CN111389442A - 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用 - Google Patents

负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用 Download PDF

Info

Publication number
CN111389442A
CN111389442A CN202010313573.5A CN202010313573A CN111389442A CN 111389442 A CN111389442 A CN 111389442A CN 202010313573 A CN202010313573 A CN 202010313573A CN 111389442 A CN111389442 A CN 111389442A
Authority
CN
China
Prior art keywords
composite material
foamed nickel
nickel
loaded
material loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010313573.5A
Other languages
English (en)
Other versions
CN111389442B (zh
Inventor
路建美
李娜君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202010313573.5A priority Critical patent/CN111389442B/zh
Publication of CN111389442A publication Critical patent/CN111389442A/zh
Priority to US17/624,313 priority patent/US20220355286A1/en
Priority to PCT/CN2020/142581 priority patent/WO2021212923A1/zh
Application granted granted Critical
Publication of CN111389442B publication Critical patent/CN111389442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • B01J25/02Raney nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/847Nickel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载于泡沫镍表面的P‑N异质结复合材料及其制备方法与应用,为可用于光电催化去除水体中污染物的负载型催化剂。首先通过水热的方法在表面洁净的泡沫镍表面修饰层状镍铁双金属氢氧化物纳米片;然后通过混合溶剂热的方式在层状镍铁双金属氢氧化物纳米片的表面修饰四氧化三钴纳米线,得到负载于泡沫镍表面的P‑N异质结催化剂复合材料(Ni foam@NiFe‑LDH/Co3O4)。该复合材料对可见光具有良好的响应,可大大增强材料对光的吸收和利用率,进而有利于增强催化剂的性能。

Description

负载于泡沫镍表面的P-N异质结复合材料及其制备方法与 应用
技术领域
本发明涉及纳米复合材料及光电催化技术领域,具体涉及一种负载于泡沫镍上的二维层状镍铁双金属氢氧化物纳米片和一维四氧化三钴纳米线P-N异质结复合材料的制备方法及其用于光电催化有效去除水体中污染物的应用。
背景技术
近年来,随着科技进步和经济发展,人们的生活水平达到了一个新高度,但也带来了能源短缺与环境污染等问题。如何合理利用已有资源消除环境污染并很好的保护环境是目前需要关注的问题。以半导体材料为核心的光催化技术为我们提供了一种较理想的污染治理思路,其本质是利用廉价、清洁和无穷尽的太阳光能为能源,在污染体系中加入催化剂,当半导体催化剂吸收能量等于或大于其带隙能的光子时,产生光生载流子,进而形成各种不同种类的活性物质,这些活性物质中具有氧化性质的可以降解有机污染物使其分解直到矿化,而具有还原性质的物质可以用于处理环境中的重金属离子。在此过程中,光催化剂受光激发产生活性物质和活性物质与环境污染物的反应是光催化技术应用的基础和关键。但是,目前大多数光催化剂的催化效率远远达不到实际应用的需求,其主要缺陷集中在催化剂对光的吸收和利用范围,光生载流子的分离和迁移,以及催化剂的稳定性和重复利用等问题上。因此,目前围绕半导体光催化技术的研究热点主要集中在解决上述问题上。
发明内容
本发明的目的是提供一种负载于泡沫镍表面的P-N异质结催化剂复合材料(Nifoam@NiFe-LDH/Co3O4)及其制备方法,构建可见光响应的光催化复合材料,并通过光电催化的方法实现水体中污染物的有效去除。本发明构建了一种负载型具有可见光响应的P-N异质结复合材料,在半导体复合材料的内部形成内建电场加速了光生载流子的迁移速率,进而可以避免光生载流子的复合而增强催化活性,与此同时,该负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4)可直接用作光阳极,应用于光电催化反应,在外加电场的驱动下将光生电子转移至对电极,更进一步增强了光生载流子的分离。综上所述,这一设计不仅提高了材料对光的吸收和利用,也有利于光生载流子的分离、迁移,同时光电催化的方式可进一步增进催化活性。在催化性能方面,上述制备的复合材料表现出对污染物的有效去除,且由于P-N异质结催化剂负载于宏观泡沫镍表面,在实际的催化过程中表现出便利且良好的分离效果。
为了达到上述目的,本发明采用如下具体技术方案:
一种负载于泡沫镍表面的P-N异质结复合材料(Ni foam@NiFe-LDH/Co3O4)及其制备方法,包括以下步骤,采用混合溶剂热的方法在负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片表面修饰一维四氧化三钴纳米线,得到负载于泡沫镍表面的P-N异质结复合材料(Ni foam@NiFe-LDH/Co3O4),可作为催化剂。
本发明公开了光电催化净化水体中的污染物的方法,包括以下步骤,采用混合溶剂热的方法在负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片表面修饰一维四氧化三钴纳米线,得到负载于泡沫镍表面的P-N异质结复合材料;将负载于泡沫镍表面的P-N异质结复合材料加入含有污染物的水体中,光催化和/或电催化,完成水体中的污染物的净化。
本发明中,光催化为可见光催化;电催化在电化学工作站进行。两种催化具体的操作方法都是常规技术,本发明创造性在于公开了负载于泡沫镍表面的P-N异质结复合材料(Ni foam@NiFe-LDH/Co3O4)作为催化剂净化水体中的污染物。
本发明进一步公开了上述负载于泡沫镍表面的P-N异质结复合材料(Ni foam@NiFe-LDH/Co3O4)作为催化剂在净化水体中污染物的应用。
水体中的污染物可以为无机物还可以为有机物,比如铬离子、油、有机溶剂、双酚化合物等。
本发明中,以泡沫镍为载体,通过水热法在泡沫镍的表面修饰层状镍铁双金属氢氧化物纳米片,得到负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片;具体的,将前驱体溶液与泡沫镍混合,然后120~180 ℃下水热反应20~30 h,得到层状镍铁双金属氢氧化物纳米片,负载于泡沫镍的表面;前驱体溶液由镍盐、铁盐、水、尿素组成,优选的,镍盐为六水合硝酸镍、铁盐为九水合硝酸铁;进一步的,前驱体溶液中,二价金属离子Ni2+与三价金属离子Fe3+的摩尔比为2:1,尿素的摩尔数为二价金属离子Ni2+与三价金属离子Fe3+摩尔数总和的3.8~4.2倍,优选4倍。
本发明中,将层状镍铁双金属氢氧化物纳米片与含钴溶液混合,然后80~100 ℃下水热反应6~10 h,再热处理,得到负载于泡沫镍表面的P-N异质结复合材料;含钴溶液由水、乙醇、钴盐、尿素组成,优选的,钴盐为六水合硝酸钴;进一步的,水和乙醇的体积比为1:1,尿素和钴盐的摩尔比为4:1;优选的,钴盐的浓度为0.003~0.008g/mL ,优选0.004~0.005g/mL;热处理为在空气气氛下于250℃下保温1.5~2.5 h,优选2h。
本发明以宏观材料泡沫镍(Ni foam)为载体,首先通过水热的方法在泡沫镍的表面修饰层状镍铁双金属氢氧化物(NiFe-LDH)纳米片,得到负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片复合材料(Ni foam@NiFe-LDH);然后通过混合溶剂热的方法在层状镍铁双金属氢氧化物纳米片表面修饰针状一维四氧化三钴(Co3O4)纳米线,得到负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4)。以上述复合材料作为光阳极,通过光电催化的方法对双酚A(BPA)和六价铬(Cr(VI))进行催化处理。本发明所提供的负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4)可以通过光电催化的方法对水体中污染物实现高效净化。
本发明负载于泡沫镍表面的P-N异质结复合材料(Ni foam@NiFe-LDH/Co3O4)的制备方法可如下进行:
(1) 层状镍铁双金属氢氧化物前驱体溶液的制备:首先,在单口圆底烧瓶中依次加入去离子水、六水合硝酸镍和九水合硝酸铁(二价金属离子Ni2+与三价金属离子Fe3+的摩尔比为2:1,Fe3+在去离子水中的摩尔浓度为0.1 mol/L),搅拌均匀后加入尿素(尿素的投料摩尔数为二价与三价金属离子摩尔数总和的4倍),搅拌均匀后于90~110℃下回流20~30 h,即得到NiFe-LDH的前驱体溶液;
(2) 负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片复合材料(Ni foam@NiFe-LDH)的制备:本发明采用水热法合成上述负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片复合材料(Ni foam@NiFe-LDH)。将表面洁净的泡沫镍放入聚四氟乙烯内衬的高压反应釜中,加入制备好的层状镍铁双金属氢氧化物的前驱体溶液。将反应釜置于预先设定好温度的烘箱内,在120~180 ℃下恒温水热反应20~30 h。反应结束后,停止加热,待反应釜自然冷却至室温后对产物进行离心分离并用去离子水洗涤3~5次,置于60 ℃鼓风烘箱中干燥20~30 h,得到负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片复合材料(Ni foam@NiFe-LDH);
(3) 负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4)的制备:本发明采用混合溶剂热法合成上述负载于泡沫镍表面的P-N异质结催化剂复合材料(Nifoam@NiFe-LDH/Co3O4)。首先,在烧杯中依次加入去离子水、无水乙醇、六水合硝酸钴和尿素(去离子水和无水乙醇的体积比为1:1,尿素和六水合硝酸钴的摩尔比为4:1),超声分散得到均一的混合溶液。将上述(2)中制备得到的负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片复合材料(Ni foam@NiFe-LDH)放入聚四氟乙烯内衬的高压反应釜中,加入一定量的上述混合溶液。将反应釜置于预先设定好温度的烘箱内,在80~100 ℃下恒温水热反应6~10 h。反应结束后,停止加热,待反应釜自然冷却至室温后对产物进行分离并用去离子水洗涤3~5次,干燥后置于管式炉中,在空气气氛下于250℃条件下保温2 h,升温速率为2-5℃/min,得到负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4)。
本发明的优点:
1. 本发明公开的负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4)具有广泛的光响应范围,是一种可见光光催化复合材料。
2. 本发明公开的负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4)中的P-N异质结可提供额外的电场来加速电子-空穴迁移,从而改善催化性能。
3. 本发明公开的负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4)中二维纳米片NiFe-LDH与一维Co3O4纳米线的复合,可增大比表面积,进而扩展光响应面积,更有利于污染物的吸附和光的吸收利用。
4. 本发明公开的负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4)中Co3O4为一维结构,可增强材料的电子传输能力。
5. 本发明公开的负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4)结构稳定,制备方法简单,重复利用简便快捷。因此,本发明中所制备的材料简单易得,并可有效利用光源,通过光电催化净化水体中的污染物,有利于其进一步的推广应用。
附图说明
图1为负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片复合材料(Ni foam@NiFe-LDH)的扫描电镜照片;
图2为实施例四中所得负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)的扫描电镜照片;
图3为实施例四中所得负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)对污染物的光电催化去除效果图;
图4为实施例四中所得负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)通过光催化、电催化和光电催化的方式对污染物的去除效果对比图。
具体实施方式
本发明公开的负载于泡沫镍表面的P-N异质结复合材料(Ni foam@NiFe-LDH/Co3O4)的制备方法为,采用混合溶剂热的方法在层状镍铁双金属氢氧化物纳米片表面修饰一维四氧化三钴纳米线,得到负载于泡沫镍表面的P-N异质结复合材料(Ni foam@NiFe-LDH/Co3O4),可作为催化剂。
实施例一
层状镍铁双金属氢氧化物前驱体溶液的制备,具体步骤如下:
首先,在单口圆底烧瓶中依次加入15 ml去离子水、0.6979 g六水合硝酸镍和0.4803 g九水合硝酸铁,搅拌均匀后加入0.8647 g尿素,搅拌均匀后于100 ℃下回流24 h,即得到层状镍铁双金属氢氧化物的前驱体溶液,其中二价金属离子Ni2+与三价金属离子Fe3+的摩尔比为2:1,Fe3+的摩尔浓度为0.1 mol/L,尿素的摩尔数为二价金属离子Ni2+与三价金属离子Fe3+摩尔数总和的4倍。
实施例二
水热法制备负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片复合材料(Ni foam@NiFe-LDH),具体步骤如下:
本发明采用水热法合成上述负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片复合材料(Ni foam@NiFe-LDH)。将泡沫镍放入聚四氟乙烯内衬的高压反应釜中,加入3 ml实施例一中制备好的层状镍铁双金属氢氧化物前驱体溶液和32 ml去离子水。将反应釜置于预先设定好温度的烘箱内,在160 ℃下恒温水热反应24 h。反应结束后,停止加热,待反应釜自然冷却至室温后对产物进行离心分离并用去离子水洗涤3次,置于60 ℃鼓风烘箱中干燥24 h,得到负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片复合材料(Ni foam@NiFe-LDH)。其扫描电镜图如图1所示,从图中可以看出,在泡沫镍的表面上均匀负载了形貌规整的层状镍铁双金属氢氧化物纳米片,参照实施例七的方法,100 min后水溶液中六价铬去除率为22.3 %。
实施例三
混合溶剂热法制备负载于泡沫镍表面的P-N异质结复合材料(Ni foam@NiFe-LDH/Co3O4-1)催化剂,具体步骤如下:
本发明采用混合溶剂热法合成上述负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-1)。首先,在烧杯中依次加入40 ml去离子水、40 ml无水乙醇、0.87 g六水合硝酸钴和0.7206 g尿素,超声分散得到均一的混合溶液。将实施例二中得到的负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片复合材料(Ni foam@NiFe-LDH)放入聚四氟乙烯内衬的高压反应釜中,加入10 ml的上述混合溶液及25 ml去离子水和无水乙醇的混合溶液(体积比为1:1)。将反应釜置于预先设定好温度的烘箱内,在90 ℃下恒温水热反应8 h。反应结束后,停止加热,待反应釜自然冷却至室温后对产物进行分离并用去离子水洗涤3次,干燥后置于管式炉中,在空气气氛下于250 ℃条件下保温2 h,升温速率为3℃/min,得到负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-1)。所得的产物仅在均匀生长的层状镍铁双金属氢氧化物纳米片表面负载少量的四氧化三钴纳米线,参照实施例七的方法,100 min后水溶液中六价铬去除率为30.1 %。
实施例四
混合溶剂热法制备负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2),具体步骤如下:
本发明采用混合溶剂热法合成上述负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)。首先,在烧杯中依次加入40 ml去离子水、40 ml无水乙醇、0.87 g六水合硝酸钴和0.7206 g尿素,超声分散得到均一的混合溶液。将实施例二中得到的负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片复合材料(Ni foam@NiFe-LDH)放入聚四氟乙烯内衬的高压反应釜中,加入15 ml的上述混合溶液及20 ml去离子水和无水乙醇的混合溶液(体积比为1:1),此时六水合硝酸钴的浓度为0.0047g/mL(按投料比计,以所有液体体积为基数)。将反应釜置于预先设定好温度的烘箱内,在90 ℃下恒温水热反应8h。反应结束后,停止加热,待反应釜自然冷却至室温后对产物进行分离并用去离子水洗涤3次,干燥后置于管式炉中,在空气气氛下于250 ℃条件下保温2 h,升温速率为℃/min,得到负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)。其扫描电镜图如图2所示,从图中可以看出,四氧化三钴纳米线均匀的负载于层状镍铁双金属氢氧化物纳米片的表面。
将上述250 ℃条件下保温2 h调整为300 ℃条件下保温2 h,其余不变,得到Nifoam@NiFe-LDH/Co3O4-2-1,参照实施例七的方法,100 min后水溶液中六价铬去除率为38.5%。
实施例五
混合溶剂热法制备负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-3),具体步骤如下:
本发明采用混合溶剂热法合成上述负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-3)。首先,在烧杯中依次加入40 ml去离子水、40 ml无水乙醇、0.87 g六水合硝酸钴和0.7206 g尿素,超声分散得到均一的混合溶液。将实施例二中得到的负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片复合材料(Ni foam@NiFe-LDH)放入聚四氟乙烯内衬的高压反应釜中,加入20 ml的上述混合溶液及15 ml去离子水和无水乙醇的混合溶液(体积比为1:1)。将反应釜置于预先设定好温度的烘箱内,在90 ℃下恒温水热反应8 h。反应结束后,停止加热,待反应釜自然冷却至室温后对产物进行分离并用去离子水洗涤3次,干燥后置于管式炉中,在空气气氛下于250 ℃条件下保温2 h,升温速率为3℃/min,得到负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-3)。所得的产物完全被四氧化三钴纳米线覆盖,参照实施例七的方法,100 min后水溶液中六价铬去除率为36.7 %。
实施例六
混合溶剂热法制备负载于泡沫镍表面的四氧化三钴纳米线复合材料(Ni foam@Co3O4),具体步骤如下:
本发明采用混合溶剂热法合成上述负载于泡沫镍表面的四氧化三钴纳米线复合材料(Ni foam@Co3O4)。首先,在烧杯中依次加入40 ml去离子水、40 ml无水乙醇、0.87 g六水合硝酸钴和0.7206 g尿素,超声分散得到均一的混合溶液。将表面洁净的泡沫镍放入聚四氟乙烯内衬的高压反应釜中,加入35 ml的上述混合溶液。将反应釜置于预先设定好温度的烘箱内,在90 ℃下恒温水热反应8 h。反应结束后,停止加热,待反应釜自然冷却至室温后对产物进行分离并用去离子水洗涤3次,干燥后置于管式炉中,在空气气氛下于250 ℃条件下保温2 h,升温速率为3℃/min。经扫描电镜表征,发现四氧化三钴纳米线均匀的负载于泡沫镍的表面,参照实施例七的方法,100 min后水溶液中六价铬去除率为31.3 %。
实施例七
负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)对污染物的光催化实验,具体步骤如下:
对50 mL含六价铬离子(由重铬酸钾配制,浓度为10 mg/L)的水溶液进行光催化实验。将负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)浸入污染物溶液中,避光搅拌半小时达到吸附-解吸平衡后,使用300 W氙灯光源作为模拟太阳光进行光催化实验,每隔20分钟取样3 mL。采用显色法用紫外-可见分光光度计测试水样在540nm波长下的吸光度,得到相应水样中六价铬的浓度。从附图4中可以看出,负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)在光照下,100 min后水溶液中六价铬去除率为43.6 %。
实施例八
负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)对污染物的光催化实验,具体步骤如下:
对50 mL含有机污染物(由BPA配制,浓度为10 mg/L)的水溶液进行光催化实验。将负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)浸入污染物溶液中,避光搅拌半小时达到吸附-解吸平衡后,使用300 W氙灯光源作为模拟太阳光进行光催化实验,每隔20分钟取样3 mL。采用高效液相测得溶液中BPA的残留浓度。从附图4中可以看出,负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)在光照下,100 min后水溶液中BPA的去除率为45.2 %。
实施例九
负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)对污染物的电催化实验,具体步骤如下:
采用三电极体系(上述实施例四中所得的负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)作为工作电极、饱和甘汞电极作为参比电极、铂片电极作为对电极、0.2 M的Na2SO4为电解质溶液)进行电催化实验,在光电反应池中分别加入50 mL含六价铬离子(由重铬酸钾配制,浓度为10 mg/L)和有机污染物(由BPA配制,浓度为10 mg/L)的水溶液,中间用质子交换膜隔开。避光搅拌半小时达到吸附-解吸平衡后,使用电化学工作站给工作电极施加0.7 V大小的偏压进行电催化实验,每隔20分钟取样3 mL。然后,采用高效液相测得溶液中BPA的残留浓度,使用显色法用紫外-可见分光光度计测试水样在540 nm波长下的吸光度,得到相应水样中六价铬和BPA的浓度。从附图4中可以看出,负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)在外加电压的作用下,100 min后水溶液中六价铬去除率为5.3 %,BPA的去除率为13.1 %。
实施例十
负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)对污染物的光电催化实验,具体步骤如下:
采用三电极体系(上述实施例四中所得的负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)作为工作电极、饱和甘汞电极作为参比电极、铂片电极作为对电极、0.2 M的Na2SO4为电解质溶液)进行光电催化实验,在光电反应池中分别加入50mL含六价铬离子(由重铬酸钾配制,浓度为10 mg/L)和有机污染物(由BPA配制,浓度为10mg/L)的水溶液,中间用质子交换膜隔开。避光搅拌半小时达到吸附-解吸平衡后,使用300W氙灯光源作为模拟太阳光,使用电化学工作站给工作电极施加0.7 V大小的偏压进行光电催化实验,每隔20分钟取样3 mL。然后,采用高效液相测得溶液中BPA的残留浓度,使用显色法用紫外-可见分光光度计测试水样在540 nm波长下的吸光度,得到相应水样中六价铬和BPA的浓度。从附图3和附图4中可以看出,负载于泡沫镍表面的P-N异质结催化剂复合材料(Ni foam@NiFe-LDH/Co3O4-2)在光照和外加电压的协同作用下,100 min后水溶液中六价铬去除率为97.5 %,BPA(双酚A)的去除率为98.1 %,去除效率较单纯的光催化或电催化明显提高。
本发明公开的复合材料已被证实是提高材料催化活性的有效手段,就P-N异质结而言,当具有不同费米能级的两种不同类型的半导体接触时,载流子会自发地在半导体间流动,直至达到平衡状态。在半导体结的界面处,由于载流子的流动会形成两个荷电相反的空间电荷区,产生相应的内建电场。半导体结的内建电场被广泛应用于促进光生载流子的分离,如太阳能电池和光催化体系等。此外,光电催化技术——通过外加电压使半导体材料受光激发产生的光生电荷被有效分离而增强催化活性,是实现太阳能高效利用的有效方法之一,有望解决目前所面临的环境问题与能源危机。

Claims (10)

1.一种负载于泡沫镍表面的P-N异质结复合材料,其特征在于,所述负载于泡沫镍表面的P-N异质结复合材料的制备方法包括以下步骤,采用混合溶剂热的方法在负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片表面修饰一维四氧化三钴纳米线,得到负载于泡沫镍表面的P-N异质结复合材料。
2.根据权利要求1所述负载于泡沫镍表面的P-N异质结复合材料,其特征在于,以泡沫镍为载体,通过水热法在泡沫镍的表面修饰层状镍铁双金属氢氧化物纳米片,得到负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片;再采用混合溶剂热的方法在层状镍铁双金属氢氧化物纳米片表面修饰一维四氧化三钴纳米线,得到负载于泡沫镍表面的P-N异质结复合材料。
3.根据权利要求2所述负载于泡沫镍表面的P-N异质结复合材料,其特征在于,将前驱体溶液与泡沫镍混合,然后120~180 ℃下水热反应20~30 h,得到负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片;前驱体溶液由镍盐、铁盐、水、尿素组成。
4.根据权利要求3所述负载于泡沫镍表面的P-N异质结复合材料,其特征在于,前驱体溶液中,二价金属离子Ni2+与三价金属离子Fe3+的摩尔比为2:1,尿素的摩尔数为二价金属离子Ni2+与三价金属离子Fe3+摩尔数总和的3.8~4.2倍。
5.根据权利要求1所述负载于泡沫镍表面的P-N异质结复合材料,其特征在于,将层状镍铁双金属氢氧化物纳米片与含钴溶液混合,然后80~100 ℃下水热反应6~10 h,再热处理,得到负载于泡沫镍表面的P-N异质结复合材料;含钴溶液由水、乙醇、钴盐、尿素组成。
6.根据权利要求5所述负载于泡沫镍表面的P-N异质结复合材料,其特征在于,水和乙醇的体积比为1:1,尿素和钴盐的摩尔比为4:1;钴盐的浓度为0.003~0.008g/mL。
7.根据权利要求5所述负载于泡沫镍表面的P-N异质结复合材料,其特征在于,热处理为在空气气氛下于250℃下保温1.5~2.5 h。
8.一种催化净化水体中的污染物的方法,包括以下步骤,采用混合溶剂热的方法在负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片表面修饰一维四氧化三钴纳米线,得到负载于泡沫镍表面的P-N异质结复合材料;将负载于泡沫镍表面的P-N异质结复合材料加入含有污染物的水体中,光催化和/或电催化,完成水体中的污染物的净化。
9.一种负载于泡沫镍表面的P-N异质结复合材料的制备方法,包括以下步骤,采用混合溶剂热的方法在负载于泡沫镍表面的层状镍铁双金属氢氧化物纳米片表面修饰一维四氧化三钴纳米线,得到负载于泡沫镍表面的P-N异质结复合材料。
10.权利要求1所述负载于泡沫镍表面的P-N异质结复合材料作为催化剂在净化水体中污染物的应用。
CN202010313573.5A 2020-04-20 2020-04-20 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用 Active CN111389442B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010313573.5A CN111389442B (zh) 2020-04-20 2020-04-20 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
US17/624,313 US20220355286A1 (en) 2020-04-20 2020-12-31 P-n heterojunction composite material supported on surface of nickel foam, preparation method therefor and application thereof
PCT/CN2020/142581 WO2021212923A1 (zh) 2020-04-20 2020-12-31 负载于泡沫镍表面的 p-n 异质结复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010313573.5A CN111389442B (zh) 2020-04-20 2020-04-20 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111389442A true CN111389442A (zh) 2020-07-10
CN111389442B CN111389442B (zh) 2021-12-28

Family

ID=71416915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010313573.5A Active CN111389442B (zh) 2020-04-20 2020-04-20 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用

Country Status (3)

Country Link
US (1) US20220355286A1 (zh)
CN (1) CN111389442B (zh)
WO (1) WO2021212923A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387419A (zh) * 2021-06-29 2021-09-14 南华大学 一种g-C3N4-Sn3O4-Ni电极材料及其制备方法和应用
WO2021212923A1 (zh) * 2020-04-20 2021-10-28 苏州大学 负载于泡沫镍表面的 p-n 异质结复合材料及其制备方法与应用
WO2022014377A1 (ja) * 2020-07-17 2022-01-20 パナソニックIpマネジメント株式会社 触媒、水電解セル用触媒、水電解セル、水電解装置、および触媒の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318358A (zh) * 2021-11-10 2022-04-12 青岛科技大学 一种调制镍/钴双金属mof基电催化剂、制备方法及应用
CN114113268B (zh) * 2021-11-18 2024-04-26 上海纳米技术及应用国家工程研究中心有限公司 四氧化三钴团簇修饰二氧化锡的制备方法及其产品和应用
CN114231954A (zh) * 2021-12-20 2022-03-25 复旦大学 一种亲锂三维氧化钴/泡沫金属复合锂金属负极材料及其超组装制备方法
CN114392748B (zh) * 2022-03-09 2023-07-18 中国科学院生态环境研究中心 一种整体式催化剂在催化分解臭氧中的应用
CN114988493A (zh) * 2022-04-27 2022-09-02 中国石油大学(华东) 一种镍铁双金属氢氧化物的制备方法、产品及其应用
CN115632076A (zh) * 2022-10-25 2023-01-20 国科大杭州高等研究院 一种具有宽频光电响应的探测器件及其制备方法
WO2024108437A1 (zh) * 2022-11-23 2024-05-30 苏州大学 一种原位硫化电沉积制备Pd/Ni3S2/NF纳米片阵列电极的方法及EHDC的方法
CN116078385B (zh) * 2023-01-10 2024-05-10 中国科学院理化技术研究所 一种多孔纳米片状NiCo1.48Fe0.52O4电催化剂,制备及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101775468B1 (ko) * 2016-09-30 2017-09-06 전북대학교산학협력단 슈퍼 커패시터용 전극 및 이의 제조 방법
CN108855102A (zh) * 2018-06-21 2018-11-23 肇庆市华师大光电产业研究院 一种Co掺杂Zn(OH)2纳米片复合材料及其制备方法和应用
CN109201065A (zh) * 2018-09-27 2019-01-15 苏州大学 一种泡沫镍复合材料及其制备方法与在光电催化去除水体污染物中的应用
CN110106517A (zh) * 2019-04-22 2019-08-09 江苏大学 硫化钴/层状双金属氢氧化物复合电催化剂及其制备方法
CN110201670A (zh) * 2019-05-21 2019-09-06 山东大学 基于三氯化铁/尿素低共熔溶剂的镍铁双金属氢氧化物/泡沫镍催化剂、其制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111389442B (zh) * 2020-04-20 2021-12-28 苏州大学 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101775468B1 (ko) * 2016-09-30 2017-09-06 전북대학교산학협력단 슈퍼 커패시터용 전극 및 이의 제조 방법
CN108855102A (zh) * 2018-06-21 2018-11-23 肇庆市华师大光电产业研究院 一种Co掺杂Zn(OH)2纳米片复合材料及其制备方法和应用
CN109201065A (zh) * 2018-09-27 2019-01-15 苏州大学 一种泡沫镍复合材料及其制备方法与在光电催化去除水体污染物中的应用
CN110106517A (zh) * 2019-04-22 2019-08-09 江苏大学 硫化钴/层状双金属氢氧化物复合电催化剂及其制备方法
CN110201670A (zh) * 2019-05-21 2019-09-06 山东大学 基于三氯化铁/尿素低共熔溶剂的镍铁双金属氢氧化物/泡沫镍催化剂、其制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, SHANPENG等: "Improved Electrocatalytic Performance in Overall Water Splitting with Rational Design of Hierarchical Co3O4@NiFe Layered Double Hydroxide Core-Shell Nanostructure", 《CHEM ELECTRO CHEM》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021212923A1 (zh) * 2020-04-20 2021-10-28 苏州大学 负载于泡沫镍表面的 p-n 异质结复合材料及其制备方法与应用
WO2022014377A1 (ja) * 2020-07-17 2022-01-20 パナソニックIpマネジメント株式会社 触媒、水電解セル用触媒、水電解セル、水電解装置、および触媒の製造方法
JP7029687B1 (ja) * 2020-07-17 2022-03-04 パナソニックIpマネジメント株式会社 アノード触媒、水電解セル用触媒、水電解セル、水電解装置、およびアノード触媒の製造方法
CN115812007A (zh) * 2020-07-17 2023-03-17 松下知识产权经营株式会社 催化剂及其制造方法、水电解单元用催化剂、水电解单元、水电解装置
CN113387419A (zh) * 2021-06-29 2021-09-14 南华大学 一种g-C3N4-Sn3O4-Ni电极材料及其制备方法和应用

Also Published As

Publication number Publication date
WO2021212923A1 (zh) 2021-10-28
CN111389442B (zh) 2021-12-28
US20220355286A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
CN111389442B (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
Li et al. Phosphorus modified Ni-MOF–74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution
CN110773213B (zh) 一维硫化镉/二维碳化钛复合光催化剂及其制备方法与应用
CN108499585B (zh) 含磷复合物及其制备与应用
Jin et al. Visible-light-driven two dimensional metal-organic framework modified manganese cadmium sulfide for efficient photocatalytic hydrogen evolution
CN109201065A (zh) 一种泡沫镍复合材料及其制备方法与在光电催化去除水体污染物中的应用
Hao et al. Photocatalytic overall water splitting hydrogen production over ZnCdS by spatially-separated WP and Co3O4 cocatalysts
Wang et al. The g-C3N4 nanosheets decorated by plasmonic Au nanoparticles: A heterogeneous electrocatalyst for oxygen evolution reaction enhanced by sunlight illumination
CN112439416A (zh) 一种高分散铜负载二氧化钛纳米片的制备方法及其应用
CN113499781A (zh) 一种Z型CdIn2S4/NiCr-LDH异质结光催化剂及其制备方法和应用
Zhou et al. In situ growth of CdIn2S4 on NH2-MIL-125 as efficient photocatalysts for H2 production under visible-light irradiation
CN115305480A (zh) 一种合金纳米材料催化剂及其制备方法和应用
CN113769764B (zh) 一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法及应用
CN111185199A (zh) 一种z型异质结光催化剂及其制备方法和应用
Sun et al. Modulating charge transport behavior across the interface via g-C3N4 surface discrete modified BiOI and Bi2MoO6 for efficient photodegradation of glyphosate
Liu et al. Photoreforming of polyester plastics into added-value chemicals coupled with H 2 evolution over a Ni 2 P/ZnIn 2 S 4 catalyst
Li et al. Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications
Li et al. Synergistic effect of MoS2 over WP photocatalyst for promoting hydrogen production
CN111437820B (zh) 一种用于光催化分解水产氢的复合纳米材料及其制备方法
CN115069291B (zh) 一种Ni/VN/g-C3N4复合光催化剂及其制备方法和应用
CN114308076B (zh) 一种复合光催化剂及制备方法和应用
CN114985004B (zh) 硫铟镉/PDDA/NiFe-LDH光催化复合材料及其制备方法和应用
CN115845888A (zh) PbBiO2Br/Ti3C2复合催化剂的制备方法及其在光催化降解甲基橙中的应用
Zhang et al. Photocatalytic conversion of 5-hydroxymethylfurfural to 2, 5-diformylfuran by S-scheme black phosphorus/CdIn 2 S 4 heterojunction
Gemeda et al. A recent review on photocatalytic CO2 reduction in generating sustainable carbon-based fuels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant