WO2022056979A1 - Catalyseur à plasma de surface non-métallique et son procédé de préparation et son application - Google Patents

Catalyseur à plasma de surface non-métallique et son procédé de préparation et son application Download PDF

Info

Publication number
WO2022056979A1
WO2022056979A1 PCT/CN2020/121111 CN2020121111W WO2022056979A1 WO 2022056979 A1 WO2022056979 A1 WO 2022056979A1 CN 2020121111 W CN2020121111 W CN 2020121111W WO 2022056979 A1 WO2022056979 A1 WO 2022056979A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ti3c2
preparation
catalyst
photocatalytic
Prior art date
Application number
PCT/CN2020/121111
Other languages
English (en)
Chinese (zh)
Inventor
黄少斌
曾功昶
曾和平
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2022056979A1 publication Critical patent/WO2022056979A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to the field of photocatalytic water hydrogen production and the field of photocatalytic environmental protection, in particular to a Ti3C2(MXene)/Cd0.5Zn0.5S catalyst with a special structure assembled by non-metal surface plasmon Ti3C2(MXene) and its application in photocatalytic water (including seawater) hydrogen production, photocatalytic degradation of organic matter in water, removal of volatile organic compounds and odorous organic matter.
  • Hydrogen energy as a clean and non-polluting energy source, has attracted more and more people's attention. Hydrogen has the following characteristics: good thermal conductivity, easy recovery, good combustion performance, low loss, environmental friendliness, non-corrosive product water, and high energy per unit mass.
  • One of the main factors restricting the development of hydrogen energy is the high cost of hydrogen.
  • the main hydrogen production methods include traditional energy hydrogen production (coal hydrogen production, natural gas hydrogen production), renewable energy hydrogen production, water electrolysis hydrogen production and industrial by-product hydrogen.
  • the present invention proposes the preparation and application of a non-metallic surface plasmon Ti3C2(MXene)/Cd0.5Zn0.5S photocatalyst.
  • the Cd0.5Zn0.5S photocatalyst due to the non-metallic surface plasmon Ti3C2 (MXene) extending the absorption response to sunlight, effectively separates photogenerated electrons and holes, which can strengthen the photocatalytic hydrogen production reaction.
  • a preparation method of a non-metallic surface plasma catalyst comprising the following steps: dispersing Cd0.5Zn0.5S and Ti3C2 in water, then performing a hydrothermal reaction in a protective atmosphere, and washing after the reaction to obtain Ti3C2/Cd0.5Zn0 .5S, and dried to obtain a non-metallic surface plasmon catalyst.
  • the content of the Ti3C2 in the catalyst is 1-7wt%.
  • the content of the Ti3C2 in the catalyst is 5 ⁇ 1wt%.
  • the conditions of the hydrothermal reaction are: 150-200° C. for 12-24 hours.
  • the preparation of the Ti3C2 take Ti3AlC2, add hydrofluoric acid, the mass ratio of which is 1:10-200, and react for 3 to 4 days, so that the aluminum in the Ti3AlC2 is dissolved; then filter and separate, and wash until neutral. .
  • the preparation of the Cd0.5Zn0.5S take equimolar zinc acetate and cadmium acetate, stir in water for 30-60 minutes, add thioacetamide and ethylenediamine, and then add enough water to carry out water Thermal reaction, the reaction conditions are 180-220 DEG C for 12-24 hours, and then washed with deionized water to obtain Cd0.5Zn0.5S.
  • non-metallic surface plasmon catalyst prepared by the above method in photocatalytic water production of hydrogen, or photocatalytic degradation of organic substances in water, removal of volatile organic substances and malodorous organic substances.
  • the catalyst is dispersed in water and exposed to light for at least 30 minutes; the water is fresh water or sea water.
  • Na 2 SO 4 and Na 2 S are used as sacrificial agents in the photocatalytic water-to-hydrogen production, and the illumination wavelength is ⁇ 420 nm.
  • the present invention has the following beneficial effects:
  • Ti3C2(MXene)/Cd0.5Zn0.5S can reduce the energy required to excite electrons, and the photoresponse extends to the visible light region and the infrared light region, so the present invention proposes a non-metallic surface plasmon Ti3C2(MXene)/Cd0.
  • 5Zn0.5S is used in photocatalytic water hydrogen production reaction, especially in the infrared region, it also has good activity.
  • Non-metallic surface plasmon Ti3C2(MXene)/Cd0.5Zn0.5S photocatalyst used in photocatalytic water (including seawater) to produce hydrogen, degrade organic compounds in water, remove volatile organic compounds and odorous organic compounds; non-metallic surface plasmon Ti3C2 (MXene) has good electrical conductivity and can form a Schottky barrier with the surface of the semiconductor Cd0.5Zn0.5S.
  • the electrons generated on the semiconductor reach the non-metallic surface plasmon Ti3C2 (MXene) through the Schotten interface, so the electrons It is enriched on the non-metal surface plasmon Ti3C2 (MXene), and the holes are enriched on the semiconductor, which inhibits the recombination of electrons and holes.
  • Promote photocatalytic water (including seawater) hydrogen production reaction degrade organic compounds in water, and remove volatile organic compounds and odorous organic compounds.
  • Fig. 1 is the XRD pattern of Example 1-3Cd0.5Zn0.5S, JCPDS NO.01-089-2943, Ti3C2/Cd0.5Zn0.5S.
  • Figure 2 shows the photocatalytic stability of 5wt% Ti3C2/Cd0.5Zn0.5S.
  • Figure 3 is the HRTEM pattern of Ti3C2, Cd0.5Zn0.5S, 5wt% Ti3C2/Cd0.5Zn0.5S.
  • Figure 4 is a graph showing the effect of different proportions of Ti3C2-Cd0.5Zn0.5S on hydrogen production in seawater and freshwater, respectively.
  • Figure 5 is the photocurrent spectra of different ratios of Ti3C2-Cd0.5Zn0.5S.
  • Figure 6 is the impedance spectra of different ratios of Ti3C2-Cd0.5Zn0.5S.
  • Figure 7 is a static-fluorescence image of different ratios of Ti3C2-Cd0.5Zn0.5S.
  • Figure 8 is the effect diagram of 5wt% Ti3C2/Cd0.5Zn0.5S and the reported photocatalyst applied to hydrogen production in seawater.
  • Figure 9 is a spectrum of non-metallic surface plasmon effects.
  • Figure 10 is the effect diagram of the physical mixing of Ti3C2 and Cd0.5Zn0.5S and the single Cd0.5Zn0.5S hydrogen production in fresh water.
  • Figure 11 is a UV diffuse reflectance map of 5% Ti3C2/Cd0.5Zn0.5S and Cd0.5Zn0.5S.
  • Figure 12 is a Raman pattern of 5% Ti3C2/Cd0.5Zn0.5S and Cd0.5Zn0.5S.
  • Ti3AlC2 Take 1.0 g of Ti3AlC2, add 150 ml of hydrofluoric acid, and react for 4 days to dissolve the aluminum in Ti3AlC2. It is then separated by filtration and washed with deionized water to make the washings neutral. Freeze-dried for 2 days to obtain Ti3C2 powder.
  • the photocurrent spectrum of Figure 5 shows that when Ti3C2 and Cd0.5Zn0.5S are used to synthesize new materials, the photogenerated current density can be significantly increased, and a large number of electrons are generated to facilitate the photocatalytic effect.
  • the impedance value is mainly determined by the exchange resistance of electrons and holes and the transfer resistance of electrons or holes.
  • the reactivity of electrons and holes can be significantly improved, and the mobility of electrons or holes in the material can be improved, which is beneficial to the effect of photocatalysis.
  • Figure 7 shows the static-fluorescence graph.
  • the fluorescence excitation intensity can evaluate the ability of electron-hole re-polymerization inside the material.
  • the tendency of electron-hole re-polymerization is obviously reduced. Thereby, it is beneficial to the effect of photocatalysis.
  • Figures 7 and 5, and the experimental results in Figure 6 are consistent, which further verifies the high efficiency of the new materials synthesized by Ti3C2 and Cd0.5ZN0.5S in photocatalysis.
  • the solid circle in Fig. 9 is Ti3C2.
  • the plasma electric field around Ti3C2 is simulated by finite element calculation. Deepened areas all indicate a strong electric field. This figure proves that non-metallic Ti3C2 also has surface plasmon effects from the theoretical calculation and simulation.
  • Figure 11 is a UV diffuse reflectance map to demonstrate that the as-synthesized 5%Ti3C2/Cd0.5Zn0.5S and Cd0.5zn0.5S still have spectral absorption starting from a wavelength of about 510 nm. ability.
  • the upward trajectory of the 5%Ti3C2/Cd0.5Zn0.5S spectrum shows an obvious surface plasmon phenomenon compared to the downward trajectory of the Cd0.5Zn0.5S spectrum.
  • Figure 12 is the comparison of the Raman spectra of the two. Because the surface plasmon has the effect of Raman enhancement, the newly synthesized 5%Ti3C2/Cd0.5Zn0.5S has a stronger Raman phenomenon than Cd0.5Zn0.5S .
  • Example 4 Photocatalytic hydrogen production from water with different percentages of Ti3C2(MXene)/Cd0.5Zn0.5S
  • GC7900 online gas chromatograph
  • Example 5 Photocatalytic hydrogen production from seawater by Ti3C2(MXene)/Cd0.5Zn0.5S
  • Example 6 Photocatalytic degradation of organic matter in water by Ti3C2(MXene)/Cd0.5Zn0.5S
  • Example 7 Photocatalytic removal of volatile organic compounds and malodorous organic compounds by Ti3C2(MXene)/Cd0.5Zn0.5S

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

La présente invention concerne le domaine de la production d'hydrogène photocatalytique à partir de l'eau et le domaine de la protection environnementale photocatalytique. L'invention concerne un catalyseur à plasma de surface non métallique, ainsi qu'un procédé de préparation et une application associée. Le procédé de préparation comprend les étapes suivantes : la dispersion de Cd0.5Zn0.5S et de Ti3C2 dans l'eau, puis la réalisation d'une réaction hydrothermique dans une atmosphère protectrice, le lavage après que la réaction a été achevée pour obtenir du Ti3C2/Cd0.5Zn0.5S, et le séchage pour obtenir le catalyseur à plasma de surface non métallique. Le catalyseur de la présente invention est appliqué à la production d'hydrogène photocatalytique à partir d'eau (comprenant de l'eau de mer), la dégradation de matières organiques dans l'eau et l'élimination des matières organiques volatiles et des matières organiques encrassées, et présente les avantages d'être large dans une plage de photoréponse, étant capable de séparer efficacement des électrons photo-induits et des paires de trous, et ayant une activité photocatalytique élevée.
PCT/CN2020/121111 2020-09-21 2020-10-15 Catalyseur à plasma de surface non-métallique et son procédé de préparation et son application WO2022056979A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010994915.4 2020-09-21
CN202010994915.4A CN112246263B (zh) 2020-09-21 2020-09-21 一种非金属表面等离子体催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022056979A1 true WO2022056979A1 (fr) 2022-03-24

Family

ID=74232466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121111 WO2022056979A1 (fr) 2020-09-21 2020-10-15 Catalyseur à plasma de surface non-métallique et son procédé de préparation et son application

Country Status (2)

Country Link
CN (1) CN112246263B (fr)
WO (1) WO2022056979A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804021A (zh) * 2022-04-29 2022-07-29 江苏大学 一种基于羟基化合物光催化材料分解水制备氢气的方法
CN114843700A (zh) * 2022-04-18 2022-08-02 西南交通大学 一种高度有序端基化MXene及其制备方法和应用
CN115282987A (zh) * 2022-08-18 2022-11-04 哈尔滨理工大学 一种高效人工光合光催化材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112387264B (zh) * 2020-11-16 2022-02-08 西南石油大学 一种基于等离子体处理TiO2的方法、改性TiO2光催化剂及应用
CN116273060A (zh) * 2023-03-01 2023-06-23 常州大学 一种硫化锌镉和碳化钛复合光催化剂的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607175A (zh) * 2015-01-15 2015-05-13 福建师范大学 一种光催化降解水中抗生素的催化剂及其制备方法和应用
CN106582887A (zh) * 2016-12-12 2017-04-26 南京工业大学 一种基于金属有机框架材料的新型催化剂及其制备方法和应用
CN107159286A (zh) * 2017-05-18 2017-09-15 深圳大学 一种Ti3C2/TiO2二维材料的制备方法
CN109433237A (zh) * 2018-12-07 2019-03-08 济南大学 一种TiO2-Ti3C2-CoSx纳米晶体光催化剂及其制备方法
CN110624595A (zh) * 2019-10-15 2019-12-31 中国计量大学 一种钙铟硫/碳化钛光催化复合材料及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104556221A (zh) * 2014-12-05 2015-04-29 常州轻工职业技术学院 一种TiO2/片层石墨纳米复合材料及其制备方法
CN104495918B (zh) * 2014-12-23 2016-05-25 陕西科技大学 颗粒状二氧化钛/二维纳米碳化钛复合材料的制备方法
CN104941621B (zh) * 2015-05-26 2018-05-15 华南理工大学 一种高效降解抗生素的复合光催化剂及其制备方法与应用
CN105363483A (zh) * 2015-12-09 2016-03-02 陕西科技大学 一种二氧化钛纳米线/二维层状碳化钛复合材料的制备方法
CN106268610A (zh) * 2016-10-11 2017-01-04 东南大学 一种二维碳化钛吸附材料的制备方法
CN110064424A (zh) * 2019-04-11 2019-07-30 中国计量大学 一种卤氧化铋/碳化钛光催化复合材料及其制备方法
CN110124706B (zh) * 2019-06-04 2022-03-25 常州大学 碳化钛/硫化铟锌复合可见光催化剂的制备方法
CN110773208B (zh) * 2019-10-25 2021-09-21 华南理工大学 一种FexP/Cd0.5Zn0.5S光催化剂及其制备方法与应用
CN110841676A (zh) * 2019-11-22 2020-02-28 陕西科技大学 一种碳化钛-氧化亚铜光催化材料及制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607175A (zh) * 2015-01-15 2015-05-13 福建师范大学 一种光催化降解水中抗生素的催化剂及其制备方法和应用
CN104607175B (zh) * 2015-01-15 2017-01-18 福建师范大学 一种光催化降解水中抗生素的催化剂及其制备方法和应用
CN106582887A (zh) * 2016-12-12 2017-04-26 南京工业大学 一种基于金属有机框架材料的新型催化剂及其制备方法和应用
CN107159286A (zh) * 2017-05-18 2017-09-15 深圳大学 一种Ti3C2/TiO2二维材料的制备方法
CN109433237A (zh) * 2018-12-07 2019-03-08 济南大学 一种TiO2-Ti3C2-CoSx纳米晶体光催化剂及其制备方法
CN110624595A (zh) * 2019-10-15 2019-12-31 中国计量大学 一种钙铟硫/碳化钛光催化复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GANCHENG ZUO; YUTING WANG; WEI LIANG TEO; AMING XIE; YANG GUO; YUXUAN DAI; WEIQIANG ZHOU; DEBLIN JANA; QIMING XIAN; WEI DONG; YANL: "Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution", ANGEWANDTE CHEMIE, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 132, no. 28, 7 May 2020 (2020-05-07), DE , pages 11383 - 11388, XP071381813, ISSN: 0044-8249, DOI: 10.1002/ange.202002136 *
RAN JINGRUN, GAO GUOPING, LI FA-TANG, MA TIAN-YI, DU AIJUN, QIAO SHI-ZHANG: "Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production", NATURE COMMUNICATIONS, vol. 8, no. 1, 1 April 2017 (2017-04-01), XP055911652, DOI: 10.1038/ncomms13907 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843700A (zh) * 2022-04-18 2022-08-02 西南交通大学 一种高度有序端基化MXene及其制备方法和应用
CN114804021A (zh) * 2022-04-29 2022-07-29 江苏大学 一种基于羟基化合物光催化材料分解水制备氢气的方法
CN114804021B (zh) * 2022-04-29 2024-05-28 江苏大学 一种基于羟基化合物光催化材料分解水制备氢气的方法
CN115282987A (zh) * 2022-08-18 2022-11-04 哈尔滨理工大学 一种高效人工光合光催化材料及其制备方法

Also Published As

Publication number Publication date
CN112246263B (zh) 2022-04-22
CN112246263A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2022056979A1 (fr) Catalyseur à plasma de surface non-métallique et son procédé de préparation et son application
Li et al. Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production
Liu et al. Facile strategy to fabricate Ni2P/g-C3N4 heterojunction with excellent photocatalytic hydrogen evolution activity
Moakhar et al. One-pot microwave synthesis of hierarchical C-doped CuO dandelions/g-C3N4 nanocomposite with enhanced photostability for photoelectrochemical water splitting
Wang et al. Fabrication of noble-metal-free CdS nanorods-carbon layer-cobalt phosphide multiple heterojunctions for efficient and robust photocatalyst hydrogen evolution under visible light irradiation
Yuan et al. A copper (I) dye-sensitised TiO 2-based system for efficient light harvesting and photoconversion of CO 2 into hydrocarbon fuel
CN112521618B (zh) 一种铋基金属有机框架材料及其制备方法和应用
JP5374704B2 (ja) 光物理化学電池
Hong et al. 2D Ti3C2 decorated Z-scheme BiOIO3/g-C3N4 heterojunction for the enhanced photocatalytic CO2 reduction activity under visible light
Zheng et al. ZnCdS/NiAl hydrotalcite S-scheme heterojunction for efficient photocatalytic hydrogen evolution
Fang et al. Graphitic carbon nitride-stabilized CdS@ CoS nanorods: an efficient visible-light-driven photocatalyst for hydrogen evolution with enhanced photo-corrosion resistance
CN102861597B (zh) 一种响应可见光的光解水制氢催化剂及其制备方法
CN111389442A (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
Zhu et al. CO2 reduction to formic acid via NH2-C@ Cu2O photocatalyst in situ derived from amino modified Cu-MOF
CN109201115B (zh) 一种光催化产氢催化剂及其制备方法和用途
CN106006720B (zh) 一种制备SnS/SnS2异质结材料的方法及应用
CN106222685A (zh) 一种光电催化水分解用的wo3‑ldh复合薄膜的制备方法
CN110652988B (zh) 超细双金属硫化物微球负载NiS薄膜的制备方法及其应用
CN113019459B (zh) 一种二氧化钛卟啉基共价有机框架复合材料及其制备方法和应用
CN111957354A (zh) 一种氧缺陷二氧化钛/TpPa-1-COF异质结光催化剂的制备方法
CN112427045A (zh) 一种水热法合成的具有Z型异质结CdS/g-C3N4复合光催化剂材料的制备方法
CN112439416A (zh) 一种高分散铜负载二氧化钛纳米片的制备方法及其应用
CN108704645B (zh) 一种铜-氧化钛复合光催化剂及其制备方法与应用
CN113289659B (zh) 磺酸基官能团改性氮化碳光催化材料的制备方法及应用
Wang et al. Stability of Photocathodes: A Review on Principles, Design, and Strategies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20953836

Country of ref document: EP

Kind code of ref document: A1