WO2023050095A1 - 电磁阀总成、空气悬架系统、车辆、控制方法及相关设备 - Google Patents

电磁阀总成、空气悬架系统、车辆、控制方法及相关设备 Download PDF

Info

Publication number
WO2023050095A1
WO2023050095A1 PCT/CN2021/121470 CN2021121470W WO2023050095A1 WO 2023050095 A1 WO2023050095 A1 WO 2023050095A1 CN 2021121470 W CN2021121470 W CN 2021121470W WO 2023050095 A1 WO2023050095 A1 WO 2023050095A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic
air
proportional valve
way proportional
vehicle
Prior art date
Application number
PCT/CN2021/121470
Other languages
English (en)
French (fr)
Inventor
李锟
翁昊
束银辉
郭志强
廖永升
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180033426.5A priority Critical patent/CN116194310A/zh
Priority to PCT/CN2021/121470 priority patent/WO2023050095A1/zh
Publication of WO2023050095A1 publication Critical patent/WO2023050095A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/052Pneumatic spring characteristics

Definitions

  • the present application relates to the technical field of smart cars, in particular to a solenoid valve assembly, an air suspension system, a vehicle, a control method and related equipment.
  • the electronically controlled air suspension system can switch between comfort mode, sports mode, off-road mode and other modes according to the driver's choice, that is, it can use the air suspension to adjust the body height according to the user's choice, and improve the ride comfort of the vehicle. Handling stability or passability.
  • the electronically controlled air suspension system can also intelligently adjust the height of the vehicle body according to the scene, providing easy loading (lowering the body, making it easy to put goods in or out of the trunk), intelligent welcome (such as lowering the body height of an SUV, Easy to get in the car) and easy to step out (such as the SUV lowers the body height to facilitate getting out of the car) and other functions, which greatly enhance the vehicle's sense of technology and user experience.
  • the electronically controlled air suspension system can automatically lower the height of the vehicle, reduce air resistance, improve driving safety, improve fuel economy or increase cruising range.
  • the existing electronically controlled air suspension system has a basic height adjustment function, it cannot realize the synchronous adjustment of the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle, which adversely affects the comfort and safety of the vehicle. It is difficult to adapt to the new needs of consumers for vehicle comfort and safety.
  • Embodiments of the present application provide a solenoid valve assembly, an air suspension system, a vehicle, a control method and related equipment, capable of synchronously adjusting the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle.
  • the embodiment of the present application provides a solenoid valve assembly, which is applied to an air suspension system, and the air suspension system includes at least one first air spring and at least one second air spring, and the at least one first air spring An air spring is used to adjust the body height of the front axle of the vehicle, and the at least one second air spring is used to adjust the body height of the rear axle of the vehicle; the solenoid valve assembly is respectively connected with the at least one first air spring and the The at least one second air spring is connected; the solenoid valve assembly is used to adjust the ratio of the air flow flowing into or out of the at least one first air spring and the air flow of the at least one second air spring, so that The body height of the front axle of the vehicle and the body height of the rear axle of the vehicle are adjusted synchronously.
  • the synchronous adjustment includes: starting the height adjustment at the same time, and completing the height adjustment at the same time. Therefore, the adjusted heights in the same period of time may be the same or different, which may specifically include the following situations: (1) The body height of the front axle of the vehicle and the body height of the rear axle of the vehicle change in the same range within a unit time, and the front axle of the vehicle The body height adjustment of the vehicle axle and the body height adjustment of the front axle of the vehicle are completed in the same time period; (2) The body height of the front axle of the vehicle and the body height of the rear axle of the vehicle vary in different ranges per unit time, but the front axle of the vehicle The ride height adjustment of the vehicle and the ride height adjustment of the front axle of the vehicle are carried out in the same time period.
  • the air suspension system includes at least one first air spring and at least one second air spring, air flows into the at least one first air spring, and the body height of the front axle of the vehicle is raised; the air flows from the at least one first air spring When the air flows out from the spring, the ride height of the front axle of the vehicle is lowered; the air flows into at least one second air spring, and the ride height of the rear axle of the vehicle is raised; the air flows out of the at least one second air spring, and the ride height of the rear axle of the vehicle is lowered.
  • the ratio of the air flow flowing into at least one first air spring and the air flow flowing into at least one second air spring is adjusted in real time through the solenoid valve assembly, so that the body of the vehicle front axle can be raised
  • the height is the same as the body height of the raised rear axle of the vehicle in real time; during the process of lowering the body height, the air flow flowing out from at least one first air spring and the air flowing out from at least one second air spring are adjusted in real time through the solenoid valve assembly
  • the ratio of the flow rate so that the body height lowered by the front axle of the vehicle can be the same as the height of the body lowered by the rear axle of the vehicle in real time; in this way, the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle can be adjusted synchronously.
  • the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle can be adjusted synchronously, in the process of adjusting the body height, there is no need to alternately adjust the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle, so that the body height Adjustments take less time.
  • the solenoid valve assembly includes at least one solenoid proportional valve, and the at least one solenoid proportional valve is used to adjust the flow of air flowing into or out of the at least one first air spring and the at least one The ratio of the air flow rate of a second air spring is such that the ride height of the front axle of the vehicle and the ride height of the rear axle of the vehicle are adjusted synchronously.
  • At least one electromagnetic proportional valve is used to adjust the ratio of the air flow into or out of the at least one first air spring and the air flow of the at least one second air spring.
  • the air flow rate flowing into the at least one first air spring and the air flow rate flowing into the at least one second air spring are adjusted in real time Ratio, so that the body height raised by the front axle of the vehicle is the same as the height of the body raised by the rear axle of the vehicle in real time;
  • the opening of each electromagnetic proportional valve in at least one electromagnetic proportional valve is adjusted in real time, so that the body height lowered by the front axle of the vehicle is the same as that by the rear axle of the vehicle in real time. In this way, the body height of the front axle of
  • the air suspension system further includes an air supply system;
  • the at least one electromagnetic proportional valve includes an electromagnetic three-way proportional valve, and the air flow rate of the first air passage of the electromagnetic three-way proportional valve is It is the sum of the air flow of the second air passage of the electromagnetic three-way proportional valve and the air flow of the third air passage of the electromagnetic three-way proportional valve; the first air passage of the electromagnetic three-way proportional valve and the air supply system and/or atmospheric connection;
  • the second air passage of the electromagnetic three-way proportional valve is connected to the at least one first air spring;
  • the third air passage of the electromagnetic three-way proportional valve is connected to the at least one first air spring Two air spring connections.
  • an electromagnetic three-way proportional valve is used to adjust the ratio of the air flow into or out of the at least one first air spring and the air flow of the at least one second air spring.
  • the air in the air supply system flows in from the first air passage of the electromagnetic three-way proportional valve, it flows out in two ways, that is, from the second air passage of the electromagnetic three-way proportional valve and from the second air passage of the electromagnetic three-way proportional valve.
  • the third air passage of the electromagnetic three-way proportional valve flows out; the air flowing out of the second air passage of the electromagnetic three-way proportional valve then flows into at least one first air spring, so that the body height of the front axle of the vehicle is raised; from the electromagnetic three-way The air flowing out of the third airway of the proportional valve then flows into at least one second air spring, so that the body height of the rear axle of the vehicle is raised; by adjusting the opening degree of the electromagnetic three-way proportional valve, the air flow from the electromagnetic three-way proportional valve is adjusted in real time.
  • the ratio of the air flow flowing out of the second air passage to the air flow flowing out of the third air passage of the electromagnetic three-way proportional valve realizes real-time adjustment of the air flow flowing into at least one first air spring and the air flowing into at least one second air spring
  • the ratio of the flow rate so that the body height raised by the front axle of the vehicle can be the same as the body height raised by the rear axle of the vehicle in real time.
  • the air flowing out from at least one first air spring flows into the second air passage of the electromagnetic three-way proportional valve, and then flows into the air supply system and/or through the first air passage of the electromagnetic three-way proportional valve Atmosphere, so that the body height of the front axle of the vehicle is reduced; the air flowing out from at least one second air spring flows into the third air channel of the electromagnetic three-way proportional valve, and then flows into the air supply through the first air channel of the electromagnetic three-way proportional valve system and/or the atmosphere, so that the body height of the rear axle of the vehicle is lowered; due to the air flowing into the second air passage of the electromagnetic three-way proportional valve and the air flowing into the third air passage of the electromagnetic three-way proportional valve, in the electromagnetic three-way proportional valve After the first air passage is merged, it flows into the air supply system and/or the atmosphere.
  • the air flow rate and the proportion of the air flowing into the second air passage of the electromagnetic three-way proportional valve can be adjusted in real time.
  • the ratio of the air flow of the third air passage of the valve realizes real-time adjustment of the ratio of the air flow flowing out from at least one first air spring and the air flow flowing out from at least one second air spring, so that the front axle of the vehicle can be lowered
  • the height is the same in real time as the vehicle's ride height with the rear axle lowered. In this way, the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle are adjusted synchronously.
  • the electromagnetic valve assembly further includes at least one first electromagnetic switch valve and at least one second electromagnetic switch valve; the second air passage of the electromagnetic three-way proportional valve is connected to the at least one The first airway of the first electromagnetic switch valve is connected, and the second airway of the at least one first electromagnetic switch valve is correspondingly connected with the at least one first air spring; the third airway of the electromagnetic three-way proportional valve It is connected with the first air passage of the at least one second electromagnetic switch valve, and the second air passage of the at least one second electromagnetic switch valve is correspondingly connected with the at least one second air spring.
  • At least one first electromagnetic switch valve can be arranged between the second air passage of the electromagnetic three-way proportional valve and at least one first air spring; At least one second electromagnetic switching valve may be arranged between one second air spring.
  • the electromagnetic switch valve is a normally closed valve, that is, the electromagnetic switch valve is in the closed state when the power is off, and there will be no air flow between the first air channel and the second air channel of the electromagnetic switch valve; the electromagnetic switch valve is in the open state when the power is turned on. , there will be air circulation between the first air channel and the second air channel of the electromagnetic switch valve.
  • At least one first electromagnetic switching valve is set between the second air passage of the electromagnetic three-way proportional valve and at least one first air spring, and the at least one first The electromagnetic switch valve is powered off, so that no air will flow into the at least one first air spring, and no air will flow out from the at least one first air spring, so that the vehicle body height of the front axle of the vehicle can be maintained; similarly, the electromagnetic tee At least one second electromagnetic switch valve is arranged between the third air passage of the proportional valve and at least one second air spring, and at least one second electromagnetic switch valve is de-energized without the need to adjust the body height of the rear axle of the vehicle, Therefore, no air will flow into the at least one second air spring, and no air will flow out of the at least one second air spring, so that the vehicle height of the rear axle of the vehicle can be maintained.
  • the solenoid valve assembly further includes a third solenoid switch valve, the first air passage of the third solenoid switch valve is connected to the first air passage of the electromagnetic three-way proportional valve, The second air passage of the third electromagnetic switch valve is connected with the air supply system and/or the atmosphere.
  • the first air passage of the electromagnetic three-way proportional valve can be connected to the air supply system and/or the atmosphere through the third electromagnetic switch valve; during the process of lowering the vehicle body height, the third electromagnetic switch valve can be selected to be in In the open state, the air flowing out from the first air channel of the electromagnetic three-way proportional valve can flow into the first air channel of the third electromagnetic switch valve, and then flow into the air supply system and/or the atmosphere through the second air channel of the third electromagnetic switch valve , to reduce the body height of the vehicle; in other cases, the third electromagnetic switch valve can be selected to be in the closed state.
  • the electromagnetic three-way proportional valve is a normally closed valve.
  • at least one first electromagnetic switching valve is arranged between the second air passage of the electromagnetic three-way proportional valve and at least one first air spring, and the third air passage of the electromagnetic three-way proportional valve and at least one second air spring
  • the electromagnetic three-way proportional valve can be a normally closed valve or a very closed valve; If at least one first electromagnetic switch valve is not arranged between the springs, and at least one second electromagnetic switch valve is not arranged between the third air channel of the electromagnetic three-way proportional valve and at least one second air spring, the electromagnetic three-way proportional valve
  • the proportional valve must be a normally closed valve.
  • the electromagnetic three-way proportional valve is a normally closed valve, that is, the electromagnetic three-way proportional valve is in a closed state when the power is off, and there will be no air flow between the air channels of the electromagnetic three-way proportional valve; the electromagnetic three-way proportional valve When the valve is energized, it is in an open state, and there will be air circulation between the air passages of the electromagnetic three-way proportional valve. In this way, without the need to adjust the body height of the vehicle, the electromagnetic three-way proportional valve is de-energized, so that no air will flow into the at least one first air spring and at least one second air spring, and no air will flow from at least one A first air spring and at least one second air spring flow out to maintain the height of the vehicle body.
  • the air suspension system further includes an air supply system;
  • the at least one electromagnetic proportional valve includes a first electromagnetic two-way proportional valve and a second electromagnetic two-way proportional valve;
  • the first electromagnetic proportional valve The first air passage of the two-way proportional valve and the first air passage of the second electromagnetic two-way proportional valve are respectively connected to the air supply system and/or the atmosphere;
  • the second air passage of the first electromagnetic two-way proportional valve The channel is connected with the at least one first air spring;
  • the second air channel of the second electromagnetic two-way proportional valve is connected with the at least one second air spring.
  • the first electromagnetic two-way proportional valve and the second electromagnetic two-way proportional valve are used to adjust the ratio of the air flow flowing into or out of the at least one first air spring and the air flow of the at least one second air spring.
  • air flows from the air supply system into the first air passage of the first electromagnetic two-way proportional valve and the first air passage of the second electromagnetic two-way proportional valve;
  • the air in the first airway flows out from the second airway of the first electromagnetic two-way proportional valve, and then flows into at least one first air spring, so that the vehicle body height of the front axle of the vehicle is raised; similarly, it flows into the second electromagnetic two-way
  • the air in the first airway of the proportional valve flows out from the second airway of the second electromagnetic two-way proportional valve, and then flows into at least one second air spring, so that the body height of the rear axle of the vehicle is raised; by adjusting the first electromagnetic two-way Through the proportional valve and the opening of the second electromagnetic two-way proportional valve,
  • the ride height is the same in real time.
  • the air flowing out from at least one first air spring flows into the second air passage of the first electromagnetic two-way proportional valve, and then flows into the air supply through the first air passage of the first electromagnetic two-way proportional valve system and/or atmosphere, so that the body height of the front axle of the vehicle is lowered; similarly, the air flowing out from at least one second air spring flows into the second air channel of the second electromagnetic two-way proportional valve, and then passes through the second electromagnetic two-way
  • the first air passage of the proportional valve flows into the air supply system and/or the atmosphere, so that the body height of the rear axle of the vehicle is reduced; by adjusting the opening degrees of the first electromagnetic two-way proportional valve and the second electromagnetic two-way proportional valve, the inflow to the second electromagnetic two-way proportional valve is adjusted in real time.
  • the ratio of the air flow rate of the second air passage of an electromagnetic two-way proportional valve to the air flow flow of the second air passage of the second electromagnetic two-way proportional valve realizes real-time adjustment of the flow rate of air flowing out from at least one first air spring and from the
  • the ratio of the flow of air flowing out of the at least one second air spring can make the body height lowered by the front axle of the vehicle and the body height lowered by the rear axle of the vehicle be the same in real time. In this way, the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle are adjusted synchronously.
  • the solenoid valve assembly further includes at least one first solenoid switch valve and at least one second solenoid switch valve; the second air passage of the first solenoid two-way proportional valve is connected to the The first airway of the at least one first electromagnetic switch valve is connected, and the second airway of the at least one first electromagnetic switch valve is correspondingly connected with the at least one first air spring; the second electromagnetic two-way proportional valve The second air passage is connected to the first air passage of the at least one second electromagnetic switch valve, and the second air passage of the at least one second electromagnetic switch valve is correspondingly connected to the at least one second air spring.
  • At least one first electromagnetic switch valve can be arranged between the second air passage of the first electromagnetic two-way proportional valve and at least one first air spring; At least one second electromagnetic switching valve may be arranged between the air channel and the at least one second air spring.
  • the electromagnetic switch valve is a normally closed valve, that is, the electromagnetic switch valve is in the closed state when the power is off, and there will be no air flow between the first air channel and the second air channel of the electromagnetic switch valve; the electromagnetic switch valve is in the open state when the power is turned on. , there will be air circulation between the first air channel and the second air channel of the electromagnetic switch valve.
  • At least one first electromagnetic switching valve is arranged between the second air passage of the first electromagnetic two-way proportional valve and at least one first air spring, so that at least one The first electromagnetic switch valve is de-energized, so that no air will flow into the at least one first air spring, and no air will flow out from the at least one first air spring, so that the vehicle body height of the front axle of the vehicle can be maintained;
  • At least one second electromagnetic switch valve is arranged between the second air passage of the two electromagnetic two-way proportional valves and at least one second air spring, so that at least one second electromagnetic switch can The valve is de-energized so that no air can flow into or flow out of the at least one second air spring, so that the ride height of the rear axle of the vehicle can be maintained.
  • the solenoid valve assembly further includes a third solenoid switch valve, the first air passage of the third solenoid switch valve is respectively connected to the first air passage of the first electromagnetic two-way proportional valve.
  • the channel is connected with the first air channel of the second electromagnetic two-way proportional valve, and the second air channel of the third electromagnetic switch valve is connected with the air supply system and/or the atmosphere.
  • both the first air passage of the first electromagnetic two-way proportional valve and the first air passage of the second electromagnetic two-way proportional valve can be connected to the air supply system and/or the atmosphere through the third electromagnetic switch valve;
  • the third electromagnetic switching valve can be selected to be in the open state, and the air flowing out from the first air passage of the first electromagnetic two-way proportional valve and the first air passage of the second electromagnetic two-way proportional valve can flow in The first air channel of the third electromagnetic switch valve flows into the air supply system and/or the atmosphere through the second air channel of the third electromagnetic switch valve to realize the reduction of the vehicle body height; in other cases, the third electromagnetic switch valve can be selected The switch valve is closed.
  • the first electromagnetic two-way proportional valve and the second electromagnetic two-way proportional valve are normally closed valves.
  • at least one first electromagnetic switching valve is arranged between the second air channel of the first electromagnetic two-way proportional valve and at least one first air spring, and the first electromagnetic two-way proportional valve can be a normally closed valve or a Non-closed valve; in the case that at least one first electromagnetic switching valve is not provided between the second air passage of the first electromagnetic two-way proportional valve and at least one first air spring, the first electromagnetic two-way proportional valve must be normally Close the valve.
  • the second electromagnetic two-way proportional valve can be a normally closed valve , can also be a non-closed valve; in the case that at least one second electromagnetic switch valve is not provided between the second air passage of the second electromagnetic two-way proportional valve and at least one second air spring, the second electromagnetic two-way proportional valve The valve must be a normally closed valve.
  • both the first electromagnetic two-way proportional valve and the second electromagnetic two-way proportional valve are normally closed valves, that is, the first electromagnetic two-way proportional valve is in the closed state when the power is off, and the first electromagnetic two-way proportional valve There will be no air circulation between the air passages; similarly, the second electromagnetic two-way proportional valve is in a closed state when the power is off, and there will be no air circulation between the air passages of the second electromagnetic two-way proportional valve.
  • the first electromagnetic two-way proportional valve is in the open state when energized, and there will be air circulation between the air passages of the first electromagnetic two-way proportional valve; similarly, the second electromagnetic two-way proportional valve is in the open state when energized, and the second electromagnetic There will be air flow between the air channels of the two-way proportional valve.
  • both the first electromagnetic two-way proportional valve and the second electromagnetic two-way proportional valve are de-energized without the need to adjust the body height of the vehicle, so that no air will flow into the at least one first air spring and the at least one first air spring.
  • the two air springs also prevent air from flowing out of the at least one first air spring and the at least one second air spring, so that the height of the vehicle body can be maintained.
  • the air suspension system further includes an air supply system;
  • the at least one first air spring includes a first air spring L and a first air spring R, and the at least one second air spring It includes a second air spring L and a second air spring R;
  • the at least one electromagnetic proportional valve includes a first electromagnetic two-way proportional valve, a second electromagnetic two-way proportional valve, a third electromagnetic two-way proportional valve and a fourth electromagnetic two-way proportional valve Proportional valve; the first air passage of the first electromagnetic two-way proportional valve, the first air passage of the second electromagnetic two-way proportional valve, the first air passage of the third electromagnetic two-way proportional valve and the The first air passage of the fourth electromagnetic two-way proportional valve is respectively connected to the air supply system and/or the atmosphere; the second air passage of the first electromagnetic two-way proportional valve is connected to the first air spring L; The second air passage of the second electromagnetic two-way proportional valve is connected to the second air spring L; the second air passage of the third electromagnetic two-way proportional valve
  • the first air spring L and the first air spring R are used to adjust the body height of the front axle of the vehicle, and the second air spring L and the second air spring R are used to adjust the body height of the rear axle of the vehicle; for example, the first An air spring L is installed between the left front wheel of the vehicle and the body, the first air spring R is installed between the right front wheel and the body, the second air spring L is installed between the left rear wheel and the body, and the second air spring The spring R is installed between the right rear wheel of the vehicle and the vehicle body.
  • the air flowing into the first airway of the first electromagnetic two-way proportional valve flows out from the second airway of the first electromagnetic two-way proportional valve, and then flows into The first air spring L raises the vehicle body height at the left end of the front axle of the vehicle; similarly, the air flowing into the first air passage of the third electromagnetic two-way proportional valve flows out from the second air passage of the third electromagnetic two-way proportional valve , and then flow into the first air spring R, so that the height of the vehicle body at the right end of the front axle of the vehicle is raised; similarly, the air flowing into the first air passage of the second electromagnetic two-way proportional valve, from the second electromagnetic two-way proportional valve The air passage flows out, and then flows into the second air spring L, so that the height of the vehicle body at the left end of the rear axle of the vehicle is raised; similarly, the air flowing into the first air passage of the fourth electromagnetic two-way proportional valve, from the fourth electromagnetic two-way proportional valve The second
  • the air flowing out from the first air spring L flows into the second air passage of the first electromagnetic two-way proportional valve, and then flows into the air supply system through the first air passage of the first electromagnetic two-way proportional valve And/or the atmosphere, so that the height of the vehicle body at the left end of the front axle of the vehicle is reduced; similarly, the air flowing out from the first air spring R flows into the second air passage of the third electromagnetic two-way proportional valve, and then passes through the third electromagnetic two-way proportional valve.
  • the first air passage of the valve flows into the air supply system and/or the atmosphere, so that the vehicle body height at the right end of the front axle of the vehicle is lowered; similarly, the air flowing out of the second air spring L flows into the second air passage of the second electromagnetic two-way proportional valve , and then flow into the air supply system and/or the atmosphere through the first air passage of the second electromagnetic two-way proportional valve, so that the vehicle body height at the left end of the rear axle of the vehicle is reduced; similarly, the air flowing out of the second air spring R flows into the fourth electromagnetic
  • the second air passage of the two-way proportional valve flows into the air supply system and/or the atmosphere through the first air passage of the fourth electromagnetic two-way proportional valve, so that the vehicle body height at the right end of the rear axle of the vehicle is reduced; by adjusting the first electromagnetic two-way The opening of the proportional valve, the second electromagnetic two-way proportional valve, the third electromagnetic two-way proportional valve and the fourth electromagnetic two-way proportional valve can be adjusted in real time to The air flow rate
  • the air suspension system further includes an air supply system;
  • the at least one first air spring includes a first air spring L and a first air spring R, and the at least one second air spring It includes a second air spring L and a second air spring R;
  • the at least one electromagnetic proportional valve includes a first electromagnetic two-way proportional valve, a second electromagnetic two-way proportional valve and a third electromagnetic two-way proportional valve, and the first electromagnetic proportional valve
  • the first air passage of the two-way proportional valve, the first air passage of the second electromagnetic two-way proportional valve and the first air passage of the third electromagnetic two-way proportional valve are respectively connected to the air supply system and/or the atmosphere connected,
  • the second air passage of the first electromagnetic two-way proportional valve is connected with the first air spring L
  • the second air passage of the third electromagnetic two-way proportional valve is connected with the first air spring R
  • the second air passage of the second electromagnetic two-way proportional valve is respectively connected to the second air spring L and the second air spring R; or, the at least
  • the first electromagnetic two-way proportional valve is used to adjust the flow of air flowing into or out of the first air spring L installed between the left front wheel of the vehicle and the vehicle body
  • the third electromagnetic two-way proportional valve is used to adjust the flow of air flowing in or out.
  • the second electromagnetic two-way proportional valve is used to adjust the air flow into or out of the second air spring L installed between the left rear wheel of the vehicle and the body.
  • the air flow of the second air spring R installed between the right rear wheel of the vehicle and the vehicle body; by adjusting the opening degrees of the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve and the third electromagnetic two-way proportional valve, the The ratio of the air flow flowing in or out of the first air spring L, the air flow of the first air spring R, the air flow of the second air spring L and the air flow of the second air spring R can be adjusted in real time, so that the front axle of the vehicle and the air flow of the second air spring can be adjusted in real time.
  • the vehicle's rear axle is raised or lowered at the same ride height in real time.
  • the first electromagnetic two-way proportional valve is used to adjust the flow of air flowing into or out of the first air spring L installed between the left front wheel of the vehicle and the vehicle body and the first air spring R installed between the right front wheel of the vehicle and the vehicle body , using the second electromagnetic two-way proportional valve to adjust the flow of air flowing into or out of the second air spring L installed between the left rear wheel of the vehicle and the body, and using the fourth electromagnetic two-way proportional valve to adjust the air flow in or out of the second air spring L installed on the right side of the vehicle
  • the air flow of the second air spring R between the rear wheel and the vehicle body by adjusting the opening of the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve and the fourth electromagnetic two-way proportional valve, real-time adjustment of inflow or The ratio of the air flow flowing out of the first air spring L, the air flow of the first air spring R, the air flow of the second air spring L and the air flow of the second air spring R, so that the front axle of the vehicle and the rear axle
  • the air suspension system further includes an air supply system;
  • the at least one first air spring includes a first air spring L and a first air spring R, and the at least one second air spring is a second air spring
  • the at least one electromagnetic proportional valve includes a first electromagnetic two-way proportional valve, a second electromagnetic two-way proportional valve and a third electromagnetic two-way proportional valve, the first electromagnetic two-way proportional valve One air passage, the first air passage of the second electromagnetic two-way proportional valve and the first air passage of the third electromagnetic two-way proportional valve are respectively connected to the air supply system and/or the atmosphere, the first The second air passage of the electromagnetic two-way proportional valve is connected to the first air spring L, the second air passage of the third electromagnetic two-way proportional valve is connected to the first air spring R, and the second electromagnetic two-way proportional valve The second air passage of the proportional valve is connected to the second air spring; or, the at least one first air spring is a first air spring, and the at least one second air spring includes a second
  • the first electromagnetic two-way proportional valve is used to adjust the air flowing in or out of the first air spring L installed between the left front wheel of the vehicle and the body.
  • Flow rate using the third electromagnetic two-way proportional valve to adjust the air flow in or out of the first air spring R installed between the right front wheel of the vehicle and the vehicle body, and using the second electromagnetic two-way proportional valve to adjust the air flow in or out of the vehicle.
  • the air flow of the second air spring between the rear wheel and the body; by adjusting the opening of the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve and the third electromagnetic two-way proportional valve, the inflow or outflow can be adjusted in real time
  • the ratio of the air flow of the first air spring L, the air flow of the first air spring R, and the air flow of the second air spring can make the height of the vehicle body raised or lowered by the front axle and the rear axle of the vehicle the same in real time.
  • the first electromagnetic two-way proportional valve is used to regulate the flow of air flowing into or out of the first air spring installed between the front wheel of the vehicle and the vehicle body
  • the second electromagnetic two-way The proportional valve adjusts the flow of air flowing into or out of the second air spring L installed between the left rear wheel of the vehicle and the body
  • the fourth electromagnetic two-way proportional valve is used to adjust the flow of air flowing into or out of the second air spring L installed between the right rear wheel of the vehicle and the body.
  • the air flow rate of the second air spring R by adjusting the opening of the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve and the fourth electromagnetic two-way proportional valve, the air flowing into or out of the first air spring can be adjusted in real time
  • the ratio of the flow rate, the air flow rate of the second air spring L and the air flow rate of the second air spring R can make the body heights of the vehicle front axle and the vehicle rear axle raised or lowered the same in real time.
  • the solenoid valve assembly further includes a third solenoid switch valve, the first air passage of the third solenoid switch valve is respectively connected to the first air passage of the first electromagnetic two-way proportional valve. channel, the first air channel of the second electromagnetic two-way proportional valve, the first air channel of the third electromagnetic two-way proportional valve and the first air channel of the fourth electromagnetic two-way proportional valve are connected, the The second air passage of the third electromagnetic switch valve is connected with the air supply system and/or the atmosphere.
  • the first air passage of the first electromagnetic two-way proportional valve, the first air passage of the second electromagnetic two-way proportional valve, the first air passage of the third electromagnetic two-way proportional valve and the fourth electromagnetic two-way can be connected to the air supply system and/or the atmosphere through the third electromagnetic switch valve; in the process of lowering the vehicle body height, the third electromagnetic switch valve can be selected to be in an open state, and the first electromagnetic switch valve
  • the air flowing out of the first air passage of the proportional valve, the first air passage of the second electromagnetic two-way proportional valve, the first air passage of the third electromagnetic two-way proportional valve and the first air passage of the fourth electromagnetic two-way proportional valve It can flow into the first air channel of the third electromagnetic switch valve, and then flow into the air supply system and/or the atmosphere through the second air channel of the third electromagnetic switch valve, so as to realize the reduction of the vehicle body height; in other cases, the second air channel can be selected.
  • the three electromagnetic switch valves are in the closed state.
  • the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve, the third electromagnetic two-way proportional valve and the fourth electromagnetic two-way proportional valve are normally Close the valve.
  • any one of the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve, the third electromagnetic two-way proportional valve and the fourth electromagnetic two-way proportional valve when it is powered off, it is in the closed state, and its respective There will be no air flow between the air channels; similarly, when it is powered on and open, there will be air flow between its air channels.
  • the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve, the third electromagnetic two-way proportional valve and the fourth electromagnetic two-way proportional valve are all powered off, Therefore, no air will flow into the first air spring L, the first air spring R, the second air spring L and the second air spring R, and no air will flow from the first air spring L, the first air spring R, the second air spring The outflow from the air spring L and the second air spring R can maintain the height of the vehicle.
  • an embodiment of the present application provides an air suspension system, including the solenoid valve assembly described in any one of the above first aspects.
  • an embodiment of the present application provides a vehicle, including the air suspension system described in the second aspect above.
  • the embodiment of the present application provides a control method, including: S1: Adjust the opening of at least one electromagnetic proportional valve to the initial opening, and the at least one electromagnetic proportional valve is used to adjust the inflow or outflow of at least one first The ratio of the air flow of an air spring to the air flow of at least one second air spring for adjusting the ride height of the front axle of the vehicle and the at least one second air spring for adjusting the The body height of the rear axle of the vehicle; S2: measuring the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle; S3: judging whether the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle are equal to Target height; if the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle are equal to the target height, then close the at least one electromagnetic proportional valve; otherwise perform step S4; S4: determine the body height of the front axle of the vehicle Whether the height change matches the body height change of the rear axle of
  • the embodiment of the present application provides a control device, including: a processing unit, configured to: S1: adjust the opening of at least one electromagnetic proportional valve to the initial opening, and the at least one electromagnetic proportional valve is used to adjust The ratio of the air flow into or out of at least one first air spring for adjusting the ride height of the front axle of the vehicle and the air flow of at least one second air spring, the at least one second air spring
  • the spring is used to adjust the body height of the rear axle of the vehicle
  • S2 measuring the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle
  • S3 judging the body height of the front axle of the vehicle and the height of the rear axle of the vehicle Whether the body height of the axle is equal to the target height; if the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle are equal to the target height, then close the at least one electromagnetic proportional valve; otherwise, perform step S4; S4: determine the Whether the vehicle body height change of the front axle of
  • the embodiment of the present application provides a controller, including a processor, a memory, a communication interface, and one or more programs, the one or more programs are stored in the memory, and configured to be processed by the above
  • the above program includes instructions for executing the steps in the method according to the above fourth aspect.
  • an embodiment of the present application provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the method described in the fourth aspect above.
  • an embodiment of the present application provides a computer-readable storage medium, which stores a computer program for electronic data exchange, wherein the computer program causes a computer to execute the method described in the fourth aspect above.
  • an embodiment of the present application provides a computer program, the computer program causes a computer to execute the method described in the fourth aspect above.
  • Fig. 1 is a schematic structural diagram of an electronically controlled air suspension system provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of another electronically controlled air suspension system provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of an electronically controlled air suspension system provided in an embodiment of the present application applied to a vehicle.
  • Fig. 4 is a schematic structural diagram of an air suspension system provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of another electronically controlled air suspension system provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of an electromagnetic three-way proportional valve provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the control flow of the electronically controlled air suspension system shown in FIG. 5 .
  • FIG. 8 is a schematic diagram of the electronically controlled air suspension system shown in FIG. 5 in a vehicle height raising mode.
  • FIG. 9 is a schematic diagram of comparison results between the electronically controlled air suspension system shown in FIG. 1 and the electronically controlled air suspension system shown in FIG. 5 .
  • FIG. 10 is a schematic diagram of the electronically controlled air suspension system shown in FIG. 5 in a vehicle height lowering mode.
  • Fig. 11 is a schematic structural diagram of another electronically controlled air suspension system provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the control flow of the electronically controlled air suspension system shown in FIG. 11 .
  • Fig. 13 is a schematic structural diagram of another electronically controlled air suspension system provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the control flow of the electronically controlled air suspension system shown in FIG. 13 .
  • Fig. 15 is a schematic flowchart of a control method provided by an embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a control device provided by an embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of a controller provided by an embodiment of the present application.
  • At least one (item) means one or more, and “multiple” means two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time , where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • Fig. 1 is a schematic structural diagram of an electronically controlled air suspension system provided by Scheme 1. shown) and sensors (not shown in Figure 1).
  • the air supply system is used to provide high-pressure air.
  • the air supply system includes an air compressor and a high-pressure gas tank.
  • the air compressor is used to send air from the atmosphere into the high-pressure gas tank or air spring, and the high-pressure gas tank is used to store high-pressure gas.
  • a plurality of electromagnetic switch valves are electromagnetic switch valve 1, electromagnetic switch valve 2, electromagnetic switch valve 3, electromagnetic switch valve 4 and electromagnetic switch valve 5; the electromagnetic switch valve is controlled by an electric signal to realize the gas circuit on and off; It is a normally closed valve, that is, it is closed when it is powered off and opened when it is powered on, and it can be used to maintain the height of the air spring.
  • the multiple air springs are the left front air spring installed on the left front wheel of the vehicle, the right front air spring installed on the right front wheel of the vehicle, the left rear air spring installed on the left rear wheel of the vehicle and the right rear air spring installed on the right rear wheel of the vehicle.
  • the air spring is installed between the body and the tire to support the body; inflate the air spring to increase the height of the body; release the gas in the air spring to lower the height of the body.
  • the controller mainly controls a plurality of electromagnetic switching valves according to the sensor signal to realize the inflation or exhaust of the air spring, thereby realizing the adjustment of the height of the vehicle.
  • the first step is to raise the rear axle of the vehicle, that is, open the electromagnetic switch valve 3 and the electromagnetic switch valve 4. At this time, the left rear air spring and the right rear air spring are inflated, and the rear axle body is raised; when the sensor detects that the rear axle After the vehicle body height reaches the target value, then close the electromagnetic switch valve 3 and the electromagnetic switch valve 4, and the adjustment of the rear axle is completed.
  • the second step is to raise the front axle of the vehicle, that is, open the electromagnetic switch valve 1 and the electromagnetic switch valve 2. At this time, the left front air spring and the right front air spring are inflated, and the front axle body is raised; when the sensor detects that the front axle body is After the height reaches the target value, then close the electromagnetic switch valve 1 and the electromagnetic switch valve 2, and the adjustment of the front axle is completed.
  • the process of raising the body may also be divided into multiple cycles, that is, the rear axle is raised and the front axle is raised alternately, for example, the rear axle is raised ⁇ the front axle is raised ⁇ the rear axle is raised ⁇ the front axle is raised, and so on until reach the target altitude.
  • the process of lowering the body is similar to that of raising the body.
  • the gas in the air spring flows into the atmosphere or the air supply system, and the height of the front axle is lowered first, and then the height of the rear axle is lowered.
  • front axle lowering and front axle lowering alternate.
  • the height of the front axle of the vehicle and the height of the rear axle of the vehicle need to be adjusted separately, and the synchronous height adjustment of the front and rear axles of the vehicle cannot be realized.
  • the reasons for the inability to realize the synchronous height adjustment of the front and rear axles of the vehicle in Scheme 1 are: on the one hand, the geometric parameters of the front and rear axle air springs of most vehicles are different; on the other hand, the rated loads of the front and rear axles of the vehicle Generally also different. These two reasons cause the gas pressure in the front and rear axle air springs of the vehicle to be different. For example, the front axle load of the front-wheel drive model is greater than the rear axle load, and the gas quality required for the front and rear axle air spring inflation process is also different.
  • solenoid switch valve 1, solenoid switch valve 2, solenoid switch valve 3 and solenoid switch valve 4 are opened at the same time, there will be high-pressure axial and low-pressure axial gas cross-gas, and the adjustment cannot be completed at the same time. Since the front and rear axles cannot be raised at the same time, only the front and rear axles can be raised alternately, which results in a longer time for the height adjustment process, and there is obvious vehicle pitch during the height adjustment process, which affects ride comfort and safety; for example, When the vehicle is statically adjusted, the body pitch will make the comfort worse; when the vehicle is dynamically adjusted, the body pitch will make the comfort and safety worse.
  • Fig. 2 is a schematic structural diagram of an electronically controlled air suspension system provided by Scheme 2. shown) and sensors (not shown in Figure 2).
  • Scheme 2 is improved on the basis of Scheme 1, and its main structure is the same as Scheme 1.
  • the air suspension system provided by the second solution also includes a special device, which is composed of a one-way valve and an adjustable throttle valve.
  • a special device which is composed of a one-way valve and an adjustable throttle valve.
  • the main process of the air suspension system shown in Figure 2 to realize the synchronous lowering of the front and rear axle body of the vehicle is: when the vehicle body needs to be lowered, open the electromagnetic switch valve 1, the electromagnetic switch valve 2, the electromagnetic switch valve 3, the electromagnetic switch valve 4 and the electromagnetic switch valve at the same time.
  • the simultaneous lowering of the front and rear axles means that the height of the front and rear axles of the vehicle is lowered at the same time.
  • the air flow through a given cross-section is proportional to the pressure difference on both sides of the cross-section, and also proportional to the area of the cross-section, that is, the greater the pressure difference, the greater the air flow, and the larger the cross-section, the greater the air flow, so
  • the function of the adjustable throttle valve is to reduce the gas outflow speed of the front axle air spring to achieve a synchronous reduction in vehicle height.
  • the second scheme realizes the synchronous lowering of the front and rear axle body of the vehicle, it cannot realize the synchronous raising of the front and rear axle body of the vehicle.
  • the gas inlet pressure of the special device is required to be greater than the outlet pressure. This requirement will greatly limit the applicable scenarios of Option 2, because the relative magnitude of the actual front and rear axle loads of the vehicle will change.
  • this application provides a scheme to realize the synchronous adjustment (including synchronous lowering and synchronous raising) of the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle through the electromagnetic proportional valve, so as to improve the height adjustment of the vehicle body. speed and performance, thereby improving vehicle comfort and safety.
  • FIG. 3 is a schematic diagram of an electronically controlled air suspension system applied to a vehicle according to an embodiment of the present application.
  • the electronically controlled air suspension system is applied to vehicles, and the electronically controlled air suspension system includes: a plurality of air springs 301, a solenoid valve assembly 302, a controller 303, an air compressor assembly 304 and a storage tank Gas tank assembly 305 .
  • a plurality of air springs 301 can comprise air spring 301-1, air spring 301-2, air spring 301-3, air spring 301-4;
  • air spring 301-1 is the right front air spring installed on the right front wheel of the vehicle,
  • the air spring 301-2 is the left front air spring installed on the left front wheel of the vehicle,
  • the air spring 301-3 is the right rear air spring installed on the right rear wheel of the vehicle, and
  • the air spring 301-4 is installed on the left rear of the left rear wheel of the vehicle Air spring.
  • the solenoid valve assembly 302 is integrated with a plurality of solenoid valves.
  • the solenoid valve assembly 302 can include an electromagnetic proportional valve, that is, the electromagnetic proportional valve can be integrated in the solenoid valve assembly 302 as an electric control structure; the electromagnetic proportional valve is used to adjust the ratio of the air flow flowing in or out of a plurality of air springs 301
  • electromagnetic proportional valves are used to adjust the ratio of air flow into or out of the air spring 301-1, the air spring 301-2, the air spring 301-3, and the air spring 301-4.
  • the electromagnetic proportional valve can also be installed between the air compressor assembly 304 or the air storage tank assembly 305 and the electromagnetic valve assembly 302 as a separate product.
  • controller 303 includes the control and driving functions of the electronically controlled air suspension system.
  • the air compressor assembly 304 and the air storage tank assembly 305 form an air supply system.
  • the electronically controlled air suspension system is a kind of slow active suspension, which can realize the control of the Z direction of the vehicle within the bandwidth of 0-0.5Hz, and improve the comfort, passability, fuel economy/cruising range of the vehicle, etc.
  • Figure 3 shows the electronically controlled air suspension system applied to a four-wheel vehicle. It should be understood that the electronically controlled air suspension system can also be applied to tricycles or two-wheel vehicles; and when applied to tricycles or two-wheel vehicles, the number of air springs included in the plurality of air springs can also be correspondingly reduced. FIG. 3 is only an example, and the present application does not specifically limit the application scenarios of the electronically controlled air suspension system.
  • FIG. 4 is a schematic structural diagram of an air suspension system provided by an embodiment of the present application.
  • the air suspension system may be an electronically controlled air suspension system.
  • the air suspension system includes an air supply system, a solenoid valve assembly, at least one first air spring and at least one second air spring, wherein the at least one first air spring is used to adjust the front suspension of the vehicle.
  • the vehicle body height of the axle, the at least one second air spring is used to adjust the vehicle body height of the rear axle of the vehicle;
  • the solenoid valve assembly is connected with the at least one first air spring and the at least one second air spring respectively connection; the solenoid valve assembly is used to adjust the ratio of the air flow into or out of the at least one first air spring and the air flow of the at least one second air spring so that the vehicle body height of the front axle of the vehicle Synchronously adjusted with the vehicle body height of the rear axle of the vehicle.
  • the solenoid valve assembly is also connected with the air supply system and the atmosphere. During the process of raising the height of the vehicle body, the high-pressure air in the air supply system flows into the at least one first air spring and the at least one second air spring through the solenoid valve assembly. During lowering of the ride height, the air in the at least one first air spring and the at least one second air spring flows through the solenoid valve assembly into the atmosphere or air supply system.
  • the synchronous adjustment includes: starting the height adjustment at the same time, and completing the height adjustment at the same time. Therefore, the height adjusted in the same time period may be the same or different. Further, it may specifically include the following situations: (1) The body height of the front axle of the vehicle and the body height of the rear axle of the vehicle change in the same range within a unit time, and the body height adjustment of the front axle of the vehicle and the body height adjustment of the front axle of the vehicle Completed in the same time period; for example, the initial height of the front axle of the vehicle is 0mm, the initial height of the rear axle of the vehicle is 0mm, and the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle increase in a unit time (for example, 1s) 6mm, the target height of the front axle of the vehicle is 30mm, the target height of the rear axle of the vehicle is 30mm, and the vehicle height adjustment takes a total of 5 seconds.
  • the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle change
  • the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle vary in different magnitudes, but the adjustment of the body height of the front axle of the vehicle and the adjustment of the body height of the front axle of the vehicle are completed within the same time period; for example , the initial height of the front axle of the vehicle is 0mm, the initial height of the rear axle of the vehicle is 0mm, the body height of the front axle of the vehicle increases by 10mm per unit time (for example, 1s), and the body height of the front axle of the vehicle increases by 10mm per unit time (for example, 1s)
  • the height is 6mm, the body height of the rear axle of the vehicle is increased by 4mm per unit time (for example, 1s), the target height of the front axle of the vehicle is 30mm, the target height of the rear axle of the vehicle is 20mm, and the vehicle height adjustment takes a total of 5s.
  • the vehicle is a two-wheeled vehicle
  • the front axle of the vehicle is supported by a wheel
  • the rear axle of the vehicle is also supported by a wheel
  • at least one first air spring is a first air spring
  • at least one second air spring is a second air spring
  • the vehicle is a tricycle, there are two cases: (1) the front axle of the vehicle is supported by one wheel, and the rear axle of the vehicle is supported by two wheels, then at least one first air spring is a first air spring, and at least one second air spring It is two second air springs (such as the second air spring L installed between the left rear wheel of the vehicle and the vehicle body and the second air spring R installed between the right rear wheel of the vehicle and the vehicle body); (2) the front axle of the vehicle Supported by two wheels, the rear axle of the vehicle is supported by one wheel, then at least one first air spring is two first air springs (for example, the first air spring L installed between the left front wheel of the vehicle and the vehicle body and the first air spring L installed on the vehicle The first air spring R) between the right front wheel and the vehicle body, at least one second air spring is a second air spring.
  • At least one first air spring is two first air springs (such as being installed on the left front wheel of the vehicle and the vehicle body. between the first air spring L and the first air spring R installed between the right front wheel of the vehicle and the vehicle body), at least one second air spring is two second air springs (for example, installed between the left rear wheel of the vehicle and the vehicle body between the second air spring L and the second air spring R installed between the right rear wheel of the vehicle and the vehicle body).
  • the air suspension system includes at least one first air spring and at least one second air spring, air flows into the at least one first air spring, and the body height of the front axle of the vehicle is raised; the air flows from the at least one first air spring When the air flows out from the spring, the ride height of the front axle of the vehicle is lowered; the air flows into at least one second air spring, and the ride height of the rear axle of the vehicle is raised; the air flows out of the at least one second air spring, and the ride height of the rear axle of the vehicle is lowered.
  • the ratio of the air flow flowing into at least one first air spring and the air flow flowing into at least one second air spring is adjusted in real time through the solenoid valve assembly, so that the body of the vehicle front axle can be raised
  • the height is the same as the body height of the raised rear axle of the vehicle in real time; during the process of lowering the body height, the air flow flowing out from at least one first air spring and the air flowing out from at least one second air spring are adjusted in real time through the solenoid valve assembly
  • the ratio of the flow rate so that the body height lowered by the front axle of the vehicle can be the same as the height of the body lowered by the rear axle of the vehicle in real time; in this way, the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle can be adjusted synchronously.
  • the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle can be adjusted synchronously, in the process of adjusting the body height, there is no need to alternately adjust the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle, so that the body height Adjustments take less time.
  • the solenoid valve assembly includes at least one solenoid proportional valve, and the at least one solenoid proportional valve is used to adjust the flow of air flowing into or out of the at least one first air spring and the at least one The ratio of the air flow rate of a second air spring is such that the ride height of the front axle of the vehicle and the ride height of the rear axle of the vehicle are adjusted synchronously.
  • At least one electromagnetic proportional valve is used to adjust the ratio of the air flow into or out of the at least one first air spring and the air flow of the at least one second air spring.
  • the air flow rate flowing into the at least one first air spring and the air flow rate flowing into the at least one second air spring are adjusted in real time Ratio, so that the body height raised by the front axle of the vehicle is the same as the height of the body raised by the rear axle of the vehicle in real time;
  • the opening of each electromagnetic proportional valve in at least one electromagnetic proportional valve is adjusted in real time, so that the body height lowered by the front axle of the vehicle is the same as that by the rear axle of the vehicle in real time. In this way, the body height of the front axle of
  • the air suspension system further includes an air supply system;
  • the at least one electromagnetic proportional valve includes an electromagnetic three-way proportional valve, and the air flow rate of the first air passage of the electromagnetic three-way proportional valve is It is the sum of the air flow of the second air passage of the electromagnetic three-way proportional valve and the air flow of the third air passage of the electromagnetic three-way proportional valve; the first air passage of the electromagnetic three-way proportional valve and the air supply system and/or atmospheric connection;
  • the second air passage of the electromagnetic three-way proportional valve is connected to the at least one first air spring;
  • the third air passage of the electromagnetic three-way proportional valve is connected to the at least one first air spring Two air spring connections.
  • an electromagnetic three-way proportional valve is used to adjust the ratio of the air flow into or out of the at least one first air spring and the air flow of the at least one second air spring.
  • the air in the air supply system flows in from the first air passage of the electromagnetic three-way proportional valve, it flows out in two ways, that is, from the second air passage of the electromagnetic three-way proportional valve and from the second air passage of the electromagnetic three-way proportional valve.
  • the third air passage of the electromagnetic three-way proportional valve flows out; the air flowing out of the second air passage of the electromagnetic three-way proportional valve then flows into at least one first air spring, so that the body height of the front axle of the vehicle is raised; from the electromagnetic three-way The air flowing out of the third airway of the proportional valve then flows into at least one second air spring, so that the body height of the rear axle of the vehicle is raised; by adjusting the opening degree of the electromagnetic three-way proportional valve, the air flow from the electromagnetic three-way proportional valve is adjusted in real time.
  • the ratio of the air flow flowing out of the second air passage to the air flow flowing out of the third air passage of the electromagnetic three-way proportional valve realizes real-time adjustment of the air flow flowing into at least one first air spring and the air flowing into at least one second air spring
  • the ratio of the flow rate so that the body height raised by the front axle of the vehicle can be the same as the body height raised by the rear axle of the vehicle in real time.
  • the air flowing out from at least one first air spring flows into the second air passage of the electromagnetic three-way proportional valve, and then flows into the air supply system and/or through the first air passage of the electromagnetic three-way proportional valve Atmosphere, so that the body height of the front axle of the vehicle is reduced; the air flowing out from at least one second air spring flows into the third air channel of the electromagnetic three-way proportional valve, and then flows into the air supply through the first air channel of the electromagnetic three-way proportional valve system and/or the atmosphere, so that the body height of the rear axle of the vehicle is lowered; due to the air flowing into the second air passage of the electromagnetic three-way proportional valve and the air flowing into the third air passage of the electromagnetic three-way proportional valve, in the electromagnetic three-way proportional valve After the first air passage is merged, it flows into the air supply system and/or the atmosphere.
  • the air flow rate and the proportion of the air flowing into the second air passage of the electromagnetic three-way proportional valve can be adjusted in real time.
  • the ratio of the air flow of the third air passage of the valve realizes real-time adjustment of the ratio of the air flow flowing out from at least one first air spring and the air flow flowing out from at least one second air spring, so that the front axle of the vehicle can be lowered
  • the height is the same in real time as the vehicle's ride height with the rear axle lowered. In this way, the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle are adjusted synchronously.
  • the electromagnetic valve assembly further includes at least one first electromagnetic switch valve and at least one second electromagnetic switch valve; the second air passage of the electromagnetic three-way proportional valve is connected to the at least one The first airway of the first electromagnetic switch valve is connected, and the second airway of the at least one first electromagnetic switch valve is correspondingly connected with the at least one first air spring; the third airway of the electromagnetic three-way proportional valve It is connected with the first air passage of the at least one second electromagnetic switch valve, and the second air passage of the at least one second electromagnetic switch valve is correspondingly connected with the at least one second air spring.
  • At least one first air spring is a first air spring
  • at least one first electromagnetic switch valve is a first electromagnetic switch valve
  • the second air passage of the electromagnetic three-way proportional valve is connected to the first electromagnetic switch valve.
  • the first air passage of the first electromagnetic switch valve is connected to the second air passage of the first air spring; or, at least one first air spring is two first air springs, and at least one first electromagnetic switch
  • the valve is a first electromagnetic switch valve, the second air passage of the electromagnetic three-way proportional valve is connected with the first air passage of the first electromagnetic switch valve, and the second air passage of the first electromagnetic switch valve is respectively connected with the first air passage of the first electromagnetic switch valve.
  • Two first air springs are connected; or, at least one first air spring is two first air springs, at least one first electromagnetic switch valve is two first electromagnetic switch valves, and the second air spring of the electromagnetic three-way proportional valve
  • the passages are connected to the first air passages of the two first electromagnetic switch valves, and the second air passages of the two first electromagnetic switch valves are connected to the two first air springs in a one-to-one correspondence.
  • At least one second air spring is a second air spring
  • at least one second electromagnetic switch valve is a second electromagnetic switch valve
  • the third airway of the electromagnetic three-way proportional valve is connected to the second electromagnetic switch valve.
  • the first airway of the second electromagnetic switch valve is connected to the second airway of the second air spring; or, at least one second air spring is two second air springs, and at least one second electromagnetic switch
  • the valve is a second electromagnetic switch valve, the third air passage of the electromagnetic three-way proportional valve is connected with the first air passage of the second electromagnetic switch valve, and the second air passage of the second electromagnetic switch valve is respectively connected with the first air passage of the second electromagnetic switch valve.
  • Two second air springs are connected; or, at least one second air spring is two second air springs, at least one second electromagnetic switch valve is two second electromagnetic switch valves, and the third air spring of the electromagnetic three-way proportional valve
  • the channels are connected to the first air channels of the two second electromagnetic switch valves, and the second air channels of the two second electromagnetic switch valves are connected to the two second air springs in one-to-one correspondence.
  • At least one first electromagnetic switch valve can be arranged between the second air passage of the electromagnetic three-way proportional valve and at least one first air spring; At least one second electromagnetic switching valve may be arranged between one second air spring.
  • the electromagnetic switch valve is a normally closed valve, that is, the electromagnetic switch valve is in the closed state when the power is off, and there will be no air flow between the first air channel and the second air channel of the electromagnetic switch valve; the electromagnetic switch valve is in the open state when the power is turned on. , there will be air circulation between the first air channel and the second air channel of the electromagnetic switch valve.
  • At least one first electromagnetic switching valve is set between the second air passage of the electromagnetic three-way proportional valve and at least one first air spring, and the at least one first The electromagnetic switch valve is powered off, so that no air will flow into the at least one first air spring, and no air will flow out from the at least one first air spring, so that the vehicle body height of the front axle of the vehicle can be maintained; similarly, the electromagnetic tee At least one second electromagnetic switch valve is arranged between the third air passage of the proportional valve and at least one second air spring, and at least one second electromagnetic switch valve is de-energized without the need to adjust the body height of the rear axle of the vehicle, Therefore, no air will flow into the at least one second air spring, and no air will flow out of the at least one second air spring, so that the vehicle height of the rear axle of the vehicle can be maintained.
  • the solenoid valve assembly further includes a third solenoid switch valve, the first air passage of the third solenoid switch valve is connected to the first air passage of the electromagnetic three-way proportional valve, The second air passage of the third electromagnetic switch valve is connected with the air supply system and/or the atmosphere.
  • the first air passage of the electromagnetic three-way proportional valve can be connected to the air supply system and/or the atmosphere through the third electromagnetic switch valve; during the process of lowering the vehicle body height, the third electromagnetic switch valve can be selected to be in In the open state, the air flowing out from the first air channel of the electromagnetic three-way proportional valve can flow into the first air channel of the third electromagnetic switch valve, and then flow into the air supply system and/or the atmosphere through the second air channel of the third electromagnetic switch valve , to reduce the body height of the vehicle; in other cases, the third electromagnetic switch valve can be selected to be in the closed state.
  • the electromagnetic three-way proportional valve is a normally closed valve.
  • the electromagnetic valve assembly when the electromagnetic valve assembly includes at least one first electromagnetic switch valve and at least one second electromagnetic switch valve, the electromagnetic three-way proportional valve can be a normally closed valve or not; In the case of not including at least one first electromagnetic switch valve and at least one second electromagnetic switch valve, the electromagnetic three-way proportional valve must be a normally closed valve. That is, at least one first electromagnetic switch valve is arranged between the second air passage of the electromagnetic three-way proportional valve and at least one first air spring, and the third air passage of the electromagnetic three-way proportional valve is connected to at least one second air spring.
  • the electromagnetic three-way proportional valve can be a normally closed valve or a very closed valve; If at least one first electromagnetic switch valve is not arranged between the air springs, and at least one second electromagnetic switch valve is not arranged between the third air channel of the electromagnetic three-way proportional valve and at least one second air spring, the electromagnetic The three-way proportional valve must be a normally closed valve.
  • the electromagnetic three-way proportional valve is a normally closed valve, that is, the electromagnetic three-way proportional valve is in a closed state when the power is off, and there will be no air flow between the air channels of the electromagnetic three-way proportional valve; the electromagnetic three-way proportional valve When the valve is energized, it is in an open state, and there will be air circulation between the air passages of the electromagnetic three-way proportional valve. In this way, without the need to adjust the body height of the vehicle, the electromagnetic three-way proportional valve is de-energized, so that no air will flow into the at least one first air spring and at least one second air spring, and no air will flow from at least one A first air spring and at least one second air spring flow out to maintain the height of the vehicle body.
  • the air suspension system further includes an air supply system;
  • the at least one electromagnetic proportional valve includes a first electromagnetic two-way proportional valve and a second electromagnetic two-way proportional valve;
  • the first electromagnetic proportional valve The first air passage of the two-way proportional valve and the first air passage of the second electromagnetic two-way proportional valve are respectively connected to the air supply system and/or the atmosphere;
  • the second air passage of the first electromagnetic two-way proportional valve The channel is connected with the at least one first air spring;
  • the second air channel of the second electromagnetic two-way proportional valve is connected with the at least one second air spring.
  • the first electromagnetic two-way proportional valve and the second electromagnetic two-way proportional valve are used to adjust the ratio of the air flow flowing into or out of the at least one first air spring and the air flow of the at least one second air spring.
  • air flows from the air supply system into the first air passage of the first electromagnetic two-way proportional valve and the first air passage of the second electromagnetic two-way proportional valve;
  • the air in the first airway flows out from the second airway of the first electromagnetic two-way proportional valve, and then flows into at least one first air spring, so that the vehicle body height of the front axle of the vehicle is raised; similarly, it flows into the second electromagnetic two-way
  • the air in the first airway of the proportional valve flows out from the second airway of the second electromagnetic two-way proportional valve, and then flows into at least one second air spring, so that the body height of the rear axle of the vehicle is raised; by adjusting the first electromagnetic two-way Through the proportional valve and the opening of the second electromagnetic two-way proportional valve,
  • the ride height is the same in real time.
  • the air flowing out from at least one first air spring flows into the second air passage of the first electromagnetic two-way proportional valve, and then flows into the air supply through the first air passage of the first electromagnetic two-way proportional valve system and/or atmosphere, so that the body height of the front axle of the vehicle is lowered; similarly, the air flowing out from at least one second air spring flows into the second air channel of the second electromagnetic two-way proportional valve, and then passes through the second electromagnetic two-way
  • the first air passage of the proportional valve flows into the air supply system and/or the atmosphere, so that the body height of the rear axle of the vehicle is reduced; by adjusting the opening degrees of the first electromagnetic two-way proportional valve and the second electromagnetic two-way proportional valve, the inflow to the second electromagnetic two-way proportional valve is adjusted in real time.
  • the ratio of the air flow rate of the second air passage of an electromagnetic two-way proportional valve to the air flow flow of the second air passage of the second electromagnetic two-way proportional valve realizes real-time adjustment of the flow rate of air flowing out from at least one first air spring and from the
  • the ratio of the flow of air flowing out of the at least one second air spring can make the body height lowered by the front axle of the vehicle and the body height lowered by the rear axle of the vehicle be the same in real time. In this way, the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle are adjusted synchronously.
  • the solenoid valve assembly further includes at least one first solenoid switch valve and at least one second solenoid switch valve; the second air passage of the first solenoid two-way proportional valve is connected to the The first airway of the at least one first electromagnetic switch valve is connected, and the second airway of the at least one first electromagnetic switch valve is correspondingly connected with the at least one first air spring; the second electromagnetic two-way proportional valve The second air passage is connected to the first air passage of the at least one second electromagnetic switch valve, and the second air passage of the at least one second electromagnetic switch valve is correspondingly connected to the at least one second air spring.
  • At least one first air spring is a first air spring
  • at least one first electromagnetic switching valve is a first electromagnetic switching valve
  • the second air passage of the first electromagnetic two-way proportional valve is connected to the first electromagnetic switching valve.
  • the first airway of the switch valve is connected, and the second airway of the first electromagnetic switch valve is connected with the first air spring; or, at least one first air spring is two first air springs, and at least one first
  • the electromagnetic switch valve is a first electromagnetic switch valve, the second air passage of the first electromagnetic two-way proportional valve is connected with the first air passage of the first electromagnetic switch valve, and the second air passage of the first electromagnetic switch valve respectively connected to the two first air springs; or, at least one first air spring is two first air springs, at least one first electromagnetic switch valve is two first electromagnetic switch valves, and the first electromagnetic two-way proportional
  • the second air passage of the valve is connected to the first air passages of the two first electromagnetic switch valves, and the second air passages of the two first electromagnetic switch valves are connected to the two first air
  • At least one second air spring is a second air spring
  • at least one second electromagnetic switching valve is a second electromagnetic switching valve
  • the second air passage of the second electromagnetic two-way proportional valve is connected to the second electromagnetic switching valve.
  • the first air passage of the switching valve is connected, and the second air passage of the second electromagnetic switching valve is connected with the second air spring; or, at least one second air spring is two second air springs, and at least one second air spring is connected to the second air spring.
  • the electromagnetic switch valve is a second electromagnetic switch valve, the second air passage of the second electromagnetic two-way proportional valve is connected with the first air passage of the second electromagnetic switch valve, and the second air passage of the second electromagnetic switch valve respectively connected with the two second air springs; or, at least one second air spring is two second air springs, at least one second electromagnetic switch valve is two second electromagnetic switch valves, and the second electromagnetic two-way proportional
  • the second air passage of the valve is connected to the first air passages of the two second electromagnetic switch valves, and the second air passages of the two second electromagnetic switch valves are connected to the two second air springs in one-to-one correspondence.
  • At least one first electromagnetic switch valve can be arranged between the second air passage of the first electromagnetic two-way proportional valve and at least one first air spring; At least one second electromagnetic switching valve may be arranged between the air channel and the at least one second air spring.
  • the electromagnetic switch valve is a normally closed valve, that is, the electromagnetic switch valve is in the closed state when the power is off, and there will be no air flow between the first air channel and the second air channel of the electromagnetic switch valve; the electromagnetic switch valve is in the open state when the power is turned on. , there will be air circulation between the first air channel and the second air channel of the electromagnetic switch valve.
  • At least one first electromagnetic switching valve is arranged between the second air passage of the first electromagnetic two-way proportional valve and at least one first air spring, so that at least one The first electromagnetic switch valve is de-energized, so that no air will flow into the at least one first air spring, and no air will flow out from the at least one first air spring, so that the vehicle body height of the front axle of the vehicle can be maintained;
  • At least one second electromagnetic switch valve is arranged between the second air passage of the two electromagnetic two-way proportional valves and at least one second air spring, so that at least one second electromagnetic switch can The valve is de-energized so that no air can flow into or flow out of the at least one second air spring, so that the ride height of the rear axle of the vehicle can be maintained.
  • the solenoid valve assembly further includes a third solenoid switch valve, the first air passage of the third solenoid switch valve is respectively connected to the first air passage of the first electromagnetic two-way proportional valve.
  • the channel is connected with the first air channel of the second electromagnetic two-way proportional valve, and the second air channel of the third electromagnetic switch valve is connected with the air supply system and/or the atmosphere.
  • both the first air passage of the first electromagnetic two-way proportional valve and the first air passage of the second electromagnetic two-way proportional valve can be connected to the air supply system and/or the atmosphere through the third electromagnetic switch valve;
  • the third electromagnetic switching valve can be selected to be in the open state, and the air flowing out from the first air passage of the first electromagnetic two-way proportional valve and the first air passage of the second electromagnetic two-way proportional valve can flow in The first air channel of the third electromagnetic switch valve flows into the air supply system and/or the atmosphere through the second air channel of the third electromagnetic switch valve to realize the reduction of the vehicle body height; in other cases, the third electromagnetic switch valve can be selected The switch valve is closed.
  • the first electromagnetic two-way proportional valve and the second electromagnetic two-way proportional valve are normally closed valves.
  • the electromagnetic valve assembly when the electromagnetic valve assembly includes at least one first electromagnetic switch valve and at least one second electromagnetic switch valve, the first electromagnetic two-way proportional valve and the second electromagnetic two-way proportional valve can be normally closed valves, or Not a normally closed valve; when the solenoid valve assembly does not include at least one first solenoid switch valve and at least one second solenoid switch valve, the first solenoid two-way proportional valve and the second solenoid two-way proportional valve must be normally closed Close the valve.
  • the first electromagnetic two-way proportional valve may be a normally closed valve, It can also be a non-closed valve; when at least one first electromagnetic switch valve is not provided between the second air passage of the first electromagnetic two-way proportional valve and at least one first air spring, the first electromagnetic two-way proportional valve Must be a normally closed valve.
  • the second electromagnetic two-way proportional valve can be a normally closed valve , can also be a non-closed valve; in the case that at least one second electromagnetic switch valve is not provided between the second air passage of the second electromagnetic two-way proportional valve and at least one second air spring, the second electromagnetic two-way proportional valve The valve must be a normally closed valve.
  • both the first electromagnetic two-way proportional valve and the second electromagnetic two-way proportional valve are normally closed valves, that is, the first electromagnetic two-way proportional valve is in the closed state when the power is off, and the first electromagnetic two-way proportional valve There will be no air circulation between the air passages; similarly, the second electromagnetic two-way proportional valve is in a closed state when the power is off, and there will be no air circulation between the air passages of the second electromagnetic two-way proportional valve.
  • the first electromagnetic two-way proportional valve is in the open state when energized, and there will be air circulation between the air passages of the first electromagnetic two-way proportional valve; similarly, the second electromagnetic two-way proportional valve is in the open state when energized, and the second electromagnetic There will be air flow between the air channels of the two-way proportional valve.
  • both the first electromagnetic two-way proportional valve and the second electromagnetic two-way proportional valve are de-energized without the need to adjust the body height of the vehicle, so that no air will flow into the at least one first air spring and the at least one first air spring.
  • the two air springs also prevent air from flowing out of the at least one first air spring and the at least one second air spring, so that the height of the vehicle body can be maintained.
  • the air suspension system further includes an air supply system;
  • the at least one first air spring includes a first air spring L and a first air spring R, and the at least one second air spring It includes a second air spring L and a second air spring R;
  • the at least one electromagnetic proportional valve includes a first electromagnetic two-way proportional valve, a second electromagnetic two-way proportional valve, a third electromagnetic two-way proportional valve and a fourth electromagnetic two-way proportional valve Proportional valve; the first air passage of the first electromagnetic two-way proportional valve, the first air passage of the second electromagnetic two-way proportional valve, the first air passage of the third electromagnetic two-way proportional valve and the The first air passage of the fourth electromagnetic two-way proportional valve is respectively connected to the air supply system and/or the atmosphere; the second air passage of the first electromagnetic two-way proportional valve is connected to the first air spring L; The second air passage of the second electromagnetic two-way proportional valve is connected to the second air spring L; the second air passage of the third electromagnetic two-way proportional valve
  • the first air spring L and the first air spring R are used to adjust the body height of the front axle of the vehicle, and the second air spring L and the second air spring R are used to adjust the body height of the rear axle of the vehicle; for example, the first An air spring L is installed between the left front wheel of the vehicle and the body, the first air spring R is installed between the right front wheel and the body, the second air spring L is installed between the left rear wheel and the body, and the second air spring The spring R is installed between the right rear wheel of the vehicle and the vehicle body.
  • the air flowing into the first airway of the first electromagnetic two-way proportional valve flows out from the second airway of the first electromagnetic two-way proportional valve, and then flows into The first air spring L raises the vehicle body height at the left end of the front axle of the vehicle; similarly, the air flowing into the first air passage of the third electromagnetic two-way proportional valve flows out from the second air passage of the third electromagnetic two-way proportional valve , and then flow into the first air spring R, so that the height of the vehicle body at the right end of the front axle of the vehicle is raised; similarly, the air flowing into the first air passage of the second electromagnetic two-way proportional valve, from the second electromagnetic two-way proportional valve The air passage flows out, and then flows into the second air spring L, so that the vehicle body height at the left end of the rear axle of the vehicle is raised; similarly, the air flowing into the first air passage of the fourth electromagnetic two-way proportional valve, from the fourth electromagnetic two-way proportional valve The second air channel
  • the air flowing out from the first air spring L flows into the second air passage of the first electromagnetic two-way proportional valve, and then flows into the air supply system through the first air passage of the first electromagnetic two-way proportional valve And/or the atmosphere, so that the height of the vehicle body at the left end of the front axle of the vehicle is reduced; similarly, the air flowing out from the first air spring R flows into the second air passage of the third electromagnetic two-way proportional valve, and then passes through the third electromagnetic two-way proportional valve.
  • the first air passage of the valve flows into the air supply system and/or the atmosphere, so that the vehicle body height at the right end of the front axle of the vehicle is lowered; similarly, the air flowing out of the second air spring L flows into the second air passage of the second electromagnetic two-way proportional valve , and then flow into the air supply system and/or the atmosphere through the first air passage of the second electromagnetic two-way proportional valve, so that the vehicle body height at the left end of the rear axle of the vehicle is reduced; similarly, the air flowing out of the second air spring R flows into the fourth electromagnetic
  • the second air passage of the two-way proportional valve flows into the air supply system and/or the atmosphere through the first air passage of the fourth electromagnetic two-way proportional valve, so that the vehicle body height at the right end of the rear axle of the vehicle is reduced; by adjusting the first electromagnetic two-way The opening of the proportional valve, the second electromagnetic two-way proportional valve, the third electromagnetic two-way proportional valve and the fourth electromagnetic two-way proportional valve can be adjusted in real time to The air flow rate
  • the air suspension system further includes an air supply system;
  • the at least one first air spring includes a first air spring L and a first air spring R, and the at least one second air spring It includes a second air spring L and a second air spring R;
  • the at least one electromagnetic proportional valve includes a first electromagnetic two-way proportional valve, a second electromagnetic two-way proportional valve and a third electromagnetic two-way proportional valve, and the first electromagnetic proportional valve
  • the first air passage of the two-way proportional valve, the first air passage of the second electromagnetic two-way proportional valve and the first air passage of the third electromagnetic two-way proportional valve are respectively connected to the air supply system and/or the atmosphere connected,
  • the second air passage of the first electromagnetic two-way proportional valve is connected with the first air spring L
  • the second air passage of the third electromagnetic two-way proportional valve is connected with the first air spring R
  • the second air passage of the second electromagnetic two-way proportional valve is respectively connected to the second air spring L and the second air spring R; or, the at least
  • the first electromagnetic two-way proportional valve is used to adjust the flow of air flowing into or out of the first air spring L installed between the left front wheel of the vehicle and the vehicle body
  • the third electromagnetic two-way proportional valve is used to adjust the flow of air flowing in or out.
  • the second electromagnetic two-way proportional valve is used to adjust the air flow into or out of the second air spring L installed between the left rear wheel of the vehicle and the body.
  • the air flow of the second air spring R installed between the right rear wheel of the vehicle and the vehicle body; by adjusting the opening degrees of the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve and the third electromagnetic two-way proportional valve, the The ratio of the air flow flowing in or out of the first air spring L, the air flow of the first air spring R, the air flow of the second air spring L and the air flow of the second air spring R can be adjusted in real time, so that the front axle of the vehicle and the air flow of the second air spring can be adjusted in real time.
  • the vehicle's rear axle is raised or lowered at the same ride height in real time.
  • the first electromagnetic two-way proportional valve is used to adjust the flow of air flowing into or out of the first air spring L installed between the left front wheel of the vehicle and the vehicle body and the first air spring R installed between the right front wheel of the vehicle and the vehicle body , using the second electromagnetic two-way proportional valve to adjust the flow of air flowing into or out of the second air spring L installed between the left rear wheel of the vehicle and the body, and using the fourth electromagnetic two-way proportional valve to adjust the air flow in or out of the second air spring L installed on the right side of the vehicle
  • the air flow of the second air spring R between the rear wheel and the vehicle body by adjusting the opening of the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve and the fourth electromagnetic two-way proportional valve, real-time adjustment of inflow or The ratio of the air flow flowing out of the first air spring L, the air flow of the first air spring R, the air flow of the second air spring L and the air flow of the second air spring R, so that the front axle of the vehicle and the rear axle
  • the air suspension system further includes an air supply system;
  • the at least one first air spring includes a first air spring L and a first air spring R, and the at least one second air spring is a second air spring
  • the at least one electromagnetic proportional valve includes a first electromagnetic two-way proportional valve, a second electromagnetic two-way proportional valve and a third electromagnetic two-way proportional valve, the first electromagnetic two-way proportional valve One air passage, the first air passage of the second electromagnetic two-way proportional valve and the first air passage of the third electromagnetic two-way proportional valve are respectively connected to the air supply system and/or the atmosphere, the first The second air passage of the electromagnetic two-way proportional valve is connected to the first air spring L, the second air passage of the third electromagnetic two-way proportional valve is connected to the first air spring R, and the second electromagnetic two-way proportional valve The second air passage of the proportional valve is connected to the second air spring; or, the at least one first air spring is a first air spring, and the at least one second air spring includes a second
  • the first electromagnetic two-way proportional valve is used to adjust the air flowing in or out of the first air spring L installed between the left front wheel of the vehicle and the body.
  • Flow rate using the third electromagnetic two-way proportional valve to adjust the air flow in or out of the first air spring R installed between the right front wheel of the vehicle and the vehicle body, and using the second electromagnetic two-way proportional valve to adjust the air flow in or out of the vehicle.
  • the air flow of the second air spring between the rear wheel and the body; by adjusting the opening of the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve and the third electromagnetic two-way proportional valve, the inflow or outflow can be adjusted in real time
  • the ratio of the air flow of the first air spring L, the air flow of the first air spring R, and the air flow of the second air spring can make the height of the vehicle body raised or lowered by the front axle and the rear axle of the vehicle the same in real time.
  • the first electromagnetic two-way proportional valve is used to regulate the flow of air flowing into or out of the first air spring installed between the front wheel of the vehicle and the vehicle body
  • the second electromagnetic two-way The proportional valve adjusts the flow of air flowing into or out of the second air spring L installed between the left rear wheel of the vehicle and the body
  • the fourth electromagnetic two-way proportional valve is used to adjust the flow of air flowing into or out of the second air spring L installed between the right rear wheel of the vehicle and the body.
  • the air flow rate of the second air spring R by adjusting the opening of the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve and the fourth electromagnetic two-way proportional valve, the air flowing into or out of the first air spring can be adjusted in real time
  • the ratio of the flow rate, the air flow rate of the second air spring L and the air flow rate of the second air spring R can make the body heights of the vehicle front axle and the vehicle rear axle raised or lowered the same in real time.
  • the solenoid valve assembly further includes a third solenoid switch valve, the first air passage of the third solenoid switch valve is respectively connected to the first air passage of the first electromagnetic two-way proportional valve. channel, the first air channel of the second electromagnetic two-way proportional valve, the first air channel of the third electromagnetic two-way proportional valve and the first air channel of the fourth electromagnetic two-way proportional valve are connected, the The second air passage of the third electromagnetic switch valve is connected with the air supply system and/or the atmosphere.
  • the first air passage of the first electromagnetic two-way proportional valve, the first air passage of the second electromagnetic two-way proportional valve, the first air passage of the third electromagnetic two-way proportional valve and the fourth electromagnetic two-way can be connected to the air supply system and/or the atmosphere through the third electromagnetic switch valve; in the process of lowering the vehicle body height, the third electromagnetic switch valve can be selected to be in an open state, and the first electromagnetic switch valve
  • the air flowing out of the first air passage of the proportional valve, the first air passage of the second electromagnetic two-way proportional valve, the first air passage of the third electromagnetic two-way proportional valve and the first air passage of the fourth electromagnetic two-way proportional valve It can flow into the first air channel of the third electromagnetic switch valve, and then flow into the air supply system and/or the atmosphere through the second air channel of the third electromagnetic switch valve, so as to realize the reduction of the vehicle body height; in other cases, the second air channel can be selected.
  • the three electromagnetic switch valves are in the closed state.
  • the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve, the third electromagnetic two-way proportional valve and the fourth electromagnetic two-way proportional valve are normally Close the valve.
  • any one of the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve, the third electromagnetic two-way proportional valve and the fourth electromagnetic two-way proportional valve when it is powered off, it is in the closed state, and its respective There will be no air flow between the air channels; similarly, when it is powered on and open, there will be air flow between its air channels.
  • the first electromagnetic two-way proportional valve, the second electromagnetic two-way proportional valve, the third electromagnetic two-way proportional valve and the fourth electromagnetic two-way proportional valve are all powered off, Therefore, no air will flow into the first air spring L, the first air spring R, the second air spring L and the second air spring R, and no air will flow from the first air spring L, the first air spring R, the second air spring The outflow from the air spring L and the second air spring R can maintain the height of the vehicle.
  • FIG. 5 is a schematic structural diagram of an electronically controlled air suspension system provided in an embodiment of the present application.
  • the electronically controlled air suspension system includes: solenoid valve assembly 401, left front air spring 402, right front air spring 403, left rear air spring 404, right rear air spring 405, left front height sensor 406, right front height Sensor 407 , left rear height sensor 408 , right rear height sensor 409 , air supply system 410 and controller 411 .
  • the solenoid valve assembly 401 is used to control the on-off of the air circuit.
  • the solenoid valve assembly 401 is composed of an electromagnetic three-way proportional valve 401-1, an electromagnetic switch valve 401-2, an electromagnetic switch valve 401-3, and an electromagnetic switch valve 401-4. , electromagnetic switch valve 401-5 and electromagnetic switch valve 401-6 are combined.
  • the solenoid valve assembly 401 and the electromagnetic three-way proportional valve 401-1 inside are key components to realize the synchronous adjustment of the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle.
  • Fig. 6 is a structural schematic diagram of an electromagnetic three-way proportional valve 401-1.
  • the electromagnetic three-way proportional valve 401-1 includes a first air channel 401-1-1, a second air channel 401-1-2 and a Three air channels 401-1-3; if it is assumed that the air flow rate of the first air channel 401-1-1 of the electromagnetic three-way proportional valve 401-1 is Q sum , the second air channel 401-1 of the electromagnetic three-way proportional valve 401-1
  • the air flow of -2 is Q F
  • the air flow of the third air passage 401-1-3 of the electromagnetic three-way proportional valve 401-1 is Q R
  • Q sum Q F +Q R
  • the electromagnetic three-way proportional valve 401- 1 The size and ratio of Q F and Q R can be controlled, that is, the size and ratio of the air flow flowing into or out of the air spring of the front axle of the vehicle and the air spring of the rear axle of the vehicle can be controlled.
  • the electromagnetic three-way proportional valve 401-1 can be a normally closed valve. When the electromagnetic three-way proportional valve 401-1 is powered off, the first air channel 401-1-1, the second air channel 401-1-2 and the third air channel Roads 401-1-3 are closed.
  • the second air passage 401-1-2 of the electromagnetic three-way proportional valve 401-1 is respectively connected with the first air passage of the electromagnetic switch valve 401-2 and the first air passage of the electromagnetic switch valve 401-3, and the electromagnetic three-way proportional valve
  • the third air passage 401-1-3 of 401-1 is respectively connected with the first air passage of the electromagnetic switching valve 401-4 and the first air passage of the electromagnetic switching valve 401-5.
  • the second airway of the electromagnetic switch valve 401-2 is connected with the left front air spring 402, and the electromagnetic switch valve 401-2 is used to control the second airway 401-1-2 of the left front air spring 402 and the electromagnetic three-way proportional valve 401-1 connected or closed.
  • the second airway of the electromagnetic switch valve 401-3 is connected with the right front air spring 403, and the electromagnetic switch valve 401-3 is used to control the second airway 401-1-2 of the right front air spring 403 and the electromagnetic three-way proportional valve 401-1 connected or closed.
  • the second airway of the electromagnetic switch valve 401-4 is connected with the left rear air spring 404, and the electromagnetic switch valve 401-4 is used to control the third airway 401-1 of the left rear air spring 404 and the electromagnetic three-way proportional valve 401-1 -3 on or off.
  • the second air passage of the electromagnetic switch valve 401-5 is connected with the right rear air spring 405, and the electromagnetic switch valve 401-5 is used to control the third air passage 401-1 of the right rear air spring 405 and the electromagnetic three-way proportional valve 401-1 -3 on or off.
  • the first air channel 401-1-1 of the electromagnetic three-way proportional valve 401-1 is respectively connected with the first air channel of the electromagnetic switch valve 401-6 and the air supply system 410.
  • the second airway of the electromagnetic switch valve 401-6 is connected with the air supply system 410 and/or the atmosphere, and the electromagnetic switch valve 401-6 is used to control the exhaust process when the vehicle body is lowered, that is, the air is discharged to the air supply system 410 and /or in the atmosphere; wherein, the connection line between the second air passage of the electromagnetic switch valve 401-6 and the air supply system 410 is not shown in FIG. 5 .
  • the electromagnetic three-way proportional valve 401-1 is also the aforementioned at least one electromagnetic proportional valve; the electromagnetic switch valve 401-2 and the electromagnetic switch valve 401-3 are also the aforementioned at least one first electromagnetic switch valve; the electromagnetic switch valve 401- 4 and the electromagnetic switch valve 401-5 are also the aforementioned at least one second electromagnetic switch valve; the electromagnetic switch valve 401-6 is also the aforementioned third electromagnetic switch valve.
  • the left front air spring 402 is an air spring installed between the left front wheel of the vehicle and the vehicle body, that is, the first air spring L, which is used to adjust the height of the vehicle body at the left end of the front axle of the vehicle; the right front air spring 403 is installed on the right front of the vehicle.
  • the air spring between the wheel and the vehicle body that is, the first air spring R, is used to adjust the height of the vehicle body at the right end of the front axle of the vehicle;
  • the left rear air spring 404 is an air spring installed between the left rear wheel of the vehicle and the vehicle body, that is, The second air spring L is used to adjust the height of the vehicle body at the left end of the rear axle of the vehicle;
  • the right rear air spring 405 is an air spring installed between the right rear wheel of the vehicle and the vehicle body, that is, the second air spring R is used to adjust the height of the rear axle of the vehicle.
  • left front air spring 402 and the right front air spring 403 are also the aforementioned at least one first air spring; the left rear air spring 404 and the right rear air spring 405 are also the aforementioned at least one second air spring.
  • the left front height sensor 406 is used for measuring the body height of the left end of the front axle of the vehicle
  • the right front height sensor 407 is used for measuring the body height of the right end of the front axle of the vehicle
  • the left rear height sensor 408 is used for measuring the body height of the left end of the rear axle of the vehicle.
  • the height sensor 409 is used to measure the vehicle body height at the right end of the rear axle of the vehicle. It should be understood that the left front height sensor 406 , the right front height sensor 407 , the left rear height sensor 408 and the right rear height sensor 409 can all send the measured vehicle height to the controller 411 .
  • the air supply system 410 includes an air compressor and an air tank, and the air compressor is used to compress the air in the atmosphere into high-pressure gas and store it in the air tank.
  • the gas supply system 410 is used to provide high-pressure gas during the raising of the vehicle body.
  • the controller 411 is communicatively or electrically connected with the solenoid valve assembly 401, the left front height sensor 406, the right front height sensor 407, the left rear height sensor 408, the right rear height sensor 409, the air supply system 410 and the controller 411 respectively (Fig. 5 not all are shown).
  • the communicative connection or electrical connection between the controller 411 and the solenoid valve assembly 401 includes the controller 411 and the electromagnetic three-way proportional valve 401-1, the electromagnetic switch valve 401-2, the electromagnetic switch valve 401-3, and the electromagnetic switch valve 401- 4. Both the electromagnetic switch valve 401-5 and the electromagnetic switch valve 401-6 are connected in communication or electrically.
  • the controller 411 has control and driving functions.
  • the controller 411 can receive vehicle body height information and other control instructions sent by the left front height sensor 406, right front height sensor 407, left rear height sensor 408, and right rear height sensor 409, and control the vehicle body height information and other control commands based on this.
  • the gas system 410 and the solenoid valve assembly 401 work in good time to complete the height adjustment function of the vehicle.
  • the electronically controlled air suspension system shown in FIG. 5 may also include additional sensors such as gas pressure sensors, controllers, solenoid valves, etc., which are not shown in FIG. 5 .
  • the controller 411, the solenoid valve assembly 401, and the air compressor in the air supply system 410 in the electronically controlled air suspension system can be used as an integrated control unit and have the above three functions.
  • the electromagnetic three-way proportional valve 401-1 can be independently formed as a single electromagnetic valve body.
  • FIG. 7 is a schematic diagram of the control flow of the electronically controlled air suspension system shown in FIG. 5.
  • the control flow of the electronically controlled air suspension system includes but is not limited to the following steps:
  • the initial opening degree may be a preset suitable initial position, and the initial opening degree may also be determined according to the height of the vehicle body before height adjustment and the target height of the vehicle body after height adjustment.
  • the electromagnetic switch valve 401-2, the electromagnetic switch valve 401-3, the electromagnetic switch valve 401-4 and the electromagnetic switch valve 401-5 are opened, and the electromagnetic switch valve 401-6 is not opened.
  • the electromagnetic switch valve 401-2, the electromagnetic switch valve 401-3, the electromagnetic switch valve 401-4, the electromagnetic switch valve 401-5 and the electromagnetic switch valve 401-6 are all opened.
  • the vehicle height at the left end of the front axle is measured by the left front height sensor 406, the vehicle height at the right end of the front axle is measured by the right front height sensor 407, the vehicle height at the left end of the rear axle is measured by the left rear height sensor 408, and the vehicle height at the left end of the rear axle is measured by the right rear height sensor 409.
  • the height of the ride at the right end of the rear axle is measured by the left front height sensor 406
  • the vehicle height at the right end of the front axle is measured by the right front height sensor 407
  • the vehicle height at the left end of the rear axle is measured by the left rear height sensor 408
  • the vehicle height at the left end of the rear axle is measured by the right rear height sensor 409.
  • the height of the ride at the right end of the rear axle is measured by the left front height sensor 406
  • the vehicle height at the right end of the front axle is measured by the right front height sensor 407
  • the vehicle height at the left end of the rear axle is measured by the left rear height sensor 408
  • step S705 when the height of the vehicle body is not equal to the target height, step S705 is performed; when the height of the vehicle body is equal to the target height, step S708 is performed.
  • step S706 when the body height changes of the front axle and the rear axle do not match, step S706 is executed; when the body height changes of the front axle and the rear axle match, step S707 is executed.
  • step S707 is executed, return to step S703.
  • step S702 the electromagnetic switching valve opened in step S702 is closed.
  • the steps shown in FIG. 7 are executed by the controller 411, and the controller 411 adjusts the body height of the vehicle in real time (including the driver's manual input during static manual height adjustment, static automatic height adjustment functions such as easy loading, dynamic height adjustment, etc.) Speed adjustment, etc.) is monitored, and if a vehicle height adjustment requirement is received, the vehicle height adjustment program is entered, and the controller 411 adjusts the height of the front axle and the rear axle simultaneously according to the vehicle height adjustment requirement until reaching the target height.
  • the controller 411 adjusts the body height of the vehicle in real time (including the driver's manual input during static manual height adjustment, static automatic height adjustment functions such as easy loading, dynamic height adjustment, etc.) Speed adjustment, etc.) is monitored, and if a vehicle height adjustment requirement is received, the vehicle height adjustment program is entered, and the controller 411 adjusts the height of the front axle and the rear axle simultaneously according to the vehicle height adjustment requirement until reaching the target height.
  • the electronically controlled air suspension system shown in Figure 5 has three working modes: raising the height of the body, lowering the height of the body, and maintaining the height of the body, which are described below:
  • FIG. 8 is a schematic diagram of the electronically controlled air suspension system shown in FIG. 5 in the vehicle height raising mode.
  • the controller 411 controls the gas supply system 410 to provide high-pressure gas to the outside.
  • the controller 411 adjusts the opening of the electromagnetic three-way proportional valve 401-1 to a suitable initial position, which can be determined by the controller 411 according to the left front height sensor 406, right front height sensor 407, left rear height sensor 408 and right Information such as the actual vehicle height measured by the rear height sensor 409 and the target height are calculated.
  • the controller 411 drives the electromagnetic switch valve 401-2, the electromagnetic switch valve 401-3, the electromagnetic switch valve 401-4, and the electromagnetic switch valve 401-5 to the open state, and the high-pressure gas starts from the gas supply system 410 and passes through the electromagnetic tee Proportional valve 401-1, then enters the left front air spring 402 through the electromagnetic switch valve 401-2, enters the right front air spring 403 through the electromagnetic switch valve 401-3, enters the left rear air spring 404 through the electromagnetic switch valve 401-4, and enters the left rear air spring 404 through the electromagnetic switch valve 401-4.
  • On-off valve 401-5 enters right rear air spring 405.
  • the controller 411 adjusts the opening of the electromagnetic three-way proportional valve 401-1 in real time to Proper position ensures that the air flow flowing into the left front air spring 402, the right front air spring 403 and the left rear air spring 404 and the right rear air spring 405 is appropriate, so that the body height of the front axle and the body height of the rear axle can be raised synchronously.
  • FIG. 9 is a schematic diagram of a comparison result between the electronically controlled air suspension system shown in FIG. 1 and the electronically controlled air suspension system shown in FIG. 5 .
  • the electronically controlled air suspension system shown in Figure 5 is a continuous and synchronous process for the height adjustment of the vehicle body, and the time for height adjustment is shorter, that is, the electronically controlled air suspension system shown in Figure 5
  • Working mode 2 The vehicle height is lowered.
  • FIG. 10 is a schematic diagram of the electronically controlled air suspension system shown in FIG. 5 in the vehicle height raising mode.
  • the controller 411 controls the electromagnetic switch valve 401-6 to open, so that the main air passage 412 of the electromagnetic valve assembly 401 is connected with the atmosphere, even if the first air passage 401-1-1 of the electromagnetic three-way proportional valve 401-1 is connected with the atmosphere. connected.
  • the controller 411 adjusts the opening of the electromagnetic three-way proportional valve 401-1 to a suitable initial position, which can be determined by the controller 411 according to the left front height sensor 406, right front height sensor 407, left rear height sensor 408 and right Information such as the actual vehicle height measured by the rear height sensor 409 and the target height are calculated.
  • the controller 411 drives the electromagnetic switch valve 401-2, the electromagnetic switch valve 401-3, the electromagnetic switch valve 401-4, the electromagnetic switch valve 401-5, and the electromagnetic switch valve 401-6 to the open state, and the left front air spring 402
  • the high-pressure gas flows into the electromagnetic three-way proportional valve 401-1 through the electromagnetic switch valve 401-2
  • the high-pressure gas in the right front air spring 403 flows into the electromagnetic three-way proportional valve 401-1 through the electromagnetic switch valve 401-3
  • the left rear air spring 404 The high-pressure gas flows into the electromagnetic three-way proportional valve 401-1 through the electromagnetic switch valve 401-4
  • the high-pressure gas in the right rear air spring 405 flows into the electromagnetic three-way proportional valve 401-1 through the electromagnetic switch valve 401-5.
  • the gas passing through the proportional valve 401-1 is discharged into the atmosphere through the electromagnetic switch valve 401-6.
  • the controller 411 adjusts the opening of the electromagnetic three-way proportional valve 401-1 in real time to Appropriate position ensures that the air flow flowing out of the left front air spring 402, the right front air spring 403 and the left rear air spring 404 and the right rear air spring 405 is appropriate, so that the body height of the front axle and the body height of the rear axle can be lowered synchronously.
  • Working mode 3 Vehicle height maintenance.
  • FIG. 5 is also a schematic diagram of the electronically controlled air suspension system in the vehicle height maintaining mode.
  • the drive circuit of the controller 411 does not output current
  • the electromagnetic switch valve 401-2, the electromagnetic switch valve 401-3, the electromagnetic switch valve 401-4, the electromagnetic switch valve 401-5 and the electromagnetic switch valve 401-6 are all in the closed state
  • the electromagnetic three-way proportional valve 401-1 is in the default state (such as the neutral state, the maximum opening state or the minimum opening state).
  • the left front air spring 402, the right front air spring 403, the left rear air spring 404 and the right rear air spring 405 are all airtight, that is, the vehicle body height can be kept constant.
  • the solenoid valve assembly 401 in Fig. 5 enables the electronically controlled air suspension system shown in Fig. 5 to realize the full-time synchronous height adjustment of the vehicle, including synchronous lowering and synchronous raising, to improve the height adjustment speed and performance of the vehicle, and further improve Vehicle comfort and safety.
  • the synchronous height adjustment feature of the present application is not affected by the gas pressure of the air spring, that is, it does not require that the pressure of one axle of the vehicle is higher than that of the other axle of the vehicle, so the application of the present application has a wide range of applications.
  • Example 2 uses two electromagnetic two-way proportional valves instead of electromagnetic three-way proportional valves to realize the synchronous adjustment of the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle.
  • the aforementioned two electromagnetic two-way proportional valves may be normally closed valves or may not be normally closed valves.
  • FIG. 11 is a schematic structural diagram of another electronically controlled air suspension system provided by an embodiment of the present application.
  • the electronically controlled air suspension system includes: solenoid valve assembly 501, left front air spring 502, right front air spring 503, left rear air spring 504, right rear air spring 505, left front height sensor 506, right front height Sensor 507 , left rear height sensor 508 , right rear height sensor 509 , air supply system 510 and controller 511 .
  • the solenoid valve assembly 501 is used to control the on-off of the air circuit.
  • the solenoid valve assembly 501 is composed of an electromagnetic two-way proportional valve 501-1, an electromagnetic two-way proportional valve 501-2, an electromagnetic switch valve 501-3, and an electromagnetic switch valve 501. -4.
  • Electromagnetic switch valve 501-5, electromagnetic switch valve 501-6 and electromagnetic switch valve 501-7 are combined.
  • the solenoid valve assembly 501 and its internal electromagnetic two-way proportional valve 501-1 and electromagnetic two-way proportional valve 501-2 are key components for synchronously adjusting the body height of the front axle and the rear axle of the vehicle.
  • the second airway of the electromagnetic two-way proportional valve 501-1 is connected with the electromagnetic switch valve 501-3 and the electromagnetic switch valve 501-4 respectively, and the second airway of the electromagnetic two-way proportional valve 501-2 is respectively connected with the electromagnetic switch valve 501- 5 is connected with the electromagnetic switching valve 501-6.
  • the electromagnetic switch valve 501-3 is connected with the left front air spring 502, and the electromagnetic switch valve 501-3 is used to control the connection or closure of the left front air spring 502 and the second air passage of the electromagnetic two-way proportional valve 501-1.
  • the electromagnetic switch valve 501-4 is connected with the right front air spring 503, and the electromagnetic switch valve 501-4 is used for controlling the communication or closing of the second air passage of the right front air spring 503 and the electromagnetic two-way proportional valve 501-2.
  • the electromagnetic switch valve 501-5 is connected with the left rear air spring 504, and the electromagnetic switch valve 501-5 is used to control the connection or closure of the left rear air spring 504 and the second airway of the electromagnetic two-way proportional valve 501-2.
  • the electromagnetic switch valve 501-6 is connected with the right rear air spring 505, and the electromagnetic switch valve 501-6 is used to control the connection or closure of the right rear air spring 505 and the second airway of the electromagnetic two-way proportional valve 501-2.
  • the first air passage of the electromagnetic two-way proportional valve 501-1 and the first air passage of the electromagnetic two-way proportional valve 501-2 are respectively connected with the second air passage of the electromagnetic switch valve 501-7 and the air supply system 510 .
  • the second airway of the electromagnetic switch valve 501-7 is connected with the air supply system 510 and/or the atmosphere, and the electromagnetic switch valve 501-7 is used to control the exhaust process when the vehicle body is lowered, that is, the air is discharged to the air supply system 510 and the air supply system 510. /or in the atmosphere; wherein, the connection line between the second air passage of the electromagnetic switch valve 501-7 and the air supply system 510 is not shown in FIG. 11 .
  • the electromagnetic two-way proportional valve 501-1 and the electromagnetic two-way proportional valve 501-2 are the aforementioned at least one electromagnetic proportional valve, specifically, the electromagnetic two-way proportional valve 501-1 is the aforementioned first electromagnetic two-way proportional valve, The electromagnetic two-way proportional valve 501-2 is the aforementioned second electromagnetic two-way proportional valve; the electromagnetic switch valve 501-3 and the electromagnetic switch valve 501-4 are also the aforementioned at least one first electromagnetic switch valve; the electromagnetic switch valve 501-5 and The electromagnetic switch valve 501-6 is also the aforementioned at least one second electromagnetic switch valve; the electromagnetic switch valve 501-7 is also the aforementioned third electromagnetic switch valve.
  • the left front air spring 502 is an air spring installed between the left front wheel of the vehicle and the vehicle body, that is, the first air spring L, which is used to adjust the height of the vehicle body at the left end of the front axle of the vehicle;
  • the right front air spring 503 is installed on the right front of the vehicle.
  • the air spring between the wheel and the vehicle body that is, the first air spring R, is used to adjust the height of the vehicle body at the right end of the front axle of the vehicle;
  • the left rear air spring 504 is an air spring installed between the left rear wheel of the vehicle and the vehicle body, that is, The second air spring L is used to adjust the height of the vehicle body at the left end of the rear axle of the vehicle;
  • the right rear air spring 505 is an air spring installed between the right rear wheel of the vehicle and the vehicle body, that is, the second air spring R is used to adjust the rear of the vehicle.
  • left front air spring 502 and the right front air spring 503 are also the aforementioned at least one first air spring; the left rear air spring 504 and the right rear air spring 505 are also the aforementioned at least one second air spring.
  • the left front height sensor 506 is used for measuring the body height of the left end of the front axle of the vehicle
  • the right front height sensor 507 is used for measuring the body height of the right end of the front axle of the vehicle
  • the left rear height sensor 508 is used for measuring the body height of the left end of the rear axle of the vehicle.
  • the height sensor 509 is used to measure the vehicle body height at the right end of the rear axle of the vehicle. It should be understood that the left front height sensor 506 , the right front height sensor 507 , the left rear height sensor 508 and the right rear height sensor 509 can all send the measured vehicle height to the controller 511 .
  • the air supply system 510 includes an air compressor and an air tank, and the air compressor is used to compress the air in the atmosphere into high-pressure gas and store it in the air tank.
  • the gas supply system 510 is used to provide high-pressure gas during the raising of the vehicle body.
  • the controller 511 is communicatively or electrically connected with the solenoid valve assembly 501, the left front height sensor 506, the right front height sensor 507, the left rear height sensor 508, the right rear height sensor 509, the air supply system 510 and the controller 511 respectively (Fig. 11 not all are shown).
  • the communication or electrical connection between the controller 511 and the solenoid valve assembly 501 includes the controller 511 and the electromagnetic two-way proportional valve 501-1, the electromagnetic two-way proportional valve 501-2, the electromagnetic switch valve 501-3, the electromagnetic switch valve 501-4, the electromagnetic switch valve 501-5, the electromagnetic switch valve 501-6 and the electromagnetic switch valve 501-7 are all communicatively or electrically connected.
  • the controller 511 has control and driving functions.
  • the controller 511 can receive vehicle body height information and other control commands sent by the left front height sensor 506, right front height sensor 507, left rear height sensor 508, and right rear height sensor 509, and control the vehicle body height information by this.
  • the air system 510 and the solenoid valve assembly 501 work in good time to complete the height adjustment function of the vehicle.
  • the electronically controlled air suspension system shown in FIG. 11 may also include additional sensors such as gas pressure sensors, controllers, solenoid valves, etc., which are not shown in FIG. 11 .
  • the controller 511, the solenoid valve assembly 501, and the air compressor in the air supply system 510 can be used as an integrated control unit and have the above three functions.
  • the electromagnetic two-way proportional valve 501-1 and the electromagnetic two-way proportional valve 501-2 can be independently formed into a single integrated electromagnetic valve body.
  • FIG. 12 is a schematic diagram of the control flow of the electronically controlled air suspension system shown in FIG. 11.
  • the control flow of the electronically controlled air suspension system includes but is not limited to the following steps:
  • the opening degree of the electromagnetic two-way proportional valve 501-1 is adjusted to an initial opening degree
  • the opening degree of the electromagnetic two-way proportional valve 501-2 is also adjusted to an initial opening degree; wherein, the electromagnetic two-way proportional valve
  • the initial opening degree corresponding to 501-1 may be the same as or different from the initial opening degree corresponding to the electromagnetic two-way proportional valve 501-2.
  • the initial opening degree may be a preset suitable initial position, and the initial opening degree may also be determined according to the height of the vehicle body before height adjustment and the target height of the vehicle body after height adjustment.
  • the electromagnetic switch valve 501-3, the electromagnetic switch valve 501-4, the electromagnetic switch valve 501-5 and the electromagnetic switch valve 501-6 are opened, and the electromagnetic switch valve 501-7 is not opened.
  • the electromagnetic switch valve 501-3, the electromagnetic switch valve 501-4, the electromagnetic switch valve 501-5, the electromagnetic switch valve 501-6 and the electromagnetic switch valve 501-7 are all opened.
  • the vehicle height at the left end of the front axle is measured by the left front height sensor 506, the vehicle height at the right end of the front axle is measured by the right front height sensor 507, the vehicle height at the left end of the rear axle is measured by the left rear height sensor 508, and the vehicle height at the left end of the rear axle is measured by the right rear height sensor 509.
  • the height of the ride at the right end of the rear axle is measured by the left front height sensor 506
  • the vehicle height at the right end of the front axle is measured by the right front height sensor 507
  • the vehicle height at the left end of the rear axle is measured by the left rear height sensor 508
  • the vehicle height at the left end of the rear axle is measured by the right rear height sensor 509.
  • the height of the ride at the right end of the rear axle is measured by the left front height sensor 506
  • the vehicle height at the right end of the front axle is measured by the right front height sensor 507
  • the vehicle height at the left end of the rear axle is measured by the left rear height sensor 508
  • step S1205 when the vehicle body height is not equal to the target height, step S1205 is performed; when the vehicle body height is equal to the target height, step S1208 is performed.
  • step S1206 when the vehicle body height changes of the front axle and the rear axle do not match, step S1206 is performed; when the vehicle body height changes of the front axle and the rear axle match, step S1207 is performed.
  • adjusting the opening degrees of the plurality of electromagnetic two-way proportional valves includes adjusting the opening degree of at least one electromagnetic two-way proportional valve among the electromagnetic two-way proportional valve 501-1 and the electromagnetic two-way proportional valve 501-2.
  • step S1206 is executed, return to step S1203.
  • step S1207 is executed, return to step S1203.
  • step S1202 the electromagnetic switching valve opened in step S1202 is closed.
  • the steps shown in FIG. 12 are executed by the controller 511, and the controller 511 adjusts the body height of the vehicle in real time (including the driver's manual input during static manual height adjustment, static automatic height adjustment functions such as easy loading, dynamic height adjustment, etc.) Speed adjustment, etc.) is monitored, if the vehicle height adjustment requirement is received, the vehicle height adjustment program is entered, and the controller 511 adjusts the height of the front axle and the rear axle simultaneously according to the vehicle height adjustment requirement until reaching the target height.
  • the controller 511 adjusts the body height of the vehicle in real time (including the driver's manual input during static manual height adjustment, static automatic height adjustment functions such as easy loading, dynamic height adjustment, etc.) Speed adjustment, etc.) is monitored, if the vehicle height adjustment requirement is received, the vehicle height adjustment program is entered, and the controller 511 adjusts the height of the front axle and the rear axle simultaneously according to the vehicle height adjustment requirement until reaching the target height.
  • the electronically controlled air suspension system shown in Figure 11 has three working modes: raising the vehicle height, lowering the vehicle height, and maintaining the vehicle height, which are described below:
  • the controller 511 controls the gas supply system 510 to provide high-pressure gas to the outside.
  • the controller 511 adjusts the openings of the electromagnetic two-way proportional valve 501-1 and the electromagnetic two-way proportional valve 501-2 to appropriate initial positions, which can be determined by the controller 511 according to the left front height sensor 506 and the right front height. Information such as the actual vehicle height and target height measured by the sensor 507 , the left rear height sensor 508 and the right rear height sensor 509 is calculated.
  • the controller 511 drives the electromagnetic switch valve 501-3, the electromagnetic switch valve 501-4, the electromagnetic switch valve 501-5, and the electromagnetic switch valve 501-6 to the open state, and the high-pressure gas starts from the gas supply system 510 and passes through the electromagnetic two-way
  • the proportional valve 501-1 enters the left front air spring 502 through the electromagnetic switch valve 501-3, and enters the right front air spring 503 through the electromagnetic switch valve 501-4; the high-pressure gas starts from the air supply system 510 and passes through the electromagnetic two-way proportional valve 501 -2, then enter the left rear air spring 504 through the electromagnetic switch valve 501-5, and enter the right rear air spring 505 through the electromagnetic switch valve 501-6.
  • the controller 511 adjusts the electromagnetic two-way proportional valve 501-1 and the electromagnetic two-way proportional valve 501-1 in real time according to the actual vehicle height fed back by the left front height sensor 506, right front height sensor 507, left rear height sensor 508, and right rear height sensor 509.
  • the proportional valve 501-2 is opened to a proper position to ensure that the air flow flowing into the left front air spring 502, the right front air spring 503 and the left rear air spring 504 and the right rear air spring 505 are appropriate, so as to realize the vehicle height of the front axle and the height of the rear axle.
  • the ride height of the vehicle is increased simultaneously.
  • Working mode 2 The vehicle height is lowered.
  • the controller 511 controls the electromagnetic switch valve 501-7 to open, so that the first air passage of the electromagnetic two-way proportional valve 501-1 and the first air passage of the electromagnetic two-way proportional valve 501-2 communicate with the atmosphere.
  • the controller 511 adjusts the openings of the electromagnetic two-way proportional valve 501-1 and the electromagnetic two-way proportional valve 501-2 to appropriate initial positions, which can be determined by the controller 511 according to the left front height sensor 506 and the right front height. Information such as the actual vehicle height and target height measured by the sensor 507 , the left rear height sensor 508 and the right rear height sensor 509 is calculated.
  • the controller 511 drives the electromagnetic switch valve 501-3, the electromagnetic switch valve 501-4, the electromagnetic switch valve 501-5, the electromagnetic switch valve 501-6 and the electromagnetic switch valve 501-7 to the open state, and the left front air spring 502
  • the high-pressure gas flows into the electromagnetic two-way proportional valve 501-1 through the electromagnetic switch valve 501-3
  • the high-pressure gas in the right front air spring 503 flows into the electromagnetic two-way proportional valve 501-1 through the electromagnetic switch valve 501-4
  • the left rear air spring 504 The high-pressure gas flows into the electromagnetic two-way proportional valve 501-2 through the electromagnetic switch valve 501-5
  • the high-pressure gas in the right rear air spring 505 flows into the electromagnetic two-way proportional valve 501-2 through the electromagnetic switch valve 501-6, and flows into the electromagnetic two-way proportional valve 501-2.
  • the proportional valve 501-1 and the gas flowing into the electromagnetic two-way proportional valve 501-2 are discharged into the atmosphere through the electromagnetic switch valve 501-7.
  • the controller 511 adjusts the electromagnetic two-way proportional valve 501-1 and the electromagnetic two-way proportional valve 501-1 in real time according to the actual vehicle height fed back by the left front height sensor 506, right front height sensor 507, left rear height sensor 508, and right rear height sensor 509.
  • the proportional valve 501-2 is opened to a proper position to ensure that the air flow out of the left front air spring 502, right front air spring 503 and out of the left rear air spring 504 and right rear air spring 505 is appropriate, so as to realize the body height of the front axle and the height of the rear axle.
  • the ride height of the car is lowered simultaneously.
  • Working mode 3 Vehicle height maintenance.
  • FIG. 11 is also a schematic diagram of the electronically controlled air suspension system in the vehicle height maintaining mode.
  • the controller 511 drive circuit does not output current
  • the electromagnetic switch valve 501-3, the electromagnetic switch valve 501-4, the electromagnetic switch valve 501-5, the electromagnetic switch valve 501-6 and the electromagnetic switch valve 501-7 are both in the closed state
  • the electromagnetic two-way proportional valve 501-1 and the electromagnetic two-way proportional valve 501-2 are in the default state (such as the neutral state, the maximum opening state or the minimum opening state).
  • the left front air spring 502, the right front air spring 503, the left rear air spring 504 and the right rear air spring 505 are all airtight, that is, the vehicle body height can be kept constant.
  • Example 3 uses four electromagnetic two-way proportional valves instead of electromagnetic three-way proportional valves to realize the synchronous adjustment of the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle.
  • the aforementioned four electromagnetic two-way proportional valves are normally closed valves.
  • FIG. 13 is a schematic structural diagram of another electronically controlled air suspension system provided by an embodiment of the present application.
  • the electronically controlled air suspension system includes: solenoid valve assembly 601, left front air spring 602, right front air spring 603, left rear air spring 604, right rear air spring 605, left front height sensor 606, right front height Sensor 607 , left rear height sensor 608 , right rear height sensor 609 , air supply system 610 and controller 611 .
  • the solenoid valve assembly 601 is used to control the on-off of the air circuit.
  • the solenoid valve assembly 601 is composed of an electromagnetic two-way proportional valve 601-1, an electromagnetic two-way proportional valve 601-2, an electromagnetic two-way proportional valve It is formed by combining proportional valve 601-4 and electromagnetic switch valve 601-5.
  • the solenoid valve assembly 601 and its internal electromagnetic two-way proportional valve 601-1, electromagnetic two-way proportional valve 601-2, electromagnetic two-way proportional valve 601-3 and electromagnetic two-way proportional valve 601-4 are used to realize the front axle of the vehicle. Key component for synchronous adjustment of ride height and ride height of the rear axle of the vehicle.
  • the second air channel of the electromagnetic two-way proportional valve 601-1 is connected to the left front air spring 602, the second air channel of the electromagnetic two-way proportional valve 601-2 is connected to the right front air spring 603, and the second air channel of the electromagnetic two-way proportional valve 601-3
  • the second air passage is connected with the left rear air spring 604, and the second air passage of the electromagnetic two-way proportional valve 601-4 is connected with the right rear air spring 605.
  • the first airway of the electromagnetic two-way proportional valve 601-1 is respectively connected with the electromagnetic switch valve 601-5 and the air supply system 610
  • the first airway of the electromagnetic two-way proportional valve 601-2 is respectively connected with the electromagnetic switch valve 601-5 and the air supply system 610
  • the air supply system 610 is connected
  • the first air passage of the electromagnetic two-way proportional valve 601-3 is respectively connected with the first air passage of the electromagnetic switch valve 601-5 and the air supply system 610
  • the first air passage of the electromagnetic two-way proportional valve 601-4 is connected with the air supply system 610.
  • the air channels are respectively connected with the first air channel of the electromagnetic switching valve 601-5 and the air supply system 610.
  • the second air passage of the electromagnetic switch valve 601-5 is connected with the air supply system 610 and/or the atmosphere, and the electromagnetic switch valve 601-5 is used to control the exhaust process when the vehicle body is lowered, that is, the air is discharged to the air supply system 610 and the air supply system 610. /or in the atmosphere; wherein, the connection line between the second air passage of the electromagnetic switch valve 601-5 and the air supply system 610 is not shown in FIG. 13 .
  • the electromagnetic two-way proportional valve 601-1, the electromagnetic two-way proportional valve 601-2, the electromagnetic two-way proportional valve 601-3, and the electromagnetic two-way proportional valve 601-4 are at least one electromagnetic proportional valve mentioned above, specifically,
  • the electromagnetic two-way proportional valve 601-1 is the aforementioned first electromagnetic two-way proportional valve
  • the electromagnetic two-way proportional valve 601-2 is the aforementioned third electromagnetic two-way proportional valve
  • the electromagnetic two-way proportional valve 601-3 is the aforementioned second electromagnetic two-way proportional valve.
  • the electromagnetic two-way proportional valve 601-4 is the aforementioned fourth electromagnetic two-way proportional valve
  • the electromagnetic switch valve 601-5 is also the aforementioned third electromagnetic switch valve.
  • the electromagnetic two-way proportional valve 601-1, the electromagnetic two-way proportional valve 601-2, the electromagnetic two-way proportional valve 601-3 and the electromagnetic two-way proportional valve 601-4 are normally closed valves.
  • the left front air spring 602 is an air spring installed between the left front wheel of the vehicle and the vehicle body, that is, the first air spring L, which is used to adjust the height of the vehicle body at the left end of the front axle of the vehicle;
  • the right front air spring 603 is installed on the right front of the vehicle.
  • the air spring between the wheel and the vehicle body that is, the first air spring R, is used to adjust the height of the vehicle body at the right end of the front axle of the vehicle;
  • the left rear air spring 604 is an air spring installed between the left rear wheel of the vehicle and the vehicle body, that is, The second air spring L is used to adjust the height of the vehicle body at the left end of the rear axle of the vehicle;
  • the right rear air spring 605 is an air spring installed between the right rear wheel of the vehicle and the vehicle body, that is, the second air spring R is used to adjust the height of the rear axle of the vehicle.
  • left front air spring 602 and the right front air spring 603 are also the aforementioned at least one first air spring; the left rear air spring 604 and the right rear air spring 605 are also the aforementioned at least one second air spring.
  • the left front height sensor 606 is used for measuring the body height of the left end of the front axle of the vehicle
  • the right front height sensor 607 is used for measuring the body height of the right end of the front axle of the vehicle
  • the left rear height sensor 608 is used for measuring the body height of the left end of the rear axle of the vehicle.
  • the height sensor 609 is used to measure the vehicle body height at the right end of the rear axle of the vehicle. It should be understood that the left front height sensor 606 , the right front height sensor 607 , the left rear height sensor 608 and the right rear height sensor 609 can all send the measured vehicle height to the controller 611 .
  • the air supply system 610 includes an air compressor and an air tank, and the air compressor is used to compress the air in the atmosphere into high-pressure gas and store it in the air tank.
  • the gas supply system 610 is used to provide high-pressure gas during the lifting process of the vehicle body.
  • the controller 611 is communicatively or electrically connected with the solenoid valve assembly 601, the left front height sensor 606, the right front height sensor 607, the left rear height sensor 608, the right rear height sensor 609, the air supply system 610 and the controller 611 respectively (Fig. 13 not all are shown).
  • the communicative or electrical connection between the controller 611 and the solenoid valve assembly 601 includes the controller 611 and the electromagnetic two-way proportional valve 601-1, the electromagnetic two-way proportional valve 601-2, the electromagnetic two-way proportional valve 601-3, the electromagnetic The two-way proportional valve 601-4 and the electromagnetic switch valve 601-5 are both communicatively or electrically connected.
  • the controller 611 has control and driving functions.
  • the controller 611 can receive vehicle body height information and other control commands sent by the left front height sensor 606, right front height sensor 607, left rear height sensor 608, and right rear height sensor 609, and use this to control the The gas system 610 and the solenoid valve assembly 601 work in good time to complete the height adjustment function of the vehicle.
  • the electronically controlled air suspension system shown in FIG. 13 may also include additional sensors such as gas pressure sensors, controllers, solenoid valves, etc., which are not shown in FIG. 13 .
  • the controller 611, the solenoid valve assembly 601, and the air compressor in the air supply system 610 can be used as an integrated control unit, and have the above three functions.
  • the electromagnetic two-way proportional valve 601-1, the electromagnetic two-way proportional valve 601-2, the electromagnetic two-way proportional valve 601-3 and the electromagnetic two-way proportional valve 601-4 can be independently formed into a single integrated electromagnetic valve body.
  • FIG. 14 is a schematic diagram of the control flow of the electronically controlled air suspension system shown in FIG. 13.
  • the control flow of the electronically controlled air suspension system includes but is not limited to the following steps:
  • the opening of the electromagnetic two-way proportional valve 601-1 is adjusted to an initial opening
  • the opening of the electromagnetic two-way proportional valve 601-2 is also adjusted to an initial opening
  • the electromagnetic two-way proportional valve 601- 3 is adjusted to an initial opening
  • the opening of the electromagnetic two-way proportional valve 601-4 is adjusted to an initial opening; wherein, the initial opening corresponding to the electromagnetic two-way proportional valve 601-1, the electromagnetic two-way
  • the initial opening degree corresponding to the proportional valve 601-2, the initial opening degree corresponding to the electromagnetic two-way proportional valve 601-3, and the initial opening degree corresponding to the electromagnetic two-way proportional valve 601-4 may be the same or different.
  • the initial opening can be a preset suitable initial position, and the initial opening can also be determined according to the height of the vehicle body before height adjustment and the target height of the vehicle body after height adjustment.
  • the vehicle height at the left end of the front axle is measured by the left front height sensor 606, the vehicle height at the right end of the front axle is measured by the right front height sensor 607, the vehicle height at the left end of the rear axle is measured by the left rear height sensor 608, and the vehicle height at the left end of the rear axle is measured by the right rear height sensor 609.
  • the height of the ride at the right end of the rear axle is measured by the left front height sensor 606
  • the vehicle height at the right end of the front axle is measured by the right front height sensor 607
  • the vehicle height at the left end of the rear axle is measured by the left rear height sensor 608
  • the vehicle height at the left end of the rear axle is measured by the right rear height sensor 609.
  • the height of the ride at the right end of the rear axle is measured by the left front height sensor 606
  • the vehicle height at the right end of the front axle is measured by the right front height sensor 607
  • the vehicle height at the left end of the rear axle is measured by the left rear height sensor 608
  • step S1404 when the height of the vehicle body is not equal to the target height, step S1404 is performed; when the height of the vehicle body is equal to the target height, step S1407 is performed.
  • step S1405 when the vehicle body height changes of the front axle and the rear axle do not match, step S1405 is performed; when the vehicle body height changes of the front axle and the rear axle match, step S1406 is performed.
  • adjusting the opening of multiple electromagnetic two-way proportional valves includes adjusting the electromagnetic two-way proportional valve 601-1, the electromagnetic two-way proportional valve 601-2, the electromagnetic two-way proportional valve 601-3 and the electromagnetic two-way proportional valve 601- The opening degree of at least one electromagnetic two-way proportional valve in 4.
  • step S1405 is executed, return to step S1402.
  • step S1406 is executed, return to step S1402.
  • the electromagnetic two-way proportional valve 601-1, the electromagnetic two-way proportional valve 601-2, the electromagnetic two-way proportional valve 601-3 and the electromagnetic two-way proportional valve 601-4 are closed.
  • the steps shown in FIG. 14 are executed by the controller 611, and the controller 611 adjusts the body height of the vehicle in real time (including the driver's manual input during static manual height adjustment, static automatic height adjustment functions such as easy loading, dynamic height adjustment, etc.) Speed adjustment, etc.) is monitored, if the vehicle height adjustment request is received, the vehicle height adjustment program is entered, and the controller 611 simultaneously adjusts the height of the front axle and the rear axle according to the vehicle height adjustment requirement until reaching the target height.
  • the controller 611 adjusts the body height of the vehicle in real time (including the driver's manual input during static manual height adjustment, static automatic height adjustment functions such as easy loading, dynamic height adjustment, etc.) Speed adjustment, etc.) is monitored, if the vehicle height adjustment request is received, the vehicle height adjustment program is entered, and the controller 611 simultaneously adjusts the height of the front axle and the rear axle according to the vehicle height adjustment requirement until reaching the target height.
  • the electronically controlled air suspension system shown in Figure 13 has three working modes: raising the vehicle height, lowering the vehicle height, and maintaining the vehicle height, which are described below:
  • the controller 611 controls the gas supply system 610 to provide high-pressure gas to the outside.
  • the controller 611 adjusts the openings of the electromagnetic two-way proportional valve 601-1, the electromagnetic two-way proportional valve 601-2, the electromagnetic two-way proportional valve 601-3, and the electromagnetic two-way proportional valve 601-4 to an appropriate initial position, the initial position can be calculated by the controller 611 according to the actual vehicle body height and target height measured by the left front height sensor 606, right front height sensor 607, left rear height sensor 608 and right rear height sensor 609;
  • System 610 starts, enters the left front air spring 602 through the electromagnetic two-way proportional valve 601-1, enters the right front air spring 603 through the electromagnetic two-way proportional valve 601-2, enters the left rear air spring 604 through the electromagnetic two-way proportional valve 601-3, Enter the right rear air spring 605 through the electromagnetic two-way proportional valve 601-4.
  • the controller 611 adjusts the electromagnetic two-way proportional valve 601-1 and the electromagnetic two-way proportional valve 601-1 in real time according to the actual vehicle height fed back by the left front height sensor 606, the right front height sensor 607, the left rear height sensor Proportional valve 601-2, electromagnetic two-way proportional valve 601-3 and electromagnetic two-way proportional valve 601-4 are opened to appropriate positions to ensure that the flow into left front air spring 602, right front air spring 603 and the flow into left rear air spring 604, right The air flow of the rear air spring 605 is appropriate, so that the vehicle body height of the front axle and the vehicle body height of the rear axle can be raised synchronously.
  • Working mode 2 The vehicle height is lowered.
  • the controller 611 controls the electromagnetic switching valve 601-5 to open, so that the electromagnetic two-way proportional valve 601-1, the electromagnetic two-way proportional valve 601-2, the electromagnetic two-way proportional valve 601-3 and the electromagnetic two-way proportional valve 601-4 The first airway of each is connected with the atmosphere.
  • the controller 611 adjusts the openings of the electromagnetic two-way proportional valve 601-1, the electromagnetic two-way proportional valve 601-2, the electromagnetic two-way proportional valve 601-3, and the electromagnetic two-way proportional valve 601-4 to an appropriate initial position, the initial position can be calculated by the controller 611 according to the actual vehicle height and target height measured by the left front height sensor 606, right front height sensor 607, left rear height sensor 608 and right rear height sensor 609;
  • the high-pressure gas flows into the electromagnetic two-way proportional valve 601-1, the high-pressure gas in the right front air spring 603 flows into the electromagnetic two-way proportional valve 601-2, and the high-pressure gas in the left rear air spring 604 flows into the electromagnetic two-way proportional valve 601-3,
  • the high-pressure gas in the right rear air spring 606 flows into the electromagnetic two-way proportional valve 601-4, and flows into the electromagnetic two-way proportional valve 601-1, the electromagnetic two-way proportional valve 601-2, the electromagnetic two-way proportional valve 601-3 and the electromagnetic two-
  • the gas in the proportional valve 601-4 is discharged into the atmosphere through the electromagnetic switch valve 601-5.
  • the controller 611 adjusts the electromagnetic two-way proportional valve 601-1 and the electromagnetic two-way proportional valve 601-1 in real time according to the actual vehicle height fed back by the left front height sensor 606, the right front height sensor 607, the left rear height sensor Proportional valve 601-2, electromagnetic two-way proportional valve 601-3 and electromagnetic two-way proportional valve 601-4 are opened to appropriate positions to ensure that the outflow from left front air spring 602 and right front air spring 603 and the outflow from left rear air spring 604 and right
  • the air flow of the rear air spring 605 is appropriate, so that the vehicle body height of the front axle and the vehicle body height of the rear axle can be lowered synchronously.
  • Working mode 3 Vehicle height maintenance.
  • FIG. 13 is also a schematic diagram of the electronically controlled air suspension system in the vehicle height maintaining mode.
  • the drive circuit of the controller 611 does not output current, then the electromagnetic two-way proportional valve 601-1, the electromagnetic two-way proportional valve 601-2, the electromagnetic two-way proportional valve 601-3, and the electromagnetic two-way proportional valve Both the valve 601-4 and the electromagnetic switch valve 601-5 are in the closed state.
  • the left front air spring 602, the right front air spring 603, the left rear air spring 604 and the right rear air spring 605 are all airtight, that is, the vehicle body height can be kept constant.
  • Figure 15 is a schematic flow chart of a control method provided by the embodiment of the present application, the control method includes but not limited to the following steps:
  • S1 Adjust the opening degree of at least one electromagnetic proportional valve to the initial opening degree, and the at least one electromagnetic proportional valve is used to adjust the air flow rate flowing into or out of at least one first air spring and the air flow rate of at least one second air spring Ratio, the at least one first air spring is used to adjust the ride height of the front axle of the vehicle, and the at least one second air spring is used to adjust the ride height of the rear axle of the vehicle;
  • step S3 Determine whether the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle are equal to the target height; if the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle are equal to the target height, turn off all at least one electromagnetic proportional valve; otherwise, execute step S4;
  • Step S4 Determine whether the body height change of the front axle of the vehicle matches the body height change of the rear axle of the vehicle; if the body height change of the front axle of the vehicle matches the body height change of the rear axle of the vehicle, return to execution Step S2; otherwise, adjust the opening of the at least one electromagnetic proportional valve, and return to step S2.
  • FIG. 16 is a schematic structural diagram of a control device provided by an embodiment of the present application; the control device 1600 is applied to a controller, and the control device 1600 includes a processing unit 1601 and a communication unit 1602, wherein the processing unit 1601 , for executing any step in the method embodiment shown in FIG. 13 , and when performing data transmission such as acquisition, the communication unit 1602 can be optionally called to complete corresponding operations. Detailed description will be given below.
  • the processing unit 1601 is used for: S1: adjusting the opening degree of at least one electromagnetic proportional valve to the initial opening degree, and the at least one electromagnetic proportional valve is used to adjust the flow of air flowing into or out of at least one first air spring and at least one first air spring The ratio of the air flow of two air springs, the at least one first air spring is used to adjust the vehicle height of the front axle of the vehicle, and the at least one second air spring is used to adjust the vehicle height of the rear axle of the vehicle; S2: measure The body height of the front axle of the vehicle and the body height of the rear axle of the vehicle; S3: judging whether the body height of the front axle of the vehicle and the body height of the rear axle of the vehicle are equal to the target height; if the body height of the front axle of the vehicle If the vehicle body height and the vehicle body height of the rear axle of the vehicle are equal to the target height, then close the at least one electromagnetic proportional valve; otherwise, perform step S4; S4: judge the vehicle body height change of the vehicle front axle and the vehicle
  • control device 1600 may further include a storage unit 1603 for storing program codes and data of the controller.
  • the processing unit 1601 may be a processor
  • the communication unit 1602 may be a transceiver
  • the storage unit 1603 may be a memory.
  • each unit of the control device 1600 described in FIG. 16 reference may also be made to the corresponding description of the method embodiment shown in FIG. 15 .
  • FIG. 17 is a schematic structural diagram of a controller 1710 provided by an embodiment of the present application.
  • the controller 1710 includes a processor 1711, a memory 1712, and a communication interface 1713. Interconnected via bus 1714 .
  • Memory 1712 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read only memory, EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 1712 is used for related computer programs and data.
  • the communication interface 1713 is used to receive and send data.
  • the processor 1711 may be one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1711 in the controller 1710 is configured to read the computer program codes stored in the memory 1712 to execute the method shown in FIG. 15 .
  • the embodiment of the present application also provides a vehicle, which may include the electronically controlled air suspension system in the embodiment of the present application.
  • the embodiment of the present application also provides a chip, the above-mentioned chip includes at least one processor, memory and interface circuit, the above-mentioned memory, the above-mentioned interface circuit and the above-mentioned at least one processor are interconnected by a line, and the above-mentioned at least one memory stores a computer program; the above-mentioned When the computer program is executed by the above-mentioned processor, the method flow shown in FIG. 15 is realized.
  • An embodiment of the present application further provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is run on a computer, the method flow shown in FIG. 15 is realized.
  • the embodiment of the present application also provides a computer program product.
  • the above computer program product is run on a computer, the method flow shown in FIG. 15 is realized.
  • processors mentioned in the embodiment of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits ( Application Specific Integrated Circuit, ASIC), off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or can be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods shown in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the modules in the device of the embodiment of the present application can be combined, divided and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种电磁阀总成、空气悬架系统、车辆、控制方法及相关设备,空气悬架系统包括至少一个第一空气弹簧和至少一个第二空气弹簧,至少一个第一空气弹簧用于调节车辆前轴的车身高度,至少一个第二空气弹簧用于调节车辆后轴的车身高度;电磁阀总成分别与至少一个第一空气弹簧和至少一个第二空气弹簧连接;电磁阀总成用于调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例,以使车辆前轴的车身高度和车辆后轴的车身高度同步调整。

Description

电磁阀总成、空气悬架系统、车辆、控制方法及相关设备 技术领域
本申请涉及智能车技术领域,尤其涉及一种电磁阀总成、空气悬架系统、车辆、控制方法及相关设备。
背景技术
随着人们对驾乘体验的追求,对交通工具的安全性与舒适性提出了更高的要求。近年来,车辆越来越多的使用智能化的电控部件,例如电控空气悬架(Electronic Air Suspension)系统。造车新势力企业为了提升产品的竞争力,给高配版的车型配备电控空气悬架系统,使得配备电控空气悬架的车型价格不断下探,这为电控空气悬架提供了巨大的潜在增量市场。
电控空气悬架系统能够根据驾驶员的选择,在舒适模式、运动模式、越野模式等模式之间进行切换,也即能够根据用户选择使用空气悬架调整车身高度,提高车辆的乘坐舒适性、操控稳定性或通过性。同时,电控空气悬架系统还能够智能地根据场景实现车身高度的调整,提供轻松载物(车身降低,方便将货物放入或拿出后备箱)、智能迎宾(如SUV降低车身高度,方便上车)、轻松跨出(如SUV降低车身高度,方便下车)等功能,极大地提升车辆科技感与用户体验。此外,车辆在高速行驶时,电控空气悬架系统能够自动降低车辆高度,减小空气阻力,提高行驶安全性以及提升燃油经济性或增加续航里程。
然而,现有的电控空气悬架系统虽然具备基本的调高功能,但无法实现车辆前轴的车身高度与车辆后轴的车身高度同步调整,对车辆舒适性、安全性造成不利的影响,难以适应消费者对车辆舒适性与安全性的新需求。
发明内容
本申请实施例提供了一种电磁阀总成、空气悬架系统、车辆、控制方法及相关设备,能够实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。
第一方面,本申请实施例提供了一种电磁阀总成,应用于空气悬架系统,所述空气悬架系统包括至少一个第一空气弹簧和至少一个第二空气弹簧,所述至少一个第一空气弹簧用于调节车辆前轴的车身高度,所述至少一个第二空气弹簧用于调节所述车辆后轴的车身高度;所述电磁阀总成分别与所述至少一个第一空气弹簧和所述至少一个第二空气弹簧连接;所述电磁阀总成用于调节流入或流出所述至少一个第一空气弹簧的空气流量和所述至少一个第二空气弹簧的空气流量的比例,以使所述车辆前轴的车身高度和所述车辆后轴的车身高度同步调整。其中,同步调整包括:同时开始高度调整,同时完成高度调整。故在相同时间段内调整的高度可能相同,也可能不同,具体可以包括以下情况:(1)单位时间内,车辆前轴的车身高度与车辆后轴的车身高度的变化幅度相同,且车辆前轴的车身高度调整和车辆前轴的车身高度调整在同一时间段内完成;(2)单位时间内,车辆前轴的车身高度与车辆后轴的车身高度的变化幅度不相同,但车辆前轴的车身高度调整和车辆前轴的车身高度调整在同一时间段内完成。
在本申请中,空气悬架系统包括至少一个第一空气弹簧和至少一个第二空气弹簧,空气 流入至少一个第一空气弹簧中,车辆前轴的车身高度升高;空气从至少一个第一空气弹簧中流出,车辆前轴的车身高度降低;空气流入至少一个第二空气弹簧中,车辆后轴的车身高度升高;空气从至少一个第二空气弹簧中流出,车辆后轴的车身高度降低。在升高车身高度的过程中,通过电磁阀总成实时调节流入至少一个第一空气弹簧的空气流量和流入至少一个第二空气弹簧的空气流量的比例,从而可以使得车辆前轴升高的车身高度与车辆后轴升高的车身高度实时相同;在降低车身高度的过程中,通过电磁阀总成实时调节从至少一个第一空气弹簧流出的空气流量和从至少一个第二空气弹簧流出的空气流量的比例,从而可以使得车辆前轴降低的车身高度与车辆后轴降低的车身高度实时相同;如此,实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。此外,由于本申请车辆前轴的车身高度与车辆后轴的车身高度可以同步调整,故在调整车身高度过程中,无需交替调整车辆前轴的车身高度与车辆后轴的车身高度,使得车身高度调整的用时减少。
在一种可能的实现方式中,所述电磁阀总成包括至少一个电磁比例阀,所述至少一个电磁比例阀用于调节流入或流出所述至少一个第一空气弹簧的空气流量和所述至少一个第二空气弹簧的空气流量的比例,以使所述车辆前轴的车身高度和所述车辆后轴的车身高度同步调整。
在本实现方式中,采用至少一个电磁比例阀来调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例。在升高车身高度的过程中,通过调节至少一个电磁比例阀中每个电磁比例阀的开度,实时调节流入至少一个第一空气弹簧的空气流量和流入至少一个第二空气弹簧的空气流量的比例,从而可以使得车辆前轴升高的车身高度与车辆后轴升高的车身高度实时相同;在降低车身高度的过程中,通过调节至少一个电磁比例阀中每个电磁比例阀的开度,实时调节从至少一个第一空气弹簧流出的空气流量和从至少一个第二空气弹簧流出的空气流量的比例,从而可以使得车辆前轴降低的车身高度与车辆后轴降低的车身高度实时相同。如此,实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。
在一种可能的实现方式中,所述空气悬架系统还包括供气系统;所述至少一个电磁比例阀包括电磁三通比例阀,所述电磁三通比例阀的第一气道的空气流量为所述电磁三通比例阀的第二气道的空气流量与所述电磁三通比例阀的第三气道的空气流量的和;所述电磁三通比例阀的第一气道与所述供气系统和/或大气连接;所述电磁三通比例阀的第二气道与所述至少一个第一空气弹簧连接;所述电磁三通比例阀的第三气道与所述至少一个第二空气弹簧连接。
在本实现方式中,采用电磁三通比例阀来调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例。在升高车身高度的过程中,供气系统中的空气从电磁三通比例阀的第一气道流入后,分两路流出,也即从电磁三通比例阀的第二气道流出和从电磁三通比例阀的第三气道流出;从电磁三通比例阀的第二气道流出的空气,接着流入至少一个第一空气弹簧,使得车辆前轴的车身高度升高;从电磁三通比例阀的第三气道流出的空气,接着流入至少一个第二空气弹簧,使得车辆后轴的车身高度升高;通过调节电磁三通比例阀的开度,实时调节从电磁三通比例阀的第二气道流出的空气流量和从电磁三通比例阀的第三气道流出的空气流量的比例,实现实时调节流入至少一个第一空气弹簧的空气流量和流入至少一个第二空气弹簧的空气流量的比例,从而可以使得车辆前轴升高的车身高度与车辆后轴升高的车身高度实时相同。在降低车身高度的过程中,从至少一个第一空气弹簧流出的空气,流入电磁三通比例阀的第二气道,再经电磁三通比例阀的第一气道流入供气系统和/或大气,从而使得车辆前轴的车身高度降低;从至少一个第二空气弹簧流出的空气, 流入电磁三通比例阀的第三气道,再经电磁三通比例阀的第一气道流入供气系统和/或大气,从而使得车辆后轴的车身高度降低;由于流入电磁三通比例阀的第二气道和流入电磁三通比例阀的第三气道的空气,在电磁三通比例阀的第一气道合并后,流入供气系统和/或大气,可以通过调节电磁三通比例阀的开度,实时调节流入电磁三通比例阀的第二气道的空气流量和流入电磁三通比例阀的第三气道的空气流量的比例,实现实时调节从至少一个第一空气弹簧流出的空气流量和从至少一个第二空气弹簧流出的空气流量的比例,从而可以使得车辆前轴降低的车身高度与车辆后轴降低的车身高度实时相同。如此,实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。
在一种可能的实现方式中,所述电磁阀总成还包括至少一个第一电磁开关阀和至少一个第二电磁开关阀;所述电磁三通比例阀的第二气道与所述至少一个第一电磁开关阀的第一气道连接,所述至少一个第一电磁开关阀的第二气道与所述至少一个第一空气弹簧对应连接;所述电磁三通比例阀的第三气道与所述至少一个第二电磁开关阀的第一气道连接,所述至少一个第二电磁开关阀的第二气道与所述至少一个第二空气弹簧对应连接。
在本实现方式中,电磁三通比例阀的第二气道与至少一个第一空气弹簧之间可以设置至少一个第一电磁开关阀;同理,电磁三通比例阀的第三气道与至少一个第二空气弹簧之间可以设置至少一个第二电磁开关阀。其中,电磁开关阀为常闭阀,即电磁开关阀断电时处于关闭状态,电磁开关阀的第一气道与第二气道之间不会有空气流通;电磁开关阀通电时处于打开状态,电磁开关阀的第一气道与第二气道之间会有空气流通。如此,在电磁三通比例阀的第二气道与至少一个第一空气弹簧之间设置至少一个第一电磁开关阀,在不需要调整车辆前轴的车身高度的情况下,使至少一个第一电磁开关阀断电,从而不会有空气流入至少一个第一空气弹簧,也不会有空气从至少一个第一空气弹簧中流出,可以保持车辆前轴的车身高度;同理,在电磁三通比例阀的第三气道与至少一个第二空气弹簧之间设置至少一个第二电磁开关阀,在不需要调整车辆后轴的车身高度的情况下,使至少一个第二电磁开关阀断电,从而不会有空气流入至少一个第二空气弹簧,也不会有空气从至少一个第二空气弹簧中流出,可以保持车辆后轴的车身高度。
在一种可能的实现方式中,所述电磁阀总成还包括第三电磁开关阀,所述第三电磁开关阀的第一气道与所述电磁三通比例阀的第一气道连接,所述第三电磁开关阀的第二气道与所述供气系统和/或大气连接。
在本实现方式中,电磁三通比例阀的第一气道可以经第三电磁开关阀与供气系统和/或大气连接;在降低车辆的车身高度过程中,可以选择第三电磁开关阀处于打开状态,从电磁三通比例阀的第一气道流出的空气可以流入第三电磁开关阀的第一气道,再经第三电磁开关阀的第二气道流入供气系统和/或大气,实现车辆的车身高度的降低;在其他情况下,可以选择第三电磁开关阀处于关闭状态。
在一种可能的实现方式中,所述电磁三通比例阀为常闭阀。其中,在电磁三通比例阀的第二气道与至少一个第一空气弹簧之间设置有至少一个第一电磁开关阀,以及电磁三通比例阀的第三气道与至少一个第二空气弹簧之间设置有至少一个第二电磁开关阀的情况下,电磁三通比例阀可以为常闭阀,也可以为非常闭阀;在电磁三通比例阀的第二气道与至少一个第一空气弹簧之间未设置有至少一个第一电磁开关阀,以及电磁三通比例阀的第三气道与至少一个第二空气弹簧之间未设置有至少一个第二电磁开关阀的情况下,电磁三通比例阀必须为常闭阀。
在本实现方式中,电磁三通比例阀为常闭阀,即电磁三通比例阀断电时处于关闭状态, 电磁三通比例阀的各气道之间不会有空气流通;电磁三通比例阀通电时处于打开状态,电磁三通比例阀的各气道之间会有空气流通。如此,在不需要调整车辆的车身高度的情况下,使电磁三通比例阀断电,从而不会有空气流入至少一个第一空气弹簧和至少一个第二空气弹簧,也不会有空气从至少一个第一空气弹簧和至少一个第二空气弹簧中流出,可以保持车辆的车身高度。
在一种可能的实现方式中,所述空气悬架系统还包括供气系统;所述至少一个电磁比例阀包括第一电磁两通比例阀和第二电磁两通比例阀;所述第一电磁两通比例阀的第一气道和所述第二电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接;所述第一电磁两通比例阀的第二气道与所述至少一个第一空气弹簧连接;所述第二电磁两通比例阀的第二气道与所述至少一个第二空气弹簧连接。
在本实现方式中,采用第一电磁两通比例阀和第二电磁两通比例阀来调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例。在升高车身高度的过程中,空气从供气系统流入第一电磁两通比例阀的第一气道和第二电磁两通比例阀的第一气道;流入第一电磁两通比例阀的第一气道的空气,从第一电磁两通比例阀的第二气道流出,接着流入至少一个第一空气弹簧,使得车辆前轴的车身高度升高;同理,流入第二电磁两通比例阀的第一气道的空气,从第二电磁两通比例阀的第二气道流出,接着流入至少一个第二空气弹簧,使得车辆后轴的车身高度升高;通过调节第一电磁两通比例阀和第二电磁两通比例阀的开度,实时调节从第一电磁两通比例阀的第二气道流出的空气流量和从第二电磁两通比例阀的第二气道流出的空气流量的比例,实现实时调节流入至少一个第一空气弹簧的空气流量和流入至少一个第二空气弹簧的空气流量的比例,从而可以使得车辆前轴升高的车身高度与车辆后轴升高的车身高度实时相同。在降低车身高度的过程中,从至少一个第一空气弹簧流出的空气,流入第一电磁两通比例阀的第二气道,再经第一电磁两通比例阀的第一气道流入供气系统和/或大气,使得车辆前轴的车身高度降低;同理,从至少一个第二空气弹簧流出的空气,流入第二电磁两通比例阀的第二气道,再经第二电磁两通比例阀的第一气道流入供气系统和/或大气,使得车辆后轴的车身高度降低;通过调节第一电磁两通比例阀和第二电磁两通比例阀的开度,实时调节流入第一电磁两通比例阀的第二气道的空气流量和流入第二电磁两通比例阀的第二气道的空气流量的比例,实现实时调节从至少一个第一空气弹簧流出的空气流量和从至少一个第二空气弹簧流出的空气流量的比例,从而可以使得车辆前轴降低的车身高度与车辆后轴降低的车身高度实时相同。如此,实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。
在一种可能的实现方式中,所述电磁阀总成还包括至少一个第一电磁开关阀和至少一个第二电磁开关阀;所述第一电磁两通比例阀的第二气道与所述至少一个第一电磁开关阀的第一气道连接,所述至少一个第一电磁开关阀的第二气道与所述至少一个第一空气弹簧对应连接;所述第二电磁两通比例阀的第二气道与所述至少一个第二电磁开关阀的第一气道连接,所述至少一个第二电磁开关阀的第二气道与所述至少一个第二空气弹簧对应连接。
在本实现方式中,第一电磁两通比例阀的第二气道与至少一个第一空气弹簧之间可以设置至少一个第一电磁开关阀;同理,第二电磁两通比例阀的第二气道与至少一个第二空气弹簧之间可以设置至少一个第二电磁开关阀。其中,电磁开关阀为常闭阀,即电磁开关阀断电时处于关闭状态,电磁开关阀的第一气道与第二气道之间不会有空气流通;电磁开关阀通电时处于打开状态,电磁开关阀的第一气道与第二气道之间会有空气流通。如此,在第一电磁两通比例阀的第二气道与至少一个第一空气弹簧之间设置至少一个第一电磁开关阀,在不需 要调整车辆前轴的车身高度的情况下,使至少一个第一电磁开关阀断电,从而不会有空气流入至少一个第一空气弹簧,也不会有空气从至少一个第一空气弹簧中流出,可以保持车辆前轴的车身高度;同理,在第二电磁两通比例阀的第二气道与至少一个第二空气弹簧之间设置至少一个第二电磁开关阀,在不需要调整车辆后轴的车身高度的情况下,使至少一个第二电磁开关阀断电,从而不会有空气流入至少一个第二空气弹簧,也不会有空气从至少一个第二空气弹簧中流出,可以保持车辆后轴的车身高度。
在一种可能的实现方式中,所述电磁阀总成还包括第三电磁开关阀,所述第三电磁开关阀的第一气道分别与所述第一电磁两通比例阀的第一气道和所述第二电磁两通比例阀的第一气道连接,所述第三电磁开关阀的第二气道与所述供气系统和/或大气连接。
在本实现方式中,第一电磁两通比例阀的第一气道和第二电磁两通比例阀的第一气道均可以经第三电磁开关阀与供气系统和/或大气连接;在降低车辆的车身高度过程中,可以选择第三电磁开关阀处于打开状态,从第一电磁两通比例阀的第一气道和第二电磁两通比例阀的第一气道流出的空气可以流入第三电磁开关阀的第一气道,再经第三电磁开关阀的第二气道流入供气系统和/或大气,实现车辆的车身高度的降低;在其他情况下,可以选择第三电磁开关阀处于关闭状态。
在一种可能的实现方式中,所述第一电磁两通比例阀和所述第二电磁两通比例阀为常闭阀。其中,在第一电磁两通比例阀的第二气道与至少一个第一空气弹簧之间设置有至少一个第一电磁开关阀,第一电磁两通比例阀可以为常闭阀,也可以为非常闭阀;在第一电磁两通比例阀的第二气道与至少一个第一空气弹簧之间未设置有至少一个第一电磁开关阀的情况下,第一电磁两通比例阀必须为常闭阀。同理,在第二电磁两通比例阀的第二气道与至少一个第二空气弹簧之间设置有至少一个第二电磁开关阀的情况下,第二电磁两通比例阀可以为常闭阀,也可以为非常闭阀;在第二电磁两通比例阀的第二气道与至少一个第二空气弹簧之间未设置有至少一个第二电磁开关阀的情况下,第二电磁两通比例阀必须为常闭阀。
在本实现方式中,第一电磁两通比例阀和第二电磁两通比例阀均为常闭阀,即第一电磁两通比例阀断电时处于关闭状态,第一电磁两通比例阀的各气道之间不会有空气流通;同理,第二电磁两通比例阀断电时处于关闭状态,第二电磁两通比例阀的各气道之间也不会有空气流通。第一电磁两通比例阀通电时处于打开状态,第一电磁两通比例阀的各气道之间会有空气流通;同理,第二电磁两通比例阀通电时处于打开状态,第二电磁两通比例阀的各气道之间会有空气流通。如此,在不需要调整车辆的车身高度的情况下,使第一电磁两通比例阀和第二电磁两通比例阀均断电,从而不会有空气流入至少一个第一空气弹簧和至少一个第二空气弹簧,也不会有空气从至少一个第一空气弹簧和至少一个第二空气弹簧中流出,可以保持车辆的车身高度。
在一种可能的实现方式中,所述空气悬架系统还包括供气系统;所述至少一个第一空气弹簧包括第一空气弹簧L和第一空气弹簧R,所述至少一个第二空气弹簧包括第二空气弹簧L和第二空气弹簧R;所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀;所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道、所述第三电磁两通比例阀的第一气道和所述第四电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接;所述第一电磁两通比例阀的第二气道与所述第一空气弹簧L连接;所述第二电磁两通比例阀的第二气道与所述第二空气弹簧L连接;所述第三电磁两通比例阀的第二气道与所述第一空气弹簧R连接;所述第四电磁两通比例阀的第二气道与所述第二空气弹簧R连接。
在本实现方式中,采用第一空气弹簧L和第一空气弹簧R调节车辆前轴的车身高度,以及采用第二空气弹簧L和第二空气弹簧R调节车辆后轴的车身高度;例如,第一空气弹簧L安装于车辆左前轮和车身之间,第一空气弹簧R安装于车辆右前轮和车身之间,第二空气弹簧L安装于车辆左后轮和车身之间,第二空气弹簧R安装于车辆右后轮和车身之间。在升高车身高度的过程中,空气从供气系统流入第一电磁两通比例阀的第一气道、第二电磁两通比例阀的第一气道、第三电磁两通比例阀的第一气道和第四电磁两通比例阀的第一气道;流入第一电磁两通比例阀的第一气道的空气,从第一电磁两通比例阀的第二气道流出,接着流入第一空气弹簧L,使得车辆前轴左端的车身高度升高;同理,流入第三电磁两通比例阀的第一气道的空气,从第三电磁两通比例阀的第二气道流出,接着流入第一空气弹簧R,使得车辆前轴右端的车身高度升高;同理,流入第二电磁两通比例阀的第一气道的空气,从第二电磁两通比例阀的第二气道流出,接着流入第二空气弹簧L,使得车辆后轴左端的车身高度升高;同理,流入第四电磁两通比例阀的第一气道的空气,从第四电磁两通比例阀的第二气道流出,接着流入第二空气弹簧R,使得车辆后轴右端的车身高度升高;通过调节第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀的开度,实时调节从第一电磁两通比例阀的第二气道流出的空气流量、从第二电磁两通比例阀的第二气道流出的空气流量、从第三电磁两通比例阀的第二气道流出的空气流量和从第四电磁两通比例阀的第二气道流出的空气流量的比例,实现实时调节流入第一空气弹簧L的空气流量、流入第一空气弹簧R的空气流量、流入第二空气弹簧L的空气流量和流入第二空气弹簧R的空气流量的比例,从而可以使得车辆前轴升高的车身高度与车辆后轴升高的车身高度实时相同,包括使得车辆前轴左端升高的车身高度、车辆前轴右端升高的车身高度、车辆后轴左端升高的车身高度、车辆后轴右端升高的车身高度实时相同。在降低车身高度的过程中,从第一空气弹簧L流出的空气,流入第一电磁两通比例阀的第二气道,再经第一电磁两通比例阀的第一气道流入供气系统和/或大气,使得车辆前轴左端的车身高度降低;同理,从第一空气弹簧R流出的空气,流入第三电磁两通比例阀的第二气道,再经第三电磁两通比例阀的第一气道流入供气系统和/或大气,使得车辆前轴右端的车身高度降低;同理,第二空气弹簧L流出的空气,流入第二电磁两通比例阀的第二气道,再经第二电磁两通比例阀的第一气道流入供气系统和/或大气,使得车辆后轴左端的车身高度降低;同理,第二空气弹簧R流出的空气,流入第四电磁两通比例阀的第二气道,再经第四电磁两通比例阀的第一气道流入供气系统和/或大气,使得车辆后轴右端的车身高度降低;通过调节第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀的开度,实时调节流入第一电磁两通比例阀的第二气道的空气流量、流入第二电磁两通比例阀的第二气道的空气流量、流入第三电磁两通比例阀的第二气道的空气流量、流入第四电磁两通比例阀的第二气道的空气流量的比例,实现实时调节从第一空气弹簧L流出的空气流量、从第一空气弹簧R流出的空气流量、从第二空气弹簧L流出的空气流量和从第二空气弹簧R流出的空气流量的比例,从而可以使得车辆前轴降低的车身高度与车辆后轴降低的车身高度实时相同,包括使得车辆前轴左端降低的车身高度、车辆前轴右端降低的车身高度、车辆后轴左端降低的车身高度、车辆后轴右端降低的车身高度实时相同。如此,实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。
在一种可能的实现方式中,所述空气悬架系统还包括供气系统;所述至少一个第一空气弹簧包括第一空气弹簧L和第一空气弹簧R,所述至少一个第二空气弹簧包括第二空气弹簧L和第二空气弹簧R;所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀和第三电磁两通比例阀,所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀 的第一气道和所述第三电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接,所述第一电磁两通比例阀的第二气道与所述第一空气弹簧L连接,所述第三电磁两通比例阀的第二气道与所述第一空气弹簧R连接,所述第二电磁两通比例阀的第二气道分别与所述第二空气弹簧L和所述第二空气弹簧R连接;或,所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀和第四电磁两通比例阀,所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道和所述第四电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接,所述第一电磁两通比例阀的第二气道分别与所述第一空气弹簧L和所述第一空气弹簧R连接,所述第二电磁两通比例阀的第二气道与所述第二空气弹簧L连接,所述第四电磁两通比例阀的第二气道与所述第二空气弹簧R连接。
在本实现方式中,采用第一电磁两通比例阀调节流入或流出安装于车辆左前轮与车身之间的第一空气弹簧L的空气流量,采用第三电磁两通比例阀调节流入或流出安装于车辆右前轮与车身之间的第一空气弹簧R的空气流量,以及采用第二电磁两通比例阀调节流入或流出安装于车辆左后轮与车身之间的第二空气弹簧L和安装于车辆右后轮与车身之间的第二空气弹簧R的空气流量;通过调节第一电磁两通比例阀、第二电磁两通比例阀和第三电磁两通比例阀的开度,实现实时调节流入或流出第一空气弹簧L的空气流量、第一空气弹簧R的空气流量、第二空气弹簧L的空气流量和第二空气弹簧R的空气流量的比例,从而可以使得车辆前轴与车辆后轴升高或降低的车身高度实时相同。或者,采用第一电磁两通比例阀调节流入或流出安装于车辆左前轮与车身之间的第一空气弹簧L和安装于车辆右前轮与车身之间的第一空气弹簧R的空气流量,采用第二电磁两通比例阀调节流入或流出安装于车辆左后轮与车身之间的第二空气弹簧L的空气流量,以及采用第四电磁两通比例阀调节流入或流出安装于车辆右后轮与车身之间的第二空气弹簧R的空气流量;通过调节第一电磁两通比例阀、第二电磁两通比例阀和第四电磁两通比例阀的开度,实现实时调节流入或流出第一空气弹簧L的空气流量、第一空气弹簧R的空气流量、第二空气弹簧L的空气流量和第二空气弹簧R的空气流量的比例,从而可以使得车辆前轴与车辆后轴升高或降低的车身高度实时相同。
在一种可能的实现方式中,所述空气悬架系统还包括供气系统;所述至少一个第一空气弹簧包括第一空气弹簧L和第一空气弹簧R,所述至少一个第二空气弹簧为一个第二空气弹簧,所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀和第三电磁两通比例阀,所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道和所述第三电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接,所述第一电磁两通比例阀的第二气道与所述第一空气弹簧L连接,所述第三电磁两通比例阀的第二气道与所述第一空气弹簧R连接,所述第二电磁两通比例阀的第二气道与所述一个第二空气弹簧连接;或,所述至少一个第一空气弹簧为一个第一空气弹簧,所述至少一个第二空气弹簧包括第二空气弹簧L和第二空气弹簧R,所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀和第四电磁两通比例阀,所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道和所述第四电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接,所述第一电磁两通比例阀的第二气道与所述一个第一空气弹簧连接,所述第二电磁两通比例阀的第二气道与所述第二空气弹簧L连接,所述第四电磁两通比例阀的第二气道与所述第二空气弹簧R连接。
在本实现方式中,若车辆为两个前轮、一个后轮的三轮车,采用第一电磁两通比例阀调节流入或流出安装于车辆左前轮与车身之间的第一空气弹簧L的空气流量,采用第三电磁两通比例阀调节流入或流出安装于车辆右前轮与车身之间的第一空气弹簧R的空气流量,以及采 用第二电磁两通比例阀调节流入或流出安装于车辆后轮与车身之间的第二空气弹簧的空气流量;通过调节第一电磁两通比例阀、第二电磁两通比例阀和第三电磁两通比例阀的开度,实现实时调节流入或流出第一空气弹簧L的空气流量、第一空气弹簧R的空气流量和第二空气弹簧的空气流量的比例,从而可以使得车辆前轴与车辆后轴升高或降低的车身高度实时相同。若车辆为一个前轮、两个后轮的三轮车,采用第一电磁两通比例阀调节流入或流出安装于车辆前轮与车身之间的第一空气弹簧的空气流量,采用第二电磁两通比例阀调节流入或流出安装于车辆左后轮与车身之间的第二空气弹簧L的空气流量,以及采用第四电磁两通比例阀调节流入或流出安装于车辆右后轮与车身之间的第二空气弹簧R的空气流量;通过调节第一电磁两通比例阀、第二电磁两通比例阀和第四电磁两通比例阀的开度,实现实时调节流入或流出第一空气弹簧的空气流量、第二空气弹簧L的空气流量和第二空气弹簧R的空气流量的比例,从而可以使得车辆前轴与车辆后轴升高或降低的车身高度实时相同。
在一种可能的实现方式中,所述电磁阀总成还包括第三电磁开关阀,所述第三电磁开关阀的第一气道分别与所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道、所述第三电磁两通比例阀的第一气道和所述第四电磁两通比例阀的第一气道连接,所述第三电磁开关阀的第二气道与所述供气系统和/或大气连接。
在本实现方式中,第一电磁两通比例阀的第一气道、第二电磁两通比例阀的第一气道、第三电磁两通比例阀的第一气道和第四电磁两通比例阀的第一气道均可以经第三电磁开关阀与供气系统和/或大气连接;在降低车辆的车身高度过程中,可以选择第三电磁开关阀处于打开状态,从第一电磁两通比例阀的第一气道、第二电磁两通比例阀的第一气道、第三电磁两通比例阀的第一气道和第四电磁两通比例阀的第一气道流出的空气可以流入第三电磁开关阀的第一气道,再经第三电磁开关阀的第二气道流入供气系统和/或大气,实现车辆的车身高度的降低;在其他情况下,可以选择第三电磁开关阀处于关闭状态。
在一种可能的实现方式中,所述第一电磁两通比例阀、所述第二电磁两通比例阀、所述第三电磁两通比例阀和所述第四电磁两通比例阀为常闭阀。
在本实现方式中,第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀的第二气道与空气弹簧之间均没有电磁开关阀,故第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀均为常闭阀。对于第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀中的任意一个来说,当其断电时处于关闭状态,其各气道之间不会有空气流通;同理,当其通电时处于打开状态,其各气道之间会有空气流通。如此,在不需要调整车辆的车身高度的情况下,使第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀均断电,从而不会有空气流入第一空气弹簧L、第一空气弹簧R、第二空气弹簧L和第二空气弹簧R,也不会有空气从第一空气弹簧L、第一空气弹簧R、第二空气弹簧L和第二空气弹簧R中流出,可以保持车辆的车身高度。
第二方面,本申请实施例提供了一种空气悬架系统,包括上述第一方面中任一项所述的电磁阀总成。
第三方面,本申请实施例提供了一种车辆,包括上述第二方面所述的空气悬架系统。
第四方面,本申请实施例提供了一种控制方法,包括:S1:将至少一个电磁比例阀的开度调整为初始开度,所述至少一个电磁比例阀用于调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例,所述至少一个第一空气弹簧用于调节 车辆前轴的车身高度,所述至少一个第二空气弹簧用于调节所述车辆后轴的车身高度;S2:测量所述车辆前轴的车身高度和所述车辆后轴的车身高度;S3:判断所述车辆前轴的车身高度和所述车辆后轴的车身高度是否等于目标高度;若所述车辆前轴的车身高度和所述车辆后轴的车身高度等于目标高度,则关闭所述至少一个电磁比例阀;否则执行步骤S4;S4:判断所述车辆前轴的车身高度变化和所述车辆后轴的车身高度变化是否匹配;若所述车辆前轴的车身高度变化和所述车辆后轴的车身高度变化匹配,则返回执行步骤S2;否则,调整所述至少一个电磁比例阀的开度,并返回执行步骤S2。
第五方面,本申请实施例提供了一种控制装置,包括:处理单元,用于:S1:将至少一个电磁比例阀的开度调整为初始开度,所述至少一个电磁比例阀用于调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例,所述至少一个第一空气弹簧用于调节车辆前轴的车身高度,所述至少一个第二空气弹簧用于调节所述车辆后轴的车身高度;S2:测量所述车辆前轴的车身高度和所述车辆后轴的车身高度;S3:判断所述车辆前轴的车身高度和所述车辆后轴的车身高度是否等于目标高度;若所述车辆前轴的车身高度和所述车辆后轴的车身高度等于目标高度,则关闭所述至少一个电磁比例阀;否则执行步骤S4;S4:判断所述车辆前轴的车身高度变化和所述车辆后轴的车身高度变化是否匹配;若所述车辆前轴的车身高度变化和所述车辆后轴的车身高度变化匹配,则返回执行步骤S2;否则,调整所述至少一个电磁比例阀的开度,并返回执行步骤S2。
第六方面,本申请实施例提供了一种控制器,包括处理器、存储器、通信接口,以及一个或多个程序,上述一个或多个程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行如上述第四方面所述的方法中的步骤的指令。
第七方面,本申请实施例提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第四方面所述的方法。
第八方面,本申请实施例提供了一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述第四方面所述的方法。
第九方面,本申请实施例提供了一种计算机程序,所述计算机程序使得计算机执行如上述第四方面项所述的方法。
附图说明
图1是本申请实施例提供的一种电控空气悬架系统的结构示意图。
图2是本申请实施例提供的另一种电控空气悬架系统的结构示意图。
图3是本申请实施例提供的一种电控空气悬架系统应用于车辆的示意图。
图4是本申请实施例提供的一种空气悬架系统的结构示意图。
图5是本申请实施例提供的又一种电控空气悬架系统的结构示意图。
图6是本申请实施例提供的一种电磁三通比例阀的结构示意图。
图7是图5所示的电控空气悬架系统的控制流程示意图。
图8是图5所示的电控空气悬架系统在车身高度升高模式下的示意图。
图9是图1所示的电控空气悬架系统与图5所示的电控空气悬架系统的对比结果示意图。
图10是图5所示的电控空气悬架系统在车身高度降低模式下的示意图。
图11是本申请实施例提供的又一种电控空气悬架系统的结构示意图。
图12是图11所示的电控空气悬架系统的控制流程示意图。
图13是本申请实施例提供的又一种电控空气悬架系统的结构示意图。
图14是图13所示的电控空气悬架系统的控制流程示意图。
图15是本申请实施例提供的一种控制方法的流程示意图。
图16是本申请实施例提供的一种控制装置的结构示意图。
图17是本申请实施例提供的一种控制器的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
在本说明书中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本说明书所描述的实施例可以与其它实施例相结合。
在本申请研发过程中,曾提出过多种关于调整车身高度的初期方案,在此示例性的介绍其中两种方案。
方案一:
请参阅图1,图1为方案一提供的一种电控空气悬架系统的结构示意图,该系统主要由供气系统、多个电磁开关阀、多个空气弹簧、控制器(图1中未示出)与传感器(图1中未示出)组成。供气系统用于提供高压空气,供气系统包括空气压缩机和高压气罐,空气压缩机用于从大气中的将空气送入高压气罐或空气弹簧,高压气罐用于存储高压气体。多个电磁开关阀分别为电磁开关阀1、电磁开关阀2、电磁开关阀3、电磁开关阀4和电磁开关阀5;电磁开关阀受控于电信号,实现气路通断;电磁开关阀为常闭阀,即断电关闭,通电打开,可以用于保持空气弹簧的高度。多个空气弹簧分别为安装于车辆左前轮的左前空气弹簧、安装于车辆右前轮的右前空气弹簧、安装于车辆左后轮的左后空气弹簧和安装于车辆右后轮的右后空气弹簧;空气弹簧安装于车身与轮胎之间,用于支撑车身;给空气弹簧内充气,即可提升车身高度;将空气弹簧内的气体放出,即可降低车身高度。车辆在进行高度调整时,主 要由控制器根据传感器信号控制多个电磁开关阀来实现空气弹簧的充气或排气,从而实现车辆高度的调整。
图1所示的空气悬架系统实现车身升高的关键过程为:先进行车辆后轴的升高,再进行车辆前轴的升高。具体如下:
第一步,进行车辆后轴的升高,即打开电磁开关阀3和电磁开关阀4,此时左后空气弹簧和右后空气弹簧被充气,后轴车身升高;当传感器检测到后轴的车身高度达到目标值后,则关闭电磁开关阀3和电磁开关阀4,至此后轴调整完毕。
第二步,进行车辆前轴的升高,即打开电磁开关阀1和电磁开关阀2,此时左前空气弹簧与右前空气弹簧被充气,前轴车身升高;当传感器检测到前轴的车身高度达到目标值后,则关闭电磁开关阀1与电磁开关阀2,至此前轴调整完毕。
车身升高的过程也可能分多个循环进行,即后轴升高和前轴升高交替进行,例如后轴升高→前轴升高→后轴升高→前轴升高,如此循环直到达到目标高度。
车身降低的过程和车身升高的过程类似,空气弹簧内的气体流入大气或供气系统,先完成前轴车身高度的降低,再完成后轴车身高度的降低。或者,前轴降低和前轴降低交替进行。
在方案一中,车辆前轴高度与车辆后轴高度需要分别进行调整,无法实现车辆前后轴同步调高。方案一无法实现车辆前后轴同步调高的原因为:一方面,绝大多数车辆的前轴空气弹簧与后轴空气弹簧的几何参数不同;另一方面,车辆前轴与车辆后轴的额定载荷一般也不同。这两方面原因造成车辆前后轴空气弹簧内的气体压力不同,比如前驱车型的前轴载荷大于后轴载荷,并且前后轴空气弹簧充气过程所需气体质量也不同。这就导致了,如果同时打开电磁开关阀1、电磁开关阀2、电磁开关阀3和电磁开关阀4,则会出现高压力轴向低压力轴气体串气,无法同时完成调高。由于前后轴不能同时进行调高,只能前后轴交替调高,导致调高过程所用时间变长,并且调高过程中有明显的车辆俯仰,调高时影响乘坐舒适性与安全性;例如,车辆静态调高时,车身俯仰使舒适性变差;车辆行驶时的动态调高,车身俯仰使舒适性、安全性变差。
方案二:
请参阅图2,图2为方案二提供的一种电控空气悬架系统的结构示意图,该系统主要由供气系统、多个电磁开关阀、多个空气弹簧、控制器(图2中未示出)与传感器(图2中未示出)组成。方案二是在方案一的基础上改进的,主体结构与方案一相同。相较于方案一,方案二提供的空气悬架系统还包括一个特殊装置,该特殊装置由一个单向阀与一个可调节流阀组成。方案二在前轴空气弹簧内气体压力PF大于后轴空气弹簧的压力PR时,则可以实现车辆前后轴车身同步降低。
图2所示的空气悬架系统实现车辆前后轴车身同步降低的主要过程为:当车身需要降低时,同时打开电磁开关阀1、电磁开关阀2、电磁开关阀3、电磁开关阀4和电磁开关阀5,此时特殊装置中的单向阀自动关闭,特殊装置中的可调节流阀的开度受控于空气悬架系统的控制器,控制器通过控制可调节流阀开度实现车辆前后轴的同时降低,即同时完成车辆前后轴车身的高度降低。
补充说明的是,通过给定截面的空气流量正比于截面两侧的压力差,也正比于截面的面积,即压差越大,空气流量越大,截面越大,空气流量也越大,所以假设没有可调节流阀,前轴空气弹簧气体流出速度将高于后轴,造成前后轴的不同步;可调节流阀的作用为降低前轴空气弹簧气体流出速度,实现车身高度同步降低。
方案二虽然实现车辆前后轴车身同步降低,但无法实现车辆前后轴车身同步升高。此外, 方案二实现车辆前后轴车身同步降低功能时,要求特殊装置的气体入口压力大于出口压力,此要求将极大限制方案二的适用场景,因为车辆实际的前后轴载荷的相对大小会改变。
综上介绍可知,本申请研发过程中的初期方案均无法实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。因此,本申请所要解决的技术问题为如何实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。
基于上述介绍存在的问题,本申请提供了一种通过电磁比例阀实现车辆前轴的车身高度与车辆后轴的车身高度同步调整(包含同步降低与同步升高)的方案,提升车辆车身高度调整的速度与性能,进而提高车辆舒适性与安全性。
下面通过具体实施方式对本申请提供的技术方案进行详细的介绍。
请参阅图3,图3是本申请实施例提供的一种电控空气悬架系统应用于车辆的示意图。如图3所示,该电控空气悬架系统应用于车辆,该电控空气悬架系统包括:多个空气弹簧301、电磁阀总成302、控制器303、空气压缩机总成304和储气罐总成305。
其中,多个空气弹簧301可以包括空气弹簧301-1、空气弹簧301-2、空气弹簧301-3、空气弹簧301-4;空气弹簧301-1为安装于车辆右前轮的右前空气弹簧,空气弹簧301-2为安装于车辆左前轮的左前空气弹簧,空气弹簧301-3为安装于车辆右后轮的右后空气弹簧,空气弹簧301-4为安装于车辆左后轮的左后空气弹簧。
其中,电磁阀总成302集成有多个电磁阀。电磁阀总成302可以包括电磁比例阀,也即电磁比例阀作为电控结构件可以集成在电磁阀总成302中;电磁比例阀用于调节流入或流出多个空气弹簧301的空气流量的比例,例如,电磁比例阀用于调节流入或流出空气弹簧301-1、空气弹簧301-2、空气弹簧301-3和空气弹簧301-4的空气流量的比例。此外,电磁比例阀也可以作为单独的产品安装于空气压缩机总成304或储气罐总成305与电磁阀总成302之间。
其中,控制器303包含电控空气悬架系统的控制和驱动功能。
其中,空气压缩机总成304和储气罐总成305组成供气系统。
此外,该电控空气悬架系统是一种慢主动悬架,可在0~0.5Hz带宽内实现对车辆Z方向的控制,提升车辆的舒适性、通过性、燃油经济性/续航里程等。
图3所示为电控空气悬架系统应用于四轮车。应理解,电控空气悬架系统也可以应用于三轮车或二轮车;且在应用于三轮车或二轮车时,多个空气弹簧包括的空气弹簧的数量也可以相应的减少。图3仅是一个示例,本申请对电控空气悬架系统的应用场景不做具体限定。
请参阅图4,图4是本申请实施例提供的一种空气悬架系统的结构示意图,该空气悬架系统可以为电控空气悬架系统。如图4所示,该空气悬架系统包括供气系统、电磁阀总成、至少一个第一空气弹簧和至少一个第二空气弹簧,其中,所述至少一个第一空气弹簧用于调节车辆前轴的车身高度,所述至少一个第二空气弹簧用于调节所述车辆后轴的车身高度;所述电磁阀总成分别与所述至少一个第一空气弹簧和所述至少一个第二空气弹簧连接;所述电磁阀总成用于调节流入或流出所述至少一个第一空气弹簧的空气流量和所述至少一个第二空气弹簧的空气流量的比例,以使所述车辆前轴的车身高度和所述车辆后轴的车身高度同步调整。
此外,电磁阀总成还与供气系统和大气连接。在升高车身高度过程中,供气系统中的高压空气经电磁阀总成流入至少一个第一空气弹簧和至少一个第二空气弹簧。在降低车身高度过程中,至少一个第一空气弹簧和至少一个第二空气弹簧中的空气经电磁阀总成流入大气或 供气系统。
其中,同步调整包括:同时开始高度调整,同时完成高度调整。故在相同时间段内调整的高度可能相同,也可能不同。进一步地,具体可以包括以下情况:(1)单位时间内,车辆前轴的车身高度与车辆后轴的车身高度的变化幅度相同,且车辆前轴的车身高度调整和车辆前轴的车身高度调整在同一时间段内完成;例如,车辆前轴的初始高度为0mm,车辆后轴的初始高度为0mm,单位时间内(例如1s)车辆前轴的车身高度与车辆后轴的车身高度均升高6mm,车辆前轴的目标高度为30mm,车辆后轴的目标高度为30mm,车身高度调整一共耗时5s。(2)单位时间内,车辆前轴的车身高度与车辆后轴的车身高度的变化幅度不相同,但车辆前轴的车身高度调整和车辆前轴的车身高度调整在同一时间段内完成;例如,车辆前轴的初始高度为0mm,车辆后轴的初始高度为0mm,单位时间内(例如1s)车辆前轴的车身高度升高10mm,单位时间内(例如1s)车辆前轴的车身高度升高6mm,单位时间内(例如1s)车辆后轴的车身高度升高4mm,车辆前轴的目标高度为30mm,车辆后轴的目标高度为20mm,车身高度调整一共耗时5s。
需要说明的是,若车辆为两轮车,车辆前轴由一个车轮支撑,车辆后轴也由一个车轮支撑,则至少一个第一空气弹簧为一个第一空气弹簧,至少一个第二空气弹簧为一个第二空气弹簧。若车辆为三轮车,分两种情况:(1)车辆前轴由一个车轮支撑,车辆后轴由两个车轮支撑,则至少一个第一空气弹簧为一个第一空气弹簧,至少一个第二空气弹簧为两个第二空气弹簧(例如安装于车辆左后轮和车身之间的第二空气弹簧L以及安装于车辆右后轮和车身之间的第二空气弹簧R);(2)车辆前轴由两个车轮支撑,车辆后轴由一个车轮支撑,则至少一个第一空气弹簧为两个第一空气弹簧(例如安装于车辆左前轮和车身之间的第一空气弹簧L以及安装于车辆右前轮和车身之间的第一空气弹簧R),至少一个第二空气弹簧为一个第二空气弹簧。若车辆为四轮车,车辆前轴由两个车轮支撑,车辆后轴也由两个车轮支撑,则至少一个第一空气弹簧为两个第一空气弹簧(例如安装于车辆左前轮和车身之间的第一空气弹簧L以及安装于车辆右前轮和车身之间的第一空气弹簧R),至少一个第二空气弹簧为两个第二空气弹簧(例如安装于车辆左后轮和车身之间的第二空气弹簧L和安装于车辆右后轮和车身之间的第二空气弹簧R)。
在本申请中,空气悬架系统包括至少一个第一空气弹簧和至少一个第二空气弹簧,空气流入至少一个第一空气弹簧中,车辆前轴的车身高度升高;空气从至少一个第一空气弹簧中流出,车辆前轴的车身高度降低;空气流入至少一个第二空气弹簧中,车辆后轴的车身高度升高;空气从至少一个第二空气弹簧中流出,车辆后轴的车身高度降低。在升高车身高度的过程中,通过电磁阀总成实时调节流入至少一个第一空气弹簧的空气流量和流入至少一个第二空气弹簧的空气流量的比例,从而可以使得车辆前轴升高的车身高度与车辆后轴升高的车身高度实时相同;在降低车身高度的过程中,通过电磁阀总成实时调节从至少一个第一空气弹簧流出的空气流量和从至少一个第二空气弹簧流出的空气流量的比例,从而可以使得车辆前轴降低的车身高度与车辆后轴降低的车身高度实时相同;如此,实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。此外,由于本申请车辆前轴的车身高度与车辆后轴的车身高度可以同步调整,故在调整车身高度过程中,无需交替调整车辆前轴的车身高度与车辆后轴的车身高度,使得车身高度调整的用时减少。
在一种可能的实现方式中,所述电磁阀总成包括至少一个电磁比例阀,所述至少一个电磁比例阀用于调节流入或流出所述至少一个第一空气弹簧的空气流量和所述至少一个第二空气弹簧的空气流量的比例,以使所述车辆前轴的车身高度和所述车辆后轴的车身高度同步调 整。
在本实现方式中,采用至少一个电磁比例阀来调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例。在升高车身高度的过程中,通过调节至少一个电磁比例阀中每个电磁比例阀的开度,实时调节流入至少一个第一空气弹簧的空气流量和流入至少一个第二空气弹簧的空气流量的比例,从而可以使得车辆前轴升高的车身高度与车辆后轴升高的车身高度实时相同;在降低车身高度的过程中,通过调节至少一个电磁比例阀中每个电磁比例阀的开度,实时调节从至少一个第一空气弹簧流出的空气流量和从至少一个第二空气弹簧流出的空气流量的比例,从而可以使得车辆前轴降低的车身高度与车辆后轴降低的车身高度实时相同。如此,实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。
在一种可能的实现方式中,所述空气悬架系统还包括供气系统;所述至少一个电磁比例阀包括电磁三通比例阀,所述电磁三通比例阀的第一气道的空气流量为所述电磁三通比例阀的第二气道的空气流量与所述电磁三通比例阀的第三气道的空气流量的和;所述电磁三通比例阀的第一气道与所述供气系统和/或大气连接;所述电磁三通比例阀的第二气道与所述至少一个第一空气弹簧连接;所述电磁三通比例阀的第三气道与所述至少一个第二空气弹簧连接。
在本实现方式中,采用电磁三通比例阀来调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例。在升高车身高度的过程中,供气系统中的空气从电磁三通比例阀的第一气道流入后,分两路流出,也即从电磁三通比例阀的第二气道流出和从电磁三通比例阀的第三气道流出;从电磁三通比例阀的第二气道流出的空气,接着流入至少一个第一空气弹簧,使得车辆前轴的车身高度升高;从电磁三通比例阀的第三气道流出的空气,接着流入至少一个第二空气弹簧,使得车辆后轴的车身高度升高;通过调节电磁三通比例阀的开度,实时调节从电磁三通比例阀的第二气道流出的空气流量和从电磁三通比例阀的第三气道流出的空气流量的比例,实现实时调节流入至少一个第一空气弹簧的空气流量和流入至少一个第二空气弹簧的空气流量的比例,从而可以使得车辆前轴升高的车身高度与车辆后轴升高的车身高度实时相同。在降低车身高度的过程中,从至少一个第一空气弹簧流出的空气,流入电磁三通比例阀的第二气道,再经电磁三通比例阀的第一气道流入供气系统和/或大气,从而使得车辆前轴的车身高度降低;从至少一个第二空气弹簧流出的空气,流入电磁三通比例阀的第三气道,再经电磁三通比例阀的第一气道流入供气系统和/或大气,从而使得车辆后轴的车身高度降低;由于流入电磁三通比例阀的第二气道和流入电磁三通比例阀的第三气道的空气,在电磁三通比例阀的第一气道合并后,流入供气系统和/或大气,可以通过调节电磁三通比例阀的开度,实时调节流入电磁三通比例阀的第二气道的空气流量和流入电磁三通比例阀的第三气道的空气流量的比例,实现实时调节从至少一个第一空气弹簧流出的空气流量和从至少一个第二空气弹簧流出的空气流量的比例,从而可以使得车辆前轴降低的车身高度与车辆后轴降低的车身高度实时相同。如此,实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。
在一种可能的实现方式中,所述电磁阀总成还包括至少一个第一电磁开关阀和至少一个第二电磁开关阀;所述电磁三通比例阀的第二气道与所述至少一个第一电磁开关阀的第一气道连接,所述至少一个第一电磁开关阀的第二气道与所述至少一个第一空气弹簧对应连接;所述电磁三通比例阀的第三气道与所述至少一个第二电磁开关阀的第一气道连接,所述至少一个第二电磁开关阀的第二气道与所述至少一个第二空气弹簧对应连接。
示例性地,至少一个第一空气弹簧为一个第一空气弹簧,至少一个第一电磁开关阀为一 个第一电磁开关阀,电磁三通比例阀的第二气道与该一个第一电磁开关阀的第一气道连接,该一个第一电磁开关阀的第二气道与该一个第一空气弹簧连接;或者,至少一个第一空气弹簧为两个第一空气弹簧,至少一个第一电磁开关阀为一个第一电磁开关阀,电磁三通比例阀的第二气道与该一个第一电磁开关阀的第一气道均连接,该一个第一电磁开关阀的第二气道分别与该两个第一空气弹簧连接;又或者,至少一个第一空气弹簧为两个第一空气弹簧,至少一个第一电磁开关阀为两个第一电磁开关阀,电磁三通比例阀的第二气道与该两个第一电磁开关阀的第一气道均连接,该两个第一电磁开关阀的第二气道与该两个第一空气弹簧一一对应连接。
示例性地,至少一个第二空气弹簧为一个第二空气弹簧,至少一个第二电磁开关阀为一个第二电磁开关阀,电磁三通比例阀的第三气道与该一个第二电磁开关阀的第一气道连接,该一个第二电磁开关阀的第二气道与该一个第二空气弹簧连接;或者,至少一个第二空气弹簧为两个第二空气弹簧,至少一个第二电磁开关阀为一个第二电磁开关阀,电磁三通比例阀的第三气道与该一个第二电磁开关阀的第一气道均连接,该一个第二电磁开关阀的第二气道分别与该两个第二空气弹簧连接;又或者,至少一个第二空气弹簧为两个第二空气弹簧,至少一个第二电磁开关阀为两个第二电磁开关阀,电磁三通比例阀的第三气道与该两个第二电磁开关阀的第一气道均连接,该两个第二电磁开关阀的第二气道与该两个第二空气弹簧一一对应连接。
在本实现方式中,电磁三通比例阀的第二气道与至少一个第一空气弹簧之间可以设置至少一个第一电磁开关阀;同理,电磁三通比例阀的第三气道与至少一个第二空气弹簧之间可以设置至少一个第二电磁开关阀。其中,电磁开关阀为常闭阀,即电磁开关阀断电时处于关闭状态,电磁开关阀的第一气道与第二气道之间不会有空气流通;电磁开关阀通电时处于打开状态,电磁开关阀的第一气道与第二气道之间会有空气流通。如此,在电磁三通比例阀的第二气道与至少一个第一空气弹簧之间设置至少一个第一电磁开关阀,在不需要调整车辆前轴的车身高度的情况下,使至少一个第一电磁开关阀断电,从而不会有空气流入至少一个第一空气弹簧,也不会有空气从至少一个第一空气弹簧中流出,可以保持车辆前轴的车身高度;同理,在电磁三通比例阀的第三气道与至少一个第二空气弹簧之间设置至少一个第二电磁开关阀,在不需要调整车辆后轴的车身高度的情况下,使至少一个第二电磁开关阀断电,从而不会有空气流入至少一个第二空气弹簧,也不会有空气从至少一个第二空气弹簧中流出,可以保持车辆后轴的车身高度。
在一种可能的实现方式中,所述电磁阀总成还包括第三电磁开关阀,所述第三电磁开关阀的第一气道与所述电磁三通比例阀的第一气道连接,所述第三电磁开关阀的第二气道与所述供气系统和/或大气连接。
在本实现方式中,电磁三通比例阀的第一气道可以经第三电磁开关阀与供气系统和/或大气连接;在降低车辆的车身高度过程中,可以选择第三电磁开关阀处于打开状态,从电磁三通比例阀的第一气道流出的空气可以流入第三电磁开关阀的第一气道,再经第三电磁开关阀的第二气道流入供气系统和/或大气,实现车辆的车身高度的降低;在其他情况下,可以选择第三电磁开关阀处于关闭状态。
在一种可能的实现方式中,所述电磁三通比例阀为常闭阀。
其中,在电磁阀总成包括至少一个第一电磁开关阀和至少一个第二电磁开关阀的情况下,电磁三通比例阀可以为常闭阀,也可以不为常闭阀;在电磁阀总成不包括至少一个第一电磁开关阀和至少一个第二电磁开关阀的情况下,电磁三通比例阀必须为常闭阀。也即,在电磁 三通比例阀的第二气道与至少一个第一空气弹簧之间设置有至少一个第一电磁开关阀,以及电磁三通比例阀的第三气道与至少一个第二空气弹簧之间设置有至少一个第二电磁开关阀的情况下,电磁三通比例阀可以为常闭阀,也可以为非常闭阀;在电磁三通比例阀的第二气道与至少一个第一空气弹簧之间未设置有至少一个第一电磁开关阀,以及电磁三通比例阀的第三气道与至少一个第二空气弹簧之间未设置有至少一个第二电磁开关阀的情况下,电磁三通比例阀必须为常闭阀。
在本实现方式中,电磁三通比例阀为常闭阀,即电磁三通比例阀断电时处于关闭状态,电磁三通比例阀的各气道之间不会有空气流通;电磁三通比例阀通电时处于打开状态,电磁三通比例阀的各气道之间会有空气流通。如此,在不需要调整车辆的车身高度的情况下,使电磁三通比例阀断电,从而不会有空气流入至少一个第一空气弹簧和至少一个第二空气弹簧,也不会有空气从至少一个第一空气弹簧和至少一个第二空气弹簧中流出,可以保持车辆的车身高度。
在一种可能的实现方式中,所述空气悬架系统还包括供气系统;所述至少一个电磁比例阀包括第一电磁两通比例阀和第二电磁两通比例阀;所述第一电磁两通比例阀的第一气道和所述第二电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接;所述第一电磁两通比例阀的第二气道与所述至少一个第一空气弹簧连接;所述第二电磁两通比例阀的第二气道与所述至少一个第二空气弹簧连接。
在本实现方式中,采用第一电磁两通比例阀和第二电磁两通比例阀来调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例。在升高车身高度的过程中,空气从供气系统流入第一电磁两通比例阀的第一气道和第二电磁两通比例阀的第一气道;流入第一电磁两通比例阀的第一气道的空气,从第一电磁两通比例阀的第二气道流出,接着流入至少一个第一空气弹簧,使得车辆前轴的车身高度升高;同理,流入第二电磁两通比例阀的第一气道的空气,从第二电磁两通比例阀的第二气道流出,接着流入至少一个第二空气弹簧,使得车辆后轴的车身高度升高;通过调节第一电磁两通比例阀和第二电磁两通比例阀的开度,实时调节从第一电磁两通比例阀的第二气道流出的空气流量和从第二电磁两通比例阀的第二气道流出的空气流量的比例,实现实时调节流入至少一个第一空气弹簧的空气流量和流入至少一个第二空气弹簧的空气流量的比例,从而可以使得车辆前轴升高的车身高度与车辆后轴升高的车身高度实时相同。在降低车身高度的过程中,从至少一个第一空气弹簧流出的空气,流入第一电磁两通比例阀的第二气道,再经第一电磁两通比例阀的第一气道流入供气系统和/或大气,使得车辆前轴的车身高度降低;同理,从至少一个第二空气弹簧流出的空气,流入第二电磁两通比例阀的第二气道,再经第二电磁两通比例阀的第一气道流入供气系统和/或大气,使得车辆后轴的车身高度降低;通过调节第一电磁两通比例阀和第二电磁两通比例阀的开度,实时调节流入第一电磁两通比例阀的第二气道的空气流量和流入第二电磁两通比例阀的第二气道的空气流量的比例,实现实时调节从至少一个第一空气弹簧流出的空气流量和从至少一个第二空气弹簧流出的空气流量的比例,从而可以使得车辆前轴降低的车身高度与车辆后轴降低的车身高度实时相同。如此,实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。
在一种可能的实现方式中,所述电磁阀总成还包括至少一个第一电磁开关阀和至少一个第二电磁开关阀;所述第一电磁两通比例阀的第二气道与所述至少一个第一电磁开关阀的第一气道连接,所述至少一个第一电磁开关阀的第二气道与所述至少一个第一空气弹簧对应连接;所述第二电磁两通比例阀的第二气道与所述至少一个第二电磁开关阀的第一气道连接, 所述至少一个第二电磁开关阀的第二气道与所述至少一个第二空气弹簧对应连接。
示例性地,至少一个第一空气弹簧为一个第一空气弹簧,至少一个第一电磁开关阀为一个第一电磁开关阀,第一电磁两通比例阀的第二气道与该一个第一电磁开关阀的第一气道连接,该一个第一电磁开关阀的第二气道与该一个第一空气弹簧连接;或者,至少一个第一空气弹簧为两个第一空气弹簧,至少一个第一电磁开关阀为一个第一电磁开关阀,第一电磁两通比例阀的第二气道与该一个第一电磁开关阀的第一气道连接,该一个第一电磁开关阀的第二气道分别与该两个第一空气弹簧连接;又或者,至少一个第一空气弹簧为两个第一空气弹簧,至少一个第一电磁开关阀为两个第一电磁开关阀,第一电磁两通比例阀的第二气道与该两个第一电磁开关阀的第一气道均连接,该两个第一电磁开关阀的第二气道与该两个第一空气弹簧一一对应连接。
示例性地,至少一个第二空气弹簧为一个第二空气弹簧,至少一个第二电磁开关阀为一个第二电磁开关阀,第二电磁两通比例阀的第二气道与该一个第二电磁开关阀的第一气道连接,该一个第二电磁开关阀的第二气道与该一个第二空气弹簧连接;或者,至少一个第二空气弹簧为两个第二空气弹簧,至少一个第二电磁开关阀为一个第二电磁开关阀,第二电磁两通比例阀的第二气道与该一个第二电磁开关阀的第一气道连接,该一个第二电磁开关阀的第二气道分别与该两个第二空气弹簧连接;又或者,至少一个第二空气弹簧为两个第二空气弹簧,至少一个第二电磁开关阀为两个第二电磁开关阀,第二电磁两通比例阀的第二气道与该两个第二电磁开关阀的第一气道均连接,该两个第二电磁开关阀的第二气道与该两个第二空气弹簧一一对应连接。
在本实现方式中,第一电磁两通比例阀的第二气道与至少一个第一空气弹簧之间可以设置至少一个第一电磁开关阀;同理,第二电磁两通比例阀的第二气道与至少一个第二空气弹簧之间可以设置至少一个第二电磁开关阀。其中,电磁开关阀为常闭阀,即电磁开关阀断电时处于关闭状态,电磁开关阀的第一气道与第二气道之间不会有空气流通;电磁开关阀通电时处于打开状态,电磁开关阀的第一气道与第二气道之间会有空气流通。如此,在第一电磁两通比例阀的第二气道与至少一个第一空气弹簧之间设置至少一个第一电磁开关阀,在不需要调整车辆前轴的车身高度的情况下,使至少一个第一电磁开关阀断电,从而不会有空气流入至少一个第一空气弹簧,也不会有空气从至少一个第一空气弹簧中流出,可以保持车辆前轴的车身高度;同理,在第二电磁两通比例阀的第二气道与至少一个第二空气弹簧之间设置至少一个第二电磁开关阀,在不需要调整车辆后轴的车身高度的情况下,使至少一个第二电磁开关阀断电,从而不会有空气流入至少一个第二空气弹簧,也不会有空气从至少一个第二空气弹簧中流出,可以保持车辆后轴的车身高度。
在一种可能的实现方式中,所述电磁阀总成还包括第三电磁开关阀,所述第三电磁开关阀的第一气道分别与所述第一电磁两通比例阀的第一气道和所述第二电磁两通比例阀的第一气道连接,所述第三电磁开关阀的第二气道与所述供气系统和/或大气连接。
在本实现方式中,第一电磁两通比例阀的第一气道和第二电磁两通比例阀的第一气道均可以经第三电磁开关阀与供气系统和/或大气连接;在降低车辆的车身高度过程中,可以选择第三电磁开关阀处于打开状态,从第一电磁两通比例阀的第一气道和第二电磁两通比例阀的第一气道流出的空气可以流入第三电磁开关阀的第一气道,再经第三电磁开关阀的第二气道流入供气系统和/或大气,实现车辆的车身高度的降低;在其他情况下,可以选择第三电磁开关阀处于关闭状态。
在一种可能的实现方式中,所述第一电磁两通比例阀和所述第二电磁两通比例阀为常闭 阀。
其中,在电磁阀总成包括至少一个第一电磁开关阀和至少一个第二电磁开关阀的情况下,第一电磁两通比例阀和第二电磁两通比例阀可以为常闭阀,也可以不为常闭阀;在电磁阀总成不包括至少一个第一电磁开关阀和至少一个第二电磁开关阀的情况下,第一电磁两通比例阀和第二电磁两通比例阀必须为常闭阀。也即,其中,在第一电磁两通比例阀的第二气道与至少一个第一空气弹簧之间设置有至少一个第一电磁开关阀,第一电磁两通比例阀可以为常闭阀,也可以为非常闭阀;在第一电磁两通比例阀的第二气道与至少一个第一空气弹簧之间未设置有至少一个第一电磁开关阀的情况下,第一电磁两通比例阀必须为常闭阀。同理,在第二电磁两通比例阀的第二气道与至少一个第二空气弹簧之间设置有至少一个第二电磁开关阀的情况下,第二电磁两通比例阀可以为常闭阀,也可以为非常闭阀;在第二电磁两通比例阀的第二气道与至少一个第二空气弹簧之间未设置有至少一个第二电磁开关阀的情况下,第二电磁两通比例阀必须为常闭阀。
在本实现方式中,第一电磁两通比例阀和第二电磁两通比例阀均为常闭阀,即第一电磁两通比例阀断电时处于关闭状态,第一电磁两通比例阀的各气道之间不会有空气流通;同理,第二电磁两通比例阀断电时处于关闭状态,第二电磁两通比例阀的各气道之间也不会有空气流通。第一电磁两通比例阀通电时处于打开状态,第一电磁两通比例阀的各气道之间会有空气流通;同理,第二电磁两通比例阀通电时处于打开状态,第二电磁两通比例阀的各气道之间会有空气流通。如此,在不需要调整车辆的车身高度的情况下,使第一电磁两通比例阀和第二电磁两通比例阀均断电,从而不会有空气流入至少一个第一空气弹簧和至少一个第二空气弹簧,也不会有空气从至少一个第一空气弹簧和至少一个第二空气弹簧中流出,可以保持车辆的车身高度。
在一种可能的实现方式中,所述空气悬架系统还包括供气系统;所述至少一个第一空气弹簧包括第一空气弹簧L和第一空气弹簧R,所述至少一个第二空气弹簧包括第二空气弹簧L和第二空气弹簧R;所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀;所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道、所述第三电磁两通比例阀的第一气道和所述第四电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接;所述第一电磁两通比例阀的第二气道与所述第一空气弹簧L连接;所述第二电磁两通比例阀的第二气道与所述第二空气弹簧L连接;所述第三电磁两通比例阀的第二气道与所述第一空气弹簧R连接;所述第四电磁两通比例阀的第二气道与所述第二空气弹簧R连接。
在本实现方式中,采用第一空气弹簧L和第一空气弹簧R调节车辆前轴的车身高度,以及采用第二空气弹簧L和第二空气弹簧R调节车辆后轴的车身高度;例如,第一空气弹簧L安装于车辆左前轮和车身之间,第一空气弹簧R安装于车辆右前轮和车身之间,第二空气弹簧L安装于车辆左后轮和车身之间,第二空气弹簧R安装于车辆右后轮和车身之间。在升高车身高度的过程中,空气从供气系统流入第一电磁两通比例阀的第一气道、第二电磁两通比例阀的第一气道、第三电磁两通比例阀的第一气道和第四电磁两通比例阀的第一气道;流入第一电磁两通比例阀的第一气道的空气,从第一电磁两通比例阀的第二气道流出,接着流入第一空气弹簧L,使得车辆前轴左端的车身高度升高;同理,流入第三电磁两通比例阀的第一气道的空气,从第三电磁两通比例阀的第二气道流出,接着流入第一空气弹簧R,使得车辆前轴右端的车身高度升高;同理,流入第二电磁两通比例阀的第一气道的空气,从第二电磁两通比例阀的第二气道流出,接着流入第二空气弹簧L,使得车辆后轴左端的车身高度升高;同理, 流入第四电磁两通比例阀的第一气道的空气,从第四电磁两通比例阀的第二气道流出,接着流入第二空气弹簧R,使得车辆后轴右端的车身高度升高;通过调节第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀的开度,实时调节从第一电磁两通比例阀的第二气道流出的空气流量、从第二电磁两通比例阀的第二气道流出的空气流量、从第三电磁两通比例阀的第二气道流出的空气流量和从第四电磁两通比例阀的第二气道流出的空气流量的比例,实现实时调节流入第一空气弹簧L的空气流量、流入第一空气弹簧R的空气流量、流入第二空气弹簧L的空气流量和流入第二空气弹簧R的空气流量的比例,从而可以使得车辆前轴升高的车身高度与车辆后轴升高的车身高度实时相同,包括使得车辆前轴左端升高的车身高度、车辆前轴右端升高的车身高度、车辆后轴左端升高的车身高度、车辆后轴右端升高的车身高度实时相同。在降低车身高度的过程中,从第一空气弹簧L流出的空气,流入第一电磁两通比例阀的第二气道,再经第一电磁两通比例阀的第一气道流入供气系统和/或大气,使得车辆前轴左端的车身高度降低;同理,从第一空气弹簧R流出的空气,流入第三电磁两通比例阀的第二气道,再经第三电磁两通比例阀的第一气道流入供气系统和/或大气,使得车辆前轴右端的车身高度降低;同理,第二空气弹簧L流出的空气,流入第二电磁两通比例阀的第二气道,再经第二电磁两通比例阀的第一气道流入供气系统和/或大气,使得车辆后轴左端的车身高度降低;同理,第二空气弹簧R流出的空气,流入第四电磁两通比例阀的第二气道,再经第四电磁两通比例阀的第一气道流入供气系统和/或大气,使得车辆后轴右端的车身高度降低;通过调节第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀的开度,实时调节流入第一电磁两通比例阀的第二气道的空气流量、流入第二电磁两通比例阀的第二气道的空气流量、流入第三电磁两通比例阀的第二气道的空气流量、流入第四电磁两通比例阀的第二气道的空气流量的比例,实现实时调节从第一空气弹簧L流出的空气流量、从第一空气弹簧R流出的空气流量、从第二空气弹簧L流出的空气流量和从第二空气弹簧R流出的空气流量的比例,从而可以使得车辆前轴降低的车身高度与车辆后轴降低的车身高度实时相同,包括使得车辆前轴左端降低的车身高度、车辆前轴右端降低的车身高度、车辆后轴左端降低的车身高度、车辆后轴右端降低的车身高度实时相同。如此,实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。
在一种可能的实现方式中,所述空气悬架系统还包括供气系统;所述至少一个第一空气弹簧包括第一空气弹簧L和第一空气弹簧R,所述至少一个第二空气弹簧包括第二空气弹簧L和第二空气弹簧R;所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀和第三电磁两通比例阀,所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道和所述第三电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接,所述第一电磁两通比例阀的第二气道与所述第一空气弹簧L连接,所述第三电磁两通比例阀的第二气道与所述第一空气弹簧R连接,所述第二电磁两通比例阀的第二气道分别与所述第二空气弹簧L和所述第二空气弹簧R连接;或,所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀和第四电磁两通比例阀,所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道和所述第四电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接,所述第一电磁两通比例阀的第二气道分别与所述第一空气弹簧L和所述第一空气弹簧R连接,所述第二电磁两通比例阀的第二气道与所述第二空气弹簧L连接,所述第四电磁两通比例阀的第二气道与所述第二空气弹簧R连接。
在本实现方式中,采用第一电磁两通比例阀调节流入或流出安装于车辆左前轮与车身之间的第一空气弹簧L的空气流量,采用第三电磁两通比例阀调节流入或流出安装于车辆右前轮 与车身之间的第一空气弹簧R的空气流量,以及采用第二电磁两通比例阀调节流入或流出安装于车辆左后轮与车身之间的第二空气弹簧L和安装于车辆右后轮与车身之间的第二空气弹簧R的空气流量;通过调节第一电磁两通比例阀、第二电磁两通比例阀和第三电磁两通比例阀的开度,实现实时调节流入或流出第一空气弹簧L的空气流量、第一空气弹簧R的空气流量、第二空气弹簧L的空气流量和第二空气弹簧R的空气流量的比例,从而可以使得车辆前轴与车辆后轴升高或降低的车身高度实时相同。或者,采用第一电磁两通比例阀调节流入或流出安装于车辆左前轮与车身之间的第一空气弹簧L和安装于车辆右前轮与车身之间的第一空气弹簧R的空气流量,采用第二电磁两通比例阀调节流入或流出安装于车辆左后轮与车身之间的第二空气弹簧L的空气流量,以及采用第四电磁两通比例阀调节流入或流出安装于车辆右后轮与车身之间的第二空气弹簧R的空气流量;通过调节第一电磁两通比例阀、第二电磁两通比例阀和第四电磁两通比例阀的开度,实现实时调节流入或流出第一空气弹簧L的空气流量、第一空气弹簧R的空气流量、第二空气弹簧L的空气流量和第二空气弹簧R的空气流量的比例,从而可以使得车辆前轴与车辆后轴升高或降低的车身高度实时相同。
在一种可能的实现方式中,所述空气悬架系统还包括供气系统;所述至少一个第一空气弹簧包括第一空气弹簧L和第一空气弹簧R,所述至少一个第二空气弹簧为一个第二空气弹簧,所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀和第三电磁两通比例阀,所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道和所述第三电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接,所述第一电磁两通比例阀的第二气道与所述第一空气弹簧L连接,所述第三电磁两通比例阀的第二气道与所述第一空气弹簧R连接,所述第二电磁两通比例阀的第二气道与所述一个第二空气弹簧连接;或,所述至少一个第一空气弹簧为一个第一空气弹簧,所述至少一个第二空气弹簧包括第二空气弹簧L和第二空气弹簧R,所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀和第四电磁两通比例阀,所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道和所述第四电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接,所述第一电磁两通比例阀的第二气道与所述一个第一空气弹簧连接,所述第二电磁两通比例阀的第二气道与所述第二空气弹簧L连接,所述第四电磁两通比例阀的第二气道与所述第二空气弹簧R连接。
在本实现方式中,若车辆为两个前轮、一个后轮的三轮车,采用第一电磁两通比例阀调节流入或流出安装于车辆左前轮与车身之间的第一空气弹簧L的空气流量,采用第三电磁两通比例阀调节流入或流出安装于车辆右前轮与车身之间的第一空气弹簧R的空气流量,以及采用第二电磁两通比例阀调节流入或流出安装于车辆后轮与车身之间的第二空气弹簧的空气流量;通过调节第一电磁两通比例阀、第二电磁两通比例阀和第三电磁两通比例阀的开度,实现实时调节流入或流出第一空气弹簧L的空气流量、第一空气弹簧R的空气流量和第二空气弹簧的空气流量的比例,从而可以使得车辆前轴与车辆后轴升高或降低的车身高度实时相同。若车辆为一个前轮、两个后轮的三轮车,采用第一电磁两通比例阀调节流入或流出安装于车辆前轮与车身之间的第一空气弹簧的空气流量,采用第二电磁两通比例阀调节流入或流出安装于车辆左后轮与车身之间的第二空气弹簧L的空气流量,以及采用第四电磁两通比例阀调节流入或流出安装于车辆右后轮与车身之间的第二空气弹簧R的空气流量;通过调节第一电磁两通比例阀、第二电磁两通比例阀和第四电磁两通比例阀的开度,实现实时调节流入或流出第一空气弹簧的空气流量、第二空气弹簧L的空气流量和第二空气弹簧R的空气流量的比例,从而可以使得车辆前轴与车辆后轴升高或降低的车身高度实时相同。
在一种可能的实现方式中,所述电磁阀总成还包括第三电磁开关阀,所述第三电磁开关阀的第一气道分别与所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道、所述第三电磁两通比例阀的第一气道和所述第四电磁两通比例阀的第一气道连接,所述第三电磁开关阀的第二气道与所述供气系统和/或大气连接。
在本实现方式中,第一电磁两通比例阀的第一气道、第二电磁两通比例阀的第一气道、第三电磁两通比例阀的第一气道和第四电磁两通比例阀的第一气道均可以经第三电磁开关阀与供气系统和/或大气连接;在降低车辆的车身高度过程中,可以选择第三电磁开关阀处于打开状态,从第一电磁两通比例阀的第一气道、第二电磁两通比例阀的第一气道、第三电磁两通比例阀的第一气道和第四电磁两通比例阀的第一气道流出的空气可以流入第三电磁开关阀的第一气道,再经第三电磁开关阀的第二气道流入供气系统和/或大气,实现车辆的车身高度的降低;在其他情况下,可以选择第三电磁开关阀处于关闭状态。
在一种可能的实现方式中,所述第一电磁两通比例阀、所述第二电磁两通比例阀、所述第三电磁两通比例阀和所述第四电磁两通比例阀为常闭阀。
在本实现方式中,第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀的第二气道与空气弹簧之间均没有电磁开关阀,故第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀均为常闭阀。对于第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀中的任意一个来说,当其断电时处于关闭状态,其各气道之间不会有空气流通;同理,当其通电时处于打开状态,其各气道之间会有空气流通。如此,在不需要调整车辆的车身高度的情况下,使第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀均断电,从而不会有空气流入第一空气弹簧L、第一空气弹簧R、第二空气弹簧L和第二空气弹簧R,也不会有空气从第一空气弹簧L、第一空气弹簧R、第二空气弹簧L和第二空气弹簧R中流出,可以保持车辆的车身高度。
下面以四轮车为例,通过具体的示例,对本申请提供的车辆前轴的车身高度与车辆后轴的车身高度同步调整的方案进行进一步介绍。
示例1:
请参阅图5,图5是本申请实施例提供的一种电控空气悬架系统的结构示意图。如图5所示,该电控空气悬架系统包括:电磁阀总成401、左前空气弹簧402、右前空气弹簧403、左后空气弹簧404、右后空气弹簧405、左前高度传感器406、右前高度传感器407、左后高度传感器408、右后高度传感器409、供气系统410和控制器411。
其中,电磁阀总成401用于控制气路通断,电磁阀总成401由电磁三通比例阀401-1、电磁开关阀401-2、电磁开关阀401-3、电磁开关阀401-4、电磁开关阀401-5和电磁开关阀401-6组合而成。电磁阀总成401及其内部的电磁三通比例阀401-1是实现车辆前轴的车身高度和车辆后轴的车身高度同步调整的关键部件。
请参阅图6,图6是电磁三通比例阀401-1的结构示意图,电磁三通比例阀401-1包括第一气道401-1-1、第二气道401-1-2和第三气道401-1-3;若假设电磁三通比例阀401-1第一气道401-1-1的空气流量为Q sum,电磁三通比例阀401-1第二气道401-1-2的空气流量为Q F,电磁三通比例阀401-1第三气道401-1-3的空气流量为Q R,则Q sum=Q F+Q R;电磁三通比例阀401-1可以控制Q F与Q R的大小及比例,也即控制流入或流出车辆前轴空气弹簧与车辆后轴空气弹簧的空气流量的大小及比例。电磁三通比例阀401-1可以为常闭阀,电磁三通比例阀401-1在断电时, 第一气道401-1-1、第二气道401-1-2和第三气道401-1-3均处于关闭状态。
电磁三通比例阀401-1的第二气道401-1-2分别与电磁开关阀401-2的第一气道和电磁开关阀401-3的第一气道连接,电磁三通比例阀401-1的第三气道401-1-3分别与电磁开关阀401-4的第一气道和电磁开关阀401-5的第一气道连接。电磁开关阀401-2的第二气道与左前空气弹簧402连接,电磁开关阀401-2用于控制左前空气弹簧402与电磁三通比例阀401-1的第二气道401-1-2的连通或关闭。电磁开关阀401-3的第二气道与右前空气弹簧403连接,电磁开关阀401-3用于控制右前空气弹簧403与电磁三通比例阀401-1的第二气道401-1-2的连通或关闭。电磁开关阀401-4的第二气道与左后空气弹簧404连接,电磁开关阀401-4用于控制左后空气弹簧404与电磁三通比例阀401-1的第三气道401-1-3的连通或关闭。电磁开关阀401-5的第二气道与右后空气弹簧405连接,电磁开关阀401-5用于控制右后空气弹簧405与电磁三通比例阀401-1的第三气道401-1-3的连通或关闭。
电磁三通比例阀401-1的第一气道401-1-1分别与电磁开关阀401-6的第一气道和供气系统410连接。电磁开关阀401-6的第二气道与供气系统410和/或大气连接,电磁开关阀401-6用于在降低车身时控制排气的过程,也即将空气排放到供气系统410和/或大气中;其中,电磁开关阀401-6的第二气道与供气系统410的连接线在图5中未示出。
应理解,电磁三通比例阀401-1也即前述至少一个电磁比例阀;电磁开关阀401-2和电磁开关阀401-3也即为前述至少一个第一电磁开关阀;电磁开关阀401-4和电磁开关阀401-5也即为前述至少一个第二电磁开关阀;电磁开关阀401-6也即前述第三电磁开关阀。
其中,左前空气弹簧402为安装于车辆左前轮和车身之间的空气弹簧,也即第一空气弹簧L,用于调整车辆前轴左端的车身高度;右前空气弹簧403为安装于车辆右前轮和车身之间的空气弹簧,也即第一空气弹簧R,用于调整车辆前轴右端的车身高度;左后空气弹簧404为安装于车辆左后轮和车身之间的空气弹簧,也即第二空气弹簧L,用于调整车辆后轴左端的车身高度;右后空气弹簧405为安装于车辆右后轮和车身之间的空气弹簧,也即第二空气弹簧R,用于调整车辆后轴右端的车身高度。
应理解,左前空气弹簧402和右前空气弹簧403也即为前述至少一个第一空气弹簧;左后空气弹簧404和右后空气弹簧405也即为前述至少一个第二空气弹簧。
其中,左前高度传感器406用于测量车辆前轴左端的车身高度,右前高度传感器407用于测量车辆前轴右端的车身高度,左后高度传感器408用于测量车辆后轴左端的车身高度,右后高度传感器409用于测量车辆后轴右端的车身高度。应理解,左前高度传感器406、右前高度传感器407、左后高度传感器408和右后高度传感器409均可以将测量得到车身高度发送给控制器411。
其中,供气系统410包括空气压缩机和气罐,空气压缩机用于从将大气中的空气压缩成高压气体存储在气罐中。在车身升高过程中,供气系统410用于提供高压气体。
其中,控制器411分别与电磁阀总成401、左前高度传感器406、右前高度传感器407、左后高度传感器408、右后高度传感器409、供气系统410和控制器411通信连接或电连接(图5中并未全部示出)。应理解,控制器411与电磁阀总成401通信连接或电连接包括控制器411与电磁三通比例阀401-1、电磁开关阀401-2、电磁开关阀401-3、电磁开关阀401-4、电磁开关阀401-5和电磁开关阀401-6均通信连接或电连接。控制器411具有控制及驱动功能,控制器411可以接收左前高度传感器406、右前高度传感器407、左后高度传感器408和右后高度传感器409发送的车身高度信息与其他控制指令,并以此控制供气系统410、电磁阀总成401适时工作,完成车辆的调高功能。
需要说明的是,图5所示的电控空气悬架系统还可以包含额外的传感器如气体压力传感器、控制器、电磁阀等,图5中并未示出。电控空气悬架系统中控制器411、电磁阀总成401、供气系统410内的空气压缩机可以作为一个集成控制单元,并具有以上三种功能。另外,电磁三通比例阀401-1可以独立为一个单独的电磁阀体。
请参阅图7,图7是图5所示的电控空气悬架系统的控制流程示意图,该电控空气悬架系统的控制流程包括但不限于如下步骤:
S701、调整电磁三通比例阀的初始开度。
其中,初始开度可以是预设的合适初始位置,初始开度也可以是根据调高前的车身高度和调高后车身的目标高度确定的。
S702、打开电磁开关阀。
具体地,在升高车身高度的过程中,仅打开电磁开关阀401-2、电磁开关阀401-3、电磁开关阀401-4和电磁开关阀401-5,不打开电磁开关阀401-6;在降低车身高度的过程中,电磁开关阀401-2、电磁开关阀401-3、电磁开关阀401-4、电磁开关阀401-5和电磁开关阀401-6全部打开。
S703、测量前轴与后轴的车身高度。
具体地,通过左前高度传感器406测量前轴左端的车身高度,通过右前高度传感器407测量前轴右端的车身高度,通过左后高度传感器408测量后轴左端的车身高度,通过右后高度传感器409测量后轴右端的车身高度。
S704、判断车身高度是否等于目标高度。
其中,当车身高度不等于目标高度时,执行步骤S705;当车身高度等于目标高度时,执行步骤S708。
S705、判断前轴与后轴的车身高度变化是否匹配。
其中,判断前轴与后轴的车身高度变化是否匹配,也即判断前轴与后轴的车身高度是否同步调整,包括升高时车身高度的变化是否相同以及降低时车身高度的变化是否相同。
其中,当前轴与后轴的车身高度变化不匹配时,执行步骤S706;当前轴与后轴的车身高度变化匹配时,执行步骤S707。
S706、调整电磁三通比例阀的开度。
其中,执行步骤S706后,返回执行步骤S703。
S707、保持电磁三通比例阀的开度。
其中,执行步骤S707后,返回执行步骤S703。
S708、关闭电磁开关阀。
具体地,也即关闭步骤S702打开的电磁开关阀。
S709、关闭电磁三通比例阀。
应理解,图7所示的步骤由控制器411执行,控制器411实时对车辆的车身高度调整需求(包含静态手动调高时驾驶员的手动输入、静态自动调高功能如轻松载物、动态速度调高等)进行监测,如果收到车身高度调整需求,则进入车身高度调整程序,控制器411根据车身高度调整需求对前轴与后轴同时进行调高,直到达到目标高度。
图5所示的电控空气悬架系统具有车身高度升高、车身高度降低、车身高度保持三种工作模式,下面分别介绍:
工作模式1:车身高度升高。
请参阅图8,图8是图5所示的电控空气悬架系统在车身高度升高模式下的示意图。首 先,控制器411控制供气系统410向外提供高压气体。其次,控制器411将电磁三通比例阀401-1的开度调整至合适的初始位置,该初始位置可以由控制器411根据左前高度传感器406、右前高度传感器407、左后高度传感器408和右后高度传感器409测量的实际车身高度以及目标高度等信息计算得到。再次,控制器411驱动电磁开关阀401-2、电磁开关阀401-3、电磁开关阀401-4、电磁开关阀401-5至打开状态,高压气体由供气系统410开始,经过电磁三通比例阀401-1,然后分别经过电磁开关阀401-2进入左前空气弹簧402、经过电磁开关阀401-3进入右前空气弹簧403、经过电磁开关阀401-4进入左后空气弹簧404、经过电磁开关阀401-5进入右后空气弹簧405。在此过程中,控制器411根据左前高度传感器406、右前高度传感器407、左后高度传感器408和右后高度传感器409反馈的实际车身高度,实时调整电磁三通比例阀401-1的开度至适当位置,保证流入左前空气弹簧402、右前空气弹簧403与流入左后空气弹簧404、右后空气弹簧405的空气流量适当,实现前轴的车身高度和后轴的车身高度同步升高。
请参阅图9,图9是图1所示的电控空气悬架系统与图5所示的电控空气悬架系统的对比结果示意图。如图9所示,图5所示的电控空气悬架系统对车身调高的过程为一个连续且同步的过程,并且调高的时间更短,即图5所示的电控空气悬架系统的调高时间T1<图1所示的电控空气悬架系统(前述方案一)的调高时间T2;另外,本申请调高时不会造成车辆的俯仰,提升车身升高过程中的舒适性与安全性。
工作模式2:车身高度降低。
请参阅图10,图10是图5所示的电控空气悬架系统在车身高度升高模式下的示意图。首先,控制器411控制电磁开关阀401-6打开,使电磁阀总成401的主气道412与大气连通,也即使电磁三通比例阀401-1第一气道401-1-1与大气连通。其次,控制器411将电磁三通比例阀401-1的开度调整至合适的初始位置,该初始位置可以由控制器411根据左前高度传感器406、右前高度传感器407、左后高度传感器408和右后高度传感器409测量的实际车身高度以及目标高度等信息计算得到。再次,控制器411驱动电磁开关阀401-2、电磁开关阀401-3、电磁开关阀401-4、电磁开关阀401-5、电磁开关阀401-6至打开状态,左前空气弹簧402内的高压气体经过电磁开关阀401-2流入电磁三通比例阀401-1,右前空气弹簧403内的高压气体经过电磁开关阀401-3流入电磁三通比例阀401-1,左后空气弹簧404内的高压气体经过电磁开关阀401-4流入电磁三通比例阀401-1,右后空气弹簧405内的高压气体经过电磁开关阀401-5流入电磁三通比例阀401-1,前述流入电磁三通比例阀401-1的气体经过电磁开关阀401-6排入大气中。在此过程中,控制器411根据左前高度传感器406、右前高度传感器407、左后高度传感器408和右后高度传感器409反馈的实际车身高度,实时调整电磁三通比例阀401-1的开度至适当位置,保证流出左前空气弹簧402、右前空气弹簧403与流出左后空气弹簧404、右后空气弹簧405的空气流量适当,实现前轴的车身高度和后轴的车身高度同步降低。
工作模式3:车身高度保持。
图5也为电控空气悬架系统在车身高度保持模式下的示意图。当车辆处于车身高度保持模式时,控制器411驱动电路不输出电流,则电磁开关阀401-2、电磁开关阀401-3、电磁开关阀401-4、电磁开关阀401-5和电磁开关阀401-6均处于关闭状态,电磁三通比例阀401-1处于默认状态(例如中位状态、最大开度状态或最小开度状态)。此时,左前空气弹簧402、右前空气弹簧403、左后空气弹簧404和右后空气弹簧405均密闭,即可以保持车身高度不变。
图5中的电磁阀总成401,使得图5所示的电控空气悬架系统能够实现车辆的全时同步高度 调整,包含同步降低与同步升高,提升车辆调高速度与性能,进而提高车辆舒适性与安全性。另外,本申请的同步高度调整特性不受空气弹簧气体压力的影响,即不要求车辆某一轴压力高于车辆另一轴,所以本申请适用范围广。
示例2:
相比于示例1,示例2采用了两个电磁两通比例阀代替电磁三通比例阀,实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。前述两个电磁两通比例阀可以是常闭阀,也可以不是常闭阀。
请参阅图11,图11是本申请实施例提供的又一种电控空气悬架系统的结构示意图。如图11所示,该电控空气悬架系统包括:电磁阀总成501、左前空气弹簧502、右前空气弹簧503、左后空气弹簧504、右后空气弹簧505、左前高度传感器506、右前高度传感器507、左后高度传感器508、右后高度传感器509、供气系统510和控制器511。
其中,电磁阀总成501用于控制气路通断,电磁阀总成501由电磁两通比例阀501-1、电磁两通比例阀501-2、电磁开关阀501-3、电磁开关阀501-4、电磁开关阀501-5、电磁开关阀501-6和电磁开关阀501-7组合而成。电磁阀总成501及其内部的电磁两通比例阀501-1、电磁两通比例阀501-2是实现车辆前轴的车身高度和车辆后轴的车身高度同步调整的关键部件。
电磁两通比例阀501-1的第二气道分别与电磁开关阀501-3和电磁开关阀501-4连接,电磁两通比例阀501-2的第二气道分别与电磁开关阀501-5和电磁开关阀501-6连接。电磁开关阀501-3与左前空气弹簧502连接,电磁开关阀501-3用于控制左前空气弹簧502与电磁两通比例阀501-1的第二气道的连通或关闭。电磁开关阀501-4与右前空气弹簧503连接,电磁开关阀501-4用于控制右前空气弹簧503与电磁两通比例阀501-2的第二气道的连通或关闭。电磁开关阀501-5与左后空气弹簧504连接,电磁开关阀501-5用于控制左后空气弹簧504与电磁两通比例阀501-2的第二气道的连通或关闭。电磁开关阀501-6与右后空气弹簧505连接,电磁开关阀501-6用于控制右后空气弹簧505与电磁两通比例阀501-2的第二气道的连通或关闭。
电磁两通比例阀501-1的第一气道和电磁两通比例阀501-2的第一气道分别与电磁开关阀501-7的第二气道和供气系统510连接。电磁开关阀501-7的第二气道与供气系统510和/或大气连接,电磁开关阀501-7用于在降低车身时控制排气的过程,也即将空气排放到供气系统510和/或大气中;其中,电磁开关阀501-7的第二气道与供气系统510的连接线在图11中未示出。
应理解,电磁两通比例阀501-1、电磁两通比例阀501-2也即前述至少一个电磁比例阀,具体地,电磁两通比例阀501-1为前述第一电磁两通比例阀、电磁两通比例阀501-2为前述第二电磁两通比例阀;电磁开关阀501-3和电磁开关阀501-4也即为前述至少一个第一电磁开关阀;电磁开关阀501-5和电磁开关阀501-6也即为前述至少一个第二电磁开关阀;电磁开关阀501-7也即前述第三电磁开关阀。
其中,左前空气弹簧502为安装于车辆左前轮和车身之间的空气弹簧,也即第一空气弹簧L,用于调整车辆前轴左端的车身高度;右前空气弹簧503为安装于车辆右前轮和车身之间的空气弹簧,也即第一空气弹簧R,用于调整车辆前轴右端的车身高度;左后空气弹簧504为安装于车辆左后轮和车身之间的空气弹簧,也即第二空气弹簧L,用于调整车辆后轴左端的车身高度;右后空气弹簧505为安装于车辆右后轮和车身之间的空气弹簧,也即第二空气弹簧R,用于调整车辆后轴右端的车身高度。
应理解,左前空气弹簧502和右前空气弹簧503也即为前述至少一个第一空气弹簧;左后空气弹簧504和右后空气弹簧505也即为前述至少一个第二空气弹簧。
其中,左前高度传感器506用于测量车辆前轴左端的车身高度,右前高度传感器507用于测量车辆前轴右端的车身高度,左后高度传感器508用于测量车辆后轴左端的车身高度,右后高度传感器509用于测量车辆后轴右端的车身高度。应理解,左前高度传感器506、右前高度传感器507、左后高度传感器508和右后高度传感器509均可以将测量得到车身高度发送给控制器511。
其中,供气系统510包括空气压缩机和气罐,空气压缩机用于从将大气中的空气压缩成高压气体存储在气罐中。在车身升高过程中,供气系统510用于提供高压气体。
其中,控制器511分别与电磁阀总成501、左前高度传感器506、右前高度传感器507、左后高度传感器508、右后高度传感器509、供气系统510和控制器511通信连接或电连接(图11中并未全部示出)。应理解,控制器511与电磁阀总成501通信连接或电连接包括控制器511与电磁两通比例阀501-1、电磁两通比例阀501-2、电磁开关阀501-3、电磁开关阀501-4、电磁开关阀501-5、电磁开关阀501-6和电磁开关阀501-7均通信连接或电连接。控制器511具有控制及驱动功能,控制器511可以接收左前高度传感器506、右前高度传感器507、左后高度传感器508和右后高度传感器509发送的车身高度信息与其他控制指令,并以此控制供气系统510、电磁阀总成501适时工作,完成车辆的调高功能。
需要说明的是,图11所示的电控空气悬架系统还可以包含额外的传感器如气体压力传感器、控制器、电磁阀等,图11中并未示出。电控空气悬架系统中控制器511、电磁阀总成501、供气系统510内的空气压缩机可以作为一个集成控制单元,并具有以上三种功能。另外,电磁两通比例阀501-1、电磁两通比例阀501-2可以独立为一个单独的集成电磁阀体。
请参阅图12,图12是图11所示的电控空气悬架系统的控制流程示意图,该电控空气悬架系统的控制流程包括但不限于如下步骤:
S1201、分别调整多个电磁两通比例阀的初始开度。
具体地,将电磁两通比例阀501-1的开度调整为一个初始开度,以及将电磁两通比例阀501-2的开度也调整为一个初始开度;其中,电磁两通比例阀501-1对应的初始开度与电磁两通比例阀501-2对应的初始开度可能相同,也可能不同。
其中,初始开度可以是预设的合适初始位置,初始开度也可以是根据调高前的车身高度和调高后车身的目标高度确定的。
S1202、打开电磁开关阀。
具体地,在升高车身高度的过程中,仅打开电磁开关阀501-3、电磁开关阀501-4、电磁开关阀501-5和电磁开关阀501-6,不打开电磁开关阀501-7;在降低车身高度的过程中,电磁开关阀501-3、电磁开关阀501-4、电磁开关阀501-5、电磁开关阀501-6和电磁开关阀501-7全部打开。
S1203、测量前轴与后轴的车身高度。
具体地,通过左前高度传感器506测量前轴左端的车身高度,通过右前高度传感器507测量前轴右端的车身高度,通过左后高度传感器508测量后轴左端的车身高度,通过右后高度传感器509测量后轴右端的车身高度。
S1204、判断车身高度是否等于目标高度。
其中,当车身高度不等于目标高度时,执行步骤S1205;当车身高度等于目标高度时,执行步骤S1208。
S1205、判断前轴与后轴的车身高度变化是否匹配。
其中,判断前轴与后轴的车身高度变化是否匹配,也即判断前轴与后轴的车身高度是否 同步调整,包括升高时车身高度的变化是否相同以及降低时车身高度的变化是否相同。
其中,当前轴与后轴的车身高度变化不匹配时,执行步骤S1206;当前轴与后轴的车身高度变化匹配时,执行步骤S1207。
S1206、调整多个电磁两通比例阀的开度。
具体地,调整多个电磁两通比例阀的开度包括调整电磁两通比例阀501-1和电磁两通比例阀501-2中的至少一个电磁两通比例阀的开度。
其中,执行步骤S1206后,返回执行步骤S1203。
S1207、保持多个电磁两通比例阀的开度。
其中,执行步骤S1207后,返回执行步骤S1203。
S1208、关闭电磁开关阀。
具体地,也即关闭步骤S1202打开的电磁开关阀。
S1209、关闭多个电磁两通比例阀。
具体地,电磁两通比例阀501-1和电磁两通比例阀501-2。
应理解,图12所示的步骤由控制器511执行,控制器511实时对车辆的车身高度调整需求(包含静态手动调高时驾驶员的手动输入、静态自动调高功能如轻松载物、动态速度调高等)进行监测,如果收到车身高度调整需求,则进入车身高度调整程序,控制器511根据车身高度调整需求对前轴与后轴同时进行调高,直到达到目标高度。
图11所示的电控空气悬架系统具有车身高度升高、车身高度降低、车身高度保持三种工作模式,下面分别介绍:
工作模式1:车身高度升高。
首先,控制器511控制供气系统510向外提供高压气体。其次,控制器511将电磁两通比例阀501-1和电磁两通比例阀501-2的开度均调整至合适的初始位置,该初始位置可以由控制器511根据左前高度传感器506、右前高度传感器507、左后高度传感器508和右后高度传感器509测量的实际车身高度以及目标高度等信息计算得到。再次,控制器511驱动电磁开关阀501-3、电磁开关阀501-4、电磁开关阀501-5、电磁开关阀501-6至打开状态,高压气体由供气系统510开始,经过电磁两通比例阀501-1,然后分别经过电磁开关阀501-3进入左前空气弹簧502、经过电磁开关阀501-4进入右前空气弹簧503;高压气体由供气系统510开始,经过电磁两通比例阀501-2,然后分别经过电磁开关阀501-5进入左后空气弹簧504、经过电磁开关阀501-6进入右后空气弹簧505。在此过程中,控制器511根据左前高度传感器506、右前高度传感器507、左后高度传感器508和右后高度传感器509反馈的实际车身高度,实时调整电磁两通比例阀501-1和电磁两通比例阀501-2的开度至适当位置,保证流入左前空气弹簧502、右前空气弹簧503与流入左后空气弹簧504、右后空气弹簧505的空气流量适当,实现前轴的车身高度和后轴的车身高度同步升高。
工作模式2:车身高度降低。
首先,控制器511控制电磁开关阀501-7打开,使电磁两通比例阀501-1的第一气道和电磁两通比例阀501-2的第一气道与大气连通。其次,控制器511将电磁两通比例阀501-1和电磁两通比例阀501-2的开度均调整至合适的初始位置,该初始位置可以由控制器511根据左前高度传感器506、右前高度传感器507、左后高度传感器508和右后高度传感器509测量的实际车身高度以及目标高度等信息计算得到。再次,控制器511驱动电磁开关阀501-3、电磁开关阀501-4、电磁开关阀501-5、电磁开关阀501-6和电磁开关阀501-7至打开状态,左前空气弹簧502内的高压气体经过电磁开关阀501-3流入电磁两通比例阀501-1,右前空气弹簧 503内的高压气体经过电磁开关阀501-4流入电磁两通比例阀501-1,左后空气弹簧504内的高压气体经过电磁开关阀501-5流入电磁两通比例阀501-2,右后空气弹簧505内的高压气体经过电磁开关阀501-6流入电磁两通比例阀501-2,流入电磁两通比例阀501-1和流入电磁两通比例阀501-2的气体经过电磁开关阀501-7排入大气中。在此过程中,控制器511根据左前高度传感器506、右前高度传感器507、左后高度传感器508和右后高度传感器509反馈的实际车身高度,实时调整电磁两通比例阀501-1和电磁两通比例阀501-2的开度至适当位置,保证流出左前空气弹簧502、右前空气弹簧503与流出左后空气弹簧504、右后空气弹簧505的空气流量适当,实现前轴的车身高度和后轴的车身高度同步降低。
工作模式3:车身高度保持。
图11也为电控空气悬架系统在车身高度保持模式下的示意图。当车辆处于车身高度保持模式时,控制器511驱动电路不输出电流,则电磁开关阀501-3、电磁开关阀501-4、电磁开关阀501-5、电磁开关阀501-6和电磁开关阀501-7均处于关闭状态,电磁两通比例阀501-1和电磁两通比例阀501-2均处于默认状态(例如中位状态、最大开度状态或最小开度状态)。此时,左前空气弹簧502、右前空气弹簧503、左后空气弹簧504和右后空气弹簧505均密闭,即可以保持车身高度不变。
示例3:
相比于示例1,与示例2类似,示例3采用了四个电磁两通比例阀代替电磁三通比例阀,实现车辆前轴的车身高度与车辆后轴的车身高度同步调整。前述四个电磁两通比例阀是常闭阀。
请参阅图13,图13是本申请实施例提供的又一种电控空气悬架系统的结构示意图。如图13所示,该电控空气悬架系统包括:电磁阀总成601、左前空气弹簧602、右前空气弹簧603、左后空气弹簧604、右后空气弹簧605、左前高度传感器606、右前高度传感器607、左后高度传感器608、右后高度传感器609、供气系统610和控制器611。
其中,电磁阀总成601用于控制气路通断,电磁阀总成601由电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3、电磁两通比例阀601-4和电磁开关阀601-5组合而成。电磁阀总成601及其内部的电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3和电磁两通比例阀601-4是实现车辆前轴的车身高度和车辆后轴的车身高度同步调整的关键部件。
电磁两通比例阀601-1的第二气道与左前空气弹簧602连接,电磁两通比例阀601-2的第二气道与右前空气弹簧603连接,电磁两通比例阀601-3的第二气道与左后空气弹簧604连接,电磁两通比例阀601-4的第二气道与右后空气弹簧605连接。
电磁两通比例阀601-1的第一气道分别与电磁开关阀601-5和供气系统610连接,电磁两通比例阀601-2的第一气道分别与电磁开关阀601-5和供气系统610连接,电磁两通比例阀601-3的第一气道分别与电磁开关阀601-5的第一气道和供气系统610连接,电磁两通比例阀601-4的第一气道分别与电磁开关阀601-5的第一气道和供气系统610连接。
电磁开关阀601-5的第二气道与供气系统610和/或大气连接,电磁开关阀601-5用于在降低车身时控制排气的过程,也即将空气排放到供气系统610和/或大气中;其中,电磁开关阀601-5的第二气道与供气系统610的连接线在图13中未示出。
应理解,电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3、电磁两通比例阀601-4也即前述至少一个电磁比例阀,具体地,电磁两通比例阀601-1为前述第一电 磁两通比例阀、电磁两通比例阀601-2为前述第三电磁两通比例阀、电磁两通比例阀601-3为前述第二电磁两通比例阀,电磁两通比例阀601-4为前述第四电磁两通比例阀;电磁开关阀601-5也即前述第三电磁开关阀。此外,电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3和电磁两通比例阀601-4为常闭阀。
其中,左前空气弹簧602为安装于车辆左前轮和车身之间的空气弹簧,也即第一空气弹簧L,用于调整车辆前轴左端的车身高度;右前空气弹簧603为安装于车辆右前轮和车身之间的空气弹簧,也即第一空气弹簧R,用于调整车辆前轴右端的车身高度;左后空气弹簧604为安装于车辆左后轮和车身之间的空气弹簧,也即第二空气弹簧L,用于调整车辆后轴左端的车身高度;右后空气弹簧605为安装于车辆右后轮和车身之间的空气弹簧,也即第二空气弹簧R,用于调整车辆后轴右端的车身高度。
应理解,左前空气弹簧602和右前空气弹簧603也即为前述至少一个第一空气弹簧;左后空气弹簧604和右后空气弹簧605也即为前述至少一个第二空气弹簧。
其中,左前高度传感器606用于测量车辆前轴左端的车身高度,右前高度传感器607用于测量车辆前轴右端的车身高度,左后高度传感器608用于测量车辆后轴左端的车身高度,右后高度传感器609用于测量车辆后轴右端的车身高度。应理解,左前高度传感器606、右前高度传感器607、左后高度传感器608和右后高度传感器609均可以将测量得到车身高度发送给控制器611。
其中,供气系统610包括空气压缩机和气罐,空气压缩机用于从将大气中的空气压缩成高压气体存储在气罐中。在车身升高过程中,供气系统610用于提供高压气体。
其中,控制器611分别与电磁阀总成601、左前高度传感器606、右前高度传感器607、左后高度传感器608、右后高度传感器609、供气系统610和控制器611通信连接或电连接(图13中并未全部示出)。应理解,控制器611与电磁阀总成601通信连接或电连接包括控制器611与电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3、电磁两通比例阀601-4和电磁开关阀601-5均通信连接或电连接。控制器611具有控制及驱动功能,控制器611可以接收左前高度传感器606、右前高度传感器607、左后高度传感器608和右后高度传感器609发送的车身高度信息与其他控制指令,并以此控制供气系统610、电磁阀总成601适时工作,完成车辆的调高功能。
需要说明的是,图13所示的电控空气悬架系统还可以包含额外的传感器如气体压力传感器、控制器、电磁阀等,图13中并未示出。电控空气悬架系统中控制器611、电磁阀总成601、供气系统610内的空气压缩机可以作为一个集成控制单元,并具有以上三种功能。另外,电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3和电磁两通比例阀601-4可以独立为一个单独的集成电磁阀体。
请参阅图14,图14是图13所示的电控空气悬架系统的控制流程示意图,该电控空气悬架系统的控制流程包括但不限于如下步骤:
S1401、分别调整多个电磁两通比例阀的初始开度。
具体地,将电磁两通比例阀601-1的开度调整为一个初始开度,将电磁两通比例阀601-2的开度也调整为一个初始开度,将电磁两通比例阀601-3的开度调整为一个初始开度,以及将电磁两通比例阀601-4的开度调整为一个初始开度;其中,电磁两通比例阀601-1对应的初始开度、电磁两通比例阀601-2对应的初始开度、电磁两通比例阀601-3对应的初始开度以及电磁两通比例阀601-4对应的初始开度可能相同,也可能不同。
其中,初始开度可以是预设的合适初始位置,初始开度也可以是根据调高前的车身高度 和调高后车身的目标高度确定的。
S1402、测量前轴与后轴的车身高度。
具体地,通过左前高度传感器606测量前轴左端的车身高度,通过右前高度传感器607测量前轴右端的车身高度,通过左后高度传感器608测量后轴左端的车身高度,通过右后高度传感器609测量后轴右端的车身高度。
S1403、判断车身高度是否等于目标高度。
其中,当车身高度不等于目标高度时,执行步骤S1404;当车身高度等于目标高度时,执行步骤S1407。
S1404、判断前轴与后轴的车身高度变化是否匹配。
其中,判断前轴与后轴的车身高度变化是否匹配,也即判断前轴与后轴的车身高度是否同步调整,包括升高时车身高度的变化是否相同以及降低时车身高度的变化是否相同。
其中,当前轴与后轴的车身高度变化不匹配时,执行步骤S1405;当前轴与后轴的车身高度变化匹配时,执行步骤S1406。
S1405、调整多个电磁两通比例阀的开度。
具体地,调整多个电磁两通比例阀的开度包括调整电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3和电磁两通比例阀601-4中的至少一个电磁两通比例阀的开度。
其中,执行步骤S1405后,返回执行步骤S1402。
S1406、保持多个电磁两通比例阀的开度。
其中,执行步骤S1406后,返回执行步骤S1402。
S1407、关闭多个电磁两通比例阀。
具体地,关闭电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3和电磁两通比例阀601-4。
应理解,图14所示的步骤由控制器611执行,控制器611实时对车辆的车身高度调整需求(包含静态手动调高时驾驶员的手动输入、静态自动调高功能如轻松载物、动态速度调高等)进行监测,如果收到车身高度调整需求,则进入车身高度调整程序,控制器611根据车身高度调整需求对前轴与后轴同时进行调高,直到达到目标高度。
图13所示的电控空气悬架系统具有车身高度升高、车身高度降低、车身高度保持三种工作模式,下面分别介绍:
工作模式1:车身高度升高。
首先,控制器611控制供气系统610向外提供高压气体。其次,控制器611将电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3和电磁两通比例阀601-4的开度均调整至合适的初始位置,该初始位置可以由控制器611根据左前高度传感器606、右前高度传感器607、左后高度传感器608和右后高度传感器609测量的实际车身高度以及目标高度等信息计算得到;高压气体由供气系统610开始,经过电磁两通比例阀601-1进入左前空气弹簧602、经过电磁两通比例阀601-2进入右前空气弹簧603、经过电磁两通比例阀601-3进入左后空气弹簧604、经过电磁两通比例阀601-4进入右后空气弹簧605。在此过程中,控制器611根据左前高度传感器606、右前高度传感器607、左后高度传感器608和右后高度传感器609反馈的实际车身高度,实时调整电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3和电磁两通比例阀601-4的开度至适当位置,保证流入左前空气弹簧602、右前空气弹簧603与流入左后空气弹簧604、右后空气弹簧605的空气流量适当,实现前轴 的车身高度和后轴的车身高度同步升高。
工作模式2:车身高度降低。
首先,控制器611控制电磁开关阀601-5打开,使电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3和电磁两通比例阀601-4的第一气道均与大气连通。其次,控制器611将电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3和电磁两通比例阀601-4的开度均调整至合适的初始位置,该初始位置可以由控制器611根据左前高度传感器606、右前高度传感器607、左后高度传感器608和右后高度传感器609测量的实际车身高度以及目标高度等信息计算得到;左前空气弹簧602内的高压气体流入电磁两通比例阀601-1,右前空气弹簧603内的高压气体流入电磁两通比例阀601-2,左后空气弹簧604内的高压气体流入电磁两通比例阀601-3,右后空气弹簧606内的高压气体流入电磁两通比例阀601-4,流入电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3和电磁两通比例阀601-4的气体经过电磁开关阀601-5排入大气中。在此过程中,控制器611根据左前高度传感器606、右前高度传感器607、左后高度传感器608和右后高度传感器609反馈的实际车身高度,实时调整电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3和电磁两通比例阀601-4的开度至适当位置,保证流出左前空气弹簧602、右前空气弹簧603与流出左后空气弹簧604、右后空气弹簧605的空气流量适当,实现前轴的车身高度和后轴的车身高度同步降低。
工作模式3:车身高度保持。
图13也为电控空气悬架系统在车身高度保持模式下的示意图。当车辆处于车身高度保持模式时,控制器611驱动电路不输出电流,则电磁两通比例阀601-1、电磁两通比例阀601-2、电磁两通比例阀601-3、电磁两通比例阀601-4和电磁开关阀601-5均处于关闭状态。此时,左前空气弹簧602、右前空气弹簧603、左后空气弹簧604和右后空气弹簧605均密闭,即可以保持车身高度不变。
需要说明的是,前文结合图5、图11和图13所描述的实施例是本申请实施例中电控空气悬架系统的具体实现方式的示例性说明,应当理解为电控空气悬架系统还可以具有其他实现方式,此处只是作出示例性说明,并不应理解为对本申请实施例进行限制。
请参阅图15,图15是本申请实施例提供的一种控制方法的流程示意图,该控制方法包括但不限于如下步骤:
S1:将至少一个电磁比例阀的开度调整为初始开度,所述至少一个电磁比例阀用于调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例,所述至少一个第一空气弹簧用于调节车辆前轴的车身高度,所述至少一个第二空气弹簧用于调节所述车辆后轴的车身高度;
S2:测量所述车辆前轴的车身高度和所述车辆后轴的车身高度;
S3:判断所述车辆前轴的车身高度和所述车辆后轴的车身高度是否等于目标高度;若所述车辆前轴的车身高度和所述车辆后轴的车身高度等于目标高度,则关闭所述至少一个电磁比例阀;否则执行步骤S4;
S4:判断所述车辆前轴的车身高度变化和所述车辆后轴的车身高度变化是否匹配;若所述车辆前轴的车身高度变化和所述车辆后轴的车身高度变化匹配,则返回执行步骤S2;否则,调整所述至少一个电磁比例阀的开度,并返回执行步骤S2。
需要说明的是,图15所描述的控制方法的各个步骤的描述还可以参照前述其他实施例的 相应描述。并且,图15所描述的控制方法带来的有益效果可以参照前述其他实施例的相应描述,此处不再重复描述。
请参阅图16,图16为本申请实施例提供的一种控制装置的结构示意图;该控制装置1600应用于控制器,该控制装置1600包括处理单元1601和通信单元1602,其中,该处理单元1601,用于执行如图13所示的方法实施例中的任一步骤,且在执行诸如获取等数据传输时,可选择的调用该通信单元1602来完成相应操作。下面进行详细说明。
该处理单元1601用于:S1:将至少一个电磁比例阀的开度调整为初始开度,所述至少一个电磁比例阀用于调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例,所述至少一个第一空气弹簧用于调节车辆前轴的车身高度,所述至少一个第二空气弹簧用于调节所述车辆后轴的车身高度;S2:测量所述车辆前轴的车身高度和所述车辆后轴的车身高度;S3:判断所述车辆前轴的车身高度和所述车辆后轴的车身高度是否等于目标高度;若所述车辆前轴的车身高度和所述车辆后轴的车身高度等于目标高度,则关闭所述至少一个电磁比例阀;否则执行步骤S4;S4:判断所述车辆前轴的车身高度变化和所述车辆后轴的车身高度变化是否匹配;若所述车辆前轴的车身高度变化和所述车辆后轴的车身高度变化匹配,则返回执行步骤S2;否则,调整所述至少一个电磁比例阀的开度,并返回执行步骤S2。
其中,该控制装置1600还可以包括存储单元1603,用于存储控制器的程序代码和数据。该处理单元1601可以是处理器,该通信单元1602可以收发器,该存储单元1603可以是存储器。
需要说明的是,图16所描述的控制装置1600的各个单元的实现还可以参照图15所示的方法实施例的相应描述。并且,图16所描述的控制装置1600带来的有益效果可以参照图15所示的方法实施例的相应描述,此处不再重复描述。
请参见图17,图17是本申请实施例提供的一种控制器1710的结构示意图,该控制器1710包括处理器1711、存储器1712和通信接口1713,上述处理器1711、存储器1712和通信接口1713通过总线1714相互连接。
存储器1712包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1712用于相关计算机程序及数据。通信接口1713用于接收和发送数据。
处理器1711可以是一个或多个中央处理器(central processing unit,CPU),在处理器1711是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该控制器1710中的处理器1711用于读取上述存储器1712中存储的计算机程序代码,执行图15所示的方法。
需要说明的是,图17所描述的控制器1710的各个操作的实现还可以参照图15所示的方法实施例的相应描述。并且,图17所描述的控制器1710带来的有益效果可以参照图15所示的方法实施例的相应描述,此处不再重复描述。
本申请实施例还提供了一种车辆,该车辆可以包括本申请实施例中的电控空气悬架系统。
本申请实施例还提供一种芯片,上述芯片包括至少一个处理器,存储器和接口电路,上述存储器、上述接口电路和上述至少一个处理器通过线路互联,上述至少一个存储器中存储 有计算机程序;上述计算机程序被上述处理器执行时,图15所示的方法流程得以实现。
本申请实施例还提供一种计算机可读存储介质,上述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,图15所示的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当上述计算机程序产品在计算机上运行时,图15所示的方法流程得以实现。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,上述单元的划分, 仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
上述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所示方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种电磁阀总成,其特征在于,应用于空气悬架系统,所述空气悬架系统包括至少一个第一空气弹簧和至少一个第二空气弹簧,所述至少一个第一空气弹簧用于调节车辆前轴的车身高度,所述至少一个第二空气弹簧用于调节所述车辆后轴的车身高度;
    所述电磁阀总成分别与所述至少一个第一空气弹簧和所述至少一个第二空气弹簧连接;
    所述电磁阀总成用于调节流入或流出所述至少一个第一空气弹簧的空气流量和所述至少一个第二空气弹簧的空气流量的比例。
  2. 根据权利要求1所述的电磁阀总成,其特征在于,所述电磁阀总成包括至少一个电磁比例阀,所述至少一个电磁比例阀用于调节流入或流出所述至少一个第一空气弹簧的空气流量和所述至少一个第二空气弹簧的空气流量的比例。
  3. 根据权利要求2所述的电磁阀总成,其特征在于,所述空气悬架系统还包括供气系统;
    所述至少一个电磁比例阀包括电磁三通比例阀,所述电磁三通比例阀的第一气道的空气流量为所述电磁三通比例阀的第二气道的空气流量与所述电磁三通比例阀的第三气道的空气流量的和;
    所述电磁三通比例阀的第一气道与所述供气系统和/或大气连接;
    所述电磁三通比例阀的第二气道与所述至少一个第一空气弹簧连接;
    所述电磁三通比例阀的第三气道与所述至少一个第二空气弹簧连接。
  4. 根据权利要求3所述的电磁阀总成,其特征在于,所述电磁阀总成还包括至少一个第一电磁开关阀和至少一个第二电磁开关阀;
    所述电磁三通比例阀的第二气道与所述至少一个第一电磁开关阀的第一气道连接,所述至少一个第一电磁开关阀的第二气道与所述至少一个第一空气弹簧对应连接;
    所述电磁三通比例阀的第三气道与所述至少一个第二电磁开关阀的第一气道连接,所述至少一个第二电磁开关阀的第二气道与所述至少一个第二空气弹簧对应连接。
  5. 根据权利要求3或4所述的电磁阀总成,其特征在于,所述电磁阀总成还包括第三电磁开关阀,所述第三电磁开关阀的第一气道与所述电磁三通比例阀的第一气道连接,所述第三电磁开关阀的第二气道与所述供气系统和/或大气连接。
  6. 根据权利要求3-5任一项所述的电磁阀总成,其特征在于,所述电磁三通比例阀为常闭阀。
  7. 根据权利要求2所述的电磁阀总成,其特征在于,所述空气悬架系统还包括供气系统;
    所述至少一个电磁比例阀包括第一电磁两通比例阀和第二电磁两通比例阀;
    所述第一电磁两通比例阀的第一气道和所述第二电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接;
    所述第一电磁两通比例阀的第二气道与所述至少一个第一空气弹簧连接;
    所述第二电磁两通比例阀的第二气道与所述至少一个第二空气弹簧连接。
  8. 根据权利要求7所述的电磁阀总成,其特征在于,所述电磁阀总成还包括至少一个第一电磁开关阀和至少一个第二电磁开关阀;
    所述第一电磁两通比例阀的第二气道与所述至少一个第一电磁开关阀的第一气道连接,所述至少一个第一电磁开关阀的第二气道与所述至少一个第一空气弹簧对应连接;
    所述第二电磁两通比例阀的第二气道与所述至少一个第二电磁开关阀的第一气道连接,所述至少一个第二电磁开关阀的第二气道与所述至少一个第二空气弹簧对应连接。
  9. 根据权利要求7或8所述的电磁阀总成,其特征在于,所述电磁阀总成还包括第三电磁开关阀,所述第三电磁开关阀的第一气道分别与所述第一电磁两通比例阀的第一气道和所述第二电磁两通比例阀的第一气道连接,所述第三电磁开关阀的第二气道与所述供气系统和/或大气连接。
  10. 根据权利要求7-9任一项所述的电磁阀总成,其特征在于,所述第一电磁两通比例阀和所述第二电磁两通比例阀为常闭阀。
  11. 根据权利要求2所述的电磁阀总成,其特征在于,所述空气悬架系统还包括供气系统;
    所述至少一个第一空气弹簧包括第一空气弹簧L和第一空气弹簧R,所述至少一个第二空气弹簧包括第二空气弹簧L和第二空气弹簧R;
    所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀、第三电磁两通比例阀和第四电磁两通比例阀;
    所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道、所述第三电磁两通比例阀的第一气道和所述第四电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接;
    所述第一电磁两通比例阀的第二气道与所述第一空气弹簧L连接;
    所述第二电磁两通比例阀的第二气道与所述第二空气弹簧L连接;
    所述第三电磁两通比例阀的第二气道与所述第一空气弹簧R连接;
    所述第四电磁两通比例阀的第二气道与所述第二空气弹簧R连接。
  12. 根据权利要求2所述的电磁阀总成,其特征在于,所述空气悬架系统还包括供气系统;
    所述至少一个第一空气弹簧包括第一空气弹簧L和第一空气弹簧R,所述至少一个第二空气弹簧包括第二空气弹簧L和第二空气弹簧R;
    所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀和第三电磁两通比例阀,所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道和所述第三电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接,所述第一电磁两通比例阀的第二气道与所述第一空气弹簧L连接,所述第三电磁两通比例阀的第二气道与所述第一空气弹簧R连接,所述第二电磁两通比例阀的第二气道分别与所述第二空气弹簧L和所述第二空气弹簧R连接;
    或,所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀和第四电磁两通比例阀,所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道和所述第四电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接,所述第一电磁两 通比例阀的第二气道分别与所述第一空气弹簧L和所述第一空气弹簧R连接,所述第二电磁两通比例阀的第二气道与所述第二空气弹簧L连接,所述第四电磁两通比例阀的第二气道与所述第二空气弹簧R连接。
  13. 根据权利要求2所述的电磁阀总成,其特征在于,所述空气悬架系统还包括供气系统;
    所述至少一个第一空气弹簧包括第一空气弹簧L和第一空气弹簧R,所述至少一个第二空气弹簧为一个第二空气弹簧,所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀和第三电磁两通比例阀,所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道和所述第三电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接,所述第一电磁两通比例阀的第二气道与所述第一空气弹簧L连接,所述第三电磁两通比例阀的第二气道与所述第一空气弹簧R连接,所述第二电磁两通比例阀的第二气道与所述一个第二空气弹簧连接;
    或,所述至少一个第一空气弹簧为一个第一空气弹簧,所述至少一个第二空气弹簧包括第二空气弹簧L和第二空气弹簧R,所述至少一个电磁比例阀包括第一电磁两通比例阀、第二电磁两通比例阀和第四电磁两通比例阀,所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道和所述第四电磁两通比例阀的第一气道分别与所述供气系统和/或大气连接,所述第一电磁两通比例阀的第二气道与所述一个第一空气弹簧连接,所述第二电磁两通比例阀的第二气道与所述第二空气弹簧L连接,所述第四电磁两通比例阀的第二气道与所述第二空气弹簧R连接。
  14. 根据权利要求11-13任一项所述的电磁阀总成,其特征在于,所述电磁阀总成还包括第三电磁开关阀,所述第三电磁开关阀的第一气道分别与所述第一电磁两通比例阀的第一气道、所述第二电磁两通比例阀的第一气道、所述第三电磁两通比例阀的第一气道和所述第四电磁两通比例阀的第一气道连接,所述第三电磁开关阀的第二气道与所述供气系统和/或大气连接。
  15. 根据权利要求11-14任一项所述的电磁阀总成,其特征在于,所述第一电磁两通比例阀、所述第二电磁两通比例阀、所述第三电磁两通比例阀和所述第四电磁两通比例阀为常闭阀。
  16. 一种空气悬架系统,其特征在于,包括权利要求1-15任一项所述的电磁阀总成。
  17. 一种车辆,其特征在于,包括权利要求16所述的空气悬架系统。
  18. 一种控制方法,其特征在于,包括:
    S1:将至少一个电磁比例阀的开度调整为初始开度,所述至少一个电磁比例阀用于调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例,所述至少一个第一空气弹簧用于调节车辆前轴的车身高度,所述至少一个第二空气弹簧用于调节所述车辆后轴的车身高度;
    S2:测量所述车辆前轴的车身高度和所述车辆后轴的车身高度;
    S3:判断所述车辆前轴的车身高度和所述车辆后轴的车身高度是否等于目标高度;若所述车辆前轴的车身高度和所述车辆后轴的车身高度等于目标高度,则关闭所述至少一个电磁 比例阀;否则执行步骤S4;
    S4:判断所述车辆前轴的车身高度变化和所述车辆后轴的车身高度变化是否匹配;若所述车辆前轴的车身高度变化和所述车辆后轴的车身高度变化匹配,则返回执行步骤S2;否则,调整所述至少一个电磁比例阀的开度,并返回执行步骤S2。
  19. 一种控制装置,其特征在于,包括:
    处理单元,用于:
    S1:将至少一个电磁比例阀的开度调整为初始开度,所述至少一个电磁比例阀用于调节流入或流出至少一个第一空气弹簧的空气流量和至少一个第二空气弹簧的空气流量的比例,所述至少一个第一空气弹簧用于调节车辆前轴的车身高度,所述至少一个第二空气弹簧用于调节所述车辆后轴的车身高度;
    S2:测量所述车辆前轴的车身高度和所述车辆后轴的车身高度;
    S3:判断所述车辆前轴的车身高度和所述车辆后轴的车身高度是否等于目标高度;若所述车辆前轴的车身高度和所述车辆后轴的车身高度等于目标高度,则关闭所述至少一个电磁比例阀;否则执行步骤S4;
    S4:判断所述车辆前轴的车身高度变化和所述车辆后轴的车身高度变化是否匹配;若所述车辆前轴的车身高度变化和所述车辆后轴的车身高度变化匹配,则返回执行步骤S2;否则,调整所述至少一个电磁比例阀的开度,并返回执行步骤S2。
  20. 一种控制器,其特征在于,包括处理器、存储器,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行权利要求18所述的方法中的步骤的指令。
  21. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行权利要求18所述的方法。
  22. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行权利要求18所述的方法。
  23. 一种计算机程序,所述计算机程序使得计算机执行权利要求18所述的方法。
PCT/CN2021/121470 2021-09-28 2021-09-28 电磁阀总成、空气悬架系统、车辆、控制方法及相关设备 WO2023050095A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180033426.5A CN116194310A (zh) 2021-09-28 2021-09-28 电磁阀总成、空气悬架系统、车辆、控制方法及相关设备
PCT/CN2021/121470 WO2023050095A1 (zh) 2021-09-28 2021-09-28 电磁阀总成、空气悬架系统、车辆、控制方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121470 WO2023050095A1 (zh) 2021-09-28 2021-09-28 电磁阀总成、空气悬架系统、车辆、控制方法及相关设备

Publications (1)

Publication Number Publication Date
WO2023050095A1 true WO2023050095A1 (zh) 2023-04-06

Family

ID=85780990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121470 WO2023050095A1 (zh) 2021-09-28 2021-09-28 电磁阀总成、空气悬架系统、车辆、控制方法及相关设备

Country Status (2)

Country Link
CN (1) CN116194310A (zh)
WO (1) WO2023050095A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1228905A2 (en) * 2001-02-05 2002-08-07 Hino Motors, Ltd. Vehicle height adjustment device
US20090033055A1 (en) * 2007-07-31 2009-02-05 Hendrickson Usa, L.L.C. Pneumatic proportioning system for vehicle air springs
CN112046533A (zh) * 2020-09-18 2020-12-08 中车青岛四方机车车辆股份有限公司 轨道车辆倾摆系统、倾摆控制方法及轨道车辆
CN112805162A (zh) * 2018-08-29 2021-05-14 日立安斯泰莫株式会社 悬架装置
CN112976981A (zh) * 2019-12-17 2021-06-18 大陆-特韦斯贸易合伙股份公司及两合公司 用于运行空气悬架系统的方法和空气悬架系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1228905A2 (en) * 2001-02-05 2002-08-07 Hino Motors, Ltd. Vehicle height adjustment device
US20090033055A1 (en) * 2007-07-31 2009-02-05 Hendrickson Usa, L.L.C. Pneumatic proportioning system for vehicle air springs
CN112805162A (zh) * 2018-08-29 2021-05-14 日立安斯泰莫株式会社 悬架装置
CN112976981A (zh) * 2019-12-17 2021-06-18 大陆-特韦斯贸易合伙股份公司及两合公司 用于运行空气悬架系统的方法和空气悬架系统
CN112046533A (zh) * 2020-09-18 2020-12-08 中车青岛四方机车车辆股份有限公司 轨道车辆倾摆系统、倾摆控制方法及轨道车辆

Also Published As

Publication number Publication date
CN116194310A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
CN105228841B (zh) 车辆用悬架系统
CN106240629B (zh) 用于车辆的前束优化系统
CN102390231B (zh) 一种车姿调节系统轮胎载荷控制方法
CN106965639A (zh) 车高调整系统
CN112124028B (zh) 一种电控空气悬架系统及其控制方法和系统、电控单元
CN109606055B (zh) 一种空气悬架系统及方法和安装该系统的车辆
US20180222275A1 (en) Vehicle suspension control system and method of operation thereof
US20190176562A1 (en) Vehicle-height control system
CN104097482B (zh) 汽车ecas控制方法和装置
CN105501021A (zh) 一种汽车底盘高度调控装置及其控制方法
JPH0649447Y2 (ja) 車両のエアサスペンシヨン用回路
CN106564486A (zh) 一种基于混合动力的全液压abs制动系统及其制动方法
CN101670765B (zh) 一种双体车可倾斜悬架系统
CN105946497A (zh) 整车姿态控制方法
CN104999881A (zh) 一种双模式可切换的主动控制悬架
CN105857007A (zh) 一种复合式互联空气悬架及其互联模式控制方法
WO2023050095A1 (zh) 电磁阀总成、空气悬架系统、车辆、控制方法及相关设备
CN104149573B (zh) 一种自主升降的空气悬架调平控制系统
CN208931063U (zh) 一种客车空气悬架车高控制系统
CN107089109A (zh) 一种液压互联悬架管路连接模式切换装置及控制方法
WO2023020138A1 (zh) 车辆悬架特性调节方法、装置、设备、介质及程序产品
CN112092686A (zh) 基于乘员与座椅贴合度的自适应座椅舒适系统及调节方法
CN109466270A (zh) 用于车辆的并行调平系统
CN203020005U (zh) 多轴转向系统载荷调整结构及汽车
CN207842580U (zh) 一种iahc智能电控悬架系统以及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958690

Country of ref document: EP

Kind code of ref document: A1