WO2019200632A1 - 一种多空气弹簧列车悬挂控制方法、系统及列车 - Google Patents

一种多空气弹簧列车悬挂控制方法、系统及列车 Download PDF

Info

Publication number
WO2019200632A1
WO2019200632A1 PCT/CN2018/086211 CN2018086211W WO2019200632A1 WO 2019200632 A1 WO2019200632 A1 WO 2019200632A1 CN 2018086211 W CN2018086211 W CN 2018086211W WO 2019200632 A1 WO2019200632 A1 WO 2019200632A1
Authority
WO
WIPO (PCT)
Prior art keywords
air spring
spring group
height adjustment
adjustment valve
pressure
Prior art date
Application number
PCT/CN2018/086211
Other languages
English (en)
French (fr)
Inventor
杜慧杰
陈澍军
刘政
张新永
刘中华
秦佳颖
杨永勤
胡文浩
李良杰
张利敏
Original Assignee
中车唐山机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车唐山机车车辆有限公司 filed Critical 中车唐山机车车辆有限公司
Priority to US17/047,956 priority Critical patent/US12012129B2/en
Priority to EP18915278.8A priority patent/EP3778338B1/en
Publication of WO2019200632A1 publication Critical patent/WO2019200632A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/26Mounting or securing axle-boxes in vehicle or bogie underframes
    • B61F5/30Axle-boxes mounted for movement under spring control in vehicle or bogie underframes
    • B61F5/307Axle-boxes mounted for movement under spring control in vehicle or bogie underframes incorporating fluid springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/14Side bearings
    • B61F5/144Side bearings comprising fluid damping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F1/00Underframes
    • B61F1/08Details
    • B61F1/14Attaching or supporting vehicle body-structure

Definitions

  • the present application relates to rail transit technology, and in particular to a multi-air spring train suspension control method, system and train.
  • Air spring suspension control mode will be set.
  • each car of the subway and high-speed train consists of two bogies 5, each of which is provided with two air springs, each of which has four air springs.
  • the air spring suspension system is controlled by two or four points.
  • each of the bogies 5 is provided with a height adjustment valve 2, and the air springs of the two bogies 5 are directly connected, and one height adjustment valve 2 is controlled.
  • Two air springs of one bogie 5, and the other height adjustment valve 2 controls two air springs of the other bogie 5. The air spring is blown or exhausted through the pipe 3, so that the vehicle body is kept in a stable state.
  • the air springs on both sides of the bogie 5 are directly connected. Although the two sides always have a uniform internal pressure, the control mode cannot suppress the roll motion of the vehicle body, and the bogie needs to be 5 Install anti-rolling torsion bar between the car body to ensure its safety and reliability.
  • each height adjustment valve 2 In the air spring suspension system of the four-point control mode, as shown in FIG. 2, two height adjustment valves 2 are provided for each bogie 5 of the vehicle, and each height adjustment valve 2 controls an air spring, and the air spring is passed through the pipeline 3. Air or exhaust.
  • a differential pressure valve 4 is required between the air springs on both sides of the bogie 5. When the internal pressure difference of the air springs on both sides exceeds the value, the differential pressure valve 4 is opened to balance the internal pressure of the air springs on both sides to reduce the wheel load shedding rate. To ensure that the car body does not tip over due to excessive roll angle.
  • the four-point control mode can be independently moved due to the left and right modules of the vehicle bogie 5, and the four-point control method causes four points to be non-coplanar, causing the bottom surface of the cabin and the bogie 5 to be inconsistent. To some extent, it affects the decoupling performance of the bogie 5, which weakens the vehicle's ability to adapt to the road.
  • the embodiments of the present application provide a multi-air spring train suspension control method, system, and train.
  • a first aspect of the embodiments of the present application provides a multi-air spring train suspension control method, the method comprising:
  • Adjusting a pressure of the first air spring group, the second air spring group, and/or the third air spring group by controlling the height adjustment valve according to the vehicle load pressure;
  • the height adjustment valve is three, and three of the height adjustment valves form a triangular structure
  • the first air spring group, the second air spring group and the third air spring group comprise a plurality of air spring units, and all air spring units in each group of air spring groups are correspondingly connected to the same height adjusting valve.
  • the three height adjustment valves form a center of gravity of the triangular structure that coincides with the center of gravity of the vehicle floor.
  • the first air spring group is located on the left side of the front half of the vehicle running direction
  • the second air spring group is located on the right side of the front half of the vehicle running direction
  • the third air spring group is located in the vehicle running direction. The second half.
  • the first air spring group is located on the left side of the rear half of the vehicle running direction
  • the second air spring group is located on the right side of the rear half of the vehicle running direction
  • the third air spring group is located at the vehicle The first half of the direction of travel.
  • the number of air spring units in the first air spring group and the second air spring group is the same.
  • all of the air spring units in each set of air springs are connected in series.
  • the process of adjusting the pressure of the first air spring group, the second air spring group and/or the third air spring group by controlling the height adjustment valve according to the vehicle load pressure comprises:
  • the height adjustment valve is closed to stop the air charging.
  • the process of adjusting the pressure of the first air spring group, the second air spring group and/or the third air spring group by controlling the height adjustment valve according to the vehicle load pressure comprises:
  • the pressure of the air spring unit in the first air spring group, the second air spring group, and/or the third air spring group is less than the vehicle load pressure, and the difference between the air spring unit pressure and the vehicle load pressure
  • the value is equal to the preset difference, controlling the opening degree of the height adjusting valve, and charging the first air spring group, the second air spring group and/or the third air spring group at a second rate;
  • the height adjustment valve is closed to stop the air charging.
  • a second aspect of the present application provides a multi-air spring train suspension control system, the system comprising: a first height adjustment valve, a second height adjustment valve, a third height adjustment valve, and a pneumatic control device;
  • the first height adjustment valve, the second height adjustment valve and the third height adjustment valve respectively connect the air spring unit in the first air spring group, the second air spring group and the third air spring group, the first The height adjustment valve, the second height adjustment valve and the third height adjustment valve form a triangular structure;
  • the pneumatic circuit control device includes a processor, and the processor is provided with an operation instruction executable by the processor to perform the following operations:
  • Adjusting the pressure of the first air spring group, the second air spring group, and/or the third air spring group by controlling the first height adjustment valve, the second height adjustment valve, and/or the third height adjustment valve according to the vehicle load pressure .
  • the first height adjustment valve, the second height adjustment valve, and the third height adjustment valve form a center of gravity of the triangular structure that coincides with a center of gravity of the vehicle floor.
  • the first air spring group is located on the left side of the front half of the vehicle running direction
  • the second air spring group is located on the right side of the front half of the vehicle running direction
  • the third air spring group is located in the vehicle running direction. The second half.
  • the first air spring group is located on the left side of the rear half of the vehicle running direction
  • the second air spring group is located on the right side of the rear half of the vehicle running direction
  • the third air spring group is located at the vehicle The first half of the direction of travel.
  • the number of air spring units in the first air spring group and the second air spring group is the same.
  • all of the air spring units in each set of air springs are connected in series.
  • the processor is provided with an operation instruction executable by the processor to perform the following operations:
  • the processor is provided with an operation instruction executable by the processor to perform the following operations:
  • the pressure of the air spring unit in the first air spring group, the second air spring group, and/or the third air spring group is less than the vehicle load pressure, and the difference between the air spring unit pressure and the vehicle load pressure
  • the value is equal to the preset difference, controlling the opening degree of the first height adjusting valve, the second height adjusting valve, and/or the third height adjusting valve to the first air spring group and the second air at a second rate
  • the spring group and/or the third air spring group are filled with air;
  • a pressure reducing valve is disposed between the air path control device and the first height adjusting valve, the second height adjusting valve, and the third height adjusting valve for stabilizing the first height adjusting valve and the second height Adjust the pressure at the air inlet of the valve and the third height adjustment valve.
  • a third aspect of the present application provides a train comprising the multi-air spring train suspension control system of the second aspect of the present application.
  • the beneficial effects of the present application are as follows:
  • the present application divides a plurality of air springs on a train into three groups and performs pressure control through three height adjustment valves, while ensuring that the three height adjustment valves are always maintained on one plane, so that the carriage floor and The bogies are equally stressed. There are no side roll, squat and nod.
  • the application makes the vehicle load distribution more reasonable, and can improve the performance of the vehicle adapting to the track curve.
  • Figure 1 is a schematic diagram of the principle of the existing two-point control mode
  • FIG. 2 is a schematic diagram of the principle of the existing four-point control mode
  • FIG. 3 is a flow chart of a multi-air spring train suspension control method according to Embodiment 1 of the present application;
  • FIG. 5 is a schematic view showing the position of a height adjustment valve according to an embodiment of the present application.
  • Figure 6 is a cross-sectional view taken along line A-A of Figure 5;
  • FIG. 7 is a schematic view showing the installation between the height adjustment valve and the air spring unit 1 according to the embodiment of the present application;
  • Figure 8 is a schematic view showing the installation position of the pressure reducing valve 12 according to the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a multi-air spring train suspension control system according to Embodiment 2 of the present application.
  • the embodiment provides a multi-air spring train suspension control method, and the method includes:
  • the pressure of the first air spring group, the second air spring group, and/or the third air spring group is adjusted by controlling the height adjustment valve according to the vehicle load pressure.
  • the height adjustment valves described in this embodiment are three, and the three height adjustment valves form a triangular structure
  • the first air spring group, the second air spring group and the third air spring group comprise a plurality of air spring units 1 , and all air spring units 1 in each group of air spring groups are connected to the same height adjusting valve .
  • a maglev train consisting of five cars has a total of 10 bogies 5, and two air spring units 1 are provided on each bogie 5, for a total of 20 air spring units 1 .
  • the 20 air spring units 1 are divided into three groups, and the present embodiment proposes two grouping methods:
  • the first air spring group is located on the left side of the front half of the vehicle running direction
  • the second air spring group is located on the right side of the front half of the vehicle running direction
  • the third air spring group is located in the rear half of the vehicle running direction.
  • the first air spring group is located on the left side of the rear half of the vehicle running direction
  • the second air spring group is located on the right side of the rear half of the vehicle running direction
  • the third air spring group is located in the front half of the vehicle running direction.
  • the first air spring unit grouping method according to the embodiment is divided into three groups: front left, front right and rear three air groups, wherein the front left group The first air spring group and the front right group (second air spring group) have six air spring groups, and the rear group (third air spring group) has four sides.
  • the three sets of air-air spring units 1 are independent of each other and do not communicate with each other, and it is not necessary to provide the differential pressure valve 4.
  • the air spring units 1 in each air spring group are connected in series to ensure that each air spring group always has a uniform internal pressure, and the air spring unit 1 can be quickly charged and exhausted.
  • the air spring unit 1 in each air spring group is simultaneously connected to the same height adjustment valve, wherein the first height adjustment valve 6 connecting the first air spring group and the second height adjustment valve 7 connected to the second air spring group are mounted on On the second bogie, control the six air springs on the left and right sides.
  • a third height adjustment valve 8 connected to the third air spring group is mounted on the fourth bogie to control the remaining eight air springs.
  • the first height adjustment valve 6, the second height adjustment valve 7, and the third height adjustment valve 8 form an isosceles triangle structure, and the center of gravity of the isosceles triangle structure coincides with the center of gravity of the vehicle floor.
  • the three points of the first height adjustment valve 6, the second height adjustment valve 7, and the third height adjustment valve 8 are always in one plane, so that the vehicle bottom surface and the bogie 5 are subjected to the force. It can restrain the roll motion of the car body to ensure the balance of the car body, and no side roll, back seat and nodding will occur, which improves the reliability of vehicle operation safety.
  • one end of the height adjustment valve according to the embodiment is fixedly connected to the vehicle body through the first bracket 9 , and the adjustable link 10 is disposed at the other end of the height adjustment valve.
  • a second bracket 11 is attached to the bottom, and the second bracket 11 is fixedly coupled to the air spring unit 1.
  • the adjustable link 10 can be adjusted in angle and length so that the bogie 5 can ensure a reliable connection of the height adjustment valve to the air spring unit 1 regardless of the state.
  • the process of adjusting the pressures of the first air spring group, the second air spring group and/or the third air spring group by controlling the height adjustment valve according to the vehicle load pressure in the embodiment includes:
  • the height adjustment valve is closed to stop the air charging.
  • the vehicle body moves downward relative to the bogie 5, and the height adjustment valve is opened, and the lever of the height adjustment valve rotates around the driving axis to charge the air spring to increase the air spring pressure. Raise the height of the car.
  • the air spring pressure is balanced with the vehicle load, close the height adjustment valve to stop the air charging.
  • the process of adjusting the pressures of the first air spring group, the second air spring group, and/or the third air spring group by controlling the height adjustment valve according to the vehicle load pressure in the embodiment includes:
  • the opening degree of the height adjustment valve is controlled, and the first air spring group, the second air spring group and/or the third air spring group are charged at a second rate;
  • the height adjustment valve is closed to stop the air charging.
  • the height adjustment valve has the largest opening degree, and the external air spring supply air cylinder quickly fills the air spring through the high-speed adjustment valve.
  • the air spring pressure is close to the vehicle load, the vehicle body moves upward again, so the height adjustment valve opening degree is gradually reduced, and the air spring is filled with air at a slow speed until the air spring pressure and the vehicle load are balanced.
  • a pressure reducing valve 12 may be disposed at the air inlets of the three air spring groups for stabilizing the pressure at the air inlets of the three air spring groups, and it is not necessary to set the throttle for each height adjusting valve.
  • the valve simplifies the control strategy. Among them, the pressure setting of the pressure reducing valve 12 can meet the working needs under the condition of the vehicle under the extreme load.
  • this embodiment proposes a multi-air spring train suspension system.
  • the system includes: a first height adjustment valve 6, and a second height adjustment. a valve 7, a third height adjustment valve 8 and a pneumatic circuit control device;
  • the first height adjustment valve 6, the second height adjustment valve 7 and the third height adjustment valve 8 respectively connect the air spring unit 1 in the first air spring group, the second air spring group and the third air spring group.
  • the first height adjustment valve 6, the second height adjustment valve 7, and the third height adjustment valve 8 form a triangular structure;
  • the pneumatic circuit control device includes a processor, and the processor is provided with an operation instruction executable by the processor to perform the following operations:
  • Adjusting the first air spring group, the second air spring group, and/or the third air spring by controlling the first height adjustment valve 6, the second height adjustment valve 7, and/or the third height adjustment valve 8 according to the vehicle load pressure The pressure of the group.
  • the present embodiment provides a train including the multi-air spring train suspension control system provided in Embodiment 2.
  • one end of the height adjustment valve in the multi-air spring train suspension control system is fixedly connected to the vehicle body through the first bracket 9, and the adjustable link 10 is disposed at the other end of the height adjustment valve at the bottom of the adjustable link 10
  • a second bracket 11 is connected, and the second bracket 11 is fixedly connected to the air spring unit 1.
  • the adjustable link 10 can be adjusted in angle and length so that the bogie 5 can ensure a reliable connection of the height adjustment valve to the air spring unit 1 regardless of the state.
  • a plurality of air springs on the train are divided into three groups, and pressure control is performed through three height adjustment valves, while ensuring that the three height adjustment valves are always maintained on one plane, so that the carriage floor and the bogie 5 are consistently stressed. .
  • the application makes the vehicle load distribution more reasonable, and can improve the performance of the vehicle adapting to the track curve.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

提供了一种多空气弹簧列车悬挂控制方法,该方法包括:接收车辆载荷压力(S101);根据车辆载荷压力通过控制高度调整阀调整第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力(S102)。该高度调整阀为三个,且三个高度调整阀形成三角形结构。第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中包括多个空气弹簧单体,每一组空气弹簧组中的所有空气弹簧单体对应连接同一个高度调整阀。还提供了一种多空气弹簧列车悬挂控制系统及列车,使得车辆载荷分布更加合理,可以提高车辆的适应轨道曲线的性能。

Description

一种多空气弹簧列车悬挂控制方法、系统及列车 技术领域
本申请涉及轨道交通技术,具体地,涉及一种多空气弹簧列车悬挂控制方法、系统及列车。
背景技术
列车在实际运营过程中,车厢内的乘客分布不均匀,在乘客集中的区域,空气弹簧压缩量大,而乘客稀少的区域,空气弹簧压缩量会比较小,为了防止车体的倾斜,列车中会设置空气弹簧悬挂控制方式。
目前,地铁、高铁列车每节车厢由两个转向架5组成,每个转向架5上设置两个空气弹簧,每节车厢共有四个空气弹簧。空气弹簧悬挂系统控制方式为两点或四点控制方式。
在两点控制方式的空气弹簧悬挂系统中,如图1所示,车辆每个转向架5各设置一个高度调整阀2,两个转向架5的空气弹簧直接相连,其中一个高度调整阀2控制一个转向架5的两个空气弹簧,另一个高度调整阀2控制另一个转向架5的两个空气弹簧。通过管路3向空气弹簧送风或排风,这样保持车体处于平稳状态。
然而,在两点控制方式中,转向架5两侧空气弹簧直接相连,虽然保证了其两侧始终具有一致的内压力,但这种控制模式无法抑制车体的侧滚运动,需在转向架5与车体间安装抗侧滚扭杆,来保证其安全可靠性。
在四点控制方式的空气弹簧悬挂系统中,如图2所示,车辆每个转向架5设置两个高度调整阀2,每一个高度调整阀2控制一个空气弹簧,通过管路3向空气弹簧送风或排风。转向架5两侧空气弹簧间需要安装差压阀4, 当两侧空气弹簧的内压力差超过其值时,差压阀4打开,以均衡两侧空气弹簧的内压力降低轮重减载率,保证车体不会因过大的侧滚角而发生倾覆。
四点控制方式由于车辆转向架5的左右两模块可以独立运动,采用四点控制方式造成四点不共面,引起车厢底面和转向架5受力不一致。在一定程度上影响转向架5的解耦性能,削弱了车辆对道路的适应能力。
面对两点控制方式和四点控制方式所存在的问题,公开号:CN100436221C,发明名称:城轨磁浮车辆空气弹簧悬挂系统高度调节方法和调节系统中公开了一种三点控制方式,但是其在前端编组时采用了两套高度调节机构,其中一套作为冗余,结构和控制策略都较为复杂,且增加了车底安装难度。
发明内容
有鉴于此,本申请实施例提供一种多空气弹簧列车悬挂控制方法、系统及列车。
为达到上述目的,本申请实施例的技术方案是这样实现的:
本申请实施例第一方面提供了一种多空气弹簧列车悬挂控制方法,所述方法包括:
接收车辆载荷压力;
根据所述车辆载荷压力通过控制高度调整阀调整第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力;
所述高度调整阀为三个,且三个所述高度调整阀形成三角形结构;
所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中包括多个空气弹簧单体,每一组空气弹簧组中的所有空气弹簧单体对应连接同一个高度调整阀。
优选地,所述三个高度调整阀形成三角形结构的重心与车辆底板的重心重合。
优选地,所述第一空气弹簧组位于车辆运行方向的前半部的左侧,所述第二空气弹簧组位于车辆运行方向的前半部的右侧,所述第三空气弹簧组位于车辆运行方向的后半部。
优选地,所述第一空气弹簧组位于车辆运行方向的后半部的左侧,所述第二空气弹簧组位于车辆运行方向的后半部的右侧,所述第三空气弹簧组位于车辆运行方向的前半部。
优选地,所述第一空气弹簧组和第二空气弹簧组中的空气弹簧单体数量相同。
优选地,每一组空气弹簧组中的所有空气弹簧单体串联。
优选地,所述根据所述车辆载荷压力通过控制高度调整阀调整第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力的过程具体包括:
将接收到的车辆载荷压力与预设压力进行比较;
当接收到的车辆载荷压力大于预设压力时,打开高度调整阀,向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
当所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体的压力等于车辆载荷压力时,关闭高度调整阀,停止充风。
优选地,所述根据所述车辆载荷压力通过控制高度调整阀调整第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力的过程具体包括:
将接收到的车辆载荷压力与预设压力进行比较;
当接收到的车辆载荷压力大于预设压力时,控制高度调整阀的开口度,以第一速率向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
当所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组中的空气弹簧单体的压力小于车辆载荷压力,且所述空气弹簧单体的压力与车辆载荷压力的差值等于预设差值时,控制高度调整阀的开口度,以第二速率向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
当所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体的压力等于车辆载荷压力时,关闭高度调整阀,停止充风。
本申请实施例第二方面提供了一种多空气弹簧列车悬挂控制系统,所述系统包括:第一高度调整阀、第二高度调整阀、第三高度调整阀和气路控制装置;
所述第一高度调整阀、第二高度调整阀和第三高度调整阀分别对应连接第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体,所述第一高度调整阀、第二高度调整阀和第三高度调整阀形成三角形结构;
所述气路控制装置包括处理器,所述处理器内设置有处理器可执行的操作指令,以执行如下操作:
接收车辆载荷压力;
根据所述车辆载荷压力通过控制第一高度调整阀、第二高度调整阀和/或第三高度调整阀对应调整第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力。
优选地,所述第一高度调整阀、第二高度调整阀和第三高度调整阀形成三角形结构的重心与车辆底板的重心重合。
优选地,所述第一空气弹簧组位于车辆运行方向的前半部的左侧,所述第二空气弹簧组位于车辆运行方向的前半部的右侧,所述第三空气弹簧组位于车辆运行方向的后半部。
优选地,所述第一空气弹簧组位于车辆运行方向的后半部的左侧,所述第二空气弹簧组位于车辆运行方向的后半部的右侧,所述第三空气弹簧组位于车辆运行方向的前半部。
优选地,所述第一空气弹簧组和第二空气弹簧组中的空气弹簧单体数量相同。
优选地,每一组空气弹簧组中的所有空气弹簧单体串联。
优选地,所述处理器内设置有处理器可执行的操作指令,以执行如下 操作:
将接收到的车辆载荷压力与预设压力进行比较;
当接收到的车辆载荷压力大于预设压力时,打开所述第一高度调整阀、第二高度调整阀和/或第三高度调整阀,向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
当所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体的压力等于车辆载荷压力时,关闭所述第一高度调整阀、第二高度调整阀和第三高度调整阀,停止充风。
优选地,所述处理器内设置有处理器可执行的操作指令,以执行如下操作:
将接收到的车辆载荷压力与预设压力进行比较;
当接收到的车辆载荷压力大于预设压力时,控制所述第一高度调整阀、第二高度调整阀和/或第三高度调整阀的开口度,以第一速率向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
当所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组中的空气弹簧单体的压力小于车辆载荷压力,且所述空气弹簧单体的压力与车辆载荷压力的差值等于预设差值时,控制所述第一高度调整阀、第二高度调整阀和/或第三高度调整阀的开口度,以第二速率向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
当所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体的压力等于车辆载荷压力时,关闭所述第一高度调整阀、第二高度调整阀和第三高度调整阀,停止充风。
优选地,在所述气路控制装置与第一高度调整阀、第二高度调整阀和第三高度调整阀之间设置有减压阀,用于稳定所述第一高度调整阀、第二高度调整阀和第三高度调整阀充风口处的压力。
本申请实施例第三方面提供了一种列车,所述列车包括本申请实施例 第二方面所述的多空气弹簧列车悬挂控制系统。
本申请的有益效果如下:本申请将列车上的多个空气弹簧分成三组,并通过三个高度调整阀进行压力控制,同时保证三个高度调整阀始终保持在一个平面上,使得车厢地面和转向架受力一致。不会发生侧滚、后坐和点头等现象。本申请使得车辆载荷分布更加合理,可以提高车辆的适应轨道曲线的性能。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为现有两点控制方式的原理示意图;
图2为现有四点控制方式的原理示意图;
图3为本申请实施例1所述的多空气弹簧列车悬挂控制方法流程图;
图4为本申请实施例所述的一种分组示意图;
图5为本申请实施例所述的高度调整阀的位置示意图;
图6为图5的A-A向剖视图;
图7为本申请实施例所述的高度调整阀与空气弹簧单体1之间的安装示意图;
图8为本申请实施例所述的减压阀12的安装位置示意图;
图9为本申请实施例2所述的多空气弹簧列车悬挂控制系统原理图。
附图标号:
1、空气弹簧单体,2、高度调整阀,3、管路,4、差压阀,5、转向架,6、第一高度调整阀,7、第二高度调整阀,8、第三高度调整阀,9、第一支架,10、可调连杆,11、第二支架,12、减压阀。
具体实施方式
为了使本申请实施例中的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例1
如图3所示,本实施例提出了一种多空气弹簧列车悬挂控制方法,所述方法包括:
接收车辆载荷压力;
根据所述车辆载荷压力通过控制高度调整阀调整第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力。
具体的,本实施例所述的高度调整阀为三个,且三个所述高度调整阀形成三角形结构;
所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中包括多个空气弹簧单体1,每一组空气弹簧组中的所有空气弹簧单体1对应连接同一个高度调整阀。
更为具体的,以五节车厢组成的一辆磁悬浮列车为例,总共有10个转向架5,在每个转向架5上设置两个空气弹簧单体1,总计20个空气弹簧单体1。将所述20个空气弹簧单体1分成三组,本实施例提出了两种分组方式:
(1)第一空气弹簧组位于车辆运行方向的前半部的左侧,第二空气弹簧组位于车辆运行方向的前半部的右侧,第三空气弹簧组位于车辆运行方向的后半部。
(2)第一空气弹簧组位于车辆运行方向的后半部的左侧,第二空气弹簧组位于车辆运行方向的后半部的右侧,第三空气弹簧组位于车辆运行方 向的前半部。
上述两种分组方式的空气弹簧控制原理是完全相同的,所实现的目的也是相同的,下面就以第一种分组方式为例继续进行说明。
如图4所示为本实施例所述的第一种空气弹簧单体的分组方式,将每节车厢底部的全部空气弹簧分为前左、前右和后部三组,其中,前左组(第一空气弹簧组)和前右组(第二空气弹簧组)空气弹簧各组为六个,后组(第三空气弹簧组)为左右各四个。
三组空气空气弹簧单体1之间相互独立,互不相通,不需要设置差压阀4。将每个空气弹簧组中的空气弹簧单体1串联起来,保证每个空气弹簧组始终具有一致的内压力,可以实现空气弹簧单体1的快速充风和排风。
每一空气弹簧组中的空气弹簧单体1同时连接同一个高度调整阀,其中连接第一空气弹簧组的第一高度调整阀6以及连接第二空气弹簧组的第二高度调整阀7安装在第二个转向架上,分别控制左右两侧的六个空气弹簧。连接第三空气弹簧组的第三高度调整阀8安装在第四个转向架上,控制其余八个空气弹簧。如图5和图6所示,第一高度调整阀6、第二高度调整阀7和第三高度调整阀8形成等腰三角形结构,该等腰三角形结构的重心与车辆底板的重心重合,能够保证第一高度调整阀6、第二高度调整阀7和第三高度调整阀8的三个点始终在一个平面,使得车厢底面和转向架5受力一致。可以抑制车体的侧滚运动保证车体平衡,不会发生侧滚、后坐和点头等现象,提高了车辆运行安全的可靠性。
如图7所示,本实施例所述的高度调整阀的一端通过第一支架9与车体固定连接,在高度调整阀的另一端设置有可调连杆10,在可调连杆10的底部连接有第二支架11,第二支架11与空气弹簧单体1固定连接。可调连杆10可以在角度上和长度上进行调节,使得转向架5无论处于何种状态依然能够保证高度调整阀与空气弹簧单体1的可靠性连接。
进一步的,本实施例中根据车辆载荷压力通过控制高度调整阀调整第 一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力的过程具体包括:
将接收到的车辆载荷压力与预设压力进行比较;
当接收到的车辆载荷压力大于预设压力时,打开高度调整阀,向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
当所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体1的压力等于车辆载荷压力时,关闭高度调整阀,停止充风。
具体的,当车辆载荷增加时,车体相对于转向架5向下运动,打开高度调整阀,高度调整阀的杠杆绕着驱动轴向上旋转,向空气弹簧充风,使空气弹簧压力增加,抬高车体高度。当空气弹簧压力与车辆载荷平衡时,关闭高度调整阀,停止充风。
更进一步的,本实施例中根据车辆载荷压力通过控制高度调整阀调整第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力的过程具体包括:
将接收到的车辆载荷压力与预设压力进行比较;
当接收到的车辆载荷压力大于预设压力时,控制高度调整阀的开口度,以第一速率向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
当所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组中的空气弹簧单体1的压力小于车辆载荷压力,且所述空气弹簧单体1的压力与车辆载荷压力的差值等于预设差值时,控制高度调整阀的开口度,以第二速率向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
当所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体1的压力等于车辆载荷压力时,关闭高度调整阀,停止充风。
具体的,当车辆载荷从空载变成超载状态时,高度调整阀的开口度最 大,外部的空簧供风风缸经过高速调整阀向空气弹簧快速充风。当空气弹簧压力接近于车辆载荷时,车体再次向上移动,因此高度调整阀开口度逐渐减小,以缓慢的速度向空气弹簧充风,直至空气弹簧压力和车辆载荷平衡为止。
另外,如图8所示,可以在三个空气弹簧组的入风口设置一个减压阀12,用于稳定三个空气弹簧组入风口处的压力,不需要每个高度调整阀都设置节流阀,简化了控制策略。其中,减压阀12的压力设置能够满足在车辆超远载荷情况下的工作需要。
在实际交通运营的过程中,会发现当某一列磁悬浮列车在通过凸凹竖曲线时,由于转向架5沿着轨道成折线分布,故每侧的10个空气弹簧的高度都不一致,甚至造成几组空气弹簧失压,引起转向架5两端受到的车厢压力不一致,会造成悬浮电磁铁的支撑力大幅度变化。而在本实施例所提供的方法中,当某一悬浮电磁铁故障的情况下,由于车厢底面和三个高度调整阀控制的平面完全平行,可以保证该转向架5不承担车体重量,可以将重量分配到其他转向架5上,提高了车辆的通过竖曲线的性能。
实施例2
对应实施例1所提出的多空气弹簧列车悬挂方法,本实施例提出了一种多空气弹簧列车悬挂系统,如图9所示,所述系统包括:第一高度调整阀6、第二高度调整阀7、第三高度调整阀8和气路控制装置;
所述第一高度调整阀6、第二高度调整阀7和第三高度调整阀8分别对应连接第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体1,所述第一高度调整阀6、第二高度调整阀7和第三高度调整阀8形成三角形结构;
所述气路控制装置包括处理器,所述处理器内设置有处理器可执行的操作指令,以执行如下操作:
接收车辆载荷压力;
根据所述车辆载荷压力通过控制第一高度调整阀6、第二高度调整阀7和/或第三高度调整阀8对应调整第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力。
本实施例所提出的多空气弹簧列车悬挂系统中的具体工作过程可参照实施例1中所记载的内容,在此不再进行赘述。
实施例3
本实施例提供了一种列车,所述列车包括实施例2所提供的多空气弹簧列车悬挂控制系统。
其中,多空气弹簧列车悬挂控制系统中的高度调整阀的一端通过第一支架9与车体固定连接,在高度调整阀的另一端设置有可调连杆10,在可调连杆10的底部连接有第二支架11,第二支架11与空气弹簧单体1固定连接。可调连杆10可以在角度上和长度上进行调节,使得转向架5无论处于何种状态依然能够保证高度调整阀与空气弹簧单体1的可靠性连接。
本实施例将列车上的多个空气弹簧分成三组,并通过三个高度调整阀进行压力控制,同时保证三个高度调整阀始终保持在一个平面上,使得车厢地面和转向架5受力一致。不会发生侧滚、后坐和点头等现象。本申请使得车辆载荷分布更加合理,可以提高车辆的适应轨道曲线的性能。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中 的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种多空气弹簧列车悬挂控制方法,其特征在于,所述方法包括:
    接收车辆载荷压力;
    根据所述车辆载荷压力通过控制高度调整阀调整第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力;
    所述高度调整阀为三个,且三个所述高度调整阀形成三角形结构;
    所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中包括多个空气弹簧单体,每一组空气弹簧组中的所有空气弹簧单体对应连接同一个高度调整阀。
  2. 根据权利要求1所述的方法,其特征在于,所述三个高度调整阀形成三角形结构的重心与车辆底板的重心重合。
  3. 根据权利要求1所述的方法,其特征在于,所述第一空气弹簧组位于车辆运行方向的前半部的左侧,所述第二空气弹簧组位于车辆运行方向的前半部的右侧,所述第三空气弹簧组位于车辆运行方向的后半部。
  4. 根据权利要求1所述的方法,其特征在于,所述第一空气弹簧组位于车辆运行方向的后半部的左侧,所述第二空气弹簧组位于车辆运行方向的后半部的右侧,所述第三空气弹簧组位于车辆运行方向的前半部。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一空气弹簧组和第二空气弹簧组中的空气弹簧单体数量相同。
  6. 根据权利要求1所述的方法,其特征在于,每一组空气弹簧组中的所有空气弹簧单体串联。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述车辆载荷压力通过控制高度调整阀调整第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力的过程具体包括:
    将接收到的车辆载荷压力与预设压力进行比较;
    当接收到的车辆载荷压力大于预设压力时,打开高度调整阀,向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
    当所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体的压力等于车辆载荷压力时,关闭高度调整阀,停止充风。
  8. 根据权利要求1所述的方法,其特征在于,所述根据所述车辆载荷压力通过控制高度调整阀调整第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力的过程具体包括:
    将接收到的车辆载荷压力与预设压力进行比较;
    当接收到的车辆载荷压力大于预设压力时,控制高度调整阀的开口度,以第一速率向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
    当所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组中的空气弹簧单体的压力小于车辆载荷压力,且所述空气弹簧单体的压力与车辆载荷压力的差值等于预设差值时,控制高度调整阀的开口度,以第二速率向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
    当所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体的压力等于车辆载荷压力时,关闭高度调整阀,停止充风。
  9. 一种多空气弹簧列车悬挂控制系统,其特征在于,所述系统包括:第一高度调整阀、第二高度调整阀、第三高度调整阀和气路控制装置;
    所述第一高度调整阀、第二高度调整阀和第三高度调整阀分别对应连接第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体,所述第一高度调整阀、第二高度调整阀和第三高度调整阀形成三角形结构;
    所述气路控制装置包括处理器,所述处理器内设置有处理器可执行的操作指令,以执行如下操作:
    接收车辆载荷压力;
    根据所述车辆载荷压力通过控制第一高度调整阀、第二高度调整阀和/ 或第三高度调整阀对应调整第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组的压力。
  10. 根据权利要求9所述的系统,其特征在于,所述第一高度调整阀、第二高度调整阀和第三高度调整阀形成三角形结构的重心与车辆底板的重心重合。
  11. 根据权利要求9所述的系统,其特征在于,所述第一空气弹簧组位于车辆运行方向的前半部的左侧,所述第二空气弹簧组位于车辆运行方向的前半部的右侧,所述第三空气弹簧组位于车辆运行方向的后半部。
  12. 根据权利要求9所述的系统,其特征在于,所述第一空气弹簧组位于车辆运行方向的后半部的左侧,所述第二空气弹簧组位于车辆运行方向的后半部的右侧,所述第三空气弹簧组位于车辆运行方向的前半部。
  13. 根据权利要求9至12任一项所述的系统,其特征在于,所述第一空气弹簧组和第二空气弹簧组中的空气弹簧单体数量相同。
  14. 根据权利要求9所述的系统,其特征在于,每一组空气弹簧组中的所有空气弹簧单体串联。
  15. 根据权利要求9所述的系统,其特征在于,所述处理器内设置有处理器可执行的操作指令,以执行如下操作:
    将接收到的车辆载荷压力与预设压力进行比较;
    当接收到的车辆载荷压力大于预设压力时,打开所述第一高度调整阀、第二高度调整阀和/或第三高度调整阀,向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
    当所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体的压力等于车辆载荷压力时,关闭所述第一高度调整阀、第二高度调整阀和第三高度调整阀,停止充风。
  16. 根据权利要求9所述的系统,其特征在于,所述处理器内设置有处理器可执行的操作指令,以执行如下操作:
    将接收到的车辆载荷压力与预设压力进行比较;
    当接收到的车辆载荷压力大于预设压力时,控制所述第一高度调整阀、第二高度调整阀和/或第三高度调整阀的开口度,以第一速率向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
    当所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组中的空气弹簧单体的压力小于车辆载荷压力,且所述空气弹簧单体的压力与车辆载荷压力的差值等于预设差值时,控制所述第一高度调整阀、第二高度调整阀和/或第三高度调整阀的开口度,以第二速率向所述第一空气弹簧组、第二空气弹簧组和/或第三空气弹簧组进行充风;
    当所述第一空气弹簧组、第二空气弹簧组和第三空气弹簧组中的空气弹簧单体的压力等于车辆载荷压力时,关闭所述第一高度调整阀、第二高度调整阀和第三高度调整阀,停止充风。
  17. 根据权利要求9所述的系统,其特征在于,在所述气路控制装置与第一高度调整阀、第二高度调整阀和第三高度调整阀之间设置有减压阀,用于稳定所述第一高度调整阀、第二高度调整阀和第三高度调整阀充风口处的压力。
  18. 一种列车,其特征在于,所述列车包括权利要求9至17任一项所述的多空气弹簧列车悬挂控制系统。
PCT/CN2018/086211 2018-04-16 2018-05-09 一种多空气弹簧列车悬挂控制方法、系统及列车 WO2019200632A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/047,956 US12012129B2 (en) 2018-04-16 2018-05-09 Method for train suspension control by means of multiple air springs, system for train suspension control by means of multiple air springs, and train
EP18915278.8A EP3778338B1 (en) 2018-04-16 2018-05-09 Method for train suspension control by means of multiple air springs, system for train suspension control by means of multiple air springs, and train

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810339939.9A CN110386160B (zh) 2018-04-16 2018-04-16 一种多空气弹簧列车悬挂控制方法、系统及列车
CN201810339939.9 2018-04-16

Publications (1)

Publication Number Publication Date
WO2019200632A1 true WO2019200632A1 (zh) 2019-10-24

Family

ID=68239314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086211 WO2019200632A1 (zh) 2018-04-16 2018-05-09 一种多空气弹簧列车悬挂控制方法、系统及列车

Country Status (4)

Country Link
EP (1) EP3778338B1 (zh)
CN (1) CN110386160B (zh)
PT (1) PT3778338T (zh)
WO (1) WO2019200632A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111703458B (zh) * 2020-07-24 2024-05-14 中车长春轨道客车股份有限公司 轨道车辆空气弹簧故障状态下控制系统及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1555997A (zh) * 2003-12-31 2004-12-22 北京控股磁悬浮技术发展有限公司 一种新型的磁悬浮列车空气悬架高度控制装置
CN101045458A (zh) * 2006-03-29 2007-10-03 上海磁浮交通工程技术研究中心 城轨磁浮车辆空气弹簧悬挂系统高度调节方法和调节系统
US20150175176A1 (en) * 2012-06-18 2015-06-25 Kawasaki Jukogyo Kabushiki Kaisha Railcar bogie
CN205168524U (zh) * 2015-11-25 2016-04-20 唐山轨道客车有限责任公司 一种基于三点控制的悬挂系统的列车

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2830359A1 (de) * 1978-07-11 1980-01-24 Knorr Bremse Gmbh Luftfederung mit niveauregelung fuer fahrzeuge, insbesondere schienenfahrzeuge
JP2000344099A (ja) * 1999-06-08 2000-12-12 Nippon Sharyo Seizo Kaisha Ltd 鉄道車両用空気ばねの高さ調整装置
DE10353416A1 (de) * 2002-12-05 2004-06-24 Intech Thüringen Gmbh Zentral geregeltes Luftfedersystem
AT508044A1 (de) * 2009-04-07 2010-10-15 Siemens Ag Oesterreich Verfahren zur steuerung einer luftfederanordnung eines fahrzeuges
CN202071653U (zh) * 2011-05-20 2011-12-14 东风汽车有限公司 一种空气悬架高度控制系统
CN103568770B (zh) * 2013-11-05 2015-09-30 中联重科股份有限公司 车辆悬挂系统及其控制方法
CN103640448B (zh) * 2013-12-03 2016-02-03 中联重科股份有限公司 油气悬挂控制系统、油缸调平方法和工程车辆
CN105620219B (zh) * 2014-12-01 2017-09-15 陕西重型汽车有限公司 用于车辆空气弹簧悬架的车身高度控制装置及其方法
CN104912988B (zh) * 2015-06-30 2017-09-26 贵州精忠橡塑实业有限公司 一种车辆的悬挂系统及其设计方法
CN110641500B (zh) * 2019-11-06 2023-09-05 中车株洲电力机车有限公司 列车轮轴重调整方法、牵引力与制动力分配方法、系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1555997A (zh) * 2003-12-31 2004-12-22 北京控股磁悬浮技术发展有限公司 一种新型的磁悬浮列车空气悬架高度控制装置
CN101045458A (zh) * 2006-03-29 2007-10-03 上海磁浮交通工程技术研究中心 城轨磁浮车辆空气弹簧悬挂系统高度调节方法和调节系统
CN100436221C (zh) 2006-03-29 2008-11-26 上海磁浮交通工程技术研究中心 城轨磁浮车辆空气弹簧悬挂系统高度调节方法和调节系统
US20150175176A1 (en) * 2012-06-18 2015-06-25 Kawasaki Jukogyo Kabushiki Kaisha Railcar bogie
CN205168524U (zh) * 2015-11-25 2016-04-20 唐山轨道客车有限责任公司 一种基于三点控制的悬挂系统的列车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778338A4

Also Published As

Publication number Publication date
EP3778338A4 (en) 2021-07-28
CN110386160B (zh) 2021-11-30
EP3778338B1 (en) 2023-03-01
PT3778338T (pt) 2023-04-06
US20210163047A1 (en) 2021-06-03
CN110386160A (zh) 2019-10-29
EP3778338A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
CN108839532B (zh) 一种四角互联空气悬架的互联状态控制方法
CN204915705U (zh) 跨座式单轨列车及其转向架
RU2737642C1 (ru) Поезд на магнитной подвеске и его движущаяся часть
CN104960537A (zh) 跨座式单轨列车及其转向架
CN100436221C (zh) 城轨磁浮车辆空气弹簧悬挂系统高度调节方法和调节系统
CN108297642A (zh) 共享气室空气悬架系统及其控制方法
WO2019200632A1 (zh) 一种多空气弹簧列车悬挂控制方法、系统及列车
CN108045394A (zh) 轨道车辆准转臂式一系悬挂及轴箱定位装置
JPH10287241A (ja) 鉄道車両用車体傾斜制御装置及びその車体傾斜制御方法
JP5675405B2 (ja) 軌道系交通車両及びその車体姿勢制御装置
CA3061413C (en) Maglev train and running gear thereof without longitudinal beam structure
JPS5940667B2 (ja) 揺動懸架装置
CN111660749B (zh) 一种空气悬架车身高度的控制方法
KR880001162B1 (ko) 철도차량의 롤 안정성 증가장치
CN107000768B (zh) 铁道车辆
CN110077192B (zh) 刚度可调的半主动油气悬挂系统及其调控方法
US12012129B2 (en) Method for train suspension control by means of multiple air springs, system for train suspension control by means of multiple air springs, and train
JPH01500259A (ja) レール車両用機械式制御装置
US4041878A (en) Speed and track curvature suspension control system
JP2827255B2 (ja) 鉄道車両の輪重変動防止方法およびその装置
CN114771594B (zh) 一种轨道车辆小幅倾摆调节系统及其控制方法
CN109515105A (zh) 轮毂驱动电动汽车用带多层附加气室的空气悬架控制方法
CN114771595B (zh) 一种轨道车辆小幅倾摆快速调节系统及其控制方法
CN205588908U (zh) 一种可万向调节减震铝制整体汽车摆臂
WO2024087053A1 (zh) 悬架系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018915278

Country of ref document: EP

Effective date: 20201105