WO2016043440A1 - 3d 인쇄용 폴리유산 수지 조성물 - Google Patents

3d 인쇄용 폴리유산 수지 조성물 Download PDF

Info

Publication number
WO2016043440A1
WO2016043440A1 PCT/KR2015/008762 KR2015008762W WO2016043440A1 WO 2016043440 A1 WO2016043440 A1 WO 2016043440A1 KR 2015008762 W KR2015008762 W KR 2015008762W WO 2016043440 A1 WO2016043440 A1 WO 2016043440A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
repeating unit
resin composition
acid resin
printing
Prior art date
Application number
PCT/KR2015/008762
Other languages
English (en)
French (fr)
Inventor
김민영
김종량
김태영
전성완
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Priority to JP2017514805A priority Critical patent/JP6629303B2/ja
Priority to US15/504,286 priority patent/US10246799B2/en
Priority to CN201580045833.2A priority patent/CN107075114B/zh
Priority to ES15842012T priority patent/ES2762582T3/es
Priority to EP15842012.5A priority patent/EP3196227B1/en
Publication of WO2016043440A1 publication Critical patent/WO2016043440A1/ko

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/428Lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • C08G18/831Chemically modified polymers by oxygen-containing compounds inclusive of carbonic acid halogenides, carboxylic acid halogenides and epoxy halides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide

Definitions

  • the present invention relates to a polylactic acid resin composition for 3D printing that exhibits a lower melting temperature than conventional polylactic acid resins, enables low-temperature processing and high-speed processing, has a high solidification rate, and exhibits environmentally friendly characteristics.
  • 3D printing is a method of manufacturing a three-dimensional object, unlike conventional 2D (plane) printing, which draws an image on the surface of paper or an object, and inks used as a raw material that constitutes the object are CAD (computer- aided design) It is a method of printing and manufacturing in the form determined according to the design. 3D printing is mainly used for rapid prototyping, which reduces the time and cost of prototyping. In addition, the applicable fields of 3D printing is very diverse, such as personal small daily necessities, medical products, automotive products, building products.
  • 3D printing methods include laser-based methods such as stereolithography (SLA), selective laser sintering (SLS), and UV inkjet, as well as transit development plans (TDPs) and fused deposition modeling (FDM). Classified as a method that does not use a laser, such as).
  • SLA stereolithography
  • SLS selective laser sintering
  • TDPs transit development plans
  • FDM fused deposition modeling
  • 3D printing materials that can be produced using the 3D printing method is a variety of thermoplastic, metal, paper, nylon, rubber, resin, wood, sand, ceramics.
  • the FDM method is a 3D printing technology most commonly used among the various types, and is a method of melting and extruding a thermoplastic resin to mold it.
  • the main raw materials used in this method include acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA).
  • ABS one of the major raw materials, is an engineering plastic with good mechanical properties such as toughness, and can be used for various purposes in the 3D printing market.However, it needs high temperature when melted, severe deformation during processing such as shrinkage, and toxic. A gas is generated that is not suitable for work in an office or studio.
  • PLA resin which has recently attracted attention as a 3D printing material, has no toxicity during processing, and can be processed at low temperatures due to its relatively low melting temperature, and the end product as a bio-derived material is also an environmentally degradable material.
  • PLA resin has a smaller shrinkage rate when cooling, and is transparent and easy to dye, compared to olefin resin.
  • PLA resin has the advantages as described above, but the low glass transition temperature (Tg) and crystallinity (crystallinity) is slow to solidification and thermal deformation, elongation (elongation) to less than 5% level is not easy to break due to lack of flexibility.
  • Tg glass transition temperature
  • crystallinity crystallinity
  • elongation elongation
  • mechanical properties such as impact strength and toughness.
  • PLA resins are suitably modified for use in processing.
  • a plasticizer or a chain extension agent (C / E agent) or the like is added to the PLA resin, or a rubber component is further blended to give the PLA resin flexibility, and various reinforcing agents are added.
  • C / E agent chain extension agent
  • various reinforcing agents are added.
  • the present inventors studied to provide a polylactic acid resin composition useful for 3D printing by improving flexibility and thermal properties, and as a result, the present invention was completed by developing a PLA resin copolymerized with a flexible component.
  • An object of the present invention is to provide a polylactic acid resin composition which is capable of low temperature processing and high speed processing, has improved flexibility and thermal properties, and is useful for 3D printing.
  • Another object of the present invention to provide a 3D printing PLA filament comprising the polylactic acid resin composition.
  • Still another object of the present invention is to provide a method for 3D printing using the polylactic acid resin composition.
  • the present invention (a) a hard segment comprising a polylactic acid repeating unit of the formula (1); And (b) a soft segment comprising a polyurethane polyol repeating unit in which the polyether polyol repeating units of Formula 2 are linearly connected through a urethane bond, and having a melting temperature of 170 ° C. or lower and 55 ° C. or lower.
  • a polylactic acid resin composition for 3D printing having a glass transition temperature and a number average molecular weight of 50,000 or more and a viscosity measured at a shear rate of 100 s ⁇ 1 at 200 ° C. of 1,000 Pa ⁇ s or less:
  • n is an integer of 700 to 5,000;
  • A is a linear or branched alkylene group having 2 to 5 carbon atoms, m is an integer of 10 to 100.
  • the present invention provides a PLA filament for 3D comprising the polylactic acid resin composition.
  • the present invention provides a method for 3D printing using the polylactic acid resin composition.
  • the polylactic acid resin composition according to the present invention not only has environmentally friendly characteristics, but also has a low melting temperature and a low viscosity compared to the existing polylactic acid resin, so that it can be processed at a low temperature, and the crystallization rate is fast, so that the solidification is quick even after printing. Can be. Therefore, it is useful for 3D printing and can greatly contribute to improving workability and working environment.
  • the present invention (a) a hard segment comprising a polylactic acid repeating unit of the formula (1); And (b) a soft segment comprising a polyurethane polyol repeating unit in which the polyether polyol repeating units of Formula 2 are linearly connected through a urethane bond, and having a melting temperature of 170 ° C. or lower and 55 ° C. or lower.
  • a polylactic acid resin composition for 3D printing having a glass transition temperature and a number average molecular weight of 50,000 or more and a viscosity measured at a shear rate of 100 s ⁇ 1 at 200 ° C. of 1,000 Pa ⁇ s or less:
  • n is an integer of 700 to 5,000;
  • A is a linear or branched alkylene group having 2 to 5 carbon atoms, m is an integer of 10 to 100.
  • the polylactic acid repeating unit of Formula 1 included in the hard segment may be obtained according to a method of preparing a polylactic acid homopolymer well known to those skilled in the art.
  • L-lactide or D-lactide which is a cyclic dimer, can be obtained by ring-opening polymerization from L-lactic acid or D-lactic acid, or by direct dehydration polycondensation of L-lactic acid or D-lactic acid. It is preferable to obtain a polylactic acid repeating unit having a higher degree of polymerization through the ring-opening polymerization method.
  • the polylactic acid repeating unit may be prepared to copolymerize L-lactide and D-lactide in a predetermined ratio to exhibit amorphousness, in order to further improve the heat resistance of the polylactic acid resin composition, the L-lactide Or a method of polymerization using only one of D-lactide.
  • the terminal hydroxyl groups of the polyether polyol repeating units may react with the diisocyanate compound to form a urethane bond, and the polyether polyol repeating units are linearly connected to each other through the urethane bond to form the polyurethane polyol repeating unit. Can be achieved.
  • the polylactic acid resin composition according to the present invention has a lower melting temperature (Tm) and glass transition temperature (Tg) than the conventional polylactic acid resin by including such a polyurethane repeating unit as a soft segment, and has high flexibility and crystallization. It can indicate speed.
  • the polyether polyol repeating unit may be composed of, for example, a polyether polyol (co) polymer obtained by ring-opening (co) polymerizing one or more alkylene oxides or a repeating unit thereof.
  • alkylene oxide include ethylene oxide, propylene oxide, butylene oxide or tetrahydrofuran.
  • polyether polyol repeating units obtained therefrom include repeating units of polyethylene glycol (PEG), repeating units of poly (1,2-propylene glycol), repeating units of poly (1,3-propanediol), poly Repeating units of tetramethylene glycol, repeating units of polybutylene glycol, repeating units of polyol copolymerized with propylene oxide and tetrahydrofuran, repeating units of polyol copolymerized with ethylene oxide and tetrahydrofuran, and ethylene oxide and propylene oxide It may be at least one selected from the group consisting of repeating units of the copolymerized polyol.
  • the polyether polyol repeating unit may be a repeating unit of poly (1,3-propanediol) or polytetramethylene glycol. It is preferable to use repeating units.
  • the polyether polyol repeating unit may have a number average molecular weight of about 400 to 9,000, preferably 1,000 to 3,000.
  • the diisocyanate compound which binds with the terminal hydroxyl group of the polyether polyol repeating unit to form a urethane bond may be any compound having two isocyanate groups in a molecule.
  • diisocyanate compounds include 1,6-hexamethylene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 1,3-xylene diisocyanate, 1,4-xylene diisocyanate, 1 , 5-naphthalene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 3,3'-dimethyl-4,4'-diphenylmethane diisocyanate, 4,4'-bisphenylene diisocyanate, At least one selected from the group consisting of isophorone diisocyanate and hydrogenated diphenylmethane diisocyanate, and various diisocyanate compounds well known to those skilled
  • the polylactic acid resin composition according to an embodiment of the present invention may include a block copolymer copolymerized with the hard segment and soft segment described above. More specifically, the block copolymer may have a structure in which the polylactic acid repeating unit of the hard segment is combined with the polyurethane polyol repeating unit of the soft segment, and specifically, the terminal carboxyl group of the polylactic acid repeating unit is the polyurethane The terminal hydroxyl group of the polyol repeat unit may be linked by an ester bond.
  • the chemical structure of such block copolymers can be represented by the following general formula:
  • E represents a polyether polyol repeating unit
  • Ester represents an ester bond.
  • the polylactic acid repeating unit included in the polylactic acid resin composition does not have to take the form of a block copolymer in which all of them are combined with the polyurethane polyol repeating unit, and at least some of them are the polyurethane polyol repeating unit. It may also have the form of a polylactic acid homopolymer without being combined with. In this case, the polylactic acid resin composition may be in the form of a mixture including the block copolymer described above and a polylactic acid repeating unit that is not bonded to the polyurethane repeating unit, that is, a polylactic acid homopolymer.
  • the polylactic acid resin composition of the present invention is based on its total weight (the weight of the block copolymer described above, or optionally the sum of the weight with such a single polymer when a polylactic acid homopolymer is included), the hard segment about 65 To 95% by weight and about 5 to 35% by weight soft segment.
  • the hard segment about 65 To 95% by weight and about 5 to 35% by weight soft segment.
  • the hard segment about 65 To 95% by weight and about 5 to 35% by weight soft segment.
  • the hard segment about 65 To 95% by weight and about 5 to 35% by weight soft segment.
  • the hard segment about 65 To 95% by weight and about 5 to 35% by weight soft segment.
  • the hard segment about 65 To 95% by weight and about 5 to 35% by weight soft segment.
  • the hard segment about 65 To 95% by weight and about 5 to 35% by weight soft segment.
  • the hard segment about 65 To 95% by weight and about 5 to 35% by weight soft segment.
  • the hard segment about 65 To 95% by weight and about
  • the content of the soft segment is 35% by weight or less, a high molecular weight polylactic acid resin may be provided, and thus, mechanical properties such as strength of the product may be well represented.
  • the content of the soft segment is 5% by weight or more, it is preferable because the flexibility of the polylactic acid resin and its products can be improved.
  • the glass transition temperature of the polylactic acid resin may be appropriate, and thus the flexibility of the product may be improved, and since the polyol repeating unit of the soft segment performs a proper role as an initiator, the polymerization conversion is improved and a high molecular weight polylactic acid resin is prepared. Can be.
  • the polylactic acid resin composition according to the present invention may further include various additives selected from the group consisting of antioxidants, reinforcing agents, and combinations thereof.
  • the polylactic acid resin composition may further include an antioxidant (or stabilizer) to prevent the soft segment and the like from being oxidized or pyrolyzed in the manufacturing process.
  • the antioxidant may be one or more selected from the group consisting of hindered phenol-based antioxidants, amine-based antioxidants, thio-based antioxidants and phosphite-based antioxidants, the type of these antioxidants will be apparent to those skilled in the art Is known.
  • the antioxidant may be included in an amount of 100 to 3,000 ppmw based on the total weight of the monomers used for forming the repeating units of the polylactic acid resin composition.
  • the polylactic acid resin composition may further include a reinforcing agent to improve blocking resistance.
  • a reinforcing agent to improve blocking resistance.
  • examples thereof may be one or more selected from the group consisting of silica, colloidal silica, alumina, alumina sol, talc, mica, and calcium carbonate, and specific types and methods of obtaining these reinforcing agents are obvious to those skilled in the art.
  • the polylactic acid resin composition is a variety of additives known to be usable for 3D printing, such as various plasticizers, UV stabilizers, color inhibitors, matte agents, deodorants, flame retardants, weathering agents, antistatic agents known to be usable for 3D printing within a range that does not impair the effect , Release agents, antioxidants, ion exchangers, colored pigments, inorganic or organic particles and the like may be further included. These specific types and obtaining methods are obviously known to those skilled in the art.
  • plasticizer examples include phthalic ester plasticizers such as diethyl phthalate, dioctyl phthalate, and dicyclohexyl phthalate; Adipic acid di-1-butyl (di-1-butyl adipate), adipic acid di-n-octyl (di-n-octyl adipate), sebacic acid di-n-butyl sebacate, azeline acid Aliphatic dibasic acid ester plasticizers such as di-2-ethylhexyl azelate; Phosphate ester plasticizers such as diphenyl 2-ethylhexyl phosphate and diphenyl octyl phosphate; Hydroxy polyhydric carboxylic acid ester plasticizers such as acetyl tributyl citrate, acetyl tri-2-ethylhexyl citrate, and tributyl citrate; Fatty acid ester plasticizer
  • colored pigments include inorganic pigments such as carbon black, titanium oxide, zinc oxide, and iron oxide; And organic pigments such as cyanine, phosphorus, quinone, perinone, isoindolinone and thio indigo.
  • organic or inorganic particles examples include polystyrene, polymethyl methacrylate, silicon, and the like.
  • the polylactic acid resin composition according to the present invention for example a block copolymer contained therein, has a number average molecular weight (Mn) of 50,000 or more, preferably a number average molecular weight of about 50,000 to 200,000, more preferably a number of about 50,000 to 150,000 It may have an average molecular weight.
  • Mn number average molecular weight
  • the polylactic acid resin composition may have a weight average molecular weight (Mw) of about 100,000 to 500,000, preferably a weight average molecular weight of about 100,000 to 320,000. Such molecular weight may affect the processability, mechanical properties, and the like of the polylactic acid resin composition described above.
  • Mw weight average molecular weight
  • the melt viscosity When the molecular weight is too small (for example, less than MW 100,000), when melt processing by extrusion or the like for 3D printing applications, the melt viscosity may be too low, the workability may be lowered, and mechanical properties such as strength may be lowered. On the contrary, when the molecular weight is too large (for example, more than MW 500,000), the melt viscosity during the melt processing is too high, which can greatly reduce productivity.
  • the polylactic acid resin composition according to the present invention for example, the block copolymer contained therein has a molecular weight distribution (Mw / Mn) defined as the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of about 1.60 to 2.30, Preferably it may have a value of about 1.80 to 2.20.
  • Mw / Mn molecular weight distribution
  • the polylactic acid resin composition exhibits such a narrow molecular weight distribution, when melt-processing by extrusion or the like, it exhibits proper melt viscosity and melt characteristics, thereby exhibiting excellent extrusion state and processability of 3D printed products.
  • the product containing the polylactic acid resin composition may exhibit excellent mechanical properties such as excellent strength.
  • melt viscosity at the processing temperature for extrusion or the like may be too large to process as a 3D printed product
  • molecular weight distribution is too wide (large)
  • mechanical Poor melt characteristics such as deterioration of physical properties or excessively low melt viscosity may make molding itself difficult, or may result in poor printing of a 3D printed product.
  • the polylactic acid resin composition according to the present invention may have a melting temperature (Tm) of 170 ° C or less, preferably about 145 to 170 ° C, more preferably about 150 to 170 ° C.
  • Tm melting temperature
  • the melting temperature When the melting temperature is in the above temperature range, it may be performed at an appropriate viscosity at low temperatures as compared with the existing polylactic acid resin during melt processing by extrusion or the like, thereby improving processing characteristics of the product.
  • the polylactic acid resin composition according to the present invention may have a glass transition temperature (Tg) of 55 ° C. or less, preferably about 25 to 55 ° C., and more preferably about 35 to 55 ° C.
  • Tg glass transition temperature
  • the polylactic acid resin composition according to the present invention exhibits a melting temperature and a glass transition temperature range as described above, and enables melt processing at a lower temperature than conventional polylactic acid resins in 3D printing applications, as well as high-speed processing. It is possible.
  • the crystallization rate of the resin may be increased to exhibit a crystallization temperature (Tc) in the range of about 85 to 110 ° C., which was not shown in the general polylactic acid thermal analysis, and thus, it may be rapidly solidified to speed up 3D printing It can greatly contribute to improvement.
  • Tc crystallization temperature
  • the conventional polylactic acid resin it is difficult to achieve the crystallization of the polylactic acid resin due to the fluidity of the polymer chain.
  • the flexible component included in the copolymer ensures the fluidity of the polymer chain, thereby facilitating the crystallization process.
  • appropriately adjusting the content of the polymer having a polyurethane polyol repeating unit corresponding to the molecular weight of the polyether-based polyol polymer or the content of the soft segment, etc. may also be used to satisfy the above-mentioned glass transition temperature. It is important for manufacturing.
  • the optical purity of L-lactide or D-lactide, the two optical isomers of lactide is, for example, at least about 98%, preferably at least about 99%, most preferably at least about 99.5%
  • the polylactic acid resin composition which satisfies the above-mentioned glass transition temperature, melting temperature, etc. can be manufactured.
  • the polylactic acid resin composition according to the present invention has a viscosity measured at a shear rate of 100 s ⁇ 1 at 200 ° C. of 1,000 Pa ⁇ s or less, preferably 50 to 900 Pa ⁇ s, more preferably 80 to 850 Pa ⁇ s. Can be represented.
  • the low viscosity property enables low-temperature processing and high-speed processing when applied to 3D printing, thereby improving workability and productivity.
  • the polylactic acid resin composition according to the present invention has an organic carbon content rate (% C bio ) of biomass origin defined by Equation 1 below about 60%, about 70%, about 80%, about 85% or more. At least about 90% or at least about 95%, indicating environmentally friendly properties.
  • % C Bio (poly (lactic acid) resin, 14 C isotope of the 12 C isotope of carbon atoms in a weight ratio) / (14 C isotope for biomass origin 12 C of the carbon atoms of standard isotope ratio by weight) x 100
  • the method for measuring the organic carbon content rate of biomass origin according to Equation 1 may be, for example, according to the method described in ASTM D6866 standard.
  • At least one monomer such as alkylene oxide is ring-opened (co) polymerized to form a (co) polymer having a polyether polyol repeating unit, which is a method for preparing a polyether-based polyol (co) polymer. You can proceed accordingly.
  • the (co) polymer, the diisocyanate compound, and the urethane reaction catalyst having the polyether polyol repeating unit are charged to a reactor, and heated and stirred to carry out a urethane reaction.
  • two isocyanate groups of the diisocyanate compound and terminal hydroxyl groups of the (co) polymer are bonded to form a urethane bond.
  • a (co) polymer having a polyurethane polyol repeating unit in a form in which polyether polyol repeating units are linearly linked through the urethane bond can be formed, which is included as a soft segment of the polylactic acid resin composition described above.
  • the polyurethane polyol (co) polymer is a polyether polyol repeating units (E) are linearly bonded in the form of EUEUE via a urethane bond (U) to form a form having a polyether polyol repeating unit at both ends Can be.
  • the alkylene oxide and the polyether polyol repeating units obtained therefrom may be obtained from biomass such as plant resources, and thus, the polyurethane polyol (co) polymer may contain an organic carbon content of% biomass (% C bio ). At least about 60%, preferably at least about 70%.
  • the urethane reaction is a conventional tin-based catalyst, for example, tin 2-ethylhexanoate, stannous octoate, dibutyltin dilaurate, dioctyltin dilaurate And the like).
  • the urethane reaction may be carried out under reaction conditions for the production of conventional polyurethane resin. For example, after adding a diisocyanate compound and a polyether polyol (co) polymer in a nitrogen atmosphere, the urethane reaction catalyst is added and reacted at a reaction temperature of 70 to 80 ° C. for 1 to 5 hours to have a polyurethane polyol repeating unit. (Co) polymers can be prepared.
  • the lactide ring-opening polymerization reaction may be performed in the presence of a metal catalyst including alkaline earth metal, rare earth metal, transition metal, aluminum, germanium, tin or antimony. More specifically, such metal catalysts may be in the form of carbonates, alkoxides, halides, oxides or carbonates of these metals.
  • a metal catalyst including alkaline earth metal, rare earth metal, transition metal, aluminum, germanium, tin or antimony.
  • such metal catalysts may be in the form of carbonates, alkoxides, halides, oxides or carbonates of these metals.
  • tin 2-ethylhexanoate, titanium tetraisopropoxide, aluminum triisopropoxide, and the like may be used.
  • an antioxidant is used together with such a catalyst, yellowing is suppressed and a polylactic acid resin composition having excellent appearance can be prepared.
  • the step of forming a polylactic acid repeating unit such as the lactide ring-opening polymerization reaction described above may be continuously performed in the same reactor in which the urethane reaction is performed. That is, the polyether polyol polymer and the diisocyanate compound may be urethane reacted to form a polymer having a polyurethane polyol repeating unit, and then a monomer such as lactide and a catalyst may be continuously added to form a polylactic acid repeating unit. have.
  • the polymer having a polyurethane polyol repeating unit serves as an initiator, the polylactic acid repeating unit and the polylactic acid resin containing the same can be continuously produced in high yield and high productivity.
  • the polylactic acid resin composition may include a block copolymer in which specific hard and soft segments are combined, thereby exhibiting biodegradability of the polylactic acid resin, and may exhibit more improved flexibility.
  • the present invention (a) a hard segment comprising a polylactic acid repeating unit of the formula (1); And (b) a soft segment comprising a polyurethane polyol repeating unit in which the polyether polyol repeating units of Formula 2 are linearly connected through a urethane bond, and having a melting temperature of 170 ° C. or lower and 55 ° C. or lower.
  • a method for 3D printing using a polylactic acid resin composition having a glass transition temperature and a number average molecular weight of 50,000 or more and a viscosity measured at a shear rate of 100 s ⁇ 1 at 200 ° C. of 1,000 Pa ⁇ s or less:
  • n is an integer of 700 to 5,000;
  • A is a linear or branched alkylene group having 2 to 5 carbon atoms, m is an integer of 10 to 100.
  • the present invention also provides a PLA filament for 3D printing, comprising the polylactic acid resin composition.
  • the 3D printing PLA filament may be manufactured by extruding the polylactic acid resin composition under reduced pressure in accordance with a conventional filament manufacturing method.
  • the polylactic acid resin composition of the present invention is dried under reduced pressure, mixed with additives such as inorganic fillers, antioxidants, and the like, and then melt kneaded and extruded onto strands at 190 to 220 ° C. using an extruder.
  • a single screw extruder may be used as the extruder, or a twin screw extruder equipped with one of various compound processing machines such as a roll mill, a kneader, a Banbury mixer, or the like may be used.
  • the strands may be cooled through a water bath, and a predetermined weight is wound on a bobbin to prepare a 3D printing PLA filament.
  • the diameter of the filament may vary depending on the type of 3D printer used, but may generally be 1.75 mm to 3 mm.
  • the polylactic acid resin composition of the present invention and the filament including the same have a predetermined glass transition temperature and a predetermined melting temperature according to a hard segment and a soft segment of a specific structure, thereby optimizing flexibility and stiffness in 3D printing. In addition to the present invention, melt processability and heat resistance are further improved. Therefore, the polylactic acid resin composition of the present invention can be very preferably applied to 3D printing materials. In addition, the polylactic acid resin composition of the present invention and the filament including the same may exhibit high biodegradation and eco-friendly properties of high organic carbon content.
  • Mw and Mn (g / mol), and molecular weight distribution (Mw / Mn): After dissolving the polylactic acid resin composition in chloroform at a concentration of 0.25% by weight, gel permeation chromatography (Viscotek) TDA 305, column: Shodex LF804 x 2ea) was used, and polystyrene was calculated as weight average molecular weight (Mw) and number average molecular weight (Mn), respectively. The molecular weight distribution value (MWD) was calculated from the thus measured Mw and Mn.
  • Tg glass transition temperature
  • Tm melting temperature
  • Tc crystal growth temperature
  • Tm (° C.): The maximum value temperature of the melting endothermic peak of the crystal was taken as Tm.
  • Tc (° C.): The maximum value (max value) of the melting exothermic peak of the crystal is Tc, wherein the melt crystallization temperature (Tmc), which is a temperature generated when the sample is lowered at a constant rate from high temperature, is used. After cooling the sample at a high temperature, the crystallization temperature (cold crystallization temperature, Tcc), which is a temperature that is generated when raised at a constant rate, was measured together.
  • Tmc melt crystallization temperature
  • Viscosity (Pa ⁇ s): The viscosity was measured at a shear rate of 100 s ⁇ 1 at 200 ° C. using a rheometer (rheometer, Anton Paar).
  • PPDO 2.4 poly (1,3-propanediol); Number average molecular weight 2,400
  • PPG polypropylene glycol
  • the urethane reaction was carried out at a reactor temperature of 70 ° C. for 2 hours under a nitrogen stream, and 4 kg of L- (or D-) lactide was added thereto to carry out nitrogen flushing five times. Thereafter, the temperature was raised to 150 ° C. to completely dissolve the L- (or D-) lactide, and 500 mL of toluene to form 120 ppmw of tin 2-ethylhexanoate based on the total weight of the reactants through the catalyst inlet. Diluted in and added into the reaction vessel.
  • the reaction was carried out at 185 ° C. for 2 hours under 1 kg of nitrogen pressurization, 200 ppmw of phosphoric acid was added to the catalyst inlet, and then mixed for 15 minutes to inactivate the residual catalyst. A vacuum reaction was then performed until reaching 0.5 torr, to remove unreacted L- (or D-) lactide (about 5% by weight of the initial dose). Tm, Tg, Tc, viscosity, etc. of the obtained resin composition were measured and shown in Table 1.
  • the polylactic acid resin compositions (resins A and C) prepared in Examples 1 and 3 were dried under reduced pressure at 80 ° C. for 6 hours under a vacuum of 1 torr.
  • talc SP 3000, polycyclic chemistry
  • 100 ppm of the antioxidant used in Examples 1 and 3 was added, followed by a super mixer.
  • a super mixer was added to each of these polylactic acid resin compositions. It was melt kneaded and extruded onto a strand at 190-220 ° C. using a 19 mm diameter twin screw extruder. The strand was cooled through a water bath and a chip was obtained using a pelletizer. This was dried at 80 ° C. for at least 4 hours using a dehumidifying dryer or a hot air dryer. Tm, Tg, Tc, viscosity, etc. of the obtained resin composition were measured and shown in Table 1.
  • 1-dodecanol, L-lactide and antioxidant were introduced into an 8 L reactor equipped with a nitrogen gas inlet tube, agitator, catalyst inlet, outlet condenser and vacuum system in an amount as shown in Table 1 and flushed with nitrogen five times. Was carried out. Thereafter, the temperature was raised to 150 ° C. to completely dissolve the L-lactide, and the tin 2-ethylhexanoate was added to the reaction vessel by diluting with 500 mL of toluene to 120 ppmw of the total reactant content through the catalyst inlet.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Comparative Example 1 Resin A Resin B Resin C Resin D Resin E Resin F Resin G L-lactide (g) 4000 4000 4000 D-lactide (g) 4000 4000 PPDO 2.4 (g) 419 942 PPG (g) 414 931 HDI (g) 24.7 57.4 30.3 68.1 1-dodecanol (g) 11 Polyurethane polyol repeat unit content (wt%) 10% 20% 10% 20% 0% U626 (g) 2 2 2 2 4 4 2 I-1076 (g) 2 2 2 2 2 2 Used resin Resin A Resin C Resin Usage (g) 3600 3600 Talc (g) 400 400 Mn ( ⁇ 1000, g / mol) 87 85 98 93 85 95 126 Mw ( ⁇ 1000, g / mol) 190 180 215 205 185 208 256 MWD 2.18 2.12 2.19 2.20 2.18 2.19 2.03 Organic Carbon Content (%) 98
  • the polylactic acid resin compositions of Examples 1 to 6 according to the present invention have a weight average molecular weight of 100,000 to 300,000, Tg of 35 to 50 ° C, Tm of 160 to 170 ° C, and Tc of 80 to It confirmed that it was 110 degreeC.
  • the conventional polylactic acid resin composition of Comparative Example 1 exhibited a high Tm of 179 ° C. and a high Tg of 65 ° C., and Tc was not measured.
  • the presence or absence of Tc expression in the PLA resin and the temperature expressed are the criteria for determining the crystallization rate. If the rate of crystallization is high, crystallization occurs during cooling or elevated temperature to express Tmc or Tcc. As a result of heating up after cooling to 20 ° C / min, Tcc was observed in the resin compositions of Examples 1 to 4, and Tmc was observed in the resin compositions of Examples 5 and 6. In addition, when measuring by changing a cooling rate to 5 degree-C / min, the time which can be crystallized was ensured and Tmc peak (112.5 degreeC) was also observed also in the resin composition of Example 1. On the other hand, the resin composition according to Comparative Example 1 had a slow crystallization rate, and thus no Tc peak was observed in the DSC analysis.
  • the polylactic acid resin composition of the present invention was not only fast in crystallization, but also exhibited a low Tm compared with the conventional general polylactic acid resin, thereby confirming that extrusion processing is possible at a temperature of 180 to 200 ° C. It is difficult to achieve the crystallization of the polylactic acid resin due to the fluidity of the polymer chain in the case of the conventional polylactic acid resin, while the resin composition of the present invention serves to secure the fluidity of the polymer chain by the flexible component contained in the copolymer This is because it is crystallized.
  • the polylactic acid resin composition prepared according to the present invention exhibits a faster crystallization rate, lower Tm, and lower viscosity than the conventional polylactic acid resin, so that high-temperature processing at low temperature and high solidification speed are possible when applied to 3D printing. Useful as a 3D printing material.
  • talc SP 3000, polycyclic chemical
  • U626, I- as an antioxidant 1076 was added and then mixed using a super mixer. It was melt kneaded and extruded onto a strand at 190 to 220 ° C. using a 19 mm diameter twin screw extruder. Thereafter, the strands were cooled through a water bath, and a weight was wound around a bobbin to prepare PLA filaments for 3D printing having a diameter of 1.75 mm or 3 mm, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

폴리유산 반복단위를 포함하는 하드세그먼트, 및 우레탄 결합을 매개로 폴리에테르계 폴리올 반복단위들이 선형으로 연결되어 있는 폴리우레탄 폴리올 반복단위를 포함하는 소프트세그먼트를 포함하는 폴리유산 수지 조성물은, 낮은 용융 온도를 나타내어 저온 가공 및 고속 가공이 가능하고 고화 속도가 빠를 뿐만 아니라 친환경적이므로 3D 인쇄에 유용하다.

Description

3D 인쇄용 폴리유산 수지 조성물
본 발명은 기존 폴리유산 수지보다 낮은 용융온도를 나타내어 저온 가공 및 고속 가공이 가능하고, 고화 속도가 빠를 뿐만 아니라, 친환경적인 특성을 나타내는 3D 인쇄용 폴리유산 수지 조성물에 관한 것이다.
3D 인쇄(3D printing)란, 종이나 사물의 표면에 이미지를 그리는 기존의 2D(평면) 인쇄와 달리 입체적인 사물을 제조하는 방식을 말하며, 사물의 구성 물질이 되는 원료로 쓰이는 잉크를 CAD(computer-aided design) 설계에 따라 정해진 형태로 인쇄하여 제조하는 방식이다. 3D 인쇄는 주로 신속한 시제품 제작(prototyping)에 사용되고 있으며, 이를 통해 시제품 제작에 소요되는 시간 및 비용을 줄일 수 있다. 또한, 3D 인쇄의 적용 가능 분야는 개인용 소형 일상용품부터 의료용 제품, 자동차용 제품, 건축용 제품 등 매우 다양하다.
3D 인쇄 방법은, 스테레오리소그라피(stereolithography, SLA), 선택적 레이저 소결법(selective laser sintering, SLS) 및 UV 잉크젯 방식과 같은 레이저 기반 방법과, TDP(transit development plan), 용융 적층 모델링(fused deposition modeling, FDM) 방식과 같은 레이저를 사용하지 않는 방법으로 분류된다.
3D 인쇄 방법을 이용하여 제작 가능한 3D 인쇄용 재료로는 열가소성 플라스틱, 금속, 종이, 나일론, 고무, 레진, 나무, 모래, 세라믹 등 다양하다. FDM 방식은 상기 여러가지 타입 중 가장 보편적으로 쓰이는 3D 인쇄 기술로서, 열가소성 수지를 용융시켜 압출하여 조형하는 방식이다. 이 방식에 주로 사용되는 원료로는 아크릴로니트릴 부타디엔 스티렌(acrylonitrile butadiene styrene, ABS), 폴리유산(polylactic acid, PLA) 등이 있다
주요 원료 중 하나인 ABS는 인성(toughness) 등의 기계적 물성이 좋은 엔지니어링 플라스틱(engineering plastic)으로 3D 인쇄 시장에서 다양한 용도로 적용 가능하지만, 용융 시 높은 온도가 필요하며 수축 등 가공시 변형이 심하고 유독한 가스가 발생되어 사무실이나 스튜디오에서의 작업용으로 적절하지 못하다.
최근 3D 인쇄 재료로서 주목을 받고 있는 PLA 수지는 가공시 유독성이 없고, 비교적 낮은 용융 온도로 인해 낮은 온도에서도 가공이 가능하며, 바이오 유래 물질로서 최종 제품 또한 분해 가능한 환경 친화 물질이다. 또한 PLA 수지는 냉각(cooling) 시 수축률이 올레핀 수지 대비 적고, 투명하며 염색이 쉽다. PLA 수지는 상기와 같은 장점들이 있지만, 낮은 유리전이온도(Tg)와 결정화도(crystallinity)로 인해 고화가 느리고 열 변형에 약하며, 신도(elongation)가 5% 이하 수준으로 낮아 유연성이 부족하여 깨지기 쉽다. 또한 충격 강도(impact strength)와 인성 등의 기계적 물성에도 한계가 있다. 이러한 단점을 보완하기 위해 PLA 수지는 가공 시 용도에 맞게 적절히 개질된다.
종래 기술에 따르면 PLA 수지에 가소제나 쇄 연장제(chain extension agent, C/E agent) 등의 첨가제를 첨가하거나 고무(rubber) 성분을 추가로 블렌딩하여 PLA 수지에 유연성을 부여하고, 각종 보강제를 첨가하여 충격 강도와 인성 등의 물성을 보완하였다(중국특허 공개 제103146164호, 제103467950호 및 제103087489호 참고). 그러나, 제품 가공시에 요구되는 PLA 수지의 빠른 고화속도 및 최종 제품의 유연성 측면에서의 개선이 지속적으로 요구되고 있는 실정이다.
본 발명자들은 유연성 및 열적 특성이 개선되어 3D 인쇄에 유용한 폴리유산 수지 조성물을 제공하기 위하여 연구하였으며, 그 결과 유연 성분이 공중합된 PLA 수지를 개발함으로써 본 발명을 완성하였다.
본 발명의 목적은 저온 가공 및 고속 가공이 가능하며, 유연성 및 열적 특성이 개선되어 3D 인쇄에 유용한 폴리유산 수지 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 폴리유산 수지 조성물을 포함하는 3D 인쇄용 PLA 필라멘트를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 폴리유산 수지 조성물을 이용하여 3D 인쇄하는 방법을 제공하는 것이다.
상기 목적에 따라, 본 발명은 (a) 하기 화학식 1의 폴리유산 반복단위를 포함하는 하드세그먼트; 및 (b) 우레탄 결합을 매개로 하기 화학식 2의 폴리에테르계 폴리올 반복단위들이 선형으로 연결되어 있는 폴리우레탄 폴리올 반복단위를 포함하는 소프트세그먼트를 포함하고, 170℃ 이하의 용융온도, 55℃ 이하의 유리전이온도 및 50,000 이상의 수평균분자량을 가지며, 200℃에서 전단 속도 100 s-1로 측정한 점도가 1,000 Pa·s 이하인, 3D 인쇄용 폴리유산 수지 조성물을 제공한다:
[화학식 1]
Figure PCTKR2015008762-appb-I000001
[화학식 2]
Figure PCTKR2015008762-appb-I000002
상기 화학식 1에서, n은 700 내지 5,000의 정수이고;
상기 화학식 2에서, A는 선형 또는 분지형의 탄소수 2 내지 5의 알킬렌기이고, m은 10 내지 100의 정수이다.
상기 다른 목적에 따라, 본 발명은 상기 폴리유산 수지 조성물을 포함하는 3D 인쇄용 PLA 필라멘트를 제공한다.
상기 또 다른 목적에 따라, 본 발명은 상기 폴리유산 수지 조성물을 이용하여 3D 인쇄하는 방법을 제공한다.
본 발명에 따른 폴리유산 수지 조성물은 친환경적인 특성을 가질 뿐만 아니라, 기존 폴리유산 수지와 비교하여 낮은 용융 온도 및 낮은 점도를 가져 저온에서 고속 가공이 가능하며, 결정화 속도가 빨라 인쇄 후에도 고화가 빨리 이루어질 수 있다. 따라서 3D 인쇄에 유용하며, 작업성 개선 및 작업 환경 개선에 크게 기여할 수 있다.
이하, 본 발명을 보다 상세히 설명한다.
본 발명은 (a) 하기 화학식 1의 폴리유산 반복단위를 포함하는 하드세그먼트; 및 (b) 우레탄 결합을 매개로 하기 화학식 2의 폴리에테르계 폴리올 반복단위들이 선형으로 연결되어 있는 폴리우레탄 폴리올 반복단위를 포함하는 소프트세그먼트를 포함하고, 170℃ 이하의 용융온도, 55℃ 이하의 유리전이온도 및 50,000 이상의 수평균분자량을 가지며, 200℃에서 전단 속도 100 s-1로 측정한 점도가 1,000 Pa·s 이하인, 3D 인쇄용 폴리유산 수지 조성물을 제공한다:
[화학식 1]
Figure PCTKR2015008762-appb-I000003
[화학식 2]
Figure PCTKR2015008762-appb-I000004
상기 화학식 1에서, n은 700 내지 5,000의 정수이고;
상기 화학식 2에서, A는 선형 또는 분지형의 탄소수 2 내지 5의 알킬렌기이고, m은 10 내지 100의 정수이다.
본 발명에 따른 폴리유산 수지 조성물에서, 상기 하드세그먼트에 포함된 화학식 1의 폴리유산 반복단위는 당업자에게 잘 알려진 폴리유산 단일 중합체의 제조방법에 따라 얻을 수 있다. 예를 들어, L-유산 또는 D-유산으로부터 환상 2단량체인 L-락티드 또는 D-락티드를 생성하고 이를 개환 중합하는 방법으로 얻거나, L-유산 또는 D-유산을 직접 탈수 축중합하는 방법으로 얻을 수 있으며, 이 중에서도 개환 중합법을 통해 보다 높은 중합도의 폴리유산 반복단위를 얻을 수 있어 바람직하다. 또한, 상기 폴리유산 반복단위는 L-락티드 및 D-락티드를 일정 비율로 공중합하여 비결정성을 띄도록 제조될 수도 있지만, 상기 폴리유산 수지 조성물의 내열성을 보다 향상시키기 위해서는 상기 L-락티드 또는 D-락티드의 어느 하나만을 사용해 중합하는 방법으로 제조되는 것이 바람직하다.
또한, 상기 소프트세그먼트에 포함된 폴리우레탄 폴리올 반복단위는 상기 화학식 2의 폴리에테르계 폴리올 반복단위들이 우레탄 결합(-C(=O)-NH-)을 매개로 선형으로 연결되어 있는 구조를 갖는다. 보다 구체적으로, 상기 폴리에테르계 폴리올 반복단위들은 알킬렌 옥사이드(alkylene oxide)와 같은 단량체를 개환 (공)중합하여 얻어지는 중합체 또는 이를 이루는 반복단위를 지칭하는 것으로 그 말단에 히드록시기를 가질 수 있다. 이러한 폴리에테르계 폴리올 반복단위들의 말단 히드록시기가 디이소시아네이트 화합물과 반응하여 우레탄 결합을 형성할 수 있으며, 이러한 우레탄 결합을 매개로 상기 폴리에테르계 폴리올 반복단위들이 서로 선형으로 연결되어 상기 폴리우레탄 폴리올 반복단위를 이룰 수 있다.
본 발명에 따른 폴리유산 수지 조성물은, 이와 같은 폴리우레탄 반복단위를 소프트세그먼트로서 포함함에 따라, 기존의 폴리유산 수지보다 낮은 용융온도(Tm) 및 유리전이온도(Tg)를 가지며, 높은 유연성 및 결정화 속도를 나타낼 수 있다.
상기 폴리에테르계 폴리올 반복단위는, 예를 들어, 1종 이상의 알킬렌 옥사이드를 개환 (공)중합하여 얻어진 폴리에테르계 폴리올 (공)중합체 또는 이의 반복단위로 구성될 수 있다. 상기 알킬렌 옥사이드의 예로는, 에틸렌 옥사이드, 프로필렌 옥사이드, 부틸렌 옥사이드 또는 테트라하이드로퓨란 등을 들 수 있다. 또한, 이로부터 얻어진 폴리에테르계 폴리올 반복단위의 예로는 폴리에틸렌글리콜(PEG)의 반복단위, 폴리(1,2-프로필렌글리콜)의 반복단위, 폴리(1,3-프로판디올)의 반복단위, 폴리테트라메틸렌글리콜의 반복단위, 폴리부틸렌글리콜의 반복단위, 프로필렌 옥사이드와 테트라하이드로퓨란이 공중합된 폴리올의 반복단위, 에틸렌 옥사이드와 테트라하이드로퓨란이 공중합된 폴리올의 반복단위, 및 에틸렌 옥사이드와 프로필렌 옥사이드가 공중합된 폴리올의 반복단위로 이루어진 군에서 선택되는 1종 이상일 수 있다. 폴리유산 수지에 대한 유연성 부여, 폴리유산 반복단위와의 친화력 및 함습 특성 등을 고려할 때, 상기 폴리에테르계 폴리올 반복단위로는 폴리(1,3-프로판디올)의 반복단위 또는 폴리테트라메틸렌글리콜의 반복단위를 사용하는 것이 바람직하다. 또한, 이러한 폴리에테르계 폴리올 반복단위는 약 400 내지 9,000, 바람직하게는 1,000 내지 3,000의 수평균분자량을 가질 수 있다.
상기 폴리에테르계 폴리올 반복단위의 말단 히드록시기와 결합하여 우레탄 결합을 형성하는 디이소시아네이트 화합물은 분자 중에 2개의 이소시아네이트기를 갖는 임의의 화합물일 수 있다. 이러한 디이소시아네이트 화합물의 예로는, 1,6-헥사메틸렌 디이소시아네이트, 2,4-톨루엔 디이소시아네이트, 2,6-톨루엔 디이소시아네이트, 1,3-크실렌 디이소시아네이트, 1,4-크실렌 디이소시아네이트, 1,5-나프탈렌 디이소시아네이트, m-페닐렌 디이소시아네이트, p-페닐렌 디이소시아네이트, 3,3'-디메틸-4,4'-디페닐메탄 디이소시아네이트, 4,4'-비스페닐렌 디이소시아네이트, 아이소포론 디이소시아네이트(isophorone diisocyanate) 및 수첨된 디페닐메탄 디이소시아네이트(hydrogenated diphenylmethane diisocyanate)로 이루어진 군에서 선택되는 1종 이상을 들 수 있으며, 이외에도 당업자에게 널리 알려진 다양한 디이소시아네이트 화합물을 별다른 제한 없이 사용할 수 있다. 다만, 폴리유산 수지에 대한 유연성 부여 등의 측면에서 1,6-헥사메틸렌 디이소시아네이트를 사용하는 것이 바람직하다.
한편, 본 발명의 일 구현예에 따른 폴리유산 수지 조성물은 상술한 하드세그먼트 및 소프트세그먼트가 공중합된 블록 공중합체를 포함할 수 있다. 보다 구체적으로, 상기 블록 공중합체는 상기 하드세그먼트의 폴리유산 반복단위가 상기 소프트세그먼트의 폴리우레탄 폴리올 반복단위와 결합된 구조를 가질 수 있고, 구체적으로 상기 폴리유산 반복단위의 말단 카르복시기가 상기 폴리우레탄 폴리올 반복단위의 말단 히드록시기와 에스테르 결합으로 연결될 수 있다. 예를 들어, 이러한 블록 공중합체의 화학 구조는 하기 일반식 1로 표시될 수 있다:
[일반식 1]
폴리유산 반복단위(L)-Ester-폴리우레탄 폴리올 반복단위(E-U-E-U-E)-Ester-폴리유산 반복단위(L)
상기 일반식 1에서,
상기 E는 폴리에테르계 폴리올 반복단위를 나타내고,
U는 우레탄 결합을 나타내며,
Ester는 에스테르 결합을 나타낸다.
다만, 상기 폴리유산 수지 조성물에 포함된 폴리유산 반복단위는, 이들 모두가 상기 폴리우레탄 폴리올 반복단위와 결합된 블록 공중합체의 형태를 띨 필요는 없으며, 이들 중 적어도 일부는 상기 폴리우레탄 폴리올 반복단위와 결합되지 않고 폴리유산 단일 중합체의 형태를 가질 수도 있다. 이 경우, 상기 폴리유산 수지 조성물은 상술한 블록 공중합체와, 상기 폴리우레탄 반복단위와 결합되지 않은 폴리유산 반복단위, 즉 폴리유산 단일 중합체(homopolymer)를 함께 포함하는 혼합물 형태일 수 있다.
한편, 본 발명의 폴리유산 수지 조성물은 이의 전체 중량(상술한 블록 공중합체의 중량, 또는 선택적으로 폴리유산 단일 중합체가 포함되는 경우 이러한 단일 중합체와의 중량 합)을 기준으로, 상기 하드세그먼트 약 65 내지 95 중량% 및 소프트세그먼트 약 5 내지 35 중량%를 포함할 수 있다. 바람직하게는, (i) 하드세그먼트 약 80 내지 95 중량% 및 소프트세그먼트의 약 5 내지 20 중량%, (ii) 하드세그먼트 약 82 내지 92 중량% 및 소프트세그먼트의 약 8 내지 18 중량%, 또는 (iii) 하드세그먼트 약 85 내지 90 중량% 및 소프트세그먼트의 약 10 내지 15 중량%를 포함할 수 있다.
상기 소프트세그먼트의 함량이 35 중량% 이하이면 고분자량의 폴리유산 수지가 제공될 수 있으며, 이로 인해 제품의 강도 등과 같은 기계적 물성이 양호하게 나타날 수 있다. 또한, 소프트세그먼트의 함량이 5 중량% 이상이면 폴리유산 수지 및 그 제품의 유연성을 향상시킬 수 있어 바람직하다. 특히, 이 경우 폴리유산 수지의 유리전이온도가 적당하여 제품의 유연성이 향상될 수 있으며, 소프트세그먼트의 폴리올 반복단위가 개시제로서 역할을 제대로 수행하므로 중합 전환율이 향상되고 높은 분자량의 폴리유산 수지가 제조될 수 있다.
한편, 본 발명에 따른 폴리유산 수지 조성물은 산화방지제, 보강제 및 이의 조합으로 이루어진 군에서 선택되는 각종 첨가제를 더 포함할 수 있다.
예를 들어, 상기 폴리유산 수지 조성물은 제조 과정에서 소프트세그먼트 등이 산화 또는 열분해되는 것을 방지하기 위해 산화방지제(또는 안정화제)를 더 포함할 수 있다. 상기 산화방지제는 입체장애 페놀(hindered phenol)계 산화방지제, 아민계 산화방지제, 티오계 산화방지제 및 포스파이트계 산화방지제로 이루어진 군에서 선택된 1종 이상일 수 있으며, 이들 산화방지제의 종류는 당업자에게 자명하게 알려져 있다. 본 발명에서 상기 산화방지제는 상기 폴리유산 수지 조성물의 반복단위의 형성을 위해 사용되는 단량체 총 중량에 대해 100 내지 3,000 ppmw의 함량으로 포함될 수 있다.
또한, 상기 폴리유산 수지 조성물은 내블로킹성 등을 향상시키기 위해 보강제를 더 포함할 수 있다. 그 예로는 실리카, 콜로이달 실리카, 알루미나, 알루미나 졸, 활석, 운모 및 탄산칼슘으로 이루어진 군에서 선택된 1종 이상일 수 있으며, 이들 보강제의 구체적인 종류나 입수방법은 당업자에게 자명하게 알려져 있다.
이외에도, 상기 폴리유산 수지 조성물은 그 효과를 손상시키지 않는 범위에서 3D 인쇄에 사용 가능한 것으로 알려진 다양한 첨가제, 예를 들면 각종 가소제, 자외선 안정제, 착색 방지제, 무광택제, 탈취제, 난연제, 내후제, 대전방지제, 이형제, 항산화제, 이온 교환제, 착색안료, 무기 또는 유기 입자 등을 더 포함할 수도 있다. 이들의 구체적인 종류나 입수 방법은 당업자에게 자명하게 알려져 있다.
상기 가소제의 예로는, 프탈산 디에틸(diethyl phthalate) , 프탈산 디옥틸(dioctyl phthalate), 프탈산 디시클로헥실(dicyclohexyl phthalate) 등의 프탈산 에스테르계 가소제; 아디핀산 디-1-부틸(di-1-butyl adipate), 아디핀산 디-n-옥틸(di-n-octyl adipate), 세바신산 디-n-부틸(di-n-butyl sebacate), 아제라인산 디-2-에틸헥실(di-2-ethylhexyl azelate) 등의 지방족 이염기산 에스테르계 가소제; 인산 디페닐 2-에틸헥실(diphenyl 2-ethylhexyl phosphate), 인산 디페닐 옥틸(diphenyl octyl phosphate) 등의 인산 에스테르계 가소제; 아세틸구연산 트리부틸(acetyl tributyl citrate), 아세틸구연산 트리-2-에틸헥실(acetyl tri-2-ethylhexyl citrate), 구연산 트리부틸(tributyl citrate) 등의 하이드록시 다가 카르본산 에스테르계 가소제; 아세틸리시놀산 메틸(methyl acetyl ricinoleate), 스테아린산 아밀(amyl stearate) 등의 지방산 에스테스계 가소제; 글리세린 트리아세테이트(glycerin triacetate) 등의 다가 알코올 에스테르계 가소제; 에폭시화 콩기름(epoxidized soybean oil), 에폭시화 아마니 기름 지방산 부틸 에스터(epoxidized butyl esters of linseed oil fatty acids), 에폭시 스테아린산 옥틸(epoxy octyl stearate) 등의 에폭시계 가소제 등을 들 수 있다.
착색 안료의 예로는, 카본 블랙, 산화 티탄, 산화 아연, 산화철 등의 무기안료; 시아닌계, 인계, 퀴논계, 페리논계, 이소인돌리논계, 치오인디고계 등의 유기 안료 등을 들 수 있다.
상기 유기 또는 무기 입자의 예로는 폴리스티렌, 폴리메틸메타크레이트, 실리콘 등을 들 수 있다.
본 발명에 따른 폴리유산 수지 조성물, 예를 들어 이에 포함된 블록 공중합체는 50,000 이상의 수평균분자량(Mn), 바람직하게는 약 50,000 내지 200,000의 수평균분자량, 보다 바람직하게는 약 50,000 내지 150,000의 수평균분자량을 가질 수 있다.
또한, 상기 폴리유산 수지 조성물은 약 100,000 내지 500,000의 중량평균분자량(Mw), 바람직하게는 약 100,000 내지 320,000의 중량평균분자량을 가질 수 있다. 이러한 분자량은 상술한 폴리유산 수지 조성물의 가공성이나 기계적 물성 등에 영향을 미칠 수 있다.
분자량이 지나치게 작은 경우 (예를 들면 MW 100,000 미만), 3D 인쇄 적용을 위해 압출 등의 방법으로 용융 가공할 때 용융 점도가 지나치게 낮아 가공성이 떨어질 수 있고, 강도 등 기계적 물성이 저하될 수 있다. 반대로 분자량이 지나치게 큰 경우 (예를 들면 MW 500,000 초과), 용융 가공시 용융 점도가 지나치게 높아 생산성을 크게 떨어질 수 있다.
본 발명에 따른 폴리유산 수지 조성물, 예를 들어 이에 포함된 블록 공중합체는 수평균분자량(Mn)에 대한 중량평균분자량(Mw)의 비로 정의되는 분자량 분포(Mw/Mn)가 약 1.60 내지 2.30, 바람직하게는 약 1.80 내지 2.20의 값을 가질 수 있다.
상기 폴리유산 수지 조성물이 이러한 좁은 분자량 분포를 나타냄에 따라, 압출 등의 방법으로 용융 가공할 때 적절한 용융 점도 및 용융 특성을 나타내며 이로 인한 우수한 3D 인쇄된 제품의 압출 상태 및 가공성을 나타낼 수 있다. 또한, 상기 폴리유산 수지 조성물을 포함하는 제품은 우수한 강도 등 우수한 기계적 물성을 나타낼 수 있다. 이에 비해, 분자량 분포가 지나치게 좁아지는(작아지는) 경우, 압출 등을 위한 가공 온도에서 용융 점도가 지나치게 커서 3D 인쇄 제품으로서의 가공이 어려울 수 있으며, 반대로 분자량 분포가 지나치게 넓어지는(커지는) 경우, 기계적 물성이 저하되거나 용융 점도가 지나치게 작게되는 등 용융 특성이 불량하여 제품으로의 성형 자체가 어렵게 되거나 3D 인쇄 제품의 인쇄 상태가 좋지 않을 수도 있다.
또한, 본 발명에 따른 폴리유산 수지 조성물은, 용융 온도(Tm)가 170℃ 이하, 바람직하게는 약 145 내지 170℃, 보다 바람직하게는 약 150 내지 170℃일 수 있다.
용융온도가 상기 온도 범위인 경우, 압출 등의 방법으로 용융 가공 시 기존의 폴리유산 수지와 비교하여 저온에서 적절한 점도로 수행 가능하여 제품의 가공 특성이 향상될 수 있다.
또한, 본 발명에 따른 폴리유산 수지 조성물은, 유리전이온도(Tg)가 55℃ 이하, 바람직하게는 약 25 내지 55℃, 보다 바람직하게는 약 35 내지 55℃일 수 있다.
본 발명에 따른 폴리유산 수지 조성물은 상술한 바와 같은 용융 온도 및 유리전이온도 범위를 나타냄으로써, 3D 인쇄 적용시 기존의 폴리유산 수지와 비교하여 낮은 온도에서 용융 가공이 가능할 뿐 아니라, 고속 가공도 역시 가능하다. 또한, 최적화된 유연성으로 인해 수지의 결정화 속도가 상승하여 일반적인 폴리유산 열분석에서 나타나지 않던 약 85 내지 110℃ 범위의 결정화 온도(Tc)를 나타낼 수 있고, 이에 따라 빠른 고화가 가능하여 3D 인쇄의 속도 개선에 크게 기여할 수 있다. 이와 관련하여, 종래의 폴리유산 수지의 경우 고분자 사슬의 유동성의 문제로 인해 폴리유산 수지의 결정화를 이루기가 어려웠다. 반면, 본 발명의 폴리유산 수지 조성물은 공중합체에 포함된 유연 성분이 고분자 사슬의 유동성을 확보해주어 결정화 공정이 용이하다.
또한, 상기 폴리에테르계 폴리올 중합체의 분자량, 또는 소프트세그먼트의 함량에 대응하는 폴리우레탄 폴리올 반복단위를 갖는 중합체의 함량 등을 적절히 조절하는 것 역시 상술한 유리전이온도 등을 충족하는 폴리유산 수지 조성물의 제조에 중요하다. 또한, 락티드의 2가지 광학이성체인 L-락티드 또는 D-락티드의 광학 순도를, 예를 들어, 약 98% 이상, 바람직하게는 약 99% 이상, 가장 바람직하게는 약 99.5% 이상으로 조절함으로써, 상술한 유리전이온도 및 용융 온도 등을 충족하는 폴리유산 수지 조성물이 제조될 수 있다.
본 발명에 따른 폴리유산 수지 조성물은 200℃에서 전단속도 100 s-1로 측정한 점도가 1,000 Pa·s 이하, 바람직하게는 50 내지 900 Pa·s, 보다 바람직하게는 80 내지 850 Pa·s를 나타낼 수 있다. 이와 같은 기존의 폴리유산 수지 대비 낮은 점도 특성은 3D 인쇄 용도로 적용 시 저온 가공 및 고속 가공을 가능하게 하므로 가공성 및 생산성을 향상시킬 수 있다.
한편, 본 발명에 따른 폴리유산 수지 조성물은 하기 수학식 1로 정의되는 바이오매스 기원의 유기탄소 함유율(%C바이오)이 약 60% 이상, 약 70% 이상, 약 80% 이상, 약 85% 이상, 약 90% 이상 또는 약 95% 이상일 수 있어서, 친환경적인 특성을 나타낸다.
[수학식 1]
%C바이오 = (폴리유산 수지의 탄소 원자 중 12C 동위원소에 대한 14C 동위원소 중량비) / (바이오매스 기원 표준 물질의 탄소 원자 중 12C 동위원소에 대한 14C 동위원소 중량비) x 100
상기 수학식 1에 의한 바이오매스 기원의 유기탄소 함유율의 측정방법은, 예컨대 ASTM D6866 표준에 기재된 방법에 따를 수 있다.
이하, 본 발명의 3D 인쇄용 폴리유산 수지 조성물의 제조 방법에 대해 보다 구체적으로 설명한다.
먼저, 1종 이상의 알킬렌 옥사이드 등의 단량체를 개환 (공)중합하여 폴리에테르계 폴리올 반복단위를 갖는 (공)중합체를 형성하게 되는데, 이는 통상적인 폴리에테르계 폴리올 (공)중합체의 제조 방법에 따라 진행할 수 있다.
이후, 상기 폴리에테르계 폴리올 반복단위를 갖는 (공)중합체, 디이소시아네이트 화합물 및 우레탄 반응 촉매를 반응기에 충진시키고 가열 및 교반하여 우레탄 반응을 수행한다. 이러한 반응에 의해, 상기 디이소시아네이트 화합물의 2개의 이소시아네이트기와, 상기 (공)중합체의 말단 히드록시기가 결합하여 우레탄 결합을 형성한다. 그 결과, 폴리에테르 폴리올 반복단위들이 상기 우레탄 결합을 매개로 선형 연결된 형태의 폴리우레탄 폴리올 반복단위를 갖는 (공)중합체가 형성될 수 있고, 이는 상술한 폴리유산 수지 조성물의 소프트세그먼트로서 포함된다. 이때, 상기 폴리우레탄 폴리올 (공)중합체는 폴리에테르계 폴리올 반복단위 (E)들이 우레탄 결합(U)을 매개로 E-U-E-U-E의 형태로 선형 결합되어 양 말단에 폴리에테르계 폴리올 반복단위를 갖는 형태로 형성될 수 있다.
이때, 상기 알킬렌 옥사이드 및 이로부터 얻어진 폴리에테르계 폴리올 반복단위들은 식물 자원 등의 바이오매스로부터 얻을 수 있으며, 이에 따라 폴리우레탄 폴리올 (공)중합체는 바이오매스 기원의 유기탄소 함유율(%C바이오)이 약 60% 이상, 바람직하게는 약 70% 이상에 이를 수 있다.
상기 우레탄 반응은 통상적인 주석계 촉매, 예를 들면, 틴 2-에틸헥사노에이트(tin 2-ethylhexanoate, stannous octoate), 디부틸틴 디라우레이트(dibutyltin dilaurate), 디옥틸틴 디라우레이트(dioctyltin dilaurate) 등의 존재 하에 진행될 수 있다. 또한, 상기 우레탄 반응은 통상적인 폴리우레탄 수지의 제조를 위한 반응 조건 하에서 수행될 수 있다. 예를 들어, 디이소시아네이트 화합물과 폴리에테르계 폴리올 (공)중합체를 질소 분위기 하에서 가한 후, 상기 우레탄 반응 촉매를 투입하여 반응온도 70 내지 80℃에서 1 내지 5시간 반응시켜 폴리우레탄 폴리올 반복단위를 갖는 (공)중합체를 제조할 수 있다.
한편, 상기 락티드 개환 중합 반응은 알칼리토금속, 희토류 금속, 전이금속, 알루미늄, 게르마늄, 주석 또는 안티몬 등을 포함하는 금속 촉매의 존재 하에 진행될 수 있다. 보다 구체적으로, 이러한 금속 촉매는 이들 금속의 카르본산염, 알콕시화물, 할로겐화물, 산화물 또는 탄산염 등의 형태일 수 있다. 바람직하게는 상기 금속 촉매로서, 틴 2-에틸헥사노에이트(tin 2-ethylhexanoate), 티탄 테트라이소프로폭사이드(titanium tetraisopropoxide), 알루미늄 트리이소프로폭사이드(aluminum triisopropoxide) 등을 사용할 수 있다. 또한, 이러한 촉매와 함께 산화방지제가 사용될 경우, 황변이 억제되고 외관이 우수한 폴리유산 수지 조성물이 제조될 수 있다.
또한, 상술한 락티드 개환 중합 반응 등의 폴리유산 반복단위 형성 단계는 상기 우레탄 반응이 진행된 동일 반응기 내에서 연속적으로 진행될 수 있다. 즉, 폴리에테르 폴리올 중합체 및 디이소시아네이트 화합물을 우레탄 반응시켜 폴리우레탄 폴리올 반복단위를 갖는 중합체를 형성한 후, 이러한 반응기 내에 락티드 등의 단량체 및 촉매 등을 연속적으로 가하여 폴리유산 반복단위를 형성할 수 있다. 그 결과, 폴리우레탄 폴리올 반복단위를 갖는 중합체가 개시제로 작용하면서, 상기 폴리유산 반복단위 및 이를 포함하는 폴리유산 수지가 수율 및 생산성 높게 연속적으로 제조될 수 있다.
상술한 폴리유산 수지 조성물은 특정한 하드세그먼트 및 소프트세그먼트가 결합된 블록 공중합체를 포함함에 따라, 폴리유산 수지의 생분해성을 나타내면서도, 보다 향상된 유연성을 나타낼 수 있다. 또한, 유연성을 부여하기 위한 소프트세그먼트가 흡출(bleed out)되는 것도 최소화될 수 있으며, 이러한 소프트세그먼트의 부가에 의해 기존 폴리유산 수지 대비 낮은 온도에서 가공이 가능하여 가공 효율이 좋으며 고속 가공이 가능하고, 결정화 속도가 빨라져 고화 속도가 향상되어 3D 인쇄 가공성에 크게 기여할 수 있다.
따라서, 본 발명은 (a) 하기 화학식 1의 폴리유산 반복단위를 포함하는 하드세그먼트; 및 (b) 우레탄 결합을 매개로 하기 화학식 2의 폴리에테르계 폴리올 반복단위들이 선형으로 연결되어 있는 폴리우레탄 폴리올 반복단위를 포함하는 소프트세그먼트를 포함하고, 170℃ 이하의 용융온도, 55℃ 이하의 유리전이온도 및 50,000 이상의 수평균분자량을 가지며, 200℃에서 전단 속도 100 s-1로 측정한 점도가 1,000 Pa·s 이하인 폴리유산 수지 조성물을 이용하여, 3D 인쇄하는 방법을 제공한다:
[화학식 1]
Figure PCTKR2015008762-appb-I000005
[화학식 2]
Figure PCTKR2015008762-appb-I000006
상기 화학식 1에서, n은 700 내지 5,000의 정수이고;
상기 화학식 2에서, A는 선형 또는 분지형의 탄소수 2 내지 5의 알킬렌기이고, m은 10 내지 100의 정수이다.
또한, 본 발명은 상기 폴리유산 수지 조성물을 포함하는, 3D 인쇄용 PLA 필라멘트를 제공한다.
상기 3D 인쇄용 PLA 필라멘트는 통상적인 필라멘트 제조방식에 따라 상기 폴리유산 수지 조성물을 감압 건조한 후 압출함으로써 제조될 수 있다.
일 실시양태에 따르면, 본 발명의 폴리유산 수지 조성물을 감압 건조하고, 무기 필러, 산화방지제 등과 같은 첨가제와 혼합한 후, 압출기를 이용하여 190 내지 220℃에서 스트랜드(strand) 상으로 용융 혼련 압출한다. 이때, 상기 압출기로는 일축 압출기를 이용하거나, 또는 롤밀(roll mill), 니더(kneader) 또는 밴버리 믹서(Banbury mixer) 등과 같은 다양한 배합 가공 기기 중 하나가 구비된 이축 스크류 압출기를 이용할 수 있다. 이후, 워터 배스(water bath)를 통해 스트랜드를 냉각시키고, 보빈(bobbin)에 일정 중량을 감아 3D 인쇄용 PLA 필라멘트를 제조할 수 있다. 이때 필라멘트의 직경은, 사용하는 3D 프린터 기종에 따라 다를 수 있으나 통상적으로 1.75 mm 내지 3 mm일 수 있다.
본 발명의 폴리유산 수지 조성물 및 이를 포함하는 필라멘트는, 특정한 구조의 하드세그먼트 및 소프트세그먼트를 포함함에 따라 소정의 유리전이온도 및 소정의 용융온도를 갖게 되며, 이로 인하여 3D 인쇄 시 최적화된 유연성 및 스티프니스를 나타낼 수 있을 뿐 아니라 용융 가공성 및 내열성 또한 보다 향상된다. 따라서, 본 발명의 폴리유산 수지 조성물은 3D 인쇄용 재료에 매우 바람직하게 적용될 수 있다. 또한, 본 발명의 폴리유산 수지 조성물 및 이를 포함하는 필라멘트는 바이오매스 기원의 유기탄소 함유율이 높아 우수한 생분해성 및 친환경적 특성을 나타낼 수 있다.
[실시예]
이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
물성 정의 및 측정 방법
후술하는 실시예에서 각 물성의 정의 및 측정 방법은 이하에 정리된 바와 같다.
(1) Mw 및 Mn(g/mol), 및 분자량 분포(Mw/Mn): 폴리유산 수지 조성물을 클로로포름(chloroform)에 0.25중량% 농도로 용해한 뒤, 겔 투과 크로마토그래피(gel permeation chromatography) (Viscotek TDA 305, column: Shodex LF804 x 2ea)를 이용하여 측정하였고, 폴리스티렌을 표준물질로서 중량평균분자량(Mw) 및 수평균분자량(Mn)을 각각 산출하였다. 이렇게 측정된 Mw 및 Mn으로부터 분자량 분포값(MWD)을 계산하였다.
(2) Tg (유리전이온도), Tm (용융온도) 및 Tc(결정화 온도)는, 시차주사열량계 (DSC, TA Instruments)를 사용하여, 시료를 1차 승온 (30℃에서 20℃/분으로 250℃으로 승온)하고, 이를 냉각 (20℃/분 또는 5℃/분으로 0℃까지 냉각)한 후, 다시 2차 승온 (10℃/분으로 250℃으로 승온)시켜 측정하였다.
- Tg (℃): 흡열 곡선 부근의 베이스 라인과 각 접선의 중앙값(mid value)을 Tg로 하였다.
- Tm (℃): 결정의 용융 흡열 피크의 최대치(max value) 온도를 Tm으로 하였다.
- Tc (℃): 결정의 용융 발열 피크의 최대치(max value) 온도를 Tc로 하였으며, 이때 시료를 고온에서 일정한 속도로 온도를 내릴 때 발열되는 온도인 용융 결정화 온도 (melt crystallization temperature, Tmc)와, 시료를 고온에서 냉각시킨 후 일정한 속도로 올릴 때 발열되는 온도인 냉 결정화 온도 (cold crystallization temperature, Tcc)를 함께 측정하였다.
(3) 폴리우레탄 폴리올 반복단위의 함량 (wt%): 600MHz 핵자기공명(NMR) 스펙트로미터를 사용하여, 각 제조된 폴리유산 수지 조성물 내에 포함되는 폴리우레탄 폴리올 반복단위의 함량을 정량하였다.
(4) 점도(Pa·s): 레오미터(rheometer, Anton Paar)를 이용하여 200℃에서 전단속도 100 s-1로 점도를 측정하였다.
(5) 유기탄소 함유율: ASTM D6866에 따라 측정하였다.
실시예 및 비교예에서 사용된 원료:
(1) 폴리에테르계 폴리올 반복단위
- PPDO 2.4: 폴리(1,3-프로판디올); 수평균분자량 2,400
- PPG: 폴리프로필렌글리콜; 수평균분자량 2,000
(2) 디이소시아네이트 화합물
- HDI: 1,6-헥사메틸렌 디이소시아네이트
(3) 락티드 단량체
- L-락티드 또는 D-락티드: Purac사 제조, 광학순도 99.5% 이상
(4) 산화방지제 등
- U626: 비스(2,4-디-t-부틸페닐)펜타에리쓰리톨 디포스파이트
- I-1076: 옥타데실 3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트
실시예 1 내지 4: 폴리유산 수지 조성물의 제조(수지 A 내지 D)
질소가스 도입관, 교반기, 촉매 투입구, 유출 콘덴서 및 진공 시스템을 장착한 8 L 반응기에, 하기 표 1에 나타낸 바와 같은 성분 및 함량의 반응물을 촉매와 함께 투입하였다. 촉매로는 전체 반응물 중량 대비 130 ppmw의 디부틸틴 디라우레이트(dibutyltin dilaurate)를 첨가하였다.
질소 기류 하에서 반응기 온도 70℃에서 2시간 동안 우레탄 반응을 진행하고, 4kg의 L-(또는 D-)락티드를 투입하여 5회 질소 플러싱(flushing)을 실시하였다. 이후, 150℃까지 승온하여 L-(혹은 D-)락티드를 완전 용해하고, 촉매 투입구를 통해 틴 2-에틸헥사노에이트(tin 2-ethylhexanoate)를 전체 반응물 중량 대비 120 ppmw가 되도록 톨루엔 500 mL 중에 희석하여 반응 용기 내에 첨가하였다.
1kg 질소 가압 상태에서 185℃로 2시간 동안 반응을 진행하고, 인산 200 ppmw을 촉매 투입구로 첨가한 후, 15분간 혼합하여 잔류 촉매를 불활성화시켰다. 이어서, 0.5 torr에 도달할 때까지 진공 반응을 수행하여, 미반응된 L-(혹은 D-)락티드(최초 투입량의 약 5 중량%)를 제거하였다. 획득한 수지 조성물의 Tm, Tg, Tc 및 점도 등을 측정하여 표 1에 나타내었다.
실시예 5 및 6: 폴리유산 컴파운딩 수지 조성물의 제조(수지 E 및 F)
상기 실시예 1 및 3에서 제조된 폴리유산 수지 조성물(수지 A 및 C)를 각각 80℃로 6시간 동안 1 torr의 진공 하에서 감압 건조하였다. 이들 폴리유산 수지 조성물에 무기 필러로서 활석(SP 3000, 다원화학)을 10중량%의 양이 되도록 각각 첨가하고, 실시예 1 및 3에서 사용한 산화방지제 100 ppm을 첨가한 뒤, 슈퍼믹서(super mixer)를 이용하여 혼합하였다. 이를 지름 19 mm 이축 스크류 압출기를 이용하여 190 내지 220℃에서 스트랜드 상으로 용융 혼련 압출하였다. 워터배스(water bath)를 통해 스트랜드를 냉각시키고 펠렛타이저(pelletizer)를 사용하여 칩(chip)을 확보하였다. 이를 제습 건조기 또는 열풍 건조기로 80℃에서 4시간 이상 건조시켰다. 획득한 수지 조성물의 Tm, Tg, Tc 및 점도 등을 측정하여 표 1에 나타내었다.
비교예 1: 폴리유산 수지 조성물의 제조(수지 G)
질소가스 도입관, 교반기, 촉매 투입구, 유출 콘덴서 및 진공 시스템을 장착한 8 L 반응기에 1-도데칸올, L-락티드 및 산화방지제를 하기 표 1에 나타낸 바와 같은 양으로 투입하고 5회 질소 플러싱을 실시하였다. 이후, 150℃까지 승온하여 L-락티드를 완전 용해하고, 촉매 투입구를 통해 틴 2-에틸헥사노에이트를 전체 반응물 함량 대비 120 ppmw가 되도록 톨루엔 500 mL로 희석하여 반응 용기 내에 첨가하였다.
1kg 질소 가압 상태에서 185℃로 2시간 동안 반응을 진행하고, 인산 200 ppmw을 촉매 투입구로 첨가한 후, 15분간 혼합하여 잔류촉매를 불활성화시켰다. 이어서, 0.5 torr에 도달할 때까지 진공반응을 수행하여, 미반응된 L-락티드를 제거하였다. 획득한 수지 조성물의 Tm, Tg, Tc (Tmc 및 Tcc), 및 점도 등을 측정하여 표 1에 나타내었다.
실시예1 실시예2 실시예3 실시예 4 실시예 5 실시예 6 비교예 1
수지 A 수지 B 수지 C 수지 D 수지 E 수지 F 수지 G
L-락티드 (g) 4000 4000 4000
D-락티드 (g) 4000 4000
PPDO 2.4 (g) 419 942
PPG (g) 414 931
HDI (g) 24.7 57.4 30.3 68.1
1-도데칸올(g) 11
폴리우레탄 폴리올 반복단위 함량(wt%) 10% 20% 10% 20% 0%
U626 (g) 2 2 2 2 4 4 2
I-1076 (g) 2 2 2 2 2
사용 수지 수지 A 수지 C
수지 사용량(g) 3600 3600
활석 (g) 400 400
Mn(×1000, g/mol) 87 85 98 93 85 95 126
Mw(×1000, g/mol) 190 180 215 205 185 208 256
MWD 2.18 2.12 2.19 2.20 2.18 2.19 2.03
유기탄소 함유율(%) 98.2 98.2 88.5 79.8 80.5 80.3 98.8
Tg (℃) 43 38 43 35 42 43 65
Tm (℃) 166 163 165 160 167 168 179
Tc (℃) Tcc 91 93 103 105 - - 측정안됨
Tmc - - - - 110 107
점도(Pa·s) 602 598 87.7 85.4 834 829 1150
상기 표 1에서 보듯이, 본 발명에 따른 실시예 1 내지 6의 폴리유산 수지 조성물들은 중량평균분자량 100,000 내지 300,000이고, Tg가 35~50℃이며, Tm이 160~170℃이고, Tc가 80~110℃으로 확인되었다. 반면 비교예 1의 종래의 폴리유산 수지 조성물은 179℃의 높은 Tm 및 65℃의 높은 Tg를 나타내었으며, Tc가 측정되지 않았다.
PLA 수지에서 Tc의 발현 유무 및 발현되는 온도는 결정화 속도를 판단할 수 있는 기준이 된다. 결정화 속도가 빠를 경우, 냉각 또는 승온 과정에서 결정화되어 Tmc 또는 Tcc가 발현된다. 20℃/분으로 냉각 후 승온 한 결과, 실시예 1 내지 4의 수지 조성물들은 Tcc가 관찰되었고 실시예 5 및 6의 수지 조성물들은 Tmc가 관찰되었다. 또한, 냉각 속도를 5℃/분으로 변경하여 측정한 경우, 결정화 가능한 시간이 확보되어 실시예 1의 수지 조성물도 Tmc 피크 (112.5℃)가 관찰되었다. 반면, 비교예 1에 따른 수지 조성물은 결정화 속도가 느려 DSC 분석 상에서 Tc 피크가 아예 관찰되지 않았다.
이를 통해 본 발명의 폴리유산 수지 조성물은 결정화가 빠를 뿐 아니라 기존의 일반 폴리유산 수지와 비교하여 낮은 Tm을 나타내어 180 내지 200℃의 온도에서 압출 가공이 가능함을 확인할 수 있었다. 이는 기존의 폴리유산 수지의 경우 고분자 사슬의 유동성의 문제로 폴리유산 수지의 결정화를 이루기가 어려운 반면, 본 발명의 수지 조성물은 공중합체에 포함된 유연 성분이 고분자 사슬의 유동성을 확보해주는 역할을 하여 결정화하였기 때문이다.
또한, 200℃에서 전단속도 100 s-1로 측정한 점도의 경우, 실시예 1 내지 6의 수지 조성물의 경우 1,000 Pa·s 이하를 나타내었지만, 비교예 1의 수지 조성물은 1,000 Pa·s을 크게 초과하였음을 알 수 있었다.
따라서, 본 발명에 따라 제조된 폴리유산 수지 조성물은 기존의 폴리유산 수지 대비 빠른 결정화 속도, 낮은 Tm, 및 낮은 점도를 나타내므로, 3D 인쇄 용도로 적용 시 저온 고속 가공이 가능할 뿐 아니라 고화 속도가 빨라 3D 인쇄 재료로 유용하다.
3D 인쇄용 PLA 필라멘트의 제조예
상기 실시예 1 내지 6에서 제조한 각각의 폴리유산 수지 조성물을 감압 건조한 후, 무기 필러로서 활석(SP 3000, 다원화학)을 1~30중량%의 양이 되도록 첨가하고 산화방지제로서 U626, I-1076을 첨가한 후, 슈퍼믹서(super mixer)를 이용하여 혼합하였다. 이를 지름 19 mm 이축 스크류 압출기를 이용하여 190 내지 220℃에서 스트랜드(strand) 상으로 용융 혼련 압출하였다. 이후, 워터 배스를 통해 스트랜드를 냉각시키고, 보빈(bobbin)에 일정 중량을 감아 직경 1.75 mm 또는 3 mm을 갖는 3D 인쇄용 PLA 필라멘트를 각각 제조하였다.

Claims (8)

  1. (a) 하기 화학식 1의 폴리유산 반복단위를 포함하는 하드세그먼트; 및 (b) 우레탄 결합을 매개로 하기 화학식 2의 폴리에테르계 폴리올 반복단위들이 선형으로 연결되어 있는 폴리우레탄 폴리올 반복단위를 포함하는 소프트세그먼트를 포함하고,
    170℃ 이하의 용융온도, 55℃ 이하의 유리전이온도 및 50,000 이상의 수평균분자량을 가지며, 200℃에서 전단속도 100 s-1로 측정한 점도가 1,000 Pa·s 이하인, 3D 인쇄용 폴리유산 수지 조성물:
    [화학식 1]
    Figure PCTKR2015008762-appb-I000007
    [화학식 2]
    Figure PCTKR2015008762-appb-I000008
    상기 화학식 1에서, n은 700 내지 5,000의 정수이고;
    상기 화학식 2에서, A는 선형 또는 분지형의 탄소수 2 내지 5의 알킬렌기이고, m은 10 내지 100의 정수이다.
  2. 제1항에 있어서,
    상기 3D 인쇄용 폴리유산 수지 조성물이,
    조성물 총 중량을 기준으로, 상기 하드세그먼트(a) 65 내지 95 중량% 및 상기 소프트세그먼트(b) 5 내지 35 중량%를 포함하는, 3D 인쇄용 폴리유산 수지 조성물.
  3. 제1항에 있어서,
    상기 폴리에테르계 폴리올 반복단위가
    폴리에틸렌글리콜(PEG)의 반복단위, 폴리(1,2-프로필렌글리콜)의 반복단위, 폴리(1,3-프로판디올)의 반복단위, 폴리테트라메틸렌글리콜의 반복단위, 폴리부틸렌글리콜의 반복단위, 프로필렌 옥사이드와 테트라하이드로퓨란이 공중합된 폴리올의 반복단위, 에틸렌 옥사이드와 테트라하이드로퓨란이 공중합된 폴리올의 반복단위, 및 에틸렌 옥사이드와 프로필렌 옥사이드가 공중합된 폴리올의 반복단위로 이루어진 군에서 선택되는 1종 이상인, 3D 인쇄용 폴리유산 수지 조성물.
  4. 제1항에 있어서,
    상기 우레탄 결합이
    상기 폴리에테르계 폴리올 반복단위의 말단 히드록시기와 디이소시아네이트 화합물과의 반응으로 형성된 것인, 3D 인쇄용 폴리유산 수지 조성물.
  5. 제4항에 있어서,
    상기 디이소시아네이트 화합물이
    1,6-헥사메틸렌 디이소시아네이트, 2,4-톨루엔 디이소시아네이트, 2,6-톨루엔 디이소시아네이트, 1,3-크실렌 디이소시아네이트, 1,4-크실렌 디이소시아네이트, 1,5-나프탈렌 디이소시아네이트, m-페닐렌 디이소시아네이트, p-페닐렌 디이소시아네이트, 3,3'-디메틸-4,4'-디페닐메탄 디이소시아네이트, 4,4'-비스페닐렌 디이소시아네이트, 아이소포론 디이소시아네이트(isophorone diisocyanate) 및 수첨된 디페닐메탄 디이소시아네이트(hydrogenated diphenylmethane diisocyanate)로 이루어진 군에서 선택되는 1종 이상인, 3D 인쇄용 폴리유산 수지 조성물.
  6. 제1항에 있어서,
    상기 3D 인쇄용 폴리유산 수지 조성물이
    입체장애 페놀(hindered phenol)계 산화방지제, 아민계 산화방지제, 티오계 산화방지제, 포스파이트계 산화방지제, 실리카, 콜로이달 실리카, 알루미나, 알루미나 졸, 활석, 운모 및 탄산칼슘으로 이루어진 군에서 선택된 1종 이상의 첨가제를 더 포함하는, 3D 인쇄용 폴리유산 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 폴리유산 수지 조성물을 포함하는, 3D 인쇄용 PLA 필라멘트.
  8. 폴리유산 수지 조성물을 이용하여 3D 인쇄하는 방법으로서,
    상기 폴리유산 수지 조성물이 (a) 하기 화학식 1의 폴리유산 반복단위를 포함하는 하드세그먼트; 및 (b) 우레탄 결합을 매개로 하기 화학식 2의 폴리에테르계 폴리올 반복단위들이 선형으로 연결되어 있는 폴리우레탄 폴리올 반복단위를 포함하는 소프트세그먼트를 포함하고, 170℃ 이하의 용융온도, 55℃ 이하의 유리전이온도 및 50,000 이상의 수평균분자량을 가지며, 200℃에서 전단 속도 100 s-1로 측정한 점도가 1,000 Pa·s 이하인 방법:
    [화학식 1]
    Figure PCTKR2015008762-appb-I000009
    [화학식 2]
    Figure PCTKR2015008762-appb-I000010
    상기 화학식 1에서, n은 700 내지 5,000의 정수이고;
    상기 화학식 2에서, A는 선형 또는 분지형의 탄소수 2 내지 5의 알킬렌기이고, m은 10 내지 100의 정수이다.
PCT/KR2015/008762 2014-09-17 2015-08-21 3d 인쇄용 폴리유산 수지 조성물 WO2016043440A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017514805A JP6629303B2 (ja) 2014-09-17 2015-08-21 3d印刷用のポリ乳酸樹脂組成物
US15/504,286 US10246799B2 (en) 2014-09-17 2015-08-21 Polylactic acid resin composition for 3D printing
CN201580045833.2A CN107075114B (zh) 2014-09-17 2015-08-21 用于3d打印的聚乳酸树脂组合物
ES15842012T ES2762582T3 (es) 2014-09-17 2015-08-21 Composición de resina de ácido poliláctico para impresión 3D
EP15842012.5A EP3196227B1 (en) 2014-09-17 2015-08-21 Polylactic acid resin composition for 3d printing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140123892A KR102149304B1 (ko) 2014-09-17 2014-09-17 3d 인쇄용 폴리유산 수지 조성물
KR10-2014-0123892 2014-09-17

Publications (1)

Publication Number Publication Date
WO2016043440A1 true WO2016043440A1 (ko) 2016-03-24

Family

ID=55533441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008762 WO2016043440A1 (ko) 2014-09-17 2015-08-21 3d 인쇄용 폴리유산 수지 조성물

Country Status (8)

Country Link
US (1) US10246799B2 (ko)
EP (1) EP3196227B1 (ko)
JP (1) JP6629303B2 (ko)
KR (1) KR102149304B1 (ko)
CN (1) CN107075114B (ko)
ES (1) ES2762582T3 (ko)
TW (1) TW201615734A (ko)
WO (1) WO2016043440A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279817A (zh) * 2016-08-23 2017-01-04 四川金利声乐电子科技有限公司 一种用于3d打印的材料及其制备方法
CN110177636A (zh) * 2016-11-15 2019-08-27 霍加纳斯股份有限公司 用于增材制造法的原料、使用其的增材制造法和由其获得的制品

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3206858B1 (en) * 2014-10-16 2020-04-22 Dow Global Technologies Llc Method for additive manufacturing
WO2017188550A1 (ko) * 2016-04-28 2017-11-02 한양대학교 산학협력단 바인더 복합물 및 그 제조 방법
CN109563332A (zh) * 2016-07-05 2019-04-02 乐天化学株式会社 具有提高的打印速度的用于三维打印机丝的聚乳酸组合物
CN107778435B (zh) * 2017-11-22 2020-04-07 四川大学 一种高强聚乳酸骨固定材料及其制备方法
CN111432905A (zh) * 2017-12-01 2020-07-17 乐高公司 由生物聚合物材料制成的玩具搭建积木
US11485849B2 (en) * 2021-03-04 2022-11-01 Balena Ltd. Composite biodegradable polymeric based material, a product and a method of making same
CN115286909B (zh) * 2022-08-30 2023-04-07 西华大学 基于poss改性竹粉强化的高紫外屏蔽聚乳酸复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051394A1 (en) * 2004-03-24 2006-03-09 Moore Timothy G Biodegradable polyurethane and polyurethane ureas
US20090099600A1 (en) * 2007-10-03 2009-04-16 Timothy Graeme Moore High modulus polyurethane and polyurethane/urea compositions
KR20100098529A (ko) * 2007-12-13 2010-09-07 킴벌리-클라크 월드와이드, 인크. 폴리락트산 및 폴리에테르 공중합체를 함유하는 열가소성 조성물로부터 형성된 생분해성 섬유
KR20120049102A (ko) * 2010-11-08 2012-05-16 에스케이케미칼주식회사 폴리유산 수지 및 이를 포함하는 포장용 필름
KR20140071747A (ko) * 2012-12-04 2014-06-12 주식회사 엘지화학 생분해성 수지 조성물

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143239A (ja) * 1995-11-28 1997-06-03 Dainippon Ink & Chem Inc 乳酸系ポリエーテルエステルの製造方法
WO2002007961A1 (en) * 2000-07-21 2002-01-31 3Tex, Inc. Three-dimensional fiber scaffolds for injury repair
US20050281856A1 (en) 2004-05-10 2005-12-22 Mcglohorn Jonathan Implantable biostructure comprising an osteoconductive member and an osteoinductive material
US8288477B2 (en) * 2005-12-06 2012-10-16 Tyco Healthcare Group Lp Bioabsorbable compounds and compositions containing them
CN100445313C (zh) * 2007-04-24 2008-12-24 上海同杰良生物材料有限公司 一种聚乳酸/聚醚二元醇共聚物的制备方法
ES2962147T3 (es) * 2010-11-08 2024-03-15 Sk Chemicals Co Ltd Resina de ácido poliláctico, procedimiento de preparación de la misma, y película de embalaje que comprende la misma
KR101966369B1 (ko) 2010-12-17 2019-04-08 에스케이케미칼 주식회사 폴리유산 수지 조성물 및 포장용 필름
WO2014088321A1 (ko) * 2012-12-06 2014-06-12 주식회사 엘지화학 락타이드 공중합체, 이의 제조 방법 및 이를 포함하는 수지 조성물
CN103077489A (zh) 2013-01-22 2013-05-01 苏州海客科技有限公司 旅游用户随机需求的推测方法
CN103087489A (zh) 2013-03-05 2013-05-08 南通大学 一种聚乳酸改性材料及其制备方法
CN103146164B (zh) 2013-04-07 2016-03-30 苏州聚复高分子材料有限公司 用于快速成型的纳米增韧聚乳酸材料及其制备方法
CN103360738B (zh) * 2013-08-09 2015-10-07 中国科学院长春应用化学研究所 一种改性聚乳酸及其制备方法
CN103467950B (zh) 2013-09-29 2015-09-02 成都新柯力化工科技有限公司 一种3d打印改性聚乳酸材料及其制备方法
KR101350993B1 (ko) * 2013-10-18 2014-01-23 이재식 마이크로 캡슐을 이용한 난연 및 내열 특성을 가지는 3d 프린터용 pla 필라멘트제조방법 및 이에 의해 제조된 pla 필라멘트
US8827684B1 (en) * 2013-12-23 2014-09-09 Radiant Fabrication 3D printer and printhead unit with multiple filaments
CN104004377A (zh) * 2014-06-10 2014-08-27 广州市傲趣电子科技有限公司 一种软性弹性3d打印橡胶耗材及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051394A1 (en) * 2004-03-24 2006-03-09 Moore Timothy G Biodegradable polyurethane and polyurethane ureas
US20090099600A1 (en) * 2007-10-03 2009-04-16 Timothy Graeme Moore High modulus polyurethane and polyurethane/urea compositions
KR20100098529A (ko) * 2007-12-13 2010-09-07 킴벌리-클라크 월드와이드, 인크. 폴리락트산 및 폴리에테르 공중합체를 함유하는 열가소성 조성물로부터 형성된 생분해성 섬유
KR20120049102A (ko) * 2010-11-08 2012-05-16 에스케이케미칼주식회사 폴리유산 수지 및 이를 포함하는 포장용 필름
KR20140071747A (ko) * 2012-12-04 2014-06-12 주식회사 엘지화학 생분해성 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196227A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279817A (zh) * 2016-08-23 2017-01-04 四川金利声乐电子科技有限公司 一种用于3d打印的材料及其制备方法
CN110177636A (zh) * 2016-11-15 2019-08-27 霍加纳斯股份有限公司 用于增材制造法的原料、使用其的增材制造法和由其获得的制品
CN110177636B (zh) * 2016-11-15 2021-12-21 霍加纳斯股份有限公司 用于增材制造法的原料、使用其的增材制造法和由其获得的制品

Also Published As

Publication number Publication date
KR102149304B1 (ko) 2020-08-28
CN107075114A (zh) 2017-08-18
JP6629303B2 (ja) 2020-01-15
JP2017529441A (ja) 2017-10-05
CN107075114B (zh) 2020-10-20
EP3196227A1 (en) 2017-07-26
US20170233899A1 (en) 2017-08-17
EP3196227A4 (en) 2018-04-25
TW201615734A (zh) 2016-05-01
ES2762582T3 (es) 2020-05-25
US10246799B2 (en) 2019-04-02
KR20160033004A (ko) 2016-03-25
EP3196227B1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2016043440A1 (ko) 3d 인쇄용 폴리유산 수지 조성물
KR101191968B1 (ko) 폴리유산 수지 및 이를 포함하는 포장용 필름
KR101966369B1 (ko) 폴리유산 수지 조성물 및 포장용 필름
WO2013073807A1 (ko) 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
WO2023033562A1 (ko) 투명성과 충격강도가 우수한 생분해성 폴리에스테르 중합체 및 이를 포함하는 생분해성 고분자 조성물
WO2017164504A1 (ko) 폴리유산 수지 조성물 및 이를 포함한 성형용품
KR102103524B1 (ko) 폴리유산-폴리아미드 얼로이 수지 조성물
KR20120094552A (ko) 폴리유산 수지 필름
KR20120086118A (ko) 폴리유산 수지 필름
EP3153538B1 (en) Thermally adhesive flexible polylactic acid resin composition
WO2017135618A1 (ko) 물 소거제를 포함하는 유연 폴리유산 수지 조성물
WO2020101106A1 (ko) 발포용 생분해성 수지의 유변물성 증대를 위한 선택적 이온결합성 사슬 연장제
KR101717186B1 (ko) 폴리유산 수지의 제조 방법
WO2020197148A1 (ko) 트리블록 공중합체 및 이의 제조 방법
KR20120086117A (ko) 폴리유산 수지 필름
WO2023172085A1 (ko) 생분해성 필름
WO2021066284A1 (ko) 폴리에스테르 수지 혼합물 및 이로부터 형성된 성형품
WO2023182686A1 (ko) 결정화도가 우수한 폴리락타이드 수지 조성물, 및 이의 제조 방법
WO2023096468A1 (ko) 생분해성 고분자
WO2023239192A1 (ko) 생분해성 조성물 및 생분해성 필름
CN115044179A (zh) 一种增塑聚乳酸复合材料及其制备方法
WO2023085806A1 (ko) 폴리유산 수지, 폴리유산 수지 조성물, 폴리유산 수지 필름 및 성형체
WO2023239191A1 (ko) 생분해성 조성물 및 생분해성 필름
WO2021137541A1 (ko) 가소제 조성물, 및 이를 포함하는 실란트/접착제 조성물
WO2022050815A1 (ko) 폴리락테이트 입체이성질 복합체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015842012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015842012

Country of ref document: EP