WO2017111261A1 - 생분해성 폴리에스테르 수지의 제조 방법 및 그 방법에 의해 제조된 생분해성 폴리에스테르 수지 - Google Patents

생분해성 폴리에스테르 수지의 제조 방법 및 그 방법에 의해 제조된 생분해성 폴리에스테르 수지 Download PDF

Info

Publication number
WO2017111261A1
WO2017111261A1 PCT/KR2016/010637 KR2016010637W WO2017111261A1 WO 2017111261 A1 WO2017111261 A1 WO 2017111261A1 KR 2016010637 W KR2016010637 W KR 2016010637W WO 2017111261 A1 WO2017111261 A1 WO 2017111261A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
biodegradable polyester
deactivator
condensation polymerization
dicarboxylic acid
Prior art date
Application number
PCT/KR2016/010637
Other languages
English (en)
French (fr)
Inventor
차범규
염정
천종필
윤기철
김예진
박성배
Original Assignee
롯데정밀화학 주식회사
에스엔폴 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데정밀화학 주식회사, 에스엔폴 주식회사 filed Critical 롯데정밀화학 주식회사
Publication of WO2017111261A1 publication Critical patent/WO2017111261A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a method for producing a biodegradable polyester resin and to a biodegradable polyester resin prepared by the method, and more particularly, to improve thermal stability in a molten state by appropriately distributing a time point of input of a deactivator.
  • a method for producing a biodegradable polyester resin and a biodegradable polyester resin produced by the method is a method for producing a biodegradable polyester resin and a biodegradable polyester resin produced by the method.
  • Plastics are usefully used in real life because of their high functionality and durability.
  • conventional plastics have a low decomposition rate due to microorganisms when they are landfilled, release harmful gases during incineration, and cause environmental pollution.
  • biodegradable plastics have been developed.
  • Biodegradable polyester resin refers to a polymer that can be decomposed into water and carbon dioxide or water and methane by microorganisms in nature such as bacteria, algae, and fungi.
  • Such biodegradable polyester resins have been proposed as a powerful solution to prevent environmental pollution due to landfill or incineration.
  • biodegradable polyester resins esterify dicarboxylic acids and diols in the presence of a polymerization catalyst, precondense and condensate, and optionally, chain extension reactions for further high molecular weight. It is prepared by.
  • Patent Document 1 Korean Laid-Open Patent Publication No. 10-2015-0078271
  • the biodegradable polyester resin thus prepared is subjected to a chain extension reaction using an extruder or a static mixer to further increase the molecular weight.
  • the biodegradable polyester resin is introduced into the chain extension reaction equipment in a molten state, rather than being introduced into the chain extension reaction equipment in a solidified state such as pellets, and is advantageous in the process.
  • the biodegradable polyester resin is prepared by adding a large amount of deactivator to the esterification step as in the patent document 1, when stored for a long time in the molten state before being subjected to the high temperature condensation polymerization step and the chain extension reaction There is a problem in that the thermal stability is poor color and acid value is poor.
  • Patent Document 2 Korean Patent Publication No. 2011-7185 describes a continuous method for producing a biodegradable polyester comprising the step of esterification, precondensation, condensation polymerization and chain extension.
  • a deactivator is added between the precondensation and the condensation polymerization.
  • the activity of the polymerization catalyst is deteriorated in the polymerization (condensation polymerization) step so that the catalyst efficiency is lowered, and at a high temperature condensation polymerization step. Since the biodegradable resin stays for a long time, there is a problem that the color stability and acid value are poor due to poor thermal stability.
  • Patent Document 1 KR1020150078271 A
  • Patent Document 2 KR1020110007185 A
  • the problem to be solved by the present invention is to provide a method for producing a biodegradable polyester resin with improved thermal stability in the molten state by appropriately dispensing the input time of the deactivator.
  • Another object of the present invention is to provide a biodegradable polyester resin having excellent chromaticity and acid value even when stored for a long time in a molten state.
  • the present invention is (1) at least one dicarboxylic acid of aliphatic dicarboxylic acid and aromatic dicarboxylic acid; At least one diol of an aliphatic diol and an aromatic diol; catalyst; And adding a deactivator to a reactor to esterify the dicarboxylic acid with the diol, (2) condensation polymerization of the product obtained by the esterification reaction, and (3) by the condensation polymerization reaction. Cooling the obtained product (hereinafter referred to as “condensation polymerization product”), and (4) further adding a deactivator to the condensation polymerization product cooled according to step (3) above.
  • condensation polymerization product hereinafter referred to as “condensation polymerization product”
  • the total amount of the deactivator is 0.05 ⁇ 0.4mmol per mol of the dicarboxylic acid, the molar ratio of the deactivator added in step (1) and the deactivator added in step (4) is 1: 3 It is preferable that it is-3: 1.
  • the deactivator is at least selected from the group consisting of phosphorous acid, phosphonous acid, trimethyl phosphite, triethyl phosphite, tripropyl phosphite, triphenyl phosphite, sodium phosphite and sodium hypophosphite It may include one phosphorus compound.
  • the condensation polymerization product is preferably cooled in the range of "melting point of the condensation polymerization product + 60 ⁇ 80 °C".
  • steps (3) and (4) may further comprise a storage step of storing the condensation polymerization product cooled according to the step (3) in a molten state, the storage step for 2 to 4 hours It is preferable to carry out.
  • the method for producing a biodegradable polyester resin composition according to the present invention may further comprise a chain extension step of reacting the condensation polymerization reaction product, the deactivator is added according to step (4) with a chain extender.
  • the present invention provides a biodegradable polyester resin prepared according to the above production method.
  • biodegradable polyester resin manufacturing method of the present invention by appropriately dispensing the deactivator into step (1) (esterification step) and step (4) (step after completion of the condensation polymerization step and cooling step)
  • step (1) esterification step
  • step (4) step after completion of the condensation polymerization step and cooling step
  • the thermal stability in the molten state of the finally obtained biodegradable polyester resin can be improved.
  • the biodegradable polyester resin prepared according to the present invention can exhibit excellent chromaticity and stable acid value even if stored for a long time in the molten state, it is possible to extend or compound the chain in the molten state.
  • the present invention (1) at least one dicarboxylic acid of aliphatic dicarboxylic acid and aromatic dicarboxylic acid; At least one diol of an aliphatic diol and an aromatic diol; catalyst; And adding a deactivator to a reactor to esterify the dicarboxylic acid with the diol (esterification step), and (2) polycondensation reaction of the product obtained by the esterification reaction (condensation polymerization step). And (3) cooling the product obtained by the polycondensation reaction (hereinafter referred to as "condensation polymerization product”), and (4) deactivating the condensation polymerization product cooled according to step (3).
  • It relates to a method for producing a biodegradable polyester resin comprising the step of adding a further agent and a biodegradable polyester resin prepared according to the method.
  • dicarboxylic acid, diol, catalyst and deactivator are introduced into a reactor to esterify the dicarboxylic acid and the diol.
  • the dicarboxylic acid used in the present invention is at least one of dicarboxylic acid of substituted or unsubstituted C 4 to C 10 aliphatic dicarboxylic acid and substituted or unsubstituted C 8 to C 20 aromatic dicarboxylic acid. Acid may be included.
  • the dicarboxylic acid is, for example, malonic acid, succinic acid, glutaric acid, 2-methyl glutaric acid, 3-methyl glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, undecaneic acid, dode Aliphatic dicarboxylic acids including candiic acid, brasylic acid, tetradecanediic acid, fumaric acid, 2,2-dimethylglutaric acid, suberic acid, maleic acid, itaconic acid, or combinations thereof; And at least one dicarboxylic acid among aromatic dicarboxylic acids including terephthalic acid, isophthalic acid, 2,6-naphthoic acid, 1,5-naphthoic acid, or a combination thereof.
  • the diol may include at least one diol of a substituted or unsubstituted C 2 to C 10 aliphatic diol and a substituted or unsubstituted C 6 to C 20 aromatic diol.
  • the diols are, for example, ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,4-dimethyl-2-ethyl-1,3-hexanediol, 2,2-dimethyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-2 Aliphatic diols including isobutyl-1,3-propane diol, 2,2,4-trimethyl-1,6-hexanedi
  • the content of the diol may be 1 to 2 moles with respect to 1 mole of the dicarboxylic acid.
  • the dicarboxylic acid and the diol may be reacted at a molar ratio of 1: 1 when reacting in a stoichiometric ratio during polymerization for preparing the biodegradable polyester resin. That is, the amount of the diol to the amount of the dicarboxylic acid may be 1: 1 (molar ratio), but the amount of the diol may be excessive compared to the amount of the dicarboxylic acid to promote the reaction and increase the yield. have.
  • the catalyst serves to promote the esterification reaction and the condensation polymerization reaction, and the amount of the catalyst is preferably 0.1 to 0.4 mmol with respect to 1 mol of the dicarboxylic acid.
  • the content of the catalyst is within the above range, a polymerization reaction may occur with excellent reaction efficiency, and thus, deterioration of physical properties such as color of the biodegradable polyester resin prepared may be prevented.
  • the catalyst is titanium (Ti), tin (Sn), antimony (Sb), cerium (Ce), germanium (Ge), zinc (Zn), cobalt (Co), manganese (Mn), iron (Fe), aluminum ( It may include a metal compound containing at least one metal selected from the group consisting of Al), magnesium (Mg), calcium (Ca) and strontium (Sr).
  • the catalyst is, for example, calcium acetate, manganese acetate, magnesium acetate, zinc acetate, monobutyl tin oxide, dibutyl tin oxide, dibutyl dichloride, monobutyl hydroxy tin oxide, octyl tin, tetrabutyl tin, tetraphenyl From the group consisting of tin, triethyl titanate, acetyltripropyl titanate, tetramethyl titanate, tetrapropyl titanate, tetraisopropyl titanate, tetra n-butyl titanate, and tetra (2-ethylhexyl) titanate It may comprise at least one metal compound selected.
  • the deactivator serves to reduce the activity of the catalyst.
  • the catalyst increases the rate of the esterification reaction and the polycondensation reaction, which is a forward reaction, while also increasing the rate of the reverse reaction, which is a hydrolysis reaction, and the catalyst remaining after the reactions are completed is subjected to pyrolysis and oxidation in a subsequent process. It promotes side reactions such as reaction and hydrolysis reaction. Therefore, in the case of using a high activity catalyst or using an excessive amount of catalyst, the above reverse reaction and side reaction may be promoted, and the color and acid value of the biodegradable polyester resin may be poor. It is added for.
  • the total amount of the deactivator is preferably 0.05 to 0.4 mmol based on 1 mol of the dicarboxylic acid, and the total amount of the deactivator is the sum of the amount of deactivator added in step (1) and step (4) to be described later. Value.
  • the total amount of the deactivator is within the above range, the polymerization reaction can proceed while efficiently suppressing the side reactions and the reverse reaction, and the biodegradable polyester resin thus prepared is excellent in thermal stability, even when stored for a long time in a molten state. Deterioration of physical properties such as chromaticity and acid value can be prevented.
  • the input ratio of the deactivator added in step (1) (esterification step) and the activator added in step (4) (after completion of the cooling step of the polycondensation reaction product) described later is a kind of biodegradable polyester.
  • the thermal stability of the finally obtained biodegradable polyester resin is improved, and physical properties such as chromaticity and acid value in the molten state can be prevented.
  • the deactivator may include a phosphorus compound containing phosphorus (P), for example, phosphorous acid, phosphonous acid, trimethylphosphite, triethylphosphite, tripropylphosphite, triphenylphosphate It may include at least one phosphorus compound selected from the group consisting of pit, sodium phosphite and sodium hypophosphite.
  • P phosphorus compound containing phosphorus
  • the esterification reaction may proceed for 60 to 300 minutes at 160 ⁇ 200 °C.
  • the end point of the esterification reaction can be determined by measuring the amount of water / alcohol produced by this reaction. For example, when adipic acid and dimethyl terephthalate are used as the dicarboxylic acid, respectively, 0.6 mol and 0.4 mol, and 1.3 mol of 1,4-butanediol is used as the diol, adipic acid and dimethyl tere are used.
  • by-product water, alcohol and / or unreacted diol may be discharged out of the reaction system by evaporation or distillation.
  • an esterification reaction product (oligomer) having an ester bond is produced.
  • This step is a step of polycondensation reaction in order to high molecular weight the product (oligomer) obtained from the esterification step.
  • the polycondensation reaction may be performed at a pressure of 2torr or less for 40 to 300 minutes at 220 to 260 ° C. As described above, the polycondensation reaction is carried out under vacuum, whereby a high molecular weight polycondensation reaction product can be obtained while removing unreacted raw material (unreacted monomer), low molecular oligomer and by-product water / butanol.
  • This step is to cool the polycondensation reaction product, wherein the polycondensation reaction product may be cooled in the range of "melting point of the polycondensation reaction product + 60 ⁇ 80 °C ''.
  • the color of the biodegradable polyester resin may be improved, but the acid value may be somewhat poor. It became. This is because the acid value is affected by the internal temperature, it is preferable that the deactivator is added after the temperature of the product obtained from the condensation polymerization step falls in the above range.
  • the polyester resin manufacturing method of the present invention may further comprise the step of storing the condensation polymerization product cooled according to step (3) in the molten state. This is because the internal temperature of the polycondensation reaction product in the molten state may not be uniform due to the high viscosity immediately after the temperature of the polycondensation reaction product reaches the melting point of the polycondensation reaction product + 60 to 80 ° C. to be.
  • the storage step may be performed for 2 to 4 hours, wherein the condensation polymerization product being stored may be stored while being stirred.
  • the polycondensation reaction product that has undergone such a storage step may have a uniform internal temperature to further improve chromaticity improvement.
  • This step is an additional step of adding a deactivator to the condensation polymerization product cooled according to step (3).
  • Patent Documents 1 or 2 Unlike prior art documents (Patent Documents 1 or 2) in which the deactivator is introduced into a large amount at a time in the “esterification step” or “step between precondensation and condensation polymerization,” in the present invention, the deactivator is divided into two steps. By injecting, a biodegradable polyester resin having excellent thermal stability in a molten state is provided.
  • the deactivator is added to reduce the activity of the catalyst, and when added only to the esterification step, a reverse reaction such as a hydrolysis reaction that may be caused by the catalyst in the esterification step and the condensation polymerization step may be performed. Although it can be suppressed, it was not sufficient to completely suppress side reactions such as pyrolysis reaction, oxidation reaction and hydrolysis reaction that occur due to the catalyst remaining after the esterification and condensation polymerization steps are completed. This is the main cause of lowering the thermal stability when the finally obtained biodegradable polyester resin is stored in a molten state for a long time. In addition, when the deactivator is added only between the precondensation and the condensation polymerization step, the biodegradable resin stays in the condensation polymerization step at a high temperature for a long time, resulting in a problem of poor thermal stability.
  • the inventors put the deactivator into the step (1) (esterification step), and then through the step (2) (condensation polymerization step) and (3) (cooling step) the condensation polymerization product
  • the obtained biodegradable polyester resin finally confirmed that the thermal stability in the molten state is excellent even when stored for a long time to complete the present invention.
  • the method for producing a biodegradable polyester resin composition according to the present invention may further include a chain extension step of reacting the polycondensation reaction product in which the deactivator is added according to step (4) with a chain extender.
  • the polycondensation reaction product proceeds to the chain extension step may be a molten state. That is, the condensation polymerization product is a product discharged in the molten state after the completion of the condensation polymerization step is cooled to an appropriate temperature (melting point of the polycondensation reaction product + 60 ⁇ 80 °C), and stored in the molten state as necessary After passing through the step, the deactivator is added to the condensation polymerization product in the molten state, which is passed through the step of extending the chain extension step as it is.
  • the present invention provides a biodegradable polyester resin prepared according to the above production method.
  • the three-necked round bottom flask was heated to 240 ° C. under a vacuum of 0.5 torr, followed by a condensation polymerization reaction for 135 minutes, and then the contents of the flask were discharged.
  • the deactivator is a time when the temperature of the polycondensation reaction product reaches 190 °C in the third step, that is, the time 2 hours after the completion of the condensation polymerization of the second step.
  • the condensation polymerization product that passed through three steps was stored for 2 hours with stirring (storage step).
  • PBAT a biodegradable polyester resin.
  • the deactivator is a point in time is 2 hours elapsed from the time when the temperature of the polycondensation reaction product reaches 190 °C in the third step, that is, the time 4 hours after the completion of the condensation polymerization reaction.
  • the three-neck round bottom flask was heated to 240 ° C. under a vacuum of 0.5 torr, followed by a condensation polymerization reaction for 180 minutes, and then the contents of the flask were discharged.
  • the deactivator is a time when the temperature of the polycondensation reaction product reaches 190 °C in the third step, that is, the time 2 hours after the completion of the polycondensation reaction.
  • the condensation polymerization product which passed through three steps was stored for 2 hours with stirring (storage step).
  • PPA phosphorous acid
  • the three-neck round bottom flask was heated to 240 ° C. under a vacuum of 0.5 torr, and then subjected to a condensation polymerization reaction for 135 minutes, and then the contents of the flask were discharged.
  • PBAT which was a biodegradable polyester resin was obtained.
  • the chromaticity was measured by taking samples at first and second time points, and the chromaticity measurement results at each time point are shown in Table 1 below.
  • biodegradable polyester resins prepared according to Examples 1 to 4 and Comparative Examples 1 to 2 were dissolved in dichloromethane, cooled, and titrated with 0.1 N KOH ethyl alcohol solution to determine the acid value of each resin.
  • the acid value was also measured by taking the respective samples at the first to third time points as in the chromaticity diagram, and the results are shown in Table 1 below.
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 TBT (mmol) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 PPA (mmol) Level 1 input 0.05 0.05 0.05 0.05 0.1 0.1 4-step injection 0.05 0.05 0.05 0.05 0.05 - - Acid value (mgKOH / g) First point 0.74 0.73 0.98 1.01 0.84 1.23 Second point 0.86 0.85 1.63 1.71 1.31 2.83 Third time point 1.21 0.98 2.11 1.92 1.45 3.23 Chromaticity (L * / a * / b *) First point 77.2 / 21.3 /22.1 78.3 / 20.2 /21.6 85.3 / -0.7 / 11.9 85.4 / -1.5 / 10.4 82.8 / 14.1 / 11.7 88.0 / -1.2 / 4.0 Second point 77.3 / 20.6 / 21.9 79.9 / 19.0 / 20.6 83.8 / -0.4 / 12.4 84.7 / -1.3
  • the deactivator was added after the cooling step according to Example 1 and the deactivator was added after the cooling and storage steps according to Example 2 In this case, a biodegradable polyester resin having a poor color compared to Comparative Example 1 in which the total amount of the deactivator was added to the esterification step was obtained.
  • the PBAT prepared according to Examples 1 and 2 was significantly improved in color compared to the PBAT of Comparative Example 1, and the acid value was stable. can confirm.
  • PBS prepared according to Examples 3 and 4 exhibited excellent chromaticity similar to that of the biodegradable polyester resins of Examples 1 and 2, and compared to PBS prepared according to Comparative Example 2.
  • the acid value is significantly improved, indicating that the thermal stability is improved.
  • the weight average molecular weight (Mw) for each chip was measured (before the change over time), and the chip was then immersed in boiling water at 100 ° C. for 4 hours (after the change over time), and then the weight average molecular weight was measured.
  • the results are shown in Table 2 below.
  • the weight average molecular weight was dissolved in chloroform at a concentration of 1wt% to obtain a polyester resin solution, the PBAT resin solution was analyzed by gel permeation chromatography (GPC) to determine the weight average molecular weight.
  • the measurement temperature was 35 °C
  • the flow rate was 1ml / min.
  • Mw change amount Mw after time change-Mw before time change. (One)
  • Example 2 Example 4 Comparative Example 1 Comparative Example 2 Mw before time change 74,300 118,000 79,100 120,000 Mw after change over time 73,200 106,000 76,800 105,000 Mw variation -1,100 -12,000 -2,300 -15,000 Mw rate of change 14.8% 10.2% 29.1% 12.5%
  • the PBAT resin in the molten state prepared according to Example 2 was prepared as a PBAT chip according to the evaluation method 3. Subsequently, 8 kg of the PBAT chip, 2 kg of polylactic acid (PLA) chip, and 10 g of hexamethylene diisocyanate were used to uniaxially blow a film extruder (a large wheel machine, L / D: 28: 1, die diameter: 45 mm, Barrel temperature: 190 ° C.) to form a film. As a result, film 1 having a thickness of 30 ⁇ m was obtained.
  • a film extruder a large wheel machine, L / D: 28: 1, die diameter: 45 mm, Barrel temperature: 190 ° C.
  • Tensile and tear strengths of the films 1 and 2 were measured using a universal tensile tester (Instron, UTM-4484) based on ASTM D638, and the results are shown in Table 3 below.
  • Film 1 Film 2 Compatibility of PBAT and PLA Poor dispersion Excellent dispersibility Tear strength 32gf 53gf The tensile strength 450kgf / cm 2 510kgf / cm 2
  • the PBAT resin prepared according to Example 2 and the PBS resin prepared according to Example 4 were prepared as PBAT chips and PBS chips, respectively, according to Evaluation Method 3.
  • Example 2 Example 4 Film 3 Film 4 Film 5 Film 6 Resin Type PBAT PBAT PBS PBS Balance Chip state Molten state Chip state Molten state Mw 140,000 140,000 210,000 205,000 state Some gel (surface roughness) Good Some gel (surface roughness) Good

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은 (1) 지방족 디카르복실산 및 방향족 디카르복실산 중 적어도 1종의 디카르복실산; 지방족 디올 및 방향족 디올 중 적어도 1종의 디올; 촉매; 및 탈활성화제를 반응기에 투입하여 상기 디카르복실산과 상기 디올을 에스테르화 반응시키는 단계, (2) 상기 에스테르화 반응에 의해얻어진 생성물을 축중합 반응시키는 단계, (3) 상기 축중합반응에 의해 얻어진 생성물(이하, "축중합 반응 생성물"이라 함)을 냉각하는 단계 및 (4) 상기 (3)단계에 따라 냉각된 축중합 반응 생성물에 탈활성화제를 추가로 투입하는 단계를 포함하는 생분해성 폴리에스테르 수지의 제조방법 및 그 방법에 따라 제조된 생분해성 폴리에스테르에 관한 것이다. 본 발명의 생분해성 수지 제조방법에 의하면 최종적으로 얻어지는 생분해성 폴리에스테르 수지의 용융상태에서의 열적 안정성을 개선시킬 수 있고, 따라서 용융상태에서의 사슬연장 또는 컴파운딩이 가능하다.

Description

생분해성 폴리에스테르 수지의 제조 방법 및 그 방법에 의해 제조된 생분해성 폴리에스테르 수지
본 발명은 생분해성 폴리에스테르 수지의 제조 방법 및 그 방법에 의해 제조된 생분해성 폴리에스테르 수지에 관한 것으로서, 더욱 상세하게는 탈활성화제의 투입시점을 적절히 배분함으로써 용융상태에서의 열적 안정성이 개선된 생분해성 폴리에스테르 수지의 제조 방법 및 그 방법에 의해 제조된 생분해성 폴리에스테르 수지에 관한 것이다.
플라스틱은 고기능성 및 내구성 등으로 인하여, 실생활에서 유용하게 사용되고 있다. 그러나, 종래의 플라스틱은 매립시 미생물에 의한 분해속도가 낮고, 소각시에 유해가스를 방출하여 환경 오염의 원인이 되는 등의 문제점이 있어 생분해성 플라스틱의 개발이 진행되었다.
이러한 생분해성 플라스틱 중에서도 생분해성을 가지는 폴리에스테르 수지가 주목을 받고 있다. 생분해성 폴리에스테르 수지란, 박테리아, 조류, 곰팡이와 같이 자연에 존재하는 미생물에 의해 물과 이산화탄소, 또는 물과 메탄가스로 분해될 수 있는 중합체를 말한다. 이러한 생분해성 폴리에스테르 수지는 매립 또는 소각에 따른 환경오염을 방지할 수 있는 강력한 해결책으로 제시되고 있다.
일반적으로, 생분해성 폴리에스테르 수지는 중합 촉매의 존재하에 디카르복실산 및 디올을 (트랜스)에스테르화하고, 예비 축합 및 축중합시킨 후, 선택적으로, 추가의 고분자량화를 위하여, 사슬 연장 반응을 시켜 제조된다.
예컨대, 특허문헌 1(한국 공개특허공보 제10-2015-0078271호)에는 지방족 디카르복실산 및 방향족 디카르복실산 중 적어도 1종의 디카르복실산; 지방족 디올 및 방향족 디올 중 적어도 1종의 디올; 촉매; 및 상기 촉매의 활성을 감소시킬 수 있는 탈활성화제를 반응기에 투입하여 상기 디카르복실산과 상기 디올을 에스테르화 반응시키는 단계(에스테르화 단계); 및 상기 에스테르화 단계의 생성물을 축중합 반응시켜 생분해성 폴리에스테르 수지를 얻는 단계(축중합 단계)를 포함하는 생분해성 폴리에스테르 수지의 제조 방법이 개시되어 있다.
이렇게 제조된 생분해성 폴리에스테르 수지는, 분자량을 더욱 증가시키기 위하여 압출기 또는 스태틱믹서(static mixer)를 이용하여 사슬 연장 반응을 시키게 된다.
이러한 사슬 연장 반응시, 상기 생분해성 폴리에스테르 수지는 펠렛과 같은 고화상태로 사슬연장 반응 장비에 투입되어 용융 및 혼합되는 것보다, 용융상태로 사슬연장 반응 장비에 투입되는 것이 공정상 유리하다. 그러나, 상기 특허문헌 1에서와 같이 에스테르화 단계에 다량의 탈활성화제를 투입하여 생분해성 폴리에스테르 수지를 제조할 경우, 고온의 축중합 단계 및 사슬 연장 반응에 투입되기 전에 용융상태에서 장시간 보관시 열적 안정성이 떨어져 색도 및 산가가 불량해진다는 문제점이 있었다.
한편, 특허문헌 2(한국 특허 공개 제2011-7185호)는 에스테르화, 예비축합, 축중합 및 사슬연장 단계를 포함하는 생분해성 폴리에스테르의 연속 제조방법에 대해 기재하고 있다. 상기 특허문헌 2에 따르면, 상기 예비축합과 축중합 사이에 탈활성화제를 투입하는데, 이 경우 중합(축중합) 단계에서 중합 촉매의 활성이 떨어져 촉매 효율이 저하되고, 또한 고온의 축중합 단계에 생분해성 수지가 장시간 머무르게 됨으로써 열적 안정성이 떨어져 색도 및 산가가 불량해지는 문제점이 있다.
이에, 상기한 선행문헌들에서와 같이 "에스테르화 단계" 또는 "예비축합과 축중합 사이 단계"에 일시에 다량의 탈활성화제를 투입함으로 인해 발생되는 문제를 해소하고, 용융상태에서 장시간 보관되더라도 열적 안정성이 우수한 생분해성 폴리에스테르 수지를 제조할 수 있는 중합기술에 대한 연구가 필요한 실정이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR1020150078271 A
(특허문헌 2) KR1020110007185 A
본 발명이 해결하고자 하는 과제는 탈활성화제의 투입시점을 적절히 배분함으로써 용융상태에서의 열적 안정성이 개선된 생분해성 폴리에스테르 수지의 제조방법을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 용융상태에서 장시간 보관 시에도 색도 및 산가가 우수한 생분해성 폴리에스테르 수지를 제공하는 것이다.
상기와 같은 과제를 해결하기 위하여, 본 발명은 (1) 지방족 디카르복실산 및 방향족 디카르복실산 중 적어도 1종의 디카르복실산; 지방족 디올 및 방향족 디올 중 적어도 1종의 디올; 촉매; 및 탈활성화제를 반응기에 투입하여 상기 디카르복실산과 상기 디올을 에스테르화 반응시키는 단계, (2) 상기 에스테르화 반응에 의해 얻어진 생성물을 축중합 반응시키는 단계, (3) 상기 축중합 반응에 의해 얻어진 생성물(이하, "축중합 반응 생성물"이라 함)을 냉각하는 단계, 및 (4) 상기 (3)단계에 따라 냉각된 축중합 반응 생성물에 탈활성화제를 추가로 투입하는 단계를 포함하는 생분해성 폴리에스테르 수지조성물의 제조 방법을 제공한다.
상기 탈활성화제의 총 투입량은 상기 디카르복실산 1mol당 0.05 ~ 0.4mmol이고, 상기 (1)단계에서 투입되는 탈활성화제와 상기 (4)단계에서 투입되는 탈활성화제의 몰비는 1:3 ~ 3:1인 것이 바람직하다. 그리고, 상기 탈활성화제는 아인산, 아포스폰산(phosphonous acid), 트리메틸포스파이트, 트리에틸포스파이트, 트리프로필포스파이트, 트리페닐포스파이트, 소듐포스파이트 및 소듐하이포포스파이트로 이루어진 군으로부터 선택된 적어도 1종의 인 화합물을 포함할 수 있다.
상기 (3) 단계에서 상기 축중합 반응 생성물은 「상기 축중합 반응 생성물의 융점 + 60 ~ 80℃」의 범위로 냉각되는 것이 바람직하다.
상기 (3)단계와 (4)단계 사이에, 상기 (3)단계에 따라 냉각된 축중합 반응 생성물을 용융상태로 저장하는 저장단계를 더 포함할 수 있고, 상기 저장단계는 2 ~ 4시간동안 수행되는 것이 바람직하다.
또한, 본 발명에 따른 생분해성 폴리에스테르 수지조성물의 제조 방법은 상기 (4)단계에 따라 탈활성화제가 투입된 축중합 반응생성물을 사슬연장제와 반응시키는 사슬연장단계를 추가로 포함할 수 있다.
한편, 본 발명은 상기 제조 방법에 따라 제조된 생분해성 폴리에스테르 수지를 제공한다.
본 발명의 생분해성 폴리에스테르 수지 제조방법에 따르면, 상기 (1) 단계(에스테르화 단계) 및 상기 (4)단계(축중합단계 및 냉각단계 완료 이후 단계)에 탈활성화제를 적절히 배분하여 투입함으로써 최종적으로 얻어지는 생분해성 폴리에스테르 수지의 용융상태에서의 열적 안정성을 개선시킬 수 있다.
따라서, 본 발명에 따라 제조된 생분해성 폴리에스테르 수지는 용융상태에서 장시간 보관되더라도 우수한 색도 및 안정적인 산가를 나타낼 수 있으므로, 용융상태에서의 사슬 연장 또는 컴파운딩이 가능하다.
본 발명은 (1) 지방족 디카르복실산 및 방향족 디카르복실산 중 적어도 1종의 디카르복실산; 지방족 디올 및 방향족 디올 중 적어도 1종의 디올; 촉매; 및 탈활성화제를 반응기에 투입하여 상기 디카르복실산과 상기 디올을 에스테르화 반응시키는 단계(에스테르화 단계), (2) 상기 에스테르화 반응에 의해 얻어진 생성물을 축중합 반응시키는 단계(축중합 단계), 및 (3) 상기 축중합 반응에 의해 얻어진 생성물(이하, "축중합 반응 생성물"이라 함)을 냉각하는 단계, 및 (4) 상기 (3)단계에 따라 냉각된 축중합 반응 생성물에 탈활성화제를 추가로 투입하는 단계를 포함하는 생분해성 폴리에스테르 수지의 제조방법 및 그 방법에 따라 제조된 생분해성 폴리에스테르 수지에 관한 것이다.
먼저, 본 발명의 일 실시예에 따른 생분해성 폴리에스테르 수지의 제조방법을 단계별로 살펴보면 하기와 같다.
(1) 에스테르화 단계
이 단계는 디카르복실산, 디올, 촉매 및 탈활성화제를 반응기에 투입하여 상기 디카르복실산과 상기 디올을 에스테르화 반응시키는 단계이다.
본 발명에서 사용되는 상기 디카르복실산은 치환 또는 비치환된 C4~C10의 지방족 디카르복실산 및 치환 또는 비치환된 C8~C20의 방향족 디카르복실산 중 적어도 1종의 디카르복실산을 포함할 수 있다. 상기 디카르복실산은 예를 들어, 말론산, 숙신산, 글루타르산, 2-메틸글루타르산, 3-메틸글루타르산, 아디프산, 피멜산, 아젤라산, 세바스산, 운데칸디산, 도데칸디산, 브라실산, 테트라데칸디산, 푸마르산, 2,2-디메틸글루타르산, 수베르산, 말레산, 이타콘산, 또는 이들의 조합을 포함하는 지방족 디카르복실산; 및 테레프탈산, 이소프탈산, 2,6-나프토산, 1,5-나프토산 또는 이들의 조합을 포함하는 방향족 디카르복실산 중 적어도 1종의 디카르복실산을 포함할 수 있다.
상기 디올은 치환 또는 비치환된 C2~C10의 지방족 디올 및 치환 또는 비치환된 C6~C20의 방향족 디올 중 적어도 1종의 디올을 포함할 수 있다. 상기 디올은 예를 들어, 에탄디올, 1,2-프로판디올, 1,3-프로판디올, 1,2-부탄디올, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 2,4-디메틸-2-에틸-1,3-헥산디올, 2,2-디메틸-1,3-프로판디올, 2-에틸-2-부틸-1,3-프로판디올, 2-에틸-2-이소부틸-1,3-프로판 디올, 2,2,4-트리메틸-1,6-헥산디올 또는 이들의 조합을 포함하는 지방족 디올; 및 1,2-벤젠디올, 1,3-벤젠디올, 1,4-벤젠디올, 1,3-나프탈렌디올, 1,4-나프탈렌디올, 1,7-나프탈렌디올, 2,3-나프탈렌디올, 2,6-나프탈렌디올, 2,7-나프탈렌디올 또는 이들의 조합을 포함하는 방향족 디올 중 적어도 1종의 디올을 포함할 수 있다.
상기 디올의 함량은 상기 디카르복실산 1몰에 대하여 1~2몰일 수 있다. 상기 디카르복실산과 상기 디올은 상기 생분해성 폴리에스테르 수지의 제조를 위한 중합시, 화학양론적 비율로 반응할 경우, 1:1의 몰비로 반응할 수 있다. 즉, 상기 디올의 사용량 대 상기 디카르복실산의 사용량은 1:1(몰비)일 수 있으나, 반응을 촉진시키고 수율을 높이기 위하여 상기 디카르복실산의 사용량에 비해 상기 디올의 사용량이 과량일 수 있다.
상기 촉매는 상기 에스테르화 반응 및 상기 축중합 반응을 촉진시키는 역할을 수행하는 것으로, 상기 촉매의 투입량은 상기 디카르복실산 1mol에 대하여 0.1 ~ 0.4mmol인 것이 바람직하다. 상기 촉매의 함량이 상기 범위 이내이면 우수한 반응 효율로 중합 반응이 일어날 수 있으며, 이에 따라 제조된 생분해성 폴리에스테르 수지의 색도 등의 물성 저하가 방지될 수 있다.
상기 촉매는 티타늄(Ti), 주석(Sn), 안티몬(Sb), 세륨(Ce), 게르마늄(Ge), 아연(Zn), 코발트(Co), 망간(Mn), 철(Fe), 알루미늄(Al), 마그네슘(Mg), 칼슘(Ca) 및 스트론튬(Sr)으로 이루어진 군으로부터 선택된 적어도 1종의 금속을 함유하는 금속 화합물을 포함할 수 있다. 상기 촉매는 예를 들어, 칼슘아세테이트, 망간아세테이트, 마그네슘아세테이트, 아연아세테이트, 모노부틸산화주석, 디부틸산화주석, 이염화디부틸주석, 모노부틸히드록시 산화주석, 옥틸틴, 테트라부틸주석, 테트라페닐주석, 트리에틸티타네이트, 아세틸트리프로필티타네이트, 테트라메틸티타네이트, 테트라프로필티타네이트, 테트라이소프로필티타네이트, 테트라 n-부틸티타네이트, 및 테트라(2-에틸헥실)티타네이트로 이루어진 군으로부터 선택된 적어도 1종의 금속 화합물을 포함할 수 있다.
상기 탈활성화제는 상기 촉매의 활성을 감소시키는 역할을 수행하는 것이다. 구체적으로, 상기 촉매는 정반응인 에스테르화 반응 및 상기 축중합 반응의 속도를 증가시키는 반면, 가수분해 반응인 역반응의 속도 또한 증가시키며, 상기 반응들이 완료된 후 잔류하는 촉매는 후공정에서 열분해 반응, 산화 반응 및 가수분해 반응 등의 부반응을 촉진시킨다. 따라서, 활성이 높은 촉매를 이용하거나 과량의 촉매를 사용하는 경우, 상기한 역반응 및 부반응도 촉진되어 생분해성 폴리에스테르 수지의 색도 및 산가가 불량해질 수 있는바, 탈활성화제는 이러한 문제를 해소하기 위하여 첨가되는 것이다.
상기 탈활성화제의 총 투입량은 상기 디카르복실산 1mol에 대하여 0.05 ~ 0.4mmol인 것이 바람직하며, 이때 상기 총 투입량은 상기 (1) 단계와 후술할 (4)단계에서의 탈활성화제 투입량을 합한 값이다. 상기 탈활성화제의 총투입량이 상기 범위 이내이면 상기 부반응 및 역반응을 효율적으로 억제하면서 중합반응을 진행할 수 있고, 이에 따라 제조된 생분해성 폴리에스테르 수지는 열적 안정성이 우수하여 용융상태에서 장시간 보관시에도 색도 및 산가 등의 물성 저하가 방지될 수 있다.
상기 (1)단계(에스테르화 단계)에서 투입되는 탈활성화제와 후술할 (4)단계(축중합 반응 생성물의 냉각단계가 완료된 이후)에서 투입되는 활성화제의 투입비율은 생분해성 폴리에스테르의 종류, 반응조건에 따라 적절히 조절될 수 있으며, 바람직하게는 1:3 ~ 3:1의 몰비로 투입될 수 있다. 상기 투입비율이 상기 범위 이내이면 최종적으로 얻어지는 생분해성 폴리에스테르 수지의 열적 안정성이 향상되어, 용융상태에서의 색도 및 산가 등의 물성저하가 방지될 수 있다.
상기 탈활성화제는 인(P)을 함유하는 인 화합물을 포함할 수 있고, 예를 들면 아인산, 아포스폰산(phosphonous acid), 트리메틸포스파이트, 트리에틸포스파이트, 트리프로필포스파이트, 트리페닐포스파이트, 소듐포스파이트 및 소듐하이포포스파이트로 이루어진 군으로부터 선택된 적어도 1종의 인 화합물을 포함할 수 있다.
한편, 상기 에스테르화 반응은 160~200℃에서 60~300분 동안 진행될 수 있다. 상기 에스테르화 반응의 종료시점은 이 반응에서 부생되는 물/알코올의 양을 측정하여 결정될 수 있다. 예를들어, 상기 디카르복실산으로서 아디프산 및 디메틸테레프탈레이트 각각 0.6mol 및 0.4mol씩 사용하고, 상기 디올로서 1,4-부탄디올 1.3mol을 사용하는 경우, 사용되는 아디프산 및 디메틸테레프탈레이트의 모든 양이 1,4-부탄디올과 반응한다고 가정할 때, 최대 부생 가능한 1.2mol의 물과 최대 부생 가능한 0.8mol의 메탄올의 90% 이상, 즉 물 1.08mol 및 메탄올 0.72mol 이상이 부생되면 상기 에스테르화 반응을 종료할 수 있다.
상기 에스테르화 반응에서 화학평형을 이동시켜 반응속도를 증가시키기 위해, 부생되는 물, 알코올 및/또는 미반응 디올을 증발 또는 증류에 의해 반응계 밖으로 배출시킬 수 있다.
상기와 같은 에스테르화 반응에 의해 에스테르 결합을 갖는 에스테르화 반응 생성물(올리고머)이 생성된다.
(2) 축중합 단계
이 단계는 상기 에스테르화 단계로부터 얻어진 생성물(올리고머)을 고분자량화하기 위해 축중합 반응시키는 단계이다.
상기 축중합 반응은 220~260℃에서 40~300분 동안, 2torr 이하의 압력으로 진행될 수 있다. 이와 같이 상기 축중합 반응을 진공 하에서 진행함으로써, 미반응 원료(미반응 모노머), 저분자 올리고머 및 부생되는 물/부탄올을 제거하면서 고분자량의 축중합 반응 성물를 얻을 수 있다.
(3) 축중합 반응 생성물의 냉각단계
이 단계는 상기 축중합 반응 생성물을 냉각하는 단계로서, 이때 상기 축중합 반응 생성물은 「상기 축중합 반응 생성물의 융점 + 60 ~ 80℃」의 범위로 냉각될 수 있다. 상기 냉각과정을 거치지 않고 상기 (2) 축중합 단계가 완료된 직 후, 축중합 반응 생성물에 탈활성화가 투입될 경우, 생분해성 폴리에스테르 수지의 색도는 개선될 수 있으나 산가가 다소 불량해지는 문제가 야기되었다. 이는 산가가 내부 온도에 영향을 받기 때문으로, 상기 축중합 단계로부터 얻어진 생성물의 온도가 상기 범위로 떨어진 후 탈활성화제가 투입되는 것이 바람직하다.
더욱 바람직하게, 본 발명의 폴리에스테르 수지 제조방법은, 상기 (3)단계에 따라 냉각된 축중합 반응 생성물을 용융상태로 저장하는 단계를 더 포함할 수 있다. 이는, 상기 축중합 반응 생성물의 온도가 「상기 축중합 반응 생성물의 융점 + 60 ~ 80℃」 범위에 도달한 직후에는 고점도로 인해 용융상태의 축중합 반응 생성물 내부 온도가 균일하지 못할 우려가 있기 때문이다.
상기 저장단계는 2 ~ 4시간동안 수행될 수 있으며, 이때 저장 중인 축중합 반응 생성물은 교반되면서 저장될 수 있다. 이러한 저장단계를 거친 상기 축중합 반응 생성물은 내부 온도가 균일해져 색도 개선효과가 더욱 향상될 수 있다.
(4) 탈활성화제 추가 투입단계
이 단계는 상기 (3)단계에 따라 냉각된 축중합 반응 생성물에 탈활성화제를 추가로 투입하는 단계이다.
상기 탈활성화제가 "에스테르화 단계" 또는 "예비축합과 축중합 사이 단계"에 일시에 다량 투입되는 선행문헌들(특허문헌 1 또는 2)과 달리, 본 발명에서는 상기 탈활성화제를 두 단계로 나누어 투입함으로써 용융상태에서의 열안정성이 우수한 생분해성 폴리에스테르 수지를 제공한다.
구체적으로, 상기 탈활성화제는 촉매의 활성을 감소시키기 위해 투입되는 것으로, 상기 에스테르화 단계에만 투입될 경우, 에스테르화 단계 및 축중합 단계에서 촉매로 인해 야기될 수 있는 가수분해 반응과 같은 역반응은 억제할 수 있으나, 상기 에스테르화 및 축중합 단계가 완료된 이후 잔류하는 촉매로 인해 발생하는 열분해 반응, 산화 반응 및 가수분해 반응 등과 같은 부반응을 완전히 억제하기에는 역부족이었다. 이는, 최종적으로 얻어지는 생분해성 폴리에스테르 수지를 용융상태로 장시간 보관시 열적 안정성을 저하시키는 주원인이 된다. 또한, 상기 탈활성화제가 예비축합과 축중합 단계 사이에만 투입될 경우에는 고온의 축중합 단계에 생분해성 수지가 장시간 머무르게 되어 열적 안정성이 떨어지는 문제가 발생되었다.
이에, 본 발명자들은 상기 탈활성화제를 상기 (1)단계(에스테르화 단계)에 투입하고, 이후 상기 (2)단계(축중합 단계) 및 (3)단계(냉각단계)를 거친 축중합 반응 생성물에 다시 추가 투입할 경우, 최종적으로 얻어지는 생분해성 폴리에스테르 수지는 장시간 보관시에도 용융상태에서의 열적 안정성이 우수하다는 점을 확인하고 본 발명을 완성하였다.
또한, 본 발명에 따른 생분해성 폴리에스테르 수지조성물의 제조 방법은 상기 (4)단계에 따라 탈활성화제가 투입된 축중합 반응 생성물을 사슬연장제와 반응시키는 사슬연장단계를 추가로 포함할 수 있다.
이때, 상기 사슬연장 단계로 진행되는 상기 축중합 반응 생성물은 용융상태일 수 있다. 즉, 상기 축중합 반응 생성물은 상기 축중합 단계완료 후 용융상태로 토출된 생성물이 적정온도(축중합 반응 생성물의 융점 + 60 ~ 80℃)로 냉각되는 단계를 거치고, 필요에 따라 용융상태로 저장하는 단계를 거친 후, 여기에 탈활성화제가 투입되는 단계를 거친 용융상태의 축중합 반응생성물이며, 용융상태 그대로 사슬연장단계로 진행되는 것이다. 이는, 본 발명에 따른 생분해성 폴리에스테르 수지의 용융상태에서의 열적 안정성이 우수하기 때문에 가능한 것으로, 용융상태의 축중합 반응생성물을 펠렛화하여 고화 및 건조시킨 다음, 건조된 펠렛을 재용융시키면서 사슬연장제와 반응시키는 경우에 비하여 에너지 소비를 절감할 수 있다. 또한, 고화, 건조 및 재용융 과정에서 발생될 수 있는 생분해성 폴리에스테르 수지의 물성저하 또한 방지할 수 있다.
한편, 본 발명은 상기 제조방법에 따라 제조된 생분해성 폴리에스테르 수지를 제공한다.
이하, 실시예들을 들어 본 발명에 관하여 더욱 상세히 설명하지만, 본 발명이 이러한 실시예들에 한정되는 것은 아니다.
실시예 1
< 1단계: 에스테르화 반응단계 >
콘덴서, 질소 주입구 및 교반기가 장착된 500ml의 3구 둥근 바닥 플라스크에 1,4-부탄디올(BDO) 117.16g(1.3mol), 아디프산(AA) 75.99g(0.52mol), 테트라 n-부틸 티타네이트(TBT) 0.07g(0.2mmol) 및 아인산(PPA) 0.004g(0.05mmol)을 투입하여 혼합물을 제조하였다. 이후, 상기 혼합물을 185℃까지 승온시키고 질소 분위기 하에서 이론치의 90% 이상의 물(즉, 17ml)이 방출될 때까지 교반하에 반응시켰으며, 이 때 생성된 물은 콘덴서를 통하여 계 외로 완전히 배출시켰다. 이어서, 상기 3구 둥근 바닥 플라스크에 디메틸 테레프탈레이트(DMT) 93.21g(0.48mol)를 투입한 후, 이론치의 90% 이상의 메탄올(즉, 35ml)이 방출될 때까지 교반 하에 반응시켰으며, 이때 생성된 메탄올은 콘덴서를 통하여 상기 3구 둥근 바닥 플라스크의 외부로 배출시켰다.
< 2단계: 축중합 반응단계 >
이어서, 상기 3구 둥근 바닥 플라스크를 0.5torr의 진공 하에서 240℃까지 승온시킨 후, 135분 동안 축중합 반응을 진행시키고 나서 상기 플라스크의 내용물을 토출시켰다.
< 3단계: 축중합 반응생성물의 냉각단계 >
이어서, 상기 3구 둥근 바닥 플라스크로부터 토출된 내용물(축중합 반응 생성물: 융점 125℃)의 온도를 190℃로 낮추는 냉각단계를 수행하였다. 이때, 상기 냉각단계에는 120분이 소요되었다.
< 4단계: 탈활성화제 추가 투입단계 >
이어서, 상기 냉각단계를 거친 축중합 반응 생성물에 아인산(PPA) 0.004g(0.05mmol)을 추가 투입하여, 생분해성 폴리에스테르 수지인 폴리부틸렌 아디페이트 테레프탈레이트(poly(butylene adipate-co-terephthalate): PBAT)을 얻었다. 이때, 상기 탈활성화제가 투입된 시점은 상기 3단계에서 축중합 반응 생성물의 온도가 190℃에 도달한 시점, 즉 상기 2단계의 축중합 반응 완료 시점으로부터 2시간 경과된 시점이다.
실시예 2
상기 실시예 1과 동일한 방법에 따라 3단계(축중합 반응생성물의 냉각단계)를 거친 축중합 반응 생성물을 2시간동안 교반하면서 저장하였다(저장단계).
이어서, 상기 저장단계를 거친 축중합 반응 생성물에 아인산(PPA) 0.004g(0.05mmol)을 추가 투입하여, 생분해성 폴리에스테르 수지인 PBAT를 얻었다. 이때, 상기 탈활성화제가 투입된 시점은 상기 3단계에서 축중합 반응 생성물의 온도가 190℃에 도달한 시점으로부터 2시간 경과한 시점, 즉 상기 축중합 반응 완료 시점으로부터 4시간 경과된 시점이다.
실시예 3
< 1단계: 에스테르화 반응단계 >
콘덴서, 질소 주입구 및 교반기가 장착된 500ml의 3구 둥근 바닥 플라스크에 1,4-부탄디올(BDO) 103.62g(1.15mol), 숙신산(AA) 118.09g(1mol), 테트라 n-부틸 티타네이트(TBT) 0.07g(0.2mmol) 및 아인산(PPA) 0.004g(0.05mmol)을 투입하여 혼합물을 제조하였다. 이후, 상기 혼합물을 200℃까지 승온시키고 질소 분위기 하에서 이론치의 90% 이상의 물(즉, 17ml)이 방출될 때까지 교반하에 반응시켰으며, 이 때 생성된 물은 콘덴서를 통하여 계 외로 완전히 배출시켰다.
< 2단계: 축중합 반응단계>
이어서, 상기 3구 둥근 바닥 플라스크를 0.5torr의 진공 하에서 240℃까지 승온시킨 후, 180분 동안 축중합 반응을 진행시키고 나서 상기 플라스크의 내용물을 토출시켰다.
< 3단계: 축중합 반응생성물의 냉각단계 >
이어서, 상기 3구 둥근 바닥 플라스크로부터 토출된 내용물(축중합 반응 생성물: 융점 115℃)의 온도를 190℃로 낮추는 냉각단계를 수행하였다. 이때, 상기 냉각단계에는 120분이 소요되었다.
< 4단계: 탈활성화제 추가 투입단계 >
이어서, 상기 냉각단계를 거친 축중합 반응생성물에 아인산(PPA) 0.004g(0.05mmol)을 추가 투입하여, 생분해성 폴리에스테르 수지인 폴리부틸렌 숙시네이트(poly(butylene succinate): PBS)를 얻었다. 이때, 상기 탈활성화제가 투입된 시점은 상기 3단계에서 축중합 반응 생성물의 온도가 190℃에 도달한 시점, 즉 상기 축중합 반응 완료 시점으로부터 2시간 경과된 시점이다.
실시예 4
상기 실시예 3과 동일한 방법에 따라 3단계(축중합 반응생성물의 냉각단계)를 거친 축중합 반응 생성물을 2시간동안 교반하면서 저장하였다(저장단계).
이어서, 상기 저장단계를 거친 축중합 반응 생성물에 아인산(PPA) 0.004g(0.05mmol)을 추가 투입하여, 생분해성 폴리에스테르 수지인 PBS를 얻었다. 이때, 상기 탈활성화제가 투입된 시점은 상기 3단계에서 축중합 반응 생성물의 온도가 190℃에 도달한 시점으로부터 2시간 경과한 시점, 즉 상기 축중합 반응 완료 시점으로부터 4시간 경과된 시점이다.
비교예 1
< 1단계: 에스테르화 반응단계 >
상기 아인산(PPA)을 0.008g(0.1mmol) 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 에스테르화 반응 단계를 수행하였다.
< 2단계: 축중합 반응단계>
이어서, 상기 3구 둥근 바닥 플라스크를 0.5torr의 진공 하에서 240℃까지 승온시킨 후 135분 동안 축중합 반응을 진행시킨 후 상기 플라스크의 내용물을 토출시켰다. 결과로서, 생분해성 폴리에스테르 수지인 PBAT를 얻었다.
비교예 2
< 1단계: 에스테르화 반응단계 >
상기 아인산(PPA)을 0.008g(0.1mmol)투입하는 것을 제외하고는 실시예 3과 동일한 방법으로 에스테르화 반응 단계를 수행하였다.
<2단계: 축중합 반응단계>
이어서, 상기 3구 둥근 바닥 플라스크를 0.5torr의 진공 하에서 240℃까지 승온시킨 후 180분 동안 반응을 축중합 진행시킨 후 상기 플라스크의 내용물을 토출시켰다. 결과로서, 생분해성 폴리에스테르 수지인 PBS를 얻었다.
평가방법
1. 색도 측정
상기 실시예 1 내지 4 및 비교예 1 내지 2에 따라 제조된 생분해성 폴리에스테르 수지의 색도를 측정하기 위하여, Konica Minolta 색차계를 사용하여 CIE-L*a*b* (CIE 1976) 표색계에서 L*, a* 및 b*를 측정하였다. "L*"값, "a*"값 및 "b*"값은 CIE-L*a*b* (CIE 1976) 표색계에서 표시되는 색조의 지표이다. "L*"값은 밝기를 나타내고, 이 수치가 클수록 밝다. "a*"값은 적색 정도를 나타내고, 이 수치가 클수록 적색도가 높다. "b*"값은 황색 정도를 나타내고, 이 수치가 클수록 황색도가 높다. 이때, a* 및 b* 값이 낮을수록 백색에 가까우며, 품질이 우수한 것으로 평가한다.
상기 색도는 하기의 제1시점 및 제2시점에 각각의 시료를 채취하여 측정하였으며, 각 시점에서의 색도 측정 결과는 하기의 표 1에 나타내었다.
- 제1시점: 상기 제2단계(축중합단계) 완료시점
- 제2시점: 상기 제2단계(축중합단계) 완료 후 130분 경과 시점
- 제3시점: 상기 제2단계(축중합단계) 완료 후 4시간 10분 경과 시점
2. 산가 측정
상기 실시예 1 내지 4 및 비교예 1 내지 2에 따라 제조된 생분해성 폴리에스테르 수지를 디클로로메탄에 용해시킨 후 냉각시켜, 0.1N KOH 에틸알코올 용액으로 적정하여 각 수지의 산가를 측정하였다. 상기 산가도 상기 색도와 마찬가지로 제1 내지 제3시점에 각각의 시료를 채취하여 측정하였고, 그 결과를 하기의 표 1에 나타내었다.
실시예1 실시예2 실시예3 실시예4 비교예1 비교예2
TBT(mmol) 0.2 0.2 0.2 0.2 0.2 0.2
PPA(mmol) 1단계투입량 0.05 0.05 0.05 0.05 0.1 0.1
4단계투입량 0.05 0.05 0.05 0.05 - -
산가(mgKOH/g) 제1시점 0.74 0.73 0.98 1.01 0.84 1.23
제2시점 0.86 0.85 1.63 1.71 1.31 2.83
제3시점 1.21 0.98 2.11 1.92 1.45 3.23
색도(L*/a*/b*) 제1시점 77.2/21.3 /22.1 78.3/20.2 /21.6 85.3/-0.7/11.9 85.4/-1.5/10.4 82.8/14.1/11.7 88.0/-1.2/4.0
제2시점 77.3/20.6/21.9 79.9/19.0/20.6 83.8/-0.4/12.4 84.7/-1.3/10.9 79.7/20.4/9.8 89.0/-1.0/4.9
제3시점 86.4/2.9 /8.4 93.0/-1.6 /7.5 87.9/-1.4/8.8 88.0/-1.8/7.3 80.2/21.1/8.9 88.5/-1.0/5.4
상기 표 1을 살펴보면, 제1시점(축중합 단계완료 시점)에는, 실시예 1에 따라 냉각단계를 거친 후 탈활성화제가 투입된 경우 및 실시예 2에 따라 냉각 및 저장 단계를 거친 후 탈활성화제가 투입된 경우, 탈활성화제 총량이 에스테르화 단계에 모두 투입된 비교예 1에 비하여 좋지 못한 색도를 갖는 생분해성 폴리에스테르 수지가 얻어졌다. 그러나, 제3시점(축중합 단계완료 후 4시간 10분 경과 시점)에는 실시예 1 및 2에 따라 제조된 PBAT의 경우, 비교예 1의 PBAT에 비하여 색도가 현저히 개선되었고, 산가도 안정적으로 나타났음을 확인할 수 있다.
한편, 제3시점에서, 실시예 3 및 4에 따라 제조된 PBS의 경우 실시예 1 및 2의 생분해성 폴리에스테르 수지와 유사한 정도의 우수한 색도를 나타내었으며, 비교예 2에 따라 제조된 PBS에 비하여 현저히 개선된 산가를 나타내는 바, 열적 안정성이 개선되었음을 알 수 있다.
3. 경시변화
상기 실시예 2, 실시예 4, 비교예 1 및 비교예 2에 따라 제조된 생분해성 폴리에스테르 수지를 이축 압출기(창성 P&R사 제품, L/D: 36/1, 직경: 24.2mm)를 사용하여 150℃에서 용융한 후, 사출기(FANUC Co. Ltd, S-2000i 50B)를 사용하여 이를 펠렛화하여 칩(chip)을 제조하였다.
각각의 칩에 대한 중량평균분자량(Mw)을 측정하고(경시변화 전), 이어서 상기 칩을 100℃로 끓는 물에 4시간동안 침지시킨 후(경시변화 후), 중량평균분자량을 측정하여, 그 결과를 하기의 표 2에 나타내었다. 이때, 상기 중량평균분자량은 상기 칩을 1wt% 농도로 클로로포름에 용해시켜 폴리에스테르 수지 용액을 얻은 후, 상기 PBAT 수지 용액을 겔 투과 크로마토그래피(GPC)로 분석하여 중량평균분자량을 측정하였다. 이때, 측정온도는 35℃이었고, 유속은 1ml/min이었다.
하기의 표 2에서 중량평균분자량(Mw) 변화량 및 변화율은 각각 하기 식 (1) 및 (2)에 따라 계산된 값이다.
Mw 변화량 = 경시변화 후 Mw - 경시변화 전 Mw … (1)
Mw 변화율(%) = (|Mw 변화량| / 경시변화 전 Mw) ×100 … (2)
실시예2 실시예4 비교예1 비교예2
경시변화 전 Mw 74,300 118,000 79,100 120,000
경시변화 후 Mw 73,200 106,000 76,800 105,000
Mw 변화량 -1,100 -12,000 -2,300 -15,000
Mw 변화율 14.8% 10.2% 29.1% 12.5%
상기 표 2를 살펴보면, 축중합 반응 생성물의 냉각 및 저장단계 이후 탈활성화제를 투입하는 단계를 거친 실시예 2의 PBAT의 경우, 에스테르화 단계에만 탈활성화제가 투입된 비교예 1의 PBAT에 비하여 100℃ 물에 침지 후 Mw 변화량 및 변화율이 적게 나타났다. 또한, 축중합 반응 생성물의 냉각 및 저장단계 이후 탈활성화제를 투입하는 단계를 거친 실시예 4의 PBS의 경우, 에스테르화 단계에만 탈활성화제가 투입된 비교예 2 PBS에 비하여 100℃ 물에 침지 후 Mw 변화량 및 변화율이 적게 나타났다. 즉, 본 발명에 따라 반응 단계 이후 탈활성화제를 투입하는 단계를 거친 생분해성 폴리에스테르 수지의 경우 경시변화폭이 줄어들었음을 확인할 수 있다.
4. PLA와 컴파운딩 후 물성 평가
(
Figure PCTKR2016010637-appb-I000001
) 필름 1 제조
먼저, 상기 실시예 2에 따라 제조된 용융상태의 PBAT수지를 상기 평가방법 3에 따라 PBAT 칩으로 제조하였다. 이어서, 상기 PBAT 칩 8kg, 폴리락트산(polylactic acid, PLA) 칩 2kg 및 헥사메틸렌 디이소시아네이트(Hexamethylene Diisocyanate) 10g을 일축 블로운 필름 압출기(대륜기계, L/D: 28:1, 다이 직경: 45mm, 배럴 온도: 190℃)에 투입하여 필름으로 성형하였다. 결과로서 30㎛ 두께의 필름 1을 얻었다.
(
Figure PCTKR2016010637-appb-I000002
) 필름 2제조
상기 실시예 2에 따라 제조된 용융상태의 PBAT수지 8kg 및 용융된 폴리락트산(polylactic acid, PLA) 2kg을 스태틱 믹서를 갖는 필름 성형기(시그마알드리치 코리아 제품)에 투입하고, 여기에 헥사메틸렌 디이소시아네이트 10g을 첨가하여 필름으로 성형하였다. 결과로서 30㎛ 두께의 필름 2를 얻었다.
상기 필름 1 및 2의 인장강도 및 인열강도를 ASTM D638에 의거하여 만능인장시험기(Instron, UTM-4484)를 사용하여 측정하고, 그 결과를 하기의 표 3에 나타내었다.
필름 1 필름 2
PBAT와 PLA의 상용성 분산성 불량 분산성 우수
인열강도 32gf 53gf
인장강도 450kgf/cm2 510kgf/cm2
상기 표 3을 살펴보면, 용융상태의 PBAT 수지로부터 제조된 필름 2의 경우, 칩 상태의 PBAT 수지로부터 제조된 필름 1과 비교하였을 때 인장강도 및 인열강도가 향상되었고, PBAT와 PLA의 상용성 또한 우수하다는 것을 알 수 있다.
5. 사슬연장반응 후 물성 평가
(
Figure PCTKR2016010637-appb-I000003
) 필름 3 및 5제조
먼저, 상기 실시예 2에 따라 제조된 PBAT수지 및 실시예 4에 따라 제조된 PBS수지를 상기 평가방법 3에 따라 각각 PBAT칩 및 PBS칩으로 제조하였다.
상기 PBAT칩 100중량부 및 사슬연장제인 헥사메틸렌 디이소시아네이트 0.5중량부를 일축 블로운 필름 압출기(대륜기계, L/D: 28:1, 다이 직경: 45mm, 배럴 온도: 190℃)에 투입하여 30㎛ 두께의 필름 3으로 성형하였다.
그리고, 상기 PBS칩 100중량부 및 사슬연장제인 헥사메틸렌 디이소시아네이트 0.6중량부를 일축 블로운 필름 압출기(대륜기계, L/D: 28:1, 다이 직경: 45mm, 배럴 온도: 190℃)에 투입하여 30㎛ 두께의 필름 5로 성형하였다.
(
Figure PCTKR2016010637-appb-I000004
) 필름 4 및 6제조
상기 실시예 2에 따라 제조된 용융상태의 PBAT수지 100중량부 및 사슬연장제인 헥사메틸렌 디이소시아네이트 0.5중량부를 스태틱 믹서를 갖는 필름 성형기(시그마알드리치 코리아 제품)에 투입하고 반응압출하여 30㎛ 두께의 필름 4를 얻었다.
또한, 실시예 4에 따라 제조된 용융상태의 PBS수지 100중량부 및 헥사메틸렌 디이소시아네이트 0.6중량부를 스태틱 믹서를 갖는 필름 성형기(시그마알드리치 코리아 제품)에 투입하고 반응압출하여 30㎛ 두께의 필름 6을 얻었다.
상기 (
Figure PCTKR2016010637-appb-I000005
) 및 (
Figure PCTKR2016010637-appb-I000006
)의 제조방법에서 사용된 PBAT/PBS칩 또는 용융상태의 PBAT/PBS 수지의 중량평균 분자량(Mw)을 상기 평가방법 3에 기재된 방법과 동일한 방법으로 측정하고, 그 결과를 하기의 표 4에 나타내었다.
그리고, 상기 필름 3 내지 6의 상태를 육안으로 관찰하고, 그 결과를 하기의 표 4에 나타내었다.
실시예 2 실시예 4
필름 3 필름 4 필름 5 필름 6
수지종류 PBAT PBAT PBS PBS
수지상태 칩상태 용융상태 칩상태 용융상태
Mw 140,000 140,000 210,000 205,000
상태 일부 gel(표면 거침) 양호 일부 gel(표면 거침) 양호
상기 표 4를 살펴보면, 칩 상태의 생분해성 폴리에스테르 수지로부터 제조된 필름 3 및 필름 5의 경우 부분적으로 겔화된 부분이 발견되었으며 표면이 거칠었던 반면, 용융상태의 생분해성 폴리에스테르 수지로부터 제조된 필름 4 및 6은 양호한 상태를 나타내었다. 한편, 필름 6 제조에 사용된 용융상태의 PBS의 경우, 필름 5 제조에 사용된 칩형태의 PBS에 비하여 중량평균분자량이 다소 낮게 나타났으나, 고분자 재료로서 사용하기에는 충분한 분자량을 가지고 있었다.
이상, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것으로서, 본 발명의 권리범위는 아래의 특허청구범위에 의하여 해석되어야 하며 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (7)

  1. (1) 지방족 디카르복실산 및 방향족 디카르복실산 중 적어도 1종의 디카르복실산; 지방족 디올 및 방향족 디올 중 적어도 1종의 디올; 촉매; 및 탈활성화제를 반응기에 투입하여 상기 디카르복실산과 상기 디올을 에스테르화 반응시키는 단계,
    (2) 상기 에스테르화 반응에 의해 얻어진 생성물을 축중합 반응시키는 단계,
    (3) 상기 축중합 반응에 의해 얻어진 생성물(이하, "축중합 반응 생성물"이라 함)을 냉각하는 단계, 및
    (4) 상기 (3)단계에 따라 냉각된 축중합 반응 생성물에 탈활성화제를 추가로 투입하는 단계를 포함하는 생분해성 폴리에스테르 수지조성물의 제조 방법.
  2. 제1항에 있어서,
    상기 탈활성화제의 총 투입량은 상기 디카르복실산 1mol당 0.05 ~ 0.4mmol이고, 상기 (1)단계에서 투입되는 탈활성화제와 상기 (4)단계에서 투입되는 탈활성화제의 몰비는 1:3 ~ 3:1인 것을 특징으로 하는 생분해성 폴리에스테르 수지의 제조 방법.
  3. 제1항에 있어서,
    상기 탈활성화제는 아인산, 아포스폰산(phosphonous acid), 트리메틸포스파이트, 트리에틸포스파이트, 트리프로필포스파이트, 트리페닐포스파이트, 소듐포스파이트 및 소듐하이포포스파이트로 이루어진 군으로부터 선택된 적어도 1종의 인 화합물을 포함하는 것을 특징으로 하는 생분해성 폴리에스테르 수지의 제조 방법.
  4. 제1항에 있어서,
    상기 (3) 단계에서 상기 축중합 반응 생성물은 「상기 축중합 반응 생성물의 융점 + 60 ~ 80℃」의 범위로 냉각되는 것을 특징으로 하는 생분해성 폴리에스테르 수지의 제조 방법.
  5. 제1항에 있어서,
    상기 (3)단계와 (4)단계 사이에 상기 (3)단계에 따라 냉각된 축중합 반응 생성물을 용융상태로 저장하는 저장단계를 더 포함하고, 상기 저장단계는 2 ~ 4시간동안 수행되는 것을 특징으로 하는 생분해성 폴리에스테르 수지의 제조 방법.
  6. 제1항에 있어서,
    상기 (4)단계에 따라 탈활성화제가 투입된 축중합 반응생성물을 사슬연장제와 반응시키는 사슬연장단계를 추가로 포함하는 생분해성 폴리에스테르 수지의 제조 방법.
  7. 제1항 내지 제6항 중 어느 한 항의 방법에 따라 제조된 생분해성 폴리에스테르 수지.
PCT/KR2016/010637 2015-12-24 2016-09-23 생분해성 폴리에스테르 수지의 제조 방법 및 그 방법에 의해 제조된 생분해성 폴리에스테르 수지 WO2017111261A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0186653 2015-12-24
KR1020150186653A KR20170076945A (ko) 2015-12-24 2015-12-24 생분해성 폴리에스테르 수지의 제조 방법 및 그 방법에 의해 제조된 생분해성 폴리에스테르 수지

Publications (1)

Publication Number Publication Date
WO2017111261A1 true WO2017111261A1 (ko) 2017-06-29

Family

ID=59090701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010637 WO2017111261A1 (ko) 2015-12-24 2016-09-23 생분해성 폴리에스테르 수지의 제조 방법 및 그 방법에 의해 제조된 생분해성 폴리에스테르 수지

Country Status (2)

Country Link
KR (1) KR20170076945A (ko)
WO (1) WO2017111261A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521728A (zh) * 2020-10-26 2021-03-19 郑州市彦峰塑料包装有限公司 一种吹塑膜及其制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000057356A (ko) * 1996-12-03 2000-09-15 세이델 리서치 인코포레이티드 폴리에틸렌 테레프탈레이트 또는 테레프탈레이트들로부터의 설포아릴 개질된 수용성 또는 수분산성 수지
KR20110007185A (ko) * 2008-04-15 2011-01-21 바스프 에스이 생분해성 폴리에스테르의 연속 제조 방법
KR20130143711A (ko) * 2011-04-07 2013-12-31 쇼와 덴코 가부시키가이샤 고분자량화된 지방족 폴리에스테르의 제조방법
KR20150078271A (ko) * 2013-12-30 2015-07-08 삼성정밀화학 주식회사 생분해성 폴리에스테르 수지 제조용 조성물 및 생분해성 폴리에스테르 수지의 제조 방법
KR20150104081A (ko) * 2012-10-29 2015-09-14 우데 인벤타-피셔 게엠바하 고분자량의 폴리에스테르 또는 코폴리머 및 이들을 포함하는 폴리머 블렌드를 제조하는 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000057356A (ko) * 1996-12-03 2000-09-15 세이델 리서치 인코포레이티드 폴리에틸렌 테레프탈레이트 또는 테레프탈레이트들로부터의 설포아릴 개질된 수용성 또는 수분산성 수지
KR20110007185A (ko) * 2008-04-15 2011-01-21 바스프 에스이 생분해성 폴리에스테르의 연속 제조 방법
KR20130143711A (ko) * 2011-04-07 2013-12-31 쇼와 덴코 가부시키가이샤 고분자량화된 지방족 폴리에스테르의 제조방법
KR20150104081A (ko) * 2012-10-29 2015-09-14 우데 인벤타-피셔 게엠바하 고분자량의 폴리에스테르 또는 코폴리머 및 이들을 포함하는 폴리머 블렌드를 제조하는 방법
KR20150078271A (ko) * 2013-12-30 2015-07-08 삼성정밀화학 주식회사 생분해성 폴리에스테르 수지 제조용 조성물 및 생분해성 폴리에스테르 수지의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521728A (zh) * 2020-10-26 2021-03-19 郑州市彦峰塑料包装有限公司 一种吹塑膜及其制备工艺

Also Published As

Publication number Publication date
KR20170076945A (ko) 2017-07-05

Similar Documents

Publication Publication Date Title
EP2478031A2 (en) Polyester resin and method for preparing the same
WO2015102305A1 (ko) 생분해성 폴리에스테르 수지 제조용 조성물 및 생분해성 폴리에스테르 수지의 제조 방법
WO2012105770A2 (ko) 폴리에스테르 수지 조성물 및 그 제조방법
WO2013073807A1 (ko) 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
WO2012165734A1 (ko) 내가수분해성 및 생분해성 지방족/방향족 코폴리에스테르 수지 조성물
WO2016027963A1 (ko) 투명 생분해성 고분자
WO2023033562A1 (ko) 투명성과 충격강도가 우수한 생분해성 폴리에스테르 중합체 및 이를 포함하는 생분해성 고분자 조성물
WO2013073819A1 (ko) 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
KR102644022B1 (ko) 생분해성 폴리에스테르 수지의 반연속식 제조 방법
WO2017111261A1 (ko) 생분해성 폴리에스테르 수지의 제조 방법 및 그 방법에 의해 제조된 생분해성 폴리에스테르 수지
WO2013032140A2 (ko) 생분해성 폴리에스테르 공중합체 수지의 제조방법
KR100525705B1 (ko) 폴리부틸렌 테레프탈레이트 제조방법
WO2014030827A1 (ko) 생분해성 폴리에스테르 공중합체 수지의 제조방법
KR101644962B1 (ko) 생분해성 폴리락티드계 지방족/방향족 코폴리에스테르 중합체 및 그 제조방법
KR101792080B1 (ko) 용출형 편직물 제조방법
WO2013073818A1 (ko) 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
WO2017150750A1 (ko) 공중합 폴리에스테르 수지 제조용 화합물 및 이를 이용한 공중합 폴리에스테르 수지의 제조방법
JP3674934B2 (ja) 弾性ポリエステル及びその製造方法
WO2020226200A1 (en) Biodegradable copolyester resin produced by esterification and polycondensation of biomass-derived aliphatic dicarboxylic acid and aromatic dicarboxylic acid with diol and production method thereof
CN111234190B (zh) 制备耐酚黄共聚醚酯弹性体的方法
WO2014038773A1 (ko) 생분해성 지방족 폴리에스테르의 연속 제조방법
WO2014196768A1 (ko) 생분해성 폴리에스테르 수지 및 이를 포함하는 물품
WO2015030446A1 (ko) 생분해성 폴리에스테르 수지의 제조 방법
WO2020101131A1 (en) Functional resin composition comprising biomass-derived component
WO2020226199A1 (en) Biodegradable resin composition having excellent weather resistance and storage stability and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879129

Country of ref document: EP

Kind code of ref document: A1