WO2022059465A1 - カバー部材、カバー部材用の基材フィルム、及びそれらを具備した表示装置 - Google Patents

カバー部材、カバー部材用の基材フィルム、及びそれらを具備した表示装置 Download PDF

Info

Publication number
WO2022059465A1
WO2022059465A1 PCT/JP2021/031647 JP2021031647W WO2022059465A1 WO 2022059465 A1 WO2022059465 A1 WO 2022059465A1 JP 2021031647 W JP2021031647 W JP 2021031647W WO 2022059465 A1 WO2022059465 A1 WO 2022059465A1
Authority
WO
WIPO (PCT)
Prior art keywords
base film
film
cover member
resin
mass
Prior art date
Application number
PCT/JP2021/031647
Other languages
English (en)
French (fr)
Inventor
奈々恵 藤枝
隆 建部
康 大久保
崇 南條
公志 田坂
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020237005858A priority Critical patent/KR20230041762A/ko
Priority to CN202180063474.9A priority patent/CN116209928A/zh
Priority to JP2022550440A priority patent/JP7315110B2/ja
Publication of WO2022059465A1 publication Critical patent/WO2022059465A1/ja
Priority to JP2023113377A priority patent/JP2023133318A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a cover member, a base film for the cover member, and a display device provided with them. More specifically, the present invention relates to a cover member having no creases on the base film provided on the cover member, a base film for the cover member, and a display device provided with the cover member, in addition to improving the handleability of the cover member.
  • the display is composed of a cover glass unit (hereinafter, also referred to as a “cover member” in the present invention) for the purpose of protecting the display and a display unit provided with a polarizing plate.
  • a cover glass unit hereinafter, also referred to as a “cover member” in the present invention
  • the protective film also referred to as “base film” in the present invention
  • the protective film has a crack in the glass base material when the cover member is folded. It has been found that, in addition to the improvement of the protective function (pushing strength) to a certain extent, the protective film is required to have a characteristic that the protective film does not have a crease when the cover member is repeatedly bent.
  • the protective function is improved when the film is made thinner, and when the cover member is repeatedly bent, the cover member is improved. It was difficult to achieve both the characteristic that the protective film does not fold.
  • the present invention has been made in view of the above problems and situations, and the problem to be solved thereof is not only the improvement of the handleability of the cover member but also the base film provided on the cover member when repeatedly bent. It is an object of the present invention to provide a cover member that does not fold, a base film for the cover member, and a display device provided with them.
  • the present inventor has a base film having a specific thickness and a transparent base material, and the stress of the base film is obtained.
  • a specific relationship is satisfied, in addition to improving the handleability of the cover member, a cover member having a characteristic that the base film provided on the cover member does not fold can be obtained. I found that.
  • a cover member having a substrate film of 1.1 ⁇ m or more and less than 15 ⁇ m, and a transparent substrate of 5 ⁇ m or more and less than 50 ⁇ m.
  • a cover member having a slope of a straight line connecting an origin and a breaking point in a stress-strain curve of the base film of 1.1 or more and 25.0 or less.
  • the elastic modulus of the transparent substrate is in the range of 55 to 80 GPa, and the elastic modulus of the transparent substrate and the elastic modulus of the substrate film (elastic modulus of the transparent substrate / elasticity of the substrate film).
  • the cover member according to any one of the items 1 to 4, wherein the value of rate) is 30 or more.
  • a base film for cover members The base film is 1 ⁇ m or more and less than 15 ⁇ m.
  • a base film for a cover member, wherein the slope of a straight line connecting the origin and the breaking point in the stress-strain curve of the base film is 1.1 or more and 25.0 or less.
  • the base film is attached to the transparent base material, and the base film is bonded to the transparent base material.
  • the bonding surface of the base film with the transparent base material is the A side and the back surface of the base film with respect to the A side is the B side.
  • the base film is attached to the transparent base material, and the base film is bonded to the transparent base material.
  • the bonding surface of the base film with the transparent base material is the A side and the back surface of the base film with respect to the A side is the B side.
  • the value of the ratio ( ⁇ A / ⁇ B ) of the film density ( ⁇ B ) of the B surface to the film density ( ⁇ A ) of the A surface is in the range of 0.80 to 0.95.
  • the base film for a cover member according to any one of items 6 to 8, wherein the base film contains rubber particles in the range of 40 to 85% by mass.
  • the cover member and the base film for the cover member do not have a crease on the base film provided on the cover member when repeatedly bent. , And a display device equipped with them.
  • the cover member of the present invention is composed of a laminate of a base film having a specific thickness range and a transparent base material, and the slope of a straight line connecting the origin and the breaking point in the stress-strain curve of the base film is 1. It is characterized in that it is 1 or more and 25.0 or less.
  • coverability of the cover member means that in the present invention, the base film provided on the cover member exerts a protective function (pushing strength) when the cover member is opened and closed by folding, and the transparent base material is used. It means that the film does not crack.
  • after folding means that the base film is whitened at the folded portion due to the opening and closing work by repeated folding, and is observed as fold streaks, and the base film is peeled off from the transparent base material. This means that visibility is deteriorated such as image distortion.
  • the slope of the straight line connecting the origin and the breaking point in the stress-strain curve of the base film exceeds 25.0, that is, if the base film is hard and reaches the breaking point quickly, the group is concerned. Since a rapid increase in stress occurs especially on the outside of the base film when the material film is stretched, that is, when the device is closed, a difference in physical properties between the outside and the inside occurs in repeated opening and closing operations, and the film is folded. However, the portion is whitened or poorly adhered, and is visually recognized as the "folded back". Further, it is presumed that the transparent base material is likely to be cracked because the stress is directly concentrated on the transparent base material when the transparent base material is pushed in.
  • the opening and closing work is accompanied by the opening and closing work. Since the entire base film repeatedly expands and contracts so that the base film integrally follows the transparent base material, the base film floats up due to poor adhesion or the like at the folded portion, and visibility is deteriorated. Furthermore, it is presumed that the base film is too soft when the base film is pushed together with the transparent base material, so that the amount of physical deformation of the transparent base material becomes too large and the transparent base material is likely to crack. Will be done.
  • Cross-sectional view of the laminate of the base film and the transparent base material Cross-sectional view of a laminate of another aspect of a substrate film and a transparent substrate Schematic diagram when the laminate is folded Schematic diagram when the laminated body of another aspect is folded A graph showing the slope of the stress-strain curve of the substrate film and the straight line connecting the origin and the breaking point.
  • the schematic diagram which shows the manufacturing method of the base film which concerns on one Embodiment of this invention.
  • Schematic diagram showing an example of a method for manufacturing a glass substrate applied to a transparent substrate Schematic diagram showing the bonding of a base film with a support and a transparent base material
  • Schematic diagram showing the bonding of a base film with a support and a transparent base material in another embodiment.
  • An example of application of a cover member to an organic EL display which is an example of the display device of the present invention.
  • the cover member of the present invention is a cover member having a base film having a thickness of 1 ⁇ m or more and less than 15 ⁇ m and a transparent base material having a thickness of 5 ⁇ m or more and less than 50 ⁇ m, and is a stress-strain curve of the base film.
  • the slope of the straight line connecting the origin and the breaking point is 1.1 or more and 25.0 or less.
  • the surface of the base film to be bonded to the transparent base material is referred to as the A side
  • the back surface of the base film with respect to the A side is referred to as the B side.
  • the film density ( ⁇ A ) of the A side is smaller than the film density ( ⁇ B ) of the B side
  • the film density of the B side ( ⁇ A ) with respect to the film density ( ⁇ A) of the A side is preferable.
  • the value of the ratio ( ⁇ A / ⁇ B ) of ⁇ B ) is in the range of 0.80 to 0.95.
  • the base film contains rubber particles in the range of 40 to 85% by mass.
  • the effect of improving the impact resistance by adding a large amount of rubber particles leads to the improvement of the folding resistance when repeatedly bent.
  • the elastic modulus of the transparent substrate is in the range of 55 to 80 GPa, and the elastic modulus of the transparent substrate and the elastic modulus of the substrate film (elastic modulus of the transparent substrate / elasticity of the substrate film).
  • the value of rate) is preferably 30 or more. This is because a transparent substrate having a low elastic modulus due to thinning is used, and in order to provide a cover member with improved indentation strength and no crease, a substrate film having a lower elastic modulus is used, that is, transparent.
  • the elastic modulus ratio (elastic modulus of the transparent substrate / elastic modulus of the substrate film) to 30 or more with respect to the substrate, the protective function of the transparent substrate can be further improved.
  • the base film for the cover member of the present invention has a thickness (also referred to as “film thickness”) within the range of 1 ⁇ m or more and less than 15 ⁇ m, and the origin and breakage in the stress-strain curve of the base film. It is characterized in that the slope of the straight line connecting the points is 1.1 or more and 25.0 or less.
  • the base film has a film density ( ⁇ ) of the A side when the bonding surface of the base film with the transparent base material is the A side and the back surface of the base film with respect to the A side is the B side. It is preferable that A ) is smaller than the film density ( ⁇ B ) of the B surface, and the ratio ( ⁇ A / ⁇ B ) of the film density ( ⁇ B ) of the B surface to the film density ( ⁇ A ) of the A surface. ) Is in the range of 0.80 to 0.95, which is more preferable from the viewpoint of the above-mentioned effect.
  • the base film contains rubber particles in the range of 40 to 85% by mass.
  • the display device of the present invention is characterized by comprising the cover member of the present invention or the base film for the cover member of the present invention.
  • the display device includes a foldable display and a retractable display that do not leave a fold on the base film provided on the cover member when repeatedly bent. A display device can be obtained.
  • the cover member of the present invention is a cover member having a base film having a thickness of 1 ⁇ m or more and less than 15 ⁇ m and a transparent base material having a thickness of 5 ⁇ m or more and less than 50 ⁇ m, and is a stress-strain curve of the base film.
  • the slope of the straight line connecting the origin and the breaking point is 1.1 or more and 25.0 or less.
  • FIG. 1 is a cross-sectional view of a laminated body of a base film and a transparent base material in the cover member of the present invention, and a schematic view when the cover member (laminated body) is folded.
  • FIG. 1A shows the minimum configuration of the cover member 10 of the present invention, in which the base film 1 is bonded to the transparent base material 3 via the pressure-sensitive adhesive layer 4 to form a laminated body.
  • the surface of the base film 1 bonded to the transparent base material 3 is the A side
  • the back surface of the base film 1 with respect to the A side is B. Make it a face.
  • FIG. 1B shows another aspect of the cover member 10 of the present invention.
  • the base film 1 is bonded to the transparent base material 3 via the pressure-sensitive adhesive layer 4, and the base film 2 is further bonded to the transparent base material 3 via the pressure-sensitive adhesive layer 4 to form a laminate.
  • the base film 2 may be a film having the same specifications as the base film 1, or may be a film having another material and specifications. For example, in order to improve the surface hardness, a functional film such as a hard coat film may be used.
  • FIG. 1C is a schematic view when the cover member 10 shown in FIG. 1A is folded toward the transparent base material 3.
  • the bending radius when folded means the radius R inside the folded portion when the cover member 10 is folded in FIG. 1C or FIG. 1D.
  • FIG. 1D is a schematic view when the cover member 10 shown in FIG. 1B is folded toward the transparent base material 3. Even in this case, more tensile stress is applied to the B-side of the base film 1 than to the A-side, but if the film density on the A-side is low, the tensile stress can be relaxed.
  • the stress-strain curve according to the present invention shows the relationship between the tensile stress of the base film and the tensile elongation at break measured in accordance with JIS K7127: 1999.
  • FIG. 2 is a graph showing the slope of the stress-strain curve of the base film and the straight line connecting the origin and the breaking point.
  • the base film takes a break point X after stretching by performing a tensile test, and when a straight line Y connecting the break point X and the origin (0 point) is drawn, the slope ⁇ of this straight line is set to the present. It is defined as "the slope of a straight line connecting the origin and the breaking point in the stress-strain curve of the base film" in the invention.
  • the inclination ⁇ needs to be 1.1 or more and 25.0 or less from the viewpoint of obtaining the effect of the present invention, and is rich in elasticity but does not become too hard.
  • Base film [1.1] Outline of base film In the following description, the “base film” will be described as “base film 1" in FIG. 1 unless otherwise specified.
  • the base film according to the present invention has a film thickness in the range of 1 ⁇ m or more and less than 15 ⁇ m, and the slope of a straight line connecting the origin and the breaking point in the stress-strain curve of the base film is 1.1 or more and 25. It is characterized by being 0 or less, and in addition to improving handleability such as indentation strength when it is provided on the cover member, it is folded into the base film itself when it is repeatedly bent when it is provided on the cover member. It has a lingering effect.
  • the entire base film expands and contracts so that the base film integrally follows the transparent base material during the opening and closing work.
  • the base film floats up due to poor adhesion or the like at the folded portion, which reduces visibility and is visually recognized as a folded portion.
  • the base film is too soft, so that the amount of physical deformation of the transparent base material becomes too large, and the transparent base material is liable to crack.
  • the film thickness is less than 1 ⁇ m, the waist becomes weak as a base film and the pushing strength of the cover member decreases. Further, if the thickness is 15 ⁇ m or more, the film becomes stiff as a base film, and the creases are likely to occur with repeated opening and closing of the display, so that it is necessary to be within the above range.
  • the film density ( ⁇ A ) of the A side is determined. It is preferably smaller than the film density ( ⁇ B ) of the B surface, and the value of the ratio ( ⁇ A / ⁇ B ) of the film density ( ⁇ B ) of the B surface to the film density ( ⁇ A ) of the A surface is , It is preferably in the range of 0.80 to 0.95.
  • the density of the surface (A side and B side) of the base film is measured by using the X-ray reflectivity method (XRR method). X-rays are totally reflected when they are incident on the film surface at a very shallow angle, and when the angle of the incident X-rays is equal to or greater than the total reflection critical angle, the X-rays invade the inside of the film and the reflectance is lowered.
  • the reflectance profile measured by the XRR method can be analyzed using a dedicated reflectance analysis software.
  • 2 ⁇ is from 2 ⁇ a to 2 ⁇ a + 0.1 when the angle at which the reflectance starts to decrease is ⁇ a.
  • the surface density is the density at which the fitting error between the measurement result and the calculation result is minimized in the range of °. At that time, the surface roughness is set to be in the range of 0 nm to 1 nm for fitting.
  • the base film is cut into a size of 30 mm ⁇ 30 mm, fixed on a sample table, and measured under the following measurement conditions.
  • Measurement condition -Device: Thin film X-ray diffractometer (ATX-G manufactured by Rigaku Co., Ltd.) ⁇ Sample size: 30 mm x 30 mm -Incident X-ray wavelength: 1.5405 ⁇ ⁇ Measurement range ( ⁇ ): 0 to 6 ° -Analysis software: Reflectance analysis software GXRR (manufactured by Rigaku Co., Ltd.)
  • the value of the ratio ( ⁇ A / ⁇ B ) of the film density ( ⁇ B ) of the B surface to the film density ( ⁇ A ) of the A surface should be in the range of 0.80 to 0.95.
  • the following findings can be utilized for adjustment.
  • (A) Change the amount of rubber particles and fine particles with respect to the resin. For example, if the amount of rubber particles or fine particles is increased, the diffusion of the solvent is promoted and the difference in density between the front surface and the back surface is less likely to occur.
  • (B) Change the solid content concentration in the dope. For example, when the solid content is high, the solvent is relatively small, so that the density difference is unlikely to occur.
  • the density difference can be increased by spot drying (applying a heater to the surface) in addition to slow drying.
  • the value of the density ratio ( ⁇ A / ⁇ B ) of the A-plane / B-plane can be set in the range of 0.80 to 0.95. It is possible to adjust within.
  • the resin used for the base film according to the present invention is not particularly limited, and is a cellulose ester resin, a cycloolefin resin, a fumaric acid diester resin, a polypropylene resin, (meth).
  • Acrylic resin, polyester resin, polyarylate resin, polyimide resin, styrene resin or a composite resin thereof can be mentioned, and preferred resins are linear polymers having a carbonyl group in the side chain.
  • (Meta) acrylic resin, styrene from the viewpoint of controlling physical properties such as bending resistance and improving optical properties by containing a material or a polymer material having a cyclic structure as a main chain.
  • -It may be a (meth) acrylate copolymer, a cycloolefin resin, a polyimide resin, or the like.
  • the (meth) acrylic resin used for the base film preferably contains at least a structural unit (U1) derived from methyl methacrylate and a structural unit (U2) derived from phenylmaleimide.
  • the (meth) acrylic resin containing the structural unit (U2) derived from phenylmaleimide has an advantage that the photoelastic coefficient of the base film is reduced and unevenness is less likely to occur even if it absorbs and expands.
  • the (meth) acrylic resin may further contain structural units other than the above.
  • such other structural units include (meth) acrylic acid alkyl esters such as adamantyl acrylate; (meth) acrylic acid cycloalkyl esters such as 2-ethylhexyl acrylate.
  • the structural unit (U2) derived from phenylmaleimide it is preferable to further contain the structural unit (U3) derived from the acrylic acid alkyl ester.
  • the (meth) acrylic resin contains a structural unit (U1) derived from methyl methacrylate, a structural unit (U2) derived from phenylmaleimide, and a structural unit (U3) derived from an acrylic acid alkyl ester. Is more preferable.
  • the content of the structural unit (U1) derived from methyl methacrylate is preferably in the range of 50 to 95% by mass, preferably 70 to 90% by mass, based on all the structural units constituting the (meth) acrylic resin. It is more preferably in the range.
  • the structural unit (U2) derived from phenylmaleimide has a relatively rigid structure, the mechanical strength of the base film can be improved. Further, since the structural unit (U2) derived from phenylmaleimide has a relatively bulky structure, it may have microscopic voids in the resin matrix that can move the rubber particles. It can be easily distributed unevenly on the surface layer.
  • the content of the structural unit (U2) derived from phenylmaleimide is preferably in the range of 1 to 25% by mass with respect to all the structural units constituting the (meth) acrylic resin.
  • the content of the structural unit (U2) derived from phenylmaleimide is 1% by mass or more, the base film is excellent in storage stability in a high humidity environment. When it is 25% by mass or less, the brittleness of the base film is not easily impaired.
  • the content of the structural unit (U2) derived from phenylmaleimide is more preferably in the range of 7 to 15% by mass.
  • the structural unit (U3) derived from the acrylic acid alkyl ester can impart appropriate flexibility to the resin, for example, the brittleness due to containing the structural unit (U2) derived from phenylmaleimide can be improved.
  • the acrylic acid alkyl ester is preferably an acrylic acid alkyl ester having an alkyl moiety having 1 to 7 carbon atoms, preferably 1 to 5 carbon atoms.
  • acrylic acid alkyl esters include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-hydroxyethyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate and the like.
  • the content of the structural unit (U3) derived from the acrylic acid alkyl ester is preferably in the range of 1 to 25% by mass with respect to all the structural units constituting the (meth) acrylic resin.
  • the content of the structural unit (U3) derived from the acrylic acid alkyl ester is 1% by mass or more, appropriate flexibility can be imparted to the (meth) acrylic resin, so that the base film does not become too brittle and breaks. It's hard to do.
  • the content of the structural unit (U3) derived from the acrylic acid alkyl ester is 25% by mass or less, the Tg of the base film does not become too low, and the base film has excellent storage stability in a high humidity environment.
  • the content of the structural unit (U3) derived from the acrylic acid alkyl ester is more preferably in the range of 5 to 15% by mass.
  • the ratio of the structural unit (U2) derived from phenylmaleimide to the total amount of the structural unit (U2) derived from phenylmaleimide and the structural unit (U3) derived from the acrylic acid alkyl ester is in the range of 20 to 70% by mass. It is preferable to have. When the ratio is 20% by mass or more, the elastic modulus of the base film is likely to be increased, and when the ratio is 70% by mass or less, the base film does not become too brittle.
  • the glass transition temperature (Tg) of the (meth) acrylic resin is preferably 100 ° C. or higher, more preferably 120 to 150 ° C.
  • Tg of the (meth) acrylic resin is within the above range, the heat resistance of the base film can be easily increased.
  • the weight average molecular weight (Mw) of the (meth) acrylic resin is not particularly limited and can be adjusted according to the purpose.
  • the weight average molecular weight of the (meth) acrylic resin is, for example, from the viewpoint of promoting entanglement between resin molecules to increase the toughness of the base film and making it difficult to break, and to moderately increase the humidity expansion coefficient, which is preferable for adhesion. From the viewpoint of facilitating adjustment to the curl amount of, 100,000 or more is preferable, and 1 million or more is more preferable.
  • the weight average molecular weight of the (meth) acrylic resin is 1 million or more, the toughness of the obtained base film can be enhanced.
  • the weight average molecular weight of the (meth) acrylic resin is more preferably in the range of 1.5 million to 3 million.
  • the method for measuring the weight average molecular weight is as follows.
  • the styrene / (meth) acrylate copolymer (hereinafter, also referred to as styrene / acrylic resin) has excellent transparency when used as a base film. Further, since the moisture absorption expansion coefficient can be adjusted by the copolymerization ratio of the styrene portion, the curl as a laminated body can be controlled by changing these ratios.
  • the styrene / acrylic resin is formed by addition polymerization of at least a styrene monomer and a (meth) acrylic acid ester monomer.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group having 1 to 24 carbon atoms.
  • an acrylic acid ester derivative or a methacrylic acid ester derivative having a known side chain or functional group in the structure of these esters is included.
  • styrene monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-phenylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, p-. Includes tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene and pn-dodecyl styrene.
  • (meth) acrylic acid ester monomers examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, isobutyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate (2EHA), and stearyl.
  • Acrylate monomers such as acrylates, lauryl acrylates and phenyl acrylates; methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isopropyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate. , Lauryl methacrylate, phenyl methacrylate, diethylaminoethyl methacrylate, methacrylic acid esters such as dimethylaminoethyl methacrylate;
  • (meth) acrylic acid ester monomer is a general term for "acrylic acid ester monomer” and “methacrylic acid ester monomer”, and one or both of them may be used. means.
  • methyl (meth) acrylate means one or both of “methyl acrylate” and “methyl methacrylate”.
  • the above (meth) acrylic acid ester monomer may be one kind or more. For example, forming a copolymer using a styrene monomer and two or more kinds of acrylic acid ester monomers, or using a styrene monomer and two or more kinds of methacrylic acid ester monomers to coweight. It is possible to form a coalescence and to form a copolymer by using a styrene monomer, an acrylic acid ester monomer and a methacrylic acid ester monomer in combination.
  • the weight average molecular weight (Mw) of the styrene / acrylic resin is preferably in the range of 5,000 to 150,000, and more preferably in the range of 30,000 to 120,000, from the viewpoint of easy control of plasticity.
  • the styrene / acrylic resin used in the present invention may be a commercially available product, and the MS resin "TX320XL" manufactured by Denka Corporation can be mentioned as an example.
  • the base film according to the present invention contains rubber particles in the range of 40 to 85% by mass to be tough. It is preferable from the viewpoint of imparting suppleness) and improving the resistance to folding.
  • Rubber particles are particles containing a rubber-like polymer.
  • the rubber-like polymer is a soft crosslinked polymer having a glass transition temperature of 20 ° C. or lower.
  • cross-linked polymers include butadiene-based cross-linked polymers, (meth) acrylic-based cross-linked polymers, and organosiloxane-based cross-linked polymers.
  • the (meth) acrylic crosslinked polymer is preferable, and the acrylic crosslinked polymer (acrylic rubber-like) is preferable from the viewpoint that the difference in refractive index from the (meth) acrylic resin is small and the transparency of the base film is not easily impaired. Polymer) is more preferred.
  • the rubber particles are preferably particles containing the acrylic rubber-like polymer (a).
  • the acrylic rubber-like polymer (a) is a crosslinked polymer containing a structural unit derived from an acrylic acid ester as a main component. Including as a main component means that the content of the structural unit derived from the acrylic acid ester is in the range described later.
  • the acrylic rubber-like polymer (a) has a structural unit derived from an acrylic acid ester, a structural unit derived from another monomer copolymerizable with the structural unit, and two or more radically polymerizable groups in one molecule (. It is preferably a crosslinked polymer containing a structural unit derived from a polyfunctional monomer having a non-conjugated reactive double bond).
  • Acrylic acid esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, benzyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, acrylic. It is preferably an acrylic acid alkyl ester having 1 to 12 carbon atoms of an alkyl group such as n-octyl acid. The acrylic acid ester may be one kind or two or more kinds.
  • the content of the structural unit derived from the acrylic acid ester is preferably in the range of 40 to 80% by mass, preferably 50 to 80% by mass, based on all the structural units constituting the acrylic rubber-like polymer (a1). It is more preferably in the range. When the content of the acrylic acid ester is within the above range, it is easy to impart sufficient toughness to the protective film.
  • the other copolymerizable monomers are those other than the polyfunctional monomers among the monomers copolymerizable with the acrylic acid ester. That is, the copolymerizable monomer does not have two or more radically polymerizable groups.
  • Examples of copolymerizable monomers include methacrylic acid esters such as methyl methacrylate; styrenes such as styrene and methylstyrene; (meth) acrylonitriles; (meth) acrylamides; (meth) acrylic acid. ..
  • the other copolymerizable monomer preferably contains styrenes.
  • the other copolymerizable monomer may be one kind or two or more kinds.
  • the content of the structural units derived from other copolymerizable monomers is preferably in the range of 5 to 55% by mass with respect to all the structural units constituting the acrylic rubber-like polymer (a). More preferably, it is in the range of 10 to 45% by mass.
  • polyfunctional monomers examples include allyl (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl malate, divinyl adipate, divinylbenzene, ethylene glycol di (meth) acrylate, and diethylene glycol (diethylene glycol).
  • meth) acrylates triethylene glycol di (meth) acrylates, trimethyllol propanetri (meth) acrylates, tetromethylol methanetetra (meth) acrylates, dipropylene glycol di (meth) acrylates, polyethylene glycol di (meth) acrylates. ..
  • the content of the structural unit derived from the polyfunctional monomer is preferably in the range of 0.05 to 10% by mass with respect to all the structural units constituting the acrylic rubber-like polymer (a), and is 0. More preferably, it is in the range of 1 to 5% by mass.
  • the content of the polyfunctional monomer is 0.05% by mass or more, the degree of cross-linking of the obtained acrylic rubber-like polymer (a) is likely to be increased, so that the hardness and rigidity of the obtained base film are impaired. If it is not too much and is 10% by mass or less, the toughness of the base film is not easily impaired.
  • the monomer composition constituting the acrylic rubber-like polymer (a) can be measured by, for example, the peak area ratio detected by thermal decomposition GC-MS.
  • the glass transition temperature (Tg) of the rubber-like polymer is preferably 0 ° C. or lower, more preferably ⁇ 10 ° C. or lower. When the glass transition temperature (Tg) of the rubber-like polymer is 0 ° C. or lower, appropriate toughness can be imparted to the film.
  • the glass transition temperature (Tg) of the rubber-like polymer is measured by the same method as described above.
  • the glass transition temperature (Tg) of the rubber-like polymer can be adjusted by the composition of the rubber-like polymer.
  • It is preferable to increase the mass ratio of other copolymerizable monomers for example, 3 or more, preferably in the range of 4 to 10).
  • the particles containing the acrylic rubber-like polymer (a) are a particle made of the acrylic rubber-like polymer (a) or a hard layer made of a hard crosslinked polymer (c) having a glass transition temperature of 20 ° C. or higher. , Particles having a soft layer made of an acrylic rubber-like polymer (a) arranged around the same (these are also referred to as “elastomers”); the acrylic rubber-like polymer (a).
  • the particles may be particles made of an acrylic graft copolymer obtained by polymerizing a mixture of monomers such as a methacrylic acid ester in at least one stage.
  • the particles made of the acrylic graft copolymer may be core-shell type particles having a core portion containing the acrylic rubber-like polymer (a) and a shell portion covering the core portion.
  • the core portion contains an acrylic rubber-like polymer (a), and may further contain a hard crosslinked polymer (c), if necessary. That is, the core portion may have a soft layer made of an acrylic rubber-like polymer and a hard layer made of a hard crosslinked polymer (c) arranged inside the soft layer.
  • the crosslinked polymer (c) can be a crosslinked polymer containing a methacrylic acid ester as a main component. That is, the crosslinked polymer (c) includes a structural unit derived from a methacrylic acid alkyl ester, a structural unit derived from another monomer copolymerizable therewith, and a structural unit derived from a polyfunctional monomer. It is preferably a crosslinked polymer containing.
  • the methacrylic acid alkyl ester may be the aforementioned methacrylic acid alkyl ester; other copolymerizable monomers may be the aforementioned styrenes, acrylic acid esters, etc .; the polyfunctional monomer may be. The same as those mentioned above as the polyfunctional monomer can be mentioned.
  • the content of the structural unit derived from the methacrylic acid alkyl ester may be in the range of 40 to 100% by mass with respect to all the structural units constituting the crosslinked polymer (c).
  • the content of the structural unit derived from the other copolymerizable monomer can be in the range of 60 to 0% by mass with respect to the total structural unit constituting the other crosslinked polymer (c).
  • the content of the structural units derived from the polyfunctional monomer can be in the range of 0.01 to 10% by mass with respect to all the structural units constituting the other crosslinked polymers.
  • the shell portion contains a methacrylic polymer (b) (another polymer) graft-bonded to the acrylic rubber-like polymer (a) and containing a structural unit derived from a methacrylic acid ester as a main component.
  • a methacrylic polymer (another polymer) graft-bonded to the acrylic rubber-like polymer (a) and containing a structural unit derived from a methacrylic acid ester as a main component.
  • “Included as a main component” means that the content of structural units derived from methacrylic acid ester is in the range described later.
  • the methacrylic acid ester constituting the methacrylic acid polymer (b) is preferably an alkyl methacrylic acid ester having 1 to 12 carbon atoms of an alkyl group such as methyl methacrylate.
  • the methacrylic acid ester may be one kind or two or more kinds.
  • the content of the methacrylic acid ester is preferably 50% by mass or more with respect to all the structural units constituting the methacrylic acid polymer (b).
  • the content of methacrylic acid ester is 50% by mass or more, compatibility with a methacrylic resin containing a structural unit derived from methyl methacrylate as a main component can be easily obtained.
  • the content of the methacrylic acid ester is more preferably 70% by mass or more with respect to all the structural units constituting the methacrylic acid polymer (b).
  • the methacrylic polymer (b) may further contain a structural unit derived from another monomer copolymerizable with the methacrylic acid ester.
  • examples of other copolymerizable monomers are acrylic acid esters such as methyl acrylate, ethyl acrylate, n-butyl acrylate; benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, A (meth) acrylic monomer having an alicyclic, heterocyclic or aromatic ring such as phenoxyethyl (meth) acrylate (ring-containing (meth) acrylic monomer) is included.
  • the content of the structural unit derived from the copolymerizable monomer is preferably 50% by mass or less, preferably 30% by mass or less, based on the total structural unit constituting the methacrylic polymer (b). Is more preferable.
  • the shape of the rubber particles when the base film is not stretched, may be a shape close to a true sphere. That is, the aspect ratio of the rubber particles when observing the cross section or the surface of the base film may be about 1 to 2.
  • the average particle size of the rubber particles is preferably in the range of 100 to 400 nm.
  • the average particle diameter of the rubber particles is 100 nm or more, it is easy to impart sufficient toughness and stress relaxation property to the base film, and when it is 400 nm or less, the transparency of the base film is not easily impaired.
  • the average particle size of the rubber particles is more preferably in the range of 150 to 300 nm.
  • the average particle size of the rubber particles can be calculated by the following method.
  • the average particle size of the rubber particles can be measured as the average value of the equivalent circle diameters of 100 particles obtained by SEM photography or TEM photography of the surface or section of the base film.
  • the equivalent circle diameter can be obtained by converting the projected area of the particles obtained by photographing into the diameter of a circle having the same area.
  • the rubber particles observed by SEM observation and / or TEM observation at a magnification of 5000 times are used for calculating the average particle diameter.
  • the content of the rubber particles is not particularly limited, but is preferably in the range of 40 to 85% by mass, and more preferably in the range of 45 to 75% by mass with respect to the base film.
  • the cycloolefin-based resin used for the base film is preferably a polymer of a cycloolefin monomer or a copolymer of a cycloolefin monomer and another copolymerizable monomer.
  • the cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and is a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2). It is more preferable to have.
  • R 1 to R 4 independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group.
  • p represents an integer of 0 to 2. However, all of R 1 to R 4 do not represent hydrogen atoms at the same time, R 1 and R 2 do not represent hydrogen atoms at the same time, and R 3 and R 4 do not represent hydrogen atoms at the same time. do.
  • the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 in the general formula (A-1) is preferably, for example, a hydrocarbon group having 1 to 10 carbon atoms, and is preferably a carbon atom. More preferably, it is a hydrocarbon group having a number of 1 to 5.
  • the hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds, thioether bonds and the like.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group and the like.
  • Examples of the polar groups represented by R 1 to R 4 in the general formula (A-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group and a cyano group. Is included. Of these, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferable from the viewpoint of ensuring solubility at the time of solution film formation.
  • P in the general formula (A-1) is preferably 1 or 2 from the viewpoint of increasing the heat resistance of the optical film. This is because when p is 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to be improved. In addition, it becomes possible to respond slightly to humidity, and there is an advantage that it becomes easy to control the curl balance as a laminated body.
  • R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms.
  • R 6 represents a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom).
  • p represents an integer of 0 to 2.
  • R 5 in the general formula (A-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, and more preferably represents a hydrocarbon group having 1 to 3 carbon atoms.
  • R 6 in the general formula (A-2) preferably represents a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group, and from the viewpoint of ensuring solubility during solution film formation, the alkoxycarbonyl group and aryl Oxycarbonyl groups are more preferred.
  • P in the general formula (A-2) preferably represents 1 or 2 from the viewpoint of enhancing the heat resistance of the optical film. This is because when p represents 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to improve.
  • the cycloolefin monomer having the structure represented by the general formula (A-2) is preferable from the viewpoint of improving the solubility in an organic solvent.
  • an organic compound loses its symmetry and its crystallinity decreases, so that its solubility in an organic solvent is improved.
  • R 5 and R 6 in the general formula (A-2) are substituted with only the ring-constituting carbon atom on one side with respect to the axis of symmetry of the molecule, the symmetry of the molecule is low, that is, the general formula (A-). Since the cycloolefin monomer having the structure represented by 2) has high solubility, it is suitable for producing an optical film by a solution casting method.
  • the content ratio of the cycloolefin monomer having the structure represented by the general formula (A-2) in the polymer of the cycloolefin monomer is the total of all the cycloolefin monomers constituting the cycloolefin resin. For example, it may be 70 mol% or more, preferably 80 mol% or more, and more preferably 100 mol%.
  • a cycloolefin monomer having a structure represented by the general formula (A-2) is contained in a certain amount or more, the orientation of the resin is enhanced, so that the retardation value is likely to increase.
  • Examples of the copolymerizable monomer copolymerizable with the cycloolefin monomer include a copolymerizable monomer capable of ring-opening copolymerization with the cycloolefin monomer and an addition copolymerization with the cycloolefin monomer. Possible copolymerizable monomers and the like are included.
  • ring-opening copolymerizable copolymerizable monomers examples include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene and dicyclopentadiene.
  • Examples of the copolymerizable monomer that can be additionally copolymerized include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers, (meth) acrylates, and the like.
  • unsaturated double bond-containing compounds include olefin compounds having 2 to 12 (preferably 2 to 8) carbon atoms, and examples thereof include ethylene, propylene and butene.
  • vinyl-based cyclic hydrocarbon monomers include vinyl cyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene.
  • Examples of (meth) acrylates include alkyl (meth) acrylates having 1 to 20 carbon atoms such as methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate.
  • the content ratio of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol% with respect to the total of all the monomers constituting the copolymer. It may preferably be in the range of 30 to 70 mol%.
  • the cycloolefin-based resin is obtained by polymerizing a cycloolefin monomer having a norbornene skeleton, preferably a cycloolefin monomer having a structure represented by the general formula (A-1) or (A-2). It is a polymer obtained by copolymerization, and examples thereof include the following.
  • Ring-opening polymer of cycloolefin monomer 2) Ring-opening copolymer of cycloolefin monomer and copolymerizable copolymer with ring-opening copolymer 3) Of the above 1) or 2) Hydrogenated ring-opened (co) polymer 4) The ring-opened (co) polymer of 1) or 2) above was cyclized by the Friedelcrafts reaction and then hydrogenated (co) polymer 5) Cycloolefin.
  • the polymers of 1) to 7) above can be obtained by known methods, for example, the methods described in JP-A-2008-107534 and JP-A-2005-227606.
  • the catalyst and solvent used for the ring-opening copolymerization of 2) above those described in paragraphs 0019 to 0024 of JP-A-2008-107534 can be used, for example.
  • the catalyst used for hydrogenation of 3) and 6) above for example, those described in paragraphs 0025 to 0028 of JP-A-2008-107534 can be used.
  • the polymers of the above 1) to 3) and 5) are preferable, and the polymers of the above 3) and 5) are more preferable.
  • the cycloolefin-based resin has a structural unit represented by the following general formula (B-1) in that the glass transition temperature of the obtained cycloolefin-based resin can be increased and the light transmittance can be increased. It is preferable to include at least one of the structural units represented by the following general formula (B-2), and it contains only the structural unit represented by the general formula (B-2) or the general formula (B-1). It is more preferable to include both the structural unit represented and the structural unit represented by the general formula (B-2).
  • the structural unit represented by the general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-1), and is represented by the general formula (B-2).
  • the structural unit is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-2).
  • R 1 to R 4 and p are synonymous with R 1 to R 4 and p of the general formula (A-1), respectively.
  • R 5 to R 6 and p are synonymous with R 5 to R 6 and p of the general formula (A-2), respectively.
  • the cycloolefin resin used in the present invention may be a commercially available product.
  • Examples of commercially available cycloolefin resins include Arton G (eg, G7810, etc.), Arton F, Arton R (eg, R4500, R4900, R5000, etc.) and Arton RX (eg, R4500, R4900, R5000, etc.) manufactured by JSR Corporation.
  • Arton G eg, G7810, etc.
  • Arton F Arton F
  • Arton R eg, R4500, R4900, R5000, etc.
  • Arton RX eg, R4500, R4900, R5000, etc. manufactured by JSR Corporation.
  • RX4500 etc. is included.
  • the intrinsic viscosity [ ⁇ ] inh of the cycloolefin resin is preferably in the range of 0.2 to 5 cm 3 / g, and more preferably in the range of 0.3 to 3 cm 3 / g in the measurement at 30 ° C. It is preferably in the range of 0.4 to 1.5 cm 3 / g, more preferably.
  • the number average molecular weight (Mn) of the cycloolefin resin is preferably in the range of 8000 to 100,000, more preferably in the range of 10,000 to 80,000, and further preferably in the range of 12,000 to 50,000.
  • the weight average molecular weight (Mw) of the cycloolefin resin is preferably in the range of 20,000 to 300,000, more preferably in the range of 30,000 to 250,000, and even more preferably in the range of 40,000 to 200,000.
  • the number average molecular weight and the weight average molecular weight of the cycloolefin resin can be measured in terms of polystyrene by the above-mentioned gel permeation chromatography (GPC).
  • the number average molecular weight and the weight average molecular weight are in the above ranges, the heat resistance, water resistance, chemical resistance, mechanical properties, and molding processability as a base film of the cycloolefin resin are improved. It will be good.
  • the glass transition temperature (Tg) of the cycloolefin resin is usually 110 ° C. or higher, preferably in the range of 110 to 350 ° C., more preferably in the range of 120 to 250 ° C., and 120 to 220 ° C. It is more preferable that the range is.
  • Tg is 110 ° C. or higher, it is easy to suppress deformation under high temperature conditions.
  • the Tg is 350 ° C. or lower, the molding process becomes easy, and the deterioration of the resin due to the heat during the molding process is also easily suppressed.
  • the content of the cycloolefin resin is preferably 70% by mass or more, more preferably 80% by mass or more with respect to the base film.
  • Examples of the fine particles used in the present invention include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated calcium silicate. Calcium, aluminum silicate, magnesium silicate and calcium phosphate can be mentioned. Further, fine particles of an organic compound can also be preferably used. Examples of organic compounds include polytetrafluoroethylene, cellulose acetate, polystyrene, polymethylmethacrylate, polyppill methacrylate, polymethylacrylate, polyethylene carbonate, acrylic styrene resin, silicone resin, polycarbonate resin, benzoguanamine resin, and melamine resin. , Polyethylene powder, polyester resin, polyamide resin, polyimide resin, polyfluoroethylene resin, crushed class of organic polymer compound such as starch, or polymer compound synthesized by suspension polymerization method can be used. can.
  • Fine particles containing silicon are preferable in that the turbidity is low, and silicon dioxide is particularly preferable.
  • Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 above Nippon Aerosil Co., Ltd.) ) Is commercially available under the trade name of) and can be used.
  • the polyimide-based resin can be a polymerization reaction product of tetracarboxylic dianhydride and diamine.
  • the tetracarboxylic acid dianhydride may be any of aromatic tetracarboxylic acid dianhydride, aliphatic tetracarboxylic acid dianhydride, and alicyclic tetracarboxylic acid dianhydride, but aromatic tetracarboxylic acid dianhydride is preferable. It is an acid dianhydride.
  • the diamine may be any of an aromatic diamine, an aliphatic diamine, and an alicyclic diamine, but is preferably an aromatic diamine.
  • the weight average molecular weight Mw of the polyimide resin is not particularly limited, but is preferably 100,000 to 300,000, preferably 130,000 to 250,000, from the viewpoint of increasing the toughness of the base film and making it difficult to break due to the transport tension. It is more preferably in the range.
  • the method for measuring the weight average molecular weight Mw of the polyimide resin is the same as described above.
  • the content of the polyimide resin is preferably 60% by mass or more, more preferably 70% by mass or more with respect to the base film.
  • the base film according to the present invention can be laminated on the surface of a polarizing element and function as an optical film such as a retardation film.
  • the in-plane retardation Ro measured in an environment with a measurement wavelength of 590 nm and 23 ° C. and 55% RH is in the range of 0 to 10 nm. It is preferably in the range of 0 to 5 nm, and more preferably in the range of 0 to 5 nm.
  • the phase difference Rt in the thickness direction of the base film is preferably in the range of -40 to 40 nm, and more preferably in the range of -25 to 25 nm.
  • Ro and Rt are defined by the following formulas, respectively.
  • n x represents the refractive index in the in-plane slow phase axial direction (the direction in which the refractive index is maximized) of the base film.
  • n y represents the refractive index in the direction orthogonal to the in-plane slow phase axis of the base film.
  • n z represents the refractive index in the thickness direction of the base film.
  • d represents the film thickness (nm) of the base film.
  • the in-plane slow-phase axis of the base film can be confirmed by an automatic birefringence meter Axoscan (AxoScan MuellerMatrixPolarimeter: manufactured by Axometrics).
  • Ro and Rt can be measured by the following methods.
  • the substrate film is humidity-controlled for 24 hours in an environment of 23 ° C. and 55% RH.
  • the average refractive index of this film is measured with an Abbe refractometer, and the film thickness d is measured with a commercially available micrometer.
  • the phase difference Ro and Rt of the base film can be adjusted, for example, by the type of resin, stretching conditions, and drying conditions. For example, Rt can be lowered by raising the drying temperature.
  • the form of the base film according to the present invention is not particularly limited, but may be, for example, a strip. That is, it is preferable that the base film according to the present invention is wound into a roll in a direction orthogonal to the width direction thereof to form a roll.
  • the method for producing a base film according to the present invention includes 1) a step of obtaining a base film solution, 2) a step of applying the obtained base film solution to the surface of a support, and 3) a step of applying the obtained base film solution. It has a step of removing a solvent from a solution for a base film to form a base film.
  • Step of obtaining a solution for a base film A solution for a base film (also referred to as "dope") containing the above-mentioned resin and a solvent is prepared.
  • the solvent used for the base film solution is not particularly limited as long as it can satisfactorily disperse or dissolve the resin.
  • the organic solvent used in the present invention alcohols (methanol, ethanol, diol, triol, tetrafluoropropanol, etc.), glycols, cellosolves, ketones (acetone, methylethylketone, etc.), carboxylic acids (girate, acetate, etc.) Etc.), carbonates (ethylene carbonate, propylene carbonate, etc.), esters (ethyl acetate, propyl acetate, etc.), ethers (isopropyl ether, THF, etc.), amides (dimethylsulfoxide, etc.), hydrocarbons (heptane, etc.) , Nitriles (acetate, etc.), aromatics (cyclohexylbenzene, toluene, xylene, chlorobenzene, etc.), alkyl halides (diohe
  • the solvent of the base film has a boiling point of 100 ° C. or lower under atmospheric pressure, is a chlorine-based solvent as a type, and more specifically, dichloromethane (also referred to as "methylene chloride"). It is preferable from the viewpoint of ease of handling when preparing and forming a dope for a base film. This is preferable from the viewpoint of high solubility and high drying rate when preparing and forming a dope for a base film, whereby the film quality of the coating film can be adjusted. It is also possible to add a hydrophilic solvent. Examples of the hydrophilic solvent include ketones and alcohols, but alcohols are preferable. Isopropanol, ethanol, methanol and the like are more preferable, and methanol is most preferable. The addition amount is preferably in the range of 1 to 20% by mass, more preferably in the range of 3 to 10% by mass.
  • the resin concentration of the base film solution is preferably in the range of, for example, 1.0 to 20% by mass from the viewpoint of facilitating the adjustment of the viscosity to the range described later. Further, from the viewpoint of reducing the amount of shrinkage of the coating film during drying, the resin concentration of the base film solution is preferably moderately high, more preferably more than 5% by mass and 20% by mass or less, and more preferably 5% by mass. It is more preferably more than 15% by mass. Further, by adjusting the solution concentration, the time until the film is formed is shortened, and the drying time thereof can also be a means for controlling the surface state of the base film. A mixed solvent may be appropriately used for increasing the concentration.
  • the viscosity of the base film solution is not particularly limited as long as it can form a base film having a desired film thickness, but is preferably in the range of, for example, 5 to 5000 mPa ⁇ s.
  • the viscosity of the base film solution is 5 mPa ⁇ s or more, it is easy to form a base film with an appropriate film thickness, and when it is 5000 mPa ⁇ s or less, the film thickness unevenness occurs due to the increase in the viscosity of the solution. Can be suppressed.
  • the viscosity of the base film solution is more preferably in the range of 100 to 1000 mPa ⁇ s.
  • the viscosity of the base film solution can be measured at 25 ° C. with an E-type viscometer.
  • the obtained base film solution is applied to the surface of the support.
  • the obtained solution for a base film is applied to the surface of the support.
  • the laminate of the support and the base film is also referred to as a "laminated film".
  • the support supports at the time of forming the base film, and usually includes a resin film.
  • the film thickness of the support is preferably 50 ⁇ m or less.
  • the film thickness of the support is preferably in the range of 15 to 45 ⁇ m, more preferably in the range of 20 to 40 ⁇ m, because it is a thin film but requires some strength (waist and rigidity) as the support.
  • the resin used examples include cellulose ester-based resin, cycloolefin-based resin, polypropylene-based resin, acrylic-based resin, polyester-based resin, polyarylate-based resin, and styrene-based resin or a composite resin thereof. It is preferable to use a polyester resin as a resin having excellent storage stability in a humidity environment.
  • polyester resins examples include polyester resins (eg, polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.). Etc. are included. Among them, a polyester resin film containing polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable from the viewpoint of ease of handling.
  • PET polyethylene terephthalate
  • PBT polytrimethylene terephthalate
  • PEN polybutylene terephthalate
  • PBN polybutylene naphthalate
  • Etc. are included.
  • a polyester resin film containing polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable from the viewpoint of ease of handling.
  • the resin film may be heat-treated (heat-relaxed) or stretch-treated.
  • the heat treatment is for reducing the residual stress of the resin film (for example, the residual stress due to stretching) and is not particularly limited.
  • the glass transition temperature of the resin constituting the resin film is Tg, (Tg + 60) to (Tg + 60) to ( It can be carried out in the range of Tg + 180) ° C.
  • the stretching treatment is for increasing the residual stress of the resin film, and the stretching treatment is preferably performed in the biaxial direction of the resin film, for example.
  • the stretching treatment can be performed under any conditions, for example, with a stretching ratio of about 120 to 900%. Whether or not the resin film is stretched can be confirmed by, for example, whether or not there is an in-plane slow layer axis (an axis extending in the direction of maximizing the refractive index).
  • the stretching treatment may be performed before laminating the base film or after laminating, but it is preferable that the stretching treatment is performed before laminating.
  • polyester-based resin film (simply referred to as polyester film), and for example, polyethylene terephthalate film TN100 (manufactured by Toyobo Co., Ltd.), MELINEX ST504 (manufactured by Teijin DuPont Film Co., Ltd.) and the like are preferably used. Can be done.
  • the support may further have a release layer provided on the surface of the resin film.
  • the release layer can facilitate the support from the substrate film when the cover member is made.
  • the release layer may contain a known release agent and is not particularly limited.
  • Examples of the release agent contained in the release layer include a silicone-based release agent and a non-silicone-based release agent.
  • silicone-based release agents include known silicone-based resins.
  • the non-silicone-based release agent include a long-chain alkyl pendant type polymer obtained by reacting a polyvinyl alcohol or an ethylene-vinyl alcohol copolymer with a long-chain alkyl isocyanate, and an olefin resin (for example, a copolymerized polyethylene, a cyclic polyolefin, etc.).
  • fluororesins eg, polytetrafluoroethylene (PTFE), polyfluorovinylidene (PVDF), polyfluorovinyl). (PVF), PFA (copolymer of ethylene tetrafluoride and perfluoroalkoxyethylene), FEP (copolymer of tetrafluor
  • the thickness of the release layer may be as long as it can exhibit the desired peelability, and is not particularly limited, but is preferably in the range of, for example, 0.1 to 1.0 ⁇ m.
  • the support may contain a plasticizer as an additive.
  • the plasticizer is not particularly limited, but is preferably a polyhydric alcohol ester-based plasticizer, a phthalic acid ester-based plasticizer, a citric acid-based plasticizer, a fatty acid ester-based plasticizer, a phosphoric acid ester-based plasticizer, and a polyvalent carboxylic acid. It is preferably selected from an ester-based plasticizer, a polyester-based plasticizer, and the like.
  • the support can also contain an ultraviolet absorber.
  • ultraviolet absorber examples include benzotriazole-based, 2-hydroxybenzophenone-based, and salicylic acid phenyl ester-based agents.
  • the support used in the present invention preferably contains fine particles in order to improve the transportability.
  • fine particles examples include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, and aluminum silicate. Calcium silicate and calcium phosphate can be mentioned. Further, fine particles of an organic compound can also be preferably used. Examples of organic compounds include polytetrafluoroethylene, cellulose acetate, polystyrene, polymethylmethacrylate, polyppill methacrylate, polymethylacrylate, polyethylene carbonate, acrylic styrene resin, silicone resin, polycarbonate resin, benzoguanamine resin, and melamine resin. , Polyethylene powder, polyester resin, polyamide resin, polyimide resin, polyfluoroethylene resin, crushed class of organic polymer compound such as starch, or polymer compound synthesized by suspension polymerization method can be used. can.
  • Fine particles containing silicon are preferable in that the turbidity is low, and silicon dioxide is particularly preferable.
  • Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 above Nippon Aerosil Co., Ltd.) ) Is commercially available under the trade name of) and can be used.
  • a usual inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, a hot press method and the like can be used, but coloring is suppressed.
  • the solution casting method and the melt casting method are preferable as the film forming method.
  • the temperature in the processing step is low, and therefore, it is possible to impart high functionality by using various additives.
  • the support is manufactured by dissolving and dispersing an additive such as a thermoplastic resin and the above-mentioned fine particles in a solvent to prepare a dope (dissolution step; dope preparation step).
  • a step of casting the dope onto an endless metal support (casting step), a step of drying the cast dope as a web (solvent evaporation step), and a step of peeling the dope from the metal support (peeling step). It is preferable to include a step of drying, stretching, and holding the width (stretching, width holding, and drying step), and a step of winding the finished film into a roll (winding step).
  • the method for applying the solution for the base film is not particularly limited, and may be, for example, a known method such as a back roll coating method, a gravure coating method, a spin coating method, a wire bar coating method, or a roll coating method. Above all, the back coat method is preferable from the viewpoint of being able to form a thin and uniform film thickness.
  • Step 3 Step of forming the base film
  • the solvent is removed from the base film solution applied to the support to form the base film.
  • the solution for the base film applied to the support is dried. Drying can be performed, for example, by blowing air or heating. Above all, from the viewpoint of facilitating curling of the base film, it is preferable to dry by blowing air, and further, it is preferable to make a difference in wind speed between the initial stage of drying and the latter half of drying in terms of controlling the film thickness deviation described below. .. Specifically, the higher the initial wind speed, the larger the film thickness deviation, and the lower the initial wind speed, the smaller the film thickness deviation.
  • the drying conditions for example, drying temperature, drying air volume, drying time, etc.
  • the sparseness of the base film can be controlled, and the film thickness of the base film can be adjusted so as to satisfy the following formula 1.
  • Equation 1 5 ⁇
  • the average film thickness value (A) is an average value of 10 film thickness values randomly selected from the film.
  • the value represented by the formula 1 exceeds 5%, the effect of improving the adhesion to the upper layer can be obtained by having the surface appropriately uneven, and when it is less than 20%, the unevenness of the surface can be obtained. Is not too large and does not affect the coatability and smoothness of the upper layer.
  • a commercially available film thickness maintenance measuring device can be used for measuring the film thickness.
  • the film thickness measuring system is F20-UV (manufactured by Filmometry).
  • the deviation of the film thickness of the base film within the range of 0.5 ⁇ 0.2 ⁇ m. It is preferable to adjust the film quality in a sparse direction from the viewpoint of improving the adhesion with the upper layer, specifically, it is preferable to increase the drying rate, and it is 0.0015 to 0.05 kg / hr ⁇ m 2 . Is preferable, and more preferably in the range of 0.002 to 0.05 kg / hr ⁇ m 2 .
  • the drying rate is expressed as the mass of the solvent that evaporates per unit time and unit area.
  • the drying rate can usually be adjusted by the drying temperature.
  • the drying temperature may be, for example, in the range of 50 to 200 ° C. ((Tb-50) to (Tb + 50) ° C. with respect to the boiling point Tb of the solvent used), although it depends on the solvent type used. Temperature control may be performed in multiple stages. After drying to some extent, the drying speed and film quality can be controlled by drying at a higher temperature.
  • the base film according to the present embodiment may be strip-shaped as described above. Therefore, it is preferable that the method for producing a laminated film according to the present embodiment further includes 4) a step of winding a strip-shaped laminated film into a roll to form a roll.
  • Step of winding the base film to obtain a roll body The obtained strip-shaped base film is wound into a roll shape in a direction orthogonal to the width direction thereof to form a roll body.
  • the length of the strip-shaped base film is not particularly limited, but may be, for example, about 100 to 10,000 m.
  • the width of the strip-shaped laminated film is preferably 1 m or more, more preferably 1.1 to 4 m. From the viewpoint of improving the uniformity of the film, it is more preferably in the range of 1.3 to 2.5 m.
  • the method for producing a base film used in the present invention can be performed by, for example, the production apparatus shown in FIG.
  • FIG. 3 is a schematic diagram of a manufacturing apparatus B200 for carrying out the method for manufacturing a base film according to the present embodiment.
  • the manufacturing apparatus B200 includes a supply unit B210, a coating unit B220, a drying unit B230, a cooling unit B240, and a winding unit B250.
  • Ba to Bd indicate transport rolls for transporting the support B110.
  • the supply unit B210 has a feeding device (not shown) for feeding out the roll body B201 of the strip-shaped support B110 wound around the winding core.
  • the coating unit B220 is a coating device, and is a coating head B222 for coating a base film solution on a backup roll B221 holding the support B110, and a support B110 held by the backup roll B221, and a coating head B222. It has a decompression chamber B223 provided on the upstream side of the.
  • the flow rate of the base film solution discharged from the coating head B222 can be adjusted by a pump (not shown).
  • the flow rate of the base film solution discharged from the coating head B222 is set to an amount capable of stably forming a coating layer having a predetermined film thickness when continuously coated under the conditions of the coating head B222 adjusted in advance.
  • the decompression chamber B223 is a mechanism for stabilizing the bead (pool of coating liquid) formed between the base film solution from the coating head B222 and the support B110 at the time of coating, and the degree of decompression can be adjusted. It has become.
  • the decompression chamber B223 is connected to a decompression blower (not shown) so that the inside is decompressed.
  • the pressure reducing chamber B223 is in a state where there is no air leakage, and the gap with the backup roll is narrowly adjusted so that a stable bead of the coating liquid can be formed.
  • the drying unit B230 is a drying device that dries the coating film applied to the surface of the support B110, and has a drying chamber B231, a drying gas introduction port B232, and a discharge port B233.
  • the temperature and air volume of the dry air are appropriately determined depending on the type of the coating film and the type of the support B110.
  • the amount of residual solvent in the coating film after drying can be adjusted.
  • the amount of residual solvent in the coating film after drying can be measured by comparing the unit mass of the coating film after drying with the mass after the coating film is sufficiently dried.
  • the amount of residual solvent is controlled by the concentration of the solvent used / coating liquid, the wind speed applied to dry the base film, the drying temperature / time, the conditions of the drying chamber (outside air or inside air circulation), the heating temperature of the back roll at the time of coating, etc. sell.
  • the film becomes sparse and the surface condition can be controlled.
  • the residual solvent amount of the base film satisfies the following formula 2 when the residual solvent amount of the base film is S 1 from the viewpoint of the curl balance of the base film.
  • the residual solvent amount of the base film is more preferably less than 800 ppm, and more preferably less than 500 to 700 ppm in consideration of the curl balance of the base film. Further, by selecting a solvent / coating process in which the solvent remains on the support, the adhesion between the support and the base film is improved. The amount of residual solvent in the support is preferably in the range of 10 to 100 ppm.
  • the amount of residual solvent in the support and the base film can be measured by headspace gas chromatography.
  • a sample is enclosed in a container, heated, and the gas in the container is promptly injected into a gas chromatograph with the container filled with volatile components, and mass analysis is performed to identify the compound.
  • the volatile components are quantified while doing this.
  • the cooling unit B240 cools the temperature of the support B110 having the coating film (base film) obtained by drying in the drying unit B230, and adjusts the temperature to an appropriate temperature.
  • the cooling unit B240 has a cooling chamber B241, a cooling air inlet B242, and a cooling air outlet B243.
  • the temperature and air volume of the cooling air can be appropriately determined depending on the type of the coating film and the type of the support B110. Further, even if the cooling unit B240 is not provided, the cooling unit B240 may not be provided if the cooling temperature is appropriate.
  • the winding unit B250 is a winding device (not shown) for winding the support B110 on which the base film is formed to obtain the roll body B251.
  • Transparent substrate means that the total light transmittance measured after humidity control in an environment of 23 ° C. and 55% RH is 80% or more, preferably 85% or more, more preferably 90%. The above is particularly preferably 95% or more.
  • the total light transmittance can be measured according to JIS 7573 (Plastic-How to determine the total light transmittance and the total light reflectance).
  • the transparent substrate according to the present invention is a transparent substrate having a thickness of 5 ⁇ m or more and less than 50 ⁇ m. If the thickness is less than 5 ⁇ m, the strength cannot be maintained, so that the damage occurrence rate during processing is high, the yield is sharply deteriorated, and the durability is inferior such as damage due to repeated opening and closing of the display. Further, if the thickness is 50 ⁇ m or more, the entire thickness of the cover member becomes too thick and is inferior in flexibility (occurrence of cracks, etc.), weight, etc., and therefore, it is necessary to be within the above range. .. A more preferable thickness is 10 ⁇ m or more and less than 30 ⁇ m.
  • the elastic modulus of the transparent substrate according to the present invention is in the range of 55 to 80 GPa, and the elastic modulus of the transparent substrate and the elastic modulus of the substrate film (elastic modulus of the transparent substrate / The elastic modulus of the base film) is preferably 30 or more. This is because a transparent substrate having a low elastic modulus due to thinning is used, and in order to provide a cover member with improved indentation strength and no crease, a substrate film having a lower elastic modulus is used, that is, transparent. By setting the elastic modulus ratio (elastic modulus of the transparent substrate / elastic modulus of the substrate film) to 30 or more with respect to the substrate, the protective function of the transparent substrate can be further improved.
  • the measurement conditions for the elastic modulus (also referred to as tensile elastic modulus) of the base film and the transparent base material are set as follows, and the elastic modulus is obtained by linear regression between strains of 0.05 to 0.25%.
  • the tensile elastic modulus is measured by the following method in accordance with JIS K7127 (1999). 1) A base film or a transparent base material is cut into a size of 100 mm (MD direction) ⁇ 10 mm (TD direction) and used as a test piece. 2) Using Orientech's Tencilon RTC-1225A, this test piece has a chuck-to-chuck distance of 50 mm, a tensile speed of 50 mm / min in the longitudinal direction (MD direction) of the test piece, and a tensile elastic modulus in the MD direction. Measure. The measurement is performed at 23 ° C. and 55% RH.
  • the transparent base material according to the present invention is preferably a thin glass base material because it is excellent in durability, flatness and the like, and for example, soda lime glass, silicate glass and the like.
  • the silicate glass is preferable, and more specifically, silica glass or borosilicate glass is more preferable.
  • the glass constituting the glass substrate is a non-alkali glass that does not substantially contain an alkaline component, specifically, a glass having an alkaline component content of 1000 ppm or less.
  • the content of the alkaline component in the glass substrate is preferably 500 ppm or less, more preferably 300 ppm or less.
  • substitution of cations occurs on the film surface, and the phenomenon of soda blowing is likely to occur. This is because the density of the film surface layer tends to decrease and the glass substrate is easily damaged.
  • the glass substrate can be molded by a generally known method, for example, a float method, a downdraw method, an overflow downdraw method, or the like.
  • the overflow downdraw method is preferable because the surface of the glass substrate does not come into contact with the molding member during molding and the surface of the obtained glass substrate is not easily scratched.
  • the glass substrate used in the present invention can also be obtained by grinding thick glass such as borosilicate glass to a desired thickness, but by grinding and polishing a thick glass sheet, it is less than 200 ⁇ m. It is difficult to obtain a glass substrate.
  • the thin glass substrate is processed while being temporarily adhered to a thicker support substrate (hereinafter, also referred to as "carrier substrate"), and after processing.
  • carrier substrate a thicker support substrate
  • a method of obtaining a thin glass substrate by peeling off the support substrate has been proposed.
  • soda lime glass having a thickness of less than 100 ⁇ m can be produced by the following steps.
  • Step 1 A contact film formed on a glass carrier substrate having a bonding surface so that the first surface of the glass substrate 22 surface is in contact with the second surface opposite to the first surface. (Also called "contact film”) The process of adhering.
  • the material for forming the glass substrate is made into a desired thickness on the carrier substrate 21 having sufficient strength and a thickness that is easy to process.
  • the contact film 23 is attached to the second surface on the opposite side of the glass base material 22.
  • Step 2 Next, a step of peeling the glass base material 22 from the carrier substrate 21 with a contact film 23 having high adhesive strength (FIG. 4 (step 2)).
  • Step 3 A step of removing the contact film 23 from the second surface of the glass substrate 22 peeled from the carrier substrate by a weakening treatment (electromagnetic radiation irradiation 24) that weakens the adhesive force of the contact film (FIG. 4 (step 3). )) Is included.
  • a weakening treatment electromagagnetic radiation irradiation 24
  • the glass substrate 22 can have a protective function, whereby, for example, the exposed surface of the glass substrate 22 can be, for example. , It can be protected from the mechanical damage that can occur, and it can be handled safely and easily.
  • the contact membrane can contain a hard or soft material, depending on the specific requirements, and polyethylene terephthalate (PET), polyethylene (PE) or polyolefin (PO) can be used as the preferred material.
  • PET polyethylene terephthalate
  • PE polyethylene
  • PO polyolefin
  • the contact film is usually adhered to a glass substrate by an adhesive layer made of an adhesive provided on one surface of the substrate.
  • an adhesive layer made of an adhesive provided on one surface of the substrate.
  • the substrate of the contact membrane itself has adhesiveness.
  • the adhesive force between the contact film and the second surface of the glass substrate is sufficient for the glass substrate when peeled by the peeling device in order to eliminate the bonding force between the carrier substrate and the glass substrate during crimping. Selected to be able to transmit force.
  • the contact membrane can be provided as a foil or tape, which can be rolled up, for example from a roll, or provided as a sheet.
  • the thickness of the contact membrane is preferably 50 ⁇ m or more, more preferably 80 ⁇ m or more, still more preferably 125 ⁇ m or more, and particularly preferably 150 ⁇ m or more.
  • the glass substrate is preferably made from an alkali-containing glass composition.
  • Preferred glass materials are, for example, lithium aluminosilicate glass, soda lime glass, borosilicate glass, alkali metal aluminosilicate glass, and aluminosilicate glass having a low alkali content. Alkali-free compositions are also preferred.
  • Such glass is preferably produced by, for example, the above-mentioned downdraw method, overflow downdraw method, float method, or the like.
  • the carrier substrate has a thickness of preferably at least 100 ⁇ m or more, preferably 300 ⁇ m or more, more preferably 500 ⁇ m or more, and is at least 3 inches (1 inch is 2.54 cm) or more, preferably 6 inches or more, more preferably 8 inches or more. It has a maximum dimension of inches or more, particularly preferably 12 inches or more.
  • the carrier substrate can have a glass substrate first generation size or larger, for example, second generation to eighth generation, or even larger, for example, a substrate size of 1 ⁇ 1 m to 3 ⁇ 3 m).
  • the carrier substrate can have various shapes such as rectangular, secondary or elliptical, or circular.
  • the glass base material is peeled off from the carrier substrate together with the contact film due to the adhesive force of the contact film, and then the contact film is peeled off to obtain a single glass base material 22 which is the transparent base material 3 shown in FIG.
  • the adhesive force between the contact film and the ultrathin substrate by subjecting the contact film to a weakening treatment before removing the contact film from the glass substrate.
  • the weakening treatment is preferably selected so that the adhesive strength can be reduced to 0.5 N / 25 mm or less.
  • the fragility treatment can be selected to be in a specific wavelength range such as selected electromagnetic radiation, eg infrared or ultraviolet or visible light. The selected electromagnetic radiation depends on the adhesive material used. It may be a narrow band, or it may cover a wider band, or it may be laser radiation.
  • the adhesive strength is preferably selected outside the visible spectrum so that the adhesive strength does not deteriorate under exposure to visible light.
  • adhesive materials on the market that can be at least partially deactivated by the electromagnetic irradiation, and the preferred choice depends on the particular requirements.
  • the adhesiveness of the contact film can be lowered by raising or lowering the temperature, it may be advantageous to perform heat treatment as a weakening treatment.
  • the electromagnetic radiation irradiation is preferably performed from the outside of the contact film, that is, from the side not adhered to the glass substrate.
  • Preferred adhesive materials are widely available and are commercially available, for example, under the trade name "NDS4150-20", the corresponding weakening treatments include UV irradiation at a wavelength of 365 nm.
  • a specific example of manufacturing a glass base material will be described in the section of Examples. Further, as the glass base material described above, thin glass manufactured by SCHOTT, Nippon Electric Glass, or the like can be used.
  • thermoplastic resin film can be used as the transparent base material according to the present invention, and the foldable resin is not particularly limited, and is a cellulose ester resin or a cycloolefin resin. Examples thereof include resins, fumaric acid diester resins, polypropylene resins, (meth) acrylic resins, polyester resins, polyarylate resins, polyimide resins, and styrene resins or composite resins thereof. Above all, it is preferable to use the thermoplastic resin film using the polyimide resin as the transparent base material 3 shown in FIG. 1 from the viewpoint of optical characteristics and physical characteristics.
  • the polyimide-based resin is obtained, for example, by synthesizing a polyamic acid (polyimide precursor) from an acid anhydride and a diamine compound, and imidizing the polyamic acid by heat or a catalyst.
  • the acid anhydride used for the synthesis of polyimide is not particularly limited, and is, for example, biphenyltetracarboxylic acid dianhydride (BPDA), terphenyltetracarboxylic acid dianhydride, benzophenone tetracarboxylic acid dianhydride, and pyroanhydride.
  • Aromatic tetracarboxylic acid dianhydrides such as merit acid (PMDA), oxydiphthalic acid dianhydrides, diphenylsulfone tetracarboxylic acid dianhydrides, hexafluoroisopropyridene diphthalic acid dianhydrides, cyclobutanetetracarboxylic acid dianhydrides, etc. Can be mentioned.
  • the diamine compound used for the synthesis of polyimide is not particularly limited, but for example, p-phenylenediamine (PDA), m-phenylenediamine, 2,4-diaminotoluene, 4,4'-diaminodiphenylmethane, 4 , 4'-diaminodiphenyl ether (ODA), 3,4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'- Diaminobiphenyl, 3,7-diamino-dimethyldibenzothiophene-5,5'-dioxide, 4,4'-diaminobenzophenone, 4,4'-bis (4-aminophenyl) sulfide, 4,4'-diaminobenzanilide , 1,4-Bis (4-aminophenoxy) benzene
  • a polyimide varnish containing a polyimide precursor as a main component for example, U-varnish S (manufactured by Ube Industries, Ltd.), Ecrios (manufactured by Mitsui Chemicals, Inc.) and the like can be used.
  • an ultraviolet transmissive polyimide for example, as a polyimide having a commercially available polyimide precursor (polyamic acid) as a main component, SOMAR-S, X (manufactured by IST), Spixeria HR003, GR003 (The above is manufactured by Somar), FLUPI (manufactured by NTT), Type HM (manufactured by Toyobo), Type-C (manufactured by Mitsui Chemicals), PI-100 (manufactured by Maruzen Chemicals), HDN-20D (manufactured by Shin Nihon Rika). CBDA-6FDAC (manufactured by Central Glass Co., Ltd.), Q-VR-X-1655 (manufactured by PI Giken Co., Ltd.) and the like can also be used.
  • a commercially available polyimide precursor polyamic acid
  • SOMAR-S commercially available polyimide precursor
  • X manufactured by IST
  • the substrate film of the present invention (base film 1) has a configuration shown in FIG. 1A on at least one surface of the transparent substrate. ) Is placed.
  • the base film 1 side of the cover member of the present invention is bonded onto the polarizing plate via the pressure-sensitive adhesive layer. Is.
  • the back surface (B side) with respect to one side (A side) of the base film is the B side with respect to the film density ( ⁇ A ) of the A side.
  • the A side of the base film adjusted so that the value of the ratio ( ⁇ A / ⁇ B ) of the film density ( ⁇ B ) is in the range of 0.80 to 0.95 is the transparent base material side. Is preferable.
  • the base film 2 described later is arranged on the surface of the transparent base material opposite to the base film 1 (FIG. 1B).
  • the base film 1 or the base film 2 is attached to the transparent base material 3 by the pressure-sensitive adhesive layer or the adhesive layer.
  • FIG. 5 is a schematic view showing the bonding between the base film with a support and the transparent base material.
  • FIG. 5A shows a laminate with the base film 1 formed on the above-mentioned support 5, and the surface of the base film 1 in contact with the support 5 corresponds to the B surface.
  • the A-side side of the base film 1 is attached to the transparent base material 3 via the pressure-sensitive adhesive layer 4, and then the support 5 is peeled off.
  • the adhesive layer is preferably a dry and partially crosslinked adhesive composition containing a base polymer, a prepolymer and / or a crosslinkable monomer, a crosslinker and a solvent. That is, at least a part of the pressure-sensitive adhesive composition may be crosslinked.
  • the pressure-sensitive adhesive composition examples include an acrylic pressure-sensitive adhesive composition using a (meth) acrylic polymer as a base polymer, a silicone-based pressure-sensitive adhesive composition using a silicone-based polymer as a base polymer, and a rubber-based pressure-sensitive adhesive composition using a rubber as a base polymer.
  • a pressure-sensitive adhesive composition is included.
  • an acrylic pressure-sensitive adhesive composition is preferable from the viewpoint of transparency, weather resistance, heat resistance, and processability.
  • the (meth) acrylic polymer contained in the acrylic pressure-sensitive adhesive composition may be a copolymer of a (meth) acrylic acid alkyl ester, a cross-linking agent, and a cross-linkable functional group-containing monomer.
  • the (meth) acrylic acid alkyl ester is preferably an acrylic acid alkyl ester having 2 to 14 carbon atoms in the alkyl group.
  • crosslinkable functional group-containing monomers examples include amide group-containing monomers, carboxyl group-containing monomers (acrylic acid, etc.), and hydroxyl group-containing monomers (hydroxyethyl acrylate, etc.).
  • cross-linking agent contained in the acrylic pressure-sensitive adhesive composition examples include an epoxy-based cross-linking agent, an isocyanate-based cross-linking agent, and a peroxide-based cross-linking agent.
  • the content of the cross-linking agent in the pressure-sensitive adhesive composition may be, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of the base polymer (solid content).
  • the pressure-sensitive adhesive composition is, if necessary, a tackifier, a plasticizer, a glass fiber, a glass bead, a metal powder, another filler, a pigment, a colorant, a filler, an antioxidant, an ultraviolet absorber, and a silane coupling.
  • Various additives such as agents may be further contained.
  • the thickness of the pressure-sensitive adhesive layer is usually about 3 to 100 ⁇ m, preferably in the range of 5 to 50 ⁇ m.
  • the surface of the adhesive layer is protected by a release film that has undergone a mold release treatment.
  • the release film include plastic films such as acrylic films, polycarbonate films, polyester films and fluororesin films.
  • Adhesive Layer An adhesive layer may be used instead of the adhesive layer, and the adhesive layer 4 shown in FIG. 1 may be an adhesive layer.
  • the adhesive layer is arranged between the base film and the transparent base material, respectively. Further, it is also preferable that the display device is arranged between the polarizing plate and the polarizing plate described later.
  • the type of adhesive contained in the adhesive layer may be the same or different.
  • the adhesive layer may be a layer obtained from a water-soluble polymer or a cured product layer of an active energy ray-curable adhesive.
  • a water-soluble polymer for example, via an adhesive made of a vinyl alcohol-based polymer, or at least an adhesive made of a water-soluble cross-linking agent of a vinyl alcohol-based polymer such as boric acid, borosand, glutaaldehyde, melamine, and oxalic acid. It can be carried out.
  • Such an adhesive layer is formed as a coating dry layer of an aqueous solution or the like, but other additives or a catalyst such as an acid can be added as needed when preparing the aqueous solution.
  • the active energy ray-curable adhesive may be a photoradical polymerizable composition or a photocationic polymerizable composition. Of these, a photocationically polymerizable composition is preferable.
  • the photocationic polymerizable composition contains an epoxy compound and a photocationic polymerization initiator.
  • the epoxy compound is a compound having one or more, preferably two or more epoxy groups in the molecule.
  • epoxy compounds include hydrided epoxy compounds obtained by reacting an alicyclic polyol with epichlorohydrin (glycidyl ether of a polyol having an alicyclic ring); an aliphatic polyhydric alcohol or an alkylene thereof.
  • Aliphatic epoxy compounds such as polyglycidyl ether as an oxide adduct; include alicyclic epoxy compounds having one or more epoxy groups bonded to the alicyclic ring in the molecule. Only one kind of epoxy compound may be used, or two or more kinds may be used in combination.
  • the photocationic polymerization initiator may be, for example, an aromatic diazonium salt; an onium salt such as an aromatic iodonium salt or an aromatic sulfonium salt; an iron-allene complex or the like.
  • the photocationic polymerization initiator may be a cationic polymerization accelerator such as oxetane or a polyol, a photosensitizer, an ion trapping agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, or a fluidized agent, if necessary.
  • Additives such as modifiers, plasticizers, defoamers, antistatic agents, leveling agents, solvents and the like may be further included.
  • the thickness of the adhesive layer is not particularly limited, but is preferably in the range of 0.01 to 10 ⁇ m, and more preferably in the range of 0.01 to 5 ⁇ m.
  • Base film 2 As the opposing film of the base film 1, the base film 1 may be used, but another resin film may be used. Examples thereof include cycloolefin resin, polypropylene resin, acrylic resin, and polyester. It contains a based resin, a polyarylate based resin, a cellulose ester based resin, a styrene based resin, a composite resin thereof and the like. Above all, it is preferable to use a resin film containing a polyester resin as a resin having excellent storage stability in a high humidity environment.
  • polyester resins examples include polyester resins (eg, polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and the like.
  • PET polyethylene terephthalate
  • PBT polytrimethylene terephthalate
  • PEN polybutylene naphthalate
  • PBN polybutylene naphthalate
  • Etc. included.
  • a polyester resin film containing polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is preferable from the viewpoint of ease of handling.
  • the resin film may be heat-treated (heat-relaxed) or stretch-treated.
  • the heat treatment is for reducing the residual stress of the resin film (for example, the residual stress due to stretching) and is not particularly limited.
  • the glass transition temperature of the resin constituting the resin film is Tg, (Tg + 60) to (Tg + 60) to ( It can be carried out in the range of Tg + 180) ° C.
  • the stretching treatment is for increasing the residual stress of the resin film, and the stretching treatment is preferably performed in the biaxial direction of the resin film, for example.
  • the stretching treatment can be performed under any conditions, for example, with a stretching ratio of about 120 to 900%. Whether or not the resin film is stretched can be confirmed by, for example, whether or not there is an in-plane slow layer axis (an axis extending in the direction of maximizing the refractive index).
  • the stretching treatment may be performed before laminating the base film or after laminating, but it is preferable that the stretching treatment is performed before laminating.
  • polyester-based resin film (simply referred to as polyester film), and for example, polyethylene terephthalate film TN100 (manufactured by Toyobo Co., Ltd.), MELINEX ST504 (manufactured by Teijin DuPont Film Co., Ltd.) and the like are preferably used. Can be done.
  • the film thickness of the base film 2 can be appropriately set, but it is preferably in the range of 10 to 100 ⁇ m, and more preferably in the range of 10 to 50 ⁇ m from the viewpoint of thinning the cover member.
  • the base film 2 may be provided with a functional layer such as a hard coat layer.
  • the polyester film located on the surface of the foldable display to protect the display preferably has a hardcourt layer on the surface.
  • the hard coat layer is preferably located on the surface side of the display on the polyester film and used in the display.
  • acrylic type, siloxane type, inorganic hybrid type, urethane acrylate type, polyester acrylate type, epoxy type and the like can be used without particular limitation. Further, two or more kinds of materials can be mixed and used, and particles such as an inorganic filler and an organic filler can be added.
  • the film thickness of the hard coat layer is preferably in the range of 1 to 50 ⁇ m. When it is 1 ⁇ m or more, it is sufficiently cured and good pencil hardness can be obtained. Further, by setting the thickness to 50 ⁇ m or less, it is possible to suppress curling due to curing shrinkage of the hard coat and improve the handleability of the film.
  • a wire bar, a gravure coat, a die coater, a knife coater, etc. can be used without particular limitation, and can be appropriately selected according to the viscosity and the film thickness.
  • energy rays such as ultraviolet rays and electron beams and a curing method by heat can be used, and in order to reduce damage to the film, a curing method using ultraviolet rays and electron beams is preferable.
  • the pencil hardness of the hard coat layer is preferably B or higher, more preferably H or higher, and particularly preferably 2H or higher. If the pencil has a hardness of B or higher, it will not be easily scratched and the visibility will not be deteriorated. Generally, it is preferable that the pencil hardness of the hard coat layer is high, but it may be 9H or less, 8H or less, and 6H or less can be used without any problem in practical use.
  • the hard coat layer used in the present invention can be used for the purpose of increasing the pencil hardness of the surface as described above to protect the display, and it is preferable that the transmittance is high.
  • the transmittance of the hard-coated film is preferably 87% or more, more preferably 88% or more. When the transmittance is 87% or more, sufficient visibility can be obtained. Generally, the higher the total light transmittance of the hard-coated film is, the more preferable it is, but it may be 99% or less, or 97% or less.
  • the haze of the hard coat film is generally preferably low, preferably 3% or less. The haze of the hard-coated film is more preferably 2% or less, and most preferably 1% or less. When the haze is 3% or less, the visibility of the image can be improved.
  • the hard coat layer may have other functions added to it.
  • the present invention also includes a hard coat layer having functionality such as an antiglare layer having a certain pencil hardness, an antireflection antireflection layer, an antireflection layer, a low reflection layer, and an antistatic layer as described above. Is preferably applied.
  • the display device of the present invention is characterized by comprising the cover member of the present invention or a base film for the cover member.
  • the display device of the present invention can be obtained, for example, by bonding the cover member of the present invention to the surface of the display device via a pressure-sensitive adhesive layer or an adhesive layer, preferably via a polarizing plate. ..
  • the display device is a device having a display mechanism, and includes a light emitting element or a light emitting device as a light emitting source.
  • Display devices include liquid crystal display devices, organic electroluminescence (EL) display devices, inorganic electroluminescence (EL) display devices, touch panel display devices, electron emission display devices (electric field emission display devices (FED, etc.), surface electric field emission display devices).
  • the liquid crystal display device includes any of a transmissive liquid crystal display device, a semi-transmissive liquid crystal display device, a reflective liquid crystal display device, a direct-view liquid crystal display device, a projection type liquid crystal display device, and the like. These display devices may be display devices that display two-dimensional images, or may be stereoscopic display devices that display three-dimensional images.
  • an organic EL display device and a touch panel display device are preferable, and an organic EL display device is particularly preferable.
  • the foldable display has a structure in which one continuous display can be folded in half when carried, so that the size is halved and the portability is improved.
  • the bending radius of the foldable display is preferably 5 mm or less, more preferably 3 mm or less. If the bending radius is 5 mm or less, the thickness can be reduced in the folded state. It can be said that the smaller the bending radius is, the better, but it may be 0.1 mm or more, or 0.5 mm or more. Even if it is 1 mm or more, its practicality is sufficiently good as compared with a conventional display having no folding structure.
  • the bending radius when folded means the radius R inside the folded portion when the cover member 10 is folded in FIG. 1C or FIG. 1D described above.
  • FIG. 6 shows an example of application of a cover member to an organic EL display, which is an example of the display device of the present invention.
  • a general configuration of an organic EL display includes an organic EL layer 101 composed of an electrode / electron transport layer / light emitting layer / hole transport layer / transparent electrode, and a retardation plate ( ⁇ / 4 plate) for improving image quality. It is a display unit composed of a polarizing plate 102.
  • the base film 1 side of the cover member 10 of the present invention is bonded onto the polarizing plate 102 via the pressure-sensitive adhesive layer 4.
  • the display device of the present invention is a display device in which the base film provided on the cover member does not have a fold, in addition to improving the handleability of the cover member, and particularly the cover member of the foldable display.
  • the display device of the present invention is a display device in which the base film provided on the cover member does not have a fold, in addition to improving the handleability of the cover member, and particularly the cover member of the foldable display.
  • the visibility after repeated folding is excellent, and the image is not distorted at the folded portion of the display.
  • a mobile terminal device equipped with the foldable display provides a beautiful image, is rich in functionality, and is excellent in convenience such as portability.
  • PET film polyethylene terephthalate film
  • TN100 manufactured by Toyobo Co., Ltd., with a release layer containing a non-silicone release agent, and a film thickness of 38 ⁇ m
  • Acrylic 1 MMA / PMI / MADA copolymer (60/20/20 mass ratio), Mw: 1.5 million, Tg: 137 ° C.
  • MMA methyl methacrylate
  • PMI phenylmaleimide
  • MADA adamantyl acrylate
  • Rubber particles R1 80 parts by mass Dispersant (polyoxyethylene lauryl ether sodium phosphate :: molecular weight 332) 0.
  • Deionized water 180 parts by mass Polyoxyethylene lauryl ether phosphoric acid 0.002 parts by mass Borate 0.473 parts by mass Sodium carbonate 0.473 parts by mass Sodium hydroxide 0.008 parts by mass
  • the internal temperature was set to 80 ° C., and 0.021 parts by mass of potassium persulfate was added as a 2% by mass aqueous solution.
  • a monomer consisting of 84.6% by mass of methyl methacrylate, 5.9% by mass of butyl acrylate, 7.9% by mass of styrene, 0.5% by mass of allyl methacrylate, and 1.1% by mass of n-octyl mercaptan.
  • a mixed solution prepared by adding 0.07 parts by mass of polyoxyethylene lauryl ether phosphate to 21 parts by mass of the mixture (c') was continuously added to the above solution over 63 minutes. Further, the innermost hard polymer (c) was obtained by continuing the polymerization reaction for 60 minutes.
  • a soft layer (a layer made of an acrylic rubber-like polymer (a)).
  • the glass transition temperature (Tg) of the soft layer was ⁇ 30 ° C.
  • the glass transition temperature of the soft layer was calculated by averaging the glass transition temperature of the homopolymer of each monomer constituting the acrylic rubber-like polymer (a) according to the composition ratio.
  • the obtained polymer (b) was put into a 3 mass% sodium sulfate warm aqueous solution and salted out and coagulated. Then, after repeating dehydration and washing, the particles were dried to obtain acrylic graft copolymer particles (rubber particles R1) having a three-layer structure.
  • the average particle diameter of the obtained rubber particles R1 was 200 nm.
  • the average particle size of the rubber particles was measured by the following method.
  • the dispersed particle size of the rubber particles in the obtained dispersion was measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
  • the base films 102 to 104 were prepared in the same manner except that the contents of the rubber particles R1 were changed to 65, 45, and 20% by mass, respectively.
  • PET film polyethylene terephthalate film
  • TN100 manufactured by Toyobo Co., Ltd., with a release layer containing a non-silicone release agent, and a film thickness of 38 ⁇ m
  • PET film polyethylene terephthalate film
  • TN100 manufactured by Toyobo Co., Ltd., with a release layer containing a non-silicone release agent, and a film thickness of 38 ⁇ m
  • H-PMDA cis, cis, cis-1,2,4,5-cyclohexanetetracarboxylic dianhydride
  • the base films 107 and 108 were prepared in the same manner except that the film thickness was changed to 10 ⁇ m and 14 ⁇ m, respectively.
  • the base film 109 was prepared in the same manner except that the solid content concentration of COP1 (G7810) in the dope was adjusted to 20% by mass.
  • the base film 110 was prepared in the same manner except that the following dope in which silica fine particles were added to the dope was used.
  • Silica fine particles (Aerosil R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 7 nm, apparent specific gravity 50 g / L) 4 parts by mass dichloromethane 48 parts by mass Ethanol 48 parts by mass or more are stirred and mixed with a dissolver for 50 minutes and then dispersed with manton golin. Was done. Further, the particles were dispersed by an attritor so that the particle size of the secondary particles became a predetermined size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
  • a dope having the following composition was prepared. First, dichloromethane and ethanol were added to the pressurized dissolution tank. Cycloolefin resin (DOP): G7810 was put into a pressurized dissolution tank containing a mixed solution of dichloromethane and ethanol with stirring. Further, 15 minutes after the start of solvent addition, the fine particle additive solution prepared above was added, and the mixture was heated to 80 ° C. and completely dissolved while stirring. At this time, the temperature was raised from room temperature to 5 ° C./min, dissolved in 30 minutes, and then lowered to 3 ° C./min. The obtained solution was used as Azumi Filter Paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. Filtration was performed using 244 to prepare a dope.
  • DOP Cycloolefin resin
  • composition of dope COP1 (G7810) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass Fine particle addition liquid 1 part by mass
  • the base film 111 is similarly wound except that the PET film as a support is peeled off, the B side is dried, and then the PET film is attached to the B side again and wound up. Was produced.
  • the base film 112 was prepared in the same manner except that the rubber particles R1 were added in an amount of 65% by mass during the doping.
  • the obtained aromatic polyamide solution was cast into a film on the support at room temperature using an applicator, and dried at 115 ° C. for 30 minutes and 265 ° C. for 5 minutes in a hot air oven.
  • a base film 113 made of polymer A (polyamide 1) having a thickness of 5 ⁇ m was obtained.
  • a safety oven SPH100 manufactured by ESPEC CO., LTD.
  • the oven was used one hour after the temperature display reached the set temperature with the open / close damper 50%.
  • PET film polyethylene terephthalate film
  • TN100 manufactured by Toyobo Co., Ltd., with a release layer containing a non-silicone release agent, and a film thickness of 38 ⁇ m
  • Preparation of base film 115 A solution for the base film 115 is applied onto the release layer of the support by a backcoat method using a die, and then the base film is dried in the following drying step to obtain a base material having a film thickness of 5 ⁇ m. A film was formed to obtain a base film 115.
  • the base film 116 was produced in the same manner after the film thickness was adjusted to 25 ⁇ m.
  • ⁇ Stress-strain curve> The base film was cut into a size of 100 mm (MD direction: longitudinal direction) ⁇ 10 mm (TD direction: width direction) to obtain a sample film. This sample film was humidity-controlled for 24 hours in an environment of 23 ° C. and 55% RH, and the sample film after humidity control was prepared using Orientec Tencilon RTC-1225A in accordance with JIS K7127: 1999. The distance between the chucks was set to 50 mm, and a stress-strain curve until breaking while pulling in the MD direction was obtained. The stress-strain curve is represented by stress (MPa) on the vertical axis and tensile elongation at break (%) on the horizontal axis. The stress-strain curve was measured at 23 ° C. and 55% RH under the condition of a tensile speed of 50 mm / min.
  • the substrate film is subjected to a tensile test to take a breaking point X after stretching, but when the straightness Y connecting the breaking point X and the origin (0 point) is subtracted,
  • the slope ⁇ of this straight line is defined as “the slope of the straight line connecting the origin and the breaking point in the stress-strain curve of the base film” in the present invention.
  • the density of the surface (A side and B side) of the base film was measured by using the X-ray reflectivity method (XRR method). X-rays are totally reflected when they are incident on the film surface at a very shallow angle, and when the angle of the incident X-rays is equal to or greater than the total reflection critical angle, the X-rays invade the inside of the film and the reflectance is lowered.
  • the reflectance profile measured by the XRR method can be analyzed using a dedicated reflectance analysis software.
  • 2 ⁇ is from 2 ⁇ a to 2 ⁇ a + 0.1 when the angle at which the reflectance starts to decrease is ⁇ a.
  • the surface density was defined as the density at which the fitting error between the measurement result and the calculation result was minimized in the range of °. At that time, the fitting was performed so that the surface roughness was in the range of 0 to 1 nm.
  • the base film was cut into a size of 30 mm ⁇ 30 mm, fixed on a sample table, and measured under the following measurement conditions.
  • Measurement condition -Device: Thin film X-ray diffractometer (ATX-G manufactured by Rigaku Co., Ltd.) ⁇ Sample size: 30 mm x 30 mm -Incident X-ray wavelength: 1.5405 ⁇ ⁇ Measurement range ( ⁇ ): 0 to 6 ° -Analysis software: Reflectance analysis software GXRR (manufactured by Rigaku Co., Ltd.)
  • the measurement conditions of the elastic modulus (also referred to as tensile elastic modulus) were set as follows, and the elastic modulus was obtained by linear regression between strains of 0.05 to 0.25%.
  • the tensile elastic modulus was measured by the following method in accordance with JIS K7127 (1999). 1) The base film was cut into a size of 100 mm (MD direction) ⁇ 10 mm (TD direction) and used as a test piece. 2) Using Orientech's Tencilon RTC-1225A, this test piece has a chuck-to-chuck distance of 50 mm, a tensile speed of 50 mm / min in the longitudinal direction (MD direction) of the test piece, and a tensile elastic modulus in the MD direction. It was measured. The measurement was performed at 23 ° C. and 55% RH. The elastic modulus of the transparent substrate, which will be described later, was also measured by the same method.
  • ⁇ Indentation strength> The A side and the B side of the base film were measured according to the procedure of the indentation test specified in ISO14577. In an environment of 23 ° C and 55% RH, an ultrafine hardness tester (manufactured by Fisher Instruments, trade name "Fisherscope 100C") is used as a testing machine, and the indenter has a square base and a facing angle of 136 °. Measurements were made using a pyramidal diamond indenter.
  • the Martens hardness was measured for the indentation strength of the base film of the present invention according to the above method, and the rank of the surface hardness (Martens hardness) was determined for the average value of the A surface and the B surface according to the following criteria.
  • Martens hardness is 200 N / mm 2 or more ⁇ : Martens hardness is 50 N / mm 2 or more and less than 200 N / mm 2 ⁇ : Martens hardness is 25 N / mm 2 or more and less than 50 N / mm 2 ⁇ : Martens hardness is 25 N / mm Less than 2
  • the evaluation rank of Martens hardness is ⁇ or higher, the pushing strength of the base film is improved, and when the base film is provided on the cover member, the transparent base material is prevented from cracking and the cover member is prevented from cracking. Handleability is improved. Desirably, it is ⁇ to ⁇ .
  • Step 1 A contact film formed on a glass carrier substrate having a bonding surface so that the first surface of the glass substrate surface is in contact with the second surface opposite to the first surface (step 1).
  • the process of attaching also referred to as "contact film”).
  • Step 2 Next, a step of peeling the glass substrate from the carrier substrate with a contact film having high adhesive strength.
  • Step 3) A step of removing the contact film from the second surface of the glass substrate peeled off from the carrier substrate by a weakening treatment (electromagnetic radiation irradiation) that weakens the adhesive force of the contact film.
  • the glass substrate 1 was formed to have a predetermined thickness so as to be in contact with a carrier substrate having a thickness of 500 ⁇ m, and then the following contact film was attached.
  • the glass substrate was peeled off from the carrier substrate together with the contact film in 30 seconds to remove the carrier substrate (step 2).
  • the contact film contained polyolefin (PO) as a substrate having a thickness of 150 ⁇ m and an adhesive layer of 10 ⁇ m, and was commercially available under the trade name “NDS4150-20”.
  • the exposed contact membrane was then weakened to reduce the adhesive strength.
  • the weakening treatment was performed by irradiating the contact membrane with ultraviolet rays of 365 nm for 10 seconds.
  • the irradiation power of ultraviolet rays was about 500 mW / cm 2 , and the total irradiation energy was 500 mJ / cm 2 .
  • the adhesive strength before the weakening treatment was about 11N / 25mm, and after the weakening treatment, the adhesive strength was reduced to 0.4N / 25mm.
  • the contact film could be easily peeled off from the glass substrate, and a single glass substrate having a thickness of 28 ⁇ m was obtained (step 3).
  • the thickness of the transparent substrate was adjusted to 8 ⁇ m, 28 ⁇ m, 45 ⁇ m and 54 ⁇ m, and the elastic modulus by the above-mentioned measurement method was as shown in Table II, respectively.
  • ⁇ Preparation of transparent substrate 2 Notated as polyimide in the table. >
  • the obtained polyimide 2 solution is applied onto a glass plate, held at 100 ° C. for 60 minutes on a hot plate, and the solvent is volatilized to provide self-supporting colorless and transparent primary dry film.
  • Got This film was fixed to a stainless steel frame and heated in a hot air dryer at 250 ° C. for 2 hours to evaporate the solvent to obtain a transparent substrate 2 having a thickness of 28 ⁇ m.
  • the elastic modulus according to the above-mentioned measurement method was 10 GPa.
  • ⁇ Preparation of base film 2> (Preparation of polyethylene terephthalate pellet (a))
  • the esterification reaction device a continuous esterification reaction device consisting of a three-stage complete mixing tank having a stirrer, a splitter, a raw material charging port and a product extraction port was used, and the terephthalic acid (TPA) was set to 2 tons / hr.
  • TPA terephthalic acid
  • antimon trioxide is made up to 160 ppm of antimonate (Sb) atom with respect to the produced PET, and these slurrys are used as the first ester of the esterification reaction apparatus. It was continuously supplied to the esterification reaction can and reacted at 255 ° C. under normal pressure with an average residence time of 4 hours.
  • the reaction product in the first esterification reaction can is continuously taken out of the system and supplied to the second esterification reaction can, and distilled from the first esterification reaction can in the second esterification reaction can.
  • 8% by mass of the EG to be produced is supplied to the produced polymer (produced PET), and an EG solution containing magnesium acetate in an amount of 65 ppm of magnesium (Mg) atom to the produced PET and P to the produced PET.
  • An EG solution containing an amount of tetramethylphthalic acid (TMPA) containing 20 ppm of atoms was added, and the reaction was carried out at normal pressure at an average residence time of 1.5 hours and at 260 ° C.
  • TMPA tetramethylphthalic acid
  • the reaction product in the second esterification reaction can is continuously taken out of the system and supplied to the third esterification reaction can, and further contains TMPA in an amount of 20 ppm of P atom with respect to the produced PET.
  • the EG solution was added and reacted at 260 ° C. under normal pressure with an average residence time of 0.5 hours.
  • the esterification reaction product produced in the third esterification reaction can is continuously supplied to a three-stage continuous polycondensation reaction apparatus to perform polycondensation, and further, a filter medium of a stainless sintered body (nominal filtration accuracy of 5 ⁇ m). The particles were filtered through 90% of the particles) to obtain polyethylene terephthalate pellets (a) having an extreme viscosity of 0.580 dl / g.
  • the obtained uniaxially stretched film is guided to a tenter, heated to 125 ° C., laterally stretched 5.5 times, fixed in width, heat-treated at 190 ° C. for 5 seconds, and further relaxed by 4% in the width direction at 100 ° C.
  • a base film 2 which is a polyethylene terephthalate film having a film thickness of 50 ⁇ m was obtained (referred to as PET in the table).
  • ⁇ Material of adhesive layer> (Preparation of acrylic polymer) A monomer mixture containing 100 parts of n-butyl acrylate and 5 parts of acrylic acid was placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler. Further, with respect to 100 parts of the monomer mixture (solid content), 0.1 part of 2,2'-azobisisobutyronitrile as a polymerization initiator is charged together with 100 parts of ethyl acetate, and nitrogen gas is added while gently stirring. After the introduction and substitution with nitrogen, the liquid temperature in the flask was maintained at around 55 ° C. and a polymerization reaction was carried out for 8 hours to prepare a solution of an acrylic polymer having a weight average molecular weight (Mw) of 1.6 million.
  • Mw weight average molecular weight
  • cover members 202 to 222 are produced in the same manner except that the combination of each type of the base film 1, the transparent base material and the base film 2 is changed as described in Table II. did.
  • the base film 102 produced above was also used for the base film 2 in the production of the cover member 202.
  • the base film 2 was also bonded so that the A side of the base film 102 was arranged on the glass base side. Further, the cover member 215 did not bond anything to the base film 2 side in the production of the cover member 202.
  • ⁇ Evaluation ⁇ ⁇ Evaluation after folding> Prepare a cover member sample having a size of 20 mm in the TD direction and 110 mm in the MD direction. Using a no-load U-shaped expansion / contraction tester (DLDMLLH-FS manufactured by Yuasa System Equipment Co., Ltd.), a bending radius of 1 mm was set, and the bending was performed 100 times at a speed of 1 time / sec. At that time, the position of both ends of the sample on the MD side was fixed at 10 mm, and the bent portion was set to 20 mm ⁇ 90 mm.
  • DLDMLLH-FS no-load U-shaped expansion / contraction tester
  • less than 0.2 ⁇ : 0.2 or more and less than 0.5 ⁇ : 0.5 or more and less than 1.0 ⁇ : 1.1 or more and ⁇ or more is desirable.
  • the cover members 201 to 217 using the base films 101 to 112 of the present invention include the cover members 218 to 221 using the base films 113 to 116 of the comparative example and the transparent base material.
  • the cover member 222 which is a thick film excellent results were obtained in both the indentation strength of the base film and the evaluation of the fold of the cover member.
  • the cover member of the present invention has a feature that the base film provided on the cover member does not have a crease when it is repeatedly bent. Therefore, the image at the folded portion of the display is obtained.
  • a display device with a cover member that does not cause disturbance and has excellent visibility it can be suitably used for a foldable display using an organic electroluminescence element.
  • Base film 1 Base film 1 2 Base film 2 3 Transparent base material 4 Adhesive layer 5 Support member 10 Cover member 21 Carrier substrate 22 Glass base material 23 Contact film 24 Electromagnetic radiation 100 Display device 101 Organic EL layer 102 Polarizing plate B110 Support B120 Base material film B200 Manufacturing equipment B210 Supply unit B220 Coating part B230 Drying part B240 Cooling part B250 Winding part R Bending radius

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明の課題は、カバー部材の取り扱い性の向上に加え、繰り返し屈曲されたときに、当該カバー部材に具備された基材フィルムに折りあとがつかないカバー部材、カバー部材用の基材フィルム、及びそれらを具備した表示装置を提供することである。 本発明のカバー部材は、1μm以上15μm未満の基材フィルム、5μm以上50μm未満の透明基材、を有するカバー部材であって、前記基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾きが1.1以上25.0以下であることを特徴とする。

Description

カバー部材、カバー部材用の基材フィルム、及びそれらを具備した表示装置
 本発明は、カバー部材、カバー部材用の基材フィルム、及びそれらを具備した表示装置に関する。より詳しくは、カバー部材の取り扱い性の向上に加え、当該カバー部材に具備された基材フィルムに折りあとがつかないカバー部材、カバー部材用の基材フィルム、及びそれらを具備した表示装置に関する。
 昨今、折り畳み可能、又は巻取り可能なフレキシブルディスプレイの開発が多く行われている。当該ディスプレイにおいては、ディスプレイの保護を目的としたカバーガラスユニット(以下、本発明では「カバー部材」ともいう。)及び偏光板を具備する表示ユニットから構成されている。
 ここで、前記カバーガラスユニットに用いられる透明基材として、例えば、ガラス基材を用いる場合は柔軟性が求められるため、当該ガラス基材自体の薄型化が必要とされ、それらの要望に対応して、薄型ガラスの製造方法等が開示されている(例えば、特許文献1参照。)。
 一方、前記ガラス基材の保護を目的としてポリマー層(保護フィルム)をガラス基材に積層する際に、当該ポリマー層表面の、うねりを制御する発明が開示されている(例えば、特許文献2参照。)。
 前記折り畳み仕様を有するフレキシブルディスプレイにおいては、各部材が薄膜化されることにより、ディスプレイの折り畳み時において、カバー部材の屈曲半径はより小さくなる方向である。その場合、本発明者らの検討によれば、前記カバー部材に具備される保護フィルム(本発明では「基材フィルム」ともいう。)には、カバー部材の折り畳み時にガラス基材の割れが生じない程度の保護機能(押し込み強度)の向上に加え、当該カバー部材が繰り返し屈曲されたときに、前記保護フィルムに折りあとがつかない特性が求められることが分かった。
 しかしながら、上記開示されている技術手段で作製したガラス基材及び保護フィルムの積層体として構成されるカバー部材においては、より薄膜化したときの前記保護機能の向上と、繰り返し屈曲されたときに、保護フィルムに折りあとがつかない特性との両立は、困難であった。
国際公開第2017/066924号 特表2002-534305号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、カバー部材の取り扱い性の向上に加え、繰り返し屈曲されたときに、当該カバー部材に具備された基材フィルムに折りあとがつかないカバー部材、カバー部材用の基材フィルム、及びそれらを具備した表示装置を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、カバー部材が、特定の厚さを有する基材フィルムと透明基材を有し、前記基材フィルムの応力とそれに対するひずみの関係において、特定の関係を満たすときに、カバー部材の取り扱い性の向上に加え、当該カバー部材に具備される基材フィルムに折りあとがつかない特性を有するカバー部材が得られることを見出した。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.1μm以上15μm未満の基材フィルム、5μm以上50μm未満の透明基材、を有するカバー部材であって、
 前記基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾きが1.1以上25.0以下であることを特徴とするカバー部材。
 2.前記基材フィルムの前記透明基材との貼合面をA面、及び前記基材フィルムの当該A面に対する裏面をB面としたとき、
 前記A面のフィルム密度(ρA)が、前記B面のフィルム密度(ρB)より小さいことを特徴とする第1項に記載のカバー部材。
 3.前記基材フィルムの前記透明基材との貼合面をA面、及び前記基材フィルムの当該A面に対する裏面をB面としたとき、
 前記A面のフィルム密度(ρA)に対する前記B面のフィルム密度(ρB)の比率(ρA/ρB)の値が、0.80~0.95の範囲内であることを特徴とする第1項又は第2項に記載のカバー部材。
 4.前記基材フィルムが、ゴム粒子を40~85質量%の範囲内で含有することを特徴とする第1項から第3項までのいずれか一項に記載のカバー部材。
 5.前記透明基材の弾性率が55~80GPaの範囲内であって、かつ、前記透明基材の弾性率と前記基材フィルムとの弾性率比(透明基材の弾性率/基材フィルムの弾性率)の値が30以上であること特徴とする第1項から第4項までのいずれか一項に記載のカバー部材。
 6.カバー部材用の基材フィルムであって、
 前記基材フィルムが、1μm以上15μm未満であって、
 前記基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾きが1.1以上25.0以下であることを特徴とするカバー部材用の基材フィルム。
 7.前記基材フィルムが透明基材に貼合され、
 前記基材フィルムの前記透明基材との貼合面をA面、及び前記基材フィルムの当該A面に対する裏面をB面としたとき、
 前記A面のフィルム密度(ρA)が、前記B面のフィルム密度(ρB)より小さいことを特徴とする第6項に記載のカバー部材用の基材フィルム。
 8.前記基材フィルムが透明基材に貼合され、
 前記基材フィルムの前記透明基材との貼合面をA面、及び前記基材フィルムの当該A面に対する裏面をB面としたとき、
 前記A面のフィルム密度(ρA)に対する前記B面のフィルム密度(ρB)の比率(ρA/ρB)の値が、0.80~0.95の範囲内であることを特徴とする第6項又は第7項に記載のカバー部材用の基材フィルム。
 9.前記基材フィルムが、ゴム粒子を40~85質量%の範囲内で含有することを特徴とする第6項から第8項までのいずれか一項に記載のカバー部材用の基材フィルム。
 10.第1項から第5項までのいずれか一項に記載のカバー部材、又は第6項から第9項までのいずれか一項に記載のカバー部材用の基材フィルムを具備することを特徴とする表示装置。
 本発明の上記手段により、カバー部材の取り扱い性の向上に加え、繰り返し屈曲されたときに、当該カバー部材に具備された基材フィルムに折りあとがつかないカバー部材、カバー部材用の基材フィルム、及びそれらを具備した表示装置を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 本発明のカバー部材は、特定の厚さの範囲を有する基材フィルムと透明基材の積層体からなり、当該基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾きが1.1以上25.0以下であることを特徴とするものである。
 このような特徴によって、カバー部材の取り扱い性の向上に加え、繰り返し屈曲されたときに、当該カバー部材に具備された基材フィルムに折りあとがつかないカバー部材を得ることができる。
 ここで、「カバー部材の取り扱い性」とは、本発明においては、カバー部材の折り畳みによる開閉作業時に、カバー部材に具備される基材フィルムが保護機能(押し込み強度)を発揮し、透明基材に割れ等を生じさせないことをいう。また、「折りあと」とは、繰り返される折り畳みによる開閉作業に伴って、基材フィルムが折り畳みの部位において白化し、折りスジとして観察されることに加え、基材フィルムが透明基材から剥離することによって、画像歪みなどの視認性の劣化を生じることをいう。
 前記基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾きが、25.0を超える場合、ずなわち、基材フィルムが固く破断点への到達が速い場合は、当該基材フィルムが伸ばされた状態、即ちデバイスが閉まった状態において急激な応力の増加が特に基材フィルムの外側で生じるため、繰り返し行われる開閉作業において、外側・内側での物性劣化差が生じ、折り畳んだ部分が白化したり接着不良が生じたりして、前記「折りあと」として視認される。さらに、透明基材の押し込み時に透明基材に直接応力が集中してしまうために、透明基材の割れが生じやすいものと推測される。
 一方、前記直線の傾きが、1.1未満で基材フィルムが柔らかい場合は、繰り返し行われる開閉作業において、前記外側・内側での物性劣化差は生じにくいが、当該開閉作業にともなって、当該基材フィルムが透明基材と一体的に追従する形で基材フィルム全体が伸縮を繰り返すため、折り畳み部分において接着不良等から基材フィルムが浮き上がり、視認性を低下させる。さらに、基材フィルムが透明基材とともに押し込まれた際に基材フィルムが柔らかすぎるために、透明基材の物理的な変形量が大きくなりすぎて、透明基材の割れが生じやすいものと推測される。
基材フィルムと透明基材の積層体の断面図 基材フィルムと透明基材の別の態様の積層体の断面図 積層体を折り畳んだときの模式図 別の態様の積層体を折り畳んだときの模式図 基材フィルムの応力-ひずみ曲線と原点と破断点を結んだ直線の傾きを示すグラフ 本発明の一実施の形態に係る基材フィルムの製造方法を示す模式図 透明基材に適用されるガラス基材の製造方法の一例を示す模式図 支持体付き基材フィルムと透明基材との貼合を示す模式図 別の態様の支持体付き基材フィルムと透明基材との貼合を示す模式図 本発明の表示装置の一例である有機ELディスプレイへのカバー部材の適用例
 本発明のカバー部材は、厚さが1μm以上15μm未満の基材フィルム、及び厚さが5μm以上50μm未満の透明基材、を有するカバー部材であって、前記基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾きが1.1以上25.0以下であることを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記基材フィルムの前記透明基材との貼合面をA面、及び前記基材フィルムの当該A面に対する裏面をB面としたとき、前記A面のフィルム密度(ρA)が、前記B面のフィルム密度(ρB)より小さいことが、好ましく、前記A面のフィルム密度(ρA)に対する前記B面のフィルム密度(ρB)の比率(ρA/ρB)の値が、0.80~0.95の範囲内であることが、好ましい。これは、カバー部材を透明基材側に折り畳むときに、前記基材フィルムのB面側は前記A面側よりも多くの引張応力が加わるが、前記A面側のフィルム密度が低いと当該引張応力を緩和することができることによる。
 また、前記基材フィルムが、ゴム粒子を40~85質量%の範囲内で含有することが、好ましい。ゴム粒子の多量添加による耐衝撃性への向上効果によって繰り返し屈曲されたときの折りあと耐性の改良につながる。
 前記透明基材の弾性率は55~80GPaの範囲内であって、かつ、前記透明基材の弾性率と前記基材フィルムとの弾性率比(透明基材の弾性率/基材フィルムの弾性率)の値が30以上であることが、好ましい。これは、薄膜化により低い弾性率をもつ透明基材を用いて、押し込み強度の向上や折りあとがつかないカバー部材を提供するには、弾性率がより低い基材フィルムを用いること、即ち透明基材に対して弾性率比(透明基材の弾性率/基材フィルムの弾性率)の値を30以上にすることで、透明基材の保護機能をより向上することができることによる。
 また、本発明のカバー部材用の基材フィルムは、厚さ(「膜厚」ともいう。)が1μm以上15μm未満の範囲内であって、前記基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾きが1.1以上25.0以下であることを特徴とする。前記直線の傾きを上記範囲内に調整することによって、基材フィルムの押し込み強度と折りあと耐性が向上し、当該基材フィルムがカバー部材に具備されたときの取り扱い性が向上する。
 前記基材フィルムは、前記基材フィルムの前記透明基材との貼合面をA面、及び前記基材フィルムの当該A面に対する裏面をB面としたとき、前記A面のフィルム密度(ρA)が、前記B面のフィルム密度(ρB)より小さいことが、好ましく、前記A面のフィルム密度(ρA)に対する前記B面のフィルム密度(ρB)の比率(ρA/ρB)の値が、0.80~0.95の範囲内であることが、前述の効果の観点からより好ましい。
 また、前記基材フィルムが、ゴム粒子を40~85質量%の範囲内で含有することが、同様に好ましい。
 本発明の表示装置は、本発明のカバー部材、又は本発明のカバー部材用の基材フィルムを具備することを特徴とする。当該表示装置によって、カバー部材の取扱い性の向上に加え、繰り返し屈曲されたときに、当該カバー部材に具備された基材フィルムに折りあとがつかない、折り畳み型ディスプレイや巻き取り可能なディスプレイを具備する表示装置を得ることができる。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 ≪本発明のカバー部材の概要≫
 本発明のカバー部材は、厚さが1μm以上15μm未満の基材フィルム、及び厚さが5μm以上50μm未満の透明基材、を有するカバー部材であって、前記基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾きが1.1以上25.0以下であることを特徴とする。
 図1は、本発明のカバー部材における、基材フィルムと透明基材の積層体の断面図と、当該カバー部材(積層体)を折り畳んだときの模式図である。
 図1Aは、本発明のカバー部材10の最小構成を示し、基材フィルム1が粘着剤層4を介して透明基材3に貼合され積層体を形成している。基材フィルム1は、透明基材3と貼合されたとき、前記基材フィルム1の前記透明基材3との貼合面をA面、及び前記基材フィルムの当該A面に対する裏面をB面とする。
 図1Bは、本発明のカバー部材10の別の態様を示すものである。基材フィルム1が粘着剤層4を介して透明基材3に貼合され、さらに基材フィルム2が、粘着剤層4を介して透明基材3に貼合され積層体を形成している態様を示すものである。当該基材フィルム2は、基材フィルム1と同様な仕様を有するフィルムであってもよく、また別の材料及び仕様を有するフィルムであってもよい。例えば、表面硬度を向上するために、ハードコートフィルム等の機能性フィルムであってもよい。
 図1Cは、図1Aで示されるカバー部材10を、透明基材3側に折り畳んだときの模式図である。ここで折りたたんだ際の屈曲半径とは、図1C又は図1Dにおいて、カバー部材10を折りたたんだ際の折り畳み部分の内側の半径Rを意味する。
 前述のとおり、カバー部材を透明基材3側に折り畳むときに、前記基材フィルムのB面側は前記A面側よりも多くの引張応力が加わるが、前記A面側のフィルム密度が低いと当該引張応力を緩和することができる。
 図1Dは、図1Bで示されるカバー部材10を、透明基材3側に折り畳んだときの模式図である。この場合でも、基材フィルム1の前記B面側は前記A面側よりも多くの引張応力が加わるが、前記A面側のフィルム密度が低いと当該引張応力を緩和することができる。
 本発明に係る応力-ひずみ曲線は、JIS K7127:1999に準拠して測定される、基材フィルムの引張応力と引張破断伸びとの関係を示したものである。
 基材フィルムを100mm(MD方向:長手方向)×10mm(TD方向:幅手方向)のサイズに切り取り、サンプルフィルムを得る。このサンプルフィルムを、23℃・55%RHの環境下で24時間調湿し、調湿後のサンプルフィルムを、JIS K7127:1999に準拠して、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、MD方向に引っ張りながら破断するまでの応力-ひずみ曲線を得る。応力-ひずみ曲線は、縦軸が応力(MPa)、横軸が引張破断伸び(%)で表される。応力-ひずみ曲線の測定は、23℃・55%RH下、引張速度50mm/分の条件で行う。
 上記測定によって得られた、基材フィルムの応力-ひずみ曲線から、本発明に係る直線の傾きを求める方法を図によって説明する。
 図2は、基材フィルムの応力-ひずみ曲線と原点と破断点を結んだ直線の傾きを示すグラフである。
 基材フィルムは引張試験を行うことにより、伸びの後に破断点Xをとるが、当該破断点Xと原点(0点)とを結ぶ直線Yを引いたときに、この直線の傾きαを、本発明でいう、「基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾き」と定義する。当該傾きαは、前述のとおり、本発明の効果を得る観点から、1.1以上25.0以下であることが必要であり、弾力には富むが硬くなり過ぎないことにより、基材フィルムの押し込み強度の向上によるカバー部材の取り扱い性の向上に加え、繰り返し屈曲されたときに、当該カバー部材に具備された基材フィルム自身に折りあとがつかないカバー部材を得ることができる。
 以下、本発明の構成要素について詳細に説明する。但し、以降の説明において、本発明はこれに限定されるものではない。
 〔1〕基材フィルム
 〔1.1〕基材フィルムの概要
 以下の説明において、「基材フィルム」は、特段断らない限りにおいて、図1における「基材フィルム1」として説明する。
 本発明に係る基材フィルムは、その膜厚が1μm以上15μm未満の範囲内であり、前記基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾きが1.1以上25.0以下であることを特徴とし、カバー部材に具備されたときの押し込み強度等の取扱い性の向上に加え、当該カバー部材に具備されたときに、繰り返し屈曲されたときの基材フィルム自身に折りあとがつかない効果を有するものである。
 前述のとおり、前記直線の傾きが、25.0を超える場合、当該基材フィルムが伸ばされた状態、即ちデバイスが閉まった状態において急激な応力の増加が特に基材フィルムの外側で生じるため、繰り返し行われる開閉作業において、外側・内側での物性劣化差が生じ、折り畳んだ部分が白化したり接着不良が生じたりして、折りあととして視認される。さらに、透明基材の押し込み時に透明基材に直接応力が集中してしまうために、透明基材の割れが生じやすい。
 一方、前記直線の傾きが、1.1未満で基材フィルムが柔らかい場合は、当該開閉作業にともなって、当該基材フィルムが透明基材と一体的に追従する形で基材フィルム全体が伸縮を繰り返すため、折り畳み部分において接着不良等から基材フィルムが浮き上がり、視認性を低下させ折りあととして視認される。さらに、基材フィルムが透明基材とともに押し込まれた際に基材フィルムが柔らかすぎるために、透明基材の物理的な変形量が大きくなりすぎて、透明基材の割れが生じやすい。
 また、前記膜厚は、1μm未満では、基材フィルムとして腰が弱くなりカバー部材の押し込み強度が低下する。また、15μm以上であると、基材フィルムとして腰が強くなり、繰り返されるディスプレイの開閉に伴って、前記折りあとが生じやすくなるため、上記範囲内であることが必要である。
 さらに、前記基材フィルムの前記透明基材との貼合面をA面、及び前記基材フィルムの当該A面に対する裏面をB面としたとき、前記A面のフィルム密度(ρA)が、前記B面のフィルム密度(ρB)より小さいことが、好ましく、前記A面のフィルム密度(ρA)に対する前記B面のフィルム密度(ρB)の比率(ρA/ρB)の値が、0.80~0.95の範囲内であることが、好ましい。これは、カバー部材を透明基材側に折り畳むときに、前記基材フィルムのB面側は前記A面側よりも多くの引張応力が加わるが、前記A面側のフィルム密度が低いと当該引張応力を緩和することができる。
 <基材フィルムのA面及びB面の密度の測定>
 基材フィルムの表面(A面及びB面)の密度は、X線反射率法(XRR法)を用いて測定する。X線はフィルム表面に対して非常に浅い角度で入射させると全反射され、入射X線の角度が全反射臨界角以上になると、フィルム内部にX線が侵入し反射率が低下する。XRR法で測定された反射率プロファイルは専用の反射率解析ソフトを用いて解析することができ、本発明においては、反射率が低下し始める角度をθaとした時に、2θが2θaから2θa+0.1°の範囲において、測定結果と計算結果のフィッティング誤差が最も小さくなるような密度を表面密度とする。その際、表面ラフネスは0nm~1nmの範囲内としてフィッティングを行う。
 基材フィルムを30mm×30mmの大きさに切り出し、試料台に固定して、以下の測定条件で測定する。
 (測定条件)
 ・装置     :薄膜X線回折装置(株式会社リガク製ATX-G)
 ・サンプルサイズ:30mm×30mm
 ・入射X線波長 :1.5405Å
 ・測定範囲(θ):0~6°
 ・解析ソフト  :反射率解析ソフトGXRR(株式会社リガク製)
 前記A面のフィルム密度(ρA)に対する前記B面のフィルム密度(ρB)の比率(ρA/ρB)の値は、0.80~0.95の範囲内とするには、基材フィルムの製造工程において、一例として以下の知見を活かして調整することができる。
 (a)樹脂に対するゴム粒子や微粒子の量を変える。例えば、ゴム粒子や微粒子の量を増やすと、溶媒の拡散が促進され表面/裏面での密度に差が生じにくくなる。
 (b)ドープ中の固形分濃度を変える。例えば、固形分が高いと相対的に溶媒は少ないことにより、密度差が生じにくい。
 (c)乾燥方法を変える。例えば、緩慢乾燥に加えてスポット乾燥(表面にヒーターを当てる)などすると密度差を大きくすることができる。
 (a)~(c)のような知見から導かれる手段を組み合わせることで、前記A面/B面面の密度比率(ρA/ρB)の値を、0.80~0.95の範囲内に調整することが可能である。
 〔1.2〕基材フィルムの材料
 本発明に係る基材フィルムに用いられる樹脂は、特に制限されず、セルロースエステル系樹脂、シクロオレフィン系樹脂、フマル酸ジエステル系樹脂、ポリプロピレン系樹脂、(メタ)アクリル系樹脂、ポリエステル系樹脂、ポリアリレート系樹脂、ポリイミド系樹脂、及びスチレン系樹脂又はその複合樹脂を挙げることができるが、好ましい樹脂としては、カルボニル基を側鎖に有する直鎖状高分子材料を含有すること、又は環状構造を主鎖に有する高分子材料を含有することが、折り曲げ耐性等の物理特性を制御し、かつ光学特性を向上する観点から、(メタ)アクリル系樹脂、スチレン・(メタ)アクリレート共重合体、シクロオレフィン系樹脂又はポリイミド系樹脂などでありうる。
 <(メタ)アクリル系樹脂>
 基材フィルムに用いられる(メタ)アクリル系樹脂は、少なくともメタクリル酸メチルに由来する構造単位(U1)と、フェニルマレイミドに由来する構造単位(U2)とを含むことが好ましい。フェニルマレイミドに由来する構造単位(U2)を含む(メタ)アクリル系樹脂は、基材フィルムの光弾性係数を小さくし、吸湿膨張してもムラの発生が起こりにくいという利点もある。
 (メタ)アクリル系樹脂は、上記以外の他の構造単位をさらに含んでもよい。そのような他の構造単位の例には、アクリル酸アダマンチルなどの(メタ)アクリル酸アルキルエステル;アクリル酸2-エチルヘキシルなどの(メタ)アクリル酸シクロアルキルエステルなどが含まれる。中でも、フェニルマレイミドに由来する構造単位(U2)を含むことによる脆性の悪化を低減する観点などから、アクリル酸アルキルエステルに由来する構造単位(U3)をさらに含むことが好ましい。
 すなわち、(メタ)アクリル系樹脂は、メタクリル酸メチルに由来する構造単位(U1)と、フェニルマレイミドに由来する構造単位(U2)と、アクリル酸アルキルエステルに由来する構造単位(U3)とを含むことがより好ましい。
 メタクリル酸メチルに由来する構造単位(U1)の含有量は、(メタ)アクリル系樹脂を構成する全構造単位に対して50~95質量%の範囲であることが好ましく、70~90質量%の範囲であることがより好ましい。
 フェニルマレイミドに由来する構造単位(U2)は、比較的剛直な構造を有するため、基材フィルムの機械的強度を向上しうる。また、フェニルマレイミドに由来する構造単位(U2)は、比較的嵩高い構造を有するため、樹脂マトリクス中にゴム粒子を移動させうるミクロな空隙を有しうるため、ゴム粒子を、基材フィルムの表層部に偏在させやすくしうる。
 フェニルマレイミドに由来する構造単位(U2)の含有量は、(メタ)アクリル系樹脂を構成する全構造単位に対して1~25質量%の範囲であることが好ましい。フェニルマレイミドに由来する構造単位(U2)の含有量が1質量%以上であると、基材フィルムの高湿度環境下での保存性に優れる。25質量%以下であると、基材フィルムの脆性が過度には損なわれにくい。フェニルマレイミドに由来する構造単位(U2)の含有量は、上記観点から、7~15質量%の範囲であることがより好ましい。
 アクリル酸アルキルエステルに由来する構造単位(U3)は、樹脂に適度な柔軟性を付与しうるため、例えばフェニルマレイミドに由来する構造単位(U2)を含むことによる脆さを改善しうる。
 アクリル酸アルキルエステルは、アルキル部分の炭素原子数が1~7、好ましくは1~5のアクリル酸アルキルエステルであることが好ましい。アクリル酸アルキルエステルの例には、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-ヒドロキシエチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシルなどが含まれる。
 アクリル酸アルキルエステルに由来する構造単位(U3)の含有量は、(メタ)アクリル系樹脂を構成する全構造単位に対して1~25質量%の範囲であることが好ましい。アクリル酸アルキルエステルに由来する構造単位(U3)の含有量が1質量%以上であると、(メタ)アクリル樹脂に適度な柔軟性を付与しうるため、基材フィルムが脆くなりすぎず、破断しにくい。アクリル酸アルキルエステルに由来する構造単位(U3)の含有量が25質量%以下であると、基材フィルムのTgが低くなりすぎず、基材フィルムの高湿度環境下での保存性に優れる。アクリル酸アルキルエステルに由来する構造単位(U3)の含有量は、上記観点から、5~15質量%の範囲であることがより好ましい。
 フェニルマレイミドに由来する構造単位(U2)の、フェニルマレイミドに由来する構造単位(U2)とアクリル酸アルキルエステルに由来する構造単位(U3)の合計量に対する比率は、20~70質量%の範囲であることが好ましい。当該比率が20質量%以上であると、基材フィルムの弾性率を高めやすく、70質量%以下であると、基材フィルムが脆くなりすぎない。
 (メタ)アクリル系樹脂のガラス転移温度(Tg)は、100℃以上であることが好ましく、120~150℃の範囲であることがより好ましい。(メタ)アクリル系樹脂のTgが上記範囲内にあると、基材フィルムの耐熱性を高めやすい。(メタ)アクリル系樹脂のTgを調整するためには、例えばフェニルマレイミドに由来する構造単位(U2)やアクリル酸アルキルエステルに由来する構造単位(U3)の含有量を調整することが好ましい。
 (メタ)アクリル系樹脂の重量平均分子量(Mw)は、特に制限されず、目的に応じて調整することができる。(メタ)アクリル系樹脂の重量平均分子量は、例えば樹脂分子同士の絡み合いを促進して基材フィルムの靱性を高めて破断しにくくする観点や、湿度膨張係数を適度に大きくし、接着に好ましい程度のカール量に調整しやすくする観点では、10万以上であることが好ましく、100万以上であることがより好ましい。(メタ)アクリル系樹脂の重量平均分子量が100万以上であると、得られる基材フィルムの靱性を高めうる。それにより、製造過程において、後述する積層フィルムとして搬送する際に、搬送張力によって基材フィルムが破断するのを抑制することができ、搬送安定性を高めうる。(メタ)アクリル系樹脂の重量平均分子量は、同様の観点から、150万~300万の範囲であることがさらに好ましい。重量平均分子量の測定方法は、以下の通りである。
 <ゲルパーミエーションクロマトグラフィー>
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0mL/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~2800000の範囲内の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 〈スチレン・(メタ)アクリレート共重合体〉
 スチレン・(メタ)アクリレート共重合体(以下、スチレン・アクリル樹脂ともいう。)は、基材フィルムに用いたときに透明性に優れる。また、スチレン部分の共重合比率によって吸湿膨張係数を調整することもできるため、これらの比率を変更することによって積層体としてのカールを制御することができる。
 スチレン・アクリル樹脂は、少なくとも、スチレン単量体と(メタ)アクリル酸エステル単量体とを付加重合させて形成される。スチレン単量体は、CH2=CH-C65の構造式で表されるスチレンの他に、スチレン構造中に公知の側鎖や官能基を有するスチレン誘導体を含む。
 また、(メタ)アクリル酸エステル単量体は、CH(R1)=CHCOOR2(R1は水素原子又はメチル基を表し、R2は炭素数が1~24のアルキル基を表す。)で表されるアクリル酸エステルやメタクリル酸エステルの他に、これらのエステルの構造中に公知の側鎖や官能基を有するアクリル酸エステル誘導体やメタクリル酸エステル誘導体を含む。
 スチレン単量体の例には、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-フェニルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン及びp-n-ドデシルスチレンが含まれる。
 (メタ)アクリル酸エステル単量体の例には、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イソブチルアクリレート、n-オクチルアクリレート、2-エチルヘキシルアクリレート(2EHA)、ステアリルアクリレート、ラウリルアクリレート及びフェニルアクリレートなどのアクリル酸エステル単量体;メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソプロピルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート、n-オクチルメタクリレート、2-エチルヘキシルメタクリレート、ステアリルメタクリレート、ラウリルメタクリレート、フェニルメタクリレート、ジエチルアミノエチルメタクリレート、ジメチルアミノエチルメタクリレートなどのメタクリル酸エステル;が含まれる。
 なお、本明細書中、「(メタ)アクリル酸エステル単量体」とは、「アクリル酸エステル単量体」と「メタクリル酸エステル単量体」との総称であり、それらの一方又は両方を意味する。例えば、「(メタ)アクリル酸メチル」は、「アクリル酸メチル」及び「メタクリル酸メチル」の一方又は両方を意味する。
 上記(メタ)アクリル酸エステル単量体は、1種でもそれ以上でもよい。例えば、スチレン単量体と2種以上のアクリル酸エステル単量体とを用いて共重合体を形成すること、スチレン単量体と2種以上のメタクリル酸エステル単量体とを用いて共重合体を形成すること、及び、スチレン単量体とアクリル酸エステル単量体及びメタクリル酸エステル単量体とを併用して共重合体を形成すること、のいずれも可能である。
 上記スチレン・アクリル樹脂の重量平均分子量(Mw)は、可塑性を制御しやすい観点から、5000~150000の範囲であることが好ましく、30000~120000の範囲であることがより好ましい。
 本発明に用いられるスチレン・アクリル樹脂は、市販品であっても良く、デンカ株式会社製MS樹脂「TX320XL」を一例として挙げることができる。
 〈ゴム粒子〉
 本発明に係る基材フィルムは、特に(メタ)アクリル系樹脂やスチレン・(メタ)アクリレート共重合体を用いる場合は、ゴム粒子を40~85質量%の範囲内で含有することが、靱性(しなやかさ)を付与し、折りあと耐性を向上する観点から、好ましい。
 ゴム粒子は、ゴム状重合体を含む粒子である。ゴム状重合体は、ガラス転移温度が20℃以下の軟質な架橋重合体である。そのような架橋重合体の例には、ブタジエン系架橋重合体、(メタ)アクリル系架橋重合体、及びオルガノシロキサン系架橋重合体が含まれる。中でも、(メタ)アクリル系樹脂との屈折率差が小さく、基材フィルムの透明性が損なわれにくい観点では、(メタ)アクリル系架橋重合体が好ましく、アクリル系架橋重合体(アクリル系ゴム状重合体)がより好ましい。
 すなわち、ゴム粒子は、アクリル系ゴム状重合体(a)を含む粒子であることが好ましい。
 アクリル系ゴム状重合体(a)について:
 アクリル系ゴム状重合体(a)は、アクリル酸エステルに由来する構造単位を主成分として含む架橋重合体である。主成分として含むとは、アクリル酸エステルに由来する構造単位の含有量が後述する範囲となることをいう。アクリル系ゴム状重合体(a)は、アクリル酸エステルに由来する構造単位と、それと共重合可能な他の単量体に由来する構造単位と、1分子中に2以上のラジカル重合性基(非共役な反応性二重結合)を有する多官能性単量体に由来する構造単位とを含む架橋重合体であることが好ましい。
 アクリル酸エステルは、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸イソブチル、アクリル酸ベンジル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチルなどのアルキル基の炭素数1~12のアクリル酸アルキルエステルであることが好ましい。アクリル酸エステルは、1種類であってもよいし、2種類以上であってもよい。
 アクリル酸エステルに由来する構造単位の含有量は、アクリル系ゴム状重合体(a1)を構成する全構造単位に対して40~80質量%の範囲であることが好ましく、50~80質量%の範囲であることがより好ましい。アクリル酸エステルの含有量が上記範囲内であると、保護フィルムに十分な靱性を付与しやすい。
 共重合可能な他の単量体は、アクリル酸エステルと共重合可能な単量体のうち、多官能性単量体以外のものである。すなわち、共重合可能な単量体は、2以上のラジカル重合性基を有しない。共重合可能な単量体の例には、メタクリル酸メチルなどのメタクリル酸エステル;スチレン、メチルスチレンなどのスチレン類;(メタ)アクリロニトリル類;(メタ)アクリルアミド類;(メタ)アクリル酸が含まれる。中でも、共重合可能な他の単量体は、スチレン類を含むことが好ましい。共重合可能な他の単量体は、1種類であってもよいし、2種類以上であってもよい。
 共重合可能な他の単量体に由来する構造単位の含有量は、アクリル系ゴム状重合体(a)を構成する全構造単位に対して5~55質量%の範囲であることが好ましく、10~45質量%の範囲であることがより好ましい。
 多官能性単量体の例には、アリル(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレート、ジビニルアジペート、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、テトロメチロールメタンテトラ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレートが含まれる。
 多官能性単量体に由来する構造単位の含有量は、アクリル系ゴム状重合体(a)を構成する全構造単位に対して0.05~10質量%の範囲であることが好ましく、0.1~5質量%の範囲であることがより好ましい。多官能性単量体の含有量が0.05質量%以上であると、得られるアクリル系ゴム状重合体(a)の架橋度を高めやすいため、得られる基材フィルムの硬度、剛性が損なわれすぎず、10質量%以下であると、基材フィルムの靱性が損なわれにくい。
 アクリル系ゴム状重合体(a)を構成する単量体組成は、例えば熱分解GC-MSにより検出されるピーク面積比により測定することができる。
 ゴム状重合体のガラス転移温度(Tg)は、0℃以下であることが好ましく、-10℃以下であることがより好ましい。ゴム状重合体のガラス転移温度(Tg)が0℃以下であると、フィルムに適度な靱性を付与しうる。ゴム状重合体のガラス転移温度(Tg)は、前述と同様の方法で測定される。
 ゴム状重合体のガラス転移温度(Tg)は、ゴム状重合体の組成によって調整することができる。例えばアクリル系ゴム状重合体(a)のガラス転移温度(Tg)を低くするためには、アクリル系ゴム状重合体(a)中の、アルキル基の炭素原子数が4以上のアクリル酸エステル/共重合可能な他の単量体の質量比を多くする(例えば3以上、好ましくは4~10の範囲とする。)ことが好ましい。
 アクリル系ゴム状重合体(a)を含む粒子は、アクリル系ゴム状重合体(a)からなる粒子、又は、ガラス転移温度が20℃以上の硬質な架橋重合体(c)からなる硬質層と、その周囲に配置されたアクリル系ゴム状重合体(a)からなる軟質層とを有する粒子(これらを、「エラストマー」ともいう)であってもよいし;アクリル系ゴム状重合体(a)の存在下で、メタクリル酸エステルなどの単量体の混合物を、少なくとも1段以上重合して得られるアクリル系グラフト共重合体からなる粒子であってもよい。アクリル系グラフト共重合体からなる粒子は、アクリル系ゴム状重合体(a)を含むコア部と、それを覆うシェル部とを有するコアシェル型の粒子であってもよい。
 アクリル系ゴム状重合体を含むコアシェル型のゴム粒子について:
 (コア部)
 コア部は、アクリル系ゴム状重合体(a)を含み、必要に応じて硬質な架橋重合体(c)をさらに含んでもよい。すなわち、コア部は、アクリル系ゴム状重合体からなる軟質層と、その内側に配置された硬質な架橋重合体(c)からなる硬質層とを有してもよい。
 架橋重合体(c)は、メタクリル酸エステルを主成分とする架橋重合体でありうる。すなわち、架橋重合体(c)は、メタクリル酸アルキルエステルに由来する構造単位と、それと共重合可能な他の単量体に由来する構造単位と、多官能性単量体に由来する構造単位とを含む架橋重合体であることが好ましい。
 メタクリル酸アルキルエステルは、前述のメタクリル酸アルキルエステルであってよく;共重合可能な他の単量体は、前述のスチレン類やアクリル酸エステルなどであってよく;多官能性単量体は、前述の多官能性単量体とした挙げたものと同様のものが挙げられる。
 メタクリル酸アルキルエステルに由来する構造単位の含有量は、架橋重合体(c)を構成する全構造単位に対して40~100質量%の範囲でありうる。共重合可能な他の単量体に由来する構造単位の含有量は、他の架橋重合体(c)を構成する全構造単位に対して60~0質量%の範囲でありうる。多官能性単量体に由来する構造単位の含有量は、他の架橋重合体を構成する全構造単位に対して0.01~10質量%の範囲でありうる。
 (シェル部)
 シェル部は、アクリル系ゴム状重合体(a)にグラフト結合した、メタクリル酸エステルに由来する構造単位を主成分として含むメタクリル系重合体(b)(他の重合体)を含む。主成分として含むとは、メタクリル酸エステルに由来する構造単位の含有量が後述する範囲となることをいう。
 メタクリル系重合体(b)を構成するメタクリル酸エステルは、メタクリル酸メチルなどのアルキル基の炭素数1~12のメタクリル酸アルキルエステルであることが好ましい。メタクリル酸エステルは、1種類であってもよいし、2種類以上であってもよい。
 メタクリル酸エステルの含有量は、メタクリル系重合体(b)を構成する全構造単位に対して50質量%以上であることが好ましい。メタクリル酸エステルの含有量が50質量%以上であると、メタクリル酸メチルに由来する構造単位を主成分として含むメタクリル系樹脂との相溶性が得られやすい。メタクリル酸エステルの含有量は、上記観点から、メタクリル系重合体(b)を構成する全構造単位に対して70質量%以上であることがより好ましい。
 メタクリル系重合体(b)は、メタクリル酸エステルと共重合可能な他の単量体に由来する構造単位をさらに含んでもよい。共重合可能な他の単量体の例には、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチルなどのアクリル酸エステル;(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェノキシエチルなどの脂環、複素環又は芳香環を有する(メタ)アクリル系単量体(環含有(メタ)アクリル系単量体)が含まれる。
 共重合可能な単量体に由来する構造単位の含有量は、メタクリル系重合体(b)を構成する全構造単位に対して50質量%以下であることが好ましく、30質量%以下であることがより好ましい。
 本実施の形態で、基材フィルムが延伸されていないときは、ゴム粒子の形状は、真球状に近い形状でありうる。すなわち、基材フィルムの断面又は表面を観察したときの、ゴム粒子のアスペクト比は、1~2程度でありうる。
 ゴム粒子の平均粒子径は、100~400nmの範囲であることが好ましい。ゴム粒子の平均粒子径が100nm以上であると、基材フィルムに十分な靱性や応力緩和性を付与しやすく、400nm以下であると、基材フィルムの透明性が損なわれにくい。ゴム粒子の平均粒子径は、同様の観点から、150~300nmの範囲であることがより好ましい。
 ゴム粒子の平均粒子径は、以下の方法で算出することができる。
 ゴム粒子の平均粒子径は、基材フィルムの表面又は切片のSEM撮影又はTEM撮影によって得た粒子100個の円相当径の平均値として測定することができる。円相当径は、撮影によって得られた粒子の投影面積を、同じ面積を持つ円の直径に換算することによって求めることができる。この際、倍率5000倍のSEM観察及び/又はTEM観察によって観察されるゴム粒子を、平均粒子径の算出に使用する。
 ゴム粒子の含有量は、特に限定されないが、基材フィルムに対して40~85質量%の範囲であることが好ましく、45~75質量%の範囲であることがより好ましい。
 <シクロオレフィン系樹脂>
 基材フィルムに用いられるシクロオレフィン系樹脂は、シクロオレフィン単量体の重合体、又はシクロオレフィン単量体とそれ以外の共重合性単量体との共重合体であることが好ましい。
 シクロオレフィン単量体としては、ノルボルネン骨格を有するシクロオレフィン単量体であることが好ましく、下記一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000001
 一般式(A-1)中、R1~R4は、各々独立して、水素原子、炭素原子数1~30の炭化水素基、又は極性基を表す。pは、0~2の整数を表す。ただし、R1~R4の全てが同時に水素原子を表すことはなく、R1とR2が同時に水素原子を表すことはなく、R3とR4が同時に水素原子を表すことはないものとする。
 一般式(A-1)においてR1~R4で表される炭素原子数1~30の炭化水素基としては、例えば、炭素原子数1~10の炭化水素基であることが好ましく、炭素原子数1~5の炭化水素基であることがより好ましい。炭素原子数1~30の炭化水素基は、例えば、ハロゲン原子、酸素原子、窒素原子、硫黄原子又はケイ素原子を含む連結基をさらに有していてもよい。そのような連結基の例には、カルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合等の2価の極性基が含まれる。炭素原子数1~30の炭化水素基の例には、メチル基、エチル基、プロピル基及びブチル基等が含まれる。
 一般式(A-1)においてR1~R4で表される極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基及びシアノ基が含まれる。中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましい。
 一般式(A-1)におけるpは、光学フィルムの耐熱性を高める観点から、1又は2であることが好ましい。pが1又は2であると、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。また、湿度に対して若干応答できるようになり、積層体としてのカールバランスを制御しやすくなるというメリットもある。
Figure JPOXMLDOC01-appb-C000002
 一般式(A-2)中、R5は、水素原子、炭素数1~5の炭化水素基、又は炭素数1~5のアルキル基を有するアルキルシリル基を表す。R6は、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、又はハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子)を表す。pは、0~2の整数を表す。
 一般式(A-2)におけるR5は、炭素数1~5の炭化水素基を表すことが好ましく、炭素数1~3の炭化水素基を表すことがより好ましい。
 一般式(A-2)におけるR6は、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基を表すことが好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基がより好ましい。
 一般式(A-2)におけるpは、光学フィルムの耐熱性を高める観点から、1又は2を表すことが好ましい。pが1又は2を表すと、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。
 一般式(A-2)で表される構造を有するシクロオレフィン単量体は、有機溶媒への溶解性を向上させる点から好ましい。一般的に有機化合物は対称性を崩すことによって結晶性が低下するため、有機溶媒への溶解性が向上する。一般式(A-2)におけるR5及びR6は、分子の対称軸に対して片側の環構成炭素原子のみに置換されているので、分子の対称性が低く、すなわち、一般式(A-2)で表される構造を有するシクロオレフィン単量体は溶解性が高いため、光学フィルムを溶液流延法によって製造する場合に適している。
 シクロオレフィン単量体の重合体における一般式(A-2)で表される構造を有するシクロオレフィン単量体の含有割合は、シクロオレフィン系樹脂を構成する全シクロオレフィン単量体の合計に対して例えば、70モル%以上、好ましくは80モル%以上、より好ましくは100モル%とし得る。一般式(A-2)で表される構造を有するシクロオレフィン単量体を一定以上含むと、樹脂の配向性が高まるため、位相差(リターデーション)値が上昇しやすい。
 以下、一般式(A-1)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物1~14に示し、一般式(A-2)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物15~34に示す。
Figure JPOXMLDOC01-appb-C000003
 シクロオレフィン単量体と共重合可能な共重合性単量体の例には、シクロオレフィン単量体と開環共重合可能な共重合性単量体、及びシクロオレフィン単量体と付加共重合可能な共重合性単量体等が含まれる。
 開環共重合可能な共重合性単量体の例には、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン及びジシクロペンタジエン等のシクロオレフィンが含まれる。
 付加共重合可能な共重合性単量体の例には、不飽和二重結合含有化合物、ビニル系環状炭化水素単量体及び(メタ)アクリレート等が含まれる。不飽和二重結合含有化合物の例には、炭素原子数2~12(好ましくは2~8)のオレフィン系化合物が含まれ、その例には、エチレン、プロピレン及びブテン等が含まれる。ビニル系環状炭化水素単量体の例には、4-ビニルシクロペンテン及び2-メチル-4-イソプロペニルシクロペンテン等のビニルシクロペンテン系単量体が含まれる。(メタ)アクリレートの例には、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート及びシクロヘキシル(メタ)アクリレート等の炭素原子数1~20のアルキル(メタ)アクリレートが含まれる。
 シクロオレフィン単量体と共重合性単量体との共重合体におけるシクロオレフィン単量体の含有割合は、共重合体を構成する全単量体の合計に対して例えば、20~80mol%、好ましくは30~70mol%の範囲とし得る。
 シクロオレフィン系樹脂は、前述のとおり、ノルボルネン骨格を有するシクロオレフィン単量体、好ましくは一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体を重合又は共重合して得られる重合体であり、その例には、以下のものが含まれる。
 1)シクロオレフィン単量体の開環重合体
 2)シクロオレフィン単量体と、それと開環共重合可能な共重合性単量体との開環共重合体
 3)上記1)又は2)の開環(共)重合体の水素添加物
 4)上記1)又は2)の開環(共)重合体をフリーデルクラフツ反応により環化した後、水素添加した(共)重合体
 5)シクロオレフィン単量体と、不飽和二重結合含有化合物との飽和共重合体
 6)シクロオレフィン単量体のビニル系環状炭化水素単量体との付加共重合体及びその水素添加物
 7)シクロオレフィン単量体と、(メタ)アクリレートとの交互共重合体
 上記1)~7)の重合体は、いずれも公知の方法、例えば、特開2008-107534号公報や特開2005-227606号公報に記載の方法で得ることができる。例えば、上記2)の開環共重合に用いられる触媒や溶媒は、例えば、特開2008-107534号公報の段落0019~0024に記載のものを使用できる。上記3)及び6)の水素添加に用いられる触媒は、例えば、特開2008-107534号公報の段落0025~0028に記載のものを使用できる。上記4)のフリーデルクラフツ反応に用いられる酸性化合物は、例えば、特開2008-107534号公報の段落0029に記載のものを使用できる。上記5)~7)の付加重合に用いられる触媒は、例えば、特開2005-227606号公報の段落0058~0063に記載のものを使用できる。上記7)の交互共重合反応は、例えば、特開2005-227606号公報の段落0071及び0072に記載の方法で行うことができる。
 中でも、上記1)~3)及び5)の重合体が好ましく、上記3)及び5)の重合体がより好ましい。すなわち、シクロオレフィン系樹脂は、得られるシクロオレフィン系樹脂のガラス転移温度を高くし、かつ光透過率を高くすることができる点で、下記一般式(B-1)で表される構造単位と下記一般式(B-2)で表される構造単位の少なくとも一方を含むことが好ましく、一般式(B-2)で表される構造単位のみを含むか、又は一般式(B-1)で表される構造単位と一般式(B-2)で表される構造単位の両方を含むことがより好ましい。一般式(B-1)で表される構造単位は、前述の一般式(A-1)で表されるシクロオレフィン単量体由来の構造単位であり、一般式(B-2)で表される構造単位は、前述の一般式(A-2)で表されるシクロオレフィン単量体由来の構造単位である。
Figure JPOXMLDOC01-appb-C000004
 一般式(B-1)中、Xは、-CH=CH-又は-CH2CH2-を表す。R1~R4及びpは、それぞれ一般式(A-1)のR1~R4及びpと同義である。
Figure JPOXMLDOC01-appb-C000005
 一般式(B-2)中、Xは、-CH=CH-又は-CH2CH2-を表す。R5~R6及びpは、それぞれ一般式(A-2)のR5~R6及びpと同義である。
 本発明に用いられるシクロオレフィン系樹脂は、市販品であってもよい。シクロオレフィン系樹脂の市販品の例には、JSR(株)製のアートン(Arton)G(例えば、G7810等)、アートンF、アートンR(例えば、R4500、R4900及びR5000等)、及びアートンRX(例えば、RX4500等)が含まれる。
 シクロオレフィン系樹脂の固有粘度〔η〕inhは、30℃の測定において、0.2~5cm3/gの範囲であることが好ましく、0.3~3cm3/gの範囲であることがより好ましく、0.4~1.5cm3/gの範囲であることがさらに好ましい。
 シクロオレフィン系樹脂の数平均分子量(Mn)は、8000~100000の範囲であることが好ましく、10000~80000の範囲であることがより好ましく、12000~50000の範囲であることがさらに好ましい。シクロオレフィン系樹脂の重量平均分子量(Mw)は、20000~300000の範囲であることが好ましく、30000~250000の範囲であることがより好ましく、40000~200000の範囲であることがさらに好ましい。シクロオレフィン系樹脂の数平均分子量や重量平均分子量は、前述のゲルパーミエーションクロマトグラフィー(GPC)にてポリスチレン換算にて測定することができる。
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあると、シクロオレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性、及び基材フィルムとしての成形加工性が良好となる。
 シクロオレフィン系樹脂のガラス転移温度(Tg)は、通常、110℃以上であり、110~350℃の範囲であることが好ましく、120~250℃の範囲であることがより好ましく、120~220℃の範囲であることがさらに好ましい。Tgが110℃以上であると、高温条件下での変形を抑制しやすい。一方、Tgが350℃以下であると、成形加工が容易となり、成形加工時の熱による樹脂の劣化も抑制しやすい。
 シクロオレフィン系樹脂の含有量は、基材フィルムに対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。
 〈微粒子〉
 本発明に係る基材フィルムがシクロオレフィン系樹脂を用いる場合は、微粒子を含有することも好ましい。
 本発明に使用される微粒子としては、無機化合物の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。また、有機化合物の微粒子も好ましく使用することができる。有機化合物の例としてはポリテトラフルオロエチレン、セルロースアセテート、ポリスチレン、ポリメチルメタクリレート、ポリプピルメタクリレート、ポリメチルアクリレート、ポリエチレンカーボネート、アクリルスチレン系樹脂、シリコーン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン系樹脂、メラミン系樹脂、ポリオレフィン系粉末、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、又はポリフッ化エチレン系樹脂、澱粉等の有機高分子化合物の粉砕分級物や懸濁重合法で合成した高分子化合物を用いることができる。
 微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化ケイ素が好ましく、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
 <ポリイミド系樹脂>
 ポリイミド系樹脂は、テトラカルボン酸二無水物とジアミンとの重合反応物でありうる。
 テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物のいずれであってもよいが、好ましくは芳香族テトラカルボン酸二無水物である。ジアミンは、芳香族ジアミン、脂肪族ジアミン、脂環式ジアミンのいずれであってもよいが、好ましくは芳香族ジアミンである。
 ポリイミド系樹脂の重量平均分子量Mwは、特に制限されないが、基材フィルムの靱性を高めて搬送張力によって破断しにくくする観点では、10万~30万であることが好ましく、13万~25万の範囲であることがより好ましい。ポリイミド系樹脂の重量平均分子量Mwの測定方法は、前述と同様である。
 ポリイミド系樹脂の含有量は、基材フィルムに対して60質量%以上であることが好ましく、70質量%以上であることがより好ましい。
 〔1.3〕物性
 〈位相差Ro及びRt〉
 本発明に係る基材フィルムは、偏光子の表面に積層して、位相差フィルムなどの光学フィルムとして機能しうる。
 基材フィルムは、例えばIPSモード用の位相差フィルムとして用いる観点では、測定波長590nm、23℃・55%RHの環境下で測定される面内方向の位相差Roは、0~10nmの範囲であることが好ましく、0~5nmの範囲であることがより好ましい。基材フィルムの厚さ方向の位相差Rtは、-40~40nmの範囲であることが好ましく、-25~25nmの範囲であることがより好ましい。
 Ro及びRtは、それぞれ下記式で定義される。
 式(a):Ro=(nx-ny)×d
 式(b):Rt=((nx+ny)/2-nz)×d
 (式中、
 nxは、基材フィルムの面内遅相軸方向(屈折率が最大となる方向)の屈折率を表し、
 nyは、基材フィルムの面内遅相軸に直交する方向の屈折率を表し、
 nzは、基材フィルムの厚さ方向の屈折率を表し、
 dは、基材フィルムの膜厚(nm)を表す。)
 基材フィルムの面内遅相軸は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。
 Ro及びRtは、以下の方法で測定することができる。
 1)基材フィルムを23℃55%RHの環境下で24時間調湿する。このフィルムの平均屈折率をアッベ屈折計で測定し、膜厚dを市販のマイクロメーターを用いて測定する。
 2)調湿後のフィルムの、測定波長590nmにおけるリターデーションRo及びRtを、それぞれ自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃55%RHの環境下で測定する。
 基材フィルムの位相差Ro及びRtは、例えば樹脂の種類や延伸条件、乾燥条件によって調整することができる。例えば、乾燥温度を高くすることで、Rtを低くすることができる。
 〔1.4〕基材フィルムの製造方法
 本発明に係る基材フィルムの形態は、特に制限されないが、例えば帯状でありうる。すなわち、本発明に係る基材フィルムは、その幅方向に直交する方向にロール状に巻き取られて、ロール体とすることが好ましい。
 [製造方法]
 本発明に係る基材フィルムの製造方法は、1)基材フィルム用溶液を得る工程と、2)得られた基材フィルム溶液を、支持体の表面に付与する工程と、3)付与された基材フィルム用溶液から溶媒を除去して、基材フィルムを形成する工程とを有する。
 1)基材フィルム用溶液を得る工程
 前述の樹脂と、溶媒とを含む基材フィルム用溶液(「ドープ」ともいう。)を調製する。
 基材フィルム用溶液に用いられる溶媒は、樹脂を良好に分散又は溶解させうるものであればよく、特に制限されない。例えば、本発明に用いられる有機溶媒としては、アルコール類(メタノール、エタノールやジオール、トリオール、テトラフルオロプロパノール等)、グリコール類、セロソルブ類、ケトン類(アセトン、メチルエチルケトン等)、カルボン酸類(ギ酸、酢酸等)、カーボネート類(エチレンカーボネート、プロピレンカーボネート等)、エステル類(酢酸エチル、酢酸プロピル等)、エーテル類(イソプロピルエーテル、THF等)、アミド類(ジメチルスルホキシド等)、炭化水素類(ヘプタン等)、ニトリル類(アセトニトリル等)、芳香族類(シクロヘキシルベンゼン、トルエン、キシレン、クロロベンゼン等)、ハロゲン化アルキル類(ジクロロメタン(「塩化メチレン」ともいう。)等)、アミン類(1,4-ジアザビシクロ[2.2.2]オクタン、ジアザビシクロウンデセン等)、ラクトン系などが挙げられる。
 中でも、基材フィルムの溶媒として、沸点が大気圧下において100℃以下であり、種類として塩素系溶媒であり、更には具体的にはジクロロメタン(「塩化メチレン」ともいう。)であることが、基材フィルム用のドープを調製し製膜する際において、扱いやすさの観点から、好ましい。これは基材フィルム用のドープを調製し製膜する際において、溶解性が高いこと及び乾燥速度が速く、それによって塗布膜の膜質を調整できるといった観点から好ましい。また親水性の溶媒を添加することも可能である。親水性の溶媒としてはケトン類、アルコール類が挙げられるが、アルコール類であることが好ましい。より好ましくはイソプロパノール、エタノール、メタノール等であり、最も好ましくはメタノールである。添加量としては1~20質量%の範囲が好ましく、より好ましくは3~10質量%の範囲である。
 基材フィルム用溶液の樹脂濃度は、粘度を後述する範囲に調整しやすくする観点では、例えば1.0~20質量%の範囲であることが好ましい。さらに、塗膜の乾燥時の収縮量を少なくする観点では、基材フィルム用溶液の樹脂濃度は適度に高いことが好ましく、5質量%超20質量%以下であることがより好ましく、5質量%超15質量%以下であることがさらに好ましい。また溶液濃度を調整することで、膜が形成されるまでの時間が短くなり、それらの乾燥時間も基材フィルムの表面状態を制御する手段となりうる。高濃度化のためには適宜混合溶媒を用いてもよい。
 基材フィルム用溶液の粘度は、所望の膜厚の基材フィルムを形成しうる程度であればよく、特に制限されないが、例えば5~5000mPa・sの範囲であることが好ましい。基材フィルム用溶液の粘度が5mPa・s以上であると、適度な膜厚の基材フィルムを形成しやすく、5000mPa・s以下であると、溶液の粘度上昇によって、膜厚ムラが生じるのを抑制しうる。基材フィルム用溶液の粘度は、同様の観点から、100~1000mPa・sの範囲であることがより好ましい。基材フィルム用溶液の粘度は、25℃で、E型粘度計で測定することができる。
 2)基材フィルム用溶液を付与する工程
 次いで、得られた基材フィルム用溶液を、支持体の表面に付与する。具体的には、得られた基材フィルム用溶液を、支持体の表面に塗布する。支持体と基材フィルムの積層体は、「積層フィルム」ともいう。
 〈支持体〉
 支持体は、基材フィルム形成時に支持するものであり、通常、樹脂フィルムを含む。支持体の膜厚は、50μm以下であることが好ましい。支持体の膜厚は、薄膜だがある程度の強度(腰や剛性)が支持体として必要であることから、好ましくは、15~45μmの範囲であり、より好ましくは20~40μmの範囲である。
 用いられる樹脂としては、セルロースエステル系樹脂、シクロオレフィン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアリレート系樹脂、及びスチレン系樹脂又はその複合樹脂を挙げることができるが、中でも高湿度環境下での保存性に優れる樹脂として、ポリエステル系樹脂を使用することが好ましい。
 樹脂フィルムの例には、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)など)などが含まれる。中でも、扱いやすさの観点から、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)を含むポリエステル系樹脂フィルムが好ましい。
 樹脂フィルムは、熱処理(熱緩和)されたものであってもよいし、延伸処理されたものであってもよい。
 熱処理は、樹脂フィルムの残留応力(例えば延伸に伴う残留応力など)を低減させるためであり、特に制限されないが、樹脂フィルムを構成する樹脂のガラス転移温度をTgとしたとき、(Tg+60)~(Tg+180)℃の範囲で行うことができる。
 延伸処理は、樹脂フィルムの残留応力を増加させるためであり、延伸処理は、例えば樹脂フィルムの2軸方向に行うことが好ましい。延伸処理は、任意の条件で行うことができ、例えば延伸倍率120~900%程度で行うことができる。樹脂フィルムが延伸されているかどうかは、例えば面内遅層軸(屈折率が最大となる方向に延びた軸)があるかどうかによって確認することができる。延伸処理は、基材フィルムを積層する前にされてもよいし、積層した後にされてもよいが、積層する前に延伸されていることが好ましい。
 ポリエステル系樹脂フィルム(簡単に、ポリエステルフィルムともいう。)は市販品を用いることができ、例えば、ポリエチレンテレフタレートフィルムTN100(東洋紡社製)、MELINEX ST504(帝人デュポンフィルム社製)等を好適に用いることができる。
 支持体は、樹脂フィルムの表面に設けられた離型層をさらに有していてもよい。離型層は、カバー部材を作製する際に、支持体を基材フィルムから剥離しやすくしうる。
 離型層は、公知の剥離剤を含むものであってよく、特に制限されない。離型層に含まれる剥離剤の例には、シリコーン系剥離剤、及び、非シリコーン系剥離剤が含まれる。
 シリコーン系剥離剤の例には、公知のシリコーン系樹脂が含まれる。非シリコーン系剥離剤の例には、ポリビニルアルコール又はエチレン-ビニルアルコール共重合体などに長鎖アルキルイソシアネートを反応させた長鎖アルキルペンダント型重合体、オレフィン系樹脂(例えば共重合ポリエチレン、環状ポリオレフィン、ポリメチルペンテン)、ポリアリレート樹脂(例えば、芳香族ジカルボン酸成分と二価フェノール成分との重縮合物)、フッ素樹脂(例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、PFA(四フッ化エチレンとパーフルオロアルコキシエチレンとの共重合体)、FEP(テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体)、ETFE(テトラフルオロエチレンとエチレンの共重合体))などが含まれる。
 離型層の厚さは、所望の剥離性を発現しうる程度であればよく、特に制限されないが、例えば0.1~1.0μmの範囲であることが好ましい。
 支持体には、添加剤として、可塑剤を含有してもよい。可塑剤としては特に限定されないが、好ましくは、多価アルコールエステル系可塑剤、フタル酸エステル系可塑剤、クエン酸系可塑剤、脂肪酸エステル系可塑剤、リン酸エステル系可塑剤、多価カルボン酸エステル系可塑剤、及びポリエステル系可塑剤等から選択されることが好ましい。
 また、支持体は紫外線吸収剤を含有することもできる。用いられる紫外線吸収剤としては、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。
 さらに、本発明に用いられる支持体は、搬送性を向上するために、微粒子を含有することも好ましい。
 微粒子としては、無機化合物の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。また、有機化合物の微粒子も好ましく使用することができる。有機化合物の例としてはポリテトラフルオロエチレン、セルロースアセテート、ポリスチレン、ポリメチルメタクリレート、ポリプピルメタクリレート、ポリメチルアクリレート、ポリエチレンカーボネート、アクリルスチレン系樹脂、シリコーン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン系樹脂、メラミン系樹脂、ポリオレフィン系粉末、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、又はポリフッ化エチレン系樹脂、澱粉等の有機高分子化合物の粉砕分級物や懸濁重合法で合成した高分子化合物を用いることができる。
 微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化ケイ素が好ましく、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
 本発明に用いられる支持体の製造方法としては、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から製膜方法は、溶液流延法と溶融流延法が好ましい。さらに、溶液流延法であると、加工工程での温度が低く、このため種々の添加剤を用いることによる高機能化を付与することができる。
 溶液流延法により製膜する場合、支持体の製造方法は、熱可塑性樹脂及び上述した微粒子等の添加剤を溶媒に溶解、分散させてドープを調製する工程(溶解工程;ドープ調製工程)、ドープを無限に移行する無端の金属支持体上に流延する工程(流延工程)、流延したドープをウェブとして乾燥する工程(溶媒蒸発工程)、金属支持体から剥離する工程(剥離工程)、乾燥、延伸、幅保持する工程(延伸・幅保持・乾燥工程)、仕上がったフィルムをロール状に巻取る工程(巻き取り工程)を含むことが好ましい。
 以上のようにして製造された支持体を用いて、本発明に係る基材フィルムを下記方法によって、形成することが好ましい。
 基材フィルム用溶液の塗布方法は、特に制限されず、例えばバックロールコート法、グラビアコート法、スピンコート法、ワイヤーバーコート法、ロールコート法などでの公知の方法でありうる。中でも、薄くかつ均一な膜厚の塗膜を形成しうる観点から、バックコート法が好ましい。
 3)基材フィルムを形成する工程
 次いで、支持体に付与された基材フィルム用溶液から溶媒を除去して、基材フィルムを形成する。
 具体的には、支持体に付与された基材フィルム用溶液を乾燥させる。乾燥は、例えば送風又は加熱により行うことができる。中でも、基材フィルムのカールなどを抑制しやすくする観点では、送風により乾燥させることが好ましく、更には乾燥初期と乾燥後半においての風速差をつけることが、下記膜厚偏差を制御する点において好ましい。具体的には、初期の風速が高い方が膜厚偏差は大きくなり、初期の風速が低いと小さくなる傾向にある。
 したがって、乾燥条件(例えば乾燥温度、乾燥風量、乾燥時間など)を調整することにより、基材フィルムの疎密を制御し、前記基材フィルムの膜厚を下記式1を満たすように調整することができる。
 式1: 5<|幅方向の無作為に選択した3点の膜厚の平均値(B)-平均膜厚値(A)|/平均膜厚値(A)×100<20(%)
 ここで、平均膜厚値(A)はフィルムから無作為に抽出した10点の膜厚値の平均値である。
 式1で表される値が5%を超えることで、表面が適度に凹凸を有することで上層との密着性を向上する効果を得ることができ、20%未満であることで、表面の凹凸が大きすぎることがなく、上層の塗布性、平滑性に影響しない。
 膜厚の測定は、市販の膜厚保測定装置を用いることができ、例えば、膜厚測定システムとしてはF20-UV(フィルメトリクス社製)が挙げられる。
 また、前記基材フィルムの膜厚の偏差は、0.5±0.2μmの範囲内に調整することが好ましい。膜質は疎になる方向に調整することが上層との密着性向上の観点から好ましく、具体的には乾燥速度を高くすることが好ましく、0.0015~0.05kg/hr・m2であることが好ましく、0.002~0.05kg/hr・m2の範囲であることがより好ましい。
 乾燥速度とは、単位時間、単位面積当たりに蒸発する溶媒の質量として表される。乾燥速度は、通常、乾燥温度によって調整することができる。乾燥温度は、使用する溶媒種にもよるが、例えば50~200℃の範囲(使用する溶媒の沸点Tbに対して(Tb-50)~(Tb+50)℃)でありうる。温度制御は多段階で行ってもよい。ある程度乾燥が進んだ後は、より高温で乾燥することで乾燥速度、膜質を制御することができる。
 本実施の形態に係る基材フィルムは、前述の通り、帯状でありうる。したがって、本実施の形態に係る積層フィルムの製造方法は、4)帯状の積層フィルムをロール状に巻き取り、ロール体とする工程をさらに含むことが好ましい。
 4)基材フィルムを巻き取り、ロール体を得る工程
 得られた帯状の基材フィルムを、その幅方向に直交する方向にロール状に巻き取り、ロール体とする。
 帯状の基材フィルムの長さは、特に制限されないが、例えば100~10000m程度でありうる。また、帯状の積層フィルムの幅は、1m以上であることが好ましく、1.1~4mの範囲であることがより好ましい。フィルムの均一性を高める観点では、より好ましくは1.3~2.5mの範囲である。
 [製造装置]
 本発明に用いられる基材フィルムの製造方法は、例えば図3に示される製造装置によって行うことができる。
 図3は、本実施の形態に係る基材フィルムの製造方法を実施するための製造装置B200の模式図である。製造装置B200は、供給部B210と、塗布部B220と、乾燥部B230と、冷却部B240と、巻き取り部B250とを有する。Ba~Bdは、支持体B110を搬送する搬送ロールを示す。
 供給部B210は、巻き芯に巻かれた帯状の支持体B110のロール体B201を繰り出す繰り出し装置(不図示)を有する。
 塗布部B220は、塗布装置であって、支持体B110を保持するバックアップロールB221と、バックアップロールB221で保持された支持体B110に、基材フィルム用溶液を塗布する塗布ヘッドB222と、塗布ヘッドB222の上流側に設けられた減圧室B223とを有する。
 塗布ヘッドB222から吐出される基材フィルム用溶液の流量は、不図示のポンプにより調整可能となっている。塗布ヘッドB222から吐出する基材フィルム用溶液の流量は、予め調整した塗布ヘッドB222の条件で連続塗布したときに、安定して所定の膜厚の塗布層を形成できる量に設定されている。
 減圧室B223は、塗布時に塗布ヘッドB222からの基材フィルム用溶液と支持体B110との間に形成されるビード(塗布液の溜まり)を安定化するための機構であり、減圧度を調整可能となっている。減圧室B223は、減圧ブロワ(不図示)に接続されており、内部が減圧されるようになっている。減圧室B223は、空気漏れがない状態になっており、かつ、バックアップロールとの間隙も狭く調整され、安定した塗布液のビードを形成できるようになっている。
 乾燥部B230は、支持体B110の表面に塗布された塗膜を乾燥させる乾燥装置であって、乾燥室B231と、乾燥用気体の導入口B232と、排出口B233とを有する。乾燥風の温度及び風量は、塗膜の種類及び支持体B110の種類により適宜決められる。乾燥部B230で乾燥風の温度及び風量、乾燥時間などの条件を設定することにより、乾燥後の塗膜の残留溶媒量を調整することができる。乾燥後の塗膜の残留溶媒量は、乾燥後の塗膜の単位質量と、該塗膜を十分に乾燥した後の質量を比較することにより測定することができる。
 (残留溶媒量)
 基材フィルムは、基材フィルム用溶液を塗布して得られることから、当該溶液に由来する溶媒が残留していることがある。残留溶媒量は、使用溶媒・塗布液濃度、基材フィルムの乾燥に当てる風速、乾燥温度・時間、乾燥室の条件(外気か内気循環か)、塗布時のバックロールの加熱温度等によって制御しうる。
 前述のとおり、高速乾燥になると膜が疎になって表面状態を制御することができる。
 基材フィルムの残留溶媒量は、前記基材フィルムの残留溶媒量をS1としたときに、下記式2を満たすことが、基材フィルムのカールバランスの観点から好ましい。
 式2 10<S1<1000(ppm)
 具体的には、基材フィルムの残留溶媒量は、800ppm未満であることがより好ましく、500~700ppm未満であることが、基材フィルムのカールバランスを考慮するとより好ましい。また、支持体にも溶媒が残存するような溶媒・塗布プロセスを選ぶことで、支持体と基材フィルムとの密着性が向上する。支持体の残存溶媒量としては10~100ppmの範囲が好ましい。
 支持体及び基材フィルムの残留溶媒量は、ヘッドスペースガスクロマトグラフィーにより測定することができる。ヘッドスペースガスクロマトグラフィー法では、サンプルを容器に封入し、加熱し、容器中に揮発成分が充満した状態で速やかに容器中のガスをガスクロマトグラフに注入し、質量分析を行って化合物の同定を行いながら揮発成分を定量するものである。ヘッドスペース法では、ガスクロマトグラフにより、揮発成分の全ピークを観測することを可能にするとともに、電磁気的相互作用を利用した分析法を用いることによって、高精度で揮発性物質やモノマーなどの定量も併せて行うことができる。
 冷却部B240は、乾燥部B230で乾燥させて得られる塗膜(基材フィルム)を有する支持体B110の温度を冷却し、適切な温度に調整する。冷却部B240は、冷却室B241と、冷却風入口B242と、冷却風出口B243とを有する。冷却風の温度及び風量は、塗膜の種類及び支持体B110の種類により適宜決めうる。また、冷却部B240を設けなくても、適正な冷却温度になる場合は、冷却部B240はなくてもよい。
 巻き取り部B250は、基材フィルムが形成された支持体B110を巻き取り、ロール体B251を得るための巻き取り装置(不図示)である。
 〔2〕透明基材
 ここで「透明」とは、23℃・55%RHの環境下で調湿後測定される全光線透過率が80%以上、好ましくは85%以上、より好ましくは90%以上、特に好ましくは95%以上であることをいう。全光線透過率は、JIS 7573(プラスチックー全光線透過率及び全光線反射率の求め方)にしたがって測定することができる。
 本発明に係る透明基材は、厚さが5μm以上50μm未満の可撓性を有する透明基材である。厚さが5μm未満では、強度が保てないことから、加工時の破損発生率が高く、歩留まりが急激に悪くなることに加えて、繰り返されるディスプレイの開閉に伴い破損するなど耐久性に劣る。また、厚さが50μm以上であると、カバー部材の全体の厚さが厚くなりすぎて可撓性(割れの発生など)や重さ等に劣るため、上記範囲内であることが必要である。より好ましい厚さとしては、10μm以上30μm未満である。
 また、本発明に係る透明基材の弾性率は55~80GPaの範囲内であって、かつ、前記透明基材の弾性率と前記基材フィルムとの弾性率比(透明基材の弾性率/基材フィルムの弾性率)の値が30以上であることが、好ましい。これは、薄膜化により低い弾性率をもつ透明基材を用いて、押し込み強度の向上や折りあとがつかないカバー部材を提供するには、弾性率がより低い基材フィルムを用いること、即ち透明基材に対して弾性率比(透明基材の弾性率/基材フィルムの弾性率)の値を30以上にすることで、透明基材の保護機能をより向上することができる。
 <弾性率の測定>
 基材フィルム及び透明基材の弾性率(引張弾性率ともいう。)の測定条件を以下のように設定し、弾性率は、ひずみ0.05~0.25%間の線形回帰によって求める。
 MD方向について、JIS K7127(1999)に準拠して、以下の方法で引張弾性率を測定する。
 1)基材フィルム又は透明基材を100mm(MD方向)×10mm(TD方向)のサイズに切り出して、試験片とする。
 2)この試験片を、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、試験片の長手方向(MD方向)に引張速度50mm/min引っ張り、MD方向の引張弾性率を測定する。測定は、23℃55%RH下で行う。
 〔2.1〕ガラス基材
 耐久性、平面性等に優れることから、本発明に係る透明基材は、薄型のガラス基材であることが好ましく、例えば、ソーダライムガラス、ケイ酸塩ガラスなどが挙げられ、ケイ酸塩ガラスであることが好ましく、具体的には、シリカガラス又はホウケイ酸ガラスであることがより好ましい。
 ガラス基材を構成するガラスは、アルカリ成分を実質的に含有していない無アルカリガラスであること、具体的には、アルカリ成分の含有量が1000ppm以下であるガラスであることが好ましい。ガラス基板中のアルカリ成分の含有量は、500ppm以下であることが好ましく、300ppm以下であることがより好ましい。アルカリ成分を含有するガラス基材は、フィルム表面で陽イオンの置換が発生し、ソーダ吹きの現象が生じやすい。それにより、フィルム表層の密度が低下しやすく、ガラス基材が破損しやすいからである。
 ガラス基材は、一般的な公知の方法、例えばフロート法、ダウンドロー法、オーバーフローダウンドロー法などにより成形されうる。なかでも、成形時にガラス基材の表面が成形部材と接触せず、得られるガラス基材の表面に傷がつきにくいことなどから、オーバーフローダウンドロー法が好ましい。
 本発明に用いられるガラス基材は、例えばホウケイ酸ガラスのような厚いガラスを所望の厚さに研削することによって得ることもできるが、厚いガラスシートを研削して研磨することでは、200μm未満のガラス基材を得ることは困難である。
 したがって、本発明に係る厚さが5μm以上50μm未満のガラス基材を得るには、特殊なフロート法を採用することが好ましい。
 厚さが薄いほど、極薄のガラス板の取り扱いや加工が困難であり、ガラスの強度が低下し、破損する確率が高くなる。薄型のガラス基材の取り扱い及び加工を容易にするために、薄型のガラス基材をより厚い支持基板(以下、「キャリア基板」ともいう。)に一時的に接着しながら加工し、加工の後工程として支持基板を剥離することによって薄型なガラス基材を得る方法が提案されてきた
 例えば、前述の国際公開第2017/066924号によれば、厚さが100μm未満のソーダライムガラスを以下の工程によって製造することができる。
 (工程1)接合面を有するガラスキャリア基板上にガラス基材22表面の第1の表面が接するように形成し、第1の表面とは反対側の第2の表面に接着力を有するコンタクト膜(「コンタクトフィルム」ともいう。)を付着させる工程。
 すなわち上記ガラス基材の製造方法は、図4(工程1)に示すように、十分な強度と加工しやすい厚さを有するキャリア基板21に、ガラス基材形成用の材料を所望の厚さに流し込み、ガラス基材22の第1面をキャリア基板21に接するように形成した後、ガラス基材22の反対側の第2の面にコンタクト膜23を付着する工程を有する。
 (工程2)次いで、ガラス基材22を接着力の高いコンタクト膜23によって、キャリア基板21より剥離する工程(図4(工程2))。
 (工程3)コンタクト膜の接着力を弱める脆弱化処理(電磁放射線照射24)によって、キャリア基板から剥離されたガラス基材22の第2面からコンタクト膜23を除去する工程(図4(工程3))を含むことを特徴とする。
 すなわち、ガラス基材を安全に保持するためのコンタクト膜23を使用することで、ガラス基材22の保護機能を有することができ、それにより、例えば、ガラス基材22の露出した表面を、例えば、それが生じ得る機械的損傷から保護することができ、安全かつ簡便に取り扱うことができるものである。
 コンタクト膜は、特定の要件に応じて、硬質又は軟質の材料を含むことができ、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)又はポリオレフィン(PO)を好ましい材料として用いることができる。
 コンタクト膜は、通常、基材の一方の面に設けられた接着剤からなる接着剤層によってガラス基材に接着されている。しかし、コンタクト膜自体の基材が接着性を有することは除外されない。
 コンタクト膜とガラス基材の第2の面との間の接着力は、圧着時にキャリア基板とガラス基材との間の接合力を解消するために、剥離装置による剥離時にガラス基材に十分な力を伝達することができるように選択される。
 コンタクト膜は、箔又はテープとして提供することができ、これは、例えばロールから巻き取ることができ、又はシートとして提供することができる。好ましくは、コンタクト膜の厚さは50μm以上であり、さらに好ましくは80μm以上であり、さらに好ましくは125μm以上であり、特に好ましくは150μm以上である。
 ガラス基材は、前述のとおり、アルカリ含有ガラス組成物から作られることが好ましい。好ましいガラス材料は、例えば、アルミノケイ酸リチウムガラス、ソーダ石灰ガラス、ホウケイ酸ガラス、アルカリ金属アルミノケイ酸塩ガラス、及び低アルカリ含有量を有するアルミノケイ酸塩ガラスである。アルカリを含まない組成物も好ましい。このようなガラスは、例えば、前述のダウンドロー法、オーバーフローダウンドロー法又はフロート法等によって作製されることが好ましい。
 キャリア基板は、好ましくは少なくとも100μm以上、好ましくは300μm以上、さらに好ましくは500μm以上の厚さを有し、少なくとも3インチ(1インチは2.54cm)以上、好ましくは6インチ以上、より好ましくは8インチ以上、特に好ましくは12インチ以上の最大寸法を有する。特に、キャリア基板は、ガラス基板第一世代サイズ以上、例えば第二世代~第八世代、又はさらに大きい例えば、1×1m~3×3mの基板サイズ)を有することができる。 キャリア基板は、長方形、二次又は楕円形、又は円形等の様々な形状を有することができる。
 ガラス基材は、コンタクト膜とともにコンタクト膜の接着力によってキャリア基板から剥離された後、コンタクト膜が剥離され、図1で示す透明基材3となるガラス基材22単体が得られる。
 好ましい実施形態では、ガラス基材からコンタクト膜を除去する前に、コンタクト膜に接着力の脆弱化処理を施すことにより、接触膜と極薄基板との間の接着力を低減することが好ましい。脆弱化処理は、接着力を0.5N/25mm以下に低下させることができるように選択されることが好ましい。
 脆弱化処理は、選択された電磁放射線、例えば赤外線や紫外線又は可視光のような特定の波長範囲にあるように選択することができる 選択された電磁放射線は、使用される接着材料に依存して、狭帯域であってもよく、又はより広い帯域をカバーしてもよく、又はレーザー放射であってもよい。
 好ましくは、可視光への曝露の下では接着力が劣化しないように、可視スペクトルの外側に選択される。当該電磁放射線照射によって少なくとも部分的に非活性化することができる、市販されている様々な接着材料があり、好ましい選択は、特定の要件に依存する。
 または温度を上昇又は下降させることにより、コンタクト膜の接着性を低下させることができる場合には、脆弱化処理として熱処理を施すことも有利であり得る。
 前記電磁放射線照射は、コンタクト膜の外側から、すなわちガラス基材に接着されていない側から照射されることが好ましい。
 好ましい接着材料は広く利用可能であり、例えば、「NDS4150-20」の商品名で市販されており、対応する脆弱化処理は、365nm波長における紫外線照射が挙げられる。
 具体的なガラス基材の製造例について、実施例の項にて説明する。また、上記記載のガラス基材として、SCHOTT製、日本電気硝子製などの薄型ガラスを用いることができる。
 〔2.2〕熱可塑性樹脂基材
 本発明に係る透明基材には、熱可塑性樹脂フィルムを用いることができ、当該折可塑性樹脂としては、特に制限されず、セルロースエステル系樹脂、シクロオレフィン系樹脂、フマル酸ジエステル系樹脂、ポリプロピレン系樹脂、(メタ)アクリル系樹脂、ポリエステル系樹脂、ポリアリレート系樹脂、ポリイミド系樹脂、及びスチレン系樹脂又はその複合樹脂を挙げることができる。中でも、ポリイミド系樹脂を用いる熱可塑性樹脂フィルムを、図1で示す透明基材3とすることが、光学特性、物理特性の観点で好ましい。
 〈ポリイミド系樹脂〉
 ポリイミド系樹脂は、例えば、酸無水物とジアミン化合物からポリアミック酸(ポリイミド前駆体)を合成し、当該ポリアミック酸を熱や触媒によってイミド化することにより得られる。
 ポリイミドの合成に使用される酸無水物としては、特に制限されないが、例えば、ビフェニルテトラカルボン酸二無水物(BPDA)、ターフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、無水ピロメリット酸(PMDA)、オキシジフタル酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、ヘキサフルオロイソプロピリデンジフタル酸二無水物、シクロブタンテトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物等が挙げられる。
 また、ポリイミドの合成に使用されるジアミン化合物としては、特に制限されないが、例えば、p-フェニレンジアミン(PDA)、m-フェニレンジアミン、2,4-ジアミノトルエン、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルエーテル(ODA)、3,4′-ジアミノジフェニルエーテル、3,3′-ジメチル-4,4′-ジアミノビフェニル、2,2′-ビス(トリフルオロメチル)-4,4′-ジアミノビフェニル、3,7-ジアミノ-ジメチルジベンゾチオフェン-5,5′-ジオキシド、4,4′-ジアミノベンゾフェノン、4,4′-ビス(4-アミノフェニル)スルフィド、4,4′-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン等の芳香族ジアミン等が挙げられる。
 さらに、市販品として、ポリイミド前駆体を主成分とするポリイミドワニス、例えば、U-ワニスS(宇部興産社製)、エクリオス(三井化学(株)製)などを用いることができる。
 なお、目的に応じて紫外線透過性ポリイミドを用いる場合は、例えば、市販品のポリイミド前駆体(ポリアミック酸)を主成分とするポリイミドとして、TORMED-S、X(IST社製)、スピクセリアHR003、GR003(以上、ソマール社製)、FLUPI(NTT社製)、タイプHM(東洋紡社製)、Type-C(三井化学社製)、PI-100(丸善化学社製)、HDN-20D(新日本理化社製)、CBDA-6FDAC(セントラル硝子社製)、Q-VR-X-1655(ピーアイ技研社製)等を用いることもできる。
 〔3〕カバー部材の製造方法
 〔3.1〕カバー部材の構成例
 前記透明基材の少なくとも一方の面には、図1Aで示される構成にて、本発明の基材フィルム(基材フィルム1)が配置される。後述するように、表示装置が偏光板を有する表示ユニットである場合、当該偏光板上に粘着剤層を介して、本発明のカバー部材の基材フィルム1側が貼合されることが好ましい実施態様である。
 透明基材に対する基材フィルムの配置としては、前記基材フィルムの一方の面(A面)に対する裏面である面(B面)において、前記A面のフィルム密度(ρA)に対する前記B面のフィルム密度(ρB)の比率(ρA/ρB)の値が、0.80~0.95の範囲内であるように調整された基材フィルムのA面側を透明基材側とすることが、好ましい。
 透明基材の基材フィルム1とは反対側の面には、後述する基材フィルム2が配置されることが好ましい(図1B)。
 基材フィルム1又は基材フィルム2は、粘着剤層又は接着剤層によって、透明基材3に貼合される。
 図5は、支持体付き基材フィルムと透明基材との貼合を示す模式図である。
 図5Aは、前述の支持体5上に形成された基材フィルム1との積層体を示し、支持体5に接する基材フィルム1の面がB面に相当する。
 次いで、図5Bのように、透明基材3に粘着剤層4を介して、基材フィルム1のA面側が貼合され、その後支持体5は剥離される。
 〔3.2〕粘着剤層
 粘着剤層は、ベースポリマー、プレポリマー及び/又は架橋性モノマー、架橋剤ならびに溶媒を含む粘着剤組成物を、乾燥及び部分架橋させたものであることが好ましい。すなわち、粘着剤組成物の少なくとも一部が架橋したものでありうる。
 粘着剤組成物の例には、(メタ)アクリル系ポリマーをベースポリマーとするアクリル系粘着剤組成物、シリコーン系ポリマーをベースポリマーとするシリコーン系粘着剤組成物、ゴムをベースポリマーとするゴム系粘着剤組成物が含まれる。中でも、透明性、耐候性、耐熱性、加工性の観点では、アクリル系粘着剤組成物が好ましい。
 アクリル系粘着剤組成物に含まれる(メタ)アクリル系ポリマーは、(メタ)アクリル酸アルキルエステルと、架橋剤と架橋可能な官能基含有モノマーとの共重合体でありうる。
 (メタ)アクリル酸アルキルエステルは、アルキル基の炭素数2~14のアクリル酸アルキルエステルであることが好ましい。
 架橋剤と架橋可能な官能基含有モノマーの例には、アミド基含有モノマー、カルボキシル基含有モノマー(アクリル酸など)、ヒドロキシル基含有モノマー(アクリル酸ヒドロキシエチルなど)が含まれる。
 アクリル系粘着剤組成物に含まれる架橋剤としては、エポキシ系架橋剤、イソシアネート系架橋剤、過酸化物系架橋剤などが挙げられる。粘着剤組成物における架橋剤の含有量は、通常、ベースポリマー(固形分)100質量部に対して、例えば0.01~10質量部でありうる。
 粘着剤組成物は、必要に応じて粘着付与剤、可塑剤、ガラス繊維、ガラスビーズ、金属粉、その他の充填剤、顔料、着色剤、充填剤、酸化防止剤、紫外線吸収剤、シランカップリング剤などの各種の添加剤を更に含んでもよい。
 粘着剤層の厚さは、通常、3~100μm程度であり、好ましくは5~50μmの範囲である。
 粘着剤層の表面は、離型処理が施された剥離フィルムで保護されている。剥離フィルムの例には、アクリルフィルム、ポリカーボネートフィルム、ポリエステルフィルム、フッ素樹脂フィルムなどのプラスチックフィルムが含まれる。
 〔3.3〕接着剤層
 上記粘着剤層に代わり、接着剤層を用いることもでき、図1で示す粘着剤層4は、接着剤層であり得る。
 接着剤層は、基材フィルムと透明基材との間にそれぞれ配置される。さらに、後述する偏光板との間に配置され、表示装置を構成することも好ましい。接着剤層に含有される接着剤の種類は、同じであってもよいし、異なってもよい。
 接着剤層は、水溶性ポリマーから得られる層であってもよいし、活性エネルギー線硬化性接着剤の硬化物層であってもよい。水溶性ポリマーの場合、例えばビニルアルコール系ポリマーからなる接着剤、又はホウ酸や ホウ砂、グルタルアルデヒドやメラミン、シュウ酸などのビニルアルコール系ポリマーの水溶性架橋剤から少なくともなる接着剤等を介して行うことができる。かかる接着剤層は、水溶液の塗布乾燥層等として形成されるが、その水溶液の調製に際しては必要に応じて、他の添加剤や、酸等の触媒も配合することができる。
 活性エネルギー線硬化性接着剤は、光ラジカル重合性組成物であってもよいし、光カチオン重合性組成物であってもよい。中でも、光カチオン重合性組成物が好ましい。
 光カチオン重合性組成物は、エポキシ系化合物と、光カチオン重合開始剤とを含む。
 エポキシ系化合物とは、分子内に1以上、好ましくは2以上のエポキシ基を有する化合物である。エポキシ系化合物の例には、脂環式ポリオールに、エピクロロヒドリンを反応させて得られる水素化エポキシ系化合物(脂環式環を有するポリオールのグリシジルエーテル);脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテルなどの脂肪族エポキシ系化合物;脂環式環に結合したエポキシ基を分子内に1以上有する脂環式エポキシ系化合物が含まれる。エポキシ系化合物は、1種のみを使用してもよいし、2種以上を併用してもよい。
 光カチオン重合開始剤は、例えば芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩などのオニウム塩;鉄-アレーン錯体などでありうる。
 光カチオン重合開始剤は、必要に応じてオキセタン、ポリオールなどのカチオン重合促進剤、光増感剤、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤、溶剤などの添加剤を更に含んでもよい。
 接着剤層の厚さは、特に限定されないが、それぞれ0.01~10μmの範囲であることが好ましく、0.01~5μmの範囲であることがより好ましい。
 〔3.4〕基材フィルム2
 基材フィルム1の対向フィルムとしては、基材フィルム1を用いてもよいが、別の樹脂フィルムを用いてもよい、その例には、シクロオレフィン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアリレート系樹脂、セルロースエステル系樹脂及びスチレン系樹脂又はその複合樹脂等を含有する。中でも、高湿度環境下での保存性に優れる樹脂として、ポリエステル系樹脂を含有する樹脂フィルムを使用することが好ましい。
 上記樹脂フィルムの例には、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)など)などが含まれる。中でも、扱いやすさの観点から、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)を含むポリエステル系樹脂フィルムが好ましい。
 樹脂フィルムは、熱処理(熱緩和)されたものであってもよいし、延伸処理されたものであってもよい。
 熱処理は、樹脂フィルムの残留応力(例えば延伸に伴う残留応力など)を低減させるためであり、特に制限されないが、樹脂フィルムを構成する樹脂のガラス転移温度をTgとしたとき、(Tg+60)~(Tg+180)℃の範囲で行うことができる。
 延伸処理は、樹脂フィルムの残留応力を増加させるためであり、延伸処理は、例えば樹脂フィルムの2軸方向に行うことが好ましい。延伸処理は、任意の条件で行うことができ、例えば延伸倍率120~900%程度で行うことができる。樹脂フィルムが延伸されているかどうかは、例えば面内遅層軸(屈折率が最大となる方向に延びた軸)があるかどうかによって確認することができる。延伸処理は、基材フィルムを積層する前にされてもよいし、積層した後にされてもよいが、積層する前に延伸されていることが好ましい。
 ポリエステル系樹脂フィルム(簡単に、ポリエステルフィルムともいう。)は市販品を用いることができ、例えば、ポリエチレンテレフタレートフィルムTN100(東洋紡社製)、MELINEX ST504(帝人デュポンフィルム社製)等を好適に用いることができる。
 基材フィルム2の膜厚は適宜取り得るが、10~100μmの範囲内であることが、カバー部材の薄膜化の観点から好ましく、10~50μmの範囲内であることが、より好ましい。
 さらに、基材フィルム2には、ハードコート層等の機能性層を付与してもよい。
 (ハードコート層)
 折り畳み型ディスプレイの表面に位置させてディスプレイを保護するポリエステルフィルムは、その表面にハードコート層を有していることが好ましい。ハードコート層は、ポリエステルフィルム上のディスプレイ表面側に位置させてディスプレイにおいて用いられることが好ましい。ハードコート層を形成する樹脂としては、アクリル系、シロキサン系、無機ハイブリッド系、ウレタンアクリレート系、ポリエステルアクリレート系、エポキシ系など特に限定なく使用できる。また、2種類以上の材料を混合して用いることもできるし、無機フィラーや有機フィラーなどの粒子を添加することもできる。
 ハードコート層の膜厚としては、1~50μmの範囲が好ましい。1μm以上であると十分に硬化し、良好な鉛筆硬度が得られる。また厚さを50μm以下にすることで、ハードコートの硬化収縮によるカールを抑制し、フィルムのハンドリング性を向上させることができる。
 ハードコート層の塗布方法としては、ワイヤーバー、グラビアコート、ダイコーター、ナイフコーターなど特に限定なく使用でき、粘度、膜厚に応じて適宜選択できる。
 ハードコート層の硬化方法としては、紫外線、電子線などのエネルギー線や、熱による硬化方法など使用でき、フィルムへのダメージを軽減させるために、紫外線や電子線などによる硬化方法が好ましい。
 ハードコート層の鉛筆硬度としては、B以上が好ましく、H以上が更に好ましく、2H以上が特に好ましい。B以上の鉛筆硬度があれば、容易に傷がつくことはなく、視認性を低下させない。一般にハードコート層の鉛筆硬度は高い方が好ましいが9H以下で構わず、8H以下でも構わず、6H以下でも実用上は問題なく使用できる。
 本発明に用いられるハードコート層は、上述のような表面の鉛筆硬度を高めてディスプレイの保護をする目的に使用できるものであり、透過率が高いことが好ましい。ハードコートフィルムの透過率としては、87%以上が好ましく、88%以上がさらに好ましい。透過率が87%以上あれば、十分な視認性が得られる。ハードコートフィルムの全光線透過率は、一般的に高いほど好ましいが、99%以下で構わず、97%以下であっても構わない。また、ハードコートフィルムのヘイズは、一般的に低いことが好ましく、3%以下が好ましい。ハードコートフィルムのヘイズは2%以下がより好ましく、1%以下が最も好ましい。ヘイズが3%以下であれば、画像の視認性を向上させることができる。
 ハードコート層には、さらに、他の機能が付加されたものであってもよい。例えば、上記のような一定の鉛筆硬度を有する防眩層、防眩性反射防止層、反射防止層、低反射層及び帯電防止層などの機能性が付加されたハードコート層も本発明おいては好ましく適用される。
 〔4〕表示装置
 本発明の表示装置は、本発明のカバー部材又はカバー部材用の基材フィルムを具備することを特徴とする。本発明の表示装置は、例えば、粘接着剤層又は接着剤層を介して本発明のカバー部材を、好ましくは偏光板を介して、表示装置の表面に貼合することにより得ることができる。表示装置とは、表示機構を有する装置であり、発光源として発光素子又は発光装置を含む。表示装置としては、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、タッチパネル表示装置、電子放出表示装置(電場放出表示装置(FED等)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置)、プラズマ表示装置、投射型表示装置(グレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置等)及び圧電セラミックディスプレイ等が挙げられる。液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置及び投写型液晶表示装置等の何れをも含む。これら表示装置は、2次元画像を表示する表示装置であってもよいし、3次元画像を表示する立体表示装置であってもよい。特に、本発明の表示装置としては、有機EL表示装置及びタッチパネル表示装置が好ましく、特に有機EL表示装置が好ましい。
 また、折り畳み型ディスプレイは、連続した1枚のディスプレイが、携帯時は2つ折りにできることでサイズを半減させ、携帯性を向上させた構造となっていることが好ましい。また同時に薄型、軽量化されているものが望ましい。そのため、折り畳み型ディスプレイの屈曲半径は5mm以下が好ましく、3mm以下がさらに好ましい。屈曲半径が5mm以下であれば、折りたたんだ状態での薄型化が可能となる。屈曲半径は小さいほど良いと言えるが、0.1mm以上で構わず、0.5mm以上であっても構わない。1mm以上であっても、折り畳み構造を有しない従来のディスプレイに対比して実用性は十分良好である。ここで折りたたんだ際の屈曲半径とは、前述の図1C又は図1Dにおいて、カバー部材10を折りたたんだ際の折り畳み部分の内側の半径Rを意味する。
 図6に、本発明の表示装置の一例である有機ELディスプレイへのカバー部材の適用例を示す。
 有機ELディスプレイの一般的な構成は、電極/電子輸送層/発光層/ホール輸送層/透明電極からなる有機EL層101、及び画質を向上させるための位相差板(λ/4板)具備する偏光板102からなる表示ユニットである。本発明の表示装置100は、当該偏光板102上に粘着剤層4を介して、本発明のカバー部材10の基材フィルム1側が貼合されることが好ましい実施態様である。
 当該実施態様により、本発明の表示装置は、カバー部材の取り扱い性の向上に加え、当該カバー部材に具備された基材フィルムに折りあとがつかない表示装置であり、特に折り畳み型ディスプレイのカバー部材として、量産性を維持しながら、繰り返し折り畳んだ後の視認性に優れ、ディスプレイの折り畳み部分での画像の乱れを生じないものである。例えば、当該折り畳み型ディスプレイを搭載した携帯端末機器は、美しい画像を提供し、機能性に富み、携帯性等の利便性に優れたものである。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 ≪基材フィルムの作製≫
 <基材フィルム101の作製>
 (支持体)
 支持体として、ポリエチレンテレフタレートフィルム(PETフィルム):(東洋紡社製TN100、ノンシリコーン系剥離剤を含む離型層あり、膜厚38μm)を用いた。
 (基材フィルム101用溶液の調製)
 下記成分を混合して、基材フィルム101用溶液を得た。
 塩化メチレン(沸点41℃)             800質量部
 アクリル1:MMA/PMI/MADA共重合体(60/20/20質量比)、Mw:150万、Tg:137℃(なお、略称は、以下を示す。MMA:メタクリル酸メチル、PMI:フェニルマレイミド及びMADA:アクリル酸アダマンチル)                  20質量部
 ゴム粒子R1:                    80質量部
 分散剤(ポリオキシエチレンラウリルエーテルリン酸ナトリウム::分子量332)   基材フィルム中に0.006質量%となる添加量を添加
 (基材フィルム101の作製)
 上記支持体の離型層上に、基材フィルム101用溶液を、バックコート法によりダイを用いて塗布した後、下記の乾燥ステップで基材フィルムの乾燥を行うことで膜厚5μmの基材フィルムを形成し、基材フィルム101を得た。
 (初期乾燥)
 第1ステップ:40℃で1分
 第2ステップ:70℃で1分
 第3ステップ:100℃で1分
 第4ステップ:130℃で2分
 (後乾燥)
 第5ステップ:110℃で15分
 <ゴム粒子R1の調製>
 以下の方法で調製したゴム粒子を用いた。
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。
 脱イオン水                     180質量部
 ポリオキシエチレンラウリルエーテルリン酸    0.002質量部
 ホウ酸                     0.473質量部
 炭酸ナトリウム                 0.473質量部
 水酸化ナトリウム                0.008質量部
 重合機内を窒素ガスで充分に置換した後、内温を80℃にし、過硫酸カリウム0.021質量部を2質量%水溶液として投入した。次いで、メタクリル酸メチル84.6質量%、アクリル酸ブチル5.9質量%、スチレン7.9質量%、メタクリル酸アリル0.5質量%、n-オクチルメルカプタン1.1質量%からなる単量体混合物(c′)21質量部にポリオキシエチレンラウリルエーテルリン酸を0.07質量部加えた混合液を、上記溶液に63分間にかけて連続的に添加した。さらに、60分重合反応を継続させることにより、最内硬質重合体(c)を得た。
 その後、水酸化ナトリウム0.021質量部を2質量%水溶液として、過硫酸カリウム0.062質量部を2質量%水溶液としてそれぞれ添加した。次いで、アクリル酸ブチル80.0質量%、スチレン18.5質量%、メタクリル酸アリル1.5質量%からなる単量体混合物(a′)39質量部にポリオキシエチレンラウリルエーテルリン酸0.25質量部を加えた混合液を117分間にかけて連続的に添加した。添加終了後、過硫酸カリウム0.012質量部を2質量%水溶液で添加し、120分間重合反応を継続させて、軟質層(アクリル系ゴム状重合体(a)からなる層)を得た。軟質層のガラス転移温度(Tg)を、-30℃であった。軟質層のガラス転移温度は、アクリル系ゴム状重合体(a)を構成する各モノマーの単独重合体のガラス転移温度を組成比に応じて平均して算出した。
 その後、過硫酸カリウム0.04質量部を2質量%水溶液で添加し、メタクリル酸メチル97.5質量%、アクリル酸ブチル2.5質量%からなる単量体混合物(b′)26.1質量部を78分間かけて連続的に添加した。さらに30分間重合反応を継続させて、重合体(b)を得た。
 得られた重合体(b)を3質量%硫酸ナトリウム温水溶液中へ投入して、塩析・凝固させた。次いで、脱水・洗浄を繰り返した後、乾燥させて、3層構造のアクリル系グラフト共重合体粒子(ゴム粒子R1)を得た。得られたゴム粒子R1の平均粒子径は200nmであった。
 ゴム粒子の平均粒子径は、以下の方法で測定した。
 (平均粒子径)
 得られた分散液中のゴム粒子の分散粒径を、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)で測定した。
 <基材フィルム102~104の作製>
 基材フィルム101の作製において、ゴム粒子R1の含有量を、それぞれ65、45、及び20質量%と変化させた以外は同様にして、基材フィルム102~104を作製した。
 <基材フィルム105の作製>
 (支持体)
 支持体として、ポリエチレンテレフタレートフィルム(PETフィルム):(東洋紡社製TN100、ノンシリコーン系剥離剤を含む離型層あり、膜厚38μm)を用いた。
 (基材フィルム105用溶液の調製)
 下記成分を混合して、基材フィルム105用溶液を得た。
 塩化メチレン(沸点41℃):            860質量部
 メタノール(沸点65℃):              40質量部
 COP1(G7810:JSR(株)製ARTON G7810、Mw:14万、カルボン酸基を有するシクロオレフィン系樹脂) 100質量部
 酸化防止剤(Irganox1076:BASF社製:分子量531)
        基材フィルム中に0.002質量%となる添加量を添加
 (基材フィルム105の作製)
 上記支持体の離型層上に、基材フィルム105用溶液を、バックコート法によりダイを用いて塗布した後、下記の乾燥ステップで基材フィルムの乾燥を行うことで膜厚5μmの基材フィルムを形成し、基材フィルム105を得た。
 第1ステップ:40℃で1分
 第2ステップ:70℃で1分
 第3ステップ:100℃で1分
 第4ステップ:130℃で2分
 <基材フィルム106の作製>
 (支持体)
 支持体として、ポリエチレンテレフタレートフィルム(PETフィルム):(東洋紡社製TN100、ノンシリコーン系剥離剤を含む離型層あり、膜厚38μm)を用いた。
 (ポリイミド粉体の調製)
 乾燥窒素ガス導入管、冷却器、トルエンを満たしたDean-Stark凝集器、撹拌機を備えた4口フラスコに、下記式で表されるMeO-DABA5.146g(20mmol)を入れ、γ-ブチロラクトン(GBL)20mL及びトルエン10mLを加え、窒素気流下、室温で撹拌した。
Figure JPOXMLDOC01-appb-C000006
 それに、シス、シス、シス-1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(H-PMDA)粉末4.483g(20mmol)を加え、80℃で6時間加熱撹拌した。その後、外温を190℃まで加熱して、イミド化に伴って発生する水をトルエンとともに共沸留去した。6時間加熱、還流、撹拌を続けたところ、水の発生は認められなくなった。引き続きトルエンを留去しながら7時間加熱し、さらにトルエン留去後にメタノールを投入して再沈殿し、ポリイミド粉体6.4gを得た(収率72%)。
 (基材フィルム106用溶液の調製)
 下記成分を混合して、基材フィルム106用溶液を得た。
 塩化メチレン(沸点41℃)             900質量部
 ポリイミド1(上記ポリイミド粉体)         100質量部
 (基材フィルム106の作製)
 上記支持体の離型層上に、基材フィルム106用溶液を、バックコート法によりダイを用いて塗布した後、下記の乾燥ステップで基材フィルムの乾燥を行うことで膜厚5μmの基材フィルム106を得た。
 (初期乾燥)
 第1ステップ:40℃で1分
 第2ステップ:70℃で1分
 第3ステップ:100℃で1分
 第4ステップ:130℃で2分
 (後乾燥)
 第5ステップ:110℃で15分
 <基材フィルム107、108の作製>
 基材フィルム101の作製において、膜厚をそれぞれ10μm及び14μmと変化させた以外は同様にして、基材フィルム107及び108を作製した。
 <基材フィルム109の作製>
 基材フィルム105の作製において、ドープ中のCOP1(G7810)の固形分濃度を20質量%となるように調製した以外は同様にして、基材フィルム109を作製した。
 <基材フィルム110の作製>
 基材フィルム105の作製において、ドープ中にシリカ微粒子を添加した下記ドープを用いた以外は同様にして、基材フィルム110を作製した。
 (微粒子添加液の調製)
 シリカ微粒子(アエロジルR812:日本アエロジル社製、一次平均粒子径:7nm、見掛け比重50g/L)            4質量部
 ジクロロメタン                    48質量部
 エタノール                      48質量部
 以上をディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散を行った。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。
 (基材フィルム110用溶液の調製)
 下記組成のドープを調製した。まず、加圧溶解タンクにジクロロメタンとエタノールを添加した。ジクロロメタンとエタノールの混合溶液の入った加圧溶解タンクにシクロオレフィン系樹脂(DOP):G7810を撹拌しながら投入した。更に、溶媒投入開始後15分後に、上記で調製した微粒子添加液を投入して、これを80℃に加熱し、撹拌しながら、完全に溶解した。このとき、室温から5℃/minの昇温し、30分間で溶解した後、3℃/minで降温した。得られた溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過し、ドープを調製した。
 (ドープの組成)
 COP1(G7810)               100質量部
 ジクロロメタン                   200質量部
 エタノール                      10質量部
 微粒子添加液                      1質量部
 <基材フィルム111の作製>
 基材フィルム102の作製において、製造工程中、支持体であるPETフィルムを剥離後B面を乾燥させ、その後再度B面にPETフィルムを張り付けて巻き取った以外は同様にして、基材フィルム111を作製した。
 <基材フィルム112の作製>
 基材フィルム105の作製において、ドープ中にゴム粒子R1を65質量%になるように添加した以外は同様にして、基材フィルム112を作製した。
 <基材フィルム113の作製>
 (支持体)
 支持体として、カプトンフィルム200H/V(東レ・デュポン社製、膜厚50μm)を用いた。
 (基材フィルム113の作製)
 脱水したジメチルアセトアミド(DMAc、東京化成工業社製、沸点165℃)に、ジアミンとしてジアミン全量に対して90モル%に相当する2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB、東レ・ファインケミカル社製)と10モル%に相当する4,4’-ジアミノジフェニルエーテル(DPE、東京化成工業社製)とを窒素気流下で溶解させ、氷水浴で液温を5℃に冷却した。そこへ、系内を窒素気流下、氷水浴中に保った状態で、ジアミン全量に対して99モル%に相当する2-クロロテレフタロイルクロライド(CTPC、日本軽金属社製)を30分かけて添加し、全量添加後、約2時間の撹拌を行うことで、芳香族ポリアミド(ポリマーA)を重合した。得られた溶液に、中和剤として上記反応で発生する塩化水素量(すなわち芳香族ポリアミドのアミド基量)に対して100モル%に相当するアリルグリシジルエーテル(東京化成工業社製、中和剤E)を添加し、約1時間の撹拌を行うことでポリマーA(ポリアミド1)からなる芳香族ポリアミド溶液を得た。
 得られた芳香族ポリアミド溶液を室温にてアプリケーターを用いて上記支持体上に膜状にキャストして、115℃にて30分、265℃にて5分、熱風オーブンで乾燥を施すことで、膜厚5μmのポリマーA(ポリアミド1)からなる基材フィルム113を得た。ここで、熱風オーブンは、セーフティオーブンSPH100(エスペック株式会社製)を用い、開閉ダンパー50%にて温度表示が設定温度に到達して1時間後に使用した。
 <基材フィルム114の作製>
 (支持体)
 支持体として、カプトンフィルム200H/V(東レ・デュポン社製、膜厚50μm)を用いた。
 (基材フィルム114の作製)
 ステンレス製半月型攪拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、ジアミン成分として9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)9.76g(0.028モル)及び2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(和歌山精化工業株式会社製)8.62g(0.021モル)、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(和歌山精化工業株式会社製)6.72g(0.021モル)、γ-ブチロラクトン(三菱ケミカル株式会社製)46.86gを投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで攪拌して溶液を得た。
 この溶液に、テトラカルボン酸成分として1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(三菱ガス化学株式会社製)16.47g(0.07モル)とγ-ブチロラクトン(三菱ケミカル株式会社製)11.72gを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)3.54gを投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、γ-ブチロラクトン(三菱ケミカル株式会社製)97.62gを添加して、反応系内温度を120℃まで冷却した後、さらに約3時間攪拌して均一化し、固形分濃度20質量%のポリイミド2溶液を得た。続いて上記支持体上へ、得られたポリイミド2溶液を、基材フィルム101の作製と同様に、バックコート法によりダイを用いて塗布した後、下記の乾燥ステップで基材フィルムの乾燥を行うことで膜厚5μmの基材フィルムを形成し、基材フィルム114を得た。
 (初期乾燥)
 第1ステップ:40℃で10分
 第2ステップ:70℃で10分
 第3ステップ:100℃で30分
 第4ステップ:130℃で30分
 (後乾燥)
 第5ステップ:250℃で30分
 <基材フィルム115の作製>
 (支持体)
 支持体として、ポリエチレンテレフタレートフィルム(PETフィルム):(東洋紡社製TN100、ノンシリコーン系剥離剤を含む離型層あり、膜厚38μm)を用いた。
 (基材フィルム115用溶液の調製)
 メチルエチルケトン(MEK)             90質量部
 ゴム粒子R1                     10質量部
 マグネチックスターラーで攪拌させ、基材フィルム115用溶液を得た。
 (基材フィルム115の作製)
 上記支持体の離型層上に、基材フィルム115用溶液を、バックコート法によりダイを用いて塗布した後、下記の乾燥ステップで基材フィルムの乾燥を行うことで膜厚5μmの基材フィルムを形成し、基材フィルム115を得た。
 (初期乾燥)
 第1ステップ:40℃で1分
 第2ステップ:70℃で1分
 第3ステップ:100℃で1分
 第4ステップ:130℃で2分
 (後乾燥)
 第5ステップ:110℃で15分
 <基材フィルム116の作製>
 基材フィルム102の作製において、膜厚を25μmに調整した以は同様にして、基材フィルム116を作製した。
 ≪評価≫
 得られた基材フィルムを用いて以下の評価を行った。
 <応力-ひずみ曲線>
 基材フィルムを100mm(MD方向:長手方向)×10mm(TD方向:幅手方向)のサイズに切り取り、サンプルフィルムを得た。このサンプルフィルムを、23℃・55%RHの環境下で24時間調湿し、調湿後のサンプルフィルムを、JIS K7127:1999に準拠して、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、MD方向に引っ張りながら破断するまでの応力-ひずみ曲線を得た。応力-ひずみ曲線は、縦軸が応力(MPa)、横軸が引張破断伸び(%)で表される。応力-ひずみ曲線の測定は、23℃・55%RH下、引張速度50mm/分の条件で行った。
 上記測定によって得られた、基材フィルムの応力-ひずみ曲線から、本発明に係る直線の傾きを求めた。
 図2で示すように、基材フィルムは引張試験を行うことにより、伸びの後に破断点Xをとるが、当該破断点Xと原点(0点)とを結ぶ直性Yを引いたときに、この直線の傾きαを、本発明でいう、「基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾き」とした。
 <基材フィルムのA面及びB面の密度の測定>
 基材フィルムの表面(A面及びB面)の密度は、X線反射率法(XRR法)を用いて測定した。X線はフィルム表面に対して非常に浅い角度で入射させると全反射され、入射X線の角度が全反射臨界角以上になると、フィルム内部にX線が侵入し反射率が低下する。XRR法で測定された反射率プロファイルは専用の反射率解析ソフトを用いて解析することができ、本発明においては、反射率が低下し始める角度をθaとした時に、2θが2θaから2θa+0.1°の範囲において、測定結果と計算結果のフィッティング誤差が最も小さくなるような密度を表面密度とした。その際、表面ラフネスは0~1nmの範囲内としてフィッティングを行った。
 基材フィルムを30mm×30mmの大きさに切り出し、試料台に固定して、以下の測定条件で測定した。
 (測定条件)
 ・装置     :薄膜X線回折装置(株式会社リガク製ATX-G)
 ・サンプルサイズ:30mm×30mm
 ・入射X線波長 :1.5405Å
 ・測定範囲(θ):0~6°
 ・解析ソフト  :反射率解析ソフトGXRR(株式会社リガク製)
 <基材フィルムの弾性率の測定>
 弾性率(引張弾性率ともいう。)の測定条件を以下のように設定し、弾性率は、ひずみ0.05~0.25%間の線形回帰によって求めた。
 MD方向について、JIS K7127(1999)に準拠して、以下の方法で引張弾性率を測定した。
 1)基材フィルムを100mm(MD方向)×10mm(TD方向)のサイズに切り出して、試験片とした。
 2)この試験片を、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、試験片の長手方向(MD方向)に引張速度50mm/min引っ張り、MD方向の引張弾性率を測定した。測定は、23℃・55%RH下で行った。なお、後述する透明基材の弾性率も同様な方法で測定した。
 <押込み強度>
 基材フィルムのA面とB面について、ISO14577に規定する押込み試験の手順に従って測定した。23℃、55%RHの環境下で、試験機としては超微小硬度計(フィッシャーインスツルメンツ製、商品名「フィッシャースコープ100C」)を用い、圧子としては、基部が正方形で対面角度が136°の角錐型ダイヤモンド圧子を用いて測定を行った。
 測定は、基材フィルムに圧子を一定速度で押込んで10mNの荷重を加えた。マルテンス硬度の計算は、フィルムに荷重(10mN)をかけ、接触ゼロ点を超えて侵入した圧子の表面積で除した値で求めた。
 本発明の基材フィルムの押込み強度について、上記方法に従ってマルテンス硬度を測定し、A面及びB面の平均値について、下記の基準に従って、表面硬度(マルテンス硬度)のランクを判定した。
 ◎:マルテンス硬度が200N/mm2以上
 ○:マルテンス硬度が50N/mm2以上、200N/mm2未満
 △:マルテンス硬度が25N/mm2以上、50N/mm2未満
 ×:マルテンス硬度が25N/mm2未満
 マルテンス硬度の評価ランクが△以上であると、基材フィルムの押し込み強度が向上して、当該基材フィルムがカバー部材に具備されたときに、透明基材の割れを防止し、カバー部材の取り扱い性が向上する。望ましくは、〇~◎である。
 基材フィルムの構成及び評価結果を下記表Iに示した。
Figure JPOXMLDOC01-appb-T000007
 <透明基材1の作製:表中、ガラスと表記。>
 12インチの寸法を有するガラス基材を、下記工程にしたがって作製した(図4参照。)。
 (工程1)接合面を有するガラスキャリア基板上にガラス基材表面の第1の表面が接するように形成し、第1の表面とは反対側の第2の表面に接着力を有するコンタクト膜(「コンタクトフィルム」ともいう。)を付着させる工程。
 (工程2)次いで、ガラス基材を接着力の高いコンタクト膜によって、キャリア基板より剥離する工程。
 (工程3)コンタクト膜の接着力を弱める脆弱化処理(電磁放射線照射)によって、キャリア基板から剥離されたガラス基材の第2面からコンタクト膜を除去する工程。
 工程1によって、厚さ500μmのキャリア基板に接するように所定の厚さになるようにガラス基材1を形成した後、下記コンタクト膜を付着した。次いでキャリア基板からコンタクト膜とともに、ガラス基材を30秒間で剥離してキャリア基板を除去した(工程2)。コンタクト膜は、150μmの厚さ及び10μmの接着剤層を有する基材としてのポリオレフィン(PO)を含み、商品名「NDS4150-20」として市販されているものを使用した。
 次いで、露出したコンタクト膜を脆弱化処理して接着力を低下させた。脆弱化処理は、365nmの紫外線でコンタクト膜を10秒間照射した。紫外線の照射パワーは約500mW/cm2であり、合計照射エネルギーは500mJ/cm2であった。その際、脆弱化処理前の接着力は約11N/25mmであり、脆弱化処理後、接着力を0.4N/25mmに低減した。これにより、コンタクト膜をガラス基材から容易に剥離することができ、厚さ28μmのガラス基材単体を得た(工程3)。
 なお、透明基材の厚さは、8μm、28μm、45μm及び54μmに調整し、前述の測定法による弾性率は、それぞれ表IIに記載のとおりであった。
 <透明基材2の作製:表中、ポリイミドと表記。>
 基材フィルム114の作製において、得られたポリイミド2溶液をガラス板上へ塗布し、ホットプレートで100℃、60分間保持し、溶媒を揮発させることで自己支持性を有する無色透明な一次乾燥フィルムを得た。このフィルムをステンレス枠に固定し、熱風乾燥機中250℃で2時間加熱し溶媒を蒸発させ、厚さ28μmの透明基材2を得た。前述の測定法による弾性率は、10GPaであった。
 <基材フィルム2の作製>
 (ポリエチレンテレフタレートペレット(a)の調製)
 エステル化反応装置として、攪拌装置、分縮器、原料仕込口及び生成物取り出し口を有する3段の完全混合槽よりなる連続エステル化反応装置を用い、テレフタル酸(TPA)を2トン/hrとし、エチレングルコール(EG)をTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してアンチモン(Sb)原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間で、255℃で反応させた。
 次いで、上記第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成ポリマー(生成PET)に対し8質量%供給し、さらに、生成PETに対してマグネシウム(Mg)原子が65ppmとなる量の酢酸マグネシウムを含むEG溶液と、生成PETに対してP原子が20ppmのとなる量のテトラメチルフタル酸(TMPA)を含むEG溶液を添加し、常圧にて平均滞留時間1.5時間で、260℃で反応させた。次いで、上記第2エステル化反応缶内の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、さらに生成PETに対してP原子が20ppmとなる量のTMPAを含むEG溶液を添加し、常圧にて平均滞留時間0.5時間で、260℃で反応させた。上記第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、さらに、ステンレス焼結体の濾材(公称濾過精度5μm粒子90%カット)で濾過し、極限粘度0.580dl/gのポリエチレンテレフタレートペレット(a)を得た。
 (ポリエチレンテレフタレートフィルムの作製)
 ポリエチレンテレフタレートのペレット(a)を押出機に供給し、285℃で融解した。このポリマーを、ステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに接触させ冷却固化し、未延伸フィルムを作った。この未延伸フィルムを加熱ロールを用いて75℃に均一加熱し、非接触ヒーターで100℃に加熱して1.5倍のロール延伸(縦延伸)を行った。得られた一軸延伸フィルムをテンターに導き、125℃に加熱して5.5倍に横延伸し、幅固定して190℃で5秒間の熱処理を施し、さらに100℃で幅方向に4%緩和させることにより、膜厚50μmのポリエチレンテレフタレートフィルムである基材フィルム2を得た(表中、PETと表記。)。
 <カバー部材の作製>
 <カバー部材201の作製>
 実施例1で作製した基材フィルム101、上記作製した透明基材1及び基材フィルム2を、下記粘着剤層を介して、貼合して表IIに示すカバー部材201を作製した。
 <粘着剤層の材料>
 (アクリル系ポリマーの調製)
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、n-ブチルアクリレート100部、アクリル酸5部、を含有するモノマー混合物を仕込んだ。さらに、前記モノマー混合物(固形分)100部に対して、重合開始剤として2,2’-アゾビスイソブチロニトリル0.1部を酢酸エチル100部と共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って8時間重合反応を行って、重量平均分子量(Mw)160万のアクリル系ポリマーの溶液を調製した。
 (粘着剤組成物溶液の調製)
 上記で得られたアクリル系ポリマーの溶液の固形分100部に対して、イソシアネート系架橋剤(東ソー社製のコロネートL,トリメチロールプロパントリレンジイソシアネート)0.45部を配合して、アクリル系粘着剤組成物の溶液を調製した。
 (粘着剤層の形成及びカバー部材の作製)
 次いで、基材フィルム101のA面側にコロナ出力強度2.0kW、ライン速度18m/分でコロナ放電処理を施し、コロナ放電処理面に、上記調製した粘着剤組成物溶液を、乾燥後の膜厚が約3μmとなるようにバーコーターで塗工した後、50℃、60℃、70℃でこの順番に60秒ずつ乾燥して粘着剤層を形成し、次いで貼合後、基材フィルム101の支持体を剥離して、カバー部材201を得た(図5B参照。)。
 <カバー部材202~222の作製>
 カバー部材201の作製において、基材フィルム1、透明基材及び基材フィルム2のそれぞれの種類の組み合わせを、表IIに記載のように変更した以外は同様にして、カバー部材202~222を作製した。
 カバー部材214は、カバー部材202の作製において、基材フィルム2にも上記作製した基材フィルム102を用いた。なお、基材フィルム2の貼合も、ガラス基材側に基材フィルム102のA面側が配置されるように貼合した。また、カバー部材215は、カバー部材202の作製において、基材フィルム2側には何も貼合しなかった。
 ≪評価≫
 <折りあと評価>
 TD方向20mm×MD方向110mmの大きさのカバー部材サンプルを用意する。無負荷U字伸縮試験機(ユアサシステム機器社製、DLDMLH-FS)を用いて、屈曲半径1mmを設定し、1回/秒の速度で、100回屈曲させた。その際、サンプルはMD側両端部10mmの位置を固定して、屈曲する部位は20mm×90mmとした。屈曲処理終了後、サンプルの屈曲内側を下にして平面に置き、屈曲した部位を市販のヘイズメーターで、評価前のヘイズ値をA、評価後のヘイズ値をBとしたとき、その値の差(B-A)を求め以下のランク分けを行った。
 ◎:0.2未満
 〇:0.2以上0.5未満
 △:0.5以上1.0未満
 ×:1.1以上
 △以上が望ましい。
 カバー部材の構成、及び上記評価結果を、下記表IIに示す。
Figure JPOXMLDOC01-appb-T000008
 表I及び表IIの結果から、本発明の基材フィルム101~112を用いたカバー部材201~217は、比較例の基材フィルム113~116を用いたカバー部材218~221及び透明基材が厚膜であるカバー部材222に比較して、基材フィルムの押込み強度とカバー部材の折りあとの評価において、いずれも優れる結果が得られた。
 本発明のカバー部材は、取り扱い性の向上に加え、繰り返し屈曲されたときに、当該カバー部材に具備された基材フィルムに折りあとがつかない特徴を有することから、ディスプレイの折り畳み部分での画像の乱れを生じず、視認性に優れたカバー部材付き表示装置として、有機エレクトロルミネッセンス素子を用いた折り畳み型ディスプレイに好適に利用することができる。
 1 基材フィルム1
 2 基材フィルム2
 3 透明基材
 4 粘着剤層
 5 支持体
 10 カバー部材
 21 キャリア基板
 22 ガラス基材
 23 コンタクト膜
 24 電磁放射線
 100 表示装置
 101 有機EL層
 102 偏光板
 B110 支持体
 B120 基材フィルム
 B200 製造装置
 B210 供給部
 B220 塗布部
 B230 乾燥部
 B240 冷却部
 B250 巻き取り部
 R 屈曲半径
 

Claims (10)

  1.  1μm以上15μm未満の基材フィルム、5μm以上50μm未満の透明基材、を有するカバー部材であって、
     前記基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾きが1.1以上25.0以下であることを特徴とするカバー部材。
  2.  前記基材フィルムの前記透明基材との貼合面をA面、及び前記基材フィルムの当該A面に対する裏面をB面としたとき、
     前記A面のフィルム密度(ρA)が、前記B面のフィルム密度(ρB)より小さいことを特徴とする請求項1に記載のカバー部材。
  3.  前記基材フィルムの前記透明基材との貼合面をA面、及び前記基材フィルムの当該A面に対する裏面をB面としたとき、
     前記A面のフィルム密度(ρA)に対する前記B面のフィルム密度(ρB)の比率(ρA/ρB)の値が、0.80~0.95の範囲内であることを特徴とする請求項1又は請求項2に記載のカバー部材。
  4.  前記基材フィルムが、ゴム粒子を40~85質量%の範囲内で含有することを特徴とする請求項1から請求項3までのいずれか一項に記載のカバー部材。
  5.  前記透明基材の弾性率が55~80GPaの範囲内であって、かつ、前記透明基材の弾性率と前記基材フィルムとの弾性率比(透明基材の弾性率/基材フィルムの弾性率)の値が30以上であること特徴とする請求項1から請求項4までのいずれか一項に記載のカバー部材。
  6.  カバー部材用の基材フィルムであって、
     前記基材フィルムが、1μm以上15μm未満であって、
     前記基材フィルムの応力-ひずみ曲線における原点と破断点とを結ぶ直線の傾きが1.1以上25.0以下であることを特徴とするカバー部材用の基材フィルム。
  7.  前記基材フィルムが透明基材に貼合され、
     前記基材フィルムの前記透明基材との貼合面をA面、及び前記基材フィルムの当該A面に対する裏面をB面としたとき、
     前記A面のフィルム密度(ρA)が、前記B面のフィルム密度(ρB)より小さいことを特徴とする請求項6に記載のカバー部材用の基材フィルム。
  8.  前記基材フィルムが透明基材に貼合され、
     前記基材フィルムの前記透明基材との貼合面をA面、及び前記基材フィルムの当該A面に対する裏面をB面としたとき、
     前記A面のフィルム密度(ρA)に対する前記B面のフィルム密度(ρB)の比率(ρA/ρB)の値が、0.80~0.95の範囲内であることを特徴とする請求項6又は請求項7に記載のカバー部材用の基材フィルム。
  9.  前記基材フィルムが、ゴム粒子を40~85質量%の範囲内で含有することを特徴とする請求項6から請求項8のいずれか一項に記載のカバー部材用の基材フィルム。
  10.  請求項1から請求項5までのいずれか一項に記載のカバー部材、又は請求項6から請求項9までのいずれか一項に記載のカバー部材用の基材フィルムを具備することを特徴とする表示装置。
PCT/JP2021/031647 2020-09-17 2021-08-30 カバー部材、カバー部材用の基材フィルム、及びそれらを具備した表示装置 WO2022059465A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237005858A KR20230041762A (ko) 2020-09-17 2021-08-30 커버 부재, 커버 부재용의 기재 필름, 및 그것들을 구비한 표시 장치
CN202180063474.9A CN116209928A (zh) 2020-09-17 2021-08-30 盖部件、用于盖部件的基材膜和具备它们的显示装置
JP2022550440A JP7315110B2 (ja) 2020-09-17 2021-08-30 折り畳み可能なフレキシブルディスプレイのカバー部材、折り畳み可能なフレキシブルディスプレイのカバー部材用の基材フィルム、及びそれらを具備した表示装置
JP2023113377A JP2023133318A (ja) 2020-09-17 2023-07-11 カバー部材、カバー部材用の基材フィルム、及びそれらを具備した表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-155926 2020-09-17
JP2020155926 2020-09-17

Publications (1)

Publication Number Publication Date
WO2022059465A1 true WO2022059465A1 (ja) 2022-03-24

Family

ID=80776153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031647 WO2022059465A1 (ja) 2020-09-17 2021-08-30 カバー部材、カバー部材用の基材フィルム、及びそれらを具備した表示装置

Country Status (5)

Country Link
JP (2) JP7315110B2 (ja)
KR (1) KR20230041762A (ja)
CN (1) CN116209928A (ja)
TW (1) TWI814068B (ja)
WO (1) WO2022059465A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425831B2 (ja) 2022-01-14 2024-01-31 ホワイトストーン カンパニーリミテッド ディスプレイプロテクタ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024095890A1 (ja) * 2022-10-31 2024-05-10 コニカミノルタ株式会社 積層体及び表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173040A (ja) * 2013-03-12 2014-09-22 Sumitomo Chemical Co Ltd メタクリル系樹脂組成物
JP2019504812A (ja) * 2016-01-15 2019-02-21 コーニング インコーポレイテッド 折畳式電子デバイス組立体、及びその折畳式電子デバイス組立体のためのカバー要素
WO2019083606A1 (en) * 2017-10-27 2019-05-02 Applied Materials, Inc. FILMS OF SOFT COVERING LENSES
JP2019206163A (ja) * 2018-05-28 2019-12-05 グンゼ株式会社 カバーフィルム
WO2020040209A1 (ja) * 2018-08-24 2020-02-27 株式会社カネカ ハードコート組成物、ハードコート付きポリイミドフィルムおよびその製造方法、ならびに画像表示装置
WO2020149206A1 (ja) * 2019-01-15 2020-07-23 コニカミノルタ株式会社 アクリル樹脂フィルムの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041978A1 (de) 1999-01-11 2000-07-20 Schott Display Glas Gmbh Polymerbeschichtete dünnglasfoliensubstrate
JP4003459B2 (ja) * 2001-01-24 2007-11-07 住友化学株式会社 アクリル系樹脂積層フィルム及びそれを用いた積層成形品
JP2016095502A (ja) * 2014-11-11 2016-05-26 株式会社半導体エネルギー研究所 表示システム、表示装置
KR101963075B1 (ko) * 2015-03-31 2019-03-27 도요보 가부시키가이샤 투명 도전성 필름
WO2017066924A1 (en) 2015-10-20 2017-04-27 Schott Glass Technologies (Suzhou) Co. Ltd. Method for post-processing of bonded article
JP6737287B2 (ja) * 2015-12-25 2020-08-05 コニカミノルタ株式会社 光学フィルム、偏光板及び表示装置
JP6693676B2 (ja) * 2016-05-09 2020-05-13 三菱瓦斯化学株式会社 ポリイミド及びポリイミドフィルム
JP6952735B2 (ja) * 2018-04-27 2021-10-20 住友化学株式会社 光学フィルム、光学積層体及びフレキシブル画像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173040A (ja) * 2013-03-12 2014-09-22 Sumitomo Chemical Co Ltd メタクリル系樹脂組成物
JP2019504812A (ja) * 2016-01-15 2019-02-21 コーニング インコーポレイテッド 折畳式電子デバイス組立体、及びその折畳式電子デバイス組立体のためのカバー要素
WO2019083606A1 (en) * 2017-10-27 2019-05-02 Applied Materials, Inc. FILMS OF SOFT COVERING LENSES
JP2019206163A (ja) * 2018-05-28 2019-12-05 グンゼ株式会社 カバーフィルム
WO2020040209A1 (ja) * 2018-08-24 2020-02-27 株式会社カネカ ハードコート組成物、ハードコート付きポリイミドフィルムおよびその製造方法、ならびに画像表示装置
WO2020149206A1 (ja) * 2019-01-15 2020-07-23 コニカミノルタ株式会社 アクリル樹脂フィルムの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425831B2 (ja) 2022-01-14 2024-01-31 ホワイトストーン カンパニーリミテッド ディスプレイプロテクタ

Also Published As

Publication number Publication date
KR20230041762A (ko) 2023-03-24
JPWO2022059465A1 (ja) 2022-03-24
CN116209928A (zh) 2023-06-02
JP2023133318A (ja) 2023-09-22
JP7315110B2 (ja) 2023-07-26
TWI814068B (zh) 2023-09-01
TW202234098A (zh) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2020162120A1 (ja) 折りたたみ型ディスプレイ及び携帯端末機器
TWI635155B (zh) 複層膜及其製造方法
WO2020241313A1 (ja) 折りたたみ型ディスプレイ
WO2020162119A1 (ja) ポリエステルフィルムとその用途
JP2008163107A (ja) 光学部材
JP2022137055A (ja) ポリエステルフィルムとその用途
JP2023133318A (ja) カバー部材、カバー部材用の基材フィルム、及びそれらを具備した表示装置
WO2020241279A1 (ja) ポリエステルフィルム、積層フィルム、及びその用途
WO2021182191A1 (ja) ポリエステルフィルムとその用途
JP7435448B2 (ja) 積層フィルムとその用途
JP2022013705A (ja) 位相差層および粘着剤層付偏光板、ならびに、該位相差層および粘着剤層付偏光板を用いた画像表示装置
JP2017122854A (ja) 液晶表示装置
WO2021199402A1 (ja) 積層フィルム、偏光板、表示装置及び偏光板ロールの製造方法
TWI836138B (zh) 層合體、層合體之製造方法、偏光板之製造方法
JP2005134510A (ja) 位相差板および円偏光板
TWI840609B (zh) 層合體、層合體之製造方法、偏光板之製造方法
WO2022004284A1 (ja) 位相差層および粘着剤層付偏光板、ならびに、該位相差層および粘着剤層付偏光板を用いた画像表示装置
WO2024058059A1 (ja) ポリエステルフィルムとその用途
JP7388443B2 (ja) 積層体、積層体の製造方法、偏光板の製造方法
JP7480581B2 (ja) ポリエステルフィルムとその用途
WO2021084752A1 (ja) 積層体、積層体の製造方法、偏光板の製造方法
WO2022209279A1 (ja) 偏光板保護フィルム
WO2022131062A1 (ja) 光学フィルム、偏光板及び有機エレクトロルミネッセンス表示装置
US11997916B2 (en) Polyester film and use thereof
WO2024058057A1 (ja) ポリエステルフィルムとその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550440

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237005858

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869152

Country of ref document: EP

Kind code of ref document: A1