CN110652988B - 超细双金属硫化物微球负载NiS薄膜的制备方法及其应用 - Google Patents

超细双金属硫化物微球负载NiS薄膜的制备方法及其应用 Download PDF

Info

Publication number
CN110652988B
CN110652988B CN201910913161.2A CN201910913161A CN110652988B CN 110652988 B CN110652988 B CN 110652988B CN 201910913161 A CN201910913161 A CN 201910913161A CN 110652988 B CN110652988 B CN 110652988B
Authority
CN
China
Prior art keywords
nis
zncds
nano
film
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910913161.2A
Other languages
English (en)
Other versions
CN110652988A (zh
Inventor
侯东芳
邓敏
黄磊
乔秀清
李东升
张其春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201910913161.2A priority Critical patent/CN110652988B/zh
Publication of CN110652988A publication Critical patent/CN110652988A/zh
Application granted granted Critical
Publication of CN110652988B publication Critical patent/CN110652988B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种光沉积法制备双金属硫化物微球负载NiS薄膜的方法,具体为ZnCdS纳米微球与NiS无定型薄膜形成异质结构的纳米复合催化材料的制备方法及其在光催化产氢中的应用。在制备过程中首先水热法合成ZnCdS纳米微球,然后以其为基底,采用光化学方法成功地合成了一种新型的NiS薄膜修饰ZnCdS纳米粒子的异质结构纳米复合材料。得到的NiS/ZnCdS异质结构纳米复合材料结构良好,半导体ZnCdS与辅助催化剂NiS薄膜之间具有较强的粘附性,对光生电子具有良好的转移能力,对可见光的吸附能力强。通过改变镍源和硫源加入量,可以简单地调节复合材料中NiS含量。该纳米复合材料在光催化产氢中显示出优异的催化活性。

Description

超细双金属硫化物微球负载NiS薄膜的制备方法及其应用
技术领域
本发明属于纳米材料制备技术及绿色能源领域,具体涉及一种半导体基光催化剂与辅助催化剂的异质纳米复合材料的制备方法及其在光催化产氢中的应用。
背景技术
随着能源困境和环境污染问题越来越严重,绿色可再生能源的发展受到广泛关注。氢具有燃烧价值高、循环清洁的优点,被认为是21世纪最理想的绿色能源,可用作化石燃料的替代品。通过水裂解实现的光催化氢演化是将太阳能转化为可用化学能的有前景和有价值的策略之一。虽然许多光催化剂已经被报道和研究,但关于低成本、高效率、良好耐用性和太阳能光催化材料的研究仍然是一个热点。
近年来,一些典型的过渡金属硫化物如硫化镍等,在电催化中表现出优异的析氢性能。人们一致认为,电催化材料作为辅助催化剂,可以加速半导体表面的光催化析氢反应。此外,镍硫化物由两种富含地球的元素组成。因此,硫化镍有望成为一种很有前途的助催化剂,从而提高ZnCdS的光驱动析氢性能。大量研究表明,镍硫化物作为光催化的辅助催化剂有着广阔的应用前景。然而,到目前为止,光催化系统中报道的镍硫化物大多只是随机地与光活性物质连接或混合的。众所周知,将光子产生的电子转移到质子是助催化剂的主要工作,负载的助催化剂及其与主催化剂的结合方式对电荷转移有明显的影响,且助催化剂与光活性物质之间的连接点宜位于光活性材料的电子出口点。因此,在ZnCdS上设计精确的制备策略,将镍硫化物与光生电子的出口点耦合起来,具有十分重要的意义。
发明内容
针对上述技术问题,本发明在双金属硫化物超细纳米微球上光化学沉积NiS薄膜,得到了一种新型的薄膜修饰ZnCdS纳米粒子( NiS/ZnCdS ) 的亲密接触的异质结构,半导体ZnCdS与辅助催化剂NiS薄膜之间具有较强的粘附性,从而增强界面电子转移、延迟电子-空穴复合过程和增强电荷分离,进而增强复合材料的光催化性能。
为实现上述目的,本发明以双金属硫化物ZnCdS和硫化物NiS为材料,合成了一种新型的NiS薄膜修饰ZnCdS纳米粒子的异质结构纳米复合材料。具体采用的技术方案为:
首先通过一步水热法合成双金属硫化物ZnCdS纳米微球,然后将ZnCdS加入到水和乙醇中,加入镍源和硫源,通过光化学沉积法得到异质结构纳米复合材料。
本发明所述的异质纳米复合材料的制备方法包括以下几个步骤:
(1)称取乙酸镉、乙酸锌分散于水中,超声至均匀后,逐滴滴加硫化钠溶液,继续搅拌处理以形成均匀悬浮液,转移至聚四氟乙烯反应釜内衬中,加盖密封于烘箱中加热,产物用纯水和乙醇洗涤多次,于真空干燥箱中干燥处理,得到ZnCdS,收集以备后用。所述的双金属硫化物纳米微球为双金属硫化物ZnCdS纳米微球,其尺寸约为10 - 15 nm。乙酸镉、乙酸锌、硫化钠的摩尔比为1:0.8-1.5:2-4(优选为1:1:3)。
(2)将步骤(1)中得到的ZnCdS分散在水和乙醇混合液中,超声处理得悬浮液,称取乙酸镍和硫脲加入到上述悬浮液,继续超声处理一段时间。乙酸镍和硫脲的摩尔比为1:10-12。优选为1:10。
(3)将步骤(2)得到的均匀悬浮液持续通氮气进行排气处理,300 –400W Xe弧光灯光照一段时间进行光化学沉积硫化镍,用纯水和乙醇洗涤多次,然后在烘箱中干燥处理ZnCdS纳米微球与NiS无定型薄膜形成异质结构的纳米复合催化材料,即为双金属硫化物微球负载NiS薄膜。硫化镍在复合材料中所占摩尔比为0.3 – 10%。双金属硫化物微球负载NiS薄膜分散的乳酸水溶液中,乳酸含量为10-12vol%。优选为10vol%。
NiS薄膜均匀覆盖在ZnCdS表面,起着电子俘获中心的作用,可以增强光生电子的转移,促进电子-空穴对的分离,这与电子空穴复合的空间抑制有关。同时,负载在半导体材料表面的NiS薄膜优化了半导体材料之间的光生电子转移途径,并在薄膜表面产生大量的活性中心,使其光催化活性显著提高。光催化性能显著提高的关键因素是在分子水平上的界面接触,这为从ZnCdS衬底到NiS薄膜的高效率电子传输提供了良好的空间条件,并有助于阻止相变过程中相生成电荷的复合。
本发明从NiS/ZnCdS出发,提出了以典型过渡金属硫化物为催化剂进行析氢的合成路线。得到硫化镍所占摩尔比为0.3-10%的复合材料,最大的光催化析氢速率达67.75mmol g−1 h−1。另外,还证明了光化学合成路线在CdS和ZnS上的适用性。
本发明还提供一种将NiS/ZnCdS纳米结构复合材料应用在光催化产氢上的应用。具体步骤包括如下:在可见光照射下,在封闭石英反应系统中进行了制氢,通过冷却循环水将反应体系的温度保持在5-8℃,将NiS/ZnCdS催化剂分散在乳酸的水溶液中,其中乳酸作为牺牲剂,在连续搅拌下将其完全除去空气,以420 nm滤光片(CEL-HXF300)的300W Xe弧光灯为光源,采用在线气相色谱法(FULI,GC-7920)进行析氢分析,结果显示NiS/ZnCdS复合材料呈现优异的光催化产氢活性。
本发明采用简便、快速的光化学方法成功地合成了一种新型的NiS薄膜修饰ZnCdS纳米粒子的异质结构纳米复合材料。得到的NiS/ZnCdS异质结构纳米复合材料结构良好,半导体ZnCdS与辅助催化剂NiS薄膜之间具有较强的粘着性,在复合材料表面产生大量的活性中心,对光生电子具有良好的转移能力,对可见光有较强的吸附能力,产氢性能得到了极大的提高。
反应机理:本专利制备的NiS薄膜修饰ZnCdS纳米粒子的异质结构纳米复合材料。可见光照射下,在ZnCdS半导体上产生电子-空穴(e-- h+)对,由于NiS和ZnCdS之间的紧密接触以及NiS薄膜的高导电性,这些光生电子很容易通过NiS薄膜和ZnCdS纳米微球之间的界面,并且它们可以进一步移动到NiS薄膜的表面,在那里它们将与H2O反应形成H2。同时,未被NiS薄膜覆盖的ZnCdS微球表面上的光生空穴可与乳酸分子反应形成丙酮酸。总之,均匀覆盖在ZnCdS纳米微球表面的NiS薄膜将增强光生电子的转移,促进电子-空穴(e-- h+)对的分离并在薄膜表面产生大量的活性位点,提高光催化析氢速率。
此外,NiS/ZnCdS光催化剂在可见光照射下具有很好的稳定性和良好的可回收性。
附图说明
图1:为实施例1、实施例2制得的催化剂ZnCdS及与NiS复合的复合材料的X射线衍射图。
图2:为实施例2制得的NiS薄膜修饰ZnCdS纳米粒子复合材料的扫描电镜图。
图3:为实施例2制得的NiS薄膜修饰ZnCdS纳米粒子复合材料的透射电镜图。
图4:为实施例1、实施例2制得的催化剂ZnCdS及与NiS复合的复合材料的紫外-可见漫反射光谱图。
图5:为实施例1、实施例2制得的催化剂ZnCdS及其与NiS复合的复合材料的红外图谱。
图6:为实施例1、实施例2制得的催化剂ZnCdS及与NiS复合的复合材料的光电流图。
图7:为实施例1、实施例2制得的催化剂ZnCdS及与NiS复合的复合材料的交流-阻抗图。
图8:为实施例1、实施例2制得的催化剂ZnCdS及与NiS复合的复合材料的荧光光谱图。
图9:为实施例1、实施例2制得的催化剂ZnCdS及其与NiS复合的复合材料的表面光电压图。
图10:为实施例1、实施例2制得的催化剂ZnCdS及与NiS复合的复合材料的产氢性能柱状图。
具体实施方式
实施例1
1)称取0.5 mmol乙酸镉、0.5 mmol乙酸锌分散于20 mL水中,超声30 min至分散均匀后,逐滴滴加5 mL硫化钠溶液(0.3 M),继续搅拌处理2 h以形成均匀悬浮液,转移至50mL的聚四氟乙烯反应釜内衬中,加盖密封于160 ℃烘箱中加热4 h,产物用纯水和乙醇洗涤多次,于80 ℃真空干燥箱中干燥处理,得到ZnCdS,收集以备后用。同样方法在分别不加入乙酸镉与乙酸锌时合成硫化锌和硫化镉。
2)称取40 mg步骤(1)中得到的ZnCdS分别放于四个烧杯中,加入12mL水和8 mL乙醇,超声处理得分散均匀的悬浮液1号,2号,3号,4号,称取乙酸镍和硫脲分别加入到四个烧杯中(0.025 mmol + 0.25 mmol, 0.05 mmol + 0.5 mmol, 0.1 mmol+ 1 mmol, 1 mmol +10 mmol),继续超声处理以形成均匀的悬浮液。同样方法分别以乙酸镉与乙酸锌为基底时,合成NiS/CdS和NiS/ZnS复合材料。
3)将步骤(2)得到的均匀悬浮液持续通氮气30 min进行排气处理,然后300 W Xe弧光灯光照40 min进行光化学沉积硫化镍,用纯水和乙醇洗涤多次,然后在80 ℃烘箱中干燥处理一天得目标产物。图1为合成材料的X射线衍射图,可以看出不同的复合材料中各自明显有ZnCdS或CdS、ZnS存在,而无NiS特征峰,说明NiS以非晶状态存在于复合材料中,或者NiS高度分散,导致复合材料中无明显特征峰。图2为合成复合材料的扫描电镜图,明显看出材料以微球形态存在,尺寸约为10 -15 nm。图3为实施例1制得的NiS薄膜修饰ZnCdS纳米粒子复合材料的透射电镜图。从透射图中圈起处可以看出该处无ZnCdS纳米微球,而是一种薄膜状物质,且无明显晶格条纹存在,mapping图分别为所选区域中Cd, Zn, S, Ni各种元素的分布情况,可以看出红圈标注处Cd, Zn元素几乎无分布,而富含S, Ni元素,从而知NiS以非晶薄膜状分布在ZnCdS纳米微球周围。
实施例2
1)将实施例1中得到的复合材料催化剂进行可见光的光催化产氢。
2)在可见光照射下,在封闭石英反应系统中进行了制氢实验,通过冷却循环水将反应体系的温度保持在6℃,将10 mg催化剂分散在10 vol %乳酸水溶液(80mL)中,其中乳酸作为牺牲剂,在连续搅拌下将其完全除去空气,以420 nm滤光片(CEL-HXF300)的300W Xe弧光灯为光源,采用在线气相色谱法(FULI,GC-7920)进行析氢分析。光照开始后,每隔1小时取样一次,得到图10所示产氢柱状图。可以得出,NiS加入量为0.05 mmol时的产物NiS/ZnCdS-0.05产氢量为67.75 mmol g−1 h−1。为了说明其性能提高原因, 采用了不同的测试方法。图4中显示ZnCdS与NiS复合材料可以吸收更多的可见光,拓宽了吸收光谱的范围。图5显示其稳定的结构,复合后特征峰依然很明显。图6 – 9为采用光电流、交流-阻抗、荧光光谱、表面光电压不同测试方法对复合材料进行表征,从多方面证明了超细双金属硫化物微球负载NiS薄膜复合材料,具有载流子传输效率高,分离能力强、性能稳定等特征,从而使得产氢性能提高,各种表征结果也与图10产氢性能柱状图相对应。

Claims (2)

1.一种双金属硫化物微球负载NiS薄膜的制备方法,其特征在于,包括如下步骤:
(1)称取0.5 mmol乙酸镉、0.5 mmol乙酸锌分散于20 mL水中,超声30 min至分散均匀后,逐滴滴加5 mL硫化钠溶液,继续搅拌处理2 h以形成均匀悬浮液,转移至50 mL的聚四氟乙烯反应釜内衬中,加盖密封于160 ℃烘箱中加热4 h,产物用纯水和乙醇洗涤多次,于80℃真空干燥箱中干燥处理,得到ZnCdS双金属硫化物纳米微球;
(2)将步骤(1)制备得到的双金属硫化物纳米微球40mg加入到水和乙醇混合液中,超声得均匀悬浮液,然后称取乙酸镍0.05mmol和硫脲0.5mmol,加入到上述悬浮液,继续超声均匀;将均匀悬浮液通N2一段时间以排除空气,然后在氙灯下光照制得ZnCdS纳米微球与NiS无定型薄膜形成异质结构的纳米复合催化材料,即为双金属硫化物微球负载NiS薄膜。
2.根据权利要求1所述的双金属硫化物微球负载NiS薄膜的制备方法,其特征在于,氙灯下的光照强度为300-400W。
CN201910913161.2A 2019-09-25 2019-09-25 超细双金属硫化物微球负载NiS薄膜的制备方法及其应用 Active CN110652988B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910913161.2A CN110652988B (zh) 2019-09-25 2019-09-25 超细双金属硫化物微球负载NiS薄膜的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910913161.2A CN110652988B (zh) 2019-09-25 2019-09-25 超细双金属硫化物微球负载NiS薄膜的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110652988A CN110652988A (zh) 2020-01-07
CN110652988B true CN110652988B (zh) 2022-08-19

Family

ID=69039207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910913161.2A Active CN110652988B (zh) 2019-09-25 2019-09-25 超细双金属硫化物微球负载NiS薄膜的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110652988B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145135A (zh) * 2021-02-19 2021-07-23 山东师范大学 一种硅球支撑的高效ZnCdS/NiS复合光催化剂及其制备方法和应用
CN112958118B (zh) * 2021-03-15 2023-07-25 北京化工大学 一种双硫化物复合材料及其制备方法和应用
CN114618530A (zh) * 2022-02-16 2022-06-14 复旦大学 一种NiS/Cd1-xZnxS栾晶纳米棒复合光催化剂及其制备方法和应用
CN114832835B (zh) * 2022-04-15 2023-09-19 安徽大学 一种Z型异质结NiS/Co3S4/ZnCdS纳米材料及其制备方法和用途
CN115350714A (zh) * 2022-09-01 2022-11-18 广州大学 一种硫镧镉/硫化镍复合材料及其制备方法和在光催化产氢中的应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108067280A (zh) * 2017-11-23 2018-05-25 江南大学 一种硫化镍/类石墨烯碳氮化合物复合催化剂的制备方法
CN110075875B (zh) * 2019-05-08 2021-07-27 福州大学 一种以NiSe为助剂的高效异质结光催化剂及其制备方法和应用
CN110152737A (zh) * 2019-05-10 2019-08-23 三峡大学 Zr-MOF改性ZnCdS纳米微球复合材料及其应用

Also Published As

Publication number Publication date
CN110652988A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
CN110652988B (zh) 超细双金属硫化物微球负载NiS薄膜的制备方法及其应用
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Wu et al. Noble-metal-free nickel phosphide modified CdS/C 3 N 4 nanorods for dramatically enhanced photocatalytic hydrogen evolution under visible light irradiation
Pan et al. Enhanced visible-light-driven photocatalytic H2 evolution from water on noble-metal-free CdS-nanoparticle-dispersed Mo2C@ C nanospheres
CN108499585B (zh) 含磷复合物及其制备与应用
CN110560105B (zh) 磷化镍负载硫铟锌纳米微球复合材料的制备及在光催化产氢中的应用
CN108355719A (zh) 一种单原子钯负载共价三嗪有机聚合物复合光催化材料及其制备和应用
CN113058617B (zh) 一种光催化剂及其制备方法和应用
CN110624550B (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
CN107715896B (zh) 一种BiOI/BiVO4复合光催化剂及其制备方法、应用
Zhang et al. MOF templated to construct hierarchical ZnIn2S4-In2S3 hollow nanotube for enhancing photocatalytic performance
CN110280276A (zh) 负载型光催化剂NiSe2/CdS的制备方法及其应用
CN110075875A (zh) 一种以NiSe为助剂的高效异质结光催化剂及其制备方法和应用
CN111167483A (zh) 一种MoSe2/ZnCdS纳米颗粒的制备方法及应用
Sun et al. Modulating charge transport behavior across the interface via g-C3N4 surface discrete modified BiOI and Bi2MoO6 for efficient photodegradation of glyphosate
Qin et al. Strongly coupled interface facilitating charge separation to the improved visible light-driven hydrogen production on CdS@ polydopamine/NiS photocatalyst
CN112588324B (zh) 一锅法制备复合光催化剂CdS/ZIF-8的方法及其应用
CN114160169A (zh) 一种共价有机框架材料封装钼硫团簇的制备方法及其应用
CN113231081A (zh) 一种花状CDs-ZnIn2S4复合光催化剂及其制备方法与应用
CN113634267B (zh) 一种CdS/ZnS-NiS纳米簇光催化剂及其制备方法和应用
Ning et al. Novel hollow core-shell Zn0. 5Cd0. 5S@ ZnIn2S4/MoS2 nanocages with Z-scheme heterojunction for enhanced photocatalysis of hydrogen generation
Chen et al. Cocatalyst-modified In 2 S 3 photocatalysts for C–N coupling of amines integrated with H 2 evolution
He et al. In situ grown CdS on 2D Cd-based porphyrin MOFs enhances the significant separation and transfer of charge carriers with an appropriate heterojunction during photocatalytic hydrogen evolution
CN114797940B (zh) 一种具有界面协同相互作用的mxp/p-pcn复合催化剂及其制备方法和应用
CN110743583A (zh) 一种0d/2d磷化铁/硫化镉复合光催化剂及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant