WO2022052779A1 - 无硫无皂原位raft乳液共聚合成聚合物/颜料杂化乳胶的方法 - Google Patents

无硫无皂原位raft乳液共聚合成聚合物/颜料杂化乳胶的方法 Download PDF

Info

Publication number
WO2022052779A1
WO2022052779A1 PCT/CN2021/113581 CN2021113581W WO2022052779A1 WO 2022052779 A1 WO2022052779 A1 WO 2022052779A1 CN 2021113581 W CN2021113581 W CN 2021113581W WO 2022052779 A1 WO2022052779 A1 WO 2022052779A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
polymer
raft
situ
sulfur
Prior art date
Application number
PCT/CN2021/113581
Other languages
English (en)
French (fr)
Inventor
戚栋明
汪芬萍
李家炜
赵磊
何贵平
Original Assignee
浙江理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江理工大学 filed Critical 浙江理工大学
Priority to US17/468,718 priority Critical patent/US20220081568A1/en
Publication of WO2022052779A1 publication Critical patent/WO2022052779A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Definitions

  • the invention relates to the technical field of capsule pigment coatings in fine chemicals, in particular to a method for in-situ RAFT emulsion copolymerization into a polymer/pigment hybrid latex without sulfur and soap.
  • Organic pigments have the advantages of many varieties, complete chromatograms, bright colors and strong durability. They are widely used in ink printing, coatings, plastics and rubber and other industrial fields, and have become indispensable coloring materials for the production of various industrial products.
  • the digital inkjet printing of textiles and the inkjet printing technology of organic pigment ink have the characteristics of energy saving, water saving and less pollution, and are an environmentally friendly clean coloring new technology.
  • Pigments are insoluble in water and are dispersed in water in the form of particles during use.
  • the stability of the pigment dispersion system directly affects its performance.
  • the pigment When the pigment is dispersed in water by ultrasonic or ball milling, the pigment dispersion seems to be stable. After standing for a certain period of time, the pigment will aggregate and deposit, and stable dispersion cannot be achieved for a long time.
  • film-forming substances such as adhesives to make pigment particles adhere to the surface of fibers to obtain a certain color fastness. Excessive use of adhesive will have a certain impact on the feel, color depth and air permeability of the fabric, which will easily lead to limitations such as unsatisfactory coloring effect and poor hand feel of printed fabrics.
  • the common solution to the problem of easy agglomeration of pigment particles is to add a large amount of emulsifier and dispersant.
  • the actual situation shows that even if a large amount of emulsifier and dispersant is added to the emulsion, it cannot be maintained for a long time without sedimentation.
  • the use of a large amount of emulsifier will affect the film-forming properties of the pigment, which will seriously affect the quality of the paint.
  • the Chinese patent application with application number 201910938295.X discloses a modified sepiolite composite pigment and a preparation method thereof.
  • the chitosan-modified sepiolite is used as the core, and the organic pigment is coated on the surface of the core to form a "core-shell".
  • structured composite pigment, this modified pigment has good thermal stability and weather resistance (acid, alkali and organic reagents) properties.
  • the Chinese patent application with application number 201810261974.3 discloses a preparation method of a multi-layer core-shell pigment organosilicon polyacrylate sodium capsule coating.
  • the coating provided by the invention is applied to fabric coating printing.
  • the high-efficiency coating of the fabric fibers forms a film with a certain structural gradient on the surface of the fibers, thereby obtaining printed products that take into account the fastness, hand feel and air permeability.
  • Emulsifiers are usually added in the current encapsulation process of organic pigments. Emulsifiers belong to surface active substances, which can make two immiscible liquids form a stable solution dispersion system under certain conditions. Traditional emulsifiers are usually attached to the surface of polymer particles by physical adsorption, and reach a thermodynamic equilibrium with their environment, thereby forming stable polymer particles, but the emulsifier molecules are easily desorbed and the stability of the polymer latex is lost; On the one hand, traditional emulsifiers are easy to migrate in the film, which affects the physical properties of the film.
  • RAFT polymerization is a living free radical polymerization reaction carried out by a reversible chain transfer mechanism by adding an appropriate chain transfer agent RAFT reagent to the traditional free radical polymerization system. Reversible chain transfer can form dormant macromolecular chains and new initiating active species to achieve living controlled polymerization of free radicals.
  • RAFT polymerization the chain-extending free radical undergoes a reversible chain transfer reaction with the RAFT reagent, so that the original free radical is transformed into a dormant species, and a growing chain free radical is released at the same time, which makes the polymer chain have active characteristics.
  • the biggest advantage of RAFT technology is that the experimental conditions are very similar to traditional free radical polymerization, and the monomers, initiators and polymerization methods are consistent with traditional free radical polymerization.
  • the biggest advantage of this polymerization is that it is suitable for a wide range of monomers, and the polymerization conditions are simple, convenient and easy to operate.
  • RAFT Reversible addition-fragmentation chain transfer polymerization
  • Nguyen reported an amphiphilic random macromolecular RAFT copolymer to combine hydrophilic inorganic pigments (represented by zirconia and alumina) and hydrophobic organic pigments (represented by phthalocyanine blue) with polymethacrylic acid
  • the new method of methyl ester/butyl acrylate encapsulation makes the pigment dispersed and promotes the uniform growth of the polymer on the surface of the pigment particles.
  • the composite particles are coated to form a core-shell structure.
  • This method uses traditional sulfur-containing RAFT reagents, which will pollute the environment [Langmuir 2008, 24, 2140-2150].
  • the polymer prepared by using the traditional sulfur-containing RAFT reagent is colored and produces an unpleasant odor.
  • the color of the polymer itself is very unfavorable for pigment coloring, which makes it difficult to control the color and light of the organic pigment dispersion.
  • the use of sulfur-containing RAFT reagents also pollutes the environment to a certain extent, which does not meet the requirements of green development. Engelis reported a sulfur-free RAFT radical emulsion polymerization using ⁇ -vinyl-terminated polymethyl methacrylate macromolecules without sulfur element as chain transfer agents [Nature Chemistry, 2017, 9:171-178] . Using this method to design and synthesize multifunctional polymers with controllable molecular structure and achieve effective coating of pigment particles is a new development trend.
  • the technical problem to be solved by the present invention is to provide a method for preparing a sulfur-free soap-free in-situ RAFT emulsion copolymerized into a polymer/pigment hybrid latex, which solves the problem that the polymer prepared by the traditional sulfur-containing RAFT reagent is produced when the organic pigment particles are coated. It is more important to solve the problem that the coating rate of the current multifunctional polymer-coated pigments is not high and the molecular structure is uncontrollable.
  • the present invention adopts sulfur-free and soap-free RAFT radical emulsion polymerization to form hybrid latex, which is expected to realize no sulfur and no saponification of polymer/pigment hybrid latex, and can also improve the coating rate and dispersion stability of organic pigments.
  • a method for a sulfur-free soap-free in-situ RAFT emulsion copolymerization of the present invention to form a polymer/pigment hybrid latex comprising:
  • a reactive emulsifier is used to disperse the pigment to prepare a pigment dispersion.
  • step (3) adding acrylate monomers to the reaction system after synthesizing the RAFT reagent in step (2), through the amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagent (ie RAFT reagent) Sulfur-free RAFT polymerization was carried out in situ, and the structure and composition of the coating polymer were controlled to obtain a series of uniformly coated and stably dispersed polymer/organic pigment hybrid latex.
  • ie RAFT reagent amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagent
  • the reactive emulsifiers selected during the preparation of the pigment dispersion in the step (1) are sodium hydroxypropanesulfonate (HPMAS), allyloxy polyoxyethylene (10) ammonium nonyl sulfate (DNS- 86), one or more in nonylphenol polyoxyethylene (4) ether ammonium sulfate (DNS-458), namely one or more (including two kinds), the consumption of reactive emulsifier accounts for methyl 5%-10% of the mass of acrylate monomers.
  • reactive emulsifiers have an additional reactive functional group. This group can participate in emulsion polymerization and can be covalently bonded to the surface of polymer particles to become part of the polymer. , to avoid the desorption of the emulsifier from the polymer particles or the migration in the latex film, and to improve the stability of the emulsion.
  • the reactive emulsifier is first dissolved in water, then the pigment is added, and the pigment dispersion liquid is obtained by ultrasonic homogenization.
  • the pigment can be titanium dioxide pigment, phthalocyanine blue pigment, benzidine Yellow paint, etc.
  • a variety of pigments were used to prepare pigment dispersions to verify the wide applicability of sulfur-free and soap-free in-situ RAFT emulsion copolymerization into polymer/pigment hybrid latex.
  • the cobalt complex catalyst used in the step (2) can be cobalt (II) oxime boron fluoride complex (CoBF), and the amount of the catalyst accounts for 80-120 ppm of the mass of the methacrylate monomer.
  • the methacrylate monomers adopted in the step (2) can be one or more of methyl methacrylate (MMA), n-butyl methacrylate etc., namely one or more (including two).
  • MMA methyl methacrylate
  • n-butyl methacrylate etc. namely one or more (including two).
  • the water-soluble initiator adopted in the step (2) is one or both of azodicyanovaleric acid (ACVA), potassium persulfate (KPS), and ammonium persulfate (APS), and the initiator consumption accounts for a 1%-5% of the mass of acrylic monomers.
  • ACVA azodicyanovaleric acid
  • KPS potassium persulfate
  • APS ammonium persulfate
  • step (2) after the cobalt complex is dissolved in the methacrylate monomer, it is added to the reaction system by injection.
  • step (2) when using the catalytic chain transfer polymerization (CCTP) method to synthesize the amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagent on the surface of the pigment particles in situ, according to the amount of the added emulsifier.
  • CCTP catalytic chain transfer polymerization
  • Different and added methacrylic monomers can obtain amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagents with different structures.
  • the oxygen-exhausting methacrylate monomer is added to the reaction by injection.
  • the feed rate was 0.6 mL/min.
  • the molecular structural formula of the amphiphilic sulfur-free ⁇ -vinyl methacrylate macromolecular RAFT reagent is:
  • the in-situ regulation of the structure of the coating polymer in the step (3) can be achieved by sequentially adding dropwise acrylate monomers to carry out RAFT polymerization.
  • the aqueous solution of the acrylate monomer and the water-soluble initiator that has been deoxygenated in advance is added by injection, the volume of the added initiator aqueous solution is equal to the volume of the monomer, and the feeding rate is 0.02-10 mL/min.
  • the propylene ester monomers are divided into hard monomers and soft monomers, and the hard monomers are methyl methacrylate (MMA), isobutyl methacrylate (IBMA) or methyl methacrylate.
  • MMA methyl methacrylate
  • IBMA isobutyl methacrylate
  • BzMA butyl methacrylate
  • BA butyl acrylate
  • step (3) acrylic monomers are sequentially added dropwise to synthesize a polymer-coated organic pigment with a controllable structure, and the molecular weight distribution index PDI of the obtained polymer/organic pigment hybrid latex is about 1-2.
  • the mass ratio of the acrylate hard monomer and the soft monomer added dropwise is 1:9-9:1.
  • the present invention obtains polymer-organic pigment hybrid latex by in-situ RAFT emulsion copolymerization without sulfur and soap.
  • Three reactive emulsifiers were used to disperse the pigment to prepare a pigment dispersion; then the amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagent was synthesized by the catalytic chain transfer polymerization (CCTP) method.
  • CCTP catalytic chain transfer polymerization
  • the present invention has the following beneficial effects:
  • the present invention uses water as a medium to design and synthesize a class of amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagents through in-situ RAFT emulsion copolymerization of sulfur-free and soap-free, and is configured as organic pigment fine Coating of particles.
  • the polymer/organic pigment hybrid latex obtained by in-situ RAFT emulsion copolymerization without sulfur and soap overcomes the poor dispersion stability of the existing hybrid latex, including Defects such as uncontrollable molecular structure of the coating polymer.
  • the hybrid latex prepared by in-situ RAFT emulsion copolymerization of sulfur-free and soap-free in the present invention has the characteristics of high dispersion stability, high pigment coating rate, clear and controllable structure of the coating polymer layer, etc., and is suitable for various pigments surface coating modification.
  • Figure 1 is a schematic diagram of the process of in-situ RAFT emulsion copolymerization into a polymer-organic pigment hybrid latex without sulfur and soap.
  • CCTP catalytic chain transfer polymerization
  • RAFT reversible addition-fragmentation chain transfer polymerization
  • FIG. 2 shows the growth process of the emulsion particle size during the sulfur-free and soap-free in-situ RAFT emulsion copolymerization process of Example 9 of Table 2. (size indicates the size of the particle size)
  • Fig. 3 is the TEM image of the unmodified pigment and the prepared polymer-organic pigment hybrid latex, wherein Fig. 3a is the TEM image of the unmodified pigment, and Fig. 3b is the polymer prepared in Example 9 of Table 2 - TEM image of organic pigment hybrid latex.
  • Figure 4 is the 1HNMR spectrum (chemical shift represents chemical shift) of the amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagent synthesized in Example 8.
  • the amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagent was synthesized in situ on the surface of pigment particles by catalytic chain transfer polymerization (CCTP) method.
  • CCTP catalytic chain transfer polymerization
  • the specific experimental steps are as follows: The base acrylate-based monomer was added to a 100 mL round bottom flask with a stir bar, and nitrogen was purged for at least 1 hour, allowing the mixture to stir under a nitrogen atmosphere until the solids were completely dissolved.
  • the pigment dispersion liquid, initiator (azodicyanovaleric acid, 2.5% by mass of methacrylate monomers) and deionized water were charged into a chamber equipped with a mechanical stirrer, reflux condenser and nitrogen inlet. in a four-necked flask. Nitrogen was bubbled through the mixture and stirred at 300 rpm for at least 30 minutes. Then, the mixed solution of the methacrylic monomer and the catalyst that had been treated with oxygen removal in advance was started to be added by means of injection (the feed rate was 0.6 mL/min). The polymerization reaction was carried out in a constant temperature water bath at 70°C with a stirring speed of 300 rpm. After the dropwise addition, continue stirring for 2-3h at the same temperature.
  • initiator azodicyanovaleric acid, 2.5% by mass of methacrylate monomers
  • In situ sulfur-free RAFT polymerization is carried out by amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagents to control the structure and composition of the coating polymer, thereby obtaining a series of uniform coating, stable Dispersed polymer/organic pigment hybrid latex.
  • the specific experimental steps are as follows: dilute a small amount of amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagent by adding an appropriate amount of water to achieve a solid content of 20 wt%.
  • the resulting latex was charged into a four-necked flask and purged with nitrogen for 30 minutes with stirring at 250 rpm.
  • the acrylate monomer and the initiator aqueous solution that had been treated with oxygen exhaust in advance were added by means of injection (the injection speed was 0.3 mL/min).
  • the volume of aqueous initiator solution added is equal to the volume of monomer.
  • the reaction was continued for another 2-3h under the same conditions. A nitrogen atmosphere was maintained during the polymerization, and the polymerization temperature was 80°C.
  • the emulsifier SDS is dissolved in water, phthalocyanine blue pigment and methacrylate monomer are added, and the pigment dispersion liquid is obtained by ultrasonic homogenization.
  • the polymer and the initiator are polymerized in an aqueous solution to obtain a polymer/organic pigment hybrid latex.
  • the amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagent was synthesized in situ on the surface of pigment particles by catalytic chain transfer polymerization (CCTP) method. According to the difference of the added emulsifier and the added methacrylic monomer, amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagents with different structures can be obtained.
  • Example 2 Example 5, Example 8, and Example 11 as examples, the molecular structural formula of the amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagent is:
  • FIG. 4 is the 1HNMR spectrum of the amphiphilic non-sulfur-terminated ⁇ -vinyl methacrylate macromolecular RAFT reagent synthesized in Example 8.
  • FIG. The 1HNMR spectrum confirmed the presence of the ⁇ -terminal unsaturation of the macromolecular RAFT reagent (the macromonomer vinyl peaks appeared at 6.20 and 5.47 ppm), which indicated the success of the catalytic chain transfer polymerization that the amphiphilic sulfur-free terminal Successful synthesis of ⁇ -vinyl methacrylate macromolecular RAFT reagents.
  • the obtained polymer/organic pigment hybrid latex was used as ink for ink jet printing and applied to ink jet printing of cotton fabrics.
  • the rubbing fastness, hand feel, air permeability and other properties of the printed fabric were tested, and the results are shown in Table 3.
  • the particle size of the polymer/organic pigment hybrid latex was measured by a nano-laser particle sizer (Nano-90 nano-laser particle sizer (Malvern Instruments, UK)), and the average particle size of the obtained hybrid latex was .
  • the test of dry and wet rubbing fastness shall refer to the standard of GB/T3920-2008 "Color fastness to rubbing of textiles color fastness test”.
  • the sample size is 50mm ⁇ 200mm, two pieces each in the warp and weft direction, and the standard rubbing cotton cloth is 50mm ⁇ 50mm.
  • Hand feel performance test Close your eyes and touch the finished fabric, take one person as a group, and evaluate the printed fabric according to different hand feel. It is divided into 5 grades. Grade 1 is the worst, the fabric feels hard and slippery, and grade 5 is the best, and the fabric feels soft and slippery.
  • FIG. 1 The schematic diagram of the process of the sulfur-free and soap-free in-situ RAFT emulsion copolymerization into the polymer-organic pigment hybrid latex described in the above embodiment is shown in FIG. 1 .
  • Figure 3a and Figure 3b are the TEM images of the original phthalocyanine blue pigment and the polymer-organic pigment hybrid latex, respectively.
  • the surface of the polymer-organic pigment hybrid latex prepared by RAFT emulsion polymerization is covered with a thick shell.
  • the use of the sulfur-free soap-free in-situ RAFT emulsion copolymerization of the present invention to form a polymer/organic pigment hybrid latex can effectively improve the existing paint printing technology, and its dry and wet rubbing fastness is 4-5 grades, The printed fabric is soft to the touch.
  • the particle size of the hybrid latex is 200-300nm, and using it as ink for inkjet printing can reduce nozzle clogging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及一种无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法,包括:选用反应性乳化剂对颜料进行分散,制备颜料分散液。采用催化链转移聚合法在颜料微粒表面原位合成两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂。滴加丙烯酸酯类单体,通过RAFT试剂在颜料微粒表面进行原位无硫RAFT聚合,调控包覆层聚合物的结构与组成,获得一系列均匀包覆、稳定分散的聚合物/有机颜料杂化乳胶。本发明通过无硫无皂原位RAFT乳液共聚制得的杂化乳胶具有分散稳定性高,颜料包覆率高,包覆聚合物层序列明晰,结构可控等特点,适用于各种颜料的表面包覆改性。

Description

无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法
本申请要求在2020年9月14日提交中国专利局、申请号为202010960365.4、发明名称为“无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及精细化工中胶囊颜料涂料的技术领域,具体涉及一种无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法。
背景技术
有机颜料具有品种多,色谱全,色彩鲜艳,耐久性强等优势,被广泛应用于油墨印刷,涂料,塑料和橡胶等工业领域,成为生产多种工业产品不可缺少的着色材料。例如纺织品的数码喷墨印花,有机颜料墨水的喷印技术,具有节能、节水、污染少等特点,是一种环境友好的清洁着色新技术。
颜料不溶于水,在使用过程中以颗粒形式分散于水中,颜料分散体系的稳定性直接影响其使用性能。当采用超声或者球磨的方式将颜料分散在水中时,颜料分散液看似稳定,在一定时间的静置之后,颜料会聚集并出现沉积,不能达到长时间的稳定分散。此外颜料与纺织品之间没有亲和力,一般需要借助粘合剂等成膜物质使颜料颗粒附着在纤维表面,来获得一定的色牢度。过量粘合剂的使用会对织物的手感,色深以及透气性产生一定影响,容易导致印花织物着色效果不理想、手感不佳等局限。
目前针对颜料粒子易团聚的问题,常用的解决办法是添加大量的乳化剂和分散剂,但实际情况表明,即使在乳液中添加了大量的乳化剂和分散剂,也无法长时间保持不沉降,而且大量乳化剂的使用会对颜料的成膜性能产生影响,进而严重影响涂料的质量。
将有机颜料粒子进行表面改性或胶囊化,是解决有机颜料微细粒子易团聚的一个有效途径,同时也能提高颜料的包覆率和分散稳定性。其中,多功能聚合物包覆颜料墨水凭借其低黏度、优良的可喷射性,可赋予纺织印花品优良的牢度性能而受到研究者的广泛关注。
申请号201910938295.X的中国专利申请中公开了一种改性海泡石复合颜料及其制备方法,以壳聚糖改性的海泡石为核,有机颜料包覆于核表面形成“核壳”结构的复合颜料,这种改性颜料具有良好的热稳定性及耐候(耐酸、碱和有机试剂)性能。
申请号201810261974.3的中国专利申请中公开了一种多层核壳结构颜料有机硅聚丙烯酸醋纳胶囊涂料的制备方法,该发明提供的涂料应用于织物涂料印花,在受热烘焙后,可形成对单根织物纤维的高效包覆,在纤维表面形成具有一定结构梯度的胶膜,进而获得兼顾牢度、手感、透气性的印花产品。
在目前有机颜料胶囊化过程中通常会加入乳化剂,乳化剂属于表面活性物质,能在一定条件下使互不混溶的两种液体形成有一定稳定性的溶液分散体系。传统乳化剂通常是以物理吸附方式附着在聚合物粒子表面,与其环境达到热力学平衡,从而形成稳定聚合物粒子,但这种乳化剂分子很容易发生解吸,使聚合物胶乳的稳定性丧失;另一方面,传统的乳化剂容易在胶膜中迁移,影响胶膜的物性。
目前多功能聚合物包覆颜料还存在包覆率不高,分子结构不可控等缺陷,这对颜料的分散稳定性有很大影响,所以合成分子结构可控的多功能聚合物并用于颜料粒子的包覆是一个有研究价值的方向。RAFT聚合是在传统自由基聚合体系中加入适当的链转移剂RAFT试剂,以可逆链转移机理进行的活性自由基聚合反应。可逆链转移可以形成休眠的大分子链和新的引发活性种,实现自由基的活性可控聚合。在RAFT聚合中,链增长自由基通过与RAFT试剂发生可逆的链转移反应,使原来的自由基转变为休眠种,同时释放一个增长链自由基,使聚合物链具有活性特征。RAFT技术的最大优势在于实验条件与传统的自由基聚合非常相近,单体、引发剂以及聚合方式等与传统的自由基聚合一致。该聚合相对于其他活性自由基聚合(如氮氧稳定自由基聚合、原子转移自由基聚合等)的最大优势在于适用单体广,聚合条件简单方便易于操作。
传统自由基聚合机理:链引发:I→R·
R·+M→RM·
链增长:RM·+M→RM2·
RM2·+M→RM3·
......
RMn-1·+M→…→RMn·
链终止:RMn·→死聚合物
可逆加成-断链链转移聚合(RAFT)反应历程:
Figure PCTCN2021113581-appb-000001
Nguyen报告了一种用两亲性无规大分子RAFT共聚物将亲水性无机颜料(以氧化锆和氧化铝为代表)和疏水性有机颜料(以酞菁蓝为代表)与聚甲基丙烯酸甲酯/丙烯酸丁酯包封的新方法,使得颜料分散并促进聚合物在颜料颗粒表面均匀生长,包覆复合粒子形成核壳结构,颜料粒子中心被厚的聚合物壳包裹,这一方法的最大优势在于颜料包覆率高,但这种方法采用的是传统含硫的RAFT试剂,会对环境造成污染【Langmuir 2008,24,2140-2150】。采用传统含硫RAFT试剂制备得到的聚合物带有颜色,而且会产生难闻的气味,聚合物本身带有颜色非常不利于颜料着色,会使得有机颜料分散液的色光难以调控。含硫的RAFT试剂的使用对于环境也有一定的污染,不符合绿色发展的要求。Engelis报告了一种利用不含硫元素的ω-乙烯基端基聚甲基丙烯酸甲酯大分子为链转移剂,进行无硫RAFT自由基乳液聚合【Nature Chemisry,2017,9:171-178】。利用这种方式来设计、合成分子结构可控的多功能聚合物并实现颜料粒子的有效包覆是一个新的发展趋势。
概述
本发明所要解决的技术问题是提供一种无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的制备方法,解决传统含硫RAFT试剂制备的聚合物在包覆有机颜料粒子时产生的色光难以调控的问题,更为重要的是解决目前多功能聚合物包覆颜料的包覆率不高,分子结构不可控等问题。本发明采用无硫无皂RAFT自由基乳液聚合成杂化乳胶,有望实现聚合物/颜料杂化乳胶的无硫、无皂化,还能提升有机颜料的包覆率与分散稳定性。
本发明的一种无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法,包括:
(1)选用反应性乳化剂对颜料进行分散,制备颜料分散液。
(2)以甲基丙烯酸酯类单体作为共聚单体,钴配合物作为催化剂, 以水为溶剂,加入水溶性引发剂和颜料分散液,形成反应体系,采用催化链转移聚合(CCTP)法在颜料微粒表面原位合成两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂(即RAFT试剂),得到合成RAFT试剂后的反应体系;
(3)在步骤(2)的合成RAFT试剂后的反应体系中加入丙烯酸酯类单体,通过两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂(即RAFT试剂)原位进行无硫RAFT聚合,调控包覆层聚合物的结构与组成,获得一系列均匀包覆、稳定分散的聚合物/有机颜料杂化乳胶。
所述步骤(1)中颜料分散液的制备时所选用的反应性乳化剂为甲基丙烯酸羟丙磺酸钠(HPMAS),烯丙氧基聚氧乙烯(10)壬基硫酸铵(DNS-86)、壬基酚聚氧乙烯(4)醚硫酸铵(DNS-458)中的一种或多种,即一种或两种以上(包括两种),反应性乳化剂的用量占甲基丙烯酸酯类单体质量的5%-10%。反应性乳化剂与传统乳化剂相比,多了一个反应性官能基团,这种基团能参与乳液聚合反应,可以以共价键的方式键合到聚合物粒子表面,成为聚合物的一部分,避免了乳化剂从聚合物粒子上解吸或在乳胶膜中迁移,提高乳液的稳定性。
所述步骤(1)中颜料分散液的制备时先将反应性乳化剂溶于水中,之后加入颜料,超声均质化得到颜料分散液,颜料可为钛白粉颜料,酞菁蓝颜料,联苯胺黄颜料等等。采用多种颜料制备颜料分散液,验证无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶广泛的适用性。
所述步骤(2)中采用的钴配合物催化剂,可为钴(II)肟氟化硼配合物(CoBF),催化剂用量占甲基丙烯酸酯类单体质量的80-120ppm。
所述步骤(2)中采用的甲基丙烯酸酯类单体可为甲基丙烯酸甲酯(MMA),甲基丙烯酸正丁酯等中的一种或多种,即一种或两种以上(包括两种)。
所述步骤(2)中采用的水溶性引发剂为偶氮二氰基戊酸(ACVA)、过硫酸钾(KPS)、过硫酸铵(APS)的一种或两种,引发剂用量占甲基丙烯酸酯类单体质量的1%-5%。
所述步骤(2)中,将钴配合物溶于甲基丙烯酸酯类单体后,通过注射的方式添加到反应体系中。
所述步骤(2)中采用催化链转移聚合(CCTP)法在颜料微粒表面原 位合成两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂时,根据添加的乳化剂的不同和添加的甲基丙烯酸类单体的不同,可以得到结构不同的两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂。
所述步骤(2)中原位合成两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂时,通过注射的方式将经过排氧处理的甲基丙烯酸酯类单体添加到反应容器中,进料速度为0.6mL/min。
所述步骤(2)中,所述的两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂的分子结构式为:
Figure PCTCN2021113581-appb-000002
所述步骤(3)中原位调控包覆层聚合物的结构可通过顺序滴加丙烯酸酯类单体进行RAFT聚合来实现。通过注射的方式添加预先经过排氧处理的丙烯酸酯类单体和水溶性引发剂的水溶液,添加的引发剂水溶液的体积等于单体的体积,进料速度为0.02-10mL/min。
所述步骤(3)中,所述的丙烯酯类单体分为硬单体和软单体,硬单体为甲基丙烯酸甲酯(MMA)、甲基丙烯酸异丁酯(IBMA)或甲基丙烯酸苄基酯(BzMA);软单体为甲基丙烯酸丁酯(BMA)或丙烯酸丁酯(BA)。
所述步骤(3)中顺序滴加入丙烯酸酯类单体,合成结构可控的聚合物包覆有机颜料,得到的聚合物/有机颜料杂化乳胶的分子量分布指 数PDI在1-2左右。
所述步骤(3)中滴加丙烯酸酯硬单体和软单体的质量比为1:9-9:1。
本发明通过无硫无皂原位RAFT乳液共聚合成聚合物-有机颜料杂化乳胶。选用三种反应性乳化剂对颜料进行分散,制备颜料分散液;之后采用催化链转移聚合(CCTP)法合成两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂,随之滴加丙烯酸酯类单体,通过两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂原位进行无硫RAFT聚合,调控包覆层聚合物的结构与组成,从而获得一系列均匀包覆、稳定分散的聚合物/有机颜料杂化乳胶。
与现有技术相比,本发明有以下有益效果:
一、本发明以水为介质,通过无硫无皂原位RAFT乳液共聚,设计、合成一类两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂并配置为有机颜料微细粒子的包覆。
二、本研究所使用的无硫RAFT自由基乳液聚合,这一反应的条件温和、所得的聚合物无色无味,有望实现聚合物-颜料杂化乳胶的无硫、无皂化制备。
三、与其他的聚合物/有机颜料杂化乳胶相比,通过无硫无皂原位RAFT乳液共聚合成的聚合物/有机颜料杂化乳胶克服了现有杂化乳胶分散稳定性不佳,包覆层聚合物分子结构不可控等缺陷。
四、本发明通过无硫无皂原位RAFT乳液共聚制得的杂化乳胶具有分散稳定性高,颜料包覆率高,包覆聚合物层结构明晰、可控等特点,适用于各种颜料的表面包覆改性。
附图说明
图1为无硫无皂原位RAFT乳液共聚合成聚合物-有机颜料杂化乳胶的过程示意图。(CCTP表示催化链转移聚合,RAFT表示可逆加成-断裂链转移聚合)
图2为表2的实施例9的无硫无皂原位RAFT乳液共聚过程中的乳液粒径增长过程。(size表示粒径的大小)
图3为未改性颜料和制备的聚合物-有机颜料杂化乳胶的透射电镜图,其中图3a为未改性颜料的透射电镜图,图3b为表2的实施例9所制备的聚合物-有机颜料杂化乳胶的透射电镜图。
图4为实施例8所合成的两亲性无硫端ω-乙烯基甲基丙烯酸酯类 大分子RAFT试剂的1HNMR光谱(chemical shift表示化学位移)。
详细描述
以下所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
实施例
根据表1,表2所示投料比例和条件,制备聚合物/有机颜料杂化乳胶,步骤如下:
1、将反应性乳化剂溶于水中,加入颜料,超声均质化得到颜料分散液,反应性乳化剂的用量占单体的5%-10%。
2、采用催化链转移聚合(CCTP)法在颜料微粒表面原位合成两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂,具体实验步骤如下:将催化链转移试剂和甲基丙烯酸酯类单体加入带有搅拌棒的100mL圆底烧瓶中,吹扫氮气至少1小时,使得混合物在氮气氛围下搅拌直至固体完全溶解。同时,将颜料分散液、引发剂(偶氮二氰基戊酸,占甲基丙烯酸酯类单体质量的2.5%)和去离子水装入配备有机械搅拌器、回流冷凝器和氮气入口的四颈烧瓶中。向混合物中通入氮气,并以300rpm的转速搅拌至少30分钟。随后,通过使用注射的方式开始添加预先经过排氧处理的甲基丙烯酸类单体与催化剂的混合溶液(进料速度为0.6mL/min)。聚合反应在70℃的恒温水浴中进行,搅拌速度为300rpm。滴加完后,在相同温度下继续搅拌2-3h。
3、通过两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂原位进行无硫RAFT聚合,调控包覆层聚合物的结构与组成,从而获得一系列均匀包覆、稳定分散的聚合物/有机颜料杂化乳胶。具体实验步骤如下:通过添加适量的水稀释少量的两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂以达到20wt%的固体含量。将所得的胶乳装入四口烧瓶中,并在250rpm的搅拌下用氮气吹扫30分钟。随后,通过注射的方式添加预先经过排氧处理的丙烯酸酯类单体和引发剂水溶液(注射速度为0.3mL/min)。对于每次添加,添加的引发剂水溶液的体积等于单体的体积。添加完后,在相同条件下再继续反应 2-3h。聚合过程中要保持氮气环境,聚合反应温度为80℃。
对比例1:
将乳化剂SDS溶于水中,加入酞菁蓝颜料和甲基丙烯酸酯类单体,超声均质化得到颜料分散液。以水为溶剂,加入水溶性引发剂和颜料分散液,在搅拌状态下通氮气半小时,之后在惰性气氛下加热混合物,反应2-3h后,直接加入预先经过排氧处理的丙烯酸酯类单体和引发剂的水溶液进行聚合,获得聚合物/有机颜料杂化乳胶。
表1
Figure PCTCN2021113581-appb-000003
根据表1所示投料比例和条件,采用催化链转移聚合(CCTP)法在颜料微粒表面原位合成两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂。根据添加的乳化剂的不同和添加的甲基丙烯酸类单体的不同,可以得到结构不同的两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂。以实施例2,实施例5,实施例8,实施例11为例,所述的两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂的分子结构式为:
Figure PCTCN2021113581-appb-000004
图4为实施例8所合成的两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂的1HNMR光谱。1HNMR光谱证实了大分子RAFT试剂的ω-端不饱和基团的存在(大单体乙烯基峰出现在6.20和5.47ppm),这一结果表明催化链转移聚合的成功即两亲性无硫端ω-乙烯基甲基丙烯酸酯类大分子RAFT试剂的成功合成。由实施例1-12可以看出,当乳化剂占单体质量的9%时,大分子RAFT试剂的分子量最小,端ω-乙烯基含量高,利于后续无硫RAFT聚合调控试验。所以,后续实施例中乳化剂和单体之间的比例为9%。
表2
Figure PCTCN2021113581-appb-000005
将所得到的聚合物/有机颜料杂化乳胶作为喷墨印花的墨水,应用 于棉织物的喷墨印花。对印花织物的摩擦牢度、手感、透气性等性能进行测试,结果如表3所示。
其中各个数据的测量方法如下:
1、采用纳米级激光粒度仪(Nano-90型纳米激光粒度仪(英国马尔文仪器有限公司))对聚合物/有机颜料杂化乳胶的粒径进行测量,得到的杂化乳胶的平均粒径。
2、干湿摩擦牢度测试参照GB/T3920—2008《纺织品色牢度试验耐摩擦色牢度》标准。试样为50mm×200mm,经纬向各两块,标准摩擦用棉布为50mm×50mm。
3、手感性能测试:闭目触摸整理后的织物,以一人为一小组,进行评级,根据不同的手感将印花织物进行手感评定,具体评定方法为从柔软性、滑爽感两方面进行手感评级,共分5级,1级最差,织物手感较硬,滑糯感差,5级最好,织物手感柔软、滑糯。
表3
Figure PCTCN2021113581-appb-000006
上述实施例中所述的无硫无皂原位RAFT乳液共聚合成聚合物-有机颜料杂化乳胶的过程示意图如图1所示。跟踪实施例9的无硫无皂原位RAFT乳液共聚过程中的乳液粒径增长情况,其粒径增长结果如图2所示,可以看出随着单体的逐渐加入,乳液粒径不断增大,这从侧面证明聚合过程中在颜料的表面包覆上了一层外壳。通过透射电镜进一步验证聚合物的包覆,图3a和图3b分别为酞菁蓝原始颜料和聚合物-有机颜料杂化乳胶的TEM图像,由TEM图像可看出,通过无硫无皂原位RAFT乳液聚合制备的聚合物-有机颜料杂化乳胶的表面被包覆上了一层有厚度的外壳。
由表3可知,使用本发明的无硫无皂原位RAFT乳液共聚合成聚合物/有机颜料杂化乳胶,可有效提升现有涂料印花技术,其耐干湿摩 擦牢度为4-5级,印花织物手感柔软。杂化乳胶的粒径在200-300nm,将其作为喷墨印花的墨水能够减少喷嘴的堵塞。

Claims (9)

  1. 一种无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法,其中,包括以下步骤:
    (1)选用反应性乳化剂对颜料进行分散,制备颜料分散液。
    (2)以甲基丙烯酸酯类单体作为共聚单体,钴配合物作为催化剂,以水为溶剂,加入水溶性引发剂和颜料分散液,形成反应体系,采用催化链转移聚合法在颜料微粒表面原位合成RAFT试剂,得到合成RAFT试剂后的反应体系;
    (3)在步骤(2)合成RAFT试剂后的反应体系中加入丙烯酸酯类单体,通过RAFT试剂原位进行无硫RAFT聚合,调控包覆层聚合物的结构与组成,获得一系列均匀包覆、稳定分散的聚合物/有机颜料杂化乳胶。
  2. 根据权利要求1所述的无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法,其中,步骤(1)中,所述的反应性乳化剂为甲基丙烯酸羟丙磺酸钠、烯丙氧基聚氧乙烯壬基硫酸铵、壬基酚聚氧乙烯醚硫酸铵中的一种或多种,所述的反应性乳化剂的用量为甲基丙烯酸酯类单体质量的5%-10%。
  3. 根据权利要求1所述的无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法,其中,步骤(1)中,所述的颜料为钛白粉颜料、酞菁蓝颜料或者联苯胺黄颜料。
  4. 根据权利要求1所述的无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法,其中,步骤(2)中,所述的钴配合物为钴(II)肟氟化硼配合物,所述的钴配合物的用量为甲基丙烯酸酯类单体质量的80-120ppm。
  5. 根据权利要求1所述的无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法,其中,步骤(2)中,所述的甲基丙烯酸酯类单体为甲基丙烯酸甲酯、甲基丙烯酸正丁酯中的一种或两种。
  6. 根据权利要求1所述的无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法,其中,步骤(2)中,所述的水溶性引发剂为偶氮二氰基戊酸、过硫酸钾、过硫酸铵的一种或多种,所述的引发剂的用量为甲基丙烯酸酯类单体质量的1%-5%。
  7. 根据权利要求1所述的无硫无皂原位RAFT乳液共聚合成聚 合物/颜料杂化乳胶的方法,其中,步骤(2)中,将钴配合物溶于甲基丙烯酸酯类单体后,通过滴加的方式添加到反应体系中。
  8. 根据权利要求1所述的无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法,其中,步骤(3)中,所述的丙烯酸酯类单体采用硬单体和软单体的组合,所述的硬单体为甲基丙烯酸甲酯、甲基丙烯酸异丁酯或甲基丙烯酸苄基酯,所述的软单体为甲基丙烯酸丁酯或丙烯酸丁酯。
  9. 根据权利要求8所述的无硫无皂原位RAFT乳液共聚合成聚合物/颜料杂化乳胶的方法,其中,步骤(3)中,所述的硬单体和软单体的质量比为1:9-9:1。
PCT/CN2021/113581 2020-09-14 2021-08-19 无硫无皂原位raft乳液共聚合成聚合物/颜料杂化乳胶的方法 WO2022052779A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/468,718 US20220081568A1 (en) 2020-09-14 2021-09-08 Method for synthesizing polymer/pigment hybrid latex through sulfur-free and soap-free in-situ reversible addition-fragmentation chain transfer (raft) emulsion copolymerization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010960365.4 2020-09-14
CN202010960365.4A CN112062918B (zh) 2020-09-14 2020-09-14 无硫无皂原位raft乳液共聚合成聚合物/颜料杂化乳胶的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/468,718 Continuation US20220081568A1 (en) 2020-09-14 2021-09-08 Method for synthesizing polymer/pigment hybrid latex through sulfur-free and soap-free in-situ reversible addition-fragmentation chain transfer (raft) emulsion copolymerization

Publications (1)

Publication Number Publication Date
WO2022052779A1 true WO2022052779A1 (zh) 2022-03-17

Family

ID=73695522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113581 WO2022052779A1 (zh) 2020-09-14 2021-08-19 无硫无皂原位raft乳液共聚合成聚合物/颜料杂化乳胶的方法

Country Status (2)

Country Link
CN (1) CN112062918B (zh)
WO (1) WO2022052779A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819691A (zh) * 2022-09-09 2023-03-21 南开大学 一种基于聚合诱导界面自组装raft无皂乳液聚合方法
CN116640477A (zh) * 2023-05-17 2023-08-25 杭州海维特化工科技有限公司 快干型水墨制备方法及其在汽车内饰pvc装饰膜中的应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062918B (zh) * 2020-09-14 2022-12-09 浙江理工大学 无硫无皂原位raft乳液共聚合成聚合物/颜料杂化乳胶的方法
CN112646062B (zh) * 2020-12-18 2022-11-08 浙江理工大学 一种具有温度响应型织物整理剂的制备方法和应用
CN113185648B (zh) * 2021-04-28 2022-12-09 浙江理工大学 一种基于无硫raft聚合反应制备阳离子型聚合物杂化颜料的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0638097A1 (en) * 1992-05-01 1995-02-15 E.I. Du Pont De Nemours And Company Preparing crosslinkable polymers employing macromonomer chain transfer agents
JP2002012811A (ja) * 2000-06-30 2002-01-15 Kansai Paint Co Ltd 顔料分散樹脂の製造方法及びこの樹脂を含有する水性顔料分散体
CN102659990A (zh) * 2012-05-02 2012-09-12 西北工业大学 聚合物包覆颜料粒子形成具有稳定分散性的颜料/聚合物核壳结构复合颗粒的制备方法
CN108084376A (zh) * 2017-12-29 2018-05-29 陕西科技大学 核壳型纳米二氧化硅/含氟聚丙烯酸酯无皂乳液制备方法
CN112062918A (zh) * 2020-09-14 2020-12-11 浙江理工大学 无硫无皂原位raft乳液共聚合成聚合物/颜料杂化乳胶的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0516445B1 (pt) * 2004-10-04 2018-11-21 Univ Sydney métodos para polimerizar monômero para formar polímero na superfície de material particulado, e para preparar uma tinta de pintura, tinta de pintura em pó termofundível, carga, adesivo, tonalizador, tinta de impressão líquida, revestimento base, selante, produto diagnóstico ou produto terapêutico, e tinta, tinta em pó termofundível, carga, adesivo, tonalizante, tinta líquida, revestimento base, selante, produto diagnóstico ou produto terapêutico
CN101870759A (zh) * 2010-06-24 2010-10-27 江南大学 双亲嵌段共聚物的合成方法
CN102492106A (zh) * 2011-12-21 2012-06-13 浙江大学 表面活性可切换的大分子乳化剂及其在胶乳制备中的应用
FR3071500B1 (fr) * 2017-09-27 2020-05-15 Arkema France Synthese de latex de poly(fluorure de vinylidene) sans tensioactif par polymerisation en emulsion raft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0638097A1 (en) * 1992-05-01 1995-02-15 E.I. Du Pont De Nemours And Company Preparing crosslinkable polymers employing macromonomer chain transfer agents
JP2002012811A (ja) * 2000-06-30 2002-01-15 Kansai Paint Co Ltd 顔料分散樹脂の製造方法及びこの樹脂を含有する水性顔料分散体
CN102659990A (zh) * 2012-05-02 2012-09-12 西北工业大学 聚合物包覆颜料粒子形成具有稳定分散性的颜料/聚合物核壳结构复合颗粒的制备方法
CN108084376A (zh) * 2017-12-29 2018-05-29 陕西科技大学 核壳型纳米二氧化硅/含氟聚丙烯酸酯无皂乳液制备方法
CN112062918A (zh) * 2020-09-14 2020-12-11 浙江理工大学 无硫无皂原位raft乳液共聚合成聚合物/颜料杂化乳胶的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU, Z. ; WANG, J. ; LI, Q. ; CHEN, L. ; CHEN, S.: "Controllable synthesis of nanosilica surface-grafted PMMA macromonomers via catalytic chain transfer polymerization", EUROPEAN POLYMER JOURNAL, vol. 45, no. 4, 1 April 2009 (2009-04-01), GB , pages 1072 - 1079, XP026006500, ISSN: 0014-3057, DOI: 10.1016/j.eurpolymj.2008.09.042 *
SHEGIWAL ATAULLA; WEMYSS ALAN M.; LIAROU EVELINA; TOWN JAMES; PATIAS GEOGIOS; ATKINS CHRISTOPHE J.; MARATHIANOS ARKADIOS; LESTER D: "Polymerisable surfactants for polymethacrylates using catalytic chain transfer polymerisation (CCTP) combined with sulfur free-RAFT in emulsion polymerisation", EUROPEAN POLYMER JOURNAL, vol. 125, 8 January 2020 (2020-01-08), GB , pages 1 - 7, XP086029950, ISSN: 0014-3057, DOI: 10.1016/j.eurpolymj.2020.109491 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819691A (zh) * 2022-09-09 2023-03-21 南开大学 一种基于聚合诱导界面自组装raft无皂乳液聚合方法
CN116640477A (zh) * 2023-05-17 2023-08-25 杭州海维特化工科技有限公司 快干型水墨制备方法及其在汽车内饰pvc装饰膜中的应用
CN116640477B (zh) * 2023-05-17 2024-05-28 杭州海维特化工科技有限公司 快干型水墨制备方法及其在汽车内饰pvc装饰膜中的应用

Also Published As

Publication number Publication date
CN112062918A (zh) 2020-12-11
CN112062918B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2022052779A1 (zh) 无硫无皂原位raft乳液共聚合成聚合物/颜料杂化乳胶的方法
JP3958855B2 (ja) 構造性ポリマーで安定化したエマルジョンポリマー添加剤を含有するインクジェット用インク組成物
JP2635235B2 (ja) インクジェットプリンター用の水性顔料入りインク
US20040244622A1 (en) Dispersible colorant and method for producing the same, and aqueous ink, ink tank, ink jet recorder, ink jet recording method and inkjet recorded image using the same
US20040131855A1 (en) Specific core-shell polymer additive for ink-jet inks to improve durability
KR102014560B1 (ko) 불투명한 필름 및 코팅 적용을 위한 수계 중합체 에멀젼
EP2449039B1 (en) Ink-jet overcoats including latex polymers and inorganic nano particles
BRPI0516445B1 (pt) métodos para polimerizar monômero para formar polímero na superfície de material particulado, e para preparar uma tinta de pintura, tinta de pintura em pó termofundível, carga, adesivo, tonalizador, tinta de impressão líquida, revestimento base, selante, produto diagnóstico ou produto terapêutico, e tinta, tinta em pó termofundível, carga, adesivo, tonalizante, tinta líquida, revestimento base, selante, produto diagnóstico ou produto terapêutico
EP1245588A1 (en) Composite colorant particles
CN101563369A (zh) 小泡状聚合物颗粒
JP2007126635A (ja) 結合剤およびインクジェットインク組成物
CN1712467A (zh) 用于喷墨的聚合物粘合剂
US6635693B2 (en) Process for making composite colorant particles
Wang et al. Surface grafting modification of titanium dioxide by silane coupler KH570 and its influences on the application of blue light curing ink
Gao et al. Synthesis of cationic binder through surfactant-free emulsion polymerization for textile pigment applications
JP2010526892A (ja) 非イオン性水溶性添加剤
CN101486845A (zh) 一种纳米色料水性分散体的制备方法
CN108129620A (zh) 一种raft技术的磺酸型嵌段共聚物水性分散剂
CN110540615B (zh) 一种苯乙烯丙烯酸酯乳液及其制备方法和应用
US20030203988A1 (en) Ink jet printing method
JP2021169585A (ja) 構造色材料、構造色形成用塗料及び塗膜
US20220081568A1 (en) Method for synthesizing polymer/pigment hybrid latex through sulfur-free and soap-free in-situ reversible addition-fragmentation chain transfer (raft) emulsion copolymerization
CN106699957A (zh) 一种羟基丙烯酸乳液的制备方法
CN1132849C (zh) 纳米级反应性聚合物微凝胶的制备方法
CN113980486B (zh) 一种无皂化学交联型共聚物纳米粒子包覆有机颜料杂化胶乳的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865835

Country of ref document: EP

Kind code of ref document: A1