CN115286909B - 基于poss改性竹粉强化的高紫外屏蔽聚乳酸复合材料及其制备方法 - Google Patents

基于poss改性竹粉强化的高紫外屏蔽聚乳酸复合材料及其制备方法 Download PDF

Info

Publication number
CN115286909B
CN115286909B CN202211050350.XA CN202211050350A CN115286909B CN 115286909 B CN115286909 B CN 115286909B CN 202211050350 A CN202211050350 A CN 202211050350A CN 115286909 B CN115286909 B CN 115286909B
Authority
CN
China
Prior art keywords
poss
bamboo powder
modified
composite material
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211050350.XA
Other languages
English (en)
Other versions
CN115286909A (zh
Inventor
韩锐
胡斌
李临
李光照
陈刚
郑浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xihua University
Original Assignee
Xihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xihua University filed Critical Xihua University
Priority to CN202211050350.XA priority Critical patent/CN115286909B/zh
Publication of CN115286909A publication Critical patent/CN115286909A/zh
Priority to BE20235021A priority patent/BE1030220B1/de
Application granted granted Critical
Publication of CN115286909B publication Critical patent/CN115286909B/zh
Priority to US18/211,928 priority patent/US11920031B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明公开了一种基于POSS改性竹粉强化的高紫外屏蔽、高强高耐热聚乳酸复合材料,属于新材料技术领域,其制备方法为先用含特定有机基团的POSS对适当粒径的竹粉进行化学接枝改性,然后加入到聚乳酸中熔融共挤即得;本发明充分利用竹粉中含有的30%的木质素,来源广泛、生物可代谢、价格低廉,与深色的木质素相比,竹粉的浅黄色可赋予PLA基复合材料更好的透明性;无需传统无机紫外屏蔽剂,也无需从天然材料中提取纯化木质素,直接以价格便宜、容易得到的竹粉为主要原料,通过少量添加,和简单热熔加工,即实现了PLA紫外线屏蔽性能的大幅提升,以及力学性能和热稳定性的强化。

Description

基于POSS改性竹粉强化的高紫外屏蔽聚乳酸复合材料及其制备方法
技术领域
本发明涉及新材料技术领域,尤其涉及一种基于POSS改性竹粉强化的高紫外屏蔽聚乳酸复合材料及其制备方法。
背景技术
紫外线(UV)为波长范围200~400nm的有害电磁波,按波长可分为UVC(200~280nm)、UVB(280~320nm)和UVA(320~400nm)三个波段。其中,UVC波段主要被臭氧层吸收,而UVB和UVA波段可对人体皮肤、食物、材料等造成长期伤害。聚乳酸(PLA)是目前用量最大的生物可降解塑料,已被广泛应用于包装材料中,但其结晶度较低、热稳定性较差,质脆,且紫外屏蔽性能差。因此,利用聚乳酸制备包装材料或各类容器,难以有效保护其中的物品在长期运输和储存中不受紫外线的损害。
为了解决上述问题,现有的主要策略和方法,是在PLA中添加UV屏蔽剂,包括有机和无机两大类,其中,最常用的为无机材料类,包括TiO2,CeO2,ZnO,Al2O3等。这些屏蔽剂,一方面因为带隙较宽而不能吸收所有波段紫外线,且添加量较大;另一方面又因为表面化学性质与PLA基体差别较大而导致PLA基复合材料的力学性能劣化;最为重要的是,其存在一定的光催化活性,容易导致PLA长期使用过程中发生紫外线催化降解。
因此,近年开始兴起使用基于天然原料的UV屏蔽剂,其既能提升PLA屏蔽紫外线的能力,又因本身的生物质属性可与PLA一同被环境代谢,从而保留废弃PLA制品对环境无害的特性。目前,最常见的这类UV屏蔽剂是木质素(一种天然有机物),其表现出了在较低含量即具有较高的UV屏蔽能力。但从木材等生物质材料中提纯木质素过程复杂,且要用到多种化学试剂,对环境负面影响大,同时,其本身颜色较深,与PLA复合后会极大的影响PLA的可见光透过率。
另外,目前也有报道通过对竹纤维进行改性,然后与聚乳酸熔融共混以改善聚乳酸的力学性能、紫外屏蔽性能的报道,比如中国专利公开号:CN114621573A、专利名称:一种竹纤维增强聚乳酸抗氧化抗紫外全降解复合材料的制备方法及该复合材料,就公开了一种上述的复合材料,该材料是先对竹纤维进行微波辅助乙酰化改性,然后连同抗氧剂、二氧化钛等功能助剂与聚乳酸熔融共混,得到高填充复合材料,拉伸强度>68MPa,弯曲强度>110MPa,氧化诱导时间>45min,300nm波长紫外线屏蔽率>99%。但是,竹纤维是新型再生纤维素纤维,以毛竹为原料,在竹浆中加入功能性助剂,经湿法纺丝加工而成。竹纤维的形态为纤维状,不能直接获得,是二次加工产物,且加工过程用到大量试剂,加工后产生的大量废浆,对环境造成严重负担,竹纤维中的纤维素占比较原竹更高,而且,其仅仅是对300nm固定波长处的紫外屏蔽,实用性较差。
因此,寻找和制备新的基于天然物质的UV屏蔽剂,并将其与PLA复合,制备高性能紫外屏蔽可降解塑料,将有利促进环境无害塑料产业的发展,改善环境质量。
发明内容
本发明的目的之一,就在于提供一种基于POSS改性竹粉强化的高紫外屏蔽、高强高耐热聚乳酸复合材料的制备方法,以解决上述问题。
为了实现上述目的,本发明采用的技术方案是这样的:一种基于POSS改性竹粉强化的高紫外屏蔽、高强高耐热聚乳酸复合材料的制备方法,包括下述步骤:
(1)将400目~2000目竹粉加入0.5~0.8mol/L NaOH溶液中,在70~80℃下搅拌3~5h,干燥除去溶剂;
(2)搅拌下,将改性POSS加入四氢呋喃溶剂中,所述改性POSS与四氢呋喃溶剂的比例为1g:200mL~1g:400mL,搅拌均匀后,再将步骤(1)处理后的竹粉加入同一四氢呋喃溶剂中,所述步骤(1)处理后的竹粉与四氢呋喃溶剂的比例为1g:20mL~1g:40mL,在50-80℃下持续搅拌反应3~4h;期间采用冷凝回流装置,防止溶剂损失;
(3)搅拌反应结束后,反应产物过滤,并经四氢呋喃溶剂洗涤后,干燥除去溶剂,得到POSS改性竹粉POSS-BP;
(4)将步骤(3)得到POSS-BP与聚乳酸按质量比2:98~10:90,即POSS-BP的添加比例为2wt%-10wt%,经混合均匀后,熔融共挤出,然后经牵丝水浴冷却切粒后,干燥,即得。
本发明利用POSS与竹粉表面发生接枝化学反应,从而获得POSS改性竹粉,然后将其作为新型生物质UV屏蔽剂与PLA熔融共混,并经现有常规热塑加工方式获得PLA基复合材料制品,该制品具有极好的UV屏蔽性能,高结晶度,以及良好的力学性能和热稳定性。
本发明所采用的原料之一竹粉,为原竹粉碎后直接得到或从原竹材物理加工后产生的废粉中得到,其中含有30wt%左右的木质素,来源广泛、生物可代谢、价格低廉。与深色的木质素相比,竹粉的浅黄色可赋予PLA基复合材料更好的透明性。POSS中文名为多面体低聚倍半硅氧烷,为一种新型有机/无机杂化材料,其内核由Si-O-Si键形成笼形结构,表面可接枝大量有机基团,拥有出色的热稳定性和力学性能,同时可以通过表面有机基团强化与聚合物间的相容性。通过简单化学反应,本发明成功使POSS接枝于竹粉表面,制备了微量POSS改性竹粉的PLA用生物质UV屏蔽剂,该UV屏蔽剂通过竹粉与POSS的协效作用,通过少量添加,既大幅提升PLA的UV屏蔽性能,又实现其热稳定性、结晶度,以及拉伸模量、强度和断裂伸长率等力学性能的强化,同时较好的保留了PLA对可见光的透过率。
作为优选的技术方案:步骤(1)中,竹粉的粒径为800~1000目。因为粒径太小,竹粉易自身团聚且不利于热熔加工(不容易与PLA在高混机中均匀混合,且不利于双螺杆挤出时下料);粒径太大,竹粉化学反应活性降低,同时根据弥散增强原理,易劣化PLA力学性能。
作为优选的技术方案:步骤(1)中,在80℃下搅拌5h。
作为优选的技术方案:步骤(2)中,所述改性POSS选自缩水甘油基改性POSS或甲基丙烯酸改性POSS或马来酰胺酸改性POSS中的一种或多种混合。
作为进一步优选的技术方案:所述改性POSS采用缩水甘油基改性POSS。
作为优选的技术方案:步骤(2)中,所述改性POSS与四氢呋喃溶剂的比例为1g:400ml,所述步骤(1)处理后的竹粉与四氢呋喃溶剂的比例为1g:40ml。
作为优选的技术方案:步骤(4)中,采用高混机混合,利用双螺杆挤出机熔融共挤出。
作为进一步优选的技术方案:所述熔融共挤出时,挤出温度从料筒到口模分别为:160℃,180℃,180℃,180℃,螺杆转速为120rpm。
本发明的目的之二,在于提供一种采用上述方法制备得到的材料。
与现有技术相比,本发明的优点在于:
(1);本发明通过简单化学反应,成功使改性POSS接枝于竹粉表面,制备了微量POSS改性竹粉的PLA用生物质UV屏蔽剂,该UV屏蔽剂通过竹粉与POSS的协效作用,少量添加,既大幅提升PLA的UV屏蔽性能,又实现其热稳定性、结晶度,以及拉伸模量、强度和断裂伸长率等力学性能的强化;另外,本发明充分利用竹粉中含有的30%的木质素,来源广泛、生物可代谢、价格低廉;并且与目前报道的采用深色的木质素相比,本发明采用的竹粉的浅黄色可赋予PLA基复合材料更好的透明性,因此,本发明所得的复合材料更好地保留了PLA对可见光的透过率;
(2)本发明无需传统无机紫外屏蔽剂,也无需从天然材料中提取精练木质素,直接以价格便宜、容易得到的原竹竹粉为主要原料,经微量POSS化学改性,即实现了PLA对UVA和UVB波段屏蔽性能的大幅提升;
(3)综合考虑竹粉和PLA的加工特性,在温和条件下实现了POSS-BP改性PLA复合材料的制备,且可采用多种传统热塑加工方式实现相关产品制造。
附图说明
图1为竹粉改性处理前后的SEM照片及改性处理后的EDS图;
图2为常规竹粉与改性处理后竹粉升温热失重测试结果;
图3为不同制品在200~800nm波段光谱透过率测试结果;
图4为竹粉改性前后的红外光谱图。
图1中:a、未处理竹粉;b、POSS处理后的竹粉;c、经POSS处理竹粉的Si元素分布EDS结果。
具体实施方式
下面将结合附图对本发明作进一步说明。
下述实施例中,除非特别说明,所用原料均为市购,其中,商用竹粉购自六安兴竹新材料科技有限公司(材质:原竹粉),缩水甘油基改性POSS购自西安齐岳生物科技有限公司。
实施例1:
一种基于POSS改性竹粉强化的高紫外屏蔽聚乳酸复合材料的制备方法,包括下述步骤:
(1)将商用竹粉(1000目)加入0.5mol/L NaOH溶液中,在80℃下搅拌5h,然后在80℃干燥12h至除去水分;
(2)在500rpm快速搅拌下,将缩水甘油基改性POSS按1g(缩水甘油基改性POSS):400ml(四氢呋喃)的比例加入四氢呋喃溶剂中,搅拌均匀后,再将步骤(1)所得的竹粉按1g(竹粉):40ml(四氢呋喃)的比例加入前述四氢呋喃溶液中,在70℃下持续快速搅拌4h,期间采用冷凝回流装置,防止溶剂损失;
(3)在搅拌反应结束后,将反应产物过滤,并经四氢呋喃溶剂洗涤后,再在80℃干燥12h,得到POSS改性竹粉(简称POSS-BP);
竹粉改性处理前后的显微图及改性处理后的EDS参见图1,图1中,a为未处理竹粉,b为本实施例的POSS处理后的竹粉,c为本实施例的经POSS处理竹粉的Si元素分布EDS结果,从图1中可以看出,未处理竹粉a表面平整,POSS处理后,竹粉表面覆盖有一层膜,且表面粗糙,EDS结果表明,改性竹粉表面含有大量Si元素,POSS已成功接枝于竹粉表面;
常规竹粉与本实施例改性处理后竹粉升温热失重测试结果参见图2,从图2中可以看出,经缩水甘油基POSS改性的竹粉(POSS-Bamboo)与常规竹粉(Bamboo)相比,前者的热分解温度更高,表现出更好的热稳定性;
另外,竹粉改性前后的红外光谱图如图4所示;从图4中可以看出:3026-3800cm-1范围内的宽特征吸收峰是竹粉中-OH的伸缩振动吸收峰,在2910cm-1处有肩峰的吸收峰是甲基和亚甲基的对称和不对称伸缩振动吸收峰,是纤维素的特征吸收峰,1740cm-1处的吸收峰是半纤维素和果胶中羰基的伸缩振动峰,1250cm-1处的吸收峰是木质素中苯环和CH3-CO-的伸缩振动峰;
POSS-BP在3026-3800cm-1范围内吸收峰强度的降低是由于竹粉中的-OH基团与POSS的环氧基团发生反应,在POSS-BP的FTIR光谱中,1740cm-1处的吸收峰消失,这是由于NaOH溶液在碱处理过程中与半纤维素和果胶中的羰基发生反应,1250cm-1处吸收峰的消失归因于木质素中的CH3-CO-基团与POSS反应,POSS-BP在1106cm-1和853cm-1处出现新的吸收峰,分别对应Si-O-Si和环氧基团的特征峰,表明POSS通过简单化学反应成功接枝在BP上;
(4)将步骤(3)所得的POSS-BP与聚乳酸按质量比10:90,经高混机混合均匀后,利用双螺杆挤出机熔融共挤出,挤出温度从料筒到口模分别为:160℃,180℃,180℃,180℃,螺杆转速为120rpm,经牵丝水浴冷却切粒后,在80℃真空干燥12h,得到POSS-BP改性PLA复合材料;
(5)将步骤(4)得到的POSS-BP改性PLA复合材料,经模压成型得到样品,用于性能测试,模压温度为190℃,压力为20MPa,热压时间为5分钟。
对所得样品进行相关性能测试:
拉伸测试:使用Instron 5566电子万能拉伸机测定了POSS-BP/PLA复合材料的拉伸性能。样品为从模压成型样品裁剪得到的哑铃型样条,尺寸为75×4×1mm3,拉伸速度5mm/min,每组样品测试10次取平均值。
紫外屏蔽性能测试:模压制备平均厚度为100um左右的POSS-BP/PLA复合材料薄膜,使用可紫外-可见分光光度计(Agilent Cary 60)对其进行200~800nm范围内的波长扫描,扫描分辨率为1nm,测试结果以透过率表示,其中:
Figure BDA0003823549790000091
Figure BDA0003823549790000092
热稳定性测试:利用Netzsch公司TGA-209F1热失重分析仪,对样品进行升温热失重分析,升温范围为30℃至800℃,升温速率为10℃/min。
得到的样品性能如下:
对UVA屏蔽率为87.9%,对UVB屏蔽率93.0%;复合材料热失重10%时对应温度为373.6℃;拉伸模量1.87GPa,拉伸强度87.9MPa,断裂伸长率16.3%。
图3为采用实施例1的方法,不同POSS-BP添加比例制得的复合材料在200~800nm波段光谱透过率测试结果,图3中的“PLA-BP2”表示POSS-BP的添加比例为2wt%,以此类推。从图3中可以看出,将经缩水甘油基POSS改性的竹粉与PLA复合后,PLA的紫外波段屏蔽性能明显改善,可见光波段透过率受到的影响相对较小,保留了可观的可见光波段的透过率。
实施例2
本实施例与实施例1相比,仅商用竹粉的粒径为2000目,其余均与实施例1相同。
实施例3
本实施例与实施例1相比,仅商用竹粉的粒径为400目,其余均与实施例1相同。
实施例4
本实施例与实施例1相比,仅改性POSS采用马来酰胺酸改性POSS,其余均与实施例1相同。
实施例5
本实施例与实施例1相比,仅缩水甘油基改性POSS按1g(氧丙基改性POSS):200ml(四氢呋喃)的比例加入四氢呋喃溶剂中,其余均与实施例1相同。
实施例6
本实施例与实施例1相比,仅步骤(1)所得的竹粉按1g(竹粉):20ml(四氢呋喃)的比例加入前述四氢呋喃溶液中,其余均与实施例1相同。
上述实施例2-6所得的制品,其相关性能数据如下表
表1实施例1-7的材料性能
Figure BDA0003823549790000101
对比例1
(1)与实施例1相比,取消步骤(1)-(4),将未改性PLA,在80℃真空干燥12h,直接经模压成型得到样品,用于性能测试。模压温度为190摄氏度,压力为20MPa,热压时间为5分钟;
得到的样品性能如下:
对UVA屏蔽率为10.0%,对UVB屏蔽率13.0%;复合材料热失重10%时对应温度为333.7℃;拉伸模量1.36GPa,拉伸强度66.4MPa,断裂伸长率6.2%。
对比例2
本对比例与实施例1相比,采用相同的竹粉,但是不预先采用缩水甘油基改性POSS进行改性,即先将竹粉加入0.5mol/L NaOH溶液中,在80℃下搅拌5h,并在80℃干燥12h;然后在快速搅拌下,将前述处理所得的竹粉按1g(竹粉):40ml(四氢呋喃)的比例加入四氢呋喃溶液中,在70℃下持续快速搅拌4小时,期间采用冷凝回流装置,防止溶剂损失;其余与实施例1相同,
得到的样品性能如下:
对UVA屏蔽率为25.6%,对UVB屏蔽率33.7%;复合材料热失重10%时对应温度为331.9℃;拉伸模量1.47GPa,拉伸强度52.4MPa,断裂伸长率4.3%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于POSS改性竹粉强化的高紫外屏蔽聚乳酸复合材料的制备方法,其特征在于,包括下述步骤:
(1)将400目~2000目竹粉加入0.5~0.8 mol/L NaOH溶液中,在70~80℃下搅拌3~5h,清洗过滤后,干燥除去溶剂;
(2)搅拌下,将改性POSS加入四氢呋喃溶剂中,所述改性POSS与四氢呋喃溶剂的比例为1g:200mL~1g:400mL,搅拌均匀后,再将步骤(1)处理后的竹粉加入同一四氢呋喃溶剂中,所述步骤(1)处理后的竹粉与四氢呋喃溶剂的比例为1g:20mL~1g:40mL,在50-80℃下持续搅拌反应3~4h;期间采用冷凝回流装置,防止溶剂损失;所述改性POSS选自缩水甘油基改性POSS 或 甲基丙烯酸改性POSS 或马来酰胺酸改性POSS中的一种或多种混合;
(3)搅拌反应结束后,反应产物过滤,并经四氢呋喃溶剂洗涤后,干燥除去溶剂,得到POSS改性竹粉POSS-BP;
(4)将步骤(3)得到POSS-BP与聚乳酸按质量比2:98~10:90,经混合均匀后,熔融共挤出,然后经牵丝水浴冷却切粒后,干燥,即得。
2.根据权利要求1所述的方法,其特征在于:步骤(1)中,竹粉的粒径为800~1000目。
3.根据权利要求1所述的方法,其特征在于:步骤(1)中,在80℃下搅拌5h。
4.根据权利要求1所述的方法,其特征在于:所述改性POSS采用缩水甘油基改性POSS。
5.根据权利要求1所述的方法,其特征在于:步骤(2)中,所述改性POSS与四氢呋喃溶剂的比例为1g:400mL,所述步骤(1)处理后的竹粉与四氢呋喃溶剂的比例为1g:40mL。
6.根据权利要求1所述的方法,其特征在于:步骤(4)中,采用高混机混合,利用双螺杆挤出机熔融共挤出。
7.根据权利要求6所述的方法,其特征在于:所述熔融共挤出时,挤出温度从料筒到口模分别为:160℃,180℃,180℃,180℃,螺杆转速为120rpm。
8.采用权利要求1-7任意一项所述的方法制备得到的材料。
CN202211050350.XA 2022-08-30 2022-08-30 基于poss改性竹粉强化的高紫外屏蔽聚乳酸复合材料及其制备方法 Active CN115286909B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202211050350.XA CN115286909B (zh) 2022-08-30 2022-08-30 基于poss改性竹粉强化的高紫外屏蔽聚乳酸复合材料及其制备方法
BE20235021A BE1030220B1 (de) 2022-08-30 2023-01-16 Durch polyhedral oligomeric silsesquioxane-modifiziertes bambuspulver verstärkter polymilchsäure-verbundwerkstoff mit hoher ultraviolett-schutzwirkung und herstellungsverfahren dafür
US18/211,928 US11920031B1 (en) 2022-08-30 2023-06-20 High ultraviolet blocking polylactic acid composite material reinforced by POSS modified bamboo powder and a preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211050350.XA CN115286909B (zh) 2022-08-30 2022-08-30 基于poss改性竹粉强化的高紫外屏蔽聚乳酸复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115286909A CN115286909A (zh) 2022-11-04
CN115286909B true CN115286909B (zh) 2023-04-07

Family

ID=83832493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211050350.XA Active CN115286909B (zh) 2022-08-30 2022-08-30 基于poss改性竹粉强化的高紫外屏蔽聚乳酸复合材料及其制备方法

Country Status (3)

Country Link
US (1) US11920031B1 (zh)
CN (1) CN115286909B (zh)
BE (1) BE1030220B1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090014822A (ko) * 2007-08-07 2009-02-11 (주) 런프로덕션 파운데이션 화장료 조성물과 이를 위한 화장품 용기
WO2009140266A2 (en) * 2008-05-14 2009-11-19 Cornell University Polymeric materials incorporating core-shell silica nanoparticles
JP2010284300A (ja) * 2009-06-11 2010-12-24 Uchida Plastic:Kk 植物繊維強化ポリ乳酸箸の製造方法
CN105131542A (zh) * 2015-08-19 2015-12-09 北京工商大学 一种经丙交酯表面接枝处理的竹粉和聚乳酸共混复合材料及其制备方法与应用
CN109320933A (zh) * 2018-10-16 2019-02-12 福建农林大学 一种增强增韧竹纤维/聚乳酸复合材料及其制备方法
CN111234488A (zh) * 2020-03-11 2020-06-05 西华大学 玉米芯粉/聚乳酸复合材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586998A (zh) * 2012-02-27 2012-07-18 绍兴县舒丽乐纺织品有限公司 一种聚乳酸(pla)纤维多组分弹力面料
KR102149304B1 (ko) * 2014-09-17 2020-08-28 에스케이케미칼 주식회사 3d 인쇄용 폴리유산 수지 조성물
CN109575543A (zh) * 2018-12-16 2019-04-05 成都其其小数科技有限公司 一种可降解的木竹塑复合泡沫包装材料及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090014822A (ko) * 2007-08-07 2009-02-11 (주) 런프로덕션 파운데이션 화장료 조성물과 이를 위한 화장품 용기
WO2009140266A2 (en) * 2008-05-14 2009-11-19 Cornell University Polymeric materials incorporating core-shell silica nanoparticles
JP2010284300A (ja) * 2009-06-11 2010-12-24 Uchida Plastic:Kk 植物繊維強化ポリ乳酸箸の製造方法
CN105131542A (zh) * 2015-08-19 2015-12-09 北京工商大学 一种经丙交酯表面接枝处理的竹粉和聚乳酸共混复合材料及其制备方法与应用
CN109320933A (zh) * 2018-10-16 2019-02-12 福建农林大学 一种增强增韧竹纤维/聚乳酸复合材料及其制备方法
CN111234488A (zh) * 2020-03-11 2020-06-05 西华大学 玉米芯粉/聚乳酸复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bin Hu,et al.."Enhanced UV-shielding performance of poly(lactic acid) composite with POSS-modified bamboo powder".《Industrial Crops &amp Products》.2022,第192卷文献号116133. *
Da Wang,et al.."Bamboo surface coated with polymethylsilsesquioxane/Cu-containing nanoparticles (PMS/CuNP) xerogel for superhydrophobic and anti-mildew performance".《JOURNAL OF WOOD SCIENCE》.2020,第66卷(第1期),第1-8页. *
宋鑫宇,等."聚乳酸/竹粉复合材料的改性及性能研究".《中国塑料》.2020,第34卷(第7期),第21-29页. *

Also Published As

Publication number Publication date
CN115286909A (zh) 2022-11-04
US20240067817A1 (en) 2024-02-29
BE1030220B1 (de) 2023-08-22
US11920031B1 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
Mulinari et al. Sugarcane bagasse cellulose/HDPE composites obtained by extrusion
Joy et al. Preparation and characterization of poly (butylene succinate) bionanocomposites reinforced with cellulose nanofiber extracted from Helicteres isora plant
Madera‐Santana et al. Biocomposites based on poly (lactic acid) and seaweed wastes from agar extraction: Evaluation of physicochemical properties
JP2010502811A (ja) 海藻類繊維強化バイオ複合材料及び高温粉砕技術を用いたバイオ複合材料の製造方法
CN109251494B (zh) 一种天然杜仲胶/纤维素改性聚乳酸复合材料及制备方法
Raji et al. Impact of chemical treatment and the manufacturing process on mechanical, thermal, and rheological properties of natural fibers-based composites
JP6871079B2 (ja) 解繊セルロース繊維の製造方法、及び樹脂組成物の製造方法
CN115286909B (zh) 基于poss改性竹粉强化的高紫外屏蔽聚乳酸复合材料及其制备方法
Mosadeghzad et al. Preparation and properties of acacia sawdust/UPR composite based on recycled PET
Birnin-Yauri et al. Enhancement of the Mechanical Properties and Dimensional Stability of Oil Palm Empty Fruit Bunch-Kenaf Core and Oil Palm Mesocarp-Kenaf Core Hybrid Fiber-Reinforced Poly (lactic acid) Biocomposites by Borax Decahydrate Modification of Fibers.
CN109021473B (zh) 一种高度透明防紫外纳米纤维素复合膜及其制备方法
Saber et al. Recent developments in natural fiber as reinforcement in polymeric composites: a review
DE102020121552B4 (de) Verfahren zur herstellung von biobasierten verbundwerkstoffen unter verwendung von palm-biomassepulver als rohmaterial
Kusuktham Mechanical properties and morphologies of high density polyethylene reinforced with calcium carbonate and sawdust compatibilized with vinyltriethoxysilane
Hashim et al. Properties enhancement of mengkuang leaf fiber/ethylene‐vinyl acetate/natural rubber thermoplastic elastomer composites by alkaline peroxide bleaching treatment
Owen et al. Improved Thermal and Mechanical Properties of Kenaf Fiber/ABS Polymer Composites via Resin Coating Treatment.
Rasidi et al. Mechanical Properties and Biodegradability of Polylactic Acid/Acrylonitrile Butadiene Styrene with Cellulose Particle Isolated from Nypa Fruticans Husk
Chang et al. Effect of Hot-Compressed Water Treatment of Bamboo Fiber on the Properties of Polypropylene/Bamboo Fiber Composite.
Li Properties of agave fiber reinforced thermoplastic composites
CN112063066A (zh) 一种含茶叶渣的聚苯乙烯塑料及其制备方法
CN114163833B (zh) 一种纤维素类生物基材料的制备方法及含该材料的高阻隔全生物降解包装瓶
MUSTAPHA et al. THE EFFECT OF CHEMICAL TREATMENTS ON THE PROPERTIES OF ALPINIA GALANGA/HIGH-DENSITY POLYETHYLENE (HDPE)-ECO DEGRADANT COMPOSITES
Egute et al. Mechanical and thermal properties of polypropylene composites with curaua fibre irradiated with gamma radiation
CN115093596B (zh) 一种高耐磨抗压手机外壳及其加工工艺
JP2015086266A (ja) 繊維樹脂複合体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant