WO2013073819A1 - 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품 - Google Patents

내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품 Download PDF

Info

Publication number
WO2013073819A1
WO2013073819A1 PCT/KR2012/009573 KR2012009573W WO2013073819A1 WO 2013073819 A1 WO2013073819 A1 WO 2013073819A1 KR 2012009573 W KR2012009573 W KR 2012009573W WO 2013073819 A1 WO2013073819 A1 WO 2013073819A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polylactic acid
blend
mol
copolyester
Prior art date
Application number
PCT/KR2012/009573
Other languages
English (en)
French (fr)
Inventor
박규태
김종량
신종욱
강민구
Original Assignee
에스케이케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼 주식회사 filed Critical 에스케이케미칼 주식회사
Publication of WO2013073819A1 publication Critical patent/WO2013073819A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polylactic acid resin and a copolyester resin blend, and more particularly, to a polylactic acid resin and a copolyester resin blend having excellent impact resistance and heat resistance, and a molded article using the same.
  • Polylactic acid (PLA) resin is a plant-derived resin obtained from plants such as corn, and has biodegradable properties.
  • Polystyrene resin, polyvinyl chloride (PVC) resin, and polyethylene (Polyethylene) Unlike petroleum-based resins such as), it is possible to reduce the environmental pollution, which is a disadvantage of petroleum-based plastic products, because it is effective in preventing the exhaustion of petroleum resources and suppressing carbon dioxide emissions. Accordingly, as the environmental pollution problem caused by waste plastics has emerged as a social problem, efforts are being made to expand the scope of application to general plastics (petroleum resins) such as food packaging materials, containers, and electronic product cases.
  • polylactic acid resins are limited in application range compared to conventional petroleum resins because of their low impact resistance and heat resistance.
  • Korean Patent Publication No. 10-2005-0056021 discloses a method of improving the low impact resistance of polylactic acid by blending polylactic acid and polycarbonate resin.
  • the specific gravity of the product of the petroleum-based plastic resin increases, and bisphenol-A (Bisphenol-A), which is a harmful substance due to the increase in the content of the polycarbonate resin, is increased. It is accompanied by the content of A).
  • the polylactic acid resin when used in a high content, the biodegradability increases as the content of the biomaterial (polylactic acid resin) increases, and it is more environmentally friendly, but inversely, heat resistance and impact resistance are improved. There is a problem that it is difficult to make.
  • polylactic acid resin polylactic acid resin; And a copolyester resin comprising a dicarboxylic acid component comprising a terephthalic acid residue and a diol component comprising 3 to 99 mol% cyclohexanedimethanol residues and 1 to 60 mol% isosorbide residues
  • the content of the polylactic acid resin and the content of isosorbide moiety in the copolymerized polyester resin is 60 to 95% by weight relative to the total blend, to provide a polylactic acid resin and a copolymerized polyester resin blend.
  • the present invention also provides a molded product produced by molding the polylactic acid resin and the copolymerized polyester resin blend.
  • the polylactic acid resin and the copolyester resin blend according to the present invention are blended with a polylactic acid resin and a copolyester resin containing an isosorbide (bio monomer), thereby increasing the content of the copolyester resin even if the bio of the blend is increased. Since the content of the material (polylactic acid resin and isosorbide) is maintained at a predetermined amount or more (60 wt% or more), it is environmentally friendly, and the low impact resistance and heat resistance of the polylactic acid resin can be improved. In addition, unlike blending with other petroleum resins, it does not contain harmful substances such as bisphenol-A (Bisphenol-A), and can prevent bubbles during thermoforming, so a separate drying process is added when manufacturing molded products.
  • Bisphenol-A Bisphenol-A
  • the polylactic acid resin and the copolyester resin blend according to the present invention are materials of environmentally friendly molded products (sheets, packaging materials, containers, interior or exterior of electronic products, interior or exterior of automobiles, interior or exterior construction, etc.) It is useful as a material for beverages, food containers, medical containers and the like.
  • the polylactic acid resin and the copolyester resin blend according to the present invention include a polylactic acid (PLA) resin and a copolyester resin in which isosorbide (bio monomer) is copolymerized as a diol component,
  • PLA polylactic acid
  • copolyester resin in which isosorbide (bio monomer) is copolymerized as a diol component
  • the ratio of the material (isosorbide residue in the polylactic acid resin and the copolyester resin) is maintained at 60 to 95% by weight, which is environmentally friendly, and the notched Izod impact strength (ASTM D256 method, measuring temperature: 23 ° C) is 50 J / m.
  • ASTM D648 method pressure applied to the specimen: 0.455 MPa
  • polylactic acid resin used in the present invention a conventional polylactic acid resin can be used without limitation, and a commercialized polylactic acid resin can be used.
  • the polylactic acid resin is typically prepared from a monomer derived from L-lactic acid and / or D-lactic acid, and L- within a range that does not impair the effects of the present invention. It may also contain a certain amount of other monomers not derived from lactic acid or D-lactic acid.
  • lactide lactide
  • the polycondensation reaction may be carried out directly without being limited thereto.
  • Polylactic acid resins prepared from monomers derived from L- and D-lactic acids, respectively, are crystalline and have a high melting point.
  • L-lactide, D-lactide and meso-lactide derived from L-lactic acid, D-lactic acid the content of L-lactide, D-lactide and meso-lactide Crystallinity and melting point can be freely adjusted according to the requirements, each component content can be adjusted according to the application.
  • the number average molecular weight of the polylactic acid resin is, for example, 10,000 to 500,000, preferably 30,000 to 300,000.
  • the number average molecular weight of the polylactic acid resin is less than 10,000, there is a fear that the mechanical properties such as impact resistance is not sufficiently expressed.
  • it exceeds 500,000 the production (polymerization) of the polylactic acid resin may be difficult, and excessive molecular weight Because of this, there is a fear that processing becomes difficult.
  • the copolyester resin used in the present invention is to improve the impact resistance and heat resistance of the polylactic acid resin and the copolyester resin blend, and to maintain the biomaterial content of the blend in a predetermined amount (60% by weight) or more, and is a terephthalic acid residue.
  • the dicarboxylic acid component and a diol component comprising 3 to 99 mol% cyclohexane dimethanol residues, 1 to 60 mol% isosorbide (see formula 1) residues are copolymerized, the dika
  • the acid moiety derived from the carboxylic acid component and the diol moiety derived from the diol component have repeating structures.
  • the copolyester resin means a synthetic polymer prepared by a polycondensation reaction of at least one difunctional carboxylic acid with at least one difunctional hydroxyl compound.
  • the difunctional carboxylic acid is a dicarboxylic acid and the difunctional hydroxyl compound is a dihydric alcohol such as glycol or diol.
  • the term "residue” means a certain part or unit which is included in the result of the chemical reaction when the specific compound participates in the chemical reaction and is derived from the specific compound.
  • each of "dicarboxylic acid residue” and “diol (glycol) residue” is derived from a diol component or part derived from a dicarboxylic acid component in a polyester formed by an esterification reaction or a polycondensation reaction.
  • the dicarboxylic acid residue may be a dicarboxylic acid monomer or an acid halide or ester thereof (e.g., lower alkyl ester having 1 to 4 carbon atoms such as monomethyl, monoethyl, dimethyl, diethyl or dibutyl ester). , Salts, anhydrides, or mixtures thereof.
  • the terms “dicarboxylic acid”, “terephthalic acid” and the like are useful for the polycondensation process with a diol for producing a high molecular weight polyester, dicarboxylic acid (terephthalic acid, etc.) and its dika And any derivatives of leric acid, such as acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, or mixtures thereof.
  • the dicarboxylic acid component of the copolyester resin contains 50 to 100 mol%, for example, 60 to 99.9 mol%, specifically 90 to 99.9 mol%, of the terephthalic acid moiety relative to the total dicarboxylic acid component.
  • dicarboxylic acid residues such as aromatic dicarboxylic acid residues having 8 to 14 carbon atoms (excluding terephthalic acid residues), aliphatic dicarboxylic acid residues having 4 to 12 carbon atoms, and mixtures thereof It may contain 0 to 50 mol%, for example, 0.1 to 40 mol%, specifically 0.1 to 10 mol%.
  • naphthalenedicarboxylic acid such as isophthalic acid and 2, 6- naphthalenedicarboxylic acid, and diphenyl dicarboxylic acid except terephthalic acid.
  • the aromatic dicarboxylic acid normally used for manufacture of polyester resins can be illustrated, As an aliphatic dicarboxylic acid which can form the said aliphatic dicarboxylic acid residue, 1, 4- cyclohexanedicar Polyhexane such as cyclohexanedicarboxylic acid such as acid, 1,3-cyclohexanedicarboxylic acid, phthalic acid, sebacic acid, succinic acid, isodecyl succinic acid, maleic acid, fumaric acid, adipic acid, glutaric acid, azeraiic acid Linear, branched, or cyclic aliphatic dicarboxylic acid components commonly used in the preparation of ester resins can be exemplified.
  • the dicarboxylic acid residue (copolymerization monomer) other than the terephthalic acid residue when the content of the dicarboxylic acid residue is too small or too large, the effect of improving physical properties is insufficient, or rather, the polyester resin. There is a fear that the physical properties of the.
  • the diol component of the copolyester resin is 3 to 99 mol%, preferably 3 to 99 mol%, based on the total diol component, a range corresponding to the following formula (1), more preferably 5 to 91 mol % Of cyclohexanedimethanol (1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, etc.) residues, 1 to 60 mol%, preferably 60 mol% Within the range not exceeding, the range corresponding to the following Equation 1, more preferably 4 to 40 mol% of isosorbide (In the following Equation 1, ISB mol% is the content of isosorbide residues, CHDM mol% is the content of cyclohexanedimethanol residues).
  • Equation 1 0.0012 (CHDM mol%) 2 -0.2401 (CHDM mol%) + 11.136 ⁇ ISB mol% ⁇ -0.0122 (CHDM mol%) 2 +0.0243 (CHDM mol%) +79.846
  • the diol component of the copolyester resin is 0 to 94 mol%, preferably 0.1 to 88 mol%, more preferably 0.1 to 80 mol% carbon atoms of 2 to 20, preferably to the total diol component Includes diol residues such as aliphatic diol residues having 2 to 12 carbon atoms (excluding cyclohexanedimethanol residues and isosorbide residues).
  • Diols capable of forming the aliphatic diol residues include ethylene glycol, diethylene glycol, triethylene glycol, propanediol (1,2-propanediol, 1,3-propanediol, etc.), 1,4-butanediol, and pentanediol.
  • Hexanediol (1,6-hexanediol, etc.), neopentyl glycol (2,2-dimethyl-1,3-propanediol), 1,2-cyclohexanediol, 1,4-cyclohexanediol, tetramethylcyclo Linear, branched or cyclic aliphatic diols, such as butanediol, preferably ethylene glycol.
  • the impact strength may be insufficient, and if it exceeds 99 mol%, isosorbide
  • the residue content is less than 1 mol%, and there is a fear that the heat resistance is lowered.
  • the content of the isosorbide moiety is less than 1 mol% with respect to the total diol component, there is a fear that the heat resistance of the copolyester resin to be produced may be insufficient, and when it exceeds 60 mol%, the polyester resin may be yellowed. There is a fear.
  • the notch Izod impact strength (ASTM D256 method, measuring temperature: 23 ° C.) is measured, and the impact strength of 50 J / m or more is preferable. Indicates.
  • the notched Izod impact strength of the polyester resin copolymerized only with ethylene glycol and isosorbide usually shows a value of 50 J / m or less.
  • the co-polyester resin has a glass transition temperature (Tg). Further, after dissolving the co-polyester resin in orthochlorophenol (OCP) at a concentration of 1.2 g / dl, when the intrinsic viscosity was measured at 35 °C, 0.35 dl / g or more, preferably 0.40 dl / g or more More preferably 0.45 dl / g or more. Since the copolyester resin is environmentally friendly, and excellent in heat resistance and impact resistance, blending with the polylactic acid resin may compensate for the low impact resistance and heat resistance of the polylactic acid resin.
  • OCP orthochlorophenol
  • the weight average molecular weight (Mw) of the copolyester resin is, for example, 10,000 to 200,000 (g / mol), preferably 20,000 to 100,000 (g / mol).
  • Mw weight average molecular weight
  • the copolyester resin may be prepared by a conventional polyester production method, for example, esterifying the dicarboxylic acid and the diol compound (first step), and the esterification reaction product. It may be prepared through a poly-condensation reaction (second step). Specifically, the step of esterifying the dicarboxylic acid and diol compound, esterification of the dicarboxylic acid and diol compound at a pressure of 0 to 10.0 kg / cm2 and 150 to 300 °C temperature for 1 to 24 hours Reaction or transesterification.
  • the esterification conditions may be appropriately adjusted according to the specific properties of the polyester to be prepared, the molar ratio of the dicarboxylic acid component and glycol, process conditions, and the like.
  • esterification conditions are 0 to 5.0 kg / cm 2, more preferably 0.1 to 3.0 kg / cm 2, 200 to 270 ° C., more preferably 240 to 260 ° C., 1
  • a reaction time of from 15 hours to more preferably 2 to 8 hours can be exemplified.
  • the molar ratio of the dicarboxylic acid component and the diol component participating in the esterification reaction may be 1: 1.05 to 1: 3.0, for example, the content of cyclohexanedimethanol is 100 parts by weight of the dicarboxylic acid component.
  • the total dicarboxylic acid component and the diol component can be added to 10 to 90 parts by weight, preferably 20 to 80 parts by weight.
  • the molar ratio of the diol component to the dicarboxylic acid component is less than 1.05, the unreacted dicarboxylic acid component may remain during the polymerization reaction and the transparency of the resin may be lowered. If the molar ratio exceeds 3.0, the polymerization reaction rate May be lowered or the productivity of the resin may be lowered. Catalysts may be selectively used to improve process time and yield of the esterification reaction, and the esterification reaction may be performed in a batch or continuous manner, and each raw material may be added separately, but diol It is preferable to add in the form of the slurry which mixed the dicarboxylic acid component with the component.
  • a diol component such as isosorbide which is solid at room temperature can be dissolved in water or ethylene glycol, and then mixed with a dicarboxylic acid component such as terephthalic acid to form a slurry.
  • a dicarboxylic acid component such as terephthalic acid
  • water may be added to a slurry in which diol components such as dicarboxylic acid component, isosorbide and ethylene glycol are mixed to increase the solubility of isosorbide. It is also possible to use a slurry in which the beads are molten.
  • the poly-condensation reaction of the esterification product, the esterification reaction product of the dicarboxylic acid component and the diol component 1 at a temperature of 150 to 300 °C and a reduced pressure of 400 to 0.01 mmHg To react for 24 hours.
  • This polycondensation reaction may be carried out at a reaction temperature of preferably 200 to 290 ° C, more preferably 260 to 280 ° C, and reduced pressure of preferably 100 to 0.05 mmHg, more preferably 10 to 0.1 mmHg. .
  • glycol which is a byproduct of the polycondensation reaction, may be removed.
  • the polycondensation reaction when the polycondensation reaction is out of the 400 to 0.01 mmHg reduced pressure range, there is a concern that the byproducts may be insufficient. In addition, when the polycondensation reaction occurs outside the temperature range of 150 to 300 °C, there is a fear that the physical properties of the polyester resin produced.
  • the polycondensation reaction can proceed for the required time until the intrinsic viscosity of the final reaction product reaches an appropriate level, for example for an average residence time of 1 to 24 hours.
  • the final attained vacuum degree of the polycondensation reaction is less than 2.0 mmHg, and the esterification reaction and the polycondensation reaction may be performed under an inert gas atmosphere.
  • additives such as polycondensation catalysts, stabilizers, coloring agents and the like can be used.
  • Additives such as polycondensation catalysts or stabilizers may be added to the product of the esterification reaction or transesterification reaction before initiation of the polycondensation reaction, and mixed slurry comprising dicarboxylic acid and diol compound before the esterification reaction. Phase may be added, or may be added during the esterification step.
  • a titanium compound, a germanium compound, an antimony compound, an aluminum compound, a tin compound, or a mixture thereof can be used.
  • the titanium compound include tetraethyl titanate, acetyltripropyl titanate, tetrapropyl titanate, tetrabutyl titanate, polybutyl titanate, 2-ethylhexyl titanate, octylene glycol titanate, lactate titanate Nitrate, triethanolamine titanate, acetylacetonate titanate, ethyl acetoacetic ester titanate, isostearyl titanate, titanium dioxide, titanium dioxide / silicon dioxide copolymer, titanium dioxide / zirconium dioxide copolymer, and the like.
  • germanium-based compound examples include germanium dioxide (germanium dioxide, GeO 2 ), germanium tetrachloride (germanium tetrachloride, GeCl 4 ), germanium ethyleneglycoxide, germanium acetate, and the like. Coalescence, souls of these The compound etc. can be illustrated.
  • the stabilizer phosphorus compounds such as phosphoric acid, trimethyl phosphate, and triethyl phosphate may be used, and the amount of the stabilizer may be 10 to 100 ppm based on the weight of the phosphorus element based on the weight of the final polymer (copolymer polyester resin). If the amount of the stabilizer added is less than 10 ppm, the stabilizing effect may be insufficient and the appearance of the final product may change to yellow. In addition, when the amount of the stabilizer is more than 100 ppm, it may not be possible to obtain a polymer having a desired high degree of polymerization.
  • the colorant is added to improve the color of the polymer, and may be used a conventional colorant such as cobalt acetate, cobalt propionate, and if necessary, an organic compound colorant may be used. It may be 0 to 100 ppm relative to the weight of the polymer (copolymer polyester resin).
  • the polylactic acid resin and the copolyester resin blend according to the present invention are, for example, 1 to 30 parts by weight, preferably 3 to about 100 parts by weight of the total polylactic acid resin and the copolyester resin blend. 20 parts by weight of other resin components (eg, polycarbonate, polyethylene, polypropylene, polymethylmethacrylate, etc.) and additive components may be further included.
  • resin components eg, polycarbonate, polyethylene, polypropylene, polymethylmethacrylate, etc.
  • additive components may be further included.
  • Additives that may be included in the blend may include stabilizers having the ability to preserve the physical properties of the blend during processing, storage and use of the blend, such as oxidation stabilizers, thermal stabilizers, light stabilizers, UV stabilizers, and compatibilizers, Blends nucleating agents, chain-extenders, lubricants, impact modifiers, colorants, waxes, mold release agents, fragrances, foaming agents, plasticizers, hydrolysis inhibitors, unreacted substances and reactive substances It can be used for the purpose of processing, storage and use.
  • stabilizers having the ability to preserve the physical properties of the blend during processing, storage and use of the blend, such as oxidation stabilizers, thermal stabilizers, light stabilizers, UV stabilizers, and compatibilizers, Blends nucleating agents, chain-extenders, lubricants, impact modifiers, colorants, waxes, mold release agents, fragrances, foaming agents, plasticizers, hydrolysis inhibitors, unreacted substances and reactive substances It can be used for the purpose of
  • glycidyl (Glycidyl-), maleic anhydride (Maleic anhydride-), epoxy (Epoxy-), isocyanate (Isocyanate-), amino (Amino-), carboxylic acid (Carboxyl Compatibilizers containing reactive functional groups, such as acid groups, oxazolin- (Oxazoline-) groups (e.g., ethylene-based reactive noses containing about 6-8% glycidyl reactor in the main chain) Copolymer or terpolymer reacts with the ends of the polylactic acid resin and the copolyester resin (Carboxyl acid (-COOH) and hydroxyl group (-OH)), respectively.
  • reactive functional groups such as acid groups, oxazolin- (Oxazoline-) groups (e.g., ethylene-based reactive noses containing about 6-8% glycidyl reactor in the main chain)
  • Copolymer or terpolymer reacts with the ends of the polylactic acid
  • the compatibility of the polylactic acid resin and the copolymerized polyester resin may be increased, and additional effects such as an impact reinforcing effect may be obtained according to the molecular structure or the structure of the main chain bonded to the reactive functional group.
  • the compatibilizer including the reactive group, Adipic Acid, Hexamethlylene diamine, Epoxy series, p-Phenylene diisocyanate (PPDI), HDI (1,6-Hexamethylene diisocyanate) ), Toluene diisocyanate (TDI), 1,5-Naphthalene diisocyanate (NDI), Isoporon diisocyanate (IPDI), 4,4-Diphenylmethane diisocyanate (MDI), cyclohexylmethane diisocyanate (Ethylene-glycidyl methacrylate) Glycidylmetacrylate, Ethylene-Glycidylacrylate, Ethylene-Ac
  • the polylactic acid resin and the copolyester resin blend according to the present invention may be prepared by a conventional blending method, and may be molded by, for example, a molding method such as an injection, extrusion, compounding process, or the like. That is, it can be extruded or injected directly by simple blending, or cooled pelletized while blended and compounded by extrusion, and then crystallized, and can be used again for extrusion or injection using the obtained pellet-type blend chips.
  • a molding method such as an injection, extrusion, compounding process, or the like. That is, it can be extruded or injected directly by simple blending, or cooled pelletized while blended and compounded by extrusion, and then crystallized, and can be used again for extrusion or injection using the obtained pellet-type blend chips.
  • the content of the isoide moiety (total biomaterial) in the polylactic acid resin and the copolyester resin is 60 to 95% by weight, preferably based on the total blend. Preferably from 65 to 94% by weight, more preferably from 70 to 93% by weight, most preferably from 75 to 92% by weight.
  • the content of the polylactic acid resin and the copolyester resin may be used within the range of the content of the entire biomaterial does not deviate from the range, for example, the content of the polylactic acid resin is 60 to 95 weight %, Preferably 65 to 90% by weight, the content of the copolyester resin may be 5 to 40% by weight, preferably 10 to 35% by weight, the additive is based on 100 parts by weight of the total blend 1 to 30 parts by weight may be added.
  • the content of isoide moieties (total biomaterials) in the polylactic acid resin and the copolyester resin is less than 60% by weight, there is a fear that effects such as biodegradability characteristics, which are advantages of the polylactic acid resin, may not be expressed.
  • the percentage is exceeded, the impact resistance and heat resistance of the blend may be inferior and may not be used in various molded products.
  • the notched Izod impact strength (ASTM D256 method, measuring temperature: 23 ° C) was measured. impact strength of at least / m, preferably at least 70 J / m, more preferably at least 100 J / m, most preferably at least 150 J / m.
  • the pressure applied to the specimen of the heat distortion temperature (Heat Distortion Temperature or Heat Deflection Temperature: HDT, ASTM D648 method is 0.455
  • the method of MPa shows a heat deflection temperature of 70 ° C or higher, preferably 75 ° C or higher.
  • the blend exhibits excellent impact resistance and heat resistance (heat deformation temperature) in the case of a blend containing a high content of polylactic acid resin, which is a crystalline (semi-crystalline) polymer, having excellent compatibility of the blend, and polylactic acid resin. This is because it is easily crystallized.
  • the polylactic acid resin and the copolyester resin blend according to the present invention are molded through conventional molding processes such as injection, extrusion, extrusion blow, injection blow, and profile extrusion known in the art, and post-processing such as thermoforming processes using the same. It can be made into a molded article (Fiber, injection molding, sheet and film) of the appropriate shape as needed.
  • Heat Resistance Heating Deformation Temperature (HDT): After the 127 mm * 13 mm * 3 ⁇ 13 mm sized specimens were prepared using the blend, heat distortion temperature (Heat Distortion Temperature or Heat Deflection Temperature: HDT, The pressure applied to the specimen in the ASTM D648 method is 0.455 MPa).
  • Notched Izod Impact Strength A 3.0 mm thick specimen was prepared using the blend, and notched in accordance with ASTM D256, and then measured at 23 ° C. using an Izod impact strength measuring instrument.
  • terephthalic acid Based on 6 moles of terephthalic acid as the dicarboxylic acid component and 6 moles of terephthalic acid as the diol component, 138 g of 1,4-cyclohexanedimethanol, 313 g of ethylene glycol and 105 g of isosorbide were mixed in a 3L reactor equipped with a stirrer and an outlet condenser. The temperature was gradually raised to 255 ° C while esterifying. At this time, the generated water was discharged to the outside of the system, and when the generation and discharge of the water was completed, the reaction was transferred to the polycondensation reactor equipped with a stirrer, a cooling condenser, and a vacuum system.
  • the reactor was firstly depressurized to 50 mmHg at atmospheric pressure while increasing the internal temperature of the reactor from 240 ° C. to 275 ° C., and ethylene glycol was removed by a low vacuum reaction for 40 minutes. Then, the mixture was slowly depressurized to 0.1 mmHg and subjected to polycondensation reaction under high vacuum until the desired intrinsic viscosity was obtained, thereby preparing a copolymerized polyester resin.
  • the weight average molecular weight (Mw) of the manufactured co-polyester resin was 63,000 (g / mol), and the intrinsic viscosity was 0.76 (dl / g).
  • Copolymerization was carried out in the same manner as in Preparation Example 1, except that 565 g of 1,4-cyclohexanedimethanol, 96 g of ethylene glycol and 789 g of isosorbide were used based on 6 moles of terephthalic acid and 6 moles of terephthalic acid as the diol component. Polyester resins were prepared. The weight average molecular weight (Mw) of the produced resin was 37,000 (g / mol), the intrinsic viscosity was 0.65 (dl / g).
  • polylactic acid resin chip having a number average molecular weight of 100,000, 20% by weight of the copolymerized polyester resin chip prepared in Preparation Example 2, and an ethylene-based reaction type containing about 8% of glycidyl reactor in the main chain
  • 12% by weight of terpolymer (Terpolymer) pellets of polylactic acid resin and copolyester resin blend was prepared in the same manner as in Example 1, thermal deformation temperature, notched Izod impact strength And the presence of hazardous substances was measured, and the results are shown in Table 1 below.
  • polylactic acid resin chip having a number average molecular weight of 100,000, 10% by weight of the copolymerized polyester resin chip prepared in Preparation Example 2, and about 6% of a glycidyl reactor in the main chain. Except that 10% by weight of polymer (Terpolymer) was used, the polylactic acid resin and the copolyester resin blend of pellets were prepared in the same manner as in Example 1, and the thermal deformation temperature, notched Izod impact strength and The presence of harmful substances was measured, and the results are shown in Table 1 below.
  • polylactic acid resin chip having a number average molecular weight of 100,000, 5% by weight of copolymerized polyester resin chip prepared in Preparation Example 2, and an ethylene-based reactive type substrate containing about 8% of glycidyl reactor in the main chain. Except that 7% by weight of polymer (Terpolymer) was used, the polylactic acid resin and copolyester resin blend of pellets were prepared in the same manner as in Example 1, and the thermal deformation temperature, notched Izod impact strength and The presence of harmful substances was measured, and the results are shown in Table 1 below.
  • polylactic acid resin chip having a number average molecular weight of 100,000, 3% by weight of copolymerized polyester resin chip prepared in Preparation Example 1, and an ethylene-based reactive type catalyst containing about 6% of glycidyl reactor in the main chain. Except that 3% by weight of polymer (Terpolymer) was used, a polylactic acid resin and a copolyester resin blend were prepared in the same manner as in Example 1, and the thermal deformation temperature, notched Izod impact strength and The presence of harmful substances was measured, and the results are shown in Table 1 below.
  • pellets were formed in the same manner as in Example 1 above.
  • the polylactic acid resin was prepared, and the heat deformation temperature, notched Izod impact strength and the presence of harmful substances were measured, and the results are shown in Table 1 below.
  • the polylactic acid resin and the copolyester resin blend according to the present invention have excellent notch Izod impact strength of 50 to 300 J / m, and excellent heat deformation temperature of 70 to 75 °C.
  • harmful substances such as bisphenol-A
  • bio-materials isolated residues of polylactic acid resin and copolyester resin
  • content ratio wt% of 60 to 95 wt% are high, which is environmentally friendly. Can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품이 개시된다. 상기 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드는 폴리유산 수지; 및 테레프탈산 잔기를 포함하는 디카르복실산 성분 및 3 내지 99몰%의 사이클로헥산디메탄올 잔기 및 1 내지 60몰%의 아이소소바이드 잔기를 포함하는 디올 성분을 포함하는 공중합 폴리에스테르 수지를 포함하며, 상기 폴리유산 수지 및 상기 공중합 폴리에스테르 수지 내의 아이소소바이드 잔기의 함량이 전체 블렌드에 대하여 60 내지 95중량%인 것이다.

Description

내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
본 발명은 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드에 관한 것으로서, 더욱 상세하게는, 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품에 관한 것이다.
폴리유산(polylactic acid: PLA) 수지는 옥수수 등의 식물로부터 얻어지는 식물 유래의 수지로서, 생분해성 특성을 갖고 있으며, 기존에 사용되고 있는 폴리스티렌(Polystyrene) 수지, 폴리염화비닐(PVC) 수지, 폴리에틸렌(Polyethylene) 등의 석유계 수지와는 달리, 석유 자원 고갈 방지, 탄산가스 배출 억제 등의 효과가 있기 때문에, 석유계 플라스틱 제품의 단점인 환경오염을 줄일 수 있다. 따라서, 폐 플라스틱 등에 따른 환경오염 문제가 사회문제로 대두됨에 따라, 식품 포장재 및 용기, 전자제품 케이스 등 일반 플라스틱(석유계 수지)이 사용되었던 제품 분야까지 적용 범위를 확대하고자 노력하고 있다. 그러나, 폴리유산 수지는 기존의 석유계 수지와 비교하여, 내충격성 및 내열성이 떨어져 적용 범위에 제한이 있다.
이러한 문제점을 해결하기 위하여, 기존의 석유계 플라스틱 수지 제품 중 몇 가지를 선별하여 폴리유산 수지와 블렌딩함으로써 폴리유산 수지의 단점을 보완하는 방법이 시도되고 있다. 예를 들어, 대한민국 공개특허 제10-2005-0056021호에는 폴리유산과 폴리카보네이트 수지를 블렌딩함으로써 폴리유산의 낮은 내충격성을 개선하는 방법이 개시되어 있다. 그러나 이 경우, 내충격성 및 내열성을 향상시키기 위해 폴리카보네이트 수지의 함량을 증가시킬수록 석유계 플라스틱 수지의 제품 비중이 증가하게 되고, 폴리카보네이트 수지의 함량 증가에 따른 유해성 물질인 비스페놀-A(Bisphenol-A)의 함량을 동반하게 된다. 결국 폴리유산 수지의 사용 목적과 위배되는 결과를 초래하는 문제점이 있다. 또한, 상기 블렌드에서도 폴리유산 수지를 높은 함량으로 사용하는 경우, 바이오 소재(폴리유산 수지)의 함량이 높아짐에 따라 생분해성이 높아지고, 더욱 친환경적인 특성을 갖지만, 그에 반비례하여 내열성과 내충격성을 향상시키기 어렵다는 문제점이 있다.
따라서, 본 발명의 목적은, 친환경성을 유지하면서도 내열성 및 내충격성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 폴리유산 수지; 및 테레프탈산 잔기를 포함하는 디카르복실산 성분 및 3 내지 99몰%의 사이클로헥산디메탄올 잔기 및 1 내지 60몰%의 아이소소바이드 잔기를 포함하는 디올 성분을 포함하는 공중합 폴리에스테르 수지를 포함하며, 상기 폴리유산 수지의 함량 및 상기 공중합 폴리에스테르 수지 내의 아이소소바이드 잔기의 함량이 전체 블렌드에 대하여 60 내지 95중량%인 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드를 제공한다.
또한, 본 발명은, 상기 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드를 성형하여 제조된 성형제품을 제공한다.
본 발명에 따른 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드는, 폴리유산 수지와 아이소소바이드(바이오 모노머)를 포함하는 공중합 폴리에스테르 수지를 블렌딩함으로써, 공중합 폴리에스테르 수지의 함량을 증가시켜도 상기 블렌드의 바이오 소재(폴리유산 수지 및 아이소소바이드) 함량을 일정량 이상(60중량% 이상) 유지하므로 친환경적이며, 폴리유산 수지가 가지는 낮은 내충격성 및 내열성을 향상시킬 수 있다. 또한, 기타 석유계 수지를 블렌딩하는 경우와 달리, 비스페놀-A(Bisphenol-A)와 같은 유해 물질 포함하지 않으며, 열성형 시 기포발생을 방지할 수 있으므로, 성형제품 제조 시 별도의 건조 공정이 추가로 포함되지 않을 수 있고, 상대적으로 낮은 가공온도로 성형할 수 있어서 시간적, 경제적 이점이 있다. 또한, 본 발명에 따른 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드는, 친환경적인 성형제품(시트, 포장재, 용기, 전자제품 내장 또는 외장용, 자동차 내장 또는 외장용, 건축용 내장 또는 외장용 등)의 재료, 특히, 음료 및 식품용기, 의료용기 등의 재료로서 유용하다.
이하, 본 발명을 상세히 설명하면 다음과 같다.
본 발명에 따른 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드는, 폴리유산(polylactic acid: PLA) 수지 및 아이소소바이드(바이오 모노머)가 디올 성분으로서 공중합된 공중합 폴리에스테르 수지를 포함하는 것으로서, 블렌드 내의 바이오 소재(폴리유산 수지 및 공중합 폴리에스테르 수지 내의 아이소소바이드 잔기)의 비율이 60 내지 95중량%으로 유지되어 친환경적이고, 노치 아이조드 충격강도(ASTM D256 방법, 측정온도: 23℃)는 50 J/m 이상이고, 열변형온도(ASTM D648 방법, 시편에 가해지는 압력: 0.455 MPa)는 70℃ 이상인 것으로서, 내충격성 및 내열성이 우수한 것이다.
본 발명에 사용되는 폴리유산 수지는 통상의 폴리유산 수지를 제한 없이 사용할 수 있으며, 제품화된 폴리유산 수지를 사용할 수 있다. 상기 폴리유산 수지는 통상적으로 L-유산(L-lactic acid) 및/또는 D-유산(D-lactic acid) 유래의 모노머(monomer)로부터 제조되며, 본 발명의 효과를 손상시키지 않은 범위에서 L-유산, D-유산으로부터 유래하지 않은 타 모노머를 일정량 포함할 수도 있다. 상기 폴리유산 수지의 제조방법은 여러 가지가 있으나, 가장 대표적으로 알려져 있는 방법은 유산으로부터 제조된 락타이드(Lactide)를 개환 중합하는 것이다. 그러나, 이에 한정하지 않고 유산을 직접 중축합반응시켜도 무방하다. L-유산 및 D-유산 각각으로부터 유래한 모노머로부터 제조되는 폴리유산 수지의 경우는 결정성이며, 고융점을 가진다. 그러나, L-유산, D-유산에서 유래하는 L-락타이드, D-락타이드 및 meso-락타이드를 사용하여 제조할 경우, L-락타이드, D-락타이드 및 meso-락타이드의 함량에 따라 결정성 및 융점을 자유롭게 조절할 수 있으며, 용도에 따라 각각의 성분 함량 조절이 가능하다.
상기 폴리유산 수지의 수평균 분자량은 예를 들면, 10,000 내지 500,000, 바람직하게는 30,000 내지 300,000이다. 상기 폴리유산 수지의 수평균 분자량이 10,000 미만인 경우, 내충격성 등의 기계적 물성이 충분히 발현되지 않을 우려가 있고, 500,000을 초과할 경우, 폴리유산 수지의 제조(중합)자체가 어려울 수 있으며, 과도한 분자량으로 인해 가공이 어려워질 우려가 있다.
본 발명에 사용되는 공중합 폴리에스테르 수지는, 상기 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드의 내충격성 및 내열성을 향상시키고, 블렌드의 바이오 소재 함량을 일정량(60중량%) 이상 유지시키기 위한 것으로서, 테레프탈산 잔기를 포함하는 디카르복실산 성분 및 3 내지 99몰%의 사이클로헥산디메탄올 잔기, 1 내지 60몰%의 아이소소바이드(isosorbide, 하기 화학식 1 참조) 잔기를 포함하는 디올 성분이 공중합되어, 상기 디카르복실산 성분으로부터 유도된 산 부분 및 디올 성분으로부터 유도된 디올 부분이 반복되는 구조를 가지는 것이다.
[화학식 1]
Figure PCTKR2012009573-appb-I000001
여기서, 상기 공중합 폴리에스테르 수지는 하나 이상의 이작용성(difunctional) 카르복실산과 하나 이상의 이작용성 히드록실 화합물의 중축합 반응에 의해 제조된 합성 중합체를 의미한다. 통상적으로 이작용성 카르복실산은 디카르복실산이고 이작용성 히드록실 화합물은 2가 알코올, 예를 들면, 글리콜 또는 디올이다. 본 명세서에 있어서, 용어 "잔기(residue)"는 특정한 화합물이 화학 반응에 참여하였을 때, 그 화학 반응의 결과물에 포함되고, 상기 특정 화합물로부터 유래한 일정한 부분 또는 단위를 의미한다. 예를 들어, "디카르복실산 잔기" 및 "디올(글리콜) 잔기" 각각은, 에스테르화 반응 또는 축중합 반응으로 형성되는 폴리에스테르에서 디카르복실산 성분으로부터 유래한 부분 또는 디올 성분으로부터 유래한 부분을 의미한다. 즉, 디카르복실산 성분 및 디올(글리콜) 성분이 통상의 폴리에스테르 중합 반응될 때, 수소, 히드록시기 또는 알콕시기가 제거되고 남은 잔기(redisue)를 의미한다. 따라서, 상기 디카르복실산 잔기는 디카르복실산 단량체 또는 그의 산할로겐화물, 에스테르(예를 들면, 모노메틸, 모노에틸, 디메틸, 디에틸 또는 디부틸 에스테르 등 탄소수 1 내지 4의 저급 알킬 에스테르), 염, 무수물(anhydride), 또는 이들의 혼합물로부터 유도될 수 있다. 따라서, 본 명세서에 있어, 용어 "디카르복실산", "테레프탈산" 등은 고분자량의 폴리에스테르를 제조하기 위한 디올과의 중축합 공정에 유용한 것으로, 디카르복실산(테레프탈산 등) 및 그 디카르복실산의 임의의 유도체, 예를 들면, 그와 관련된 산할로겐화물, 에스테르, 하프(half)-에스테르, 염, 하프-염, 무수물, 혼합 무수물, 또는 이들의 혼합물을 포함한다.
상기 공중합 폴리에스테르 수지의 디카르복실산 성분은 전체 디카르복실산 성분에 대하여, 상기 테레프탈산 잔기를 50 내지 100몰%, 예를 들면, 60 내지 99.9몰%, 구체적으로는 90 내지 99.9몰% 포함하며, 폴리에스테르 수지의 물성 개선을 위하여, 탄소수 8 내지 14의 방향족 디카르복실산 잔기(테레프탈산 잔기 제외), 탄소수 4 내지 12의 지방족 디카르복실산 잔기, 이들의 혼합물 등의 디카르복실산 잔기를 0 내지 50몰%, 예를 들면, 0.1 내지 40몰%, 구체적으로는 0.1 내지 10몰% 포함할 수 있다. 상기 방향족 디카르복실산 잔기를 형성할 수 있는 방향족 디카르복실산으로는, 테레프탈산을 제외한, 이소프탈산, 2,6-나프탈렌디카르복실산 등의 나프탈렌디카르복실산, 디페닐 디카르복실산 등의 폴리에스테르 수지의 제조에 통상적으로 사용되는 방향족 디카르복실산을 예시할 수 있고, 상기 지방족 디카르복실산 잔기를 형성할 수 있는 지방족 디카르복실산으로는 1,4-사이클로헥산디카르복실산, 1,3-사이클로헥산디카르복실산 등의 사이클로헥산디카르복실산, 프탈산, 세바식산, 숙신산, 이소데실숙신산, 말레산, 푸마르산, 아디픽산, 글루타릭산, 아제라이산 등의 폴리에스테르 수지의 제조에 통상적으로 사용되는 선형, 가지형 또는 고리형 지방족 디카르복실산 성분을 예시할 수 있다. 여기서, 상기 테레프탈 산 잔기를 제외한 디카르복실산 잔기(공중합 모노머)를 포함 시, 상기 디카르복실산 잔기의 함량이 너무 작거나 너무 많은 경우에는, 물성 개선의 효과가 불충분하거나, 오히려 폴리에스테르 수지의 물성이 저하될 우려가 있다.
상기 공중합 폴리에스테르 수지의 디올 성분은, 전체 디올 성분에 대하여, 3 내지 99몰%, 바람직하게는 3 내지 99몰% 범위 내에서 하기 수학식 1에 부합하는 범위, 더욱 바람직하게는 5 내지 91몰%의 사이클로헥산디메탄올(1,2-사이클로헥산디메탄올, 1,3-사이클로헥산디메탄올, 1,4-사이클로헥산디메탄올 등) 잔기, 1 내지 60몰%, 바람직하게는 60몰%를 초과하지 않는 범위 내에서 하기 수학식 1에 부합하는 범위, 더욱 바람직하게는 4 내지 40몰%의 아이소소바이드를 포함한다(하기 수학식 1에서, ISB mol%는 아이소소바이드 잔기의 함량, CHDM mol%는 사이클로헥산디메탄올 잔기의 함량이다).
[수학식 1] 0.0012(CHDM mol%)2-0.2401(CHDM mol%)+11.136 ≤ ISB mol% ≤ -0.0122(CHDM mol%)2+0.0243(CHDM mol%)+79.846
또한, 상기 공중합 폴리에스테르 수지의 디올 성분은, 전체 디올 성분에 대하여, 0 내지 94몰%, 바람직하게는 0.1 내지 88몰%, 더욱 바람직하게는 0.1 내지 80몰%의 탄소수 2 내지 20, 바람직하게는 탄소수 2 내지 12의 지방족 디올 잔기(사이클로헥산디메탄올 잔기 및 아이소소바이드 잔기 제외) 등의 디올 잔기를 포함한다. 상기 지방족 디올 잔기를 형성할 수 있는 디올로는 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 프로판디올(1,2-프로판디올, 1,3-프로판디올 등), 1,4-부탄디올, 펜탄디올, 헥산디올(1,6-헥산디올 등), 네오펜틸 글리콜(2,2-디메틸-1,3-프로판디올), 1,2-사이클로헥산디올, 1,4-사이클로헥산디올, 테트라메틸사이클로부탄디올 등의 선형, 분지형 또는 고리형 지방족 디올, 바람직하게는 에틸렌글리콜을 예시할 수 있다.
상기 공중합 폴리에스테르 수지의 디올 성분 중, 상기 사이클로헥산디메탄올 잔기의 함량이 전체 디올 성분에 대하여, 3몰% 미만이면, 충격강도가 불충분할 우려가 있고, 99몰%를 초과하면, 아이소소바이드 잔기 함량이 1몰% 미만이 되어 내열도가 저하될 우려가 있다. 상기 아이소소바이드 잔기의 함량이 전체 디올 성분에 대하여, 1몰% 미만이면, 제조되는 공중합 폴리에스테르 수지의 내열성이 불충분할 우려가 있으며, 60몰%를 초과하면, 폴리에스테르 수지가 황변화(yellowing)할 우려가 있다. 또한, 상기 디올 잔기(사이클로헥산디메탄올 잔기 및 아이소소바이드 잔기 제외)의 함량이 전체 디올 성분에 대하여, 94몰%를 초과하면, 폴리에스테르 수지의 물성이 저하될 우려가 있다.
상기 공중합 폴리에스테르 수지를 이용하여 3.2㎜ 두께의 시편을 제조한 후, 노치 아이조드 충격강도(izod impact strength, ASTM D256 방법, 측정온도: 23℃)를 측정하면, 바람직하게는 50J/m 이상의 충격강도를 나타낸다. 반면, 에틸렌글리콜과 아이소소바이드만으로 공중합된 폴리에스테르 수지의 노치 아이조드 충격강도는 통상 50J/m 이하의 값을 나타낸다. 상기 공중합 폴리에스테르 수지를 300℃에서 5분간 어닐링(Annealing)하고, 상온으로 냉각시킨 후, 승온 속도 10℃/min로 다시 스캔(2nd Scan)하면, 상기 공중합 폴리에스테르 수지는 바람직하게는 90℃ 이상의 유리전이온도(Tg, Glass Transition Temperature) 온도를 가진다. 또한, 상기 공중합 폴리에스테르 수지를 오르토클로로페놀(OCP)에 1.2g/㎗의 농도로 용해시킨 후, 35℃에서 고유점도를 측정하였을 때, 0.35㎗/g 이상, 바람직하게는 0.40㎗/g 이상, 더욱 바람직하게는 0.45㎗/g이상의 고유점도를 가진다. 상기 공중합 폴리에스테르 수지는 친환경적이고, 내열성 및 내충격성이 우수하므로, 상기 폴리유산 수지와 블랜딩하면 폴리유산 수지의 낮은 내충격성 및 내열성을 보완할 수 있다.
상기 공중합 폴리에스테르 수지의 중량평균분자량(Mw)은 예를 들면, 10,000 내지 200,000(g/mol), 바람직하게는 20,000 내지 100,000(g/mol)이다. 상기 공중합 폴리에스테르 수지의 중량평균분자량이 상기 범위를 벗어나면, 블렌드의 가공성이 저하되거나, 블렌드의 물성이 저하될 우려가 있다.
상기 공중합 폴리에스테르 수지는, 통상의 폴리에스테르 제조 방법으로 제조될 수 있으며, 예를 들면, 상기 디카르복실산 및 디올 화합물을 에스테르화 반응시키는 단계(제1 단계), 및 상기 에스테르화 반응 생성물을 중축합(poly-condensation) 반응시키는 단계(제2 단계)를 통하여 제조될 수 있다. 구체적으로, 상기 디카르복실산 및 디올 화합물을 에스테르화 반응시키는 단계는, 상기 디카르복실산 및 디올 화합물을 0 내지 10.0 kg/㎠ 의 압력 및 150 내지 300 ℃ 온도에서 1 내지 24시간 동안 에스테르화 반응 또는 에스테르 교환 반응시키는 단계일 수 있다. 상기 에스테르화 반응 조건은 제조되는 폴리에스테르의 구체적인 특성, 디카르복실산 성분과 글리콜의 몰비, 공정 조건 등에 따라 적절히 조절될 수 있다. 구체적으로, 상기 에스테르화 반응 조건의 바람직한 예로는, 0 내지 5.0 kg/㎠, 더욱 바람직하게는 0.1 내지 3.0 kg/㎠의 압력, 200 내지 270 ℃, 더욱 바람직하게는 240 내지 260 ℃의 온도, 1 내지 15 시간, 더욱 바람직하게는 2 내지 8 시간의 반응 시간을 예시할 수 있다. 상기 에스테르화 반응에 참여하는 디카르복실산 성분과 디올 성분의 몰비는 1:1.05 내지 1:3.0 일 수 있고, 예를 들면, 사이클로헥산디메탄올의 함량이 상기 디카르복실산 성분 100중량부에 대하여, 10 내지 90중량부, 바람직하게는 20 내지 80중량부가 되도록, 전체 디카르복실산 성분 및 디올 성분을 투입할 수 있다. 상기 디카르복실산 성분에 대한 디올 성분의 몰비가 1.05 미만이면, 중합반응 시 미반응 디카르복실산 성분이 잔류하여 수지의 투명성이 저하될 우려가 있고, 몰비가 3.0을 초과하면, 중합반응속도가 낮아지거나 수지의 생산성이 저하될 우려가 있다. 상기 에스테르화 반응의 공정 시간 및 생산량 향상을 위하여 촉매를 선택적으로 사용할 수도 있고, 상기 에스테르화 반응은 배치(batch)식 또는 연속식으로 수행될 수 있으며, 각각의 원료는 별도로 투입될 수 있으나, 디올 성분에 디카르복실산 성분을 혼합한 슬러리 형태로 투입하는 것이 바람직하다. 그리고, 제2 폴리에스테르의 경우, 상온에서 고형분인 아이소소바이드 등의 디올 성분은 물 또는 에틸렌글리콜에 용해시킨 후, 테레프탈산 등의 디카르복실산 성분에 혼합하여 슬러리로 만들 수 있다. 또한, 디카르복실산 성분, 아이소소바이드 및 에틸렌글리콜 등의 디올 성분이 혼합된 슬러리에 물을 추가로 투입하여 아이소소바이드의 용해도를 증가시킬 수도 있으며, 60℃ 이상에서 슬러리를 제조하여 아이소소바이드가 용융된 상태의 슬러리를 사용할 수도 있다.
또한, 상기 에스테르화 반응 생성물을 중축합(poly-condensation) 반응시키는 단계는, 상기 디카르복실산 성분 및 디올 성분의 에스테르화 반응 생성물을 150 내지 300 ℃ 온도 및 400 내지 0.01 mmHg의 감압 조건에서 1 내지 24 시간 동안 반응시키는 단계일 수 있다. 이러한 중축합 반응은, 바람직하게는 200 내지 290 ℃, 더욱 바람직하게는 260 내지 280 ℃의 반응 온도 및 바람직하게는 100 내지 0.05 mmHg, 더욱 바람직하게는 10 내지 0.1 mmHg의 감압 조건에서 수행될 수 있다. 상기 중축합 반응의 감압 조건을 적용하면, 중축합 반응의 부산물인 글리콜을 제거할 수 있으나, 상기 중축합 반응이 400 내지 0.01 mmHg감압 조건 범위를 벗어나는 경우, 부산물의 제거가 불충분할 우려가 있다. 또한, 상기 중축합 반응이 150 내지 300 ℃ 온도 범위 밖에서 일어나는 경우, 제조되는 폴리에스테르 수지의 물성이 저하될 우려가 있다. 상기 중축합 반응은 최종 반응 생성물의 고유 점도가 적절한 수준에 이를 때까지 필요한 시간 동안, 예를 들면, 평균 체류 시간 1 내지 24 시간 동안 진행될 수 있다. 바람직하게는, 상기 중축합 반응의 최종 도달 진공도는 2.0 ㎜Hg 미만이고, 상기 에스테르화 반응 및 중축합 반응은 불활성 기체 분위기 하에서 수행될 수 있다.
상기 폴리에스테르의 제조에는, 중축합 촉매, 안정제, 정색제 등의 첨가제가 사용될 수 있다. 이러한 중축합 촉매 또는 안정제 등의 첨가제는, 상기 중축합 반응의 개시 전에 에스테르화 반응 또는 에스테르 교환 반응의 생성물에 첨가될 수 있고, 상기 에스테르화 반응 전에 디카르복실산 및 디올 화합물을 포함하는 혼합 슬러리 상에 첨가할 수 있으며, 상기 에스테르화 반응 단계 도중에 첨가될 수도 있다.
상기 중축합 촉매로는, 티타늄계 화합물, 게르마늄계 화합물, 안티몬계 화합물, 알루미늄계 화합물, 주석계 화합물 또는 이들의 혼합물을 사용할 수 있다. 상기 티타늄계 화합물의 예로는, 테트라에틸티타네이트, 아세틸트리프로필티타네이트, 테트라프로필티타네이트, 테트라부틸티타네이트, 폴리부틸티타네이트, 2-에틸헥실 티타네이트, 옥틸렌글리콜티타네이트, 락테이트티타네이트, 트리에탄올아민 티타네이트, 아세틸아세토네이트티타네이트, 에틸아세토아세틱에스테르티타네이트, 이소스테아릴티타네이트, 티타늄디옥사이드, 티타늄디옥사이드/실리콘디옥사이드공중합체, 티타늄디옥사이드/지르코늄디옥사이드 공중합체 등을 예시할 수 있고, 상기 게르마늄계 화합물의 예로는 게르마늄디옥사이드(germanium dioxide, GeO2), 게르마늄테트라클로라이드(germanium tetrachloride, GeCl4), 게르마늄에틸렌글리콕시드(germanium ethyleneglycoxide), 게르마늄아세테이트(germanium acetate), 이들을 이용한 공중합체, 이들의 혼합물 등을 예시할 수 있다.
상기 안정제로는, 인산, 트리메틸포스페이트, 트리에틸포스페이트 등의 인계 화합물을 사용할 수 있으며, 그 첨가량은 인 원소량을 기준으로 최종 폴리머(공중합 폴리에스테르 수지)의 중량 대비 10 내지 100 ppm일 수 있다. 상기 안정제의 첨가량이 10 ppm 미만이면 안정화 효과가 미흡할 수 있고 최종 제품의 외관이 노랗게 변할 수 있다. 또한, 상기 안정제의 첨가량이 100 ppm을 초과하면 원하는 고중합도의 폴리머를 얻지 못할 수 있다.
상기 정색제는 폴리머의 색상을 향상시키기 위해 첨가되는 것으로서, 코발트 아세테이트, 코발트 프로피오네이트 등의 통상적인 정색제를 사용할 수 있고, 필요에 따라, 유기화합물 정색제를 사용할 수도 있으며, 그 첨가량은 최종 폴리머(공중합 폴리에스테르 수지)의 중량 대비 0 내지 100 ppm일 수 있다.
본 발명에 따른 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드는, 필요에 따라, 전체 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 100중량부에 대하여, 예를 들면, 1 내지 30중량부, 바람직하게는 3 내지 20중량부의 다른 수지 성분(예를 들어, 폴리카보네이트, 폴리에틸렌, 폴리프로필렌, 폴리메틸메타크릴레이트 등) 및 첨가제 성분이 더욱 포함될 수 있다.
상기 블렌드에 포함될 수 있는 첨가제로는 산화안정제, 열안정제, 광안정제, UV안정제 등의 블렌드의 가공, 보관 및 사용 중에 블렌드의 물성을 보존하는 능력을 가진 안정제류를 예시할 수 있고, 상용화제, 기핵제, 주쇄연결제(Chain-extender), 활제(Lubricant), 충격보강제, 착색제, 왁스(Wax), 이형제, 방향제, 발포제, 가소제, 가수분해억제제, 미반응형 물질 및 반응형 물질 등을 블렌드의 가공, 보관 및 사용을 위해 용도에 맞게 사용할 수 있다. 특히, 글리시딜(Glycidyl-)기, 말레익 언하이드라이드(Maleic anhydride-)기, 에폭시(Epoxy-)기, 이소시아네이트(Isocyanate-)기, 아미노 (Amino-)기, 카르복실릭 엑시드(Carboxyl acid)기, 옥사졸린(Oxazoline-)기 등의 반응성 기능기 등을 포함하는 상용화제(예를 들면, 글리시딜(Glycidyl) 반응기를 주쇄 내에 약 6~8% 함유한 에틸렌 계열의 반응형 코폴리머(Copolymer) 또는 터폴리머(Terpolymer))는 폴리유산 수지 및 공중합 폴리에스테르 수지의 말단(카르복실릭 엑시드(Carboxyl acid, -COOH) 및 하이드록실기(Hydroxyl group, -OH))에 각각 반응하여, 폴리유산 수지와 공중합 폴리에스테르 수지의 상용성을 증가시킬 수 있으며, 위의 반응성 기능기와 결합된 분자 구조 또는 주쇄의 구조에 따라 충격보강 효과 등의 추가적인 효과를 얻을 수 있다. 상기 반응성기를 포함하는 상용화제의 비한정적인 예로는, 아디픽 엑시드(Adipic Acid), 헥사메틸렌 다이아민(Hexamethlylene diamine), 에폭시계열, PPDI(p-Phenylene diisocyanate), HDI(1,6-Hexamethylene diisocyanate), TDI(Toluene diisocyanate), NDI(1,5-Naphthalene diisocyanate), IPDI(Isoporon diisocyanate), MDI(4,4-Diphenylmethane diisocyanate), H12MDI(Cyclohexylmethane diisocyanate) 에틸렌-글리시딜메타크릴레이트(Ethylene-Glycidylmetacrylate), 에틸렌-글리시딜아크릴레이트(Ethylene-Glycidylacrylate), 에틸렌-아크릴릭에스터-글리시딜아크릴레이트(Ethylene-Acrylic Ester-Glycidyl Acrylate) 에틸렌-아크릴릭에스터-글리시딜메타크릴레이트(Ethylene-Acrylic Ester-Glycidyl Methacrylate), 반응성 폴리스티렌(Reactive Polystylene, Epocros) 등을 예시할 수 있고, 상기 첨가제는 용도와 목적에 맞게 사용하되 위에 언급한 것에 한정되지 아니한다.
본 발명에 따른 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드는, 통상의 블렌딩 방법으로 제조될 수 있으며, 예를 들면, 사출, 압출, 컴파운딩 공정 등의 성형 방법에 의하여 성형될 수 있다. 즉, 단순 블렌딩하여 바로 압출이나 사출할 수 있으며, 또는 블렌딩하여 컴파운딩 압출하면서 냉각 펠렛화한 후, 결정화하고, 얻어진 펠렛 형태의 블렌드 칩을 이용하여 다시 압출이나 사출의 용도로 사용할 수 있다.
본 발명에 따른 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드에 있어서, 상기 폴리유산 수지 및 상기 공중합 폴리에스테르 수지 내의 아이소바이드 잔기(전체 바이오 소재)의 함량은 전체 블렌드에 대하여, 60 내지 95중량%, 바람직하게는 65 내지 94중량%, 더욱 바람직하게는 70 내지 93중량%, 가장 바람직하게는 75 내지 92중량%이다. 이에 따라, 상기 폴리유산 수지 및 상기 공중합 폴리에스테르 수지의 함량은 전체 바이오 소재의 함량이 상기 범위를 벗어나지 않는 범위 내에서, 사용될 수 있으며, 예를 들면, 상기 폴리유산 수지의 함량은 60 내지 95중량%, 바람직하게는 65 내지 90중량%일 수 있고, 상기 공중합 폴리에스테르 수지의 함량은 5 내지 40중량%, 바람직하게는 10 내지 35중량%일 수 있고, 상기 첨가제가 전체 블렌드 100중량부에 대하여 1 내지 30중량부 첨가될 수 있다. 상기 폴리유산 수지 및 상기 공중합 폴리에스테르 수지 내의 아이소바이드 잔기(전체 바이오 소재)의 함량이 60중량% 미만이면, 폴리유산 수지의 장점인 생분해성 특성 등의 효과가 발현되지 못할 우려가 있고, 95중량%를 초과하면, 블렌드의 내충격성 및 내열성이 떨어져 다양한 성형제품에 사용되지 못할 우려가 있다.
본 발명의 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드를 이용하여 3.0㎜ 두께의 시편을 제조한 후, 노치 아이조드 충격강도(izod impact strength, ASTM D256 방법, 측정온도: 23℃)를 측정하면, 50 J/m 이상, 바람직하게는 70 J/m 이상, 더욱 바람직하게는 100 J/m 이상, 가장 바람직하게는 150 J/m 이상의 충격강도를 나타낸다.
또한, 상기 블렌드를 이용하여 127 mm * 13 mm * 3~13 ㎜ 크기의 시편을 제조한 후, 열변형온도(Heat Distortion Temperature 또는 Heat Deflection Temperature: HDT, ASTM D648 방법 중 시편에 가해지는 압력이 0.455 MPa인 방법)를 측정하면, 70℃ 이상, 바람직하게는 75℃ 이상의 열변형온도를 나타낸다.
상기 블렌드가 우수한 내충격성 및 내열성(열변형온도)를 나타내는 것은 결정성(semi-crystalline) 고분자인 폴리유산 수지가 높은 함량으로 포함된 블렌드의 경우, 블렌드의 상용성이 우수하고, 폴리유산 수지가 쉽게 결정화되기 때문인 것으로 판단된다.
본 발명에 따른 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드는 당업계에 공지된 통상의 사출, 압출, 압출 블로우, 사출 블로우 및 프로파일 압출 등의 성형공정 및 이를 이용한 열성형 공정과 같은 후가공 등을 통해서 성형되어 필요에 따라 적절한 형상의 성형제품(실(Fiber), 사출품, 시트 및 필름)으로 제조될 수 있다.
이하, 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로써, 본 발명의 범위가 하기 실시예에 의해 한정되는 것은 아니다.
또한, 하기 실시예 및 비교예에 있어서, 폴리머(블렌드)의 성능 평가 방법은 다음과 같다.
(1) 내열성(열변형온도(HDT)): 상기 블렌드를 이용하여 127 mm * 13 mm * 3~13 ㎜ 크기의 시편을 제조한 후, 열변형온도(Heat Distortion Temperature 또는 Heat Deflection Temperature: HDT, ASTM D648 방법 중 시편에 가해지는 압력이 0.455 MPa인 방법)를 측정함.
(2) 노치 아이조드 충격강도: 상기 블렌드를 이용하여 3.0㎜ 두께의 시편을 제조하고, ASTM D256에 따라 노치(Notch) 후, 23℃에서 아이조드(Izod) 충격강도 측정기기로 측정함.
(3) 유해물질 함유 여부 확인: 핵자기 공명 분석기(NMR)를 이용하여, 제품 내 유해 물질(비스페놀-A(Bisphenol-A) 등)의 존재 및 함량을 확인함.
[제조예 1] 공중합 폴리에스테르 수지의 제조
디카르복실산산 성분으로서 테레프탈산 6몰 및 디올 성분으로서 테레프탈산 6몰을 기준으로, 1,4-사이클로헥산디메탄올 138g, 에틸렌글리콜 313g 및 아이소소바이드 105g을 교반기와 유출 콘덴서를 구비한 3L 반응기에서 혼합하면서, 온도를 서서히 255℃까지 끌어올려 에스테르화 반응시켰다. 이때, 발생하는 물은 계외로 유출시켰으며, 물의 발생 및 유출이 종료되면 교반기와 냉각 콘덴서 및 진공 시스템이 부착된 중축합 반응기로 상기 반응물을 옮겼다. 상기 에스테르화 반응물에 촉매, 안정제, 정색제를 적정비율로 첨가한 후에 반응기 내부온도를 240℃에서 275℃까지 올리면서 압력을 1차로 상압에서 50mmHg까지 감압하며 40분간 저 진공반응으로 에틸렌 글리콜을 빼내고, 다시 0.1mmHg까지 서서히 감압하여 고 진공하에서 원하는 고유점도가 될 때까지 중축합 반응시켜 공중합 폴리에스테르 수지를 제조하였다. 제조된 공중합 폴리에스테르 수지의 중량평균분자량(Mw)은 63,000(g/mol), 고유점도는 0.76(dl/g)이었다.
[제조예 2] 공중합 폴리에스테르 수지의 제조
산 성분으로서 테레프탈산 6몰 및 디올 성분으로서 테레프탈산 6몰을 기준으로, 1,4-사이클로헥산디메탄올 565g, 에틸렌글리콜 96g 및 아이소소바이드 789g을 사용한 것을 제외하고는 상기 제조예 1과 동일한 방법으로 공중합 폴리에스테르 수지를 제조하였다. 제조된 수지의 중량평균분자량(Mw)은 37,000(g/mol), 고유점도는 0.65(dl/g)이었다.
[실시예 1] 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드의 제조 및 평가
수평균 분자량 100,000인 폴리유산 수지 칩 54중량%, 상기 제조예 2에서 제조된 공중합 폴리에스테르 수지 칩 36중량%, 및 글리시딜(Glycidyl) 반응기를 주쇄내에 약 8% 함유한 에틸렌 계열 반응형 터폴리머 10중량%를 트윈 스크류 압출기(Twin screw Extruder Machine: TEM)에 넣고, 실린더 온도 220℃, 다이 온도 210℃ 및 스크류 속도 200rpm으로 블렌딩하여, 펠렛 형태의 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드를 제조하였다. 전술한 방법을 사용하여, 열변형온도, 노치 아이조드(Izod) 충격강도 및 유해 물질의 함유 여부를 측정하고, 그 결과를 하기 표 1에 나타내었다.
[실시예 2] 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드의 제조 및 평가
수평균 분자량 100,000인 폴리유산 수지 칩 68중량%, 상기 제조예 2에서 제조된 공중합 폴리에스테르 수지 칩 20중량%, 및 글리시딜(Glycidyl) 반응기를 주쇄내에 약 8% 함유한 에틸렌 계열의 반응형 터폴리머(Terpolymer) 12중량%을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 펠렛 형태의 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드를 제조하였으며, 열변형온도, 노치 아이조드(Izod) 충격강도 및 유해 물질의 함유 여부를 측정하고, 그 결과를 하기 표 1에 나타내었다.
[실시예 3] 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드의 제조 및 평가
수평균 분자량 100,000인 폴리유산 수지 칩 80중량%, 제조예 2에서 제조된 공중합 폴리에스테르 수지 칩 10중량%, 및 글리시딜(Glycidyl) 반응기를 주쇄 내에 약 6% 함유한 에틸렌 계열의 반응형 터폴리머(Terpolymer) 10중량%를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 펠렛 형태의 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드를 제조하였으며, 열변형온도, 노치 아이조드(Izod) 충격강도 및 유해 물질의 함유 여부를 측정하고, 그 결과를 하기 표 1에 나타내었다.
[실시예 4] 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드의 제조 및 평가
수평균 분자량 100,000인 폴리유산 수지 칩 88중량%, 제조예 2에서 제조된 공중합 폴리에스테르 수지 칩 5중량%, 및 글리시딜(Glycidyl) 반응기를 주쇄 내에 약 8% 함유한 에틸렌 계열의 반응형 터폴리머(Terpolymer) 7중량%를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 펠렛 형태의 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드를 제조하였으며, 열변형온도, 노치 아이조드(Izod) 충격강도 및 유해 물질의 함유 여부를 측정하고, 그 결과를 하기 표 1에 나타내었다.
[실시예 5] 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드의 제조 및 평가
수평균 분자량 100,000인 폴리유산 수지 칩 94중량%, 제조예 1에서 제조된 공중합 폴리에스테르 수지 칩 3중량%, 및 글리시딜(Glycidyl) 반응기를 주쇄 내에 약 6% 함유한 에틸렌 계열의 반응형 터폴리머(Terpolymer) 3중량%를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 펠렛 형태의 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드를 제조하였으며, 열변형온도, 노치 아이조드(Izod) 충격강도 및 유해 물질의 함유 여부를 측정하고, 그 결과를 하기 표 1에 나타내었다.
[비교예 1] 펠렛 형태의 폴리유산 수지 제조 및 평가
공중합 폴리에스테르 수지 및 글리시딜(Glycidyl) 반응기를 주쇄 내에 약 6% 함유한 에틸렌 계열의 반응형 터폴리머(Terpolymer)를 사용하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 펠렛 형태의 폴리유산 수지를 제조하였으며, 열변형온도, 노치 아이조드(Izod) 충격강도 및 유해 물질의 함유 여부를 측정하고, 그 결과를 하기 표 1에 나타내었다.
[비교예 2] 폴리유산 수지 및 폴리카보네이트 수지 블렌드의 제조 및 평가
수평균 분자량 100,000인 폴리유산 수지 칩 70중량%와 폴리카보네이트(PC) 수지 칩 30중량%을 하케(Haake) 컴파운딩 설비에 넣고, 실린더 온도 260℃, 다이 온도 255℃ 및 스크류 속도 50rpm으로 블렌딩하여, 펠렛 형태의 폴리유산 수지 및 폴리카보네이트 수지 블렌드를 제조하였다. 전술한 방법을 사용하여, 열변형온도, 노치 아이조드(Izod) 충격강도 및 유해 물질의 함유 여부를 측정하고, 그 결과를 하기 표 1에 나타내었다.
표 1
Figure PCTKR2012009573-appb-T000001
상기 표 1로부터, 본 발명에 따른 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드는, 노치 아이조드 충격강도가 50 내지 300 J/m로 우수하고, 열변형온도가 70 내지 75℃로 우수함을 알 수 있다. 또한, 유해물질(비스페놀-A 등)이 유출되지 않을 뿐 아니라 바이오 소재(폴리유산 수지 및 공중합 폴리에스테르 수지의 아이소바이드 잔기) 함량비(중량%)가 60 내지 95중량%로 높은 만큼 친환경적임을 알 수 있다.

Claims (14)

  1. 폴리유산 수지; 및
    테레프탈산 잔기를 포함하는 디카르복실산 성분 및 3 내지 99몰%의 사이클로헥산디메탄올 잔기 및 1 내지 60몰%의 아이소소바이드 잔기를 포함하는 디올 성분을 포함하는 공중합 폴리에스테르 수지를 포함하며,
    상기 폴리유산 수지의 함량 및 상기 공중합 폴리에스테르 수지 내의 아이소소바이드 잔기의 함량의 합이 전체 블렌드에 대하여 60 내지 95중량%인 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
  2. 제1항에 있어서, 상기 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드의 노치 아이조드 충격강도(ASTM D256 방법, 측정온도: 23℃)는 50 J/m 이상이고, 열변형온도(ASTM D648 방법, 시편에 가해지는 압력: 0.455 MPa)는 70℃ 이상인 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
  3. 제1항에 있어서, 상기 폴리유산 수지 및 상기 공중합 폴리에스테르 수지 내의 아이소소바이드 잔기의 함량이 전체 블렌드에 대하여 65 내지 94중량%이고, 상기 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드의 노치 아이조드 충격강도(ASTM D256 방법, 측정온도: 23℃)는 70 J/m 이상이고, 열변형온도(ASTM D648 방법, 시편에 가해지는 압력: 0.455 MPa)는 70℃ 이상인 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
  4. 제1항에 있어서, 상기 폴리유산 수지 및 상기 공중합 폴리에스테르 수지 내의 아이소소바이드 잔기의 함량이 전체 블렌드에 대하여 70 내지 93중량%이고, 상기 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드의 노치 아이조드 충격강도(ASTM D256 방법, 측정온도: 23℃)는 100 J/m 이상이고, 열변형온도(ASTM D648 방법, 시편에 가해지는 압력: 0.455 MPa)는 70℃ 이상인 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
  5. 제1항에 있어서, 상기 폴리유산 수지 및 상기 공중합 폴리에스테르 수지 내의 아이소소바이드 잔기의 함량이 전체 블렌드에 대하여 75 내지 92중량%이고, 상기 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드의 노치 아이조드 충격강도(ASTM D256 방법, 측정온도: 23℃)는 150 J/m 이상이고, 열변형온도(ASTM D648 방법, 시편에 가해지는 압력: 0.455 MPa)는 70℃ 이상인 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
  6. 제1항에 있어서, 상기 폴리유산 수지는 수평균 분자량은 10,000 내지 500,000인 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
  7. 제1항에 있어서, 상기 디카르복실산 성분은 0 내지 50몰%의 탄소수 8 내지 14의 방향족 디카르복실산 잔기, 탄소수 4 내지 12의 지방족 디카르복실산 잔기 및 이들의 혼합물로 이루어진 군으로부터 선택되는 디카르복실산 잔기를 더욱 포함하는 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
  8. 제1항에 있어서, 상기 사이클로헥산디메탄올은 1,2-사이클로헥산디메탄올, 1,3-사이클로헥산디메탄올, 1,4-사이클로헥산디메탄올 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
  9. 제1항에 있어서, 상기 아이소소바이드 잔기의 함량(ISB mol%) 및 사이클로헥산디메탄올 잔기의 함량(CHDM mol%)은 하기 수학식 1로 표현되는 범위인 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
    [수학식 1] 0.0012(CHDM mol%)2-0.2401(CHDM mol%)+11.136 ≤ ISB mol% ≤ -0.0122(CHDM mol%)2+0.0243(CHDM mol%)+79.846
  10. 제1항에 있어서, 상기 디올 성분은 8 내지 91몰%의 사이클로헥산디메탄올 잔기 및 4 내지 40몰%의 아이소소바이드 잔기를 포함하는 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
  11. 제1항에 있어서, 상기 디올 성분은, 0 내지 94몰%의 탄소수 2 내지 20의 지방족 디올 잔기(사이클로헥산디메탄올 잔기 및 아이소소바이드 잔기 제외)를 더욱 포함하는 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
  12. 제11항에 있어서, 상기 지방족 디올 잔기는 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 프로판디올, 1,4-부탄디올, 펜탄디올, 헥산디올, 네오펜틸 글리콜(2,2-디메틸-1,3-프로판디올), 1,2-사이클로헥산디올, 1,4-사이클로헥산디올, 1,2-사이클로헥산디메탄올, 1,3-사이클로헥산디메탄올, 테트라메틸사이클로부탄디올 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
  13. 제1항에 있어서, 상기 사이클로헥산디메탄올 잔기의 함량은 상기 디카르복실산 성분 100중량부에 대하여, 10 내지 90중량부인 것인, 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드.
  14. 제1항 내지 제13항 중 어느 한 항에 따른 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드를 성형하여 제조된 성형제품.
PCT/KR2012/009573 2011-11-18 2012-11-14 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품 WO2013073819A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110120840A KR101801702B1 (ko) 2011-11-18 2011-11-18 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
KR10-2011-0120840 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073819A1 true WO2013073819A1 (ko) 2013-05-23

Family

ID=48429836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009573 WO2013073819A1 (ko) 2011-11-18 2012-11-14 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품

Country Status (3)

Country Link
KR (1) KR101801702B1 (ko)
TW (1) TWI560237B (ko)
WO (1) WO2013073819A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164169A (zh) * 2014-02-07 2016-11-23 Sk化学株式会社 用于方向盘远端控制座圈的聚合树脂组合物
WO2019010767A1 (zh) * 2017-07-11 2019-01-17 河南谷润聚合物有限公司 一种pbat-pla共聚酯的共聚合成方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983574B1 (ko) * 2007-02-15 2010-09-27 엘지디스플레이 주식회사 액정표시장치
WO2015034285A1 (ko) * 2013-09-04 2015-03-12 에스케이케미칼주식회사 안경테용 고분자 수지 조성물
KR102553772B1 (ko) * 2016-04-06 2023-07-07 에스케이케미칼 주식회사 폴리에스테르 수지
WO2019177297A1 (ko) 2018-03-12 2019-09-19 에스케이케미칼 주식회사 폴리에스테르 수지 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099671A (ja) * 2002-09-06 2004-04-02 Unitika Ltd 生分解性フィルムおよびその製造方法
JP2004250549A (ja) * 2003-02-19 2004-09-09 Toray Ind Inc ポリ乳酸樹脂組成物及びその製造方法
JP2005248117A (ja) * 2004-03-08 2005-09-15 Dainippon Ink & Chem Inc ポリ乳酸樹脂組成物及びその製造方法
JP2005336288A (ja) * 2004-05-26 2005-12-08 Dainippon Ink & Chem Inc 結晶性ポリ乳酸樹脂組成物及びそれを用いて得られる成形品
JP2010081979A (ja) * 2008-09-29 2010-04-15 Terumo Corp 医療用具、医療用材料およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063464A (en) * 1998-04-23 2000-05-16 Hna Holdings, Inc. Isosorbide containing polyesters and methods for making same
JP2004057016A (ja) * 2002-07-25 2004-02-26 Unitika Ltd 生分解性農業用マルチ
JP4808367B2 (ja) * 2003-03-06 2011-11-02 ユニチカ株式会社 ポリ乳酸系成形体の製造方法
JP4313076B2 (ja) * 2003-04-16 2009-08-12 ユニチカ株式会社 生分解性ポリエステル系フィルムおよびその製造方法
JP2008081531A (ja) * 2006-09-26 2008-04-10 Dainippon Printing Co Ltd 樹脂組成物およびその射出成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099671A (ja) * 2002-09-06 2004-04-02 Unitika Ltd 生分解性フィルムおよびその製造方法
JP2004250549A (ja) * 2003-02-19 2004-09-09 Toray Ind Inc ポリ乳酸樹脂組成物及びその製造方法
JP2005248117A (ja) * 2004-03-08 2005-09-15 Dainippon Ink & Chem Inc ポリ乳酸樹脂組成物及びその製造方法
JP2005336288A (ja) * 2004-05-26 2005-12-08 Dainippon Ink & Chem Inc 結晶性ポリ乳酸樹脂組成物及びそれを用いて得られる成形品
JP2010081979A (ja) * 2008-09-29 2010-04-15 Terumo Corp 医療用具、医療用材料およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164169A (zh) * 2014-02-07 2016-11-23 Sk化学株式会社 用于方向盘远端控制座圈的聚合树脂组合物
CN106164169B (zh) * 2014-02-07 2018-05-08 Sk化学株式会社 用于方向盘远端控制座圈的聚合树脂组合物
US10138371B2 (en) 2014-02-07 2018-11-27 Sk Chemicals Co., Ltd. Resin composition for forming steering wheel remote control bezel
WO2019010767A1 (zh) * 2017-07-11 2019-01-17 河南谷润聚合物有限公司 一种pbat-pla共聚酯的共聚合成方法

Also Published As

Publication number Publication date
TW201326301A (zh) 2013-07-01
KR20130055207A (ko) 2013-05-28
TWI560237B (en) 2016-12-01
KR101801702B1 (ko) 2017-11-28

Similar Documents

Publication Publication Date Title
WO2013073807A1 (ko) 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
WO2011145899A2 (ko) 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
JP6475121B2 (ja) ポリエステル樹脂およびその製造方法
US9388309B2 (en) Polyester resin composition and a production method therefor
WO2013062286A1 (ko) 폴리에스테르/폴리카보네이트 블렌드
WO2013073819A1 (ko) 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
WO2013073818A1 (ko) 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
JP5530490B2 (ja) 透明共重合ポリエステル、透明共重合ポリエステルの調製方法、および、透明共重合ポリエステルを含んでなる物品
KR101868990B1 (ko) 공중합 폴리에스테르 수지 및 이의 제조방법
JP2004155871A (ja) ポリエステル樹脂の製造方法及びポリエステル樹脂
KR101334347B1 (ko) 폴리카보네이트와 공중합 폴리에스테르 수지를 포함하는플라스틱 다층벽 시트용 조성물, 시트 및 시트의 제조방법
KR101334346B1 (ko) 고용융강도를 갖는 플라스틱 다층벽 시트용 조성물, 시트및 시트의 제조방법
JP2002047342A (ja) ポリエステルブロック共重合体組成物及びその製造方法
JP2007039578A (ja) ポリトリメチレンテレフタレート系ポリエステル成形品及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849534

Country of ref document: EP

Kind code of ref document: A1