WO2022057202A1 - 轨道车辆倾摆系统、倾摆控制方法及轨道车辆 - Google Patents

轨道车辆倾摆系统、倾摆控制方法及轨道车辆 Download PDF

Info

Publication number
WO2022057202A1
WO2022057202A1 PCT/CN2021/077341 CN2021077341W WO2022057202A1 WO 2022057202 A1 WO2022057202 A1 WO 2022057202A1 CN 2021077341 W CN2021077341 W CN 2021077341W WO 2022057202 A1 WO2022057202 A1 WO 2022057202A1
Authority
WO
WIPO (PCT)
Prior art keywords
air spring
height
real
value
electromagnetic proportional
Prior art date
Application number
PCT/CN2021/077341
Other languages
English (en)
French (fr)
Inventor
张振先
王旭
杨欣
李贵宇
曹洪勇
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Priority to EP21868042.9A priority Critical patent/EP4056446A4/en
Priority to JP2022532647A priority patent/JP7434551B2/ja
Priority to US17/778,184 priority patent/US20220410946A1/en
Publication of WO2022057202A1 publication Critical patent/WO2022057202A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • B61F5/245Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes by active damping, i.e. with means to vary the damping characteristics in accordance with track or vehicle induced reactions, especially in high speed mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/04Bolster supports or mountings
    • B61F5/10Bolster supports or mountings incorporating fluid springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control

Definitions

  • the present application relates to the technical field of railway transportation, and in particular, to a rail vehicle tilting system, a tilting control method and a rail vehicle.
  • the outer rail is generally raised to a certain extent, and the centrifugal force is balanced by the centripetal force (centripetal force) generated by the body weight of the vehicle.
  • centripetal force centripetal force
  • the pendulum train can make the car body swing at a certain angle relative to the track plane, reduce the unbalanced centrifugal acceleration to a certain extent, and improve the ride comfort.
  • Existing pendulum trains generally require a complex tilting system on the secondary suspension, which has low reliability and high cost.
  • embodiments of the present application provide a rail vehicle tilting system, a tilting control method, and a rail vehicle.
  • the embodiment of the first aspect of the present application provides a tilting system for a rail vehicle, including: a controller 101, a high-pressure air cylinder 102, a left air spring 105, a right air spring 107, a left additional air chamber 106, and a right additional air chamber 108, the first three-position electromagnetic proportional flow valve 109, the second three-position electromagnetic proportional flow valve 110, the sensor, the differential pressure valve 104 and the two-position switch valve 111; wherein,
  • the left air spring 105 communicates with the left additional air chamber 106, and the right air spring 107 communicates with the right additional air chamber 108;
  • the sensor is used to collect the data of the rail vehicle while driving, and transmit the collected data to the controller 101;
  • the two-position electromagnetic proportional flow valve 110 is controlled so that the high-pressure gas in the high-pressure air cylinder 102 is charged into the The left air spring 105 and the right air spring 107, or the gas inside the left air spring 105 and the right air spring 107 respectively pass through the first three-position electromagnetic proportional flow valve 109 and the second three-position electromagnetic proportional
  • the flow valve 110 is released to the atmosphere;
  • the differential pressure valve 104 is used to communicate with the left additional air chamber 106 and the right additional air chamber 108; the two-position switch valve 111 is connected to the left additional air chamber 106 and the right side through pipelines respectively. Additional air chambers 108 communicate.
  • the sensor includes an acceleration sensor and an air spring height detection sensor; wherein,
  • the acceleration sensor is installed on the frame side beam of the rail vehicle;
  • the air spring height detection sensor is installed at the adjacent positions of the left air spring 105 and the right air spring 107 .
  • the above technical solution further includes: a third three-position solenoid valve 112 and a fourth three-position solenoid valve 113; wherein,
  • the third three-position solenoid valve 112 communicates with the high-pressure air cylinder 102, the left air spring 105 and the atmosphere respectively; the fourth three-position solenoid valve 113 is respectively connected with the high-pressure air cylinder 102 and the right air spring 107 and the atmosphere is connected; the opening and closing of the third three-position solenoid valve 112 and the fourth three-position solenoid valve 113 are controlled by the controller 101 .
  • the third three-position solenoid valve 112 is a three-position electromagnetic switch valve or a three-position electromagnetic proportional flow valve; or
  • the fourth three-position solenoid valve 113 is a three-position electromagnetic switch valve or a three-position electromagnetic proportional flow valve.
  • the embodiment of the second aspect of the present application provides a tilt control method based on the tilting system of a rail vehicle according to the embodiment of the first aspect of the present application, including:
  • Step S11 the controller 101 receives the real-time unbalanced centrifugal acceleration of the frame collected by the acceleration sensor, and compares the real-time unbalanced centrifugal acceleration of the frame with a preset unbalanced centrifugal acceleration threshold;
  • Step S12 when the real-time unbalanced centrifugal acceleration of the frame is greater than the preset unbalanced centrifugal acceleration threshold, according to the real-time unbalanced centrifugal acceleration of the frame, the real-time height value of the left air spring 105 and the right air spring 107
  • the real-time height value of the first three-position electromagnetic proportional flow valve 109 and the second three-position electromagnetic proportional flow valve 110 are generated to realize the inflation or exhaust operation of the left air spring 105 and the right air spring 107, so as to Complete the tilt motion.
  • the first three-position electromagnetic proportional flow valve 109 and the first three-position electromagnetic proportional flow valve 109 are generated according to the real-time unbalanced centrifugal acceleration of the frame, the real-time height value of the left air spring 105 and the real-time height value of the right air spring 107.
  • the control instructions of the two-to-three electromagnetic proportional flow valve 110 specifically include:
  • the received real-time height value of the left air spring 105 and the real-time height value of the right air spring 107 combine the height change target value of the left air spring, the height change target value of the right air spring and the left air spring
  • the height change speed value and the height change speed value of the right air spring generate the control commands for the first three-position electromagnetic proportional flow valve 109 and the second three-position electromagnetic proportional flow valve 110 .
  • the first three-position electromagnetic proportional flow valve 109 and the first three-position electromagnetic proportional flow valve 109 are generated according to the real-time unbalanced centrifugal acceleration of the frame, the real-time height value of the left air spring 105 and the real-time height value of the right air spring 107.
  • the control instructions of the two-to-three electromagnetic proportional flow valve 110 specifically include:
  • the height target value determines the feedback control amount of the right air spring 107
  • the control command of the first three-position electromagnetic proportional flow valve 109 is generated according to the feedback control amount of the left air spring 105 and the feedforward control amount of the left air spring 105 ; and according to the feedback of the right air spring 107
  • the control amount and the feedforward control amount of the right air spring 107 generate a control command for the second three-position electromagnetic proportional flow valve 110 .
  • the outer air spring is an air spring with a relatively high height among the left air spring 105 and the right air spring 107
  • the inner air spring is an air with a relatively lower height among the left air spring 105 and the right air spring 107 .
  • Spring; the height deviation value of the air spring is the difference between the real-time height value of the air spring and the target height value of the air spring.
  • Step S21 when the real-time unbalanced centrifugal acceleration of the frame is less than or equal to a preset unbalanced centrifugal acceleration threshold, the controller 101 receives the real-time height value of the left air spring 105 and the right air spring.
  • the real-time height value of 107, the first height deviation value is calculated according to the real-time height value of the left air spring 105, and the second height deviation value is calculated according to the real-time height value of the right air spring 107;
  • Step S22 compare the first height deviation value with the preset first interval, and when the first height deviation value exceeds the range of the first interval, control the first three-position electromagnetic proportional flow valve.
  • 109 Adjust the height of the left air spring 105; and, compare the second height deviation value with a preset second interval, when the second height deviation value exceeds the range of the second interval , the height of the right air spring 107 is adjusted by controlling the second three-position electromagnetic proportional flow valve 110 .
  • a third aspect of the present application provides a rail vehicle, including:
  • the rail vehicle tilt system, the tilt control method and the rail vehicle provided by the embodiments of the present application can adjust the height difference of the air springs on the left and right sides according to the running state of the rail vehicle, thereby adjusting the tilt angle, which is helpful for balance Centrifugal force generated by rail vehicles when running on curved sections.
  • FIG. 1 is a schematic structural diagram of a rail vehicle tilting system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the installation of the acceleration sensor
  • FIG. 3 is a schematic diagram of a rail vehicle tilting system provided by another embodiment of the present application.
  • FIG. 4 is a flowchart of a tilt control method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a control manner of a combination of feedforward control and feedback control in the rail vehicle tilt control method provided by the embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a rail vehicle tilting system provided by an embodiment of the present application.
  • the rail vehicle tilting system provided by an embodiment of the present application includes: a controller 101, a high-pressure air cylinder 102, an air compressor ( (not shown in FIG. 1), an air spring, a three-position electromagnetic proportional flow valve, a sensor, a differential pressure valve 104, an additional air chamber, and a two-position switch valve 111; wherein the air spring includes the left air spring 105 and the right air spring 105.
  • the additional air chamber includes a left additional air chamber 106 and a right additional air chamber 108
  • the three-position electromagnetic proportional flow valve includes a first three-position electromagnetic proportional flow valve 109 and a second three-position electromagnetic proportional flow valve Flow valve 110; the air compressor provides high-pressure gas to the high-pressure air cylinder 102, and the high-pressure air cylinder 102 passes the high-pressure gas through the first three-position electromagnetic proportional flow valve 109 and the second three-position electromagnetic proportional flow valve 110 respectively.
  • the left air spring 105 and the right air spring 107 also pass through the first three-position electromagnetic proportional flow valve 109 and the second three-position electromagnetic proportional flow valve respectively 110 releases the internal gas into the atmosphere;
  • the left air spring 105 communicates with the left additional air chamber 106
  • the right air spring 107 communicates with the right additional air chamber 108;
  • the differential pressure valve 104 is used to communicate with the left additional air chamber 108
  • the air chamber 106 and the right additional air chamber 108 are used to achieve the air pressure balance inside the left additional air chamber 106 and the right additional air chamber 108 when necessary;
  • the two-position switch valve 111 is connected to the left additional air chamber respectively through pipelines 106 is communicated with the right side additional air chamber 108;
  • the sensor is used to collect the data of the rail vehicle while driving, and transmit the collected data to the controller 101;
  • the controller 101 according to the data collected by the sensor,
  • a three-position electromagnetic proportional flow valve 109 and a second three-position electromagnetic proportional flow valve 110 are controlled
  • the left air spring 105 is installed under the left side of the rail vehicle body.
  • the left air spring 105 communicates with the left additional air chamber 106 , and gas can flow between the left additional air chamber 106 and the left air spring 105 .
  • the right air spring 107 is installed under the right side of the rail vehicle body.
  • the right air spring 107 communicates with the right additional air chamber 108 , and gas can flow between the right additional air chamber 108 and the right air spring 107 .
  • left air springs 105 and the right air springs 107 There are a plurality of the left air springs 105 and the right air springs 107 respectively.
  • four air springs are included in the carriage of a rail vehicle, including two left air springs 105 and two right air springs 106 .
  • the first three-position electromagnetic proportional flow valve 109 and the second three-position electromagnetic proportional flow valve 110 are respectively electrically connected to the controller 101, and the first three-position electromagnetic proportional flow valve 109 and/or the second three-position electromagnetic proportional flow valve The valve 110 adjusts the gas flow direction (inflating or deflating the air spring) and gas flow under the control of the controller 101 .
  • the first three-position electromagnetic proportional flow valve 109 has three gas inlets and outlets, wherein the first gas inlet and outlet are communicated with the high-pressure air cylinder 102 , the second gas inlet and outlet are communicated with the atmosphere through the exhaust pipe, and the third gas inlet and outlet are communicated with the atmosphere. It communicates with the left air spring 105 through a pipeline. When it is necessary to inflate the left air spring, under the control of the controller 101, the first gas inlet and outlet communicate with the third gas inlet and outlet. Since the air pressure in the high-pressure air cylinder 102 is higher, the gas can flow from the high-pressure air cylinder 102 to the air spring. The left air spring 105 flows to realize the inflation of the left air spring 105 .
  • the three gas inlets and outlets are not connected to maintain the stability of the gas in the left air spring.
  • the second gas inlet and outlet are communicated with the third gas inlet and outlet. Since the air pressure in the left air spring is higher, the gas can be discharged from the left air spring. 105 flows to the atmosphere to realize the deflation of the left air spring 105 .
  • the second three-position electromagnetic proportional flow valve 110 has three gas inlets and outlets, wherein the first gas inlet and outlet are communicated with the high-pressure air cylinder 102, the second gas inlet and outlet are communicated with the atmosphere through an exhaust pipe, and the third gas inlet and outlet are connected to the right through a pipeline.
  • the side air springs 107 communicate.
  • Using the second three-position electromagnetic proportional flow valve 110 can realize the inflation, deflation and closing of the right air spring.
  • the specific implementation process is similar to the implementation process of the first three-position electromagnetic proportional flow valve 109 for the left air spring, and will not be repeated here.
  • the quantity of the first three-position electromagnetic proportional flow valve 109 corresponds to the quantity of the left air spring 105 ; the quantity of the second three-position electromagnetic proportional flow valve 110 corresponds to the quantity of the right air spring 107 . correspond.
  • the sensor includes an acceleration sensor and an air spring height detection sensor.
  • FIG 2 is a schematic diagram of the installation of the acceleration sensor. As shown in Figure 2, the acceleration sensor is installed on the side beam of the frame of the rail vehicle to detect the unbalanced centrifugal acceleration of the frame.
  • the air spring height detection sensor is used to detect the air spring height. Since the height of each air spring may vary, a height detection sensor needs to be provided for each air spring. As a preferred implementation, the air spring height detection sensor adopts a non-contact angle sensor to reduce wear and improve reliability.
  • the differential pressure valve 104 is communicated with the left additional air chamber 106 and the right additional air chamber 108 through pipelines, respectively.
  • the differential pressure valve 104 is used as a safety component of the entire system, and its opening pressure is set to a higher value (eg 250 ⁇ 20kPa).
  • a higher value eg 250 ⁇ 20kPa.
  • the differential pressure valve 104 is still in a closed state; and in a fault state, if one side of the air spring is completely out of air, the pressure difference between the two air springs reaches the opening threshold of the differential pressure valve 104, and the differential pressure valve 104 automatically opens, to a certain extent. Reduce the height difference of the air springs on both sides to ensure the safe operation of the train.
  • the differential pressure valve 104 will only be opened under the most unfavorable fault conditions to urgently balance the air pressure difference between the left additional air chamber 106 and the right additional air chamber 108 .
  • the two-position switch valve 111 is a conventional component.
  • the two-position switch valve 111 When the rail vehicle enters the section of the easing curve and the section of the circular curve (when the rail vehicle travels on the curved section, the change of the section is: straight line - entering the easing curve - circle Curve - out of the easing curve - straight line), the two-position switch valve 111 is closed, so that the airbags on both sides maintain the height difference; when the rail vehicle exits the easement curve section, the two-position switch valve 111 is opened, so that the airbags on both sides quickly return to the same height . When running in a straight line, the two-position switch valve 111 is also closed.
  • the rail vehicle tilting system provided by the embodiment of the present application can adjust the height difference of the air springs on the left and right sides according to the running state of the rail vehicle, so as to adjust the tilt angle, which helps to balance the occurrence of the rail vehicle when running on a curved road section. centrifugal force.
  • FIG. 3 is a schematic diagram of a rail vehicle tilting system provided by another embodiment of the present application.
  • the rail vehicle tilting system provided by another embodiment of the present application further includes: a third The three-position solenoid valve 112 and the fourth three-position solenoid valve 113; wherein,
  • the third three-position solenoid valve 112 is in communication with the high-pressure air cylinder 102, the left air spring 105 and the atmosphere respectively;
  • the fourth three-position solenoid valve 113 is in communication with the high-pressure air cylinder 102, the right air spring 107 and the atmosphere respectively;
  • the opening and closing of the third three-position solenoid valve 112 and the fourth three-position solenoid valve 113 are controlled by the controller 101 .
  • a third three-position solenoid valve 112 and a fourth three-position solenoid valve 113 are added to the rail vehicle tilting system.
  • the third three-position electromagnetic valve 112 is connected in parallel with the first three-position electromagnetic proportional flow valve 109, and can speed up the inflation or exhaust speed of the left air spring 105 by cooperating with the first three-position electromagnetic proportional flow valve 109.
  • the fourth three-position electromagnetic valve 113 is connected in parallel with the second three-position electromagnetic proportional flow valve 110 , and can speed up the inflation or exhaust speed of the right air spring 107 by cooperating with the second three-position electromagnetic proportional flow valve 110 .
  • the third three-position solenoid valve 112 and the fourth three-position solenoid valve 113 can be three-position electromagnetic on-off valves, or three-position electromagnetic proportional flow valves. Specific can be selected according to actual needs.
  • the rail vehicle tilting system provided by the embodiment of the present application can speed up the inflation and exhaust speed of the air spring, which is beneficial to quickly adjust the state of the rail vehicle and reduce the impact of centrifugal force on passenger comfort.
  • FIG. 4 is a flowchart of a tilt control method provided by an embodiment of the present application.
  • the tilt control method provided by an embodiment of the present application includes:
  • Step 401 The controller 101 receives the real-time unbalanced centrifugal acceleration of the frame, and compares the real-time unbalanced centrifugal acceleration of the frame with a preset unbalanced centrifugal acceleration threshold.
  • the real-time unbalanced centrifugal acceleration of the frame is collected by an acceleration sensor disposed on the side beam of the rail vehicle frame and transmitted to the controller 101 .
  • the unbalanced centrifugal acceleration threshold reflects the maximum unbalanced centrifugal acceleration allowed for the rail vehicle.
  • the real-time unbalanced centrifugal acceleration of the frame is less than this threshold, it is considered that the rail vehicle is running on a straight line or a curve with sufficient superelevation, and the system enters the height adjustment mode.
  • the real-time unbalanced centrifugal acceleration of the frame is greater than or equal to this threshold, it is considered that the centrifugal acceleration of the rail vehicle needs to be balanced, and the system enters the active tilting mode.
  • the implementation process of the active tilt mode will be further described.
  • Step 402 when the real-time unbalanced centrifugal acceleration of the frame is greater than the preset unbalanced centrifugal acceleration threshold, according to the real-time unbalanced centrifugal acceleration of the frame, the real-time height value of the left air spring 105 and the right air spring 107
  • the real-time height value of the first three-position electromagnetic proportional flow valve 109 and the second three-position electromagnetic proportional flow valve 110 are generated to realize the inflation or exhaust operation of the left air spring 105 and the right air spring 107, so as to Complete the tilt motion.
  • the rail vehicle When the real-time unbalanced centrifugal acceleration of the frame is greater than a preset unbalanced centrifugal acceleration threshold, the rail vehicle enters an active tilt mode.
  • the real-time height value of the left air spring 105 and the real-time height value of the right air spring 107, the first three-position electromagnetic proportional flow valve 109 and the real-time height value of the right air spring 107 can be generated.
  • the control command of the second three-position electromagnetic proportional flow valve 110 realizes the inflation or exhaust operation of the left air spring 105 and the right air spring 107 to complete the tilting action.
  • the specific generation process of the control instruction will be further described.
  • the rail vehicle tilt control method provided by the embodiment of the present application can adjust the height difference of the air springs on the left and right sides according to the state of the rail vehicle during operation, so as to adjust the tilt angle, which helps to balance the rail vehicle when it is running on a curved road section. generated centrifugal force.
  • the first step is generated according to the real-time unbalanced centrifugal acceleration of the framework, the real-time height value of the left air spring 105 and the real-time height value of the right air spring 107 .
  • the control instructions for the three-position electromagnetic proportional flow valve 109 and the second three-position electromagnetic proportional flow valve 110 specifically include:
  • the received real-time height value of the left air spring 105 and the real-time height value of the right air spring 107 combine the height change target value of the left air spring 105, the height change target value of the right air spring 107, and the left air spring 107.
  • the height change speed value of the air spring 105 and the height change speed value of the right air spring 107 generate control commands for the first three-position electromagnetic proportional flow valve 109 and the second three-position electromagnetic proportional flow valve 110 .
  • the following formula can be used to calculate the tilt angle of the rail vehicle body:
  • ⁇ ref is the tilt angle of the rail vehicle body
  • a nc is the real-time unbalanced centrifugal acceleration of the frame
  • a nc0 is the allowable maximum unbalanced centrifugal acceleration, which is a preset value
  • g is the gravitational acceleration.
  • the target value of the height difference between the left air spring and the right air spring can be further calculated.
  • the relevant calculation formula is as follows:
  • ⁇ z represents the target value of the height difference between the left air spring and the right air spring; 2b is the lateral span between the left air spring and the right air spring, which is an actual measurable value.
  • the height difference target value of the left air spring and the right air spring can be further decomposed into the height change target value of the left air spring and the height change target value of the right air spring.
  • ⁇ z L represents the lift height target value of the left air spring
  • ⁇ z R represents the lower height target value of the right air spring
  • ⁇ z R,max represents the maximum allowable lowering height of the right air spring, which is a predicted value.
  • ⁇ z L,max represents the maximum lift height allowed by the left air spring, which is a predicted value.
  • the height change target value can be differentiated to obtain the height change speed value.
  • the height change target value of the left air spring After obtaining the height change target value of the left air spring, the height change target value of the right air spring, the height change speed value of the left air spring, and the height change speed value of the right air spring, combine these values with the left air spring.
  • the real-time height value of the air spring and the real-time height value of the right air spring can generate corresponding control commands for the first three-position electromagnetic proportional flow valve 109 and the second three-position electromagnetic proportional flow valve 110 respectively.
  • the rail vehicle tilt control method calculates the tilt angle of the rail vehicle body according to the real-time unbalanced centrifugal acceleration of the rail vehicle frame, and then calculates the height change target value and the height change speed value of the air spring, and finally the three
  • the electromagnetic proportional flow valve generates control commands, which help to precisely control the tilting of the rail vehicle and help to balance the centrifugal force generated by the rail vehicle when it runs on curved sections.
  • the first step is generated according to the real-time unbalanced centrifugal acceleration of the framework, the real-time height value of the left air spring 105 and the real-time height value of the right air spring 107 .
  • the control instructions for the three-position electromagnetic proportional flow valve 109 and the second three-position electromagnetic proportional flow valve 110 specifically include:
  • the height target value determines the feedback control amount of the right air spring 107
  • the control command of the first three-position electromagnetic proportional flow valve 109 is generated according to the feedback control amount of the left air spring 105 and the feedforward control amount; and according to the feedback control amount of the right air spring 107 and the front
  • the control command of the second three-position electromagnetic proportional flow valve 110 is generated by feeding the control amount.
  • the process of generating the control command for the electromagnetic proportional flow valve may adopt a combination of the feedforward control quantity and the feedback control quantity.
  • FIG. 5 is a schematic diagram of a control manner of a combination of feedforward control and feedback control in the rail vehicle tilt control method provided by the embodiment of the present application.
  • the rate of change a , nc of the framework's real-time unbalanced centrifugal acceleration ie, the differential value of the real-time unbalanced centrifugal acceleration
  • the feedforward controller is based on the framework.
  • the charging or discharging operation of the left (right) side air spring is controlled according to the control amount s until the difference between the actual height value of the left (right) side air spring and the height target value of the left (right) side air spring Within the preset interval range, the tilting action of the rail vehicle is realized.
  • Feedforward control is a predictive control method, which can compensate the control signal at the next moment according to the change trend of the observed quantity, so that the actual control signal is closer to the ideal value.
  • the rail vehicle tilt control method provided by the embodiments of the present application combines feedforward control and feedback control, thereby generating a control command for an electromagnetic proportional flow valve. Doing so will help improve responsiveness.
  • the method further includes:
  • the outer air spring described in the embodiment of the present application is an air spring with a relatively high height among the left air spring 105 and the right air spring 107
  • the inner air spring is the left air spring 105
  • the air spring height deviation value is the difference between the air spring real-time height value and the air spring height target value.
  • the rail vehicle tilt control method provided by the embodiment of the present application can adjust the height difference of the air springs on the left and right sides according to the state of the rail vehicle during operation, so as to adjust the tilt angle, which helps to balance the rail vehicle when it is running on a curved road section. generated centrifugal force.
  • the method further includes:
  • the controller 101 receives the real-time height value of the left air spring 105 and the real-time height value of the right air spring 107 Height value, calculate the first height deviation value according to the real-time height value of the left air spring 105, and calculate the second height deviation value according to the real-time height value of the right air spring 107;
  • the first height deviation value is compared with the preset first interval, and when the first height deviation value exceeds the range of the first interval, the first three-position electromagnetic proportional flow valve 109 is controlled to be adjusted to the first interval. Adjust the height of the left air spring 105; and compare the second height deviation value with the preset second interval, when the second height deviation value exceeds the range of the second interval, control the The second three-position electromagnetic proportional flow valve 110 adjusts the height of the right air spring 107 .
  • the rail vehicle when the real-time unbalanced centrifugal acceleration of the frame is less than or equal to a preset unbalanced centrifugal acceleration threshold, the rail vehicle enters the height adjustment mode.
  • the real-time height value of the left air spring 105 can be obtained through the height detection sensor set for the left air spring 105
  • the real-time height of the right air spring 107 can be obtained through the height detection sensor set for the right air spring 107 value.
  • the controller 101 After obtaining the real-time height value of the left air spring 105 and the real-time height value of the right air spring 107 from the corresponding sensor, the controller 101 compares the real-time height value of the left air spring 105 with the preset first height target value , obtain the first height deviation value of the left air spring 105 ; compare the real-time height value of the right air spring 107 with the preset second height target value to obtain the second height deviation value of the right air spring 107 .
  • the first height target value and the second height target value are set according to actual needs, and the sizes of the two may be the same or different.
  • the left air spring 105 first determines whether the first height deviation value is within the preset first interval. If it is within the first interval, it means that the height deviation value of the left air spring 105 is within the allowable range. Inside, the height of the left air spring 105 does not need to be adjusted. If the first height deviation value exceeds the first interval, the height of the left air spring 105 needs to be adjusted. During adjustment, according to the positive or negative value of the first height deviation value, it is determined whether the height of the left air spring 105 should be raised or the height of the left air spring 105 should be lowered.
  • the left air spring 105 If the height of the left air spring 105 needs to be raised, a control command is generated for the first three-position electromagnetic proportional flow valve 109, and the left air spring 105 is inflated through the first three-position electromagnetic proportional flow valve 109.
  • the height of the air spring 105 generates a control command for the first three-position electromagnetic proportional flow valve 109 , and exhausts the left air spring 105 through the first three-position electromagnetic proportional flow valve 109 .
  • the real-time height value of the left air spring 105 is continuously measured, and when the magnitude of the first height deviation value reaches the preset first interval, the inflation of the left air spring 105 is stopped. or exhaust operation.
  • the operation of the right air spring 107 is similar to the operation of the left air spring 105 described above.
  • the size of the first interval range and the second interval range may be the same or different, which is specifically determined according to the actual situation.
  • the rail vehicle tilt control method When the real-time unbalanced centrifugal acceleration of the frame of the rail vehicle is less than or equal to a preset unbalanced centrifugal acceleration threshold, the rail vehicle tilt control method provided by the embodiment of the present application adjusts the height of the air spring to adjust the state of the rail vehicle and reduce the The effect of centrifugal force on passenger comfort.
  • another embodiment of the present application provides a rail vehicle, the rail vehicle comprising:
  • the rail vehicle tilting system The rail vehicle tilting system.
  • the rail vehicle provided by the embodiment of the present application can adjust the height difference of the air springs on the left and right sides according to the running state, thereby adjusting the tilt angle, which helps to balance the centrifugal force generated by the rail vehicle when running on a curved road section.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware.
  • the above technical solutions can be embodied in the form of computer software products, which can be stored in computer-readable storage media, such as ROM/RAM, magnetic disks, optical disks, etc., and include several instructions to make a computer device (which can be be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments or parts of embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种轨道车辆倾摆系统,包括控制器(101)、高压风缸(102)、左侧空气弹簧(105)、右侧空气弹簧(107)、左侧附加气室(106)、右侧附加气室(108)、第一三位电磁比例流量阀(109)、第二三位电磁比例流量阀(110)、传感器、差压阀(104)以及二位开关阀(111);其中,左侧空气弹簧(105)与左侧附加气室(106)连通,右侧空气弹簧(107)与右侧附加气室(108)连通;传感器用于采集轨道车辆在行驶时的数据,并将所采集的数据传输给控制器(101);控制器(101)根据传感器()所采集的数据,对第一三位电磁比例流量阀(109)以及第二三位电磁比例流量阀(110)进行控制;差压阀(104)用于连通左侧附加气室(106)和右侧附加气室(108);二位开关阀(111)通过管路分别与左侧附加气室(106)与右侧附加气室(108)连通。及一种轨道车辆倾摆控制方法和一种轨道车辆。

Description

轨道车辆倾摆系统、倾摆控制方法及轨道车辆
相关申请的交叉引用
本申请要求于2020年09月18日提交的申请号为2020109903432,发明名称为“轨道车辆倾摆系统、倾摆控制方法及轨道车辆”的中国专利申请的优先权,其通过引用方式全部并入本公开。
技术领域
本申请涉及铁道交通技术领域,尤其涉及一种轨道车辆倾摆系统、倾摆控制方法及轨道车辆。
背景技术
轨道车辆在曲线路段上行驶时,所产生的离心力会使乘客感觉不适,严重时甚至会造成倾覆事故。
为此,现有技术中一般会将外轨抬高到一定的程度,利用车体重力产生的向心分力(向心力)来平衡离心力。这一做法也被称为外轨超高。
但铁路在铺设时会受到自然条件的约束,在一些困难路段,外轨超高往往不足,限制了轨道车辆曲线通过的速度,降低了运输效率。另外,既有线路提速运行也同样面临着超高不足的问题。这使得曲线通过时产生的离心力常常无法被完全平衡,未平衡离心力产生的离心加速度会对乘客的乘坐舒适度带来不利影响。
摆式列车可以使得车体相对于轨道平面产生一定角度的摆动,一定程度上降低未平衡的离心加速度,提高乘坐舒适性。既有的摆式列车一般需要在二系悬挂设置复杂的倾摆系统,可靠性较低,成本较高。
发明内容
针对现有技术存在的问题,本申请实施例提供一种轨道车辆倾摆系统、倾摆控制方法及轨道车辆。
本申请第一方面实施例提供一种轨道车辆倾摆系统,包括:控制器101、高压风缸102、左侧空气弹簧105、右侧空气弹簧107、左侧附加气室106、右侧附加气室108、第一三位电磁比例流量阀109、第二三位电磁比例流 量阀110、传感器、差压阀104以及二位开关阀111;其中,
所述左侧空气弹簧105与所述左侧附加气室106连通,所述右侧空气弹簧107与所述右侧附加气室108连通;
所述传感器用于采集轨道车辆在行驶时的数据,并将所采集的数据传输给控制器101;所述控制器101根据传感器所采集的数据,对第一三位电磁比例流量阀109以及第二三位电磁比例流量阀110进行控制,以使得所述高压风缸102中的高压气体分别通过所述第一三位电磁比例流量阀109以及第二三位电磁比例流量阀110充入所述左侧空气弹簧105和右侧空气弹簧107,或使得所述左侧空气弹簧105和右侧空气弹簧107内部的气体分别通过所述第一三位电磁比例流量阀109以及第二三位电磁比例流量阀110释放到大气中;
所述差压阀104用于连通所述左侧附加气室106和右侧附加气室108;所述二位开关阀111通过管路分别与所述左侧附加气室106与所述右侧附加气室108连通。
上述技术方案中,所述传感器包括加速度传感器以及空气弹簧高度检测传感器;其中,
所述加速度传感器安装在轨道车辆的构架侧梁上;
所述空气弹簧高度检测传感器安装在所述左侧空气弹簧105以及所述右侧空气弹簧107的邻近位置。
上述技术方案中,还包括:第三三位电磁阀112和第四三位电磁阀113;其中,
所述第三三位电磁阀112分别与所述高压风缸102、左侧空气弹簧105以及大气连通;所述第四三位电磁阀113分别与所述高压风缸102、右侧空气弹簧107以及大气连通;所述第三三位电磁阀112和第四三位电磁阀113的开启与闭合均受到所述控制器101的控制。
上述技术方案中,所述第三三位电磁阀112为三位电磁开关阀或三位电磁比例流量阀;或
所述第四三位电磁阀113为三位电磁开关阀或三位电磁比例流量阀。
本申请第二方面实施例提供基于本申请第一方面实施例所述的轨道车辆倾摆系统所实现的倾摆控制方法,包括:
步骤S11、所述控制器101接收所述加速度传感器采集的构架的实时未平衡离心加速度,将所述构架的实时未平衡离心加速度与预设的未平衡离心加速度阈值进行比较;
步骤S12、当所述构架的实时未平衡离心加速度大于预设的未平衡离心加速度阈值时,根据所述构架的实时未平衡离心加速度、左侧空气弹簧105的实时高度值以及右侧空气弹簧107的实时高度值,生成第一三位电磁比例流量阀109与第二三位电磁比例流量阀110的控制指令,实现对左侧空气弹簧105以及右侧空气弹簧107的充气或排气操作,以完成倾摆动作。
上述技术方案中,所述根据所述构架的实时未平衡离心加速度、左侧空气弹簧105的实时高度值以及右侧空气弹簧107的实时高度值,生成第一三位电磁比例流量阀109与第二三位电磁比例流量阀110的控制指令,具体包括:
根据所述构架的实时未平衡离心加速度计算轨道车辆车体的倾摆角度;
根据所述轨道车辆车体的倾摆角度计算左侧空气弹簧与右侧空气弹簧的高度差目标值;
根据所述左侧空气弹簧与右侧空气弹簧的高度差目标值计算左侧空气弹簧的高度变化目标值、右侧空气弹簧的高度变化目标值以及左侧空气弹簧的高度变化速度值、右侧空气弹簧的高度变化速度值;
根据所接收到的左侧空气弹簧105的实时高度值以及右侧空气弹簧107的实时高度值,结合左侧空气弹簧的高度变化目标值、右侧空气弹簧的高度变化目标值以及左侧空气弹簧的高度变化速度值、右侧空气弹簧的高度变化速度值,生成第一三位电磁比例流量阀109与第二三位电磁比例流量阀110的控制指令。
上述技术方案中,所述根据所述构架的实时未平衡离心加速度、左侧空气弹簧105的实时高度值以及右侧空气弹簧107的实时高度值,生成第一三位电磁比例流量阀109与第二三位电磁比例流量阀110的控制指令,具体包括:
根据所述构架的实时未平衡离心加速度计算构架的实时未平衡离心 加速度的变化率;根据所述构架的实时未平衡离心加速度的变化率得到左侧空气弹簧105的前馈控制量以及右侧空气弹簧107)的前馈控制量;
根据所述构架的实时未平衡离心加速度计算左侧空气弹簧105的高度目标值以及右侧空气弹簧107的高度目标值;
根据左侧空气弹簧105的实时高度值与左侧空气弹簧105的高度目标值,确定左侧空气弹簧105的反馈控制量;以及根据右侧空气弹簧107的实时高度值与右侧空气弹簧107的高度目标值,确定右侧空气弹簧107的反馈控制量;
根据所述左侧空气弹簧105的反馈控制量与所述左侧空气弹簧105的前馈控制量生成第一三位电磁比例流量阀109的控制指令;以及根据所述右侧空气弹簧107的反馈控制量与所述右侧空气弹簧107的前馈控制量生成第二三位电磁比例流量阀110的控制指令。
上述技术方案中,还包括:
当轨道车辆驶离曲线路段后,平衡左右两侧空气弹簧;具体包括:
当轨道车辆出缓和曲线时,构架的实时未平衡离心加速度逐渐减小,外侧空气弹簧开始排气下降;当两侧空气弹簧高度偏差值相等时,打开二位控制开关阀,使得外侧空气弹簧内的空气流入内侧空气弹簧,左右两侧空气弹簧恢复至平衡状态;其中,
所述外侧空气弹簧为左侧空气弹簧105与右侧空气弹簧107中高度相对较高的空气弹簧,所述内侧空气弹簧为左侧空气弹簧105与右侧空气弹簧107中高度相对较低的空气弹簧;所述空气弹簧高度偏差值为空气弹簧实时高度值与空气弹簧高度目标值之间的差值。
上述技术方案中,还包括:
步骤S21、当所述构架的实时未平衡离心加速度小于或等于预设的未平衡离心加速度阈值时,所述控制器101接收所述左侧空气弹簧105的实时高度值以及所述右侧空气弹簧107的实时高度值,根据所述左侧空气弹簧105的实时高度值计算第一高度偏差值,根据所述右侧空气弹簧107的实时高度值计算第二高度偏差值;
步骤S22、将所述第一高度偏差值与预设的第一区间进行比较,当所述第一高度偏差值超出所述第一区间的范围,通过控制所述第一三位电磁 比例流量阀109对所述左侧空气弹簧105的高度进行调节;以及,对所述第二高度偏差值与预设的第二区间进行比较,当所述第二高度偏差值超出所述第二区间的范围,通过控制所述第二三位电磁比例流量阀110对所述右侧空气弹簧107的高度进行调节。
本申请第三方面实施例提供一种轨道车辆,包括:
本申请第一方面实施例所述的轨道车辆倾摆系统。
本申请实施例提供的轨道车辆倾摆系统、倾摆控制方法及轨道车辆,可根据轨道车辆在运行时的状态,调节左右两侧空气弹簧的高度差,从而调节倾摆角度,有助于平衡轨道车辆在曲线路段运行时所产生的离心力。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的轨道车辆倾摆系统的结构示意图;
图2为加速度传感器的安装示意图;
图3为本申请另一实施例提供的轨道车辆倾摆系统的示意图;
图4为本申请实施例提供的倾摆控制方法的流程图;
图5为本申请实施例提供的轨道车辆倾摆控制方法中的前馈控制与反馈控制相结合的控制方式的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请实施例提供的轨道车辆倾摆系统的结构示意图,如图1所示,本申请实施例提供的轨道车辆倾摆系统包括:控制器101、高压风缸102、空气压缩机(未在图1中示出)、空气弹簧、三位电磁比例流量 阀、传感器、差压阀104、附加气室以及二位开关阀111;其中,所述空气弹簧包括左侧空气弹簧105和右侧空气弹簧107,所述附加气室包括左侧附加气室106和右侧附加气室108,所述三位电磁比例流量阀包括第一三位电磁比例流量阀109以及第二三位电磁比例流量阀110;所述空气压缩机向所述高压风缸102提供高压气体,所述高压风缸102分别通过第一三位电磁比例流量阀109以及第二三位电磁比例流量阀110将高压气体充入所述左侧空气弹簧105和右侧空气弹簧107;所述左侧空气弹簧105和右侧空气弹簧107还分别通过第一三位电磁比例流量阀109以及第二三位电磁比例流量阀110将内部的气体释放到大气中;左侧空气弹簧105与左侧附加气室106连通,所述右侧空气弹簧107与右侧附加气室108连通;差压阀104用于连通左侧附加气室106和右侧附加气室108,在需要时用于实现左侧附加气室106和右侧附加气室108内部的气压平衡;二位开关阀111通过管路分别与左侧附加气室106与右侧附加气室108连通;所述传感器用于采集轨道车辆在行驶时的数据,并将所采集的数据传输给控制器101;所述控制器101根据传感器所采集的数据,对第一三位电磁比例流量阀109以及第二三位电磁比例流量阀110进行控制。
下面对轨道车辆倾摆系统中的各个部件做进一步的说明。
所述左侧空气弹簧105安装在轨道车辆车体的左侧下方。左侧空气弹簧105和左侧附加气室106连通,气体可在左侧附加气室106与左侧空气弹簧105之间流动。
所述右侧空气弹簧107安装在轨道车辆车体的右侧下方。右侧空气弹簧107和右侧附加气室108连通,气体可在右侧附加气室108与右侧空气弹簧107之间流动。
所述左侧空气弹簧105与所述右侧空气弹簧107各自有多个。例如,在一个轨道车辆的车厢中包括有四个空气弹簧,其中,包括两个左侧空气弹簧105,包括两个右侧空气弹簧106。
所述第一三位电磁比例流量阀109与第二三位电磁比例流量阀110分别与控制器101电连接,所述第一三位电磁比例流量阀109和/或第二三位电磁比例流量阀110在控制器101的控制下,对气体流向(向空气弹簧充气或放气)以及气体流量进行调节。
具体的说,所述第一三位电磁比例流量阀109具有三个气体出入口,其中的第一气体出入口与高压风缸102连通,第二气体出入口通过排气管与大气连通,第三气体出入口通过管路与左侧空气弹簧105连通。当需要向左侧空气弹簧充气时,在控制器101的控制下,第一气体出入口与第三气体出入口连通,由于高压风缸102中的气压更大,因此,气体可从高压风缸102向左侧空气弹簧105流动,实现对左侧空气弹簧105充气。当需要封闭左侧空气弹簧时,在控制器101的控制下,三个气体出入口均不连通,维持左侧空气弹簧内的气体稳定。当需要为左侧空气弹簧放气时,在控制器101的控制下,第二气体出入口与第三气体出入口连通,由于左侧空气弹簧内的气压更大,因此,气体可从左侧空气弹簧105向大气流动,实现对左侧空气弹簧105的放气。
所述第二三位电磁比例流量阀110有三个气体出入口,其中的第一气体出入口与高压风缸102连通,第二气体出入口通过排气管与大气连通,第三气体出入口通过管路与右侧空气弹簧107连通。利用第二三位电磁比例流量阀110可实现对右侧空气弹簧的充气、放气以及封闭。具体实现过程与第一三位电磁比例流量阀109对左侧空气弹簧的实现过程类似,不在此处重复。
所述第一三位电磁比例流量阀109的数量与所述左侧空气弹簧105的数量相对应;所述第二三位电磁比例流量阀110的数量与所述右侧空气弹簧107的数量相对应。
所述传感器包括有加速度传感器以及空气弹簧高度检测传感器。
图2为加速度传感器的安装示意图,如图2所示,加速度传感器安装在轨道车辆的构架侧梁上,用于检测构架的未平衡离心加速度。
所述空气弹簧高度检测传感器用于检测空气弹簧高度。由于每个空气弹簧的高度可能会有差异,因此需要为每个空气弹簧设置一个高度检测传感器。作为一种优选实现方式,空气弹簧高度检测传感器采用非接触式角度传感器,以降低磨损,提高可靠性。
差压阀104通过管路分别与左侧附加气室106与右侧附加气室108连通。在本申请实施例中,差压阀104作为整个系统的安全部件,其开启压力被设置成一个较高值(如250±20kPa),在正常情况下,即使轨道车 辆处于最大倾摆状态时,差压阀104仍处于关闭状态;而在故障状态下,如一侧空气弹簧完全失气,则两侧空气弹簧的压差达到差压阀104的开启阈值,差压阀104自动打开,一定程度地降低两侧空气弹簧高度差,保证列车运行安全。
差压阀104作为整个系统的安全部件,只有在最不利的故障工况下才会被打开,以紧急平衡左侧附加气室106与右侧附加气室108之间的气压差。而二位开关阀111则是一个常规部件,在轨道车辆进入缓和曲线的路段和圆曲线的路段上时(轨道车辆在曲线路段上行驶时,路段的变化情况为:直线-进缓和曲线-圆曲线-出缓和曲线-直线),二位开关阀111关闭,使两侧气囊保持高度差;在轨道车辆出缓和曲线的路段时,二位开关阀111打开,使两侧气囊迅速恢复至相同高度。直线运行时,二位开关阀111也是关闭的。
本申请实施例提供的轨道车辆倾摆系统可根据轨道车辆在运行时的状态,调节左右两侧空气弹簧的高度差,从而调节倾摆角度,有助于平衡轨道车辆在曲线路段运行时所产生的离心力。
基于上述任一实施例,图3为本申请另一实施例提供的轨道车辆倾摆系统的示意图,如图3所示,本申请另一实施例提供的轨道车辆倾摆系统还包括:第三三位电磁阀112和第四三位电磁阀113;其中,
第三三位电磁阀112分别与高压风缸102、左侧空气弹簧105以及大气连通;所述第四三位电磁阀113分别与高压风缸102、右侧空气弹簧107以及大气连通;所述第三三位电磁阀112和第四三位电磁阀113的开启与闭合均受到所述控制器101的控制。
在本申请实施例中,为轨道车辆倾摆系统添加了第三三位电磁阀112和第四三位电磁阀113。第三三位电磁阀112与第一三位电磁比例流量阀109并联,通过与第一三位电磁比例流量阀109的协同工作,能够加快左侧空气弹簧105的充气或排气速度。第四三位电磁阀113与第二三位电磁比例流量阀110并联,通过与第二三位电磁比例流量阀110的协同工作,能够加快右侧空气弹簧107的充气或排气速度。
第三三位电磁阀112和第四三位电磁阀113可采用三位电磁开关阀,也可以采用三位电磁比例流量阀。具体可根据实际需要进行选择。
本申请实施例提供的轨道车辆倾摆系统通过增加电磁阀,可加快空气弹簧的充气和排气速度,有利于迅速调节轨道车辆状态,降低离心力对乘客舒适度的影响。
基于上述任一实施例,图4为本申请实施例提供的倾摆控制方法的流程图,如图4所示,本申请实施例提供的倾摆控制方法,包括:
步骤401、控制器101接收构架的实时未平衡离心加速度,将所述构架的实时未平衡离心加速度与预设的未平衡离心加速度阈值进行比较。
在本步骤中,构架的实时未平衡离心加速度由设置在轨道车辆构架侧梁上的加速度传感器采集并传输给控制器101。
未平衡离心加速度阈值反映了轨道车辆允许的最大未平衡离心加速度。当构架的实时未平衡离心加速度小于这一阈值时,认为轨道车辆运行在直线或具有足够超高的曲线上,系统进入高度调节模式。当构架的实时未平衡离心加速度大于或等于这一阈值时,认为轨道车辆的离心加速度有待平衡,系统进入主动倾摆模式。在本申请实施例中,将对主动倾摆模式的实现过程做进一步的说明。
步骤402、当所述构架的实时未平衡离心加速度大于预设的未平衡离心加速度阈值时,根据所述构架的实时未平衡离心加速度、左侧空气弹簧105的实时高度值以及右侧空气弹簧107的实时高度值,生成第一三位电磁比例流量阀109与第二三位电磁比例流量阀110的控制指令,实现对左侧空气弹簧105以及右侧空气弹簧107的充气或排气操作,以完成倾摆动作。
当所述构架的实时未平衡离心加速度大于预设的未平衡离心加速度阈值时,轨道车辆进入主动倾摆模式。
在主动倾摆模式下,根据所述构架的实时未平衡离心加速度、左侧空气弹簧105的实时高度值以及右侧空气弹簧107的实时高度值,可生成第一三位电磁比例流量阀109与第二三位电磁比例流量阀110的控制指令,实现对左侧空气弹簧105以及右侧空气弹簧107的充气或排气操作,以完成倾摆动作。在本申请的其他实施例中,将对控制指令的具体生成过程做进一步说明。
本申请实施例提供的轨道车辆倾摆控制方法可根据轨道车辆在运行 时的状态,调节左右两侧空气弹簧的高度差,从而调节倾摆角度,有助于平衡轨道车辆在曲线路段运行时所产生的离心力。
基于上述任一实施例,在本申请实施例中,所述根据所述构架的实时未平衡离心加速度、左侧空气弹簧105的实时高度值以及右侧空气弹簧107的实时高度值,生成第一三位电磁比例流量阀109与第二三位电磁比例流量阀110的控制指令,具体包括:
根据所述构架的实时未平衡离心加速度计算轨道车辆车体的倾摆角度;
根据所述轨道车辆车体的倾摆角度计算左侧空气弹簧与右侧空气弹簧的高度差目标值;
根据所述左侧空气弹簧与右侧空气弹簧的高度差目标值计算左侧空气弹簧的高度变化目标值、右侧空气弹簧的高度变化目标值以及左侧空气弹簧的高度变化速度值、右侧空气弹簧的高度变化速度值;
根据所接收到的左侧空气弹簧105的实时高度值以及右侧空气弹簧107的实时高度值,结合左侧空气弹簧105的高度变化目标值、右侧空气弹簧107的高度变化目标值以及左侧空气弹簧105的高度变化速度值、右侧空气弹簧107的高度变化速度值,生成第一三位电磁比例流量阀109与第二三位电磁比例流量阀110的控制指令。
具体的说,在本申请实施例中,根据构架的实时未平衡离心加速度,可采用如下公式计算轨道车辆车体的倾摆角度:
Figure PCTCN2021077341-appb-000001
其中,θ ref为轨道车辆车体的倾摆角度;a nc为构架的实时未平衡离心加速度;a nc0为允许最大未平衡离心加速度,其为预设值;g为重力加速度。
根据轨道车辆车体的倾摆角度,可进一步计算左侧空气弹簧与右侧空气弹簧的高度差目标值,相关计算公式如下:
Δz=2b·θ ref
其中,Δz表示左侧空气弹簧与右侧空气弹簧的高度差目标值;2b为左侧空气弹簧与右侧空气弹簧的横向跨距,该值为实际可测量值。
假设左侧空气弹簧与右侧空气弹簧的当前高度值都处于同一个基准值。左侧空气弹簧与右侧空气弹簧的高度差目标值可进一步分解为左侧空气弹簧的高度变化目标值与右侧空气弹簧的高度变化目标值。
以左侧空气弹簧抬升,右侧空气弹簧降低为例:
Δz=Δz L+Δz R
在该公式中,Δz L表示左侧空气弹簧的抬升高度目标值,Δz R表示右侧空气弹簧的降低高度目标值。
Δz R的具体的计算公式为:
Figure PCTCN2021077341-appb-000002
其中,Δz R,max表示右侧空气弹簧允许的最大降低高度,该值为预知值。
Δz L的具体的计算公式为:
Figure PCTCN2021077341-appb-000003
其中,Δz L,max表示左侧空气弹簧允许的最大抬升高度,该值为预知值。
在得到左侧空气弹簧与右侧空气弹簧的高度变化目标值以后,可以对高度变化目标值求微分,得到高度变化速度值。
在得到左侧空气弹簧的高度变化目标值、右侧空气弹簧的高度变化目标值以及左侧空气弹簧的高度变化速度值、右侧空气弹簧的高度变化速度值之后,根据这些值并结合左侧空气弹簧的实时高度值以及右侧空气弹簧的实时高度值,可为第一三位电磁比例流量阀109与第二三位电磁比例流量阀110分别生成对应的控制指令。
本申请实施例提供的轨道车辆倾摆控制方法根据轨道车辆构架的实时未平衡离心加速度计算轨道车辆车体的倾摆角度,进而计算空气弹簧的高度变化目标值、高度变化速度值,最终为三位电磁比例流量阀生成控制指令,这有助于对轨道车辆倾摆的精准控制,有助于平衡轨道车辆在曲线路段运行时所产生的离心力。
基于上述任一实施例,在本申请实施例中,所述根据所述构架的实时未平衡离心加速度、左侧空气弹簧105的实时高度值以及右侧空气弹簧107的实时高度值,生成第一三位电磁比例流量阀109与第二三位电磁比例流量阀110的控制指令,具体包括:
根据所述构架的实时未平衡离心加速度计算构架的实时未平衡离心加速度的变化率;根据所述构架的实时未平衡离心加速度的变化率得到前馈控制量;
根据所述构架的实时未平衡离心加速度计算左侧空气弹簧105的高度目标值以及右侧空气弹簧107的高度目标值;
根据左侧空气弹簧105的实时高度值与左侧空气弹簧105的高度目标值,确定左侧空气弹簧105的反馈控制量;以及根据右侧空气弹簧107的实时高度值与右侧空气弹簧107的高度目标值,确定右侧空气弹簧107的反馈控制量;
根据所述左侧空气弹簧105的反馈控制量与所述前馈控制量生成第一三位电磁比例流量阀109的控制指令;以及根据所述右侧空气弹簧107的反馈控制量与所述前馈控制量生成第二三位电磁比例流量阀110的控制指令。
在本申请之前的实施例中,从理论上描述了如何根据轨道车辆构架的实时未平衡离心加速度计算轨道车辆车体的倾摆角度,进而计算空气弹簧的高度变化目标值、高度变化速度值,最终为三位电磁比例流量阀生成控制指令。但在实际操作中,由于外界干扰及数据处理过程中时延的原因,使得控制精度和实时性都受到较大影响。因此在本申请实施例中,为电磁比例流量阀生成控制指令的过程可采用前馈控制量与反馈控制量相结合的方式。
图5为本申请实施例提供的轨道车辆倾摆控制方法中的前馈控制与反馈控制相结合的控制方式的示意图。如图5所示,根据构架的实时未平衡离心加速度a nc,计算得到构架的实时未平衡离心加速度的变化率a , nc(即实时未平衡离心加速度的微分值),前馈控制器根据构架的实时未平衡离心加速度的变化率a , nc得到左(右)侧空气弹簧的前馈控制量s ff(如将实时未平衡离心加速度的变化率a , nc乘以一个实验测得的比例系数,得到前 馈控制量s ff),与此同时,将左(右)侧空气弹簧的实际高度值z f与左(右)侧空气弹簧的高度目标值z ref(可由高度变化目标值与空气弹簧的高度基准值得到)进行比较,如果两者之间的差值e超出了预设的区间范围(阈值),则反馈控制器根据经过阈值判断后的差值e c生成反馈控制量s fb(如采用PID算法得到),由所述反馈控制量s fb与前馈控制量s ff得到最终的控制量s(s=s fb+s ff)。根据所述控制量s控制左(右)侧空气弹簧的充气或排气操作,直至左(右)侧空气弹簧的实际高度值与左(右)侧空气弹簧的高度目标值之间的差值在预设的区间范围内,从而实现轨道车辆的倾摆动作。
前馈控制是一种预测控制的方法,能够根据观测量的变化趋势,补偿下一时刻的控制信号,使得实际控制信号更接近于理想值。
本申请实施例提供的轨道车辆倾摆控制方法将前馈控制与反馈控制相结合,从而生成电磁比例流量阀的控制指令。这样做有助于提高响应速度。
基于上述任一实施例,在本申请实施例中,所述方法还包括:
当轨道车辆驶离曲线路段后,平衡左右两侧空气弹簧。
当轨道车辆出缓和曲线时,构架的实时未平衡离心加速度逐渐减小,外侧空气弹簧开始排气下降。当两侧空气弹簧高度偏差值相等时,打开二位控制开关阀,使得外侧空气弹簧内的空气流入内侧空气弹簧,左右两侧空气弹簧恢复至平衡状态。
本领域技术人员很容易理解,本申请实施例所述的外侧空气弹簧为左侧空气弹簧105与右侧空气弹簧107中高度相对较高的空气弹簧,所述内侧空气弹簧为左侧空气弹簧105与右侧空气弹簧107中高度相对较低的空气弹簧。空气弹簧高度偏差值为空气弹簧实时高度值与空气弹簧高度目标值之间的差值。
本申请实施例提供的轨道车辆倾摆控制方法可根据轨道车辆在运行时的状态,调节左右两侧空气弹簧的高度差,从而调节倾摆角度,有助于平衡轨道车辆在曲线路段运行时所产生的离心力。
基于上述任一实施例,在本申请实施例中,方法还包括:
当所述构架的实时未平衡离心加速度小于或等于预设的未平衡离心 加速度阈值时,所述控制器101接收所述左侧空气弹簧105的实时高度值以及所述右侧空气弹簧107的实时高度值,根据所述左侧空气弹簧105的实时高度值计算第一高度偏差值,根据所述右侧空气弹簧107的实时高度值计算第二高度偏差值;
将所述第一高度偏差值与预设的第一区间进行比较,当所述第一高度偏差值超出所述第一区间的范围,通过控制所述第一三位电磁比例流量阀109对所述左侧空气弹簧105的高度进行调节;以及,对所述第二高度偏差值与预设的第二区间进行比较,当所述第二高度偏差值超出所述第二区间的范围,通过控制所述第二三位电磁比例流量阀110对所述右侧空气弹簧107的高度进行调节。
在本申请实施例中,当所述构架的实时未平衡离心加速度小于或等于预设的未平衡离心加速度阈值时,轨道车辆进入高度调节模式。
在具体实现时,可通过为左侧空气弹簧105设置的高度检测传感器得到左侧空气弹簧105的实时高度值,通过为右侧空气弹簧107设置的高度检测传感器得到右侧空气弹簧107的实时高度值。
控制器101从相应的传感器获得左侧空气弹簧105的实时高度值与右侧空气弹簧107的实时高度值以后,将左侧空气弹簧105的实时高度值与预设的第一高度目标值进行比较,得到左侧空气弹簧105的第一高度偏差值;将右侧空气弹簧107的实时高度值与预设的第二高度目标值进行比较,得到右侧空气弹簧107的第二高度偏差值。其中,第一高度目标值与第二高度目标值根据实际需要设定,两者的大小可以相同,也可以不同。
对左、右两侧空气弹簧的高度是否需要调节以及如何调节分别进行控制。以左侧空气弹簧105为例,首先确定第一高度偏差值是否在预设的第一区间范围内,如果在第一区间范围内,则说明左侧空气弹簧105的高度偏差值在允许的范围内,不需要对左侧空气弹簧105的高度进行调节。如果第一高度偏差值超出了第一区间范围,则需要对左侧空气弹簧105的高度进行调节。在调节时,根据第一高度偏差值的正负值,确定是要提升左侧空气弹簧105的高度,还是要降低左侧空气弹簧105的高度。若需要提升左侧空气弹簧105的高度,则为第一三位电磁比例流量阀109生成控制指令,通过第一三位电磁比例流量阀109对左侧空气弹簧105进行充气, 若需要降低左侧空气弹簧105的高度,则为第一三位电磁比例流量阀109生成控制指令,通过第一三位电磁比例流量阀109对左侧空气弹簧105进行排气。在进行充气或排气的过程中,不断测量左侧空气弹簧105的实时高度值,当第一高度偏差值的大小达到预设的第一区间范围内,则停止对左侧空气弹簧105的充气或排气操作。
对右侧空气弹簧107的操作与上述对左侧空气弹簧105的操作相类似。
需要说明的是,所述第一区间范围与所述第二区间范围的大小可以相同,也可以不同,具体根据实际情况确定。
本申请实施例提供的轨道车辆倾摆控制方法在轨道车辆的构架的实时未平衡离心加速度小于或等于预设的未平衡离心加速度阈值时,对空气弹簧进行高度调节,以调节轨道车辆状态,降低离心力对乘客舒适度的影响。
基于上述任一实施例,本申请另一个实施例提供一种轨道车辆,所述轨道车辆包括:
所述的轨道车辆倾摆系统。
本申请实施例提供的轨道车辆可根据运行时的状态,调节左右两侧空气弹簧的高度差,从而调节倾摆角度,有助于平衡轨道车辆在曲线路段运行时所产生的离心力。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件来实现。上述技术方案可以以计算机软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方 法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种轨道车辆倾摆系统,其特征在于,包括:控制器(101)、高压风缸(102)、左侧空气弹簧(105)、右侧空气弹簧(107)、左侧附加气室(106)、右侧附加气室(108)、第一三位电磁比例流量阀(109)、第二三位电磁比例流量阀(110)、传感器、差压阀(104)以及二位开关阀(111);其中,
    所述左侧空气弹簧(105)与所述左侧附加气室(106)连通,所述右侧空气弹簧(107)与所述右侧附加气室(108)连通;
    所述传感器用于采集轨道车辆在行驶时的数据,并将所采集的数据传输给控制器(101);所述控制器(101)根据传感器所采集的数据,对第一三位电磁比例流量阀(109)以及第二三位电磁比例流量阀(110)进行控制,以使得所述高压风缸(102)中的高压气体分别通过所述第一三位电磁比例流量阀(109)以及第二三位电磁比例流量阀(110)充入所述左侧空气弹簧(105)和右侧空气弹簧(107),或使得所述左侧空气弹簧(105)和右侧空气弹簧(107)内部的气体分别通过所述第一三位电磁比例流量阀(109)以及第二三位电磁比例流量阀(110)释放到大气中;
    所述差压阀(104)用于连通所述左侧附加气室(106)和右侧附加气室(108);所述二位开关阀(111)通过管路分别与所述左侧附加气室(106)与所述右侧附加气室(108)连通。
  2. 根据权利要求1所述的轨道车辆倾摆系统,其特征在于,所述传感器包括加速度传感器以及空气弹簧高度检测传感器;其中,
    所述加速度传感器安装在轨道车辆的构架侧梁上;
    所述空气弹簧高度检测传感器安装在所述左侧空气弹簧(105)以及所述右侧空气弹簧(107)的邻近位置。
  3. 根据权利要求1或2所述的轨道车辆倾摆系统,其特征在于,还包括:第三三位电磁阀(112)和第四三位电磁阀(113);其中,
    所述第三三位电磁阀(112)分别与所述高压风缸(102)、左侧空气弹簧(105)以及大气连通;所述第四三位电磁阀(113)分别与所述高压风缸(102)、右侧空气弹簧(107)以及大气连通;所述第三三位电磁阀(112)和第四三位电磁阀(113)的开启与闭合均受到所述控制器(101) 的控制。
  4. 根据权利要求3所述的轨道车辆倾摆系统,其特征在于,所述第三三位电磁阀(112)为三位电磁开关阀或三位电磁比例流量阀;或
    所述第四三位电磁阀(113)为三位电磁开关阀或三位电磁比例流量阀。
  5. 基于权利要求1至4之一所述的轨道车辆倾摆系统所实现的倾摆控制方法,其特征在于,包括:
    步骤S11、所述控制器(101)接收所述加速度传感器采集的构架的实时未平衡离心加速度,将所述构架的实时未平衡离心加速度与预设的未平衡离心加速度阈值进行比较;
    步骤S12、当所述构架的实时未平衡离心加速度大于预设的未平衡离心加速度阈值时,根据所述构架的实时未平衡离心加速度、左侧空气弹簧(105)的实时高度值以及右侧空气弹簧(107)的实时高度值,生成第一三位电磁比例流量阀(109)与第二三位电磁比例流量阀(110)的控制指令,实现对左侧空气弹簧(105)以及右侧空气弹簧(107)的充气或排气操作,以完成倾摆动作。
  6. 根据权利要求5所述的倾摆控制方法,其特征在于,所述根据所述构架的实时未平衡离心加速度、左侧空气弹簧(105)的实时高度值以及右侧空气弹簧(107)的实时高度值,生成第一三位电磁比例流量阀(109)与第二三位电磁比例流量阀(110)的控制指令,具体包括:
    根据所述构架的实时未平衡离心加速度计算轨道车辆车体的倾摆角度;
    根据所述轨道车辆车体的倾摆角度计算左侧空气弹簧与右侧空气弹簧的高度差目标值;
    根据所述左侧空气弹簧与右侧空气弹簧的高度差目标值计算左侧空气弹簧的高度变化目标值、右侧空气弹簧的高度变化目标值以及左侧空气弹簧的高度变化速度值、右侧空气弹簧的高度变化速度值;
    根据所接收到的左侧空气弹簧(105)的实时高度值以及右侧空气弹簧(107)的实时高度值,结合左侧空气弹簧的高度变化目标值、右侧空气弹簧的高度变化目标值以及左侧空气弹簧的高度变化速度值、右侧空气 弹簧的高度变化速度值,生成第一三位电磁比例流量阀(109)与第二三位电磁比例流量阀(110)的控制指令。
  7. 根据权利要求5所述的倾摆控制方法,其特征在于,所述根据所述构架的实时未平衡离心加速度、左侧空气弹簧(105)的实时高度值以及右侧空气弹簧(107)的实时高度值,生成第一三位电磁比例流量阀(109)与第二三位电磁比例流量阀(110)的控制指令,具体包括:
    根据所述构架的实时未平衡离心加速度计算构架的实时未平衡离心加速度的变化率;根据所述构架的实时未平衡离心加速度的变化率得到左侧空气弹簧(105)的前馈控制量以及右侧空气弹簧(107)的前馈控制量;
    根据所述构架的实时未平衡离心加速度计算左侧空气弹簧(105)的高度目标值以及右侧空气弹簧(107)的高度目标值;
    根据左侧空气弹簧(105)的实时高度值与左侧空气弹簧(105)的高度目标值,确定左侧空气弹簧(105)的反馈控制量;以及根据右侧空气弹簧(107)的实时高度值与右侧空气弹簧(107)的高度目标值,确定右侧空气弹簧(107)的反馈控制量;
    根据所述左侧空气弹簧(105)的反馈控制量与所述左侧空气弹簧(105)的前馈控制量生成第一三位电磁比例流量阀(109)的控制指令;以及根据所述右侧空气弹簧(107)的反馈控制量与所述右侧空气弹簧(107)的前馈控制量生成第二三位电磁比例流量阀(110)的控制指令。
  8. 根据权利要求5所述的倾摆控制方法,其特征在于,还包括:
    当轨道车辆驶离曲线路段后,平衡左右两侧空气弹簧;具体包括:
    当轨道车辆出缓和曲线时,构架的实时未平衡离心加速度逐渐减小,外侧空气弹簧开始排气下降;当两侧空气弹簧高度偏差值相等时,打开二位控制开关阀,使得外侧空气弹簧内的空气流入内侧空气弹簧,左右两侧空气弹簧恢复至平衡状态;其中,
    所述外侧空气弹簧为左侧空气弹簧(105)与右侧空气弹簧(107)中高度相对较高的空气弹簧,所述内侧空气弹簧为左侧空气弹簧(105)与右侧空气弹簧(107)中高度相对较低的空气弹簧;所述空气弹簧高度偏差值为空气弹簧实时高度值与空气弹簧高度目标值之间的差值。
  9. 根据权利要求5所述的倾摆控制方法,其特征在于,还包括:
    步骤S21、当所述构架的实时未平衡离心加速度小于或等于预设的未平衡离心加速度阈值时,所述控制器(101)接收所述左侧空气弹簧(105)的实时高度值以及所述右侧空气弹簧(107)的实时高度值,根据所述左侧空气弹簧(105)的实时高度值计算第一高度偏差值,根据所述右侧空气弹簧(107)的实时高度值计算第二高度偏差值;
    步骤S22、将所述第一高度偏差值与预设的第一区间进行比较,当所述第一高度偏差值超出所述第一区间的范围,通过控制所述第一三位电磁比例流量阀(109)对所述左侧空气弹簧(105)的高度进行调节;以及,对所述第二高度偏差值与预设的第二区间进行比较,当所述第二高度偏差值超出所述第二区间的范围,通过控制所述第二三位电磁比例流量阀(110)对所述右侧空气弹簧(107)的高度进行调节。
  10. 一种轨道车辆,其特征在于,包括:
    权利要求1至4之一所述的轨道车辆倾摆系统。
PCT/CN2021/077341 2020-09-18 2021-02-23 轨道车辆倾摆系统、倾摆控制方法及轨道车辆 WO2022057202A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21868042.9A EP4056446A4 (en) 2020-09-18 2021-02-23 RAIL CAR TIPPING SYSTEM, TIPPING CONTROL METHOD AND RAIL CAR
JP2022532647A JP7434551B2 (ja) 2020-09-18 2021-02-23 軌道車両傾斜システム、傾斜制御方法、及び軌道車両
US17/778,184 US20220410946A1 (en) 2020-09-18 2021-02-23 Tilting system and tilting control method for railway vehicle and railway vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010990343.2A CN112046533B (zh) 2020-09-18 2020-09-18 轨道车辆倾摆系统、倾摆控制方法及轨道车辆
CN202010990343.2 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022057202A1 true WO2022057202A1 (zh) 2022-03-24

Family

ID=73603427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077341 WO2022057202A1 (zh) 2020-09-18 2021-02-23 轨道车辆倾摆系统、倾摆控制方法及轨道车辆

Country Status (5)

Country Link
US (1) US20220410946A1 (zh)
EP (1) EP4056446A4 (zh)
JP (1) JP7434551B2 (zh)
CN (1) CN112046533B (zh)
WO (1) WO2022057202A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112046533B (zh) * 2020-09-18 2021-11-30 中车青岛四方机车车辆股份有限公司 轨道车辆倾摆系统、倾摆控制方法及轨道车辆
CN112810651B (zh) * 2021-01-14 2022-05-31 中车长春轨道客车股份有限公司 一种轨道车辆抗侧滚装置的控制方法
CN112793610B (zh) * 2021-01-30 2022-08-16 上海工程技术大学 一种地铁列车坡道行驶防倾斜稳定系统
WO2023050095A1 (zh) * 2021-09-28 2023-04-06 华为技术有限公司 电磁阀总成、空气悬架系统、车辆、控制方法及相关设备
CN114771594B (zh) * 2022-04-29 2024-03-12 株洲时代新材料科技股份有限公司 一种轨道车辆小幅倾摆调节系统及其控制方法
CN114771595B (zh) * 2022-04-29 2024-03-12 株洲时代新材料科技股份有限公司 一种轨道车辆小幅倾摆快速调节系统及其控制方法
CN114802332B (zh) * 2022-04-29 2024-05-07 株洲时代新材料科技股份有限公司 一种提高轨道车辆曲线行驶速度的方法及小幅倾摆系统
CN115195801B (zh) * 2022-08-11 2023-12-26 中车青岛四方机车车辆股份有限公司 转向架主动径向系统、控制方法、转向架及轨道车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2446002Y (zh) * 2000-09-19 2001-09-05 胡起凤 一种铁路车辆主动控振转向架
JP2010228694A (ja) * 2009-03-30 2010-10-14 Hitachi Ltd 鉄道車両の制御装置及び制御方法
CN102378711A (zh) * 2009-04-07 2012-03-14 奥地利西门子公司 用于控制车辆的空气弹簧装置的方法
JP2012232718A (ja) * 2011-05-09 2012-11-29 Psc Kk 車体傾斜装置
CN103153749A (zh) * 2010-10-15 2013-06-12 日本车辆制造株式会社 铁路车辆的车体倾斜装置
CN204871044U (zh) * 2013-08-22 2015-12-16 奥地利西门子公司 用于轨道车辆的水平可调的弹性机构和轨道车辆
CN108545093A (zh) * 2018-04-11 2018-09-18 中车株洲电力机车有限公司 一种轨道列车及其液压悬挂系统
CN210760748U (zh) * 2019-02-27 2020-06-16 河南中平晟佳科技有限公司 一种横向、竖向自适应自稳定无级超高系统
CN112046533A (zh) * 2020-09-18 2020-12-08 中车青岛四方机车车辆股份有限公司 轨道车辆倾摆系统、倾摆控制方法及轨道车辆

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1379059A (en) * 1972-05-12 1975-01-02 Sumitomo Metal Ind Railway car having a fail safe suspension system for controlling car body roll
JP4197857B2 (ja) * 2000-08-11 2008-12-17 カヤバ工業株式会社 車両の空気バネ式懸架装置および差圧弁
CN1704297A (zh) * 2004-05-28 2005-12-07 西南交通大学 一种摆式列车线路状态测报及车体倾摆控制装置
JP2008100614A (ja) 2006-10-19 2008-05-01 Railway Technical Res Inst 鉄道車両の車体傾斜装置及び車体傾斜方法
JP5182239B2 (ja) * 2009-07-08 2013-04-17 新日鐵住金株式会社 鉄道車両の車体傾斜制御装置
JP5513175B2 (ja) * 2010-03-05 2014-06-04 川崎重工業株式会社 鉄道車両の車体傾斜装置
JP6342658B2 (ja) 2012-12-27 2018-06-13 ピー・エス・シー株式会社 車体傾斜装置
SG11201505382TA (en) * 2013-02-21 2015-08-28 Mitsubishi Heavy Ind Ltd Track-guided vehicle, and car body tilt control method therefor
CN204955994U (zh) * 2015-09-25 2016-01-13 南京瑞发机械设备有限责任公司 智能空气弹簧控制装置
FR3085932B1 (fr) * 2018-09-14 2021-07-23 Speedinnov Suspension pneumatique pour vehicule ferroviaire
CN209079902U (zh) * 2018-11-08 2019-07-09 中车株洲电力机车有限公司 一种轨道车辆的主动二系悬挂系统及轨道车辆
CN110641502B (zh) * 2019-11-06 2020-12-11 中车株洲电力机车有限公司 列车转向架悬挂系统动态调节方法
CN213168083U (zh) * 2020-09-18 2021-05-11 中车青岛四方机车车辆股份有限公司 轨道车辆倾摆装置及轨道车辆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2446002Y (zh) * 2000-09-19 2001-09-05 胡起凤 一种铁路车辆主动控振转向架
JP2010228694A (ja) * 2009-03-30 2010-10-14 Hitachi Ltd 鉄道車両の制御装置及び制御方法
CN102378711A (zh) * 2009-04-07 2012-03-14 奥地利西门子公司 用于控制车辆的空气弹簧装置的方法
CN103153749A (zh) * 2010-10-15 2013-06-12 日本车辆制造株式会社 铁路车辆的车体倾斜装置
JP2012232718A (ja) * 2011-05-09 2012-11-29 Psc Kk 車体傾斜装置
CN204871044U (zh) * 2013-08-22 2015-12-16 奥地利西门子公司 用于轨道车辆的水平可调的弹性机构和轨道车辆
CN108545093A (zh) * 2018-04-11 2018-09-18 中车株洲电力机车有限公司 一种轨道列车及其液压悬挂系统
CN210760748U (zh) * 2019-02-27 2020-06-16 河南中平晟佳科技有限公司 一种横向、竖向自适应自稳定无级超高系统
CN112046533A (zh) * 2020-09-18 2020-12-08 中车青岛四方机车车辆股份有限公司 轨道车辆倾摆系统、倾摆控制方法及轨道车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4056446A4 *

Also Published As

Publication number Publication date
CN112046533A (zh) 2020-12-08
EP4056446A1 (en) 2022-09-14
CN112046533B (zh) 2021-11-30
JP7434551B2 (ja) 2024-02-20
JP2023503698A (ja) 2023-01-31
EP4056446A4 (en) 2023-07-12
US20220410946A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2022057202A1 (zh) 轨道车辆倾摆系统、倾摆控制方法及轨道车辆
JP2653317B2 (ja) 空気ばね付き鉄道車両の車体傾斜制御方法
CN112896215A (zh) 一种轨道交通用主动倾摆系统
JP2007176400A (ja) 鉄道車両の上下振動制御装置
CN213168083U (zh) 轨道车辆倾摆装置及轨道车辆
JP6833477B2 (ja) 鉄道車両の高さ調整装置
JP2002316641A (ja) 鉄道車両の車体傾斜制御装置
JP2011183861A (ja) 鉄道車両の車体傾斜装置
JPH10287241A (ja) 鉄道車両用車体傾斜制御装置及びその車体傾斜制御方法
JPH0781558A (ja) 車両の傾斜制御方法および傾斜制御装置
JP2008100614A (ja) 鉄道車両の車体傾斜装置及び車体傾斜方法
RU2800617C1 (ru) Система наклона и способ управления наклоном для железнодорожного транспортного средства и железнодорожное транспортное средство
CN111469622B (zh) 一种高速列车横向半主动悬架容错控制系统及方法
JP4292973B2 (ja) 鉄道車両の車体傾斜制御方法及び装置
JP4478529B2 (ja) 鉄道車両
JP6794244B2 (ja) 鉄道車両の制振装置
JP3391274B2 (ja) 鉄道車両における空気ばねによる車体傾斜制御時の給排気方法
JP2832329B2 (ja) 鉄道車両の車体傾斜制御方法
US10981584B2 (en) Wheel load adjusting apparatus of railcar
WO2019200632A1 (zh) 一种多空气弹簧列车悬挂控制方法、系统及列车
JP4292792B2 (ja) 車体傾斜装置
CN114771595B (zh) 一种轨道车辆小幅倾摆快速调节系统及其控制方法
CN114771594B (zh) 一种轨道车辆小幅倾摆调节系统及其控制方法
JPH03295758A (ja) 鉄道車両用空気ばねの応荷重型電子制御方法
JPH03148370A (ja) 鉄道車両の空気ばね制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532647

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021868042

Country of ref document: EP

Effective date: 20220610

NENP Non-entry into the national phase

Ref country code: DE