CN113499781A - 一种Z型CdIn2S4/NiCr-LDH异质结光催化剂及其制备方法和应用 - Google Patents

一种Z型CdIn2S4/NiCr-LDH异质结光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113499781A
CN113499781A CN202110532931.6A CN202110532931A CN113499781A CN 113499781 A CN113499781 A CN 113499781A CN 202110532931 A CN202110532931 A CN 202110532931A CN 113499781 A CN113499781 A CN 113499781A
Authority
CN
China
Prior art keywords
ldh
nicr
cdin
preparation
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110532931.6A
Other languages
English (en)
Inventor
付娆
宫银燕
李�灿
牛棱渊
刘心娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202110532931.6A priority Critical patent/CN113499781A/zh
Publication of CN113499781A publication Critical patent/CN113499781A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/866Nickel and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/049Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于光催化技术领域,具体涉及一种Z型CdIn2S4/NiCr‑LDH异质结光催化剂及其制备方法和应用,所述CdIn2S4/NiCr‑LDH异质结光催化材料是在NiCr‑LDH二维层状纳米片上负载CdIn2S4,并通过在界面形成Ni‑S键紧密结合。本发明的CdIn2S4/NiCr‑LDH光催化剂中CdIn2S4导带和价带电位高于NiCr‑LDH能够促进异质结中光生电子和空穴对的分离;光催化过程中Z型的光生载流子传递路径在抑制光生电荷复合的同时保留了电子和空穴较强的氧化还原能力。同时,CdIn2S4和NiCr‑LDH都具有可见光响应能力,从而CdIn2S4/NiCr‑LDH异质结光催化材料具有优异的光催化分解水产氢和还原重金属离子Cr(VI)的能力。本发明提供的制备方法简单,反应条件温和,操作方便,成本低廉,容易实现工业规模化生产,在绿色能源方面有一定应用前景。

Description

一种Z型CdIn2S4/NiCr-LDH异质结光催化剂及其制备方法和 应用
技术领域
本发明涉及光催化技术领域,特别涉及一种Z型CdIn2S4/NiCr-LDH异质结光催化剂及其制备方法和应用。
背景技术
能源是人类文明发展的基础。现有能源结构对化石燃料的重度依赖引发了能源危机和大量温室气体及有害气体过度排放等环境问题。为了维持现代社会的可持续发展,早日实现碳达峰的目标,开发出一种能够在温和条件下将储量丰富的太阳能转化为稳定、便于储存、运输和使用的能量形态的技术手段至关重要。此外,随着工业化的发展,重金属离子和有机污染物引起的水体污染问题也日益严重,这严重的威胁了人类的生存和健康。半导体光催化技术能够通过吸收利用太阳光作为能量来源分解水产生氢气、降解有机污染物和还原重金属离子到低毒性的价态。这项技术具有成本低廉、操作简单、反应条件温和以及无二次污染的优点,在环境保护和能源开发方面具有很大的潜力。
光激发产生的电子-空穴对由于库伦引力的作用易复合是制约单一半导体光催化剂效率公认的瓶颈问题。通过将导带电势更负的还原型半导体光催化剂(RP)和价带电势更正的氧化型半导体光催化剂(OP)结合获得半导体异质结的手段可以有效在空间上分离电子和空穴,减少它们波函数的重叠,抑制载流子的复合。当在形成的半导体异质结中,光生电子从RP的导带转移到OP而光生空穴从OP的价带转移到RP,即尽管构筑的异质结可以起到促进光生电荷分离的效果,但是降低了它们的电势。众所周知,光催化分解水产氢对催化剂的导带电位有较高要求(高于H+/H2=0V vs NHE,pH=0)。近年来提出的Z型异质结光催化剂,一方面可以促进光生电子-空穴对的分离和转移,另一方面保留复合催化剂体系中光生载流子的强氧化还原能力(Materials Today 2018,21,1042;Angewandte InternationalEdition Chemie 2020,59,22894)。具体来说,在恰当匹配的RP和OP构筑的异质结中,内建电场作用下RP价带中的光生空穴和OP导带中的光生电子复合,保留了氧化还原能力更强的RP导带中的光生电子和OP价带中的光生空穴参与催化反应。显然这种设计有利于满足光催化分解水对光生电子的还原电势的要求。文章(Small 2020,16,2002988)报道了ZnIn2S4/BiVO4构筑的Z型异质结光催化剂,其光催化分解水产氢的效率为5.944mmol·g-1·h-1,比ZnIn2S4提高了5倍。文章(ACS Applied Materials&Interfaces 2020,12,31477)报道了CsPbBr3/Bi2WO6构筑的Z型异质结光催化剂,其光催化还原CO2生成CH4/CO的产量为503μmol·g-1,比CsPbBr3高9.5倍。
层状双金属氢氧化物(LDHs,[M2+ 1-xM3+ x(OH)2]x+(An-)x/n·mH2O)是以二价金属阳离子(M2+=Mg2+、Co2+、Zn2+、Ni2+等)、三价金属阳离子(M3+=Al3+、Cr3+、Fe3+、Co3+等)和羟基构成电荷密度为+x的二维主体板层,然后在层间插入平衡电荷的阴离子(An-=CO3 2-、NO3 -、SO4 -2、Cl-等)构成。LDHs主体板层的带隙可通过改变金属阳离子在2.0-5.0eV之间调节,因而被用于制备各类用途的异质结光催化材料(Chemical Engineering Journal 2020,388,124248;Materials Today 2020,34,78;Chemical Engineering Journal 2020,392,123684;Chemical Communication 2020,56,5354)。尤其是,NiCr-LDH具有良好的可见光吸收能力,足够正的价带电势,是作为构筑Z型异质结光催化剂的氧化型半导体材料的选择之一。
金属硫化物具有良好的可见光吸收能力和适合的带边电势等优点,是具有巨大潜力的一类光催化材料。由于典型的二元硫化物CdS在光催化领域的应用面临着光催化过程中易腐蚀、稳定性差的问题,近年来提出了三元硫化物AB2X4(A=Cu,Zn,Cd;B=In,Ga,Al;X=S,Se)光催化材料。尤其是CdIn2S4具有良好的光化学稳定性、合适的带隙(Eg=2.1eV)和导带边缘位置,是作为构筑Z型异质结光催化剂的还原型半导体材料的选择之一。基于CdIn2S4和NiCr-LDH构筑Z型异质结光催化剂,利用它们之间的协同效应,在不牺牲氧化还原能力的前提下提高光生载流子分离效率,是获得高效光催化复合材料的有效途径,但是这方面的研究还鲜有报道。
发明内容
本发明的目的是针对上述问题,提供一种可见光响应、光生电子-空穴分离效率高、氧化还原能力强、光催化分解水产氢和还原重金属离子活性高的由CdIn2S4和NiCr-LDH构筑的Z型异质结光催化剂。
本发明采用的水热法具有操作简单、反应条件温和、原料成本低廉、制备条件简单等特点,适用于工业化生产。
为实现上述目的,本发明提供如下技术方案:
一种Z型CdIn2S4/NiCr-LDH异质结光催化剂的制备方法,其中,所述Z型CdIn2S4/NiCr-LDH异质结光催化剂中,CdIn2S4质量含量为33%,所述NiCr-LDH质量含量为67%,制备方法包括以下步骤:
第一步:制备NiCr-LDH:将硝酸镍、硝酸铬、尿素加入水中,采用水热反应,在150~190℃下反应10小时,洗涤、干燥后得到NiCr-LDH;然后将NiCr-LDH加入水中,超声得到悬浮液A。
第二步:将硫代乙酰胺溶解于水中,得到溶液B;
第三步:将硝酸镉和硝酸铟溶解于水中,得到溶液C;
第四步:将溶液C和溶液B加入悬浮液A中,搅拌均匀,得到混合溶液;采用水热反应,在180℃下反应12小时,反应完成后,清洗、干燥后即得。
作为一种优选的技术方案,硝酸镉浓度为0.01mol/L、硝酸镍浓度为0.03mol/L、尿素浓度为0.133mol/L;更优选地,硝酸镍为六水合硝酸镍,硝酸铬为九水合硝酸铬。
作为一种优选的技术方案,所述NiCr-LDH制备中还加入氟化铵,所述氟化铵用于改善NiCr-LDH形貌。
作为一种优选的技术方案,第四步混合溶液中硫代乙酰胺浓度为0.0067mol/L。
作为一种优选的技术方案,第四步混合溶液中NiCr-LDH的浓度为1.667g/L。
作为一种优选的技术方案,第四步混合溶液中硝酸镉浓度为0.00175mol/L、硝酸铟浓度为0.0035mol/L。
利用上述制备方法获得的Z型CdIn2S4/NiCr-LDH异质结光催化剂。
本发明同时保护所述Z型CdIn2S4/NiCr-LDH异质结光催化剂在光催化分解水中的应用。
进一步地,所述光催化剂用于光催化分解水产氢和/或光催化还原重金属离子Cr(VI)。
与现有技术相比,本发明的有益效果是:
本发明制备的CdIn2S4/NiCr-LDH复合光催化剂,可用于光催化分解水产氢及还原重金属离子,展现出良好的光催化效果。本发明具有制备方法简单,制备条件温和,原料成本低廉,操作方便等优点。
附图说明
图1a-c分别为本实验发明实施例1中合成的CdIn2S4、NiCr-LDH和CdIn2S4/NiCr-LDH扫描电镜(SEM),d和e为CdIn2S4/NiCr-LDH透射电镜(TEM)和高分辨TEM图,f为CdIn2S4、NiCr-LDH和CdIn2S4/NiCr-LDH的XRD衍射图谱。
图2a为本实验发明实施例1中合成的CdIn2S4、NiCr-LDH和CdIn2S4/NiCr-LDH的紫外-可见吸收光谱图,b和c为由CdIn2S4和NiCr-LDH吸收光谱对应的Tauc-plot。
图3a和b为本实验发明实施例1中合成的CdIn2S4/NiCr-LDH的电化学阻抗谱Nyquist图和光电流图谱图。
图4a和b为本实验发明实施例1中合成的CdIn2S4/NiCr-LDH的光催化分解水制氢效率图及光催化还原Cr(VI)效率图。
图5为本实验发明实施例1中合成的CdIn2S4/NiCr-LDH的光解水产氢和还原Cr(VI)的光催化机制图。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:CdIn2S4/NiCr-LDH光催化剂的制备
将523mg六水合硝酸镍、240mg九水合硝酸铬、480mg尿素溶解于60mL离子水,放入到高压水热反应釜中,180℃恒温反应10小时,洗涤、干燥后得到NiCr-LDH粉末(NC-180)。
将64mg四水合硝酸镉、126mg硝酸铟和120mg硫代乙酰胺溶解于60ml去离子水中,放入到高压水热反应釜中,180℃恒温反应12小时,洗涤、干燥后得到CdIn2S4(CIS)。
将100mg制备好的NiCr-LDH粉末加入30ml的去离子水中,超声15min得到分散均匀的悬浮液A;将30mg硫代乙酰胺溶解于10mL去离子水中,得到溶液B;将32mg四水合硝酸镉和63mg硝酸铟溶解于20ml去离子水中搅拌均匀得到溶液C;将溶液B和C加入悬浮液A中,搅拌均匀,180℃恒温反应12小时,放入到高压水热反应釜中,180℃恒温反应12小时,洗涤、干燥后得到CdIn2S4/NiCr-LDH(CIS/NC-180)。
实施例1制备得到的材料表征和性能:
图1a是CdIn2S4的扫描电镜图,可以看出纯CdIn2S4为表面带有片状结构和小颗粒的八面体形状。图1b是NiCr-LDH的扫描电镜图,可以看出纯NiCr-LDH纳米片团聚组成不规则形状。图1c-e是CdIn2S4/NiCr-LDH的扫描电镜、透射电镜和高分辨透射电镜图,从中可以看出CdIn2S4/NiCr-LDH是薄纳米片交叠组成,并且在界面有Ni-S键生成,这种界面化学键结合有利于光生电荷通过界面的分离与转移,从而促进光催化效率提高。
图1f是CdIn2S4/NiCr-LDH异质结光催化剂的X射线衍射图谱,作为对比CdIn2S4和NiCr-LDH的XRD结果也包括在其中。24.3°、27.1°、28.7°和45.7°处的峰分别对应CdIn2S4的(220)、(311)、(222)和(511)晶面;22.2°、34.1°、39.1°和44.5°的衍射峰分别对应NiCr-LDH的(006)、(012)、(015)和(018)晶面;31.8°、48.7°、51.3°和56.6°的衍射峰分别对应NiS的(101)、(131)、(410)和(321)晶面;这表明成功制备出CdIn2S4/NiCr-LDH异质结,并且有Ni-S形成。
图2为本实验发明实施例1中合成的CdIn2S4、NiCr-LDH和CdIn2S4/NiCr-LDH吸收光谱图。从图中可以看出光催化剂具有优异的可见光吸收能力,可以高效吸收太阳光谱中的可见光部分,作为可见光催化剂。从Tauc-plot可以估算出CdIn2S4和NiCr-LDH的带隙分别为2.34和2.50eV。
图3a为CdIn2S4/NiCr-LDH的电化学阻抗谱的Nyquist图,其高频侧的半圆与电荷转移电阻相关。从图中可以看出CdIn2S4/NiCr-LDH的半圆直径均小于CdIn2S4和NiCr-LDH,表明其电荷转移的电阻更低。图3b是CdIn2S4/NiCr-LDH的光电流图谱,可以看出CdIn2S4/NiCr-LDH异质结光催化剂的光电流强度比CdIn2S4和NiCr-LDH的光电流强度高。从图3a和b的结果表明CdIn2S4/NiCr-LDH异质结可以更好地促进光生电子-电荷对的分离和转移。
光催化实验操作及结果:
表征了上述实施例1制备获得的CdIn2S4/NiCr-LDH异质结光催化剂在光解水产氢和还原Cr(VI)时的光催化活性。
光解水产氢的过程:将制备好的上述光催化剂(50mg)超声分散在80mL的硫化钠(0.35mol/L)和亚硫酸钠(0.25mol/L)溶液中,放入密封石英反应容器,抽真空,300W氙灯做为光源,进行光催化反应。3wt%Pt作为助催化剂。每隔一段时间采用气相色谱在线分析氢气的含量,其光催化活性见图4a。
光催化还原Cr(VI)的过程:将制备好的上述光催化剂(0.6g/L)超声分散在Cr(VI)溶液(50mg/L)中,磁力搅拌条件下,暗反应30分钟后,打开金卤灯并在样品和金卤灯之间放置截止波长为400nm的滤光片(可见光照射样品),进行光催化反应。每隔一段时间取一定量的Cr(VI)溶液,用紫外-可见分光光度计测试溶液的吸收光谱,通过吸收峰强度的变化可以计算出Cr(VI)的还原效率。其光催化活性见图4b。
图4a为CdIn2S4/NiCr-LDH复合光催化剂降解水制氢的效果图。从图中可以看出随着光照时间的增加,氢气产量明显增加。CdIn2S4/NiCr-LDH的氢气平均产率达到了1093μmol·g-1·h-1,对比纯CdIn2S4和NiCr-LDH氢气平均产率分别提高了约10倍和57倍。
图4b为可见光催化还原Cr(VI)的效率图,其中横坐标为光照时间。从图中可以看出,随着光照时间倍增加,Cr(VI)的还原率明显提高。在可见光照射3h后,CdIn2S4/NiCr-LDH和CdIn2S4均展现出优异的Cr(VI)还原率,活性分别为98%和81%,而NiCr-LDH对溶液中Cr(VI)浓度改变基本无影响。因此,与纯CdIn2S4和NiCr-LDH相比,CdIn2S4/NiCr-LDH的光催化还原Cr(VI)的效果得到明显提高。
图5为为本发明实施例1中CdIn2S4/NiCr-LDH异质结光催化剂光解水产氢和还原Cr(VI)的机制图。CdIn2S4/NiCr-LDH表面的光催化反应为Z型机制。由图中可知NiCr-LDH的导带电位低于产氢和还原Cr(VI)的电位,NiCr-LDH导带中的光生电子和CdIn2S4价带中的光生空穴通过异质结界面转移、复合,而还原能力更强的CdIn2S4导带中的光生电子迁移到催化剂表面光解水产氢或还原Cr(VI)为Cr(III);因而Z型CdIn2S4/NiCr-LDH异质结光催化剂表现出更高的产氢效率和Cr(VI)还原效率。
实施例2
1)光催化剂的制备
(a)NiCr-LDH的制备:
与实例1不同在于:在反应溶液中加入111mg的氟化铵。
(b)CdIn2S4/NiCr-LDH复合光催化剂的制备:与实例1相同。
采用实施例1所叙述的测试方法测试本例制得的光催化剂分解水制氢的效率达到了464μmol·g-1·h-1
实施例3
(a)NiCr-LDH的制备:
与实例1不同在于:水热反应温度为150℃。
(b)CdIn2S4/NiCr-LDH复合光催化剂的制备:与实例1相同。
采用实施例1所叙述的测试方法测试本例制得的光催化剂分解水制氢的效率为269μmol·g-1·h-1
实施例4
(a)NiCr-LDH的制备:
与实例1不同在于:水热反应温度为190℃。
(b)CdIn2S4/NiCr-LDH复合光催化剂的制备:与实例1相同。
采用实施例1所叙述的测试方法测试本例制得的光催化剂分解水制氢的效率为1083μmol·g-1·h-1
对比例1
(a)NiCr-LDH的制备:
与实例1不同在于:水热反应温度为120℃。
(b)CdIn2S4/NiCr-LDH复合光催化剂的制备:与实例1相同。
采用实施例1所叙述的测试方法测试本例制得的光催化剂分解水制氢的效率为23μmol·g-1·h-1
以上实施例和对比例的制氢效率汇总见表1:
表1各实施例及对比例制氢效率情况表
Figure BDA0003068585220000101
可见,本发明的CdIn2S4/NiCr-LDH复合光催化剂能够作为一种高效的复合光催化剂,在光照射下展现出优异的催化活性。本发明的制备工艺简单,反应温度较低,反应条件温和,操作方便,成本低廉,适合于工业化生产。
以上对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (9)

1.一种Z型CdIn2S4/NiCr-LDH异质结光催化剂的制备方法,其特征在于,所述Z型CdIn2S4/NiCr-LDH异质结光催化剂中,CdIn2S4质量含量为33%,所述NiCr-LDH质量含量为67%,制备方法包括以下步骤:
第一步:制备NiCr-LDH:将硝酸镍、硝酸铬、尿素加入水中,采用水热反应,在150~190℃下反应10小时,洗涤、干燥后得到NiCr-LDH;然后将NiCr-LDH加入水中,超声得到悬浮液A;
第二步:将硫代乙酰胺溶解于水中,得到溶液B;
第三步:将硝酸镉和硝酸铟溶解于水中,得到溶液C;
第四步:将溶液C和溶液B加入悬浮液A中,搅拌均匀,得到混合溶液;采用水热反应,在180℃下反应12小时,反应完成后,清洗、干燥后即得。
2.根据权利要求1所述Z型CdIn2S4/NiCr-LDH异质结光催化剂的制备方法,其特征在于,硝酸镉浓度为0.01mol/L、硝酸镍浓度为0.03mol/L、尿素浓度为0.133mol/L;硝酸镍为六水合硝酸镍,硝酸铬为九水合硝酸铬。
3.根据权利要求1所述Z型CdIn2S4/NiCr-LDH异质结光催化剂的制备方法,其特征在于,第一步采用水热反应,在180℃下反应10小时。
4.根据权利要求1所述Z型CdIn2S4/NiCr-LDH异质结光催化剂的制备方法,其特征在于,第四步混合溶液中硫代乙酰胺浓度为0.0067mol/L。
5.根据权利要求4所述Z型CdIn2S4/NiCr-LDH异质结光催化剂的制备方法,其特征在于,第四步混合溶液中NiCr-LDH的浓度为1.667g/L。
6.根据权利要求1所述Z型CdIn2S4/NiCr-LDH异质结光催化剂的制备方法,其特征在于,第四步混合溶液中硝酸镉浓度为0.00175mol/L、硝酸铟浓度为0.0035mol/L。
7.一种权利要求1所述制备方法制备得到的Z型CdIn2S4/NiCr-LDH异质结光催化剂。
8.权利要求7所述光催化剂在制备光催化分解水中的应用。
9.根据权利要求8所述的应用,其特征在于,所述光催化剂用于光催化分解水产氢和/或光催化还原重金属离子Cr(VI)。
CN202110532931.6A 2021-05-17 2021-05-17 一种Z型CdIn2S4/NiCr-LDH异质结光催化剂及其制备方法和应用 Withdrawn CN113499781A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110532931.6A CN113499781A (zh) 2021-05-17 2021-05-17 一种Z型CdIn2S4/NiCr-LDH异质结光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110532931.6A CN113499781A (zh) 2021-05-17 2021-05-17 一种Z型CdIn2S4/NiCr-LDH异质结光催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113499781A true CN113499781A (zh) 2021-10-15

Family

ID=78008440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110532931.6A Withdrawn CN113499781A (zh) 2021-05-17 2021-05-17 一种Z型CdIn2S4/NiCr-LDH异质结光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113499781A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114655978A (zh) * 2022-03-01 2022-06-24 汕头大学 一种空心分级异质结构三组分硫化物光电材料的制备和应用
CN114985004A (zh) * 2022-07-05 2022-09-02 福州大学 硫铟镉/PDDA/NiFe-LDH光催化复合材料及其制备方法和应用
CN115007174A (zh) * 2022-06-09 2022-09-06 中国矿业大学 一种二维CdIn2S4纳米片及其制备方法、用途
CN115090254A (zh) * 2022-07-19 2022-09-23 中国计量大学 一种过渡金属硫化物/NiCr LDHs复合材料及其制备方法与用途

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114655978A (zh) * 2022-03-01 2022-06-24 汕头大学 一种空心分级异质结构三组分硫化物光电材料的制备和应用
CN114655978B (zh) * 2022-03-01 2023-10-10 汕头大学 一种空心分级异质结构三组分硫化物光电材料的制备和应用
CN115007174A (zh) * 2022-06-09 2022-09-06 中国矿业大学 一种二维CdIn2S4纳米片及其制备方法、用途
CN114985004A (zh) * 2022-07-05 2022-09-02 福州大学 硫铟镉/PDDA/NiFe-LDH光催化复合材料及其制备方法和应用
CN114985004B (zh) * 2022-07-05 2023-08-11 福州大学 硫铟镉/PDDA/NiFe-LDH光催化复合材料及其制备方法和应用
CN115090254A (zh) * 2022-07-19 2022-09-23 中国计量大学 一种过渡金属硫化物/NiCr LDHs复合材料及其制备方法与用途

Similar Documents

Publication Publication Date Title
Liu et al. Rationally designed Mn0. 2Cd0. 8S@ CoAl LDH S-scheme heterojunction for efficient photocatalytic hydrogen production
Yang et al. Ni-Mo-S nanoparticles modified graphitic C3N4 for efficient hydrogen evolution
Sun et al. High-crystalline/amorphous g-C3N4 S-scheme homojunction for boosted photocatalytic H2 production in water/simulated seawater: Interfacial charge transfer and mechanism insight
Liu et al. Recent advancements in gC 3 N 4-based photocatalysts for photocatalytic CO 2 reduction: a mini review
Ran et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting
Yuan et al. Enhanced photocatalytic H 2 evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/gC 3 N 4 heterojunctions
Zhang et al. NiSe2/Cd0. 5Zn0. 5S as a type-II heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution
Huang et al. Promoting charge carrier utilization by integrating layered double hydroxide nanosheet arrays with porous BiVO4 photoanode for efficient photoelectrochemical water splitting
CN113499781A (zh) 一种Z型CdIn2S4/NiCr-LDH异质结光催化剂及其制备方法和应用
Yan et al. Sustainable and efficient hydrogen evolution over a noble metal-free WP double modified Zn x Cd 1− x S photocatalyst driven by visible-light
Huang et al. A S-scheme heterojunction of Co9S8 decorated TiO2 for enhanced photocatalytic H2 evolution
Bi et al. Direct Z-scheme CoS/g-C3N4 heterojunction with NiS co-catalyst for efficient photocatalytic hydrogen generation
Liu et al. Interfacial engineering of Ti3C2 MXene/CdIn2S4 Schottky heterojunctions for boosting visible-light H2 evolution and Cr (VI) reduction
Ke et al. Enhanced light-driven water splitting by fast electron transfer in 2D/2D reduced graphene oxide/tungsten trioxide heterojunction with preferential facets
CN111389442A (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
Wu et al. Enhanced visible light activated hydrogen evolution activity over cadmium sulfide nanorods by the synergetic effect of a thin carbon layer and noble metal-free nickel phosphide cocatalyst
Li et al. ZnO/CdSe-diethylenetriamine nanocomposite as a step-scheme photocatalyst for photocatalytic hydrogen evolution
Chen et al. Boosted charge transfer and photocatalytic CO2 reduction over sulfur-doped C3N4 porous nanosheets with embedded SnS2-SnO2 nanojunctions
Chen et al. Three-Dimensional Ordered Macroporous gC 3 N 4-Cu 2 O-TiO 2 Heterojunction for Enhanced Hydrogen Production
Yu et al. Significant improvement of photocatalytic hydrogen evolution rate over g-C3N4 with loading CeO2@ Ni4S3
Ke et al. Enhanced solar light driven activity of pn heterojunction for water oxidation induced by deposition of Cu2O on Bi2O3 microplates
Gu et al. Construction of dual Z-scheme UNiMOF/BiVO4/S-C3N4 photocatalyst for visible-light photocatalytic tetracycline degradation and Cr (VI) reduction
Zhang et al. Metal-organic framework-derived nitrogen-doped carbon-coated hollow tubular In2O3/CdZnS heterojunction for efficient photocatalytic hydrogen evolution
Jin et al. Fabrication of a novel Ni 3 N/Ni 4 N heterojunction as a non-noble metal co-catalyst to boost the H 2 evolution efficiency of Zn 0.5 Cd 0.5 S
Liu et al. Greatly improved photocatalytic performance of BiVO4/MoS2 heterojunction with enhanced hole transfer and attack capability by ultrasonic agitation and in-situ hydrothermal method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20211015