섬유의 수분산액은, 천연고분자 나노섬유를 분산질로하고 물, 예를 들면, 증류수를 분산매로 하는 수분산액일 수 있다.
상기 천연고분자 나노섬유란, 자연계에 존재하는 천연고분자, 예를 들어, 키틴이나 셀룰로오스 등으로부터 유래되는 것을 의미할 수 있다.
보다 구체적으로, 상기 천연고분자 나노섬유는 키틴이나 셀룰로오스 등의 천연고분자를 당 기술분야에서 채택, 응용될 수 있는 물리적, 화학적 방법에 의해 나노섬유화한 것일 수 있다.
본 발명의 일 실시예에 있어서, 상기 천연고분자 나노섬유는 키틴 나노섬유, 셀룰로오스 나노섬유 등에서 선택되는 어느 하나 이상일 수 있다.
즉, 본 발명의 일 실시예에 있어서, 상기 천연고분자 나노섬유의 수분산액은, 키틴 나노섬유, 셀룰로오스 나노섬유 등에서 선택되는 어느 하나 이상의 천연고분자 나노섬유를 포함하는 것일 수 있다.
본 발명의 일 실시예에 있어서, 상기 천연고분자 나노섬유의 수분산액 내 천연고분자 나노섬유의 양은, 상기 생분해성 복합소재 전체 100중량%에 대해 0.005 내지 2중량%, 보다 좋게는 0.01 내지 1중량%, 보다 더 좋게는 0.05 내지 0.5중량%일 수 있다. 이 경우, 생분해성 복합소재는 우수한 기계적 물성을 나타낼 수 있다. 특히, 0.05 내지 0.5중량%의 범위를 갖는 경우, 현저히 향상된 기계적 물성을 나타내, 본 발명에서 보다 선호될 수 있다.
본 발명의 일 실시예에 있어서, 상기 천연고분자 나노섬유의 수분산액 내 천연고분자 나노섬유의 농도는 0.1 내지 50 중량%일 수 있다.
본 발명의 일 실시예에 있어서, 상기 천연고분자 나노섬유는 직경이 1 내지 200 nm, 보다 좋게는 1 내지 100 nm, 보다 더 좋게는 1 내지 50 nm 일 수 있다. 또한, 길이는 100 nm 내지 100 ㎛, 보다 좋게는 100 nm 내지 10 ㎛일 수 있다. 이 경우, 생분해성 복합소재의 기계적 물성을 보다 향상시킬 수 있다.
본 발명의 일 실시예에 있어서, 상기 디카복실산은 지방족 디카복실산 및 방향족 디카복실산에서 선택되는 어느 하나 이상일 수 있다.
일부 실시예에 있어서, 상기 지방족 디카복실산은, 옥살산, 말론산, 석신산, 말레산, 푸마르산, 글루타르산, 아디프산, 피멜산, 서버산, 아젤라산, 세박산, 도데칸디카복실산, 1,4-시클로헥산디카복실산 등에서 선택되는 어느 하나 이상일 수 있다.
일부 실시예에 있어서, 상기 방향족 디카복실산은, 프탈산, 테레프탈산, 이소프탈산, 1,4-나프탈렌디카복실산, 1,5-나프탈렌디카복실산, 2,6-나프탈렌디카복실산, 1,8-나프탈렌디카복실산, 4,4'-디페닐디카복실산, 4,4'-디페닐에테르디카복실산, 안트라센디카복실산, 페난트렌디카복실산 등에서 선택되는 어느 하나 이상일 수 있다.
본 발명의 일 실시예에 있어서, 상기 디올은 지방족 디올일 수 있고, 예를 들면, 에탄디올, 1,2-프로판디올, 1,3-프로판디올, 2-메틸-1,3-프로판디올, 2,2-디메틸-1,3-프로판디올, 2,2-디에틸-1,3-프로판디올, 2-에틸-2-이소부틸-1,3-프로판디올, 1,2-부탄디올, 1,4-부탄디올, 1,5-펜탄디올, 3-메틸-1,5-펜탄디올, 2,2,4-트리메틸-1,3-펜탄디올, 1,6-헥산디올, 2-에틸-1,3-헥산디올, 2,4-디메틸-2-에틸-1,3-헥산디올, 2,2,4-트리메틸-1,6-헥산디올, 2-메틸-1,8-옥탄디올, 1,9-노난디올, 1,10-데칸디올, 1,12-옥타데칸디올 등에서 선택되는 어느 하나 이상일 수 있다.
본 발명의 일 실시예에 있어서, 상기 생분해성 복합소재는, 3가 이상의 관능기를 갖는 화합물을 더 포함하여 중합함으로써 제조되는 것일 수 있다. 이 경우, 생분해성 복합소재의 기계적 물성을 보다 더 향상시킬 수 있다. 이는 확실하지는 않으나, 천연고분자 나노섬유에 의해 미처 가교점이 형성되지 못한 부분을 상기 화합물이 보완해 줌으로써 나타나는 효과로 생각된다.
일부 실시예에 있어서, 상기 3가 이상의 관능기를 갖는 화합물은, 3관능 이상의 알코올, 3관능 이상의 카복실산 또는 이의 유도체, 3관능 이상의 히드록시산 또는 이의 유도체 등에서 선택되는 어느 하나 이상일 수 있다.
일부 실시예에 있어서, 상기 3관능 이상의 히드록시산은, 말산(malic acid), 타르타르산(tartaric acid), 시트르산(citric acid) 등에서 선택되는 어느 하나 이상일 수 있다.
일부 실시예에 있어서, 상기 3가 이상의 관능기를 갖는 화합물은, 상기 디올 100몰% 대비 0.01 내지 0.5몰%의 양으로 포함될 수 있다. 이 경우, 상기 화합물은 천연고분자 나노섬유를 보완하는 역할에 충실하여, 생분해성 복합소재가 우수한 기계적 물성을 가질 수 있도록 한다.
본 발명의 일 실시예에 있어서, 상기 생분해성 복합소재는 하기 식 1을 만족하는 것일 수 있다.
[식 1]
Figure PCTKR2020006880-appb-img-000003
상기 식 1에서, TS 1은 상기 생분해성 복합소재의 인장강도이고, TS 0는 상기 천연고분자 나노섬유의 수분산액을 제외하고 중합한 경우의 인장강도이다.
본 발명의 일 실시예에 있어서, 상기 생분해성 복합소재는 하기 식 2를 만족하는 것일 수 있다.
[식 2]
Figure PCTKR2020006880-appb-img-000004
상기 식 2에서, TT 1은 상기 생분해성 복합소재의 인열강도이고, TT 0는 상기 천연고분자 나노섬유의 수분산액을 제외하고 중합한 경우의 인열강도이다.
또한, 본 발명은 천연고분자 나노섬유의 수분산액, 디카복실산 또는 이의 유도체, 및 디올을 포함하는 혼합 분산액을 준비하는 단계; 및 상기 혼합 분산액을 중합하는 단계;를 포함하는 생분해성 복합소재의 제조방법을 제공한다.
본 발명의 제조방법은, 디카복실산 또는 이의 유도체, 및 디올을 중합하여 먼저 폴리에스테르를 제조하고, 이에 용융 혼합법 또는 용액 혼합법을 이용해 이를 천연고분자 나노섬유와 복합화하는 것이 아니다.
이와 달리, 본 발명의 제조방법은, 디카복실산 또는 이의 유도체, 및 디올을 단량체 상에서부터 천연고분자 나노섬유의 수분산액과 함께 중합하는 것이다. 이에, 천연고분자 나노섬유가 생분해성 복합소재 내 균일하게 분포된 가교점을 형성할 수 있어, 제조된 생분해성 복합소재는 현저히 향상된 기계적 물성을 나타낼 수 있다.
특히, 본 발명의 제조방법은, 천연고분자 나노섬유 그 자체가 아닌, 이의 수분산액을 채용하는 데 큰 특징이 있다. 이 경우, 기계적 물성이 현저히 우수한 생분해성 복합소재를 제조할 수 있다. 이는 후술하는 실시예 및 비교예에서 보다 구체적으로 확인할 수 있다.
본 발명의 제조방법에서, 상기 혼합 분산액을 준비할 때, 천연고분자 나노섬유의 수분산액, 디카복실산 또는 이의 유도체, 및 디올의 혼합 순서에는 특별한 제한이 없다. 예를 들어, 천연고분자 나노섬유 수분산액을 디올과 혼합한 다음, 디카복실산 또는 이의 유도체와 혼합할 수도 있고, 이와 반대로, 천연고분자 나노섬유 수분산액을 디카복실산 또는 이의 유도체와 먼저 혼합한 다음, 디올과 혼합할 수도 있다.
일부 실시예에 있어서, 상기 혼합 분산액을 준비하는 단계는, 천연고분자 나노섬유의 분산도를 더욱 향상시키기 위해 교반, 초음파 처리 및 균질화 등이 수반될 수 있다.
본 발명의 제조방법에서, 상기 천연고분자 나노섬유의 수분산액, 상기 디카복실산 및 상기 디올은, 앞서 설명한 바와 동일한 것일 수 있고, 이에, 그 구체적 설명을 생략한다.
본 발명의 제조방법의 일 실시예에 있어, 상기 혼합 분산액은, 3가 이상의 관능기를 갖는 화합물을 더 포함하는 것일 수 있다. 이 경우, 천연고분자 나노섬유가 미처 가교점을 형성하지 못한 부분을 상기 화합물이 보완해 줌으로써, 보다 향상된 기계적 물성을 갖는 생분해성 복합소재를 제조할 수 있다. 이때, 상기 3가 이상의 관능기를 갖는 화합물은 앞서 설명한 바와 동일할 수 있고, 이에, 그 구체적 설명을 생략한다.
본 발명의 제조방법의 일 실시예에 있어서, 상기 혼합 분산액을 준비하는 단계는, 디카복실산 또는 이의 유도체, 및 디올을 포함하는 슬러리를 준비하는 단계; 상기 슬러리를 균질화하는 단계; 및 상기 균질화된 슬러리와 천연고분자 나노섬유 수분산액을 혼합하는 단계;를 포함하는 것일 수 있다. 이 경우, 디카복실산 또는 이의 유도체의 분산도 또한 향상시켜, 천연고분자 나노섬유는 생분해성 복합소재 내 더욱 균일하게 분포된 가교점을 형성할 수 있다. 이에, 생분해성 복합소재의 기계적 물성을 보다 더 향상시킬 수 있다.
이때, 상기 슬러리를 균질화 하는 단계는, 당 기술분야에서 통상적으로 채용될 수 있는 다양한 균질화 방법에 의해 이루어질 수 있다. 예를 들어, 기계적 분산, 초음파 처리 등과 같은 물리적 방법에 의해 이루어질 수 있다.
일부 실시예에 있어서, 상기 슬러리를 균질화 하는 단계는, 상기 슬러리를 가열하는 단계를 포함할 수 있다. 이 경우, 디카복실산 또는 이의 유도체는 보다 더 우수한 분산도를 가질 수 있어, 상술한 효과가 증대될 수 있다.
일부 실시예에 있어서, 상기 슬러리를 가열하는 단계는, 상기 슬러리의 에스테르화 또는 트랜스에스테르화가 진행되지 않는 온도범위에서 이루어질 수 있다. 다만, 약간의 에스테르화 또는 트랜스에스테르화가 진행되는 온도범위여도 무방하다. 그 구체적 온도범위는 채용되는 디카복실산 또는 이의 유도체, 및 디올에 따라 상이해지므로 이를 미리 예측하기란 곤란하다. 다만, 예를 들면, 아디프산과 1,4-부탄디올의 경우, 80 내지 130℃의 온도범위에서 가열이 이루어질 수 있다.
본 발명의 제조방법에서, 상기 혼합 분산액을 중합하는 단계에서의 중합 조건은 특별히 제한되지 않는다. 즉, 채용되는 디카복실산 또는 이의 유도체, 및 디올에 따라, 당 기술분야에 공지된 중합 조건이 채택, 응용될 수 있다.
본 발명의 제조방법의 일 실시예에 있어서, 상기 혼합 분산액을 중합하는 단계는, 상기 혼합 분산액을 에스테르화 또는 트랜스에스테르화 반응시켜 올리고머를 형성시키는 단계; 및 상기 올리고머를 중축합 반응시키는 단계;를 포함하는 것일 수 있다.
일부 실시예에 있어서, 상기 혼합 분산액을 중합하는 단계는, 중합의 촉진 및 안정적인 중합의 진행을 위해, 촉매를 사용하는 것일 수 있다. 상기 촉매는, 예를 들면, 칼슘 아세테이트, 망간 아세테이트, 마그네슘 아세테이트, 징크 아세테이트, 모노부틸 산화주석, 디부틸 산화주석, 이염화 디부틸 주석, 테트라페닐 주석, 테트라부틸 주석, 옥틸화 주석, 테트라메틸 티타네이트, 테트라이소프로필 티타네이트, 테트라부틸 티타네이트, 테트라(2-에틸헥실) 티타네이트 등에서 선택되는 어느 하나 이상일 수 있다.
또한, 본 발명은 천연고분자 나노섬유 수분산액, 제 1디카복실산 또는 이의 유도체, 및 제 1디올을 포함하는 혼합 분산액을 준비하는 단계; 상기 혼합 분산액을 에스테르화 또는 트랜스에스테르화 반응시켜 올리고머를 형성시키는 단계; 및 상기 올리고머에 제 2디카복실산 또는 이의 유도체, 및 제 2디올을 추가로 투입하고 중합하는 단계;를 포함하는 생분해성 복합소재의 제조방법을 제공한다.
이는, 디카복실산 또는 이의 유도체의 예정된 총 사용량을 고려해, 일부를 먼저 천연고분자 나노섬유 수분산액 및 디올과 혼합, 반응시켜 보다 저중합된 올리고머를 형성시키고, 그 다음, 추가로 디카복실산 또는 이의 유도체, 및 디올을 투입하여 올리고머와 중합시키는 방법이다. 이 경우, 후술하는 실시예에서 확인할 수 있듯이, 보다 우수한 기계적 물성을 갖는 생분해성 복합소재를 제조할 수 있다. 이는 확실하지 않으나, 반응을 순차적으로 진행시킴으로써, 천연고분자 나노섬유가 생분해성 복합소재 내 더욱 균일하게 분포된 가교점을 형성한 까닭으로 보인다.
상기 혼합 분산액을 준비하는 단계는, 앞서 설명한 바와 동일하게 이루어질 수 있고, 이에, 그 구체적 설명을 생략한다.
상기 천연고분자 나노섬유 수분산액은, 앞서 설명한 바와 동일한 것일 수 있고, 이에, 그 구체적 설명을 생략한다.
또한, 상기 제 1디카복실산 및 제 2디카복실산으로는 앞서 설명한 바와 같은 디카복실산이 채용될 수 있고, 상기 제 1디올 및 제 2디올도 앞서 설명한 바와 같은 디올이 채용될 수 있으므로, 그 구체적 설명을 생략한다.
상기 제 1디카복실산 및 상기 제 2디카복실산은 서로 동일한 것일 수도 있고, 서로 상이한 것일 수도 있다. 마찬가지로, 상기 제 1디올 및 상기 제 2디올은 서로 동일한 것일 수도 있고, 서로 상이한 것일 수도 있다.
상기 올리고머 형성 단계와 상기 중합 단계에서, 원활하고 안정적인 반응의 진행을 위해 촉매가 사용될 수 있다. 상기 촉매로는 앞서 설명한 바와 동일한 것이 채용될 수 있으므로, 그 구체적 설명을 생략한다.
또한, 상기 중합 단계는, 특별히 제한되는 것은 아니지만, 상기 올리고머와 추가로 투입된 제 2디카복실산 또는 이의 유도체, 및 제 2디올을 에스테르화 또는 트랜스에스테르화 반응시키고, 그 다음, 중축합 반응시키는 것일 수 있다.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
[평가 방법]
(1) 인장시험
인장강도 및 신율은 Intstron 5943 장비를 이용해 ASTM D638-Type V에 의거하여 측정하였다. 10 kN의 로드셀, 크로스헤드 속도 100 mm/min으로 25℃에서 측정하였다. 5번 측정한 평균값을 얻었다.
(2) 인열시험
인열강도는 KS M ISO 34-1:2009 시험법에 의거해 측정하였다.
[실시예 1 내지 4]
이론적 최종생성물 수득량(100 g) 대비 0.05 wt%의 키틴 나노섬유(0.05 g, 직경 10~20 nm, 길이 1~3 ㎛)를 증류수에 투입한 후, 초음파 발생기로 10분간 분산시켜, 키틴 나노섬유 수분산액(2.5 g)을 제조하였다.
제조된 키틴 나노섬유 수분산액 2.5 g을 1,4-부탄디올(0.76 mol, 68.30 g)에 투입하고, 초음파 발생기로 10분간 처리하였다. 이를 아디프산(0.24 mol, 34.61 g) 및 디메틸테레프탈레이트(0.24 mol, 45.99 g)와 함께 반응기에 투입한 후, 질소 분위기에서 1시간 동안 10 rpm으로 교반하여 혼합 분산액을 얻었다.
<에스테르화, 트랜스에스테르화 반응>
140℃까지 승온하여 혼합 분산액을 완전 용융시킨 후, 촉매로 Ti(OBu) 4를 500 ppm 투입하였다. 이후, 이를 150 rpm으로 교반하며 180℃까지 승온(10℃/min)하고, 2시간 유지하였다. 210℃까지 승온하여 2시간 더 유지한 후, 부산물을 제거하였다.
<중축합 반응>
생성물을 오버헤드 교반기가 장착된 반응기로 옮긴 후, 질소 분위기에서 170℃까지 승온하였다. 생성물이 완전 용융된 후, 50 rpm으로 교반하며 240℃까지 승온(10℃/min)하고, 점진적인 감압을 통해 100 mTorr로 맞추었다. 오버헤드 교반기를 통한 토크 측정으로 내부 반응물의 점도가 상승할 때 교반 속도를 30 rpm으로 감소시키고 60분간 유지하였다.
최종 생성물을 물로 급냉시키고, 이를 실온 상태의 진공 오븐 내에서 48시간 동안 건조시켜, 생분해성 복합소재를 제조하였다.
키틴 나노섬유의 투입량만 각각 0.5 wt%(실시예 2), 0.005 wt%(실시예 3) 및 2.0 wt%(실시예 4)로 달리하여, 위 과정을 반복하여 실시해 생분해성 복합소재를 추가로 제조하였다.
제조된 생분해성 복합소재의 인장강도, 신율 및 인열강도를 측정하여 하기 표 1에 기재하였다.
[실시예 5 내지 8]
실시예 1에서 키틴 나노섬유 대신, 이론적 최종 생성물 수득량(100 g) 대비 0.05 wt%의 셀룰로오스 나노섬유(0.05 g, 직경 10~20 nm, 길이 1~3 ㎛)를 증류수에 투입하여, 셀룰로오스 나노섬유 수분산액(2.5 g)을 제조, 사용한 것을 제외하고는, 실시예 1과 동일하게 실시하여 생분해성 복합소재를 제조하였다.
셀룰로오스 나노섬유의 투입량만 각각 0.5 wt%(실시예 6), 0.005 wt%(실시예 7) 및 2.0 wt%(실시예 8)로 달리하여, 위 과정을 반복하여 실시하여 생분해성 복합소재를 추가로 제조하였다.
제조된 생분해성 복합소재의 인장강도, 신율 및 인열강도를 측정하여 하기 표 1에 기재하였다.
[실시예 9]
1,4-부탄디올(0.38 mol, 34.15 g) 및 아디프산(0.24 mol, 34.61 g)을 반응기에 투입한 후, 90℃에서 가열, 교반하여 균일한 슬러리를 제조하였다.
제조된 슬러리에 실시예 1에서 제조한 키틴 나노섬유 수분산액을 투입하고, 초음파 발생기로 10분간 처리하였다. 이를 질소 분위기에서 10 rpm으로 1시간 동안 교반하여 혼합 분산액을 얻었다.
<1차 반응: 에스테르화 반응>
140℃까지 승온하여 혼합 분산액을 완전 용융시킨 후, 촉매로 Ti(OBu) 4를 500 ppm 투입하였다. 이를 150 rpm으로 교반하며 180℃까지 승온(10℃/min)하고, 2시간 유지하였다.
<2차 반응: 트랜스에스테르화 반응>
반응기에 1,4-부탄디올(0.38 mol, 34.15 g) 및 디메틸테레프탈레이트(0.24 mol, 45.99 g)를 추가로 투입하였다. 이후, 이를 210℃까지 승온하여 2시간 유지한 후, 부산물을 제거하였다.
<중축합 반응>
생성물을 오버헤드 교반기가 장착된 반응기로 옮긴 후, 질소 분위기에서 170℃까지 승온하였다. 생성물이 완전 용융된 후, 50 rpm으로 교반하며 240℃까지 승온(10℃/min)하고, 점진적인 감압을 통해 100 mTorr로 맞추었다. 오버헤드 교반기를 통한 토크 측정으로 내부 반응물의 점도가 상승할 때 교반 속도를 30 rpm으로 감소시키고 60분간 유지하였다.
최종 생성물을 물로 급냉시키고, 이를 실온 상태의 진공 오븐 내에서 48시간 동안 건조시켜, 생분해성 복합소재를 제조하였다.
제조된 생분해성 복합소재의 인장강도, 신율 및 인열강도를 측정하여 하기 표 1에 기재하였다.
[실시예 10]
실시예 9에서, 실시예 1에서 제조한 키틴 나노섬유 수분산액 대신, 실시예 5에서 제조한 셀룰로오스 나노섬유 수분산액을 사용한 것을 제외하고는, 실시예 9와 동일하게 실시하여 생분해성 복합소재를 제조하였다.
제조된 생분해성 복합소재의 인장강도, 신율 및 인열강도를 측정하여 하기 표 1에 기재하였다.
[실시예 11]
실시예 1에서, 1,4-부탄디올 대비 0.05 mol%의 타르타르산(0.38 mmol)을 1,4-부탄디올에 추가 투입한 것을 제외하고는, 실시예 1과 동일하게 실시하여 생분해성 복합소재를 제조하였다.
제조된 생분해성 복합소재의 인장강도, 신율 및 인열강도를 측정하여 하기 표 1에 기재하였다.
[실시예 12]
실시예 1에서, 1,4-부탄디올 대비 0.05 mol%의 시트르산(0.38 mmol)을 1,4-부탄디올에 추가 투입한 것을 제외하고는, 실시예 1과 동일하게 실시하여 생분해성 복합소재를 제조하였다.
제조된 생분해성 복합소재의 인장강도, 신율 및 인열강도를 측정하여 하기 표 1에 기재하였다.
[비교예 1]
실시예 1에서, 키틴 나노섬유 수분산액을 사용하지 않은 것을 제외하고는, 실시예 1과 동일하게 실시하여, PBAT(poly butylene adipate-co-terephthalate)를 제조하였다.
제조된 PBAT의 인장강도, 신율 및 인열강도를 측정하여 하기 표 2에 기재하였다.
[비교예 2 내지 5]
실시예 1에서, 키틴 나노섬유 수분산액 대신, 0.05 wt%의 키틴 나노섬유 자체를 1,4-부탄디올에 투입한 것을 제외하고는, 실시예 1과 동일하게 실시하여 생분해성 복합소재를 제조하였다.
키틴 나노섬유의 투입량만 각각 0.5 wt%(비교예 3), 0.005 wt%(비교예 4) 및 2.0 wt%(비교예 5)로 달리하여, 위 과정을 반복하여 실시하여 생분해성 복합소재를 추가로 제조하였다.
제조된 생분해성 복합소재의 인장강도, 신율 및 인열강도를 측정하여 하기 표 2에 기재하였다.
천연고분자 나노섬유 투입량(wt%) 인장강도(MPa) 신율(%) 인열강도(Kgf/cm)
실시예 1 0.05 65 1160 265
실시예 2 0.5 63 1150 240
실시예 3 0.005 47 990 182
실시예 4 2.0 45 930 178
실시예 5 0.05 66 1160 266
실시예 6 0.5 68 1170 280
실시예 7 0.005 49 1020 185
실시예 8 2.0 47 930 181
실시예 9 0.05 70 1200 271
실시예 10 0.05 71 1190 270
실시예 11 0.05 70 1220 302
실시예 12 0.05 69 1220 303
천연고분자 나노섬유 투입량(wt%) 인장강도(MPa) 신율(%) 인열강도(Kgf/cm)
비교예 1 - 35 750 140
비교예 2 0.05 56 1040 225
비교예 3 0.5 55 1015 201
비교예 4 0.005 41 870 152
비교예 5 2.0 40 820 151
상기 표 1 및 2에서 확인할 수 있듯이, 천연고분자 나노섬유 수분산액을 사용한 실시예의 경우, 비교예 1의 PBAT에 비해 현저히 향상된 기계적 물성을 나타냈다. 이는, 천연고분자 나노섬유가 생분해성 복합소재 내 균일하게 분포된 가교점을 형성함으로써 나타나는 효과로 생각된다.
특히, 천연고분자 나노섬유를 생분해성 복합소재 전체 중량 대비 0.05 wt% 또는 0.5 wt%의 양으로 함유한 수분산액을 사용한 실시예의 경우, 인장강도 및 인열강도에서 약 2배의 값을, 신율에서 약 1.5배의 값을 나타내, 현저히 향상된 기계적 물성을 보였다.
실시예 9 내지 10은, 1,4-부탄디올 및 아디프산의 슬러리를 가열, 균질화한 후, 천연고분자 나노섬유 수분산액과 혼합하여 1차 반응시켜 올리고머를 형성시킨 다음, 디메틸테레프탈레이트 및 1,4-부탄디올을 추가로 투입하여 2차 반응시킨 것이다. 이 경우, 상기 표에서 확인할 수 있듯이, 실시예 1에 비해 기계적 물성이 보다 더 향상되는 효과를 보였다. 이는 확실하지는 않으나, 가열, 균질화에 의한 아디프산의 분산도 향상과 1차, 2차로 이루어진 순차적 반응으로 인해, 천연고분자 나노섬유가 더욱 균일하게 분포된 가교점을 형성한 까닭으로 생각된다.
실시예 11 내지 12는, 혼합 분산액의 제조 시 타르타르산 또는 시트르산을 더 포함시킨 것으로, 실시예 1에 비해 인장강도 및 인열강도에서 약 10%, 신율에서 약 5%의 추가적인 상승 효과를 나타냈다. 이는 확실하지는 않지만, 천연고분자 나노섬유에 의해 미처 가교점이 형성되지 못한 부분을 타르타르산 또는 시트르산이 보완해 줌으로써 나타나는 효과로 생각된다.
또한, 상기 표 1 및 2로부터, 키틴 나노섬유 자체를 사용한 비교예 2 내지 5의 경우, 동일한 양의 키틴 나노섬유를 사용하되 수분산액으로 사용한 실시예 1 내지 4에 비해, 기계적 물성의 향상 효과가 다소 떨어지는 것을 확인할 수 있다.
보다 구체적으로, 동일한 양의 키틴 나노섬유를 사용한 실시예 1과 비교예 2, 실시예 2와 비교예 3 등을 비교해보면, 실시예의 경우가 인장강도, 신율 및 인열강도에서 약 20% 더 높은 값을 나타내는 것을 확인할 수 있다.
따라서 이로부터, 천연고분자 나노섬유 그 자체가 아니라, 이의 수분산액을 사용하는 경우, 생분해성 복합소재의 기계적 물성을 보다 더 현저히 향상시킬 수 있다는 것을 확인할 수 있다.

Claims (11)

  1. 키틴 나노섬유 및 셀룰로오스 나노섬유에서 선택되는 어느 하나 이상을 포함하는 천연고분자 나노섬유의 수분산액;
    디카복실산 또는 이의 유도체; 및
    디올;을 포함하여 중합함으로써 제조되는 생분해성 복합소재.
  2. 제 1항에 있어서,
    상기 천연고분자 나노섬유의 수분산액 내 천연고분자 나노섬유의 양은 상기 생분해성 복합소재 전체 100중량% 대비 0.005 내지 2중량%인, 생분해성 복합소재.
  3. 제 1항에 있어서,
    상기 천연고분자 나노섬유의 수분산액 내 천연고분자 나노섬유의 농도는 0.1 내지 50중량%인, 생분해성 복합소재.
  4. 제 1항에 있어서,
    상기 천연고분자 나노섬유는 직경이 1 내지 200 nm이고, 길이가 100 nm 내지 100 ㎛인, 생분해성 복합소재.
  5. 제 1항에 있어서,
    3관능 이상의 알코올; 3관능 이상의 카복실산 또는 이의 유도체; 및 3관능 이상의 히드록시산 또는 이의 유도체;에서 선택되는 어느 하나 이상을 더 포함하여 중합함으로써 제조되는, 생분해성 복합소재.
  6. 제 1항에 있어서,
    상기 생분해성 복합소재는 하기 식 1을 만족하는 것인, 생분해성 복합소재.
    [식 1]
    Figure PCTKR2020006880-appb-img-000005
    상기 식 1에서, TS 1은 상기 생분해성 복합소재의 인장강도이고, TS 0는 상기 천연고분자 나노섬유의 수분산액을 제외하고 중합한 경우의 인장강도이다.
  7. 제 1항에 있어서,
    상기 생분해성 복합소재는 하기 식 2를 만족하는 것인, 생분해성 복합소재.
    [식 2]
    Figure PCTKR2020006880-appb-img-000006
    상기 식 2에서, TT 1은 상기 생분해성 복합소재의 인열강도이고, TT 0는 상기 천연고분자 나노섬유의 수분산액을 제외하고 중합한 경우의 인열강도이다.
  8. 키틴 나노섬유 및 셀룰로오스 나노섬유에서 선택되는 어느 하나 이상을 포함하는 천연고분자 나노섬유의 수분산액, 디카복실산 또는 이의 유도체, 및 디올을 포함하는 혼합 분산액을 준비하는 단계; 및
    상기 혼합 분산액을 중합하는 단계;를 포함하는 생분해성 복합소재의 제조방법.
  9. 제 8항에 있어서,
    상기 혼합 분산액은, 3관능 이상의 알코올, 3관능 이상의 카복실산 또는 이의 유도체, 및 3관능 이상의 히드록시산 또는 이의 유도체에서 선택되는 어느 하나 이상을 더 포함하는 것인, 생분해성 복합소재의 제조방법.
  10. 제 8항에 있어서,
    상기 혼합 분산액을 준비하는 단계는,
    디카복실산 또는 이의 유도체, 및 디올을 포함하는 슬러리를 준비하는 단계;
    상기 슬러리를 균질화하는 단계; 및
    상기 균질화된 슬러리와 키틴 나노섬유 및 셀룰로오스 나노섬유에서 선택되는 어느 하나 이상을 포함하는 천연고분자 나노섬유의 수분산액을 혼합하는 단계;를 포함하는 것인, 생분해성 복합소재의 제조방법.
  11. 키틴 나노섬유 및 셀룰로오스 나노섬유에서 선택되는 어느 하나 이상을 포함하는 천연고분자 나노섬유의 수분산액, 제 1디카복실산 또는 이의 유도체, 및 제 1디올을 포함하는 혼합 분산액을 준비하는 단계;
    상기 혼합 분산액을 에스테르화 또는 트랜스에스테르화 반응시켜 올리고머를 형성시키는 단계; 및
    상기 올리고머에 제 2디카복실산 또는 이의 유도체, 및 제 2디올을 추가로 투입하고 중합하는 단계;를 포함하는 생분해성 복합소재의 제조방법.
PCT/KR2020/006880 2019-07-11 2020-05-28 천연고분자 나노섬유 수분산액을 이용한 향상된 기계적 물성을 갖는 생분해성 복합소재 및 이의 제조방법 WO2021006480A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20837139.3A EP3985061A4 (en) 2019-07-11 2020-05-28 BIODEGRADABLE COMPOSITE MATERIAL WITH IMPROVED MECHANICAL PROPERTIES USING AN AQUEOUS DISPERSION OF NANOFIBERS OF NATURAL POLYMERS AND PROCESS FOR ITS PRODUCTION
US17/597,430 US11753510B2 (en) 2019-07-11 2020-05-28 Biodegradable composite material having improved mechanical properties using natural polymer nanofiber aqueous dispersion and method of producing the same
JP2022500573A JP7203274B2 (ja) 2019-07-11 2020-05-28 天然高分子ナノファイバー水分散液を用いた、向上した機械的物性を有する生分解性複合材料およびその製造方法
CN202080048009.3A CN114127187B (zh) 2019-07-11 2020-05-28 利用天然高分子纳米纤维水分散液的具有得以提高的机械物性的生物降解性复合材料及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190083851A KR102069075B1 (ko) 2019-07-11 2019-07-11 천연고분자 나노섬유 수분산액을 이용한 향상된 기계적 물성을 갖는 생분해성 복합소재 및 이의 제조방법
KR10-2019-0083851 2019-07-11

Publications (1)

Publication Number Publication Date
WO2021006480A1 true WO2021006480A1 (ko) 2021-01-14

Family

ID=69368071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006880 WO2021006480A1 (ko) 2019-07-11 2020-05-28 천연고분자 나노섬유 수분산액을 이용한 향상된 기계적 물성을 갖는 생분해성 복합소재 및 이의 제조방법

Country Status (7)

Country Link
US (1) US11753510B2 (ko)
EP (1) EP3985061A4 (ko)
JP (1) JP7203274B2 (ko)
KR (1) KR102069075B1 (ko)
CN (1) CN114127187B (ko)
TW (1) TWI748544B (ko)
WO (1) WO2021006480A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3144632A1 (en) * 2019-06-18 2020-12-24 Kintra Fibers, Inc. Polyester polymer nanocomposites
KR102069075B1 (ko) * 2019-07-11 2020-01-22 한국화학연구원 천연고분자 나노섬유 수분산액을 이용한 향상된 기계적 물성을 갖는 생분해성 복합소재 및 이의 제조방법
KR102212601B1 (ko) 2020-03-03 2021-02-09 주식회사 서진바이오텍 물성이 개선된 생분해성 복합 수지 조성물 및 이의 제조 방법
KR20230122622A (ko) 2020-12-23 2023-08-22 킨트라 파이버스 인코포레이티드 폴리에스테르 중합체 나노복합체
KR102390198B1 (ko) * 2020-12-30 2022-04-27 정건준 그래핀 산화물이 함유된 기능성 원단

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032091A1 (ko) * 2011-08-30 2013-03-07 (주) 세비그린 생분해성 폴리에스테르-폴리아세탈 블록 공중합체
KR101550656B1 (ko) * 2013-11-26 2015-09-08 한국생산기술연구원 나노피브릴화 셀룰로오스의 제조 방법
KR101626997B1 (ko) * 2008-05-08 2016-06-03 노바몬트 에스.피.에이. 지방족-방향족 생분해성 폴리에스테르
KR101897180B1 (ko) 2017-06-20 2018-09-10 한국화학연구원 Pbs 복합소재 및 이의 제조 방법
KR20190032303A (ko) * 2019-01-14 2019-03-27 한국화학연구원 Pla 복합소재 및 이의 제조 방법
KR102069075B1 (ko) * 2019-07-11 2020-01-22 한국화학연구원 천연고분자 나노섬유 수분산액을 이용한 향상된 기계적 물성을 갖는 생분해성 복합소재 및 이의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100897180B1 (ko) * 2006-02-06 2009-05-14 주식회사 엘지화학 도전제로서 은 나노 입자를 함유하는 양극 합제 및그것으로 구성된 리튬 이차전지
TWI557282B (zh) * 2012-03-29 2016-11-11 迪愛生股份有限公司 改質纖維素奈米纖維之製造方法、改質纖維素奈米纖維、樹脂組成物及其成形體
JP6695662B2 (ja) * 2015-02-12 2020-05-20 国立大学法人京都大学 多糖類のナノファイバー、分散媒及びモノマーを含む分散体、並びにその分散体から得られる樹脂組成物
JP6612038B2 (ja) * 2015-02-23 2019-11-27 日本製紙株式会社 複合体の製造方法
KR101946042B1 (ko) * 2017-09-18 2019-04-17 한국화학연구원 Pla 복합소재 및 이의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101626997B1 (ko) * 2008-05-08 2016-06-03 노바몬트 에스.피.에이. 지방족-방향족 생분해성 폴리에스테르
WO2013032091A1 (ko) * 2011-08-30 2013-03-07 (주) 세비그린 생분해성 폴리에스테르-폴리아세탈 블록 공중합체
KR101550656B1 (ko) * 2013-11-26 2015-09-08 한국생산기술연구원 나노피브릴화 셀룰로오스의 제조 방법
KR101897180B1 (ko) 2017-06-20 2018-09-10 한국화학연구원 Pbs 복합소재 및 이의 제조 방법
KR20190032303A (ko) * 2019-01-14 2019-03-27 한국화학연구원 Pla 복합소재 및 이의 제조 방법
KR102069075B1 (ko) * 2019-07-11 2020-01-22 한국화학연구원 천연고분자 나노섬유 수분산액을 이용한 향상된 기계적 물성을 갖는 생분해성 복합소재 및 이의 제조방법

Also Published As

Publication number Publication date
CN114127187A (zh) 2022-03-01
TW202106784A (zh) 2021-02-16
JP7203274B2 (ja) 2023-01-12
EP3985061A4 (en) 2023-07-12
TWI748544B (zh) 2021-12-01
CN114127187B (zh) 2023-05-12
EP3985061A1 (en) 2022-04-20
KR102069075B1 (ko) 2020-01-22
US11753510B2 (en) 2023-09-12
JP2022531624A (ja) 2022-07-07
US20220282048A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2021006480A1 (ko) 천연고분자 나노섬유 수분산액을 이용한 향상된 기계적 물성을 갖는 생분해성 복합소재 및 이의 제조방법
WO2014038896A1 (ko) 열가소성 리그닌축중합체 및 이의 제조방법
WO2013162184A1 (ko) 열가소성 폴리에스테르 엘라스토머 수지 조성물 및 이를 포함하는 성형품
WO2016043440A1 (ko) 3d 인쇄용 폴리유산 수지 조성물
WO2017150747A1 (ko) 저융점 복합섬유
WO2020004732A1 (ko) 열접착성 섬유용 폴리에스테르 조성물, 이를 통해 구현된 열접착성 복합섬유및 부직포
WO2012165734A1 (ko) 내가수분해성 및 생분해성 지방족/방향족 코폴리에스테르 수지 조성물
WO2023033562A1 (ko) 투명성과 충격강도가 우수한 생분해성 폴리에스테르 중합체 및 이를 포함하는 생분해성 고분자 조성물
WO2020226200A1 (en) Biodegradable copolyester resin produced by esterification and polycondensation of biomass-derived aliphatic dicarboxylic acid and aromatic dicarboxylic acid with diol and production method thereof
CN112778717A (zh) 一种可生物降解的塑料粒子及其制备方法及餐具
WO2020111563A1 (ko) 접착강도가 향상된 바인더용 폴리에스테르 수지 및 그를 이용한 폴리에스테르 섬유
WO2014054846A1 (en) Method of producing vegetable-oil-based biomass elastomer and elastomer produced by the method
WO2020197148A1 (ko) 트리블록 공중합체 및 이의 제조 방법
WO2017135618A1 (ko) 물 소거제를 포함하는 유연 폴리유산 수지 조성물
WO2020101131A1 (en) Functional resin composition comprising biomass-derived component
CN113150518A (zh) 全生物降解塑料合金及其制备方法
WO2021066284A1 (ko) 폴리에스테르 수지 혼합물 및 이로부터 형성된 성형품
WO2023096468A1 (ko) 생분해성 고분자
WO2023027559A1 (ko) 블록 공중합체 및 이의 제조 방법
WO2023282562A1 (ko) 폴리락트산 중합체의 제조 방법
WO2022050815A1 (ko) 폴리락테이트 입체이성질 복합체 및 이의 제조방법
WO2019050376A1 (ko) 압축성형체용 복합섬유 및 이의 제조방법
WO2020226199A1 (en) Biodegradable resin composition having excellent weather resistance and storage stability and production method thereof
WO2017111261A1 (ko) 생분해성 폴리에스테르 수지의 제조 방법 및 그 방법에 의해 제조된 생분해성 폴리에스테르 수지
WO2022270869A1 (ko) 폴리락트산 중합체의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500573

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020837139

Country of ref document: EP

Effective date: 20220114