WO2022059664A1 - リーン車両 - Google Patents

リーン車両 Download PDF

Info

Publication number
WO2022059664A1
WO2022059664A1 PCT/JP2021/033685 JP2021033685W WO2022059664A1 WO 2022059664 A1 WO2022059664 A1 WO 2022059664A1 JP 2021033685 W JP2021033685 W JP 2021033685W WO 2022059664 A1 WO2022059664 A1 WO 2022059664A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
engine
lean vehicle
actuator
acceleration instruction
Prior art date
Application number
PCT/JP2021/033685
Other languages
English (en)
French (fr)
Inventor
善彦 竹内
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to DE112021004895.3T priority Critical patent/DE112021004895T5/de
Priority to GB2303754.2A priority patent/GB2613514A/en
Priority to TW110134371A priority patent/TWI838642B/zh
Publication of WO2022059664A1 publication Critical patent/WO2022059664A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/02Motorcycles characterised by position of motor or engine with engine between front and rear wheels
    • B62M7/04Motorcycles characterised by position of motor or engine with engine between front and rear wheels below the frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/20Cycle computers as cycle accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/06Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with spur gear wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/12Motorcycles, Trikes; Quads; Scooters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to a lean vehicle.
  • Patent Document 1 shows a motorcycle as an example of a lean vehicle.
  • the motorcycle of Patent Document 1 includes an engine, a transmission, and a clutch.
  • the transmission in Patent Document 1 is an actuator-driven sequential multi-speed transmission in which the gear stage increases or decreases each time a shift operation is performed by driving the actuator.
  • Patent Document 2 shows a motorcycle as an example of a lean vehicle.
  • the motorcycle of Patent Document 2 includes a body frame and a power unit.
  • the power unit is equipped with an engine.
  • a power unit is attached to the body frame.
  • an elastic mount is adopted for mounting, and vibration transmitted from the power unit to the driver's limbs via the vehicle body and noise generated from the vehicle body due to the vibration are reduced.
  • the rotational speed of the engine increases as the traveling speed increases.
  • the rotation speed of the engine is generally higher than in the case of traveling at a low speed.
  • the noise generated as the running speed increases also increases.
  • Lean vehicles do not have an engine room like a car, nor a cabin to accommodate a driver. That is, the engine unit of a lean vehicle is usually exposed to the outside of the vehicle body. The engine of the lean vehicle is attached to the frame of the vehicle body. Therefore, the influence of the sound and vibration generated from the engine unit and the vehicle body on the driver is greater.
  • An object of the present invention is to reduce the noise and vibration of a lean vehicle having an actuator-driven sequential multi-speed transmission.
  • Japanese Patent Application Laid-Open No. 2015-58783 describes coastal running of a truck that is not a lean vehicle.
  • the clutch is disengaged and the fuel of the engine is cut by driving the clutch actuator.
  • the transmission is put into the neutral state and the clutch is put into the engaged state by driving the shift actuator.
  • the clutch returns to the connected state, the power supply to the clutch actuator can be stopped.
  • the clutch is disengaged and the gear stage of the transmission is returned from the neutral state. After this, the engine starts operating and the clutch is engaged again.
  • the actuator-driven sequential multi-speed transmission of a lean vehicle is different in structure and operation from the transmission of a truck or the like.
  • a gear stage belonging to a high-speed stage group cannot be changed to neutral by a single shift operation.
  • the shift operation includes, for example, the operation of the motor, the operation of the shift cam mechanism, the disengagement of the dog gear, the movement of the dog gear, and the re-engagement.
  • the shift operation noise and vibration are generated from the transmission.
  • the transmission is usually provided in an engine unit exposed to the outside of the vehicle body. Therefore, the shift operation sound generated from the transmission of the lean vehicle is heard by the driver with a louder sound than, for example, in the case of an automobile. Furthermore, during the shift operation, the engine is in an operation stopped state or an idling state in order to reduce the sound of the engine. Therefore, the shift operation noise and vibration generated from the transmission are remarkably recognized. When the shift operation is performed 6 times, the shift operation sound is generated 6 times. As described above, each shift operation includes the operation of the shift cam mechanism, the disengagement of the dog gear, the movement, and the re-engagement, which are sequentially performed.
  • the present inventor has studied to reduce the noise and vibration caused by the actuator-driven sequential multi-speed transmission. As a result of the study, the present inventor has found that sound and vibration can be reduced by not intentionally setting the state of the actuator-driven sequential multi-speed transmission to the neutral state. For example, when a non-acceleration instruction based on a driver's operation is output while traveling in a gear stage belonging to a high-speed stage group, the friction clutch is driven by the clutch actuator to be in a disengaged state, and the disengaged state continues. As a result, high-speed inertial force running continues even if the actuator-driven sequential multi-speed transmission is not in the neutral state.
  • the gear stage is maintained in the high-speed stage group by high-speed inertial force running, for example, the gear stage is adjusted in advance so that re-acceleration becomes easy when the clutch is engaged after high-speed inertial force running. Even in such a case, the number of shift operations is limited. Therefore, the number of times and the period during which the shift operation sound is generated are shortened. That is, the shift operation noise and vibration are suppressed.
  • the inertial force running of the lean vehicle that does not stand on its own while stopped is utilized by utilizing the self-steering characteristics of the lean vehicle and the straightness during running. It can be easier to continue.
  • the driver is also exposed to the running wind. That is, the lean vehicle during traveling is subject to the air resistance of both the vehicle body and the driver. The speed of a lean vehicle in inertial force driving tends to decrease.
  • the clutch When the non-acceleration instruction is output, the clutch is disengaged to enter the high-speed inertial force running state, so that the noise generated from the engine is reduced, and the gear stage in this high-speed inertial force running state is maintained in the high-speed stage group. By doing so, the shift operation noise and vibration caused by the shift operation of the sequential transmission are reduced. Therefore, the noise and vibration during traveling of the lean vehicle having the actuator-driven sequential multi-speed transmission are reduced.
  • the lean vehicle has the following configuration. It was
  • the lean vehicle is, for example, a saddle-mounted vehicle configured to be able to turn in a lean posture.
  • a saddle-mounted vehicle configured to be able to turn in a lean posture turns, for example, in a posture tilted inward in a curve.
  • the lean vehicle can counter the centrifugal force applied to the saddle-mounted vehicle when turning.
  • a saddle-type vehicle is a vehicle in which the driver sits across the saddle. Examples of lean vehicles include scooter type, moped type, off-road type, and on-road type motorcycles.
  • the lean vehicle is not limited to the motorcycle, and may be, for example, a motorcycle.
  • the tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels.
  • the drive wheels of the lean vehicle may be rear wheels or front wheels.
  • the lean vehicle includes a frame, a handlebar, a step, an engine, an actuator-driven sequential multi-speed transmission, an actuator-driven clutch, an acceleration indicator, and a control device.
  • the frame is a component that supports the load applied to the entire lean vehicle.
  • the frame supports the load received from the wheels, for example via a fork and a swing arm.
  • the frame is, for example, a main frame to which a fork and a swing arm are attached.
  • the frame is not particularly limited, and may include, for example, an air cleaner or a fuel tank having a function of supporting a load applied to the entire lean vehicle.
  • the handlebar is a steering wheel.
  • the handlebars are attached to the frame, for example by being fixed to a fork rotatably supported by the frame.
  • the step is a part on which the driver's foot rests.
  • the steps are attached directly to the frame, for example.
  • the step is not particularly limited, and may be indirectly attached, for example, via
  • the engine is an internal combustion engine.
  • the engine of a lean vehicle is mounted on the frame so that at least part of it is exposed to the outside of the lean vehicle.
  • the engine is attached to the frame, for example, via an elastic mount.
  • the engine is not particularly limited and may be mounted directly on the frame, for example.
  • the engine is equipped with a crankshaft.
  • the rotational speed of the engine is, more specifically, the rotational speed of the crankshaft.
  • the acceleration instruction unit outputs an acceleration instruction or a non-acceleration instruction to the lean vehicle.
  • the acceleration instruction unit outputs, for example, an acceleration instruction as an electric signal.
  • the acceleration indicator is, for example, an accelerator grip attached to the handlebar.
  • the acceleration instruction unit outputs an acceleration instruction by being operated by the driver.
  • the acceleration instruction unit outputs a non-acceleration instruction when there is no acceleration operation.
  • the acceleration indicator may be considered to output a non-acceleration instruction if it does not output an acceleration instruction.
  • the control device may compare the signal output from the acceleration instruction unit with the reference, and determine whether the non-acceleration instruction is output or the acceleration instruction is output according to the comparison result. For example, when the level of the signal output according to the operation position of the acceleration instruction unit is less than the reference level, it may be determined that the acceleration instruction unit outputs the non-acceleration instruction.
  • the non-acceleration instruction may be further divided into, for example, a deceleration instruction and an inertial running instruction.
  • the acceleration instruction unit selectively outputs an acceleration instruction, an inertial running instruction, and a deceleration instruction.
  • the deceleration instruction is an instruction for performing a deceleration larger than the inertial running instruction.
  • the deceleration instruction is an instruction for decelerating by the action of the engine brake, for example.
  • the operable range of the acceleration instruction unit is divided into three, the range of the smallest operation amount including the position when the operation is not performed corresponds to the deceleration instruction.
  • the range of the largest amount of operation corresponds to the acceleration instruction.
  • the middle range corresponds to the inertial running instruction.
  • the control device may compare the signal output from the acceleration instruction unit with the reference and determine whether the deceleration instruction is output or the inertial running instruction is output. In this case, for example, the control device compares the signal output from the acceleration instruction unit with a plurality of references, and determines whether the deceleration instruction is output, the inertial running instruction is output, or the acceleration instruction is output. ..
  • the output form of the acceleration instruction unit is not particularly limited, and for example, the non-acceleration instruction may not be distinguished into a deceleration instruction and an inertial running instruction.
  • the instruction for maintaining the vehicle speed in a situation where the lean vehicle decelerates if there is no engine output corresponds to an acceleration instruction. Also, when descending a slope, the lean vehicle accelerates even if there is no engine output. At this time, the acceleration instruction is not output. This is synonymous with the fact that a non-acceleration instruction is output.
  • the form of the acceleration instruction unit is not particularly limited, and may be, for example, a cruise control control unit having a control function for accelerating the lean vehicle to a target speed.
  • the cruise control control unit can usually maintain the vehicle speed even if the cruise control control unit outputs an acceleration instruction to maintain the vehicle speed in the acceleration instruction output state (X) or the cruise control control unit does not output the acceleration instruction. It becomes one of the acceleration instruction non-output states (Y).
  • the cruise control control unit outputs a non-acceleration instruction in the state (Y).
  • the cruise control control unit is normally in the state (X) when traveling on a flat road or climbing a slope. When descending a slope, the cruise control control unit is in either a state (X) or a state (Y) depending on the inclination angle of the slope or the like.
  • the actuator-driven sequential multi-speed transmission includes a sequential transmission and a shift actuator.
  • the sequential transmission one state is selected at a certain timing.
  • the gear ratio is set according to the gear stage.
  • the rotational speed output from the engine is changed by one selected gear ratio and transmitted to the drive wheels.
  • the sequential transmission has a multi-stage gear stage belonging to a high-speed stage group or a low-speed stage group.
  • the sequential transmission also has a neutral state.
  • the sequential transmission has a neutral state and a plurality of non-neutral states.
  • the non-neutral state includes a high speed stage group and a low speed stage group.
  • the high-speed stage group belongs to more than half of all gear stages in the non-neutral state.
  • the high-speed speed group is 8 to 5 speeds when the sequential transmission is an 8-speed type, 7 to 4 speeds when the sequential transmission is a 7-speed type, and 6 in the case of a 6-speed type.
  • the low speed stage group belongs to the rest of the high speed stage group in the non-neutral state.
  • the number of gears is increased or decreased by one for each shift operation. For example, from the neutral state, the states are selected in the order of 1st speed, 2nd speed, 3rd speed, 4th speed, and so on.
  • the states are selected in the order of 4th speed, 3rd speed, 2nd speed, 1st speed, and neutral state. That is, for example, the 1st gear is not selected after the 3rd gear, and the neutral state is not selected after the 3rd gear.
  • the sequential transmission for example, a configuration in which the first speed is arranged between the neutral state and the second speed in the operation order can be adopted.
  • the sequential transmission is not particularly limited, and may be configured such that a neutral state is arranged between the first speed and the second speed.
  • the sequential transmission may be controlled so that the number of shift operations during high-speed inertial force traveling is a predetermined number or less. The predetermined number of times may be set to any one of 1, 2 or 3 times.
  • the shift actuator drives a sequential transmission to shift.
  • the sequential transmission is driven by a shift actuator to select a gear stage.
  • the shift actuator is, for example, an electric motor.
  • the shift actuator is not particularly limited, and may be, for example, a solenoid or a hydraulic actuator.
  • the actuator driven clutch includes a friction clutch and a clutch actuator.
  • the friction clutch is a power transmission device provided in the power transmission path between the engine and the drive wheels.
  • the friction clutch has a connected or disconnected state. For example, a state in which a part of the driving force is not substantially transmitted, that is, a so-called half-clutch state is included in the disengaged state.
  • the friction clutch transmits power by, for example, the frictional force of a plate-shaped member provided on each of an input shaft and an output shaft.
  • the friction clutch does not include, for example, a centrifugal clutch. Also, the friction clutch does not include a torque converter that transfers power through the fluid. Therefore, the lean vehicle has high responsiveness to the acceleration operation.
  • the friction clutch is driven by a clutch actuator.
  • the clutch actuator is, for example, an electric motor.
  • the clutch actuator is not particularly limited, and may be, for example, a solenoid or a hydraulic actuator.
  • the control device controls an actuator-driven sequential multi-speed transmission, an actuator-driven clutch, and an engine.
  • the gear stage of the sequential transmission belongs to the high-speed stage group and the lean vehicle is in a running state and a non-acceleration instruction is output by the acceleration instruction unit
  • the control device is attached to the clutch actuator so as to perform high-speed inertial force running. Put the clutch in the disengaged state.
  • High-speed inertial force running is running that does not use the power of the engine.
  • the lean vehicle 1 basically travels by utilizing the inertia of the lean vehicle itself. In high-speed inertial force running, there is no acceleration or deceleration by the power of the engine 20.
  • high-speed inertial force running in lean vehicles is not aimed at maintaining speed.
  • the speed of a lean vehicle during high-speed inertial force driving usually decreases gradually.
  • the driver is also exposed to the traveling wind in addition to the vehicle body. Therefore, in addition to the frictional resistance and the air resistance of the vehicle body, the air resistance of the driver acts on the lean vehicle.
  • the speed of a lean vehicle during high-speed inertial force driving tends to decrease more than in the case of an automobile.
  • the control device In high-speed inertial force running, the control device causes the clutch actuator to disengage the clutch and puts the engine in an idling operation state or a stop state.
  • the control device causes the shift actuator to maintain the gear stage of the sequential transmission in the high-speed stage group during the period of high-speed inertial force running.
  • the control device may continue to maintain the gear stages of the sequential transmission in the high speed stage group even after the high speed inertial force running is completed.
  • the control device is not particularly limited, and the gear stage of the sequential transmission may be changed to the low speed stage group after the high-speed inertial force running is completed.
  • the portion that controls the actuator-driven sequential multi-speed transmission and the actuator-driven clutch and the portion that controls the engine may be composed of, for example, physically different devices.
  • control device is composed of, for example, a memory for storing a program and a processor for executing the program.
  • the control device is not particularly limited, and may be composed of, for example, a logic circuit that does not include a program.
  • High-speed inertial driving is performed by the driver gripping the handlebar and manipulating the vehicle with his foot on the step while the friction clutch is disengaged and the engine is idling or stopped. It is running.
  • the high-speed inertial force running is executed on the condition that (A) the gear stage of the sequential transmission belongs to the high-speed stage group and (B) the non-acceleration instruction is output by the acceleration instruction unit.
  • other conditions may be set as the start conditions for high-speed inertial force running. In this case, the high-speed inertial force running is not started when only the start conditions (A) and (B) are satisfied, and the high-speed inertial force running is started when the other conditions are also satisfied.
  • High-speed inertial force running starts when the friction clutch is disengaged by the clutch actuator.
  • the high-speed inertial force running may be executed on condition that the inertial running instruction of the non-acceleration instruction is further output. That is, among the non-acceleration instructions, when the deceleration instruction is output, the high-speed inertial force running may be suspended. When high speed inertial running is suspended, the friction clutch remains engaged and the engine brake is activated.
  • the high-speed inertial force running ends, for example, on condition that the acceleration instruction is output by the acceleration instruction unit.
  • the end condition of the high-speed inertial force running is not limited to this, and for example, the speed of the lean vehicle may be lower than the lower limit speed that can be handled by the gear stage of the high-speed stage group.
  • high-speed inertial force running is subject to the logical sum of, for example, whether the acceleration instruction is output by the acceleration instruction unit or the speed of the lean vehicle is lower than the lower limit speed that can be handled by the gear stage of the high-speed stage group. , May be finished.
  • High-speed inertial force running ends when the friction clutch is engaged.
  • the lower limit speed may be set so as to be included in the range of 30 km / h or more and 50 km / h or less.
  • the lower limit speed is, for example, 30 km / h, it is easy to cope with acceleration by the engine at the end of high-speed inertial force running while continuing the gear stage of the high-speed inertial force running in high-speed inertial force running.
  • the lower limit speed is, for example, 40 km / h, it is possible to facilitate high-speed inertial force running by utilizing the inertia of the lean vehicle itself.
  • the lower limit speed is, for example, 50 km / h
  • the high-speed inertial force running may be terminated on condition that an acceleration instruction or a deceleration instruction is output by the acceleration instruction unit.
  • the condition is that the acceleration instruction is output by the acceleration instruction unit, the deceleration instruction is output, or the speed of the lean vehicle is lower than the lower limit speed. You may finish. In this case, the engine brake can be used even if the gear stage belongs to the high gear stage group.
  • the friction clutch is driven by the clutch actuator to be in the disengaged state, and the disengaged state is continued. ..
  • high-speed inertial force running continues even if the actuator-driven sequential multi-speed transmission is not changed to the neutral state. Therefore, even if the shift operation is not executed so that the gear stage changes from the high speed stage group to, for example, neutral, the high speed inertial force running continues.
  • the shift operation is maintained by maintaining the high-speed stage group.
  • the number of times is limited. Therefore, the number and duration of shift operation noise and vibration are shortened. Therefore, the shift operation noise and vibration are suppressed.
  • the noise and vibration generated from the engine are reduced, and further, the gear stage in this high-speed inertial force running state is maintained in the high-speed stage group, so that the shift operation sound and the shift operation sound caused by the shift operation of the sequential transmission are generated. Vibration is reduced. Therefore, the noise and vibration during traveling of the lean vehicle having the actuator-driven sequential multi-speed transmission are reduced.
  • the lean vehicle can adopt the following configuration.
  • the control device puts the engine into an operating state in response to the acceleration instruction and puts the friction clutch on the clutch actuator. Change to the connected state.
  • increasing the rotation speed of the engine to the speed corresponding to the re-acceleration is to put the engine into an operating state according to the acceleration instruction.
  • starting the combustion operation when the engine is stopped is also to make the operation state according to the acceleration instruction.
  • the operating state of the engine in response to the acceleration instruction can be determined within a practically acceptable range for a lean vehicle.
  • the rotation speed of the engine according to the re-acceleration can be determined within a range practically acceptable for a lean vehicle.
  • the acceleration instruction unit when the acceleration instruction unit outputs an acceleration instruction, the engine is put into an operating state according to the acceleration instruction, and the friction clutch is put into a connected state by the clutch actuator. Therefore, high-speed inertial force running with reduced noise and vibration can be completed and re-accelerated by a simple operation without clutch operation.
  • the lean vehicle can adopt the following configuration.
  • (3) The lean vehicle of (2) The lean vehicle is When the acceleration instruction is output from the acceleration instruction unit, the control device causes the shift actuator to make the sequential transmission into a gear stage corresponding to the acceleration instruction in the high-speed stage group, and then the control device.
  • the clutch actuator is made to change the friction clutch to the connected state, and the engine is put into the operating state in response to the acceleration instruction.
  • the state of the sequential transmission is changed by driving the shift actuator.
  • the transmission becomes the gear stage corresponding to the acceleration instruction in the high-speed stage group. Therefore, it is possible to reduce the fluctuation of the speed of the lean vehicle when the friction clutch is connected when the high-speed inertial force running with reduced noise and vibration is terminated in response to the acceleration instruction.
  • the gear stage corresponding to the acceleration instruction can be determined from the high-speed stage group within a range practically acceptable as a lean vehicle.
  • the lean vehicle can adopt the following configuration.
  • Lean vehicle of (2) or (3) The lean vehicle is It is connected to the crankshaft so as to rotate at a fixed speed ratio with respect to the crankshaft of the engine, drives the crankshaft when the engine is started, and is driven by the engine during the combustion operation of the engine to generate power. Equipped with a generator The control device causes the starting generator to drive the crankshaft prior to causing the clutch actuator to change the friction clutch to the connected state.
  • the start generator is a rotary electric machine that can both start and drive the engine.
  • the starting generator is, for example, a permanent magnet type motor.
  • the fact that the starting generator is connected to the crankshaft so as to rotate at a fixed speed ratio with the crankshaft means that there is no power disconnecting means such as a friction clutch or a gear ratio converting means between the starting generator and the crankshaft. Is.
  • the starting generator is connected to the crankshaft so that it rotates at a fixed speed ratio to the crankshaft. That is, the starting generator is connected to the engine without the intervention of a friction clutch or variable transmission. According to the lean vehicle of (4), the starting generator drives the crankshaft before the friction clutch is in the connected state. Therefore, after the engine has stopped operating or is in an idling state, the rotational speed of the crankshaft when the friction clutch is connected increases. While the noise and vibration generated during high-speed inertial force running are reduced, the fluctuation in the speed of the lean vehicle when the friction clutch is connected is reduced.
  • the lean vehicle can adopt the following configuration.
  • the control device is attached to the handle resonance speed band of the engine and the frame where the rotation speed of the engine during the period of high-speed inertial force travel corresponds to the resonance frequency band of the handle bar attached to the frame.
  • the engine is controlled so as to avoid the step resonance speed band of the engine corresponding to the resonance vibration frequency band of the step.
  • the resonance frequency band of the handlebar is a frequency band having a large amplitude when the handlebar attached to the frame vibrates by receiving an external force.
  • the handle resonance speed band is the rotation speed band of the engine corresponding to the resonance frequency band of the handlebar.
  • the resonance frequency band of the step is a frequency band having a large amplitude when the step attached to the frame vibrates by receiving an external force.
  • the step resonance speed band is the rotation speed band of the engine corresponding to the resonance frequency band of the step.
  • the lean vehicle can adopt the following configuration.
  • the lean vehicle has a catalyst for purifying the exhaust gas of the engine and includes an exhaust gas purifying device connected to the engine.
  • the control device is such that the rotation speed of the engine during the period of high-speed inertial force running becomes a rotation speed at which the temperature of the catalyst is made higher than the lower limit of activity temperature of the catalyst by the exhaust gas from the engine.
  • the exhaust gas purification device is, for example, a device that purifies the exhaust gas of an engine that uses gasoline as fuel.
  • the exhaust gas purification device has a catalyst.
  • the catalyst promotes the chemical reaction of harmful components contained in the exhaust gas to make them harmless. This purifies the exhaust gas.
  • the catalyst tends to exert a function of purifying exhaust gas at a temperature higher than the lower limit of activity.
  • the engine operates at a rotation speed such that the temperature of the catalyst is higher than the lower limit temperature of the activity of the catalyst under the control of the control device during the period of high-speed inertial force running.
  • the exhaust gas purifying device When the high-speed inertial force running is completed in response to the acceleration instruction, the exhaust gas purifying device is in a state where the exhaust gas of the engine can be purified before the engine starts the operation for acceleration. Therefore, it is possible to reduce the noise and vibration generated during the high-speed inertial force running while enabling the purification of the exhaust gas after the high-speed inertial force running is completed.
  • the technical terms used herein are for the purpose of defining only specific embodiments and have no intention of limiting the invention.
  • the term “and / or” includes any or all combinations of one or more related listed components.
  • the use of the terms “include, include”, “include, comprising” or “having” and variations thereof are described in the features, processes, operations, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
  • the terms “attached”, “connected”, “combined” and / or their equivalents are widely used, direct and indirect attachment, connection and Includes both bonds.
  • FIG. 3 is an enlarged cross-sectional view showing the engine shown in FIG. 4 and the devices around the engine. It is a time chart explaining the operation of the lean vehicle in the 2nd Embodiment. It is a time chart explaining the operation of the lean vehicle in 3rd Embodiment.
  • FIG. 1 is a diagram illustrating a lean vehicle according to the first embodiment of the present invention.
  • Part (a) of FIG. 1 is a diagram showing a schematic configuration of a lean vehicle.
  • Part (b) of FIG. 1 is a time chart showing the operation of a lean vehicle.
  • the lean vehicle 1 shown in FIG. 1 is controlled by a frame 2, a handlebar 3, a step 4, an engine 20, an actuator-driven sequential multi-speed transmission 40, an actuator-driven clutch 50, and an acceleration indicator 131.
  • the device 80 is provided. Further, the lean vehicle 1 includes a fork 5 and a drive wheel 15.
  • the frame 2 supports the load applied to the entire lean vehicle 1.
  • the handlebar 3 is attached to the frame 2.
  • the handlebar 3 is gripped by the driver of the lean vehicle 1.
  • the handlebar 3 is a steering wheel for steering.
  • the handlebar 3 is fixed to a fork 5 rotatably supported by the frame 2. As a result, the handlebar 3 is attached to the frame 2.
  • Step 4 is a part on which the driver's foot is placed. Step 4 is attached to the frame 2. Step 4 may be attached to the frame 2 via, for example, an attachment member. However, the step 4 is attached to the frame 2 so that the position of the step 4 is fixed to the frame 2.
  • the engine 20 is attached to the frame 2 so that at least a part thereof is exposed to the outside of the lean vehicle 1.
  • the engine 20 is attached to the frame 2 by, for example, a rubber mount.
  • the type of the fixture of the engine 20 is not particularly limited.
  • the actuator-driven sequential multi-speed transmission 40 includes a sequential transmission 42 and a shift actuator 41.
  • the sequential transmission 42 has a multi-stage gear stage belonging to a high-speed stage group or a low-speed stage group.
  • the sequential transmission 42 further has a neutral state.
  • the high-speed stage group corresponds to half of the gear stages corresponding to high speed.
  • the low speed gear group corresponds to the remaining gear gears.
  • the sequential transmission 42 increases or decreases gears by one for each shift operation. That is, the gear stages are sequentially selected. For example, it is not possible to select 4th gear without selecting 3rd gear after 2nd gear.
  • the rotation speed output from the engine 20 is converted by the gear ratio corresponding to each gear stage.
  • the rotational speed output from the engine 20 is converted at a gear ratio corresponding to the selected gear stage and transmitted to the drive wheels 15.
  • the sequential transmission 42 in the neutral state does not transmit the rotational speed output from the engine 20 to the drive wheels 15.
  • the sequential transmission 42 when the sequential transmission 42 is an 8-speed type, the sequential transmission 42 has eight gear stages from 1st gear to 8th gear and a neutral state.
  • the high-speed stage group is half of the eight gear stages from the 1st speed to the 8th speed corresponding to the high speed. That is, the gear stages from the 8th speed to the 5th speed belong to the high speed stage group.
  • the gear stages from the 4th speed to the 1st speed belong to the low speed stage group.
  • the sequential transmission 42 when the sequential transmission 42 is a 7-speed type, the sequential transmission 42 has 7 gears from 1st gear to 7th gear and a neutral state.
  • the high-speed stage group is half of the seven gear stages from the 1st speed to the 7th speed, which corresponds to the high speed.
  • the gear stages from the 7th speed to the 4th speed belong to the high speed stage group.
  • the gear stages from the 3rd speed to the 1st speed belong to the low speed stage group.
  • the sequential transmission 42 is a 6-speed type
  • the sequential transmission 42 has 6 gear stages from 1st gear to 6th gear and a neutral state.
  • the high-speed stage group is half of the six gear stages from the first speed to the sixth speed, which corresponds to the high speed. That is, the gear stages from the 6th speed to the 4th speed belong to the high speed stage group.
  • the gear stages from the 3rd speed to the 1st speed belong to the low speed stage group.
  • the sequential transmission 42 when the sequential transmission 42 is a 5-speed type, the sequential transmission 42 has five gear stages from 1st gear to 5th gear and a neutral state.
  • the high-speed stage group is half of the five gear stages from the first speed to the fifth speed, which corresponds to the high speed. That is, the gear stages from the 5th speed to the 3rd speed belong to the high speed stage group.
  • the gear stages from the 2nd speed to the 1st speed belong to the low speed stage group.
  • the sequential transmission 42 when the sequential transmission 42 is a four-speed type, the sequential transmission 42 has four gear stages from the first speed to the fourth speed and a neutral state.
  • the high-speed stage group is half of the four gear stages from the first speed to the fourth speed, which corresponds to the high speed. That is, the gear stages from the 4th speed to the 3rd speed belong to the high speed stage group.
  • the gear stages from the 2nd speed to the 1st speed belong to the low speed stage group.
  • the shift actuator 41 drives the sequential transmission 42. As a result, the sequential transmission 42 shifts.
  • the sequential transmission 42 is driven by the shift actuator 41 to select a gear stage.
  • the shift actuator 41 has, for example, an electric motor.
  • the actuator drive type clutch 50 has a friction clutch 52 and a clutch actuator 51.
  • the friction clutch 52 is provided in the power transmission path 60 between the engine 20 and the sequential transmission 42.
  • the friction clutch 52 switches the power transmission path 60 into a connected state or a disconnected state.
  • a state in which a part of the driving force of the engine 20 is not substantially transmitted to the sequential transmission 42 is a disconnected state. That is, the so-called half-clutch state is included in the disengaged state.
  • the clutch actuator 51 drives the friction clutch 52.
  • the clutch actuator 51 has, for example, an electric motor.
  • the acceleration instruction unit 131 outputs an acceleration instruction or a non-acceleration instruction.
  • the acceleration instruction represents a request for acceleration running of the lean vehicle 1 by the driver.
  • the non-acceleration instruction indicates that the driver does not request the lean vehicle 1 to accelerate.
  • the acceleration instruction unit 131 outputs a signal indicating a non-acceleration instruction.
  • an electric signal is output from a sensor provided in the acceleration indicator 131.
  • the acceleration indicator 131 is an accelerator grip attached to the handlebar 3.
  • the acceleration instruction unit 131 outputs an acceleration instruction by being operated by the driver.
  • an acceleration instruction is output and the opening degree of a throttle valve (not shown) provided in the engine 20 is controlled.
  • the opening degree of the throttle valve is increased by a motor (not shown) controlled by the control device 80.
  • the throttle valve does not have a motor, and may be connected to the accelerator grip as an acceleration indicator 131 by a mechanical wire, and the opening degree may change depending on the operating force of the accelerator grip.
  • the acceleration instruction unit 131 outputs a non-acceleration instruction when there is no operation of the acceleration instruction.
  • the acceleration instruction unit 131 outputs a non-acceleration instruction and an acceleration instruction according to the amount of operation.
  • the acceleration instruction unit 131 outputs the acceleration instruction.
  • the signal level is less than the reference level, it can be considered that the acceleration instruction unit 131 outputs the non-acceleration instruction.
  • An operation for accelerating the lean vehicle 1 and an operation for reducing vibration during non-acceleration can be performed by operating one operating means.
  • the acceleration instruction unit 131 a configuration that outputs a non-acceleration instruction separately for an inertial running instruction and a deceleration instruction can be adopted.
  • the acceleration instruction unit 131 outputs a deceleration instruction, an inertial running instruction, and an acceleration instruction according to the amount of operation.
  • the acceleration indicator 131 when the level of the signal output according to the amount of operation of the acceleration indicator 131 is less than the first reference level, the acceleration indicator 131 outputs a deceleration instruction and the signal level is equal to or higher than the first reference level.
  • the inertial running instruction is output and the acceleration running instruction is output when the signal level is equal to or higher than the second reference level.
  • the lean vehicle 1 does not have an engine room such as an automobile, nor a cabin for accommodating a driver.
  • the engine 20 of the lean vehicle 1 includes an engine case (for example, reference numeral 21 in FIG. 5), and an actuator-driven sequential multi-speed transmission 40 is also provided in the engine case 21.
  • the engine 20 (engine case 21) is usually exposed to the outside of the vehicle body. Further, the engine 20 (engine case 21) of the lean vehicle 1 is attached to the frame 2 of the vehicle body. Therefore, the vibration generated from the engine 20 and the sequential transmission 42 in the lean vehicle 1 is easily transmitted by the frame 2. Therefore, in the lean vehicle 1, the sound and vibration generated from the engine 20 and the sequential transmission 42 have a greater influence on the driver.
  • the lean vehicle 1 is also different in the arrangement of the engine from, for example, an automobile in which the engine can be stored in the engine room.
  • the engine of a normal automobile is arranged at a position deviated from the center of gravity of the entire automobile in a plan view. Therefore, the vibration centered on the center of gravity is difficult to be transmitted as the vibration of the entire automobile including the steering wheel.
  • the engine 20 of the lean vehicle 1 is arranged at a position overlapping the center of gravity of the entire lean vehicle 1 in a plan view. Therefore, it is difficult for the vibration of the engine 20 to escape from the frame 2. That is, the vibration of the engine 20 is easily transmitted to the entire lean vehicle 1 including the frame 2. Therefore, the vibration of the engine 20 attached to the frame 2 is transmitted to the driver's hands and feet via the handlebar 3 and the step 4. Further, for example, the ratio of the weight of the engine 20 to the weight of the entire lean vehicle 1 is larger than the ratio in a normal automobile. For example, the weight of the engine 20 is greater than or equal to the weight of the frame 2.
  • the vibration of the engine 20 is easily transmitted to the handlebar 3 and the step 4 via the frame 2. Therefore, the vibration of the engine 20 attached to the frame 2 is transmitted to the driver's hands and feet via the handlebar 3 and the step 4. Further, for example, the distance from the engine 20 to the steering wheel 3 in the lean vehicle 1 is shorter than the distance from the engine of a normal automobile to the steering wheel. Further, the distance from the engine 20 to the step 4 in the lean vehicle 1 is shorter than, for example, the distance from the engine of a normal automobile to the floor surface of the vehicle interior. Therefore, the vibration of the engine 20 in the lean vehicle 1 is easily transmitted to the handlebar 3 and the step 4 via the frame 2.
  • the control device 80 controls the actuator-driven sequential multi-speed transmission 40, the actuator-driven clutch 50, and the engine 20.
  • the control device 80 controls the state of the friction clutch 52 by controlling the clutch actuator 51.
  • the control device 80 controls the state of the sequential transmission 42 by controlling the shift actuator 41.
  • the control device 80 controls the combustion operation of the engine 20 by controlling, for example, a spark plug provided in the engine 20.
  • the control device 80 can also control the combustion operation of the engine 20 by controlling the opening degree of the throttle valve and the fuel supply amount described above.
  • the control device 80 can also control the rotation speed of the engine 20 by controlling the start generator 30 (see FIG. 5).
  • the control device 80 controls the gear stage of the sequential transmission 42 by controlling the shift actuator 41.
  • the control device 80 of the present embodiment controls the gear stage according to the acceleration instruction of the acceleration instruction unit 131, the rotation speed of the engine 20, and the speed of the lean vehicle 1. For example, when an acceleration instruction is output, every time the rotation speed of the engine 20 reaches the switching reference speed, a shift-up is performed to increase the gear stage of the sequential transmission 42.
  • the lean vehicle 1 includes a shift-up switch and a shift-down switch (not shown), and the control device 80 may change the gear stage according to the operation of the shift-up switch and the shift-down switch by the driver.
  • control device 80 may change the gear stage according to the speed of the lean vehicle 1 only during the period of high-speed inertial force traveling. Further, the control device 80 may always change the gear stage according to the speed or the like of the lean vehicle 1 regardless of the switch. Further, the control device 80 may have only a function of changing the state of the friction clutch 52 without changing the gear stage.
  • the control device 80 executes high-speed inertial force traveling when the gear stage of the sequential transmission 42 belongs to the high-speed stage group and the lean vehicle 1 is in a traveling state and a non-acceleration instruction is output by the acceleration instruction unit 131. ..
  • the control device 80 does not execute high-speed inertial force traveling when the gear stage of the sequential transmission 42 belongs to the low-speed stage group.
  • high-speed inertial force running the friction clutch 52 is disconnected by the clutch actuator 51, and the engine 20 is in the idling operation state or the stopped state.
  • the high-speed inertial force running is executed by the driver grasping the handlebar 3 and putting his / her foot on step 4 to operate the lean vehicle 1.
  • the high-speed inertial force running is executed in the normal running state of the lean vehicle 1.
  • the rotation speed of the engine 20 decreases or becomes zero.
  • the sound generated from the engine 20 can be reduced. Further, the vibration transmitted from the engine 20 to the handlebar 3 and the step 4 can be reduced.
  • the control device 80 has an actuator-driven sequential multi-stage transmission 40, an actuator-driven clutch 50, and an engine so that the shift actuator 41 maintains the gear stage of the sequential transmission 42 in the high-speed stage group during the period of high-speed inertial force traveling. 20 is controlled.
  • the chart of part (b) of FIG. 1 schematically shows an example of changes in the output of the acceleration indicator 131, the gear stage, the state of the friction clutch 52, the rotation speed of the engine 20, and the speed of the lean vehicle 1.
  • the output of the acceleration instruction unit 131 is simplified into two values, an acceleration instruction and a non-acceleration instruction.
  • the acceleration instruction can include, for example, the degree of acceleration.
  • the number of the gear stage is attached to the line of the gear stage.
  • As an example of the gear stage an example in the case of a 5-speed sequential transmission 42 is shown. In this case, the 5th to 3rd gears belong to the high speed stage group, and the 2nd to 1st gears belong to the low speed stage group.
  • the speed of the lean vehicle 1 is higher than 0, indicating that the lean vehicle 1 is running.
  • An acceleration instruction is output, and the rotation speed of the engine 20 is increasing with time.
  • a non-acceleration instruction is output according to the driver's operation.
  • the rotation speed of the engine 20 decreases.
  • the fuel supply to the engine 20 is stopped.
  • the shift stage at time t1 belongs to the low speed stage group instead of the high speed stage group. Therefore, the control device 80 does not execute high-speed inertial force running. That is, the connected state of the friction clutch 52 is maintained.
  • the lean vehicle 1 is in a state in which the so-called engine brake is activated. As a result, the speed of the lean vehicle 1 decreases relatively rapidly from the time t1 to the time t2.
  • the output of the non-acceleration instruction is stopped according to the operation of the driver, and the acceleration instruction is output.
  • the rotation speed of the engine 20 increases.
  • the control device 80 executes the shift-up according to the increase in the rotational speed of the engine 20.
  • the gear stage changes to 3rd, 4th, and 5th.
  • the speed of the lean vehicle 1 continues to increase until time t3.
  • a non-acceleration instruction is output according to the operation of the driver.
  • the gear stage of the sequential transmission 42 belongs to the high-speed stage group. Therefore, the control device 80 executes high-speed inertial force running. In high-speed inertial force running, the control device 80 causes the clutch actuator 51 to disengage the friction clutch 52. Further, the control device 80 puts the engine 20 in an idling operation state or a stop state. For example, the fuel supply to the engine 20 is stopped. The control device 80 causes the shift actuator 41 to maintain the gear stage of the sequential transmission 42 in the high-speed stage group during the period of high-speed inertial force traveling.
  • the control device 80 causes the shift actuator 41 to maintain the gear stage of the sequential transmission 42 while the non-acceleration instruction is output from the acceleration instruction unit 131.
  • the control device 80 puts the engine 20 into an operating state according to the acceleration instruction and controls the clutch actuator 51 to change the friction clutch 52 to the connected state.
  • the control device 80 causes the shift actuator 41 to change the gear stage of the sequential transmission 42 to the gear stage corresponding to the acceleration instruction.
  • the control device 80 causes the shift actuator 41 to change the gear stage of the sequential transmission 42 to a lower gear stage.
  • the control device 80 changes the gear stage within the range of the high-speed stage group.
  • control device 80 puts the engine 20 into an operating state according to the acceleration instruction, and causes the clutch actuator 51 to change the friction clutch 52 to the connected state.
  • the friction clutch 52 is connected, the high-speed inertial force running is completed. Therefore, the gear stage is maintained in the high speed stage group at least during the period of high speed inertial force running.
  • the broken line in the part (b) of FIG. 1 shows the operation of the comparative example.
  • the sequential transmission 42 is in the neutral state (N) and the friction clutch 52 is in the connected state during the period of inertial force traveling. Since the transmission of the power output from the engine 20 is cut off during the inertial force running period, the inertial force running is possible while the engine 20 is idling or stopped. The noise and vibration generated by the engine 20 are reduced.
  • the gear stage is not maintained in the high speed stage group. That is, in the comparative example, the gear stage in the sequential transmission 42 changes from the 5th speed to the 4th speed, the 3rd speed, the 2nd speed, and the 1st speed, and then changes to the neutral state.
  • the shift operation is executed as many as five times.
  • the sequential transmission 42 unlike a transmission such as a truck, cannot change the state of the fifth speed to the neutral state by one shift operation.
  • the shift operation noise and vibration are generated from the transmission.
  • the engine 20 is in an operation stopped state or an idling state in order to reduce noise and vibration. Therefore, the shift operation noise and vibration generated from the transmission are remarkably recognized.
  • the shift operation sound is generated five times.
  • the friction clutch 52 is in the disengaged state before the inertial force running is completed, and the sequential transmission 42 is changed from the neutral state to the fourth speed by the four shift operations. At this time, the shift operation sound is generated four times.
  • the gear stage of the sequential transmission 42 is maintained in the high-speed stage group during the period of high-speed inertial force running. Therefore, the number of shift operations is limited. Therefore, the number of times and the period during which the shift operation sound is generated are shortened. That is, the shift operation noise and vibration are suppressed.
  • the engine 20 is in an idling operation state or a stopped state. Therefore, the sound generated from the engine 20 during traveling is reduced. Further, the friction clutch 52 is continuously disconnected by the high-speed inertial force traveling. Therefore, the decrease in the speed of the lean vehicle 1 in the high-speed inertial force traveling is suppressed as compared with the state in which the engine brake is operated, for example. That is, the actuator-driven sequential multi-speed transmission 40 can be driven by inertial force without being changed to the neutral state.
  • the gear stage is maintained in the high-speed stage group during high-speed inertial force running, the number of shift operations is performed even when the gear stage is adjusted before the end of high-speed inertial force running so that reacceleration is easy. And the period is suppressed. That is, the shift operation noise and vibration are suppressed.
  • FIG. 2 is a flowchart illustrating the operation of high-speed inertial force running in the lean vehicle 1 of FIG.
  • the operation of high-speed inertial force running in the lean vehicle 1 is executed, for example, by executing a program by a control device 80 having a processor.
  • the control device 80 disengages the friction clutch 52 without running at high speed inertial force (No in S10). (S13), and then stop the engine 20 (S14).
  • the control device 80 starts high-speed inertial force running (S15).
  • the change of the state of high-speed inertial force running (S15) is executed, for example, by updating the data stored in the memory.
  • step S14 the engine 20 is in an idling state instead of being stopped.
  • the control device 80 returns the engine 20 to the operating state according to the acceleration instruction (S21), and adjusts the gear stage by the shift operation (S21). S22), and the clutch connection is executed (S23).
  • the control device 80 ends the high-speed inertial force running (S24).
  • the control device 80 also returns the engine 20 (Yes in S25) when the speed of the lean vehicle 1 decreases during high-speed inertial force running and reaches the lower limit speed in the range suitable for high-speed inertial force running (Yes).
  • S21 the gear stage is adjusted (S22), and the clutch connection is executed (S23).
  • a clutch connection is made when an acceleration instruction or a deceleration instruction is output during high-speed inertial force running as the operation of step S20 in the control device 80.
  • the operation of executing (S23) can also be adopted. For example, by executing the clutch connection (S23) when the deceleration instruction is output, more powerful deceleration by the engine brake becomes possible.
  • control device 80 starts the engine 20 in order to return the engine 20 to the operating state according to the acceleration instruction in step S21.
  • the control device 80 starts the engine 20 by driving the crankshaft 24 to the start generator 30.
  • the control device 80 can also increase the rotational speed by driving the crankshaft 24 to the starting generator 30. In this way, the control device 80 drives the crankshaft 24 to the starting generator 30 in step S21 before the clutch actuator 51 changes the friction clutch 52 to the connected state in step S23.
  • step S26 for example, when the speed of the lean vehicle 1 gradually decreases during high-speed inertial force traveling, the gear stage is reduced according to the speed. In this case as well, the gear stage is selected within the high-speed stage group.
  • the control device 80 a configuration in which the gear stage is not adjusted during high-speed inertial force traveling can also be adopted. Part (b) of FIG. 1 shows a change in the gear stage when the gear stage adjustment is not performed during high-speed inertial force traveling.
  • FIG. 3 is a time chart illustrating the operation of a modified example in which the gear stage is adjusted during high-speed inertial force traveling.
  • the gear stage is adjusted (S26 in FIG. 2) during high-speed inertial force traveling.
  • the control device 80 changes the gear stage according to the speed of the lean vehicle 1 during high-speed inertial force traveling. For example, when the speed of the lean vehicle 1 gradually decreases during high-speed inertial force traveling and the speed falls below the reference value for changing the gear stage at time t3', the control device 80 reduces the gear stage. At this time, since the friction clutch 52 is in the disengaged state, the influence on the running due to the change of the gear stage is suppressed. Even when the gear stage is adjusted during high-speed inertial force running, the gear stage is maintained in the high-speed stage group. That is, in the example shown in FIG. 3, the control device 80 does not select a gear stage lower than the third gear.
  • the gear stage adjustment during high-speed inertial force traveling is not particularly limited except for the maintenance of the high-speed inertial force group.
  • the gear stage adjustment (S26 in FIG. 2) during high-speed inertial force traveling may not be performed.
  • the adjustment of the gear stage (S22 in FIG. 2) at the end of the high-speed inertial force running may not be performed.
  • FIG. 4 is a schematic side view showing an application example of the lean vehicle 1 of the first embodiment.
  • the elements corresponding to the first embodiment are designated by the same reference numerals.
  • the lean vehicle 1 shown in FIG. 4 includes a frame 2, a handlebar 3, a step 4, an engine 20, a sequential transmission 42, a friction clutch 52, an acceleration indicator 131, and a control device 80. .. Further, the lean vehicle 1 includes a fork 5, a rear wheel as a drive wheel 15, a front wheel 14, a seat 16, a power storage device 17, a rear arm 18, and an exhaust gas purification device 90.
  • the sheet 16 is a saddle type.
  • the driver of the lean vehicle 1 sits across the seat 16 and puts his foot on step 4 while driving.
  • the power storage device 17 stores electric power.
  • the vehicle speed sensor 151 detects the vehicle speed of the lean vehicle 1.
  • the acceleration instruction unit 131 is an accelerator grip for the driver to instruct the acceleration of the lean vehicle 1.
  • the acceleration indicator 131 is provided with an accelerator sensor 133.
  • the accelerator sensor 133 detects the amount of operation of the acceleration instruction unit 131 by the driver.
  • the acceleration instruction unit 131 outputs an instruction according to the amount of operation by the driver via the accelerator sensor 133.
  • the instructions also include the level of manipulation.
  • the engine 20 is supported by the frame 2. More specifically, at least a portion of the engine 20 is attached to the frame 2.
  • the engine 20 outputs power toward the drive wheels 15. Power is transmitted to the drive wheels 15 via the friction clutch 52, the sequential transmission 42, and the chain 181.
  • the exhaust gas purification device 90 is connected to the engine 20 via an exhaust pipe.
  • the exhaust gas purifying device 90 has a catalyst 91 for purifying the exhaust gas.
  • the catalyst 91 promotes the chemical reaction of harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) contained in the exhaust gas to make them harmless.
  • FIG. 5 is an enlarged cross-sectional view showing the engine 20 shown in FIG. 4 and the devices around the engine 20.
  • the engine 20, the starting generator 30, the sequential transmission 42, and the friction clutch 52 constitute an engine unit 10.
  • the sequential transmission 42 and the starting generator 30 are arranged inside the engine case 21.
  • the engine 20 includes a crankshaft 24, a connecting rod 25, and a piston 26.
  • the piston 26 reciprocates and is converted into the rotation of the crankshaft 24 via the connecting rod 25.
  • Exhaust gas is discharged from the engine 20 as the engine 20 operates.
  • the exhaust gas passes through the catalyst 91 of the exhaust gas purification device 90 and is purified.
  • the ability of the exhaust gas purifying device 90 to purify the exhaust gas depends on the temperature of the catalyst 91.
  • the catalyst 91 can purify the exhaust gas to a required degree at a temperature higher than the lower limit of activity temperature. However, if the temperature of the catalyst 91 becomes too high, it may deteriorate.
  • the exhaust gas purifying device 90 is arranged at a position where it receives a running wind. Vibration is generated from the engine 20 as the engine 20 operates.
  • the vibration transmitted from the engine 20 to the frame 2 is transmitted to the handlebar 3 and the step 4 via the frame 2 shown in FIG.
  • the sequential transmission 42 is driven by the shift actuator 41.
  • the friction clutch 52 is provided on the power transmission path 60 between the engine 20 and the sequential transmission 42.
  • the friction clutch 52 is driven by the clutch actuator 51.
  • the clutch actuator 51 is a motor.
  • the clutch actuator 51 changes the state of the friction clutch 52, for example, via a drive mechanism.
  • the starting generator 30 is connected to the crankshaft 24 so as to rotate at a fixed speed ratio with respect to the crankshaft 24.
  • the starting generator 30 is connected to the crankshaft 24 without a power interruption mechanism such as a friction clutch 52.
  • the control device 80 has an inverter 70.
  • a starting generator 30 and a power storage device 17 are connected to the inverter 70.
  • the power storage device 17 supplies electric power to the start generator 30.
  • the starting generator 30 operates as a generator
  • the power storage device 17 is charged by the electric power generated by the starting generator 30.
  • the inverter 70 controls the current flowing between the power storage device 17 and the starting generator 30.
  • the control device 80 acquires the vehicle speed of the lean vehicle 1 based on the signal output from the vehicle speed sensor 151 (see FIG. 4).
  • the control device 80 acquires an acceleration instruction or a non-acceleration instruction of the acceleration instruction unit 131 based on the signal output from the accelerator sensor 133.
  • the control device 80 also acquires the operation amount of the acceleration instruction unit 131.
  • the control device 80 controls the operation of the engine 20 by controlling the spark plug of the engine 20 and the fuel injection device.
  • the control device 80 connects and disconnects the friction clutch 52 by controlling the clutch actuator 51. Further, the control device 80 changes the gear stage of the sequential transmission 42 by controlling the shift actuator 41.
  • the control device 80 is composed of, for example, a central processing unit 80a and a computer having a storage device 80b.
  • the central processing unit 80a performs arithmetic processing based on the control program.
  • the storage device 80b stores data related to programs and operations.
  • the control device 80 is realized by a central processing unit 80a, a storage device 80b, and a control program.
  • the function of controlling the engine 20, the function of controlling the start generator 30, the function of controlling the sequential transmission 42, and the function of controlling the friction clutch 52 are different from each other. It may be configured as a device separated from each other. Further, these functions may be configured as an integrated device.
  • FIG. 6 is a time chart illustrating the operation of the lean vehicle 1 in the second embodiment.
  • FIG. 6 shows the output of the acceleration indicator 131 and the rotation speed of the engine 20.
  • the scales of the rotational speed (vertical axis) and time (horizontal axis) of the engine 20 are enlarged from the chart shown in the part (b) of FIG. 1 for easy viewing.
  • the lean vehicle 1 of the present embodiment is different from the lean vehicle 1 of the first embodiment in the operation of step S14 (FIG. 2). Since the other points in the present embodiment are the same as those in the first embodiment, the drawings and reference numerals in the first embodiment will be diverted and described.
  • the control device 80 of the lean vehicle 1 in the present embodiment controls the engine 20 so that the rotation speed of the engine 20 during the period of high-speed inertial force traveling avoids the handle resonance speed band Vh.
  • the handle resonance speed band Vh is a band of the rotation speed of the engine 20 corresponding to the resonance frequency band of the handle bar 3 attached to the frame 2.
  • the resonance frequency band of the handlebar 3 attached to the frame 2 is a frequency band that vibrates with an amplitude larger than the amplitude at other frequencies when the handlebar 3 attached to the frame 2 vibrates by receiving an external force. ..
  • the control device 80 controls the engine 20 so as to avoid the step resonance speed band Vs.
  • the step resonance speed band Vs is a band of the rotation speed of the engine 20 corresponding to the resonance vibration frequency band of step 4 attached to the frame 2.
  • the resonance vibration frequency band of step 4 is a frequency band that vibrates with an amplitude larger than the amplitude at other frequencies when the step 4 attached to the frame 2 vibrates by receiving an external force.
  • the handle resonance speed band Vh of the lean vehicle 1 measures the vibration amplitude in the handlebar 3 while gradually changing the rotation speed of the engine 20, and measures the rotation speed at which the vibration amplitude specifically increases. Can be measured.
  • the step resonance speed band Vs of the lean vehicle 1 is measured by measuring the vibration amplitude of step 4 while gradually changing the rotation speed of the engine 20, and measuring the rotation speed at which the vibration amplitude specifically increases. can.
  • the handle resonance speed band Vh and the step resonance speed band Vs are not limited to this, and can be acquired in the following two steps, for example. First, when vibration is applied to the engine 20 from the outside with the engine 20 stopped and the frequency of the vibration is gradually changed, the frequency bands in which the amplitude of the vibration specifically increases are the resonance frequencies.
  • the relationship between the rotation speed of the engine 20 and the frequency of vibration in the engine 20 is acquired while gradually changing the rotation speed of the engine 20.
  • the handle resonance speed band Vh and the step resonance speed band Vs are acquired from the relationship between the acquired resonance frequency band and the acquired rotation speed. Further, the handle resonance speed band Vh and the step resonance speed band Vs can be estimated by using the measurement result of the already manufactured vehicle having a similar configuration or the simulation of the vibration model before the manufacture of the lean vehicle 1. can.
  • step S14 the control device 80 sets the rotation speed of the engine 20 so that the rotation speed of the engine 20 becomes a target speed Vc avoiding the handle resonance speed band Vh and the step resonance speed band Vs.
  • the control device 80 controls the rotation speed of the engine 20 by controlling, for example, the amount of air supplied to the engine 20 and the fuel.
  • the method of controlling the rotation speed is not particularly limited.
  • the control device 80 may, for example, stop the combustion operation of the engine 20 and drive the crankshaft 24 to the start generator 30. In this case, the control device 80 controls the rotation speed of the engine 20 by controlling the starting generator 30.
  • the rotation speed of the engine 20 during the period of high-speed inertial force running avoids the handle resonance speed band Vh and the step resonance speed band Vs. Therefore, during the period of high-speed inertial force running, the vibration transmitted to the driver's hands and feet as well as the sound is suppressed.
  • FIG. 7 is a time chart illustrating the operation of the lean vehicle 1 in the third embodiment.
  • FIG. 7 shows the output of the acceleration indicator 131 and the rotation speed of the engine 20.
  • the scales of the rotational speed (vertical axis) and time (horizontal axis) of the engine 20 are enlarged from the chart shown in the part (b) of FIG. 1 for easy viewing.
  • the lean vehicle 1 of the present embodiment is different from the lean vehicle 1 of the first embodiment in the operation of step S14 (FIG. 2). Since other points in this embodiment are the same as those in the first embodiment, the drawings and reference numerals in the first embodiment will be diverted and described.
  • the control device 80 controls the engine 20 so that the rotation speed of the engine 20 during the period of high-speed inertial force running makes the temperature of the catalyst 91 higher than the lower limit temperature of the activity.
  • the control device 80 does not stop the combustion operation of the engine 20 in step S14 (FIG. 2), but continues. As a result, the heat of the engine 20 is supplied to the catalyst 91 using the exhaust gas as a medium.
  • the control device 80 maintains, for example, the rotation speed of the engine 20 at a target speed Vc larger than the lower limit speed Vt. , Control the engine 20.
  • the engine 20 operates so that the temperature of the catalyst 91 is higher than the lower limit temperature of the activity of the catalyst during the period of high-speed inertial force running.
  • the exhaust gas purifying device 90 is in a state where the exhaust gas of the engine 20 can be appropriately purified before the engine 20 starts the operation for acceleration. Therefore, it is possible to reduce the noise and vibration generated during the high-speed inertial force running while enabling the purification of the exhaust gas after the high-speed inertial force running is completed.
  • a method different from the above method may be adopted.
  • a temperature sensor is provided in the vicinity of the catalyst 91 or the catalyst 91, and the control device 80 feedback-controls the rotation speed of the engine 20 so that the temperature detected by the temperature sensor becomes higher than the lower limit of activity temperature.
  • the temperature of the traveling catalyst 91 is controlled more precisely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

本発明の目的は、アクチュエータ駆動式シーケンシャル多段変速装置を有するリーン車両の走行時の音及び振動を低減することである。リーン車両は、フレームと、ハンドルバーと、ステップと、エンジンと、アクチュエータ駆動式シーケンシャル多段変速装置と、アクチュエータ駆動式クラッチと、加速指示部と、制御装置とを備える。制御装置は、シーケンシャル変速機のギア段が高速段群に属し、且つ、リーン車両が走行状態において、非加速指示が出力された場合、高速慣性力走行を実行し、少なくとも高速慣性力走行の期間、シフトアクチュエータにシーケンシャル変速機のギア段を高速段群に維持させるように、アクチュエータ駆動式シーケンシャル多段変速装置、アクチュエータ駆動式クラッチ及びエンジンを制御する。高速慣性力走行は、摩擦クラッチが切断状態にされる。

Description

リーン車両
 本発明は、リーン車両に関する。
 例えば、特許文献1には、リーン車両の一例として自動二輪車が示されている。特許文献1の自動二輪車は、エンジンと、変速機と、クラッチとを備えている。特許文献1における変速機は、アクチュエータの駆動によるシフト動作の都度、ギア段が増加又は減少するアクチュエータ駆動式シーケンシャル多段変速機である。
 また、特許文献2には、リーン車両の一例として自動二輪車が示されている。特許文献2の自動二輪車は、車体フレームとパワーユニットとを備えている。パワーユニットは、エンジンを備えている。特許文献2の自動二輪車では、車体フレームにパワーユニットが取付けられている。しかし、取付けに弾性マウントが採用されており、パワーユニットから車体を介して運転者の手足に伝達される振動、及び、振動に起因して車体から生じる音の低減が図られている。
特開2009-264519号公報 特開2013-133026号公報
 特許文献1及び特許文献2に示すリーン車両では、走行速度が増大するのに従いエンジンの回転速度が増大する。例えば、変速機のギア段が高速段群に設定される巡航状態では、一般に低速での走行する場合と比べて、エンジンの回転速度が大きい。走行速度の増大に伴い生じる音も大きくなる。
 リーン車両は、自動車のようなエンジンルームも、運転者を収容するキャビンも有さない。つまり、リーン車両のエンジンユニットは、通常、車体の外部に露出している。また、リーン車両のエンジンは、車体のフレームに取り付けられている。このため、エンジンユニット及び車体から生じる音及び振動の運転者への影響が、より大きい。
 アクチュエータ駆動式シーケンシャル多段変速装置を有するリーン車両では、走行時に生じる音及び振動を低減することが望まれている。
 本発明は、アクチュエータ駆動式シーケンシャル多段変速装置を有するリーン車両の走行時の音及び振動を低減することを目的とする。
 車両における走行時の音及び振動を低減する方法として、エンジンと駆動輪との間の動力伝達経路を切断しつつ、エンジンを動作停止状態又はアイドリング状態とすることが考えられる。例えば、変速機をニュートラル状態にして動力伝達を切断しつつ、エンジンを動作停止状態又はアイドリング状態とすることで、走行中にエンジンから生じる音及び振動が減少する。
 例えば、特開2015-58783号公報には、リーン車両ではないトラックのコースト走行が示されている。このトラックのコースト走行では、クラッチアクチュエータの駆動によってクラッチが切断状態となるとともにエンジンの燃料がカットされる。これと並行して、シフトアクチュエータの駆動によって変速機がニュートラル状態にされ、クラッチが接続状態にされる。クラッチが接続状態に戻ることで、クラッチアクチュエータへの電力の供給を停止することができる。
 コースト走行の終了時には、クラッチが切断状態となり、変速機のギア段がニュートラル状態から戻される。この後、エンジンが動作を開始し、再びクラッチが接続状態になる。
 しかし、リーン車両が有するアクチュエータ駆動式シーケンシャル多段変速機は、トラック等が有する変速機とは、構造及び動作において異なる。シーケンシャル多段変速機は、例えば高速段群に属するギア段を1回のシフト動作でニュートラルに変更することができない。例えば、ギア段が6速の場合、5速、4速、…を経て、ニュートラルに変化する。この間、6回ものシフト動作が実行される。
 シフト動作は、例えば、モータの動作、シフトカム機構の動作、ドグ歯車の係合解除、ドグ歯車の移動、及び、再係合を含む。シフト動作時には、変速機からシフト動作音及び振動が生じる。変速機は、通常、車体の外部に露出したエンジンユニットに設けられている。このため、リーン車両の変速機から生じるシフト動作音は、例えば自動車の場合と比べより大きな音で運転者に聞こえる。また更に、シフト動作時、エンジンは、エンジンの音を低減するため動作停止状態又はアイドリング状態にある。このため、変速機から生じるシフト動作音及び振動は、際だって認識される。6回のシフト動作が実施される場合、シフト動作音が、6回発生する。上述したように各回のシフト動作は、順次実施されるシフトカム機構の動作、ドグ歯車の係合解除、移動、そして、再係合を含む。アクチュエータによって駆動される変速機が、たとえ運転者の操作力で動作する変速機よりも速く動作できても、6回のシフト動作には、シフト動作音で各回が判別できる程度の時間がかかる。このため、エンジンの音及び振動が低減されるにもかかわらず、今度はシフト動作音と振動が生じ、しかもシフト動作音及び振動は、長い期間に亘って生じる。
 本発明者は、アクチュエータ駆動式シーケンシャル多段変速装置に起因する音及び振動を低減することを検討した。
 検討の結果、本発明者は、アクチュエータ駆動式シーケンシャル多段変速装置の状態を敢えてニュートラル状態にしないことで、音及び振動を低減できることを見出した。例えば、高速段群に属するギア段における走行中に、運転者の操作に基づく非加速指示が出力された場合、摩擦クラッチがクラッチアクチュエータに駆動され切断状態となり、切断状態が継続する。これによって、アクチュエータ駆動式シーケンシャル多段変速装置がニュートラル状態にならなくても、高速慣性力走行が継続する。つまり、高速段群に属するギア段からニュートラルまで変化するようなシフト動作が実行されなくても、高速慣性力走行が継続する。また、高速慣性力走行でギア段が高速段群に維持されるので、例えば、高速慣性力走行の後でクラッチが接続状態となる時に再加速が容易となるようギア段が事前に調整されるような場合でも、シフト動作の回数が制限される。このため、シフト動作音が発生する回数及び期間が短くなる。つまり、シフト動作音及び振動が抑制される。
 また、高速段群に属するギア段を条件として高速慣性力走行することで、リーン車両のセルフステアリング特性及び走行時の直進性を利用して、停止中には自立しないリーン車両の慣性力走行を継続しやすくすることができる。
 また、リーン車両では、自動車の場合と異なり、運転者も走行風を受ける。即ち、走行時のリーン車両は、車体と運転者の両方の空気抵抗を受ける。慣性力走行におけるリーン車両の速度は、低下しやすい。高速段群に属するギア段を条件とすることで、比較的高速での走行時に高速慣性力走行が開始しやすい。このため、音及び振動が抑制されるリーン車両の慣性力走行を継続しやすくすることができる。
 なお、高速慣性力走行でギア段が高速段群に維持された後でクラッチが接続状態になる時、例えば車両の走行速度がギア段の想定よりも低い場合でも、高速段群におけるギア比が小さいので、車輪に伝達される衝撃は抑制される。例えばこれとは逆にギア段が低速段群であり走行速度がギア段の想定よりも高い場合にクラッチが接続状態になると、エンジンの慣性に起因して比較的大きい衝撃が車輪に伝達される。これに対し、車両の走行速度が高速段群に維持される場合には、接続状態になることで車輪に伝達される衝撃が比較的小さい。
 非加速指示が出力された場合にクラッチを切断状態にして高速慣性力走行状態とすることでエンジンから発生する音が低減され、さらに、この高速慣性力走行状態におけるギア段が高速段群に維持されることで、シーケンシャル変速機のシフト動作に起因するシフト動作音および振動が低減される。
 従って、アクチュエータ駆動式シーケンシャル多段変速装置を有するリーン車両の走行時の音及び振動が低減される。
 以上の目的を達成するために、本発明の一つの観点によれば、リーン車両は、次の構成を備える。 
 リーン車両は、例えばリーン姿勢で旋回可能に構成されている鞍乗型車両である。リーン姿勢で旋回可能に構成された鞍乗型車両は、例えば、カーブの内方向に傾いた姿勢で旋回する。これにより、リーン車両は、旋回時に鞍乗型車両に加わる遠心力に対抗できる。鞍乗型車両(straddled vehicle) とは、運転者がサドルに跨って着座する形式のビークルをいう。リーン車両としては、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、リーン車両は、自動二輪車に限定されず、例えば、自動三輪車であってもよい。自動三輪車は、2つの前輪と1つの後輪とを備えていてもよく、1つの前輪と2つの後輪とを備えていてもよい。リーン車両の駆動輪は、後輪であってもよく、前輪であってもよい。
 リーン車両は、フレームと、ハンドルバーと、ステップと、エンジンと、アクチュエータ駆動式シーケンシャル多段変速装置と、アクチュエータ駆動式クラッチと、加速指示部と、制御装置とを備える。
 フレームは、リーン車両の全体に掛かる荷重を支持する部品である。フレームは、例えばフォーク及びスイングアームを介して車輪から受ける荷重を支持する。フレームは、例えば、フォーク及びスイングアームが取付けられるメインフレームである。フレームは特に限定されず、例えば、リーン車両の全体に掛かる荷重を支持する機能を有するエアクリーナ又は燃料タンク等を含んでもよい。
 ハンドルバーは、操向用のハンドルである。ハンドルバーは、例えばフレームに回転可能に支持されたフォークに固定されることによってフレームに取付けられている。
 ステップは、運転者の足を載せる部品である。ステップは、例えば、フレームに直接取付けられる。ステップは、特に限られず、例えばフレームに固定された部材を介して間接的に取付けられてもよい。
 エンジンは、内燃機関である。リーン車両のエンジンは、少なくとも一部がリーン車両の外部に露出するようにフレームに取付けられる。エンジンは、例えば、弾性マウントを介してフレームに取付けられる。エンジンは特に限定されず、例えば、フレームに直接に取付けられてもよい。エンジンは、クランクシャフトを備えている。エンジンの回転速度は、より詳細には、クランクシャフトの回転速度である。
 加速指示部は、リーン車両への加速指示又は非加速指示を出力する。加速指示部は、例えば、電気信号としての加速指示を出力する。加速指示部は、例えば、ハンドルバーに取付けられたアクセルグリップである。例えば、加速指示部は、運転者に操作されることで加速指示を出力する。加速指示部は、加速の操作が無い場合に、非加速指示を出力する。例えば、加速指示部は、加速指示を出力しない場合に、非加速指示を出力するとみなされてもよい。例えば制御装置は、加速指示部から出力された信号を基準と比較し、比較結果に応じて非加速指示が出力されたか、又は加速指示が出力されたかを判定してもよい。例えば、加速指示部の操作の位置に応じて出力される信号のレベルが基準レベル未満の場合に、加速指示部が非加速指示を出力したと判定してもよい。
 また、非加速指示は、例えば、さらに減速指示と慣性走行指示に区別されてもよい。この場合、加速指示部は、加速指示と、慣性走行指示と、減速指示とを選択的に出力する。減速指示は、慣性走行指示よりも大きな減速を行なうための指示である。減速指示は、例えばエンジンブレーキの作用によって減速するための指示である。例えば、加速指示部の操作可能な範囲を3分割した場合に、操作がされない場合の位置を含む最も小さい操作量の範囲が減速指示に対応する。最も大きい操作量の範囲が加速指示に対応する。中間の範囲が慣性走行指示に対応する。例えば制御装置は、加速指示部から出力された信号を基準と比較し、減速指示が出力されたか、又は慣性走行指示が出力されたかを判定してもよい。この場合、例えば制御装置は、加速指示部から出力された信号を複数の基準と比較し、減速指示が出力されたか、又は慣性走行指示が出力されたか、又は加速指示が出力されたかを判定する。
 ただし、加速指示部の出力形態は特に限定されず、例えば、非加速指示が減速指示と慣性走行指示に区別されなくてもよい。
 なお、エンジンの出力が無ければリーン車両が減速する状況(例えば平坦路走行時又は登坂時)において車速を維持するための指示は、加速指示に相当する。また、降坂時には、エンジンの出力が無くてもリーン車両が加速する。このとき、加速指示は出力されていない。これは、非加速指示が出力されていることと同義である。加速指示部の形態は、特に限定されず、例えば目標の速度までリーン車両を加速する制御機能を有するクルーズコントロール制御部でもよい。クルーズコントロール制御部は、通常、クルーズコントロール制御部が車速維持のために加速指示を出力する加速指示出力状態(X)、又は、クルーズコントロール制御部が加速指示を出力しなくても車速を維持できる加速指示非出力状態(Y)のいずれかとなる。クルーズコントロール制御部は、状態(Y)において、非加速指示を出力している。クルーズコントロール制御部は、平坦路走行時又は登坂時には、通常、状態(X)となる。クルーズコントロール制御部は、降坂時には、坂の傾斜角などに応じて、状態(X)又は状態(Y)のいずれかとなる。
 アクチュエータ駆動式シーケンシャル多段変速装置は、シーケンシャル変速機及びシフトアクチュエータを有する。
 シーケンシャル変速機では、あるタイミングにおいて1つの状態が選択されている。シーケンシャル変速機では、ギア段に応じた変速比が設定されている。エンジンから出力される回転速度は、選択された1つの変速比で変更され、駆動輪に伝達される。シーケンシャル変速機は、高速段群又は低速段群に属する多段のギア段を有する。シーケンシャル変速機は、更に、ニュートラル状態を有する。シーケンシャル変速機は、ニュートラル状態及び複数の非ニュートラル状態を有する。非ニュートラル状態は、高速段群及び低速段群を含む。
 高速段群は、非ニュートラル状態の全ギア段のうち半分以上のギア段が属する。より詳細には、高速段群は、シーケンシャル変速機が8段変速タイプの場合における8から5速であり、7段変速タイプの場合における7から4速であり、6段変速タイプの場合における6から4速であり、5段変速タイプの場合における5から3速であり、そして、4段変速タイプの場合における4から3速である。低速段群は、非ニュートラル状態における高速段群の残りが属する。
 シーケンシャル変速機では、1つのシフト動作毎にギア段が1段増加又は減少する。例えば、ニュートラル状態から、1速、2速、3速、4速…の順に状態が選択される。また、4速から、3速、2速、1速、及びニュートラル状態の順に状態が選択される。つまり、例えば、3速の次に1速が選択されることなく、また3速の次にニュートラル状態が選択されることはない。なお、シーケンシャル変速機として、例えば、操作順においてニュートラル状態と2速の間に1速が配置される構成が、採用され得る。ただし、シーケンシャル変速機は特に限定されず、例えば、1速と2速の間にニュートラル状態が配置された構成でもよい。シーケンシャル変速機は、高速慣性力走行中におけるシフト動作の回数が所定回数以下になるように制御されてもよい。当該所定回数は、1、2又は3回のいずれかで設定されてもよい。
 シフトアクチュエータは、シーケンシャル変速機を駆動してシフト動作させる。シーケンシャル変速機は、シフトアクチュエータに駆動されてギア段の選択を行なう。シフトアクチュエータは、例えば電動モータである。シフトアクチュエータは、特に限定されず、例えば、ソレノイド又は油圧アクチュエータでもよい。
 アクチュエータ駆動式クラッチは、摩擦クラッチ及びクラッチアクチュエータを有する。
 摩擦クラッチは、エンジンと駆動輪との間の動力伝達経路に設けられる動力伝達装置である。摩擦クラッチは、接続状態又は切断状態を有する。例えば、駆動力の一部が実質的に伝達されない状態は、つまり、いわゆる半クラッチ状態は切断状態に含まれる。摩擦クラッチは、例えば、入力軸と出力軸のそれぞれに設けられた板状部材の摩擦力により動力を伝達する。
 摩擦クラッチは、例えば、遠心クラッチを含まない。また、摩擦クラッチは、流体を介してパワーを伝達するトルクコンバータを含まない。このため、リーン車両は、加速操作に対する高い応答性を有する。
 摩擦クラッチは、クラッチアクチュエータで駆動される。クラッチアクチュエータは、例えば電動モータである。クラッチアクチュエータは、特に限定されず、例えば、ソレノイド又は油圧アクチュエータでもよい。
 制御装置は、アクチュエータ駆動式シーケンシャル多段変速装置、アクチュエータ駆動式クラッチ、及びエンジンを制御する。制御装置は、シーケンシャル変速機のギア段が高速段群に属し、且つ、リーン車両が走行状態において、加速指示部によって非加速指示が出力された場合、高速慣性力走行を行なうようにクラッチアクチュエータにクラッチを切断状態にさせる。高速慣性力走行は、エンジンの動力を使用しない走行である。高速慣性力走行において、リーン車両1は、基本的にリーン車両自体の慣性を利用して走行する。高速慣性力走行において、エンジン20の動力による加速又は減速はない。ただし、リーン車両における高速慣性力走行は、速度の維持を目的としない。高速慣性力走行時のリーン車両の速度は、通常では、徐々に減少する。例えば、リーン車両における高速慣性力走行では、例えば自動車における惰性走行の場合と異なり、車体に加え運転者も走行風を受ける。このため、リーン車両には、車体の摩擦抵抗及び空気抵抗に加え、運転者の空気抵抗が作用する。高速慣性力走行時のリーン車両の速度は、自動車の場合よりも減少しやすい。
 高速慣性力走行において、制御装置は、クラッチアクチュエータにクラッチを切断状態にさせるとともに、エンジンをアイドリング動作状態又は停止状態とする。制御装置は、高速慣性力走行の期間、シフトアクチュエータにシーケンシャル変速機のギア段を高速段群に維持させる。制御装置は、高速慣性力走行が終了した後も引き続きシーケンシャル変速機のギア段を高速段群に維持してよい。ただし、制御装置は、特に限定されず、高速慣性力走行が終了した後、シーケンシャル変速機のギア段を低速段群に変更してもよい。
 制御装置において、アクチュエータ駆動式シーケンシャル多段変速装置及びアクチュエータ駆動式クラッチを制御する部分と、エンジンを制御する部分とは、例えば物理的に異なる装置で構成されてもよい。また、例えば、これらの部分は一体の装置で構成されてもよい。
 制御装置は、例えば、プログラムを記憶するメモリとプログラムを実行するプロセッサで構成される。制御装置は、特に限定されず、例えば、プログラムを含まない論理回路で構成されてもよい。
 高速慣性力走行は、摩擦クラッチが切断状態にされ且つエンジンがアイドリング動作状態又は停止状態である状態で運転者がハンドルバーを把持し且つステップに足を載せて車両を操作することによって実行される走行である。高速慣性力走行は、(A)シーケンシャル変速機のギア段が高速段群に属し、且つ、(B)加速指示部によって非加速指示が出力されることを条件として実行される。開始条件(A)及び(B)に加え、高速慣性力走行の開始条件として、他の条件が設定されていてもよい。この場合、開始条件(A)及び(B)のみが満たされた時点では、高速慣性力走行は開始されず、当該他の条件も満たされた時点で、高速慣性力走行が開始される。また、シーケンシャル変速機のギア段が低速段群に属する場合、高速慣性力走行は実行されない。高速慣性力走行は、クラッチアクチュエータによって摩擦クラッチが切断状態にされる時点で開始する。
 なお、非加速指示が減速指示と慣性走行指示に区別される場合、高速慣性力走行は、さらに非加速指示の慣性走行指示が出力されることを条件として実行されてもよい。つまり、非加速指示のうち、減速指示が出力される場合には高速慣性力走行が保留されることとしてもよい。高速慣性力走行が保留される場合、摩擦クラッチは接続状態のままであり、エンジンブレーキが動作する。
 高速慣性力走行は、例えば、加速指示部によって加速指示が出力されることを条件として、終了する。但し、高速慣性力走行の終了条件は、これに限られず、例えばリーン車両の速度が、高速段群のギア段で対応できる下限速度を下回ったことでもよい。また、高速慣性力走行は、例えば、加速指示部によって加速指示が出力されるか、又は、リーン車両の速度が、高速段群のギア段で対応できる下限速度を下回るかの論理和を条件として、終了してもよい。高速慣性力走行は、摩擦クラッチが接続状態にされる時点で終了する。
 下限速度は、30km/h以上50km/h以下の範囲内に含まれるように設定されてもよい。下限速度が例えば30km/hである場合、高速慣性力走行で高速段群のギア段を継続しつつ、高速慣性力走行の終了時にエンジンでの加速に対応しやすい。下限速度が例えば40km/hである場合、走行するリーン車両自体の慣性も利用して、高速慣性力走行を継続しやすくすることができる。また、下限速度が例えば50km/hである場合、リーン車両のセルフステアリング特性及び走行時の直進性を利用して、高速慣性力走行を継続しやすくすることができる。
 なお、高速慣性力走行は、加速指示部によって加速指示又は減速指示が出力されることを条件として、終了してもよい。また、高速慣性力走行は、加速指示部によって加速指示が出力されるか、又は、減速指示が出力されか、又は、リーン車両の速度が、前記下限速度を下回るかの論理和を条件として、終了してもよい。この場合、ギア段が高ギア段群に属していてもエンジンブレーキを利用することができる。
 (1)のリーン車両によれば、高速段群における走行中に運転者の操作に基づく非加速指示が出力された場合、摩擦クラッチがクラッチアクチュエータに駆動され切断状態となり、切断状態が継続される。これによって、アクチュエータ駆動式シーケンシャル多段変速装置がニュートラル状態まで変更されなくても、高速慣性力走行が継続する。従って、ギア段が高速段群から例えばニュートラルまで変化するようにシフト動作が実行されなくても、高速慣性力走行が継続する。また、高速慣性力走行の後でクラッチが接続状態となる場合における再加速が容易となるように事前にギア段が調整されるような場合でも、高速段群に維持されることで、シフト動作の回数が制限される。このため、シフト動作音及び振動が発生する回数及び期間が短くなる。従って、シフト動作音及び振動が抑制される。
 このようにしてエンジンから発生する音及び振動が低減され、さらに、この高速慣性力走行状態におけるギア段が高速段群に維持されることで、シーケンシャル変速機のシフト動作に起因するシフト動作音及び振動が低減される。
 従って、アクチュエータ駆動式シーケンシャル多段変速装置を有するリーン車両の走行時の音及び振動が低減される。
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (2) (1)のリーン車両であって、
 前記制御装置は、前記高速慣性力走行の期間に前記加速指示部から前記加速指示が出力された場合、前記エンジンを前記加速指示に応じた動作状態にするとともに、前記クラッチアクチュエータに前記摩擦クラッチを接続状態に変更させる。
 例えば、エンジンの回転速度を再加速に応じた速度に増加することは、加速指示に応じた動作状態にすることである。また、例えば、エンジンが停止していた場合に燃焼動作を開始させることも、加速指示に応じた動作状態にすることである。なお、加速指示に応じたエンジンの動作状態は、リーン車両として実用的に許容可能な範囲内で定められることができる。また、再加速に応じたエンジンの回転速度は、リーン車両として実用的に許容可能な範囲内で定められることができる。
 (2)のリーン車両によれば、加速指示部が加速指示を出力すると、エンジンが加速指示に応じた動作状態になるとともに、クラッチアクチュエータによって摩擦クラッチが接続状態になる。
 このため、クラッチ操作なしの簡潔な操作で、音及び振動が低減された高速慣性力走行を終了し再加速することができる。
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (3) (2)のリーン車両であって、
 前記リーン車両は、
 前記制御装置は、前記加速指示部から前記加速指示が出力された場合、前記シフトアクチュエータに前記シーケンシャル変速機を、前記高速段群のうちの前記加速指示に応じたギア段にさせた後、前記クラッチアクチュエータに前記摩擦クラッチを接続状態に変更させるとともに前記エンジンを前記加速指示に応じた動作状態にする。
 (3)のリーン車両によれば、シフトアクチュエータの駆動によって、シーケンシャル変速機の状態が変更される。(3)のリーン車両によれば、加速指示部から加速指示が出力された場合、変速機が、高速段群のうち加速指示に応じたギア段となる。このため、音及び振動が低減された高速慣性力走行を加速指示に応じて終了する際に摩擦クラッチが接続される時のリーン車両の速度の変動を低減することができる。加速指示に応じたギア段は、高速段群の中から、リーン車両として実用的に許容可能な範囲内で定められることができる。
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (4) (2)または(3)のリーン車両であって、
 前記リーン車両は、
 前記エンジンのクランクシャフトに対し固定された速度比で回転するよう前記クランクシャフトと接続され、前記エンジンの始動時に前記クランクシャフトを駆動し、前記エンジンの燃焼動作時に前記エンジンに駆動されて発電する始動発電機を備え、
 前記制御装置は、前記クラッチアクチュエータに前記摩擦クラッチを接続状態に変更させるよりも前に、前記始動発電機に前記クランクシャフトを駆動させる。
 始動発電機は、エンジン始動及び駆動の双方が可能な回転電機である。始動発電機は、例えば永久磁石式電動機である。始動発電機がクランクシャフトと固定速度比で回転するようにクランクシャフトに接続されることは、始動発電機とクランクシャフトとの間に摩擦クラッチ等の動力切断手段又は変速比変換手段を有しないことである。
 始動発電機は、クランクシャフトに対し固定された速度比で回転するようにクランクシャフトに接続されている。すなわち、始動発電機は、摩擦クラッチや可変トランスミッションを介すること無しにエンジンと接続されている。(4)のリーン車両によれば、摩擦クラッチが接続状態になる前に始動発電機がクランクシャフトを駆動する。このため、エンジンが、動作停止又はアイドリング状態となった後、摩擦クラッチが接続される時のクランクシャフトの回転速度が増大する。高速慣性力走行中に発生する音及び振動が低減されつつ、摩擦クラッチが接続される時のリーン車両の速度の変動が低減する。
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (5) (1)から(4)何れか1のリーン車両であって、
 前記制御装置は、前記高速慣性力走行の期間における前記エンジンの回転速度が、前記フレームに取付けられた前記ハンドルバーの共振周波数帯に対応する前記エンジンのハンドル共振速度帯、及び、前記フレームに取付けられた前記ステップの共振振動周波数帯に対応する前記エンジンのステップ共振速度帯を避けるように、前記エンジンを制御する。
 ハンドルバーの共振周波数帯は、フレームに取付けられたハンドルバーが外力を受けて振動する場合に、振幅が大きい周波数帯である。ハンドル共振速度帯は、ハンドルバーの共振周波数帯に対応するエンジンの回転速度帯である。ステップの共振周波数帯は、フレームに取付けられたステップが外力を受けて振動する場合に、振幅が大きい周波数帯である。ステップ共振速度帯は、ステップの共振周波数帯に対応するエンジンの回転速度帯である。
 (5)のリーン車両によれば、高速慣性力走行の期間にエンジンの回転速度が、ハンドル共振速度帯及びステップ共振速度帯を避けているため、ハンドル又はステップの共振による振動の増大が抑制される。従って、高速慣性力走行の期間に音と共に運転者の手及び足に伝わる振動も抑制される。
 本発明の一つの観点によれば、リーン車両は、以下の構成を採用できる。
 (6) (1)から(6)何れか1のリーン車両であって、
 前記リーン車両は、前記エンジンの排ガスを浄化する触媒を有し前記エンジンと接続された排ガス浄化装置を備え、
 前記制御装置は、前記高速慣性力走行の期間における前記エンジンの回転速度が、前記エンジンからの排ガスによって前記触媒の温度を前記触媒の活性下限温度よりも高くする回転速度となるように、前記エンジンを制御する。
 排ガス浄化装置は、例えばガソリンを燃料とするエンジンの排ガスを浄化する装置である。排ガス浄化装置は、触媒を有する。触媒は、排ガスに含まれる有害成分の化学反応を促進して無害化する。これによって排ガスが浄化される。触媒は、活性下限よりも高い温度で、排ガスを浄化する機能を発揮しやすい。
 (6)のリーン車両によれば、エンジンは、高速慣性力走行の期間、制御装置の制御によって、触媒の温度を触媒の活性下限温度よりも高くするような回転速度で動作する。
 加速指示に応じて高速慣性力走行が終了する際、エンジンが加速のための動作を開始する前に、排ガス浄化装置が、エンジンの排ガスを浄化できる状態にある。従って、高速慣性力走行が終了した後の排ガスの浄化を可能としつつ、高速慣性力走行中に発生する音及び振動を低減することができる。
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。本明細書にて使用される用語「及び/又は」は一つの、又は複数の関連した列挙された構成物のあらゆる又は全ての組み合わせを含む。本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」又は「有する(having)」及びその変形の使用は、記載された特徴、工程、操作、要素、成分及び/又はそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/又はそれらのグループのうちの1つ又は複数を含むことができる。本明細書中で使用される場合、用語「取り付けられた」、「接続された」、「結合された」及び/又はそれらの等価物は広く使用され、直接的及び間接的な取り付け、接続及び結合の両方を包含する。更に、「接続された」及び「結合された」は、物理的又は機械的な接続又は結合に限定されず、直接的又は間接的な電気的接続又は結合を含むことができる。他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的又は過度に形式的な意味で解釈されることはない。本発明の説明においては、多数の技術及び工程が開示されていると理解される。これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、又は、場合によっては全てと共に使用することもできる。従って、明確にするために、この説明は、不要に個々のステップの可能な組み合わせを全て繰り返すことを控える。それにもかかわらず、明細書及び特許請求の範囲は、そのような組み合わせが全て本発明及び請求項の範囲内にあることを理解して読まれるべきである。
 本明細書では、新しいリーン車両について説明する。以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面又は説明によって示される特定の実施形態に限定することを意図するものではない。
 本発明によれば、アクチュエータ駆動式シーケンシャル多段変速装置を有するリーン車両の走行時の音を低減することができる。
本発明の第一実施形態に係るリーン車両を説明する図である。 図1のリーン車両における高速慣性力走行の動作を説明するフローチャートである。 高速慣性力走行中におけるギア段の調整が実施される変形例の動作を説明するタイムチャートである。 第一実施形態のリーン車両の適用例を示す概略側面図である。 図4に示すエンジン及びその周辺の装置を拡大して示す断面図である。 第二実施形態におけるリーン車両の動作を説明するタイムチャートである。 第三実施形態におけるリーン車両の動作を説明するタイムチャートである。
 [第一実施形態]
 図1は、本発明の第一実施形態に係るリーン車両を説明する図である。図1のパート(a)は、リーン車両の概略構成を示す図である。図1のパート(b)は、リーン車両の動作を示すタイムチャートである。
 図1に示すリーン車両1は、フレーム2と、ハンドルバー3と、ステップ4と、エンジン20と、アクチュエータ駆動式シーケンシャル多段変速装置40と、アクチュエータ駆動式クラッチ50と、加速指示部131と、制御装置80と、を備える。また、リーン車両1は、フォーク5と、駆動輪15と、を備える。
 フレーム2は、リーン車両1の全体に掛かる荷重を支持する。
 ハンドルバー3は、フレーム2に取付けられる。ハンドルバー3は、リーン車両1の運転者に把持される。ハンドルバー3は、操向用のハンドルである。ハンドルバー3は、フレーム2に回転可能に支持されたフォーク5に固定される。これによってハンドルバー3は、フレーム2に取付けられている。
 ステップ4は、運転者の足を載せる部品である。ステップ4は、フレーム2に取付けられる。ステップ4は、例えば取付け部材を介してフレーム2に取付けられていてもよい。ただし、ステップ4は、ステップ4の位置がフレーム2に対し固定されるようにフレーム2に取付けられる。
 エンジン20は、少なくともその一部がリーン車両1の外部に露出するようにフレーム2に取付けられる。エンジン20は、例えばラバーマウントによりフレーム2に取付けられる。ただし、エンジン20の取付け具の種類は、特に限定されない。
 アクチュエータ駆動式シーケンシャル多段変速装置40は、シーケンシャル変速機42及びシフトアクチュエータ41を有する。
 シーケンシャル変速機42は、高速段群又は低速段群に属する多段のギア段を有する。シーケンシャル変速機42は、さらにニュートラル状態を有する。高速段群は、ギア段のうち、高速に対応する半分のギア段に対応する。低速段群は、残りのギア段に対応する。
 シーケンシャル変速機42は、1つのシフト動作毎にギア段を1段増加又は減少する。即ち、ギア段は、逐次的に選択される。例えば、2速の次に、3速を選択せずに4速を選択することはできない。各ギア段に対応した変速比によって、エンジン20から出力される回転速度が変換される。エンジン20から出力される回転速度は、選択されたギア段に対応する変速比で変換され、駆動輪15に伝達される。ニュートラル状態のシーケンシャル変速機42は、エンジン20から出力される回転速度を駆動輪15に伝達しない。
 例えば、シーケンシャル変速機42が8段変速タイプの場合、シーケンシャル変速機42は、1速から8速までの8つのギア段とニュートラル状態を有する。高速段群は、1速から8速までの8つのギア段のうち、高速に対応する半分のギア段である。即ち、8速から5速までのギア段は、高速段群に属する。4速から1速までのギア段は、低速段群に属する。
 例えば、シーケンシャル変速機42が7段変速タイプの場合、シーケンシャル変速機42は、1速から7速までの7つのギア段とニュートラル状態を有する。高速段群は、1速から7速までの7つのギア段のうち、高速に対応する半分のギア段である。即ち、7速から4速までのギア段は、高速段群に属する。3速から1速までのギア段は、低速段群に属する。
 例えば、シーケンシャル変速機42が6段変速タイプの場合、シーケンシャル変速機42は、1速から6速までの6つのギア段とニュートラル状態を有する。高速段群は、1速から6速までの6つのギア段のうち、高速に対応する半分のギア段である。即ち、6速から4速までのギア段は、高速段群に属する。3速から1速までのギア段は、低速段群に属する。
 例えば、シーケンシャル変速機42が5段変速タイプの場合、シーケンシャル変速機42は、1速から5速までの5つのギア段とニュートラル状態を有する。高速段群は、1速から5速までの5つのギア段のうち、高速に対応する半分のギア段である。即ち、5速から3速までのギア段は、高速段群に属する。2速から1速までのギア段は、低速段群に属する。
 例えば、シーケンシャル変速機42が4段変速タイプの場合、シーケンシャル変速機42は、1速から4速までの4つのギア段とニュートラル状態を有する。高速段群は、1速から4速までの4つのギア段のうち、高速に対応する半分のギア段である。即ち、4速から3速までのギア段は、高速段群に属する。2速から1速までのギア段は、低速段群に属する。
 シフトアクチュエータ41は、シーケンシャル変速機42を駆動する。これによって、シーケンシャル変速機42がシフト動作する。シーケンシャル変速機42は、シフトアクチュエータ41に駆動されてギア段を選択する。シフトアクチュエータ41は、例えば電動モータを有する。
 アクチュエータ駆動式クラッチ50は、摩擦クラッチ52及びクラッチアクチュエータ51を有する。摩擦クラッチ52は、エンジン20とシーケンシャル変速機42との間の動力伝達経路60に設けられている。摩擦クラッチ52は、動力伝達経路60を接続状態又は切断状態に切替える。摩擦クラッチ52において、エンジン20の駆動力の一部がシーケンシャル変速機42に実質的に伝達されない状態は、切断状態である。つまり、いわゆる半クラッチ状態は切断状態に含まれる。
 クラッチアクチュエータ51は、摩擦クラッチ52を駆動する。クラッチアクチュエータ51は、例えば電動モータを有する。
 加速指示部131は、加速指示又は非加速指示を出力する。加速指示は、運転者によるリーン車両1の加速走行の要求を表す。非加速指示は、運転者によるリーン車両1の加速走行の要求が無いことを表す。より詳細には、加速指示部131は、非加速指示を表わす信号を出力する。例えば、加速指示部131に設けられたセンサから電気信号が出力される。
 加速指示部131は、より詳細には、ハンドルバー3に取付けられたアクセルグリップである。加速指示部131は、運転者に操作されることで加速指示を出力する。アクセルグリップである加速指示部131が加速位置に変位されることで、加速指示を出力するとともにエンジン20に設けられた図示しないスロットル弁の開度が制御される。
 例えば、加速指示部131が加速指示を出力すると、制御装置80に制御された図示しないモータによってスロットル弁の開度が増大する。なお、スロットル弁は、モータを有さず、例えば加速指示部131としてのアクセルグリップと機械式ワイヤで接続され、アクセルグリップの操作力によって開度が変化する構成でもよい。
 加速指示部131は、加速指示の操作が無い場合に、非加速指示を出力する。例えば、加速指示部131は、操作の量に応じて非加速指示及び加速指示を出力する。例えば、加速指示部131の操作の量に応じて出力される信号のレベルが基準レベル以上の場合に、加速指示部131が加速指示を出力したと見なすことができる。信号のレベルが基準レベル未満の場合に、加速指示部131が非加速指示を出力したと見なすことができる。リーン車両1を加速するための操作、及び、非加速時に振動を低減するための操作が、一つの操作手段の操作することによって実施できる。
 また、加速指示部131として、慣性走行指示と減速指示とに区別して非加速指示を出力する構成も採用可能である。例えば、加速指示部131は、操作の量に応じて減速指示、慣性走行指示、及び加速指示を出力する。例えば、加速指示部131の操作の量に応じて出力される信号のレベルが第1基準レベル未満の場合に、加速指示部131が減速指示を出力し、信号のレベルが第1基準レベル以上の場合に慣性走行指示を出力し、信号のレベルが第2基準レベル以上の場合に加速走行指示を出力したと見なすことができる。
 リーン車両1は、例えば、自動車のようなエンジンルームも、運転者を収容するキャビンも有さない。リーン車両1のエンジン20は、エンジンケース(例えば図5の符号21)を備えており、エンジンケース21の中にはアクチュエータ駆動式シーケンシャル多段変速装置40も設けられている。
 エンジン20(エンジンケース21)は、通常、車体の外部に露出している。また、リーン車両1のエンジン20(エンジンケース21)は、車体のフレーム2に取り付けられている。従って、リーン車両1におけるエンジン20、及びシーケンシャル変速機42から生じる振動は、フレーム2で伝達されやすい。このため、リーン車両1では、エンジン20、及びシーケンシャル変速機42から生じる音及び振動の運転者への影響がより大きい。
 また、リーン車両1は、例えばエンジンをエンジンルームに収納できる自動車とは、エンジンの配置においても異なる。
 例えば、通常の自動車のエンジンは、平面視において自動車全体の重心からずれた位置に配置される。このため重心を中心とする振動が、ステアリングホイールを含む自動車全体の振動として伝達されにくい。
 これに対し、リーン車両1のエンジン20は、平面視においてリーン車両1全体の重心と重なる位置に配置される。このため、エンジン20の振動がフレーム2から逃げにくい。即ち、エンジン20の振動は、フレーム2を含むリーン車両1全体に伝達されやすい。このため、フレーム2に取付けられたエンジン20の振動が、ハンドルバー3及びステップ4を介して運転者の手及び足に伝達される。
 また、例えば、リーン車両1全体の重量に対するエンジン20の重量の比は、通常の自動車における比よりも大きい。例えば、エンジン20の重量は、フレーム2の重量よりも大きいか、又は、フレーム2の重量と同等である。このため、エンジン20の振動は、フレーム2を介してハンドルバー3及びステップ4に伝達されやすい。このため、フレーム2に取付けられたエンジン20の振動が、ハンドルバー3及びステップ4を介して運転者の手及び足に伝達される。
 また、例えば、リーン車両1におけるエンジン20からハンドルバー3までの距離は、通常の自動車のエンジンからステアリングホイールまでの距離よりも短い。また、リーン車両1におけるエンジン20からステップ4までの距離は、例えば、通常の自動車のエンジンから車室の床面までの距離よりも短い。このため、リーン車両1におけるエンジン20の振動は、フレーム2を介してハンドルバー3及びステップ4に伝達されやすい。
 制御装置80は、アクチュエータ駆動式シーケンシャル多段変速装置40、アクチュエータ駆動式クラッチ50、及びエンジン20を制御する。制御装置80は、クラッチアクチュエータ51を制御することによって、摩擦クラッチ52の状態を制御する。制御装置80は、シフトアクチュエータ41を制御することによって、シーケンシャル変速機42の状態を制御する。制御装置80は、例えばエンジン20に設けられた点火プラグを制御することによってエンジン20の燃焼動作を制御する。制御装置80は、上述したスロットル弁の開度及び燃料の供給量を制御することによってエンジン20の燃焼動作を制御することもできる。また、制御装置80は、始動発電機30(図5参照)を制御することによってエンジン20の回転速度を制御することもできる。
 制御装置80は、シフトアクチュエータ41を制御することによって、シーケンシャル変速機42のギア段を制御する。
 本実施形態の制御装置80は、加速指示部131の加速指示、エンジン20の回転速度、及びリーン車両1の速度に応じてギア段を制御する。例えば、加速指示が出力されている場合、エンジン20の回転速度が切替え基準の速度に達するごとに、シーケンシャル変速機42のギア段を増加するシフトアップを実施する。
 ギア段の変更の契機として、種々の条件が採用され得る。例えば、リーン車両1は、図示しないシフトアップスイッチとシフトダウンスイッチとを備え、制御装置80は、運転者によるシフトアップスイッチとシフトダウンスイッチの操作に応じてギア段を変更してもよい。この場合、例えば、制御装置80は、高速慣性力走行の期間だけ、リーン車両1の速度に応じてギア段を変更してもよい。また、制御装置80は、スイッチによらず、常にリーン車両1の速度等に応じてギア段を変更してもよい。また、制御装置80は、ギア段を変更せず、摩擦クラッチ52の状態を変更する機能だけを有してもよい。
 制御装置80は、シーケンシャル変速機42のギア段が高速段群に属し、且つ、リーン車両1が走行状態において、加速指示部131によって非加速指示が出力された場合、高速慣性力走行を実行する。制御装置80は、シーケンシャル変速機42のギア段が低速段群に属する場合、高速慣性力走行を実行しない。
 高速慣性力走行では、摩擦クラッチ52がクラッチアクチュエータ51により切断状態にされ、且つ、エンジン20がアイドリング動作状態又は停止状態である。高速慣性力走行は、運転者がハンドルバー3を把持し且つステップ4に足を載せてリーン車両1を操作することによって実行される。すなわち、高速慣性力走行はリーン車両1における通常の走行状態で実行される。
 エンジン20がアイドリング動作状態又は停止状態になることで、エンジン20の回転速度は低下又はゼロになる。エンジン20から生じる音を低減すことができる。また、エンジン20からハンドルバー3及びステップ4へ伝達される振動を低減することができる。
 制御装置80は、高速慣性力走行の期間、シフトアクチュエータ41にシーケンシャル変速機42のギア段を高速段群に維持させるように、アクチュエータ駆動式シーケンシャル多段変速装置40、アクチュエータ駆動式クラッチ50、及びエンジン20を制御する。
 図1のパート(b)のチャートには、加速指示部131の出力、ギア段、摩擦クラッチ52の状態、エンジン20の回転速度、及び、リーン車両1の速度の変化の例が概略的に示されている。加速指示部131の出力は、加速指示と非加速指示の2値に単純化して示されている。ただし、加速指示は、例えば、加速の程度を含むことができる。ギア段の線には、ギア段の数字が付されている。ギア段の例として、5段変速タイプのシーケンシャル変速機42の場合の例が示されている。この場合、5~3速は高速段群に属し、2~1速は低速段群に属する。
 時刻t0では、リーン車両1の速度が0よりも大きく、リーン車両1は走行している状態が示されている。加速指示が出力されており、エンジン20の回転速度は時間に伴い増加している。ギア段は2段であり、摩擦クラッチ52は接続状態である。リーン車両1の速度は増加している。
 時刻t1で、運転者の操作に応じて非加速指示が出力される。エンジン20の回転速度が低下する。例えば、エンジン20への燃料供給が停止する。
 しかし、時刻t1における変速段は、高速段群でなく低速段群に属する。従って、制御装置80は、高速慣性力走行を実行しない。つまり、摩擦クラッチ52の接続状態が維持される。リーン車両1は、いわゆるエンジンブレーキが作動した状態になる。この結果、時刻t1から時刻t2までリーン車両1の速度が比較的急速に低下する。
 時刻t2で、運転者の操作に応じて非加速指示の出力が停止し、加速指示が出力される。エンジン20の回転速度が増加する。
 この後、エンジン20の回転速度の増加に応じて、制御装置80が、シフトアップを実行する。この結果、ギア段が、3速、4速、5速に変化する。
 時刻t3まで、リーン車両1の速度の増加が継続する。
 時刻t3で、運転者の操作に応じて非加速指示が出力される。この時、シーケンシャル変速機42のギア段は、高速段群に属している。従って、制御装置80は、高速慣性力走行を実行する。高速慣性力走行において、制御装置80は、クラッチアクチュエータ51に摩擦クラッチ52を切断状態にさせる。また、制御装置80は、エンジン20をアイドリング動作状態又は停止状態にする。例えば、エンジン20への燃料供給が停止する。
 制御装置80は、高速慣性力走行の期間、シフトアクチュエータ41にシーケンシャル変速機42のギア段を高速段群に維持させる。
 より詳細には、本実施形態では、加速指示部131から非加速指示が出力されている間、制御装置80は、シフトアクチュエータ41にシーケンシャル変速機42のギア段を維持させる。加速指示部131から加速指示が出力された場合、制御装置80は、エンジン20を加速指示に応じた動作状態にするとともに、クラッチアクチュエータ51を制御して摩擦クラッチ52を接続状態に変更させる。
 より詳細には、加速指示部131から加速指示が出力された場合、制御装置80は、シフトアクチュエータ41にシーケンシャル変速機42のギア段を、加速指示に応じたギア段にさせる。例えば、制御装置80は、シフトアクチュエータ41にシーケンシャル変速機42のギア段を、より低いギア段に変更させる。但し、制御装置80は、ギア段を高速段群の範囲内で変更する。この後、制御装置80は、エンジン20を加速指示に応じた動作状態にするとともに、クラッチアクチュエータ51に摩擦クラッチ52を接続状態に変更させる。摩擦クラッチ52を接続状態になることで、高速慣性力走行が終了する。
 従って、少なくとも高速慣性力走行の期間、ギア段は、高速段群に維持される。
 図1のパート(b)における破線は、比較例の動作を示している。
 比較例では、慣性力走行の期間、シーケンシャル変速機42がニュートラル状態(N)になり、摩擦クラッチ52は接続状態になる。慣性力走行の期間、エンジン20から出力される動力の伝達が切断されるので、エンジン20をアイドリング動作状態又は停止状態しつつ、慣性力走行が可能である。エンジン20から生じる音及び振動が低減される。
 しかし、比較例では、ギア段が高速段群に維持されない。即ち、比較例では、シーケンシャル変速機42におけるギア段が、5速から、4速、3速、2速、1速に変化し、そしニュートラル状態に変化する。このため、5回ものシフト動作が実行される。これは、シーケンシャル変速機42が、例えばトラック等の変速機とは異なり、1回のシフト動作で5速の状態をニュートラル状態に変更できないからである。
 シフト動作時に、変速機からシフト動作音及び振動が生じる。このシフト動作時、エンジン20は、音及び振動を低減するため動作停止状態又はアイドリング状態にある。このため、変速機から生じるシフト動作音及び振動が際だって認識される。比較例のように5回のシフト動作が実施される場合、シフト動作音が、5回発生する。
 また、比較例では、慣性力走行が終了する前に、摩擦クラッチ52が切断状態になり、シーケンシャル変速機42が、4回のシフト動作によって、ニュートラル状態から、4速に変更される。この時、シフト動作音が、4回発生する。
 これに対し、本実施形態によれば、例えば図1のパート(b)の実線で示すように、高速慣性力走行の期間、シーケンシャル変速機42のギア段が高速段群に維持される。このため、シフト動作の回数が制限される。従って、シフト動作音が発生する回数及び期間が短くなる。つまり、シフト動作音及び振動が抑制される。
 高速慣性力走行で、エンジン20は、アイドリング動作状態又は停止状態になる。このため、走行中にエンジン20から生じる音が低減される。また、高速慣性力走行で、摩擦クラッチ52の切断状態が継続される。このため、高速慣性力走行におけるリーン車両1の速度の低下は、例えばエンジンブレーキが作動した状態と比べて抑制される。つまり、アクチュエータ駆動式シーケンシャル多段変速装置40がニュートラル状態に変更されることなく、慣性力走行が実行できる。
 また、高速慣性力走行でギア段が高速段群に維持されるため、再加速が容易となるように高速慣性力走行の終了前にギア段が調整されるような場合でも、シフト動作の回数及び期間が抑制される。つまり、シフト動作音及び振動が抑制される。
 図2は、図1のリーン車両1における高速慣性力走行の動作を説明するフローチャートである。
 リーン車両1における高速慣性力走行の動作は、例えば、プロセッサを有する制御装置80がプログラムを実行することにより実行される。
 高速慣性力走行中でなく(S10でNo)、ギア段が高ギア段群に属し(S11でYes)、非加速指示が出力された場合(S12)、制御装置80は、摩擦クラッチ52を切断し(S13)、そして、エンジン20を停止する(S14)。制御装置80は、高速慣性力走行を開始する(S15)。高速慣性力走行の状態の変更(S15)は、例えばメモリに記憶されたデータを更新することで実行される。上記ステップS14は、エンジン20の停止の代わりにアイドリング状態になる。
 高速慣性力走行中に加速指示が出力された場合(S20でYes)、制御装置80は、エンジン20を加速指示に応じた動作状態に復帰させ(S21)、シフト動作によってギア段を調整し(S22)、そして、クラッチ接続を実行する(S23)。制御装置80は、高速慣性力走行を終了する(S24)。
 制御装置80は、高速慣性力走行中にリーン車両1の速度が低下して、高速慣性力走行に適した範囲の下限速度に達した場合(S25でYes)にも、エンジン20を復帰させ(S21)、ギア段を調整し(S22)、そして、クラッチ接続を実行する(S23)。
 なお、例えば、非加速指示が慣性走行指示と減速指示に区別される場合、制御装置80におけるステップS20の動作として、高速慣性力走行中に加速指示又は減速指示が出力された場合に、クラッチ接続(S23)を実行する動作も採用可能である。例えば、減速指示が出力された場合にクラッチ接続(S23)を実行することで、エンジンブレーキによるより強力な減速が可能になる。
 高速慣性力走行中にエンジン20が停止していた場合、上記ステップS21でエンジン20を加速指示に応じた動作状態に復帰させるため、制御装置80は、エンジン20を始動する。制御装置80は、始動発電機30にクランクシャフト24を駆動させることで、エンジン20を始動する。
 高速慣性力走行中にエンジン20がアイドリング状態となる場合、上記ステップS21で、始動の代わりに、加速指示に応じた回転速度の増加が行なわれる。この場合、制御装置80は、始動発電機30にクランクシャフト24を駆動させることで、回転速度の増加を実行することもできる。
 このようにして、制御装置80は、ステップS23でクラッチアクチュエータ51に摩擦クラッチ52を接続状態に変更させるよりも前に、ステップS21で、始動発電機30にクランクシャフト24を駆動させる。
 高速慣性力走行中において(S10でYes)、高速慣性力走行を停止する条件が成立しない場合(S20でNo、S25でNo)、制御装置80は、リーン車両1の速度に応じて、シフト動作を実行してギア段を調整する(S26)。上記ステップS26では、例えば、高速慣性力走行中にリーン車両1の速度が徐々に低下する場合に、速度に応じてギア段を減少する。この場合もギア段は、高速段群内で選択される。制御装置80として、高速慣性力走行中におけるギア段の調整が実施されない構成も採用可能である。図1のパート(b)には、高速慣性力走行中にギア段の調整が実施されない場合のギア段の変化が示されている。
 図3は、高速慣性力走行中におけるギア段の調整が実施される変形例の動作を説明するタイムチャートである。
 この変形例では、高速慣性力走行中におけるギア段の調整(図2のS26)が実施される。制御装置80は、高速慣性力走行中に、リーン車両1の速度に応じてギア段を変更する。例えば、高速慣性力走行中にリーン車両1の速度が徐々に低下し、時刻t3’で速度がギア段変更のための基準値を下回る時、制御装置80は、ギア段を減少させる。この時、摩擦クラッチ52は切断状態なので、ギア段の変更による走行への影響が抑制される。
 高速慣性力走行中におけるギア段の調整でも、ギア段は高速段群に維持される。つまり、図3に示す例において、制御装置80は、3速よりも低いギア段を選択しない。
 以上、高速慣性力走行中におけるギア段の調整が実施される例が説明されたが、高速慣性力走行中におけるギア段の調整は、高速段群の維持以外、特に限定されない。例えば、上述したように、高速慣性力走行中におけるギア段の調整(図2のS26)は、実施されなくてもよい。また更に、高速慣性力走行の終了時におけるギア段の調整(図2のS22)は、実施されなくてもよい。
 [適用例]
 図4は、第一実施形態のリーン車両1の適用例を示す概略側面図である。図4に示す応用例の各要素のうち、第一実施形態に対応する要素に同じ符号が付される。
 図4に示すリーン車両1は、フレーム2と、ハンドルバー3と、ステップ4と、エンジン20と、シーケンシャル変速機42と、摩擦クラッチ52と、加速指示部131と、制御装置80と、を備える。
 また、リーン車両1は、フォーク5と、駆動輪15としての後輪と、前輪14と、シート16と、蓄電装置17と、リアアーム18と、排ガス浄化装置90と、を備えている。
 シート16は、サドル型である。リーン車両1の運転者は、シート16に跨がって着座し、走行中、ステップ4に足を乗せる。蓄電装置17は、電力を蓄える。車速センサ151は、リーン車両1の車速を検出する。
 加速指示部131は、運転者がリーン車両1の加速を指示するためのアクセルグリップである。加速指示部131にはアクセルセンサ133が設けられている。アクセルセンサ133は、運転者による加速指示部131の操作量を検知する。加速指示部131は、アクセルセンサ133を介して運転者の操作量に応じた指示を出力する。指示には操作量のレベルも含まれる。
 エンジン20は、フレーム2に支持されている。より詳細には、エンジン20の少なくとも一部は、フレーム2に取り付けられている。エンジン20は、駆動輪15へ向け動力を出力する。動力は、摩擦クラッチ52、シーケンシャル変速機42、及び、チェーン181を介して駆動輪15へ向け伝達される。
 排ガス浄化装置90は、エンジン20と排気管を介して接続されている。排ガス浄化装置90は、排ガスを浄化する触媒91を有する。触媒91は、例えば、排ガスに含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害成分の化学反応を促進して無害化する。
 図5は、図4に示すエンジン20及びその周辺の装置を拡大して示す断面図である。
 エンジン20と、始動発電機30と、シーケンシャル変速機42と、摩擦クラッチ52とは、エンジンユニット10を構成する。シーケンシャル変速機42と、始動発電機30とは、エンジンケース21の内部に配置されている。
 エンジン20は、クランクシャフト24と、コネクティングロッド25と、ピストン26とを備える。燃料を含む混合気が燃焼することでピストン26の往復動し、コネクティングロッド25を介してクランクシャフト24の回転に変換される。
 エンジン20の動作に伴い、エンジン20から排ガスが排出される。排ガスは、排ガス浄化装置90の触媒91を通過し、浄化される。排ガス浄化装置90が排ガスを浄化する能力は、触媒91の温度に依存する。触媒91は、活性下限温度よりも高い温度で、求められる程度に排ガスを浄化できる。ただし、触媒91の温度が高くなりすぎると劣化する場合がある。排ガス浄化装置90は、走行風を受ける位置に配置されている。
 エンジン20の動作に伴い、エンジン20から振動が生じる。エンジン20からフレーム2に伝達された振動は、図4に示すフレーム2を介してハンドルバー3及びステップ4に伝達される。
 シーケンシャル変速機42は、シフトアクチュエータ41によって駆動される。摩擦クラッチ52は、エンジン20とシーケンシャル変速機42との間の動力伝達経路60上に設けられている。摩擦クラッチ52は、クラッチアクチュエータ51に駆動される。クラッチアクチュエータ51は、モータである。クラッチアクチュエータ51は、例えば駆動機構を介して、摩擦クラッチ52の状態を変化させる。
 始動発電機30は、クランクシャフト24に対し固定された速度比で回転するようクランクシャフト24と接続されている。始動発電機30は、例えば摩擦クラッチ52といった動力断続機構を介さずクランクシャフト24に接続されている。
 制御装置80は、インバータ70を有する。インバータ70には、始動発電機30及び蓄電装置17(図4参照)が接続されている。蓄電装置17は、始動発電機30がモータとして動作する場合、始動発電機30に電力を供給する。また、蓄電装置17は、始動発電機30が発電機として動作する場合、始動発電機30により発電された電力によって充電される。インバータ70は、蓄電装置17と始動発電機30との間を流れる電流を制御する。
 制御装置80は、車速センサ151(図4参照)から出力される信号に基づき、リーン車両1の車速を取得する。
 制御装置80は、アクセルセンサ133から出力される信号に基づき、加速指示部131の加速指示、又は非加速指示を取得する。制御装置80は、加速指示部131の操作量も取得する。制御装置80は、エンジン20の点火プラグ、燃料噴射装置を制御することでエンジン20の動作を制御する。
 制御装置80は、クラッチアクチュエータ51を制御することによって、摩擦クラッチ52の断続を行う。また、制御装置80は、シフトアクチュエータ41を制御することによって、シーケンシャル変速機42のギア段の変更を行う。
 制御装置80は、例えば、中央処理装置80aと、記憶装置80bを有するコンピュータで構成されている。中央処理装置80aは、制御プログラムに基づいて演算処理を行う。記憶装置80bは、プログラム及び演算に関するデータを記憶する。制御装置80は、中央処理装置80aと、記憶装置80bと、制御プログラムとによって実現される。
 なお、制御装置80のうち、エンジン20を制御する機能と、始動発電機30を制御する機能と、シーケンシャル変速機42を制御する機能と、摩擦クラッチ52を制御する機能とは、互いに別の装置として互いに離れた装置として構成されてもよい。またこれらの機能は、一体の装置として構成されてもよい。
 [第二実施形態]
 図6は、第二実施形態におけるリーン車両1の動作を説明するタイムチャートである。図6には、加速指示部131の出力とエンジン20の回転速度が示されている。エンジン20の回転速度(縦軸)及び時間(横軸)のスケールは、見やすさのため、図1のパート(b)に示すチャートよりも拡大されている。
 本実施形態のリーン車両1は、第一実施形態のリーン車両1と、ステップS14(図2)の動作において異なる。本実施形態における他の点は、第一実施形態と同じなので、第一実施形態における図面及び符号が流用されて説明される。
 本実施形態におけるリーン車両1の制御装置80は、高速慣性力走行の期間におけるエンジン20の回転速度が、ハンドル共振速度帯Vhを避けるように、エンジン20を制御する。ハンドル共振速度帯Vhは、フレーム2に取付けられたハンドルバー3の共振周波数帯に対応するエンジン20の回転速度の帯域である。フレーム2に取付けられたハンドルバー3の共振周波数帯は、フレーム2に取付けられたハンドルバー3が外力を受けて振動する場合に、他の周波数における振幅よりも大きい振幅で振動する周波数帯である。
 また、制御装置80は、ステップ共振速度帯Vsを避けるように、エンジン20を制御する。ステップ共振速度帯Vsは、フレーム2に取付けられたステップ4の共振振動周波数帯に対応するエンジン20の回転速度の帯域である。ステップ4の共振振動周波数帯は、フレーム2に取付けられたステップ4が外力を受けて振動する場合に、他の周波数における振幅よりも大きい振幅で振動する周波数帯である。
 リーン車両1のハンドル共振速度帯Vhは、エンジン20の回転速度を徐々に変化させつつハンドルバー3における振動の振幅を測定し、振動の振幅が特異的に増加する回転速度を測定することで、測定できる。
 リーン車両1のステップ共振速度帯Vsは、エンジン20の回転速度を徐々に変化させつつステップ4の振動の振幅を測定し、振動の振幅が特異的に増加する回転速度を測定することで、測定できる。
 ハンドル共振速度帯Vh及びステップ共振速度帯Vsは、これに限らず、例えば、次の2段階で取得することも可能である。先ず、エンジン20を停止した状態で、エンジン20に外部から振動を印加し、振動の周波数を徐々に変化させた場合に、それぞれ振動の振幅が特異的に増加する周波数帯が、それぞれの共振周波数帯として取得される。次に、エンジン20の回転速度を徐々に変化させながら、エンジン20の回転速度とエンジン20における振動の周波数の関係が取得される。取得した共振周波数帯と取得された回転速度との関係からハンドル共振速度帯Vh及びステップ共振速度帯Vsが取得される。
 また、ハンドル共振速度帯Vh及びステップ共振速度帯Vsは、リーン車両1の製造前に、既に製造された類似構成を有する車両の測定結果、又は、振動モデルのシミュレーションを利用して推定することもできる。
 制御装置80は、例えば、ステップS14(図2)において、エンジン20の回転速度が、ハンドル共振速度帯Vh及びステップ共振速度帯Vsを避けた目標速度Vcとなるように、エンジン20の回転速度を制御する。
 制御装置80は、例えば、エンジン20に供給される空気量及び燃料を制御することによって、エンジン20の回転速度を制御する。ただし、回転速度を制御の方法は特に限られない。制御装置80は、例えば、エンジン20の燃焼動作を停止し、始動発電機30にクランクシャフト24を駆動させてもよい。この場合、制御装置80は、始動発電機30を制御することによって、エンジン20の回転速度を制御する。
 本実施形態によれば、高速慣性力走行の期間におけるエンジン20の回転速度が、ハンドル共振速度帯Vh及びステップ共振速度帯Vsを避ける。従って、高速慣性力走行の期間に、音と共に運転者の手及び足に伝わる振動も抑制される。
 [第三実施形態]
 図7は、第三実施形態におけるリーン車両1の動作を説明するタイムチャートである。図7には、加速指示部131の出力とエンジン20の回転速度が示されている。エンジン20の回転速度(縦軸)及び時間(横軸)のスケールは、見やすさのため、図1のパート(b)に示すチャートよりも拡大されている。
 本実施形態のリーン車両1は、第一実施形態のリーン車両1と、ステップS14(図2)の動作において異なる。本実施形態における他の点は第一実施形態と同じなので、第一実施形態における図面及び符号が流用され、説明される。
 制御装置80は、高速慣性力走行の期間におけるエンジン20の回転速度が触媒91の温度を活性下限温度よりも高くするように、エンジン20を制御する。制御装置80は、ステップS14(図2)において、エンジン20の燃焼動作を停止せず、継続する。これによって、エンジン20の熱が、排ガスを媒体として触媒91に供給される。
 例えば、触媒91の温度を活性温度に維持することができる下限速度がVtの場合、制御装置80は、例えば、エンジン20の回転速度を、下限速度Vtよりも大きい目標速度Vcで維持するように、エンジン20を制御する。
 この結果、エンジン20は、高速慣性力走行の期間、触媒91の温度を触媒の活性下限温度よりも高くするように動作する。
 加速指示に応じて高速慣性力走行が終了する際、エンジン20が加速のための動作を開始する前に、排ガス浄化装置90が、エンジン20の排ガスを適切に浄化できる状態にある。従って、高速慣性力走行が終了した後の排ガスの浄化を可能としつつ、高速慣性力走行中に発生する音及び振動を低減することができる。
 エンジン20の制御方法として、上述の方法とは異なる方法も採用され得る。例えば、触媒91又は触媒91の付近に温度センサが設けられ、制御装置80は、温度センサで検出する温度が活性下限温度よりも高くなるように、エンジン20の回転速度がフィードバック制御される。この場合、走行中の触媒91の温度がより精密に制御される。
 本実施形態の構成は、上述した第二実施形態と組合せることも可能である。また、上述した適用例及び変形例は、第二実施形態、及び第三実施形態にも適用可能である。
1   リーン車両
2   フレーム
3   ハンドルバー
4   ステップ
20  エンジン
24  クランクシャフト
30  始動発電機
40  アクチュエータ駆動式シーケンシャル多段変速装置
41  シフトアクチュエータ
42  シーケンシャル変速機
50  アクチュエータ駆動式クラッチ
51  クラッチアクチュエータ
52  摩擦クラッチ
60  動力伝達経路
80  制御装置
90  排ガス浄化装置
91  触媒
131 加速指示部

Claims (6)

  1. リーン車両であって、
     前記リーン車両は、
     フレームと、
     前記フレームに取付けられ、前記リーン車両の運転者に把持されるハンドルバーと、
     前記フレームに取付けられ、前記運転者の足を載せるステップと、
     少なくとも一部が前記リーン車両の外部に露出するように前記フレームに取付けられたエンジンと、
     シーケンシャル変速機及びシフトアクチュエータを有し、前記シーケンシャル変速機は高速段群又は低速段群に属する多段のギア段を有し1つのシフト動作毎にギア段を1段増加又は減少し、前記高速段群は、前記シーケンシャル変速機が8段変速タイプの場合における8から5速であり、7段変速タイプの場合における7から4速であり、6段変速タイプの場合における6から4速であり、5段変速タイプの場合における5から3速であり、そして、4段変速タイプの場合における4から3速であり、前記シフトアクチュエータは前記シーケンシャル変速機を駆動してシフト動作させる、アクチュエータ駆動式シーケンシャル多段変速装置と、
     摩擦クラッチ及びクラッチアクチュエータを有し、前記摩擦クラッチは前記エンジンと前記シーケンシャル変速機との間の動力伝達経路に設けられ前記動力伝達経路を接続状態又は切断状態に切替え、前記クラッチアクチュエータは前記摩擦クラッチを駆動する、アクチュエータ駆動式クラッチと、
     前記リーン車両への加速指示又は非加速指示を出力する加速指示部と、
     前記シーケンシャル変速機のギア段が前記高速段群に属し、且つ、前記リーン車両が走行状態において、前記加速指示部によって前記非加速指示が出力された場合、高速慣性力走行を実行し、少なくとも前記高速慣性力走行の期間、前記シフトアクチュエータに前記シーケンシャル変速機のギア段を前記高速段群に維持させるように、前記アクチュエータ駆動式シーケンシャル多段変速装置、前記アクチュエータ駆動式クラッチ及び前記エンジンを制御し、前記高速慣性力走行は、前記摩擦クラッチが前記クラッチアクチュエータにより前記切断状態にされ且つ前記エンジンがアイドリング動作状態又は停止状態である状態で前記運転者が前記ハンドルバーを把持し且つ前記ステップに足を載せて前記リーン車両を操作することによって実行される制御装置と、
    を備えるリーン車両。
  2.  請求項1に記載のリーン車両であって、
     前記制御装置は、前記高速慣性力走行の期間に前記加速指示部から前記加速指示が出力された場合、前記エンジンを前記加速指示に応じた動作状態にするとともに、前記クラッチアクチュエータに前記摩擦クラッチを接続状態に変更させる
    リーン車両。
  3.  請求項2に記載のリーン車両であって、
     前記リーン車両は、
     前記制御装置は、前記加速指示部から前記加速指示が出力された場合、前記シフトアクチュエータに前記シーケンシャル変速機を、前記高速段群のうちの前記加速指示に応じたギア段にさせた後、前記クラッチアクチュエータに前記摩擦クラッチを接続状態に変更させるとともに前記エンジンを前記加速指示に応じた動作状態にする
    リーン車両。
  4.  請求項2又は3に記載のリーン車両であって、
     前記リーン車両は、
     前記エンジンのクランクシャフトに対し固定された速度比で回転するよう前記クランクシャフトと接続され、前記エンジンの始動時に前記クランクシャフトを駆動し、前記エンジンの燃焼動作時に前記エンジンに駆動されて発電する始動発電機を備え、
     前記制御装置は、前記クラッチアクチュエータに前記摩擦クラッチを接続状態に変更させるよりも前に、前記始動発電機に前記クランクシャフトを駆動させる
    リーン車両。
  5.  請求項1から4何れか1に記載のリーン車両であって、
     前記制御装置は、前記高速慣性力走行の期間における前記エンジンの回転速度が、前記フレームに取付けられた前記ハンドルバーの共振周波数帯に対応する前記エンジンのハンドル共振速度帯、及び、前記フレームに取付けられた前記ステップの共振振動周波数帯に対応する前記エンジンのステップ共振速度帯を避けるように、前記エンジンを制御する
    リーン車両。
  6.  請求項1から5何れか1に記載のリーン車両であって、
     前記リーン車両は、前記エンジンの排ガスを浄化する触媒を有し前記エンジンと接続された排ガス浄化装置を備え、
     前記制御装置は、前記高速慣性力走行の期間における前記エンジンの回転速度が、前記エンジンからの排ガスによって前記触媒の温度を前記触媒の活性下限温度よりも高くする回転速度となるように、前記エンジンを制御する
    リーン車両。
PCT/JP2021/033685 2020-03-02 2021-09-14 リーン車両 WO2022059664A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112021004895.3T DE112021004895T5 (de) 2020-09-18 2021-09-14 Neigungsfahrzeug
GB2303754.2A GB2613514A (en) 2020-03-02 2021-09-14 Leaning vehicle
TW110134371A TWI838642B (zh) 2020-09-18 2021-09-15 傾斜車輛

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/035376 WO2022059156A1 (ja) 2020-09-18 2020-09-18 リーン車両
JPPCT/JP2020/035376 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022059664A1 true WO2022059664A1 (ja) 2022-03-24

Family

ID=80776088

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/035376 WO2022059156A1 (ja) 2020-09-18 2020-09-18 リーン車両
PCT/JP2021/033685 WO2022059664A1 (ja) 2020-03-02 2021-09-14 リーン車両

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035376 WO2022059156A1 (ja) 2020-09-18 2020-09-18 リーン車両

Country Status (2)

Country Link
DE (1) DE112021004895T5 (ja)
WO (2) WO2022059156A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09242529A (ja) * 1996-03-04 1997-09-16 Suzuki Motor Corp 2サイクルエンジンの排気ガス浄化装置
JP2001026214A (ja) * 1999-05-11 2001-01-30 Denso Corp 車両用空調装置
US20100151991A1 (en) * 2007-03-17 2010-06-17 Zf Friedrichshafen Ag Method for operating an automatic transmission
JP2017150422A (ja) * 2016-02-26 2017-08-31 日立オートモティブシステムズ株式会社 車両用制御装置
JP2017171186A (ja) * 2016-03-24 2017-09-28 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
WO2018101150A1 (ja) * 2016-12-01 2018-06-07 ヤマハ発動機株式会社 鞍乗型車両
WO2019017088A1 (ja) * 2017-07-18 2019-01-24 ヤマハ発動機株式会社 ビークル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5161644B2 (ja) * 2008-04-25 2013-03-13 ヤマハ発動機株式会社 変速制御装置、鞍乗型車両、及び変速制御方法
JP2015058783A (ja) * 2013-09-18 2015-03-30 ダイムラー・アクチェンゲゼルシャフトDaimler AG ハイブリッド車両の制御装置
JP2016182870A (ja) * 2015-03-26 2016-10-20 いすゞ自動車株式会社 車両制御装置
JP6474323B2 (ja) * 2015-06-17 2019-02-27 株式会社ミツバ 二輪車用内燃機関冷却装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09242529A (ja) * 1996-03-04 1997-09-16 Suzuki Motor Corp 2サイクルエンジンの排気ガス浄化装置
JP2001026214A (ja) * 1999-05-11 2001-01-30 Denso Corp 車両用空調装置
US20100151991A1 (en) * 2007-03-17 2010-06-17 Zf Friedrichshafen Ag Method for operating an automatic transmission
JP2017150422A (ja) * 2016-02-26 2017-08-31 日立オートモティブシステムズ株式会社 車両用制御装置
JP2017171186A (ja) * 2016-03-24 2017-09-28 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
WO2018101150A1 (ja) * 2016-12-01 2018-06-07 ヤマハ発動機株式会社 鞍乗型車両
WO2019017088A1 (ja) * 2017-07-18 2019-01-24 ヤマハ発動機株式会社 ビークル

Also Published As

Publication number Publication date
TW202214484A (zh) 2022-04-16
WO2022059156A1 (ja) 2022-03-24
DE112021004895T5 (de) 2023-07-20

Similar Documents

Publication Publication Date Title
JP6232915B2 (ja) ハイブリッド二輪車
JP5711821B2 (ja) 電動車両
CN103781656B (zh) 电动车辆
CN105283693B (zh) 车辆的控制装置
WO2007049684A1 (ja) 動力伝達装置の制御装置
WO2010114025A1 (ja) 車両速度制限装置
JP2007137186A (ja) 鞍乗り型車両の定速走行制御装置
JP5869620B2 (ja) 自転車用電動構成部品
JP2013096444A (ja) 変速制御装置および変速制御方法
JPWO2019013330A1 (ja) 車両
JPH09291836A (ja) 車両用内燃機関の出力トルク制御装置
WO2022059664A1 (ja) リーン車両
TWI838642B (zh) 傾斜車輛
JP5307603B2 (ja) 車両の動力伝達制御装置
GB2613514A (en) Leaning vehicle
JP6352790B2 (ja) 乗物およびスロットル弁の駆動方法
EP2299093B1 (en) Saddle-riding-vehicle
JP3992013B2 (ja) 車両用有段式自動変速機の制御装置
JP7261944B1 (ja) ストラドルドビークル
JP5364571B2 (ja) 乗り物及びエンジン制御方法
JP2019099073A (ja) 鞍乗型車両
JP2019177824A (ja) 鞍乗型車両
JP6354739B2 (ja) 遠心振子ダンパ付きパワートレインの制御装置
JP7267410B2 (ja) 自動二輪車
JP7485848B2 (ja) ストラドルドビークル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202303754

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210914

122 Ep: pct application non-entry in european phase

Ref document number: 21869351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP