WO2022044761A1 - 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置 - Google Patents

半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置 Download PDF

Info

Publication number
WO2022044761A1
WO2022044761A1 PCT/JP2021/029131 JP2021029131W WO2022044761A1 WO 2022044761 A1 WO2022044761 A1 WO 2022044761A1 JP 2021029131 W JP2021029131 W JP 2021029131W WO 2022044761 A1 WO2022044761 A1 WO 2022044761A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
semiconductor nanoparticles
mass
substituent
preferable
Prior art date
Application number
PCT/JP2021/029131
Other languages
English (en)
French (fr)
Inventor
崇志 藤原
智隆 谷口
洸毅 石井
政昭 西村
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2022545608A priority Critical patent/JPWO2022044761A1/ja
Publication of WO2022044761A1 publication Critical patent/WO2022044761A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means

Definitions

  • the present invention relates to a semiconductor nanoparticle-containing composition, a color filter, and an image display device.
  • This application claims priority under Japanese Patent Application No. 2020-145534 filed in Japan on August 31, 2020 and Japanese Patent Application No. 2020-218441 filed in Japan on December 28, 2020. Incorporate the content here.
  • Displays such as liquid crystal displays have low power consumption and their applications are expanding year by year as space-saving image display devices, but in recent years, further power saving and improvement of color reproducibility are required.
  • semiconductor nanoparticles such as quantum dots, quantum rods, and other inorganic phosphor particles that emit light by converting the wavelength of incident light in order to improve light utilization efficiency and color reproducibility are used as light emitting materials. It has been proposed to utilize the wavelength conversion layer included in.
  • such semiconductor nanoparticles such as quantum dots are dispersed in a resin or the like and used, for example, as a wavelength conversion film for wavelength conversion or as a wavelength conversion type color filter pixel portion.
  • a color filter pixel portion in a display such as a liquid crystal display device has been manufactured by a photolithography method using, for example, a curable resist material containing a pigment and an alkali-soluble resin and / or an acrylic monomer. rice field.
  • Patent Document 1 When an attempt is made to form a wavelength conversion type color filter pixel portion by applying the method for manufacturing a color filter by the above photolithography method, there is a drawback that most of the resist material containing semiconductor nanoparticles is lost in the developing process. there were. Therefore, it is also considered to form a wavelength conversion type color filter pixel portion by an inkjet method (Patent Document 1).
  • Non-Patent Document 1 In order to increase the luminous efficiency (quantum efficiency) of semiconductor nanoparticles, the combined use of semiconductor nanoparticles and fluorescent dyes in a solvent has been studied (Non-Patent Document 1).
  • the semiconductor nanoparticles have low absorbance in the excitation wavelength range, sufficient emission intensity can be obtained when a wavelength conversion layer produced by using the semiconductor nanoparticles-containing composition is used for a display. It was found that there was a problem that it could not be done. Specifically, in the pixel portion of the wavelength conversion type color filter formed by using the semiconductor nanoparticles-containing composition disclosed in Patent Document 1, a desired pixel containing red or green has sufficient emission intensity. It was found that there was a problem that it could not be obtained. It has been found that the combined use system of semiconductor nanoparticles and fluorescent dye in a solvent described in Non-Patent Document 1 has a problem that the emission intensity is not sufficient.
  • the present invention relates to a semiconductor nanoparticle-containing composition capable of efficiently converting the wavelength of excitation light to form a wavelength conversion layer exhibiting sufficient emission intensity, and a color filter having a pixel portion obtained by curing the composition. And an image display device having the color filter.
  • the gist of the present invention is as follows.
  • the semiconductor nanoparticles (A) have a maximum emission wavelength in the range of 500 to 670 nm in the wavelength range of 300 to 780 nm, and have a maximum emission wavelength in the range of 500 to 670 nm.
  • the fluorescent dye (C) has a substituent that causes an action of linking to the semiconductor nanoparticles (A).
  • the semiconductor nanoparticles-containing composition in which the content of the (meth) acrylate compound (D) in the semiconductor nanoparticles-containing composition is 20% by mass or more.
  • the semiconductor nanoparticles (A) have a maximum emission wavelength in the range of 500 to 670 nm in the wavelength range of 300 to 780 nm, and have a maximum emission wavelength in the range of 500 to 670 nm.
  • the fluorescent dye (C) is a semiconductor nanoparticles-containing composition for an inkjet method having a substituent having an action of linking to the semiconductor nanoparticles (A).
  • the substituent that causes the linking action is a sulfanyl group or a salt thereof, an acid group or a salt thereof, an amino group or a salt thereof, a phosphate ester group or a salt thereof, a phosphantriyl group, or a phosphoryl group.
  • the present invention it is possible to provide a semiconductor nanoparticle-containing composition capable of efficiently wavelength-converting excitation light and forming a wavelength conversion layer exhibiting sufficient emission intensity. Further, it is possible to provide a color filter having a pixel portion obtained by curing the composition of the present invention and an image display device having the color filter of the present invention.
  • FIG. 1 is a schematic cross-sectional view of the color filter of the present invention.
  • (meth) acrylic shall mean “acrylic and / or methacrylic”.
  • total solid content means all components other than the solvent in the semiconductor nanoparticles-containing composition, and when the semiconductor nanoparticles-containing composition does not contain a solvent, all the components of the semiconductor nanoparticles-containing composition are used. means. Even if the components other than the solvent are liquid at room temperature, the components are not included in the solvent and are included in the total solid content.
  • the numerical range represented by using “-” means a range including the numerical values before and after “-” as the lower limit value and the upper limit value.
  • “A and / or B” means one or both of A and B, and means A, B, or A and B.
  • the weight average molecular weight refers to the polystyrene-equivalent weight average molecular weight (Mw) by GPC (gel permeation chromatography).
  • the semiconductor nanoparticles-containing composition of the present invention can be widely used for producing a wavelength conversion layer, and the wavelength conversion layer using the semiconductor nanoparticles-containing composition of the present invention is suitable for use in a display.
  • the wavelength conversion layer using the semiconductor nanoparticles-containing composition of the present invention is a wavelength conversion sheet
  • the wavelength conversion layer may be contained in the film and is coated on the film surface by a known method. It may be present between films.
  • the semiconductor nanoparticles-containing composition of the present invention can be applied as an ink used in a known and conventional method for producing a color filter, but it is necessary without wasting materials such as semiconductor nanoparticles, which are relatively expensive.
  • the semiconductor nanoparticle-containing composition of the present invention is suitable for use in forming pixel portions by an inkjet method.
  • the semiconductor nanoparticles-containing composition of the present invention is a semiconductor nanoparticles-containing composition containing semiconductor nanoparticles (A), (meth) acrylate compound (D), and a fluorescent dye (C).
  • the semiconductor nanoparticles (A) are objects, and the maximum emission wavelength in the wavelength range of 300 to 780 nm is in the range of 500 to 670 nm, and the fluorescent dye (C) is transferred to the semiconductor nanoparticles (A).
  • the content of the (meth) acrylate compound (D) in the semiconductor nanoparticles-containing composition, which has a substituent that causes a linking action, is 20% by mass or more.
  • semiconductor nanoparticles A
  • the semiconductor nanoparticle-containing composition of the present invention has a maximum emission wavelength in the wavelength range of 300 to 780 nm (hereinafter, “maximum emission wavelength” means the maximum emission wavelength in the wavelength range of 300 to 780 nm unless otherwise specified.
  • the semiconductor nanoparticles are nano-sized particles that absorb excitation light and emit fluorescence or phosphorescence, and are, for example, particles having a maximum particle diameter of 100 nm or less as measured by a transmission electron microscope or a scanning electron microscope. ..
  • the semiconductor nanoparticles can emit light (fluorescence or phosphorescence) having a wavelength different from the absorbed wavelength, for example, by absorbing light having a predetermined wavelength.
  • the maximum emission wavelength of the semiconductor nanoparticles (A) exists in the range of 500 to 670 nm.
  • the semiconductor nanoparticles (A) may be red-emitting semiconductor nanoparticles (red semiconductor nanoparticles) that emit red light, or may be green-emitting semiconductor nanoparticles (green semiconductor nanoparticles) that emit green light. ..
  • the semiconductor nanoparticles (A) are preferably red semiconductor nanoparticles and / or green semiconductor nanoparticles.
  • the light absorbed by the semiconductor nanoparticles is not particularly limited, and may be, for example, light having a wavelength in the range of 400 to 500 nm (blue light) and / or light having a wavelength in the range of 200 to 400 nm (ultraviolet light). ..
  • semiconductor nanoparticles have a wide absorption in a region shorter than the maximum emission wavelength. For example, when the maximum emission wavelength is 530 nm, it has a wide absorption band in the wavelength region of 300 to 530 nm with the hem around 530 nm, and when the maximum emission wavelength is 630 nm, it is widely absorbed in the wavelength region of 300 to 630 nm with the hem around 630 nm. Has a band.
  • the maximum emission wavelength of the semiconductor nanoparticles (A) can be confirmed, for example, in a fluorescence spectrum or a phosphorescence spectrum measured using a spectrofluorescence meter, and is measured under the conditions of an excitation wavelength of 450 nm and an absorptance of 20 to 50%. It is preferable to do.
  • the maximum emission wavelength thereof is preferably 605 nm or more, more preferably 610 nm or more, further preferably 615 nm or more, further preferably 620 nm or more, and particularly preferably 625 nm or more. It is preferably 665 nm or less, more preferably 655 nm or less, further preferably 645 nm or less, further preferably 640 nm or less, particularly preferably 635 nm or less, and most preferably 630 nm or less.
  • the red color gamut is expanded, and there is a tendency that richer colors can be expressed as a display.
  • the maximum emission wavelength of the semiconductor nanoparticles (A) is preferably 605 to 665 nm, more preferably 605 to 655 nm, further preferably 610 to 645 nm, even more preferably 615 to 640 nm, and even more preferably 620 to 635 nm, 625. ⁇ 630 nm is particularly preferable.
  • the maximum emission wavelength thereof is preferably 500 nm or more, more preferably 505 nm or more, further preferably 510 nm or more, further preferably 515 nm or more, and particularly preferably 520 nm or more. 525 nm or more is most preferable, 560 nm or less is more preferable, 550 nm or less is further preferable, 545 nm or less is further preferable, 535 nm or less is particularly preferable, and 530 nm or less is most preferable.
  • the green color gamut By setting the value to the lower limit or more, the green color gamut can be expanded, and there is a tendency that a brighter green can be expressed due to the relationship of luminosity factor.
  • the value to the upper limit or less By setting the value to the upper limit or less, the green color gamut is expanded, and there is a tendency that richer colors can be expressed as a display.
  • the above upper and lower limits can be combined arbitrarily.
  • the semiconductor nanoparticles (A) include green semiconductor nanoparticles
  • the maximum emission wavelength thereof is preferably 500 to 560 nm, more preferably 505 to 550 nm, still more preferably 510 to 545 nm, still more preferably 515 to 540 nm.
  • 520 to 535 nm is particularly preferable, and 525 to 530 nm is particularly preferable.
  • the maximum emission wavelength (emission color) of the light emitted by the semiconductor nanoparticles depends on the size (for example, particle diameter) of the semiconductor nanoparticles, but the semiconductor nanoparticles have. It also depends on the energy gap. Therefore, the emission color can be selected by changing the constituent material and size of the semiconductor nanoparticles used.
  • the semiconductor nanoparticles (A) can have various shapes having a dimension of 30 nm or less in one dimension, for example, a sphere, a cube, a rod, a wire, a disk, or a multipod.
  • CdSe nanorods having a length of 20 nm and a diameter of 4 nm can be mentioned.
  • Semiconductor nanoparticles can also be used in combination with particles having different shapes.
  • a combination of spherical semiconductor nanoparticles and rod-shaped semiconductor nanoparticles can be used. Spherical semiconductor nanoparticles are preferable from the viewpoint that the emission spectrum can be easily controlled, reliability can be ensured, production cost can be reduced, and mass productivity can be improved.
  • the semiconductor nanoparticles (A) may be composed of only a core containing the first semiconductor material, and the core containing the first semiconductor material and at least a part of the core are covered with the first semiconductor material. It may have a shell containing a different second semiconductor material. That is, the structure of the semiconductor nanoparticles (A) may be a structure consisting of only a core (core structure), or may be a structure consisting of a core portion and a shell portion (core / shell structure).
  • the semiconductor nanoparticles (A) cover at least a part of the core or the first shell in addition to the shell (first shell) containing the second semiconductor material, and are the first and second semiconductor materials. It may further have a shell (second shell) containing a different third semiconductor material. That is, the structure of the semiconductor nanoparticles (A) may be a structure (core / shell / shell structure) including a core portion, a first shell portion, and a second shell portion. Each of the core and the shell may be a mixed crystal containing two or more kinds of semiconductor materials (for example, CdSe + CdS, CuInSe + ZnS, InP + ZnSeS + ZnS, etc.).
  • the type of semiconductor material constituting the semiconductor nanoparticles (A) is not particularly limited, but since it has high quantum efficiency and is relatively easy to manufacture, it is a group II-VI semiconductor, a group III-V semiconductor, or an I-III-. It is preferable to include at least one selected from the group consisting of group VI semiconductors, group IV semiconductors, and group I-II-IV-VI semiconductors.
  • Examples of the semiconductor material include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSedZn.
  • red-emitting semiconductor nanoparticles examples include CdSe nanoparticles; nanoparticles having a core / shell structure in which the shell portion is CdS and the core portion is CdSe; the shell portion is CdS and the core portion is. Nanoparticles with a core / shell structure that is ZnSe; nanoparticles with a mixed crystal of CdSe and ZnS; nanoparticles of InP; nanos with a core / shell structure in which the shell part is ZnS and the core part is InP.
  • Nanoparticles having a core / shell structure in which the shell portion is a mixed crystal of ZnS and ZnSe and the core portion is InP Nanoparticles in a mixed crystal of CdSe and CdS
  • the first shells are ZnS and ZnSe.
  • Examples thereof include nanoparticles having a core / shell / shell structure in which the second shell portion is ZnS and the core portion is InP.
  • Examples of the green light emitting semiconductor nanoparticles include nanoparticles of CdSe; nanoparticles of mixed crystals of CdSe and ZnS; nanoparticles having a core / shell structure in which the shell portion is ZnS and the core portion is InP.
  • Semiconductor nanoparticles have the same chemical composition, but by changing the average particle size of themselves, the color to be emitted can be changed to red or green.
  • the semiconductor nanoparticles it is preferable to use particles having as little adverse effect on the human body and the like.
  • semiconductor nanoparticles containing cadmium, selenium, etc. are used as the semiconductor nanoparticles (A)
  • either the semiconductor nanoparticles containing the above elements (cadmium, selenium, etc.) as little as possible are selected and used alone, or the above elements are used. It is preferable to use it in combination with other semiconductor nanoparticles so as to reduce the amount as much as possible.
  • the shape of the semiconductor nanoparticles (A) is not particularly limited, and may be any geometric shape or any irregular shape.
  • the shape of the semiconductor nanoparticles may be, for example, spherical, ellipsoidal, pyramidal, disc-like, branch-like, net-like, or rod-like.
  • the semiconductor nanoparticles it is preferable to use particles having less directional particle shape (for example, spherical or regular tetrahedral particles) in that the uniformity and fluidity of the semiconductor nanoparticles-containing composition can be further improved. ..
  • the average particle diameter (volume average diameter) of the semiconductor nanoparticles (A) may be 1 nm or more from the viewpoint of easily obtaining light emission of a desired wavelength and from the viewpoint of excellent dispersibility and storage stability. It may be 5 nm or more, and may be 2 nm or more. From the viewpoint that a desired emission wavelength can be easily obtained, it may be 40 nm or less, 30 nm or less, or 20 nm or less.
  • the average particle diameter (volume average diameter) of the semiconductor nanoparticles is obtained by measuring with a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter. The above upper and lower limits can be combined arbitrarily.
  • the average particle diameter (volume average diameter) of the semiconductor nanoparticles (A) is preferably 1 to 40 nm, more preferably 1.5 to 30 nm, still more preferably 2 to 20 nm.
  • the semiconductor nanoparticles (A) particles dispersed in a colloidal form in a solvent, a polymerizable compound, or the like can be used. It is preferable that the surface of the semiconductor nanoparticles dispersed in the solvent is passivated by the ligand (B) described later.
  • the solvent include cyclohexane, hexane, heptane, chloroform, toluene, octane, chlorobenzene, tetralin, diphenyl ether, propylene glycol monomethyl ether acetate, butyl carbitol acetate, or a mixture thereof.
  • the method for producing the semiconductor nanoparticles (A) is not particularly limited, but can be produced, for example, by the methods described in Japanese Patent Laid-Open No. 2015-529698 and Japanese Patent Application Laid-Open No. 2018-109141.
  • semiconductor nanoparticles examples include indium phosphide / zinc sulfide, D-dot, CuInS / ZnS from NN-Labs, and InP / ZnS from Aldrich.
  • the content ratio of the semiconductor nanoparticles (A) is preferably 1% by mass or more, more preferably 2% by mass or more in the total solid content of the semiconductor nanoparticles-containing composition, from the viewpoint of excellent effect of improving the external quantum efficiency. It is more preferably mass% or more, and even more preferably 4% by mass or more. From the viewpoint of coatability, particularly from the viewpoint of being more excellent in ejection stability from the inkjet head, 60% by mass or less is preferable, 40% by mass or less is more preferable, and 20% by mass or less is further preferable. The above upper and lower limits can be combined arbitrarily.
  • the content ratio of the semiconductor nanoparticles (A) is preferably 1 to 60% by mass, more preferably 2 to 60% by mass, and further preferably 3 to 40% by mass in the total solid content of the semiconductor nanoparticles-containing composition. It is preferable, and 4 to 20% by mass is particularly preferable.
  • the semiconductor nanoparticles-containing composition may contain two or more types of semiconductor nanoparticles as the semiconductor nanoparticles (A). Both red semiconductor nanoparticles and green semiconductor nanoparticles may be contained, but it is preferable that only one of the red semiconductor nanoparticles and the green semiconductor nanoparticles is contained.
  • the red semiconductor nanoparticles are contained as the semiconductor nanoparticles (A)
  • the content ratio of the green semiconductor nanoparticles is preferably 10% by mass or less, more preferably 0% by mass in the semiconductor nanoparticles.
  • the semiconductor nanoparticles (A) contain green light emitting semiconductor nanoparticles
  • the content ratio of the red light emitting semiconductor nanoparticles is preferably 10% by mass or less, more preferably 0% by mass in the semiconductor nanoparticles.
  • the semiconductor nanoparticle-containing composition of the present invention may contain a ligand (B).
  • the ligand (B) is a compound that covers at least a part of the surface of the semiconductor nanoparticles (A).
  • the ligand (B) covers at least a part of the surface of the semiconductor nanoparticles (A) by adsorbing or coordinate-bonding to the surface of the semiconductor nanoparticles (A).
  • semiconductor nanoparticles When semiconductor nanoparticles are used as ink, they secure functional groups for ensuring affinity with solvents and resins (hereinafter, also simply referred to as “affinity groups”) and adsorptivity to semiconductor nanoparticles. It is preferable to treat with a compound having a functional group for this purpose (hereinafter, also simply referred to as “adsorption group”), and the semiconductor nanoparticle-containing composition of the present invention preferably contains a ligand (B).
  • affinity groups for ensuring affinity with solvents and resins
  • adsorptivity groups adsorptivity to semiconductor nanoparticles.
  • adsorption group a compound having a functional group for this purpose
  • the semiconductor nanoparticle-containing composition of the present invention preferably contains a ligand (B).
  • the ligand (B) is not particularly limited. It is preferable to have an affinity group from the viewpoint of affinity with a solvent, a (meth) acrylate compound, a resin and the like.
  • an aliphatic hydrocarbon group is preferable.
  • the aliphatic hydrocarbon group may be a linear type or may have a branched structure, and the number of carbon atoms is preferably 4 or more, more preferably 8 or more, still more preferably 10 or more. Further, 300 or less is preferable, 40 or less is more preferable, and 30 or less is further preferable.
  • the number of carbon atoms is 4 or more, the affinity with the solvent, the (meth) acrylate compound, and the resin is ensured, and the dispersibility of the semiconductor nanoparticles tends to be improved.
  • the number of carbon atoms is 300 or less, the viscosity of the semiconductor nanoparticles-containing composition can be reduced, and the light emission intensity of the cured film and the strength of the cured film tend to be improved.
  • the above upper and lower limits can be combined arbitrarily.
  • the number of carbon atoms of the affinity group is preferably 8 to 300, more preferably 8 to 40, and even more preferably 10 to 30.
  • the aliphatic hydrocarbon group may have a polyalkylene glycol chain such as a polyethylene glycol chain.
  • the aliphatic hydrocarbon group may have an unsaturated bond or may not have an unsaturated bond.
  • Examples of the adsorbing group of the ligand (B) include a hydroxy group, a carboxy group, an amino group, a sulfanyl group, a sulfo group, a phosphonooxy group, a phosphono group, a phosphantriyl group, a phosphoryl group and an alkoxysilyl group.
  • a sulfanyl group, a phosphinoxide group and a carboxy group are preferable, and a carboxy group is particularly preferable.
  • a compound having an adsorbent group at the terminal can be used, an aromatic ring or an ether group can be used, and a plurality of adsorbent groups may be contained in the molecule.
  • the ligand (B) for example, benzoic acid, biphenylcarboxylic acid, butylbenzoic acid, hexylbenzoic acid, cyclohexylbenzoic acid, naphthalenecarboxylic acid, hexanoic acid, heptanic acid, octanoic acid, ethylhexanoic acid, hexenoic acid, octenoic acid, Examples thereof include citroneric acid, suberic acid, ethylene glycol bis (4-carboxyphenyl) ether and (2-butoxyethoxy) acetic acid.
  • the ligand (B) includes an adsorbing group, a compound having an aliphatic hydrocarbon group having 8 or more carbon atoms and 300 or less carbon atoms, an adsorbing group and polyethylene glycol from the viewpoint of compatibility with a solvent, a (meth) acrylate compound and a resin. It is preferably a compound having a polyalkylene glycol chain such as a chain, for example, nonanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, tricosanoic acid, lignoseric acid, oleic acid, eicosazienoic acid, linolenic acid. , Sevacinic acid, (2-octyloxy) acetic acid, [2- (2-methoxyethoxy) ethoxy] acetic acid, and compounds represented by the following general formula (b-I).
  • n represents an integer from 0 to 100.
  • the semiconductor nanoparticle-containing composition of the present invention preferably contains the ligand (B).
  • the ligand (B) may contain one kind alone or two or more kinds, and may contain a ligand other than the ligand (B) (hereinafter, may be referred to as "ligand (B1)"). May further be included.
  • Examples of the ligand (B1) include organic substances such as organic amines, sulfur-containing organic substances, and phosphorus-containing organic substances.
  • the molecular weight of the affinity group of the ligand (B) in the semiconductor nanoparticle-containing composition of the present invention is not particularly limited. From the viewpoint of ensuring compatibility with solvents, (meth) acrylate compounds, and resins and improving the dispersibility of semiconductor nanoparticles, 50 g / mol or more is preferable, 100 g / mol or more is more preferable, and 200 g / mol or more is further preferable. preferable.
  • the molecular weight of the affinity group of the ligand (B) in the semiconductor nanoparticles-containing composition of the present invention is preferably 50 to 10000 g / mol, more preferably 100 to 5000 g / mol, and even more preferably 200 to 1000 g / mol.
  • the content ratio of the ligand (B) in the semiconductor nanoparticles-containing composition of the present invention is not particularly limited. From the viewpoint of ensuring compatibility with a solvent, a (meth) acrylate compound, and a resin and improving the dispersibility of semiconductor nanoparticles, 0.005% by mass or more is preferable in the total solid content of the composition containing semiconductor nanoparticles. 0.01% by mass or more is more preferable, 0.05% by mass or more is further preferable, 0.1% by mass or more is further preferable, 0.3% by mass or more is particularly preferable, and the emission intensity of the semiconductor nanoparticles-containing composition is particularly preferable.
  • the semiconductor nanoparticles-containing composition of the present invention contains a ligand (B)
  • the content ratio of the ligand (B) in the semiconductor nanoparticles-containing composition of the present invention is preferably 0.005 to 30% by mass, and is 0. 0.01 to 30% by mass is more preferable, 0.05 to 30% by mass is further preferable, 0.1 to 20% by mass is further preferable, and 0.3 to 10% by mass is particularly preferable.
  • the content ratio of the semiconductor nanoparticles (A) and the ligand (B) in the semiconductor nanoparticles-containing composition of the present invention is not particularly limited.
  • the ligand (B) is 1 part by mass or more with respect to 100 parts by mass of the semiconductor nanoparticles (A).
  • the content ratio of the semiconductor nanoparticles (A) and the ligand (B) in the semiconductor nanoparticles-containing composition of the present invention is 1 to 300 parts by mass with respect to 100 parts by mass of the semiconductor nanoparticles (A). Parts are preferable, 5 to 200 parts by mass are more preferable, and 10 to 100 parts by mass are further preferable.
  • Fluorescent dye (C) The semiconductor nanoparticles-containing composition of the present invention contains a fluorescent dye (C), and the fluorescent dye (C) has a substituent that causes an action of linking to the semiconductor nanoparticles (A).
  • the fluorescent dye (C) having a substituent that causes an action of linking to the semiconductor nanoparticles (A) in combination with the semiconductor nanoparticles (A) it is possible to improve the luminous efficiency of the semiconductor nanoparticles (A). Become.
  • the emission spectrum of the fluorescent dye (C) and the absorption spectrum of the semiconductor nanoparticles (A) having a maximum emission wavelength in the range of 500 to 670 nm are used. It is considered preferable that the overlap is large. Due to the large overlap between the emission spectrum of the fluorescent dye (C) and the absorption spectrum of the semiconductor nanoparticles (A), the excited energy of the fluorescent dye (C) is transferred to the semiconductor nanoparticles (A) by Felster-type energy transfer. It is considered that this is because the semiconductor nanoparticles (A) move and the emission intensity of the semiconductor nanoparticles (A) increases.
  • the fluorescent dye (C) is preferably a fluorescent dye having an emission spectrum having a large overlap with the absorption spectrum of the semiconductor nanoparticles (A).
  • fluorescent dye with naphthalimide skeleton The fluorescent dyes having a naphthalimide skeleton are described below from the viewpoints of high solubility in various solvents and compositions containing semiconductor nanoparticles, high gram absorption coefficient, difficulty in concentration quenching, and high fluorescence quantum yield. It is preferably a fluorescent dye represented by the general formula (c-I) (hereinafter, also referred to as "fluorescent dye (C1)").
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 each independently represent a hydrogen atom or an arbitrary substituent
  • X is NR 7 R 8 , SR.
  • R 7 , R 8 , R 9 , and R 10 each independently represent a hydrogen atom or an arbitrary substituent.
  • R 4 and X may be connected to form a ring, and when X is NR 7 R 8 , R 7 and R 8 may be connected to form a ring.
  • R 1 in the formula (c-I) is not particularly limited as long as it is a substitutable monovalent group, and for example, an alkyl group or a substituent which may have a substituent may be used. Examples thereof include aryl groups which may be possessed.
  • Examples of the alkyl group in R 1 include a linear alkyl group, a branched alkyl group, a cyclic alkyl group, and a combination thereof. From the viewpoint of suppressing the formation of aggregates due to steric hindrance, the branched chain is used. Alkyl groups in the form are preferable. Some -CH 2- in the alkyl group may be substituted with -O-.
  • the number of carbon atoms of the alkyl group in R 1 is not particularly limited. The number of carbon atoms of the alkyl group in R 1 is usually preferably 1 or more, 3 or more, preferably 20 or less, and more preferably 16 or less.
  • the solubility in the semiconductor nanoparticle-containing composition tends to be improved.
  • the value to the upper limit or less By setting the value to the upper limit or less, the excitation light absorption efficiency per mass tends to be improved.
  • the carbon number of the alkyl group before substitution is included in the above range.
  • the above upper and lower limits can be combined arbitrarily.
  • the number of carbon atoms of the alkyl group in R1 is preferably 1 to 20, more preferably 3 to 16.
  • Examples of the substituent that the alkyl group may have include a hydroxy group, a carboxy group, an amino group, a sulfanyl group, and a phosphono group.
  • the sulfanil group is preferable from the viewpoint of approaching the semiconductor nanoparticles by interaction.
  • Examples of the aryl group in R 1 include a monovalent aromatic hydrocarbon ring group and a monovalent aromatic heterocyclic group.
  • the number of carbon atoms of the aryl group is not particularly limited.
  • the number of carbon atoms of the aryl group in R 1 is preferably 3 or more, more preferably 6 or more, more preferably 20 or less, and even more preferably 12 or less.
  • the solubility in the semiconductor nanoparticle-containing composition tends to be improved.
  • By setting the value to the upper limit or less the excitation light absorption efficiency per mass tends to be improved.
  • the above upper and lower limits can be combined arbitrarily.
  • the aryl group preferably has 3 to 20 carbon atoms, more preferably 6 to 12 carbon atoms.
  • the aromatic hydrocarbon ring in the aromatic hydrocarbon ring group may be a monocyclic ring or a condensed ring.
  • the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, and acenaphthene, which have one free atomic value.
  • Examples include a ring, a fluoranthene ring, and a fluorene ring.
  • a benzene ring having one free valence and a naphthalene ring having one free valence are preferable, and a benzene ring having one free valence is preferable because of its high solubility in a composition containing semiconductor nanoparticles. More preferred.
  • the aromatic heterocycle in the aromatic heterocyclic group may be a monocyclic ring or a condensed ring.
  • the aromatic heterocycle include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrazole ring, a pyrazole ring, an imidazole ring, an oxazole ring, an indole ring, and a carbazole ring, which have one free atomic value.
  • Examples of the substituent that the aryl group may have include an alkyl group.
  • a branched alkyl group for example, a t-butyl group or a 2-ethylhexyl group is preferable.
  • R1 in the formula (c-I) a methyl group, a 2-ethylhexyl group, and 2- [2] are used from the viewpoint of improving the solubility in the semiconductor nanoparticles-containing composition and improving the durability of the fluorescent dye (C1).
  • -(2-Methylethoxy) ethoxy] ethoxycarbonyl group is more preferable, and 2-ethylhexyl group, o-tolyl group and 2- [2- (2-methoxyethoxy) ethoxy] ethoxycarbonyl group are particularly preferable.
  • R 2 , R 3 , R 4 , R 5 , R 6 The arbitrary substituent in R 2 , R 3 , R 4 , R 5 , R 6 in the formula (c-I) is not particularly limited as long as it is a substitutable monovalent group, and for example, a substituent is used.
  • Examples thereof include an aryl group which may have an aryl group, an aryloxy group which may have a substituent, a nitro group, a halogen atom, a cyano group, a hydroxyl group, an amino group, a carboxy group and a sulfo group.
  • Examples of the alkyl group in R 2 , R 3 , R 4 , R 5 , and R 6 include a linear alkyl group, a branched chain alkyl group, a cyclic alkyl group, and a combination thereof.
  • a branched alkyl group is preferable from the viewpoint of suppressing the formation of aggregates due to damage.
  • Some -CH 2- in the alkyl group may be substituted with -O-.
  • the number of carbon atoms of the alkyl group in R 2 , R 3 , R 4 , R 5 , and R 6 is not particularly limited.
  • the number of carbon atoms of the alkyl group in R 2 , R 3 , R 4 , R 5 , and R 6 is usually preferably 1 or more, 3 or more, preferably 20 or less, and more preferably 16 or less.
  • the quantum efficiency tends to be improved by suppressing the association.
  • the upper limit or less By setting the value to the upper limit or less, the excitation light absorption efficiency per mass tends to be improved.
  • the carbon number of the alkyl group before the substitution is included in the above range.
  • the above upper and lower limits can be combined arbitrarily.
  • the number of carbon atoms of the alkyl group in R 2 , R 3 , R 4 , R 5 , and R 6 is preferably 1 to 20, and more preferably 3 to 16.
  • Examples of the alkylcarbonyl group that may have a substituent at R2 , R3 , R4 , R5, and R6 include a group in which a carbonyl group is bonded to the bond of the alkyl group.
  • Examples of the alkoxy group in R 2 , R 3 , R 4 , R 5 , and R 6 include a group in which an O atom is bonded to the bond of an alkyl group.
  • Examples of the alkoxy group include a methoxy group and a 2-propyloxy group. From the viewpoint of suppressing the formation of aggregates due to steric hindrance, a branched-chain alkoxy group, for example, a 2-propyloxy group is preferable.
  • alkoxycarbonyl group that may have a substituent at R 2 , R 3 , R 4 , R 5 , and R 6 include a group in which an oxycarbonyl group is bonded to an alkyl group bond.
  • Examples of the aryl group in R 2 , R 3 , R 4 , R 5 , and R 6 include a monovalent aromatic hydrocarbon ring group and a monovalent aromatic heterocyclic group.
  • the number of carbon atoms of the aryl group is not particularly limited, but 3 or more is preferable, 6 or more is more preferable, 20 or less is preferable, and 12 or less is more preferable.
  • the solubility in the semiconductor nanoparticle-containing composition tends to be improved.
  • By setting the value to the upper limit or less the excitation light absorption efficiency per mass tends to be improved.
  • the above upper and lower limits can be combined arbitrarily.
  • the aryl group preferably has 3 to 20 carbon atoms, more preferably 6 to 12 carbon atoms.
  • the aromatic hydrocarbon ring in the aromatic hydrocarbon ring group may be a monocyclic ring or a condensed ring.
  • the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, and acenaphthene, which have one free valence.
  • Examples thereof include a ring, a fluoranthene ring, and a fluorene ring, and a benzene ring having one free atomic value and a naphthalene ring having one free atomic value are preferable because of their high solubility in a semiconductor nanoparticles-containing composition.
  • a benzene ring having one free valence is more preferred.
  • the aromatic heterocycle in the aromatic heterocyclic group may be a monocyclic ring or a condensed ring.
  • the aromatic heterocycle include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrazole ring, a pyrazole ring, an imidazole ring, an oxazole ring, an indole ring, and a carbazole ring, which have one free atomic value.
  • Thiophene ring is preferred.
  • Examples of the aryloxy group that may have a substituent at R 2 , R 3 , R 4 , R 5 , and R 6 include a group in which an O atom is bonded to an aryl group bond.
  • a phenoxy group and a 2-thienyloxy group can be mentioned.
  • the amino group which may have a substituent in R 2 , R 3 , R 4 , R 5 , and R 6 in addition to the amino group represented by ⁇ NH 2 , the above alkyl group and the above aryl group are substituted.
  • examples thereof include an amino group having as a group.
  • a dimethylamino group, a diethylamino group, a (2-ethylhexyl) amino group, and a phenylamino group can be mentioned.
  • Examples of the halogen atom in R 2 , R 3 , R 4 , R 5 , and R 6 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Fluorine atoms and chlorine atoms are preferable from the viewpoint of improving the durability of the fluorescent dye (C1).
  • the R2 , R3 , R4 , R5, and R6 are preferably a 2 - propyl group, a t-butyl group, or an o-tolyl group from the viewpoint of solubility in the semiconductor nanoparticles-containing composition. ..
  • a hydrogen atom is desirable from the viewpoint of the excitation light absorption efficiency per mass and the stability of the fluorescent dye.
  • X in the formula (c-I) represents any of the structures of NR 7 R 8 , SR 9 , and OR 10 .
  • NR 7 R 8 is preferable from the viewpoint of absorption wavelength.
  • R 7 and R 8 The arbitrary substituent in R 7 and R 8 is not particularly limited as long as it is a substitutable monovalent group, and for example, it may have an alkyl group or a substituent which may have a substituent. It has a good alkylcarbonyl group, an alkoxycarbonyl group which may have a substituent, an aryl group which may have a substituent, an arylcarbonyl group which may have a substituent, and a substituent. Examples thereof include an aryloxycarbonyl group, an alkylsulfonyl group which may have a substituent, and a hydroxyl group. For example, from the viewpoint of easiness of synthesis, an alkyl group which may have a substituent is preferable.
  • R 7 and R 8 may be connected to form a ring.
  • R 9 and R 10 The arbitrary substituent in R 9 and R 10 is not particularly limited as long as it is a substitutable monovalent group, and for example, it may have an alkyl group or a substituent which may have a substituent.
  • R4 and X in the formula (c-I) may be connected to form a ring.
  • An example of the formula (c-I) when the ring is formed in this way is shown below.
  • fluorescent dye with coumarin skeleton The fluorescent dye having a coumarin skeleton has a high solubility in various solvents and compositions containing semiconductor nanoparticles, a high gram absorption coefficient, difficulty in concentration quenching, and a high quantum yield of fluorescence.
  • a fluorescent dye represented by c-II) (hereinafter, also referred to as “fluorescent dye (C2)) is preferable.
  • R 1 , R 2 , R 3 , R 4 , and R 6 each independently represent a hydrogen atom or an arbitrary substituent.
  • R 5 represents a hydrogen atom, N (R 7 ) 2 , or OR 7 .
  • R 7 may be connected to each other to form a ring.
  • R 7 represents a hydrogen atom or any substituent. Two or more selected from the group consisting of R 4 , R 5 and R 6 may be connected to form a ring.
  • R 1 , R 2 , R 3 , R 4 , R 6 each independently represent a hydrogen atom or an arbitrary substituent.
  • the arbitrary substituent in R 1 , R 2 , R 3 , R 4 , and R 6 is not particularly limited as long as it is a substitutable monovalent group, and for example, an alkyl group which may have a substituent may be used.
  • R2 , R3 , R4 and R6 a methyl group, a cyano group, a trifluoromethyl group, a nitro group, an amino group and a carboxy group are preferable from the viewpoint of absorption efficiency of excitation light, and cyano is preferable.
  • a group and a trifluoromethyl group are more preferable.
  • R 1 is preferably a group represented by the following general formula (c-II-1) from the viewpoint that the fluorescent dye (C2) has a structure showing a strong emission spectrum.
  • X represents an oxygen atom, a sulfur atom, or NR 9 .
  • R 8 represents a hydrogen atom or any substituent.
  • R 9 represents a hydrogen atom or an alkyl group. When R 8 is NR 9 , R 9 and R 8 may be connected to form a ring. * Represents a bond.
  • X represents an oxygen atom, a sulfur atom, or NR 9 .
  • the group represented by the formula (c-II-1) attracts more electrons from the coumarin skeleton, the fluorescence intensity tends to be higher, so that the group contains an atom having a large electronegativity. From this point of view, an oxygen atom or NR 9 is preferable.
  • R 9 represents a hydrogen atom or an alkyl group.
  • the alkyl group in R 9 include a linear alkyl group, a branched chain alkyl group, a cyclic alkyl group, and an alkyl group in which these are combined.
  • a cyclic alkyl group is preferable from the viewpoint of increasing the durability of the fluorescent dye (C2).
  • Some -CH 2- in the alkyl group may be substituted with -O-.
  • R 8 represents a hydrogen atom or any substituent.
  • the arbitrary substituent in R8 is not particularly limited as long as it is a substitutable monovalent group, for example, an alkyl group which may have a substituent and an alkoxy group which may have a substituent.
  • An aryl group which may have a substituent, an aryloxy group which may have a substituent, a sulfanyl group, an alkylsulfanyl group which may have a substituent, and a substituent may be present. Examples thereof include an arylsulfanyl group, a hydroxyl group and an amino group.
  • R8 is preferably a methyl group.
  • R 9 and R 8 may be connected to form a ring.
  • any substituent R 8 and a hydrogen atom R 9 can be linked to form a ring, in which case R 9 is a single bond.
  • the ring may be an aliphatic ring or an aromatic ring.
  • the ring when R 9 and R 8 are connected to form a ring is preferably an aromatic ring.
  • An example of a ring formed by connecting R 9 and R 8 is shown below.
  • R 5 represents a hydrogen atom, N (R 7 ) 2 , or OR 7 .
  • R 7 may be connected to each other to form a ring.
  • N (R 7 ) 2 is preferable for R 5 from the viewpoint that the electron donating property is high and the fluorescence intensity tends to be high.
  • R 7 represents a hydrogen atom or any substituent.
  • Arbitrary substituents in R 7 include, for example, an alkyl group which may have a substituent, an aryl group which may have a substituent, an alkylcarbonyl group which may have a substituent, and a substituent. Examples thereof include an arylcarbonyl group which may have a group, an alkylsulfonyl group which may have a substituent, and an arylsulfonyl group which may have a substituent.
  • R 4 , R 5 and R 6 may be connected to form a ring.
  • An example of the formula (c-II) when a ring is formed is shown below.
  • the fluorescent dye represented by the following general formula (c-II-2) is preferable from the viewpoint of having high solubility in the composition containing semiconductor nanoparticles.
  • R 1 to R 3 are synonymous with the formula (c-II).
  • R 10 and R 11 each independently represent an alkyl group having 1 to 4 carbon atoms.
  • m and n each independently represent an integer of 0 to 4.
  • R 10 and R 11 each independently represent an alkyl group having 1 to 4 carbon atoms.
  • the number of carbon atoms of the alkyl group in R 10 and R 11 is not particularly limited as long as it is 1 to 4, but 1 to 3 is preferable, and 1 to 2 is more preferable.
  • alkyl group having 1 to 4 carbon atoms examples include a methyl group, an ethyl group, an isopropyl group, an isobutyl group and a tertiary butyl group. From the viewpoint of high absorption efficiency of excitation light, the alkyl group having 1 to 4 carbon atoms is preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • m and n each independently represent an integer of 0 to 4.
  • m and n may be integers of 2 or less from the viewpoint of high solubility in the semiconductor nanoparticles-containing composition and high absorption efficiency of excitation light with respect to the mass of the fluorescent dye present in the semiconductor nanoparticles-containing composition. preferable.
  • the fluorescent dye having a perylene skeleton is a fluorescent dye represented by the following general formula (c-III) from the viewpoint of increasing the emission intensity of the semiconductor nanoparticles due to the interaction between the fluorescent dye and the semiconductor nanoparticles (hereinafter, "" Fluorescent dye (C3) ”) is preferable.
  • R 11 , R 21 , R 31 , and R 41 each independently represent a hydrogen atom or any substituent.
  • R 11 , R 21 , R 31 , and R 41 is a group represented by the following general formula (c-III-1).
  • R 12 , R 13 , R 22 , R 23 , R 32 , R 33 , R 42 , R 43 each independently represent a hydrogen atom or any substituent.
  • R5 represents a hydrogen atom or any substituent. * Represents a bond.
  • R 11 , R 21 , R 31 , R 41 each independently represent a hydrogen atom or any substituent.
  • R 11 , R 21 , R 31 , and R 41 is a group represented by the formula (c-III-1).
  • R5 represents a hydrogen atom or any substituent. * Represents a bond.
  • the arbitrary substituent in R5 is not particularly limited as long as it is a substitutable monovalent group, and examples thereof include a hydrocarbon group which may have a substituent. Some -CH 2- in the hydrocarbon group may be substituted with -O-, and some carbon atoms in the hydrocarbon group may be substituted with heteroatoms. Examples of the hydrocarbon group include an alkyl group which may have a substituent and an aryl group which may have a substituent.
  • R 5 may be connected to any of R 11 , R 21 , R 31 , and R 41 to form a ring.
  • R5 is preferably a carbonyl group ( -CO-).
  • R5 is preferably a 2 -ethylhexyl group or a (2- (2-sulfanylethoxy) ethoxy) ethyl group, and from the viewpoint of solubility in the semiconductor nanoparticles-containing composition, ( A 2- (2-methoxyethoxy) ethoxy) ethyl group is preferred.
  • R 11 , R 21 , R 31 , and R 41 are groups represented by the formula (c-III-1), but two or more are more preferable, and three or more are more preferable, and all of them are. Especially preferable. By setting the value to the lower limit or more, the absorption efficiency of the excitation light tends to be improved.
  • the arbitrary substituent in R 11 , R 21 , R 31 , and R 41 is particularly limited as long as it is a substitutable monovalent group other than the group represented by the formula (c-III-1). However, for example, it may have an alkyl group which may have a substituent, an aryl group which may have a substituent, an alkylcarbonyl group which may have a substituent, and a substituent. Examples thereof include an arylcarbonyl group, an alkylsulfonyl group which may have a substituent, an amide group which may have a substituent, a cyano group, and a halogen atom. R 11 and R 21 may be connected to form a ring, or R 31 and R 41 may be connected to form a ring.
  • 2-ethylhexyl group and (2- (2-sulfanylethoxy) ethoxy) ethyl group are preferable from the viewpoint of improving the conversion efficiency of excitation light, and from the viewpoint of solubility in the semiconductor nanoparticles-containing composition.
  • (2- (2-Methoxyethoxy) ethoxy) ethyl group is preferred.
  • R 11 and R 21 may be connected to form a ring, or R 31 and R 41 may be connected to form a ring.
  • Examples of the group in which R 11 and R 21 are linked and the group in which R 31 and R 41 are linked in forming a ring include -CO- (NR 6 ) -CO- (R 6 is a hydrogen atom or carbon. (Representing an alkyl group of number 1 to 6), an ethylene group (-CH 2 -CH 2- ), a trimethylene group (-CH 2 -CH 2 -CH 2- ), a phenylene group, and the absorption efficiency of excitation light.
  • -CO- (NR 6 ) -CO- is preferable from the viewpoint of easiness of synthesis.
  • R 12 , R 13 , R 22 , R 23 , R 32 , R 33 , R 42 , R 43 each independently represent a hydrogen atom or an arbitrary substituent.
  • the arbitrary substituent in R 12 , R 13 , R 22 , R 23 , R 32 , R 33 , R 42 , and R 43 is not particularly limited as long as it is a substitutable monovalent group, and is, for example, a substituent.
  • An aryl group which may have a substituent an aryloxy group which may have a substituent, an arylcarbonyl group which may have a substituent, an aryloxycarbonyl group which may have a substituent, Examples include a cyano group and a halogen atom.
  • a 2-ethylhexyl group and a (2- (2-methoxyethoxy) ethoxy) ethyl group are preferable from the viewpoint of solubility in a hydrogen atom or a composition containing semiconductor nanoparticles, and a hydrogen atom is preferable from the viewpoint of ease of synthesis. ..
  • fluorescent dye (C4) having a partial structure represented by the general formula (c-IV) (hereinafter, also referred to as “fluorescent dye (C4)”) is preferable.
  • X represents an O atom or an S atom.
  • Z represents CR 2 or N atom.
  • R 1 and R 2 each independently represent a hydrogen atom or an arbitrary substituent. * Represents a bond.
  • (X) X represents an O atom or an S atom.
  • the O atom is preferable from the viewpoint of increasing the emission intensity
  • the S atom is preferable from the viewpoint of light resistance.
  • (Z) Z represents CR 2 or N atom.
  • CR 2 is preferable from the viewpoint of ease of synthesis.
  • R 1 and R 2 each independently represent a hydrogen atom or an arbitrary substituent.
  • the arbitrary substituent is not particularly limited as long as it is a substitutable monovalent group, for example, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, and a substituent.
  • Examples thereof include an alkylsulfanyl group which may have a group and a substituent, a hydroxyl group, a carboxy group, an amino group, a nitro group, a cyano group and a halogen atom.
  • Z is CR 2
  • R 1 and R 2 may be connected to form a ring.
  • R 1 and R 2 are independently hydrogen atom, 2-ethylhexyl group, phenyl group, 2- [2- (2-hydroxyethoxy) ethoxy] ethoxy.
  • a group is preferable, and a hydrogen atom is more preferable.
  • R 1 and R 2 may be connected to form a ring, and specific examples of the case where the ring is formed include the following.
  • the fluorescent dye represented by the following general formula (c-IV-1) is preferable from the viewpoint of increasing the emission intensity.
  • X represents an O atom or an S atom.
  • Z represents CR 2 or N atom.
  • R 1 and R 2 each independently represent a hydrogen atom or an arbitrary substituent.
  • a 1 and a 2 are independent groups represented by the following general formula (c-IV-2).
  • b 12 represents a single bond or a divalent group other than b 11 .
  • Each x independently represents an integer of 0 to 3. When x is an integer of 2 or more, the plurality of b 11s may be the same or different. y independently represents an integer of 1 to 3. When y is an integer of 2 or more, the plurality of b 12s may be the same or different.
  • R 11 represents a hydrogen atom or any substituent. * Represents a bond.
  • the X, Z, R 1 and R 2 in the formula (c-IV-1) are hydrogen atoms or arbitrary substituents listed as X, Z, R 1 and R 2 in the formula (c-IV). Can be preferably adopted.
  • a1 and a2 are independent groups represented by the following general formula (c-IV-2).
  • a 1 and a 2 may be the same group or different groups, they are preferably the same group from the viewpoint of easiness of synthesis.
  • b 12 represents a single bond or a divalent group other than b 11 .
  • Each x independently represents an integer of 0 to 3. When x is an integer of 2 or more, the plurality of b 11s may be the same or different. y independently represents an integer of 1 to 3. When y is an integer of 2 or more, the plurality of b 12s may be the same or different.
  • R 11 represents a hydrogen atom or any substituent. * Represents a bond.
  • b 11 is an arylene group which may have a substituent
  • the bonded arylene group is twisted from the diazole plane due to steric hindrance. Therefore, stacking of fluorescent dyes is hindered, and concentration quenching tends to be less likely to occur, which is preferable.
  • Examples of the substituent that the arylene group may have include an alkyl group, an alkoxy group, an alkoxycarbonyl group, an aryl group, an aryloxy group, a sulfanyl group, a dialkylphosphino group, an alkylsulfanyl group, a hydroxyl group, a carboxy group and an amino. Examples include groups, nitro groups, cyano groups and halogen atoms.
  • the substituent of the arylene group is preferably an amino group or a sulfanyl group from the viewpoint of energy transfer efficiency to semiconductor nanoparticles.
  • the substituent of the arylene group is preferably a hydrogen atom, an alkyl group or an alkoxy group, and a hydrogen atom, a t-butyl group or a 2-propyloxy group is particularly preferable.
  • the planarity of the molecular structure is due to the steric hindrance between the isolated electron pair on the N atom of the diazole moiety and the hydrogen atom of the arylene group or the substituent. It is considered that there is a tendency that the formation of an aggregate between fluorescent dyes due to ⁇ - ⁇ stacking or the like is suppressed, and the concentration dimming due to the formation of the aggregate is suppressed, which is preferable.
  • the flatness of the molecule is small because the fluorescent dye itself only has the ⁇ -conjugation of the diazole moiety in the first place. Concentration dimming due to coalescence formation is considered to tend to be small, which is preferable.
  • b 12 represents a single bond or a divalent group other than b 11 .
  • the divalent group other than b 11 is not particularly limited.
  • the divalent groups other than b 11 include, for example, an alkylene group which may have a substituent, an alkyleneoxy group which may have a substituent, and an alkyleneamino group which may have a substituent. Can be mentioned.
  • b 12 includes a 2-ethylhexanediyl group and a -O-CH 2 -CH 2 -O-CH 2 -CH 2 -O-CH 2 -CH 2 -group from the viewpoint of solubility in the composition.
  • a single bond or a methylene group is preferable from the viewpoint of improving the absorbance with respect to the excitation light.
  • x independently represents an integer of 0 to 3. From the viewpoint of absorption wavelength, x is preferably 1 or 2, and more preferably 1.
  • both of x in a1 and x in a2 are integers of 1 to 3, and both x in a1 and x in a2 are 1. Is more preferable.
  • the absorption efficiency of the excitation light tends to be improved.
  • the plurality of b 11s may be the same or different.
  • y independently represents an integer of 1 to 3. From the viewpoint of solubility in the composition and absorbance to excitation light, y is preferably 1 or 2, and more preferably 1. When y is an integer of 2 or more, the plurality of b 12s may be the same or different.
  • R 11 represents a hydrogen atom or any substituent.
  • the arbitrary substituent is not particularly limited as long as it is a substitutable monovalent group, and for example, an aryl group which may have a substituent, an aryloxy group which may have a substituent, a hydroxyl group, and the like.
  • R 11 is preferably a pyridine ring having a carboxy group, an amino group, a sulfanyl group and one free valence, and from the viewpoint of solubility, a hydrogen atom and a trialkylsilyl group. Is preferable.
  • fluorescent dye (C5) a fluorescent dye having a partial structure represented by the general formula (cV) as the fluorescent dye (C) (hereinafter, also referred to as “fluorescent dye (C5)”) is also preferable.
  • Ar 1 , Ar 2 , and Ar 3 each independently represent an aryl group that may have a substituent.
  • R 1 and R 2 each independently represent an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • Ar 1 , Ar 2 , Ar 3 each independently represent an aryl group that may have a substituent.
  • the aryl group include a divalent aromatic hydrocarbon ring group (aromatic hydrocarbon ring having two free atomic valences) and a divalent aromatic heterocyclic group (two aromatic hydrocarbon rings) in Ar 1 and Ar 2 .
  • Ar 3 a monovalent aromatic hydrocarbon ring group (aromatic hydrocarbon ring having one free valence) and a monovalent aromatic heterocyclic group (aromatic heterocycle having one free valence) ).
  • Ar 1 is preferably a benzene ring having two free valences and a naphthalene ring having two free valences.
  • Ar 2 may be a group represented by any of the following general formulas (cV-1), (cV-2), and (cV-3). preferable.
  • Ar 3 is preferably a benzene ring having one free valence.
  • R 3 and R 4 are each independently an alkyl group or a substituent which may have a substituent. Represents an aryl group that may have a group.
  • R 3 and R 4 are each independently an alkyl group or a substituent which may have a substituent. Represents an aryl group that may have a group.
  • alkyl group examples include a linear alkyl group, a branched chain alkyl group, a cyclic alkyl group, and an alkyl group in which these are combined. From the viewpoint of solubility, R 3 and R 4 are preferably branched-chain alkyl groups.
  • the aryl group examples include a monovalent aromatic hydrocarbon ring group and a monovalent aromatic heterocyclic group.
  • the number of carbon atoms of the aryl group is not particularly limited, but 4 or more is preferable, 6 or more is more preferable, 12 or less is preferable, and 10 or less is more preferable.
  • the aryl group preferably has 4 to 12 carbon atoms, more preferably 6 to 10 carbon atoms.
  • R 1 and R 2 each independently represent an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • alkyl group examples include a linear alkyl group, a branched chain alkyl group, a cyclic alkyl group, and an alkyl group in which these are combined.
  • R 1 and R 2 are preferably a branched-chain alkyl group or a cyclic alkyl group.
  • the aryl group examples include a monovalent aromatic hydrocarbon ring group and a monovalent aromatic heterocyclic group.
  • the number of carbon atoms of the aryl group is not particularly limited, but 4 or more is preferable, 6 or more is more preferable, 12 or less is preferable, and 10 or less is more preferable.
  • the aryl group preferably has 4 to 12 carbon atoms, more preferably 6 to 10 carbon atoms.
  • fluorescent dye (C) having a partial structure represented by the general formula (c-VI) (hereinafter, also referred to as “fluorescent dye (C6)) is preferable.
  • X represents C- * or N. * Represents a bond.
  • R 1 and R 2 independently represent a fluorine atom or a cyano group.
  • R 1 , R 2 independently represent a fluorine atom or a cyano group.
  • R 1 and R 2 fluorine atoms are preferable from the viewpoint of improving the durability of the fluorescent dye (C6).
  • X represents C- * or N, and * represents a bond. From the viewpoint of improving the durability of the fluorescent dye and the stability of the absorption spectrum of the fluorescent dye (C6) with respect to pH, C- * is preferable for X, and CR 9 is more preferable. R 9 represents a hydrogen atom or any substituent. When blue excitation light is used, C- * is preferable for X, and CR 9 is more preferable, from the viewpoint of improving absorption efficiency.
  • R 9 The arbitrary substituent in R 9 is not particularly limited as long as it is a substitutable monovalent group, for example, an alkyl group which may have a substituent and an alkylcarbonyl which may have a substituent. It has a group, an alkylcarbonyloxy group which may have a substituent, an alkylcarbonylamino group which may have a substituent, an alkylsulfonyl group which may have a substituent, and a substituent. May have an alkoxy group, an alkoxycarbonyl group which may have a substituent, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, or a substituent.
  • aryl group an arylcarbonyl group which may have a substituent, an arylcarbonyloxy group which may have a substituent, an arylcarbonylamino group which may have a substituent, and a substituent. It has an arylsulfonyl group which may have a substituent, an aryloxy group which may have a substituent, an aryloxycarbonyl group which may have a substituent, an amino group which may have a substituent, and a substituent.
  • carbamoyl group which may have a substituent
  • a sulfanyl group which may have a substituent
  • a sulfonyl group which may have a substituent
  • silyl group which may have a substituent
  • a substituent examples thereof include a volyl group which may be used, a phosphinoyl group which may have a substituent, a carboxy group, a formyl group, a sulfo group, a cyano group, a nitro group, a halogen atom and a hydroxyl group.
  • R 9 is preferably an alkoxy group or an amino group (particularly an alkylamino group) from the viewpoint of improving the absorption efficiency of the excitation light.
  • R9 is preferably an alkyl group, an aryl group, an alkoxy group or an amino group, preferably a methyl group or a 2-ethylhexyl.
  • phenyl groups, 2- [2- (2-hydroxyethoxy) ethoxy] ethoxy groups, phenoxy groups, 2-ethylhexylamino groups are more preferred, methyl groups, phenyl groups, 2- [2- (2-hydroxyethoxy) Ethoxy] ethoxy groups are particularly preferred.
  • the fluorescent dye (C6) is not particularly limited as long as it is represented by the formula (c-VI). From the viewpoints of high solubility in various solvents and compositions containing semiconductor nanoparticles, high gram absorption coefficient, difficulty in concentration quenching, and high quantum yield of fluorescence, the following general formula (c-VI-1) is used. It is preferably a fluorescent dye represented.
  • X represents CR 9 or N.
  • R 3 to R 9 independently represent a hydrogen atom or an arbitrary substituent.
  • R 4 and R 3 or R 5 may be connected to form a ring.
  • R 7 and R 6 or R 8 may be connected to form a ring.
  • R 1 and R 2 independently represent a fluorine atom or a cyano group.
  • R 1 , R 2 independently represent a fluorine atom or a cyano group. Fluorine atoms are preferable for R 1 and R 2 from the viewpoint of improving the durability of the fluorescent dye.
  • X represents CR 9 or N, and CR 9 is preferable from the viewpoint of improving the durability of the fluorescent dye.
  • R 9 represents a hydrogen atom or an arbitrary substituent, examples of the arbitrary substituent in R 9 include the substituents described in the formula (c-VI), and preferred substituents are also described in the formula (c-VI). Similar to the substituent.
  • R 3 to R 8 independently represent a hydrogen atom or an arbitrary substituent, and the arbitrary substituents in R 3 to R 8 are described as arbitrary substituents in R 9 in the formula (c-VI). Substituents can be mentioned.
  • an alkyl group, an aryl group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable, and a methyl group is preferable from the viewpoint of improving the solubility in the semiconductor nanoparticles-containing composition and improving the durability of the fluorescent dye.
  • 2-Ethylhexyl group, phenyl group, 2- [2- (2-hydroxyethoxy) ethoxy] ethoxycarbonyl group and phenoxycarbonyl group are more preferable, and methyl group, 2-ethylhexyl group and 2- [2- (2-hydroxyethoxy) group. ) Ethoxy] ethoxycarbonyl group is particularly preferred.
  • R 4 and R 3 or R 5 may be connected to form a ring, or R 7 and R 6 or R 8 may be connected to form a ring.
  • An example of the formula (c-VI-1) when a ring is formed is shown below.
  • R 1 and R 2 are fluorine atoms and X is C in the formula (c-VI-1) from the viewpoint of improving the durability of the fluorescent dye.
  • -R 9 is preferred, with a fluorescent dye in which R 9 is a hydrogen atom or any substituent.
  • the preferable structure of the fluorescent dye (C6) is that R 1 and R 2 are fluorine in the formula (c-VI-1). It is an atom, X is C-R 9 , R 9 is an alkyl group, an aryl group, an alkoxy group and an amino group, and R 3 to R 8 are an alkyl group, an aryl group, an alkoxycarbonyl group and an aryloxycarbonyl group. Is preferable.
  • the preferable structure of the fluorescent dye (C6) is that X is C-R 9 and R 9 is R 9 in the formula (c-VI-1). It is preferably an alkoxy group or an amino group (particularly an alkylamino group).
  • the fluorescent dye (C) has a substituent that causes an action of linking to the semiconductor nanoparticles (A).
  • the fluorescent dye (C) has a substituent that causes an action of linking to the semiconductor nanoparticles (A)
  • the fluorescent dye (C) is easily adsorbed on the semiconductor nanoparticles (A), and a wavelength conversion layer is formed.
  • the excitation energy of the fluorescent dye (C) adsorbed on the surface of the semiconductor nanoparticles (A) is transferred to the semiconductor nanoparticles (A) by Felster-type energy transfer, thereby improving the emission efficiency of the semiconductor nanoparticles (A). Is possible.
  • Examples of the substituent that causes the action of linking to the semiconductor nanoparticles (A) in the fluorescent dye (C) include a sulfanyl group or a salt thereof, an acid group or a salt thereof, an amino group or a salt thereof, a phosphoryl ester group or a salt thereof. , Phosphantriyl group, or phosphoryl group.
  • the amino group is a substituent represented by -NH 2 .
  • the acid group or a salt thereof a carboxy group or a salt thereof, a sulfo group or a salt thereof, or a phosphono group or a salt thereof is preferable from the viewpoint of the connecting force to the surface of the semiconductor nanoparticles (A).
  • the substituent that causes the linking action to the semiconductor nanoparticles (A) in the fluorescent dye (C) has a sulfanyl group or a salt thereof, an amino group or a salt thereof, a carboxy group or a salt thereof, and a phosphono from the viewpoint of having a large linking action.
  • a group or a salt thereof is preferable, a sulfanyl group, an amino group, and a phosphono group are more preferable, and a sulfanyl group is particularly preferable.
  • the substituent that causes the action of linking to the semiconductor nanoparticles (A) may be bonded to the skeleton and structure of the fluorescent dye (C), and its position is not particularly limited.
  • Having a substituent that causes an action of linking to a semiconductor nanoparticles means a covalent bond, an ionic bond, or a coordination bond (a metal element and a ligand forming a metal complex) in the skeleton and structure of the fluorescent dye (C). It means that they are bonded by a chemical bond such as (including the bond of).
  • Whether or not a linking action is occurring can be determined, for example, by the following evaluation criteria.
  • a fluorescent dye is added to a butyl acetate solution of semiconductor nanoparticles having a ligand containing a polyethylene glycol chain to dissolve it, and then the mixture is allowed to stand at room temperature for 2 hours. Then normal heptane is added to precipitate the semiconductor nanoparticles. Further, after separating the precipitate and the supernatant with a centrifuge, the supernatant is dried, and the amount of the fluorescent dye contained in the residue is quantified by 1 H-NMR.
  • the amount of the fluorescent dye contained in the supernatant is 90 wt% or less, it may be determined that the linking action to the semiconductor nanoparticles is occurring. (It is confirmed in advance that the fluorescent dye to be added is dissolved in the mixed solution of butyl acetate and normal heptane so that the fluorescent dye not linked to the semiconductor nanoparticles does not precipitate when the normal heptane is added. )
  • fluorescent dye (C) in particular, a fluorescent dye having a naphthalimide skeleton, a fluorescent dye having a coumarin skeleton, a fluorescent dye having a perylene skeleton, and a fluorescent dye having a structure represented by the formula (c-IV).
  • fluorescent dye having the structure represented by the formula (cV) and the fluorescent dye having the structure represented by (c-VI) will be given.
  • the method for producing the fluorescent dye (C) is not particularly limited, and for example, Japanese Patent Application Laid-Open No. 2003-104976, Japanese Patent Application Laid-Open No. 2011-231245, International Publication No. 2015/111647, Japanese Patent Application Laid-Open No. 2015- 006173, Chem. Eur. J. , 13,1746-1753, 2007, Chem. Rev. , 107, p. It can be produced by the method described in 4891-4932, 2007.
  • the method for introducing a substituent having an action of linking to semiconductor nanoparticles into the fluorescent dye (C) is not particularly limited, but for example, Chem. Phys. Chem. , 11, 3167-3171, 2010, J. Mol. Am. Chem. Soc. , 127, 3870-3878, 2005, Japanese Patent Application Laid-Open No. 2017-186564.
  • the maximum emission wavelength of the fluorescence emitted by the fluorescent dye (C) is not particularly limited, but is preferably 450 nm or more, more preferably 455 nm or more, further preferably 460 nm or more, particularly preferably 465 nm or more, and preferably 640 nm or less, and 635 nm or less. Is more preferable, 630 nm or less is further preferable, and 625 nm or less is particularly preferable. The above upper and lower limits can be combined arbitrarily.
  • the maximum emission wavelength of the fluorescence emitted by the fluorescent dye (C) is preferably 450 to 640 nm, more preferably 455 to 635 nm, further preferably 460 to 630 nm, and particularly preferably 465 to 625 nm.
  • the excitation light source is blue light
  • the semiconductor nanoparticles cannot sufficiently absorb the light and the semiconductor nanoparticles that could not be excited can be excited, and the semiconductor nanoparticles emit light. It tends to lead to increased strength.
  • the emission spectrum of the semiconductor nanoparticles and the emission spectrum of the fluorescent dye (C) can be separated, so that the energy transferred from the fluorescent dye (C) to the semiconductor nanoparticles becomes large, and further.
  • it tends to be easy to absorb light emission in an unnecessary wavelength region from the fluorescent dye (C) by a color filter provided separately from the pixel portion.
  • the maximum emission wavelength of the fluorescence emitted by the fluorescent dye (C) is in the vicinity of 460 to 630 nm, the emission intensity of both the green-emitting semiconductor nanoparticles and the red-emitting semiconductor nanoparticles tends to be increased. Is preferable.
  • the method for measuring the maximum emission wavelength is not particularly limited, but for example, a spectrofluorometer using light having a wavelength of 445 nm as an excitation light source using a solution of the fluorescent dye (C) or a film containing the fluorescent dye (C). It may be read from the emission spectrum measured in the above.
  • the semiconductor nanoparticle-containing composition of the present invention may contain one type of fluorescent dye (C) alone, or may contain two or more types.
  • the semiconductor nanoparticle-containing composition of the present invention may further contain a dye other than the fluorescent dye (C).
  • the content ratio of the fluorescent dye (C) in the semiconductor nanoparticles-containing composition of the present invention is not particularly limited, but is preferably 0.001% by mass or more, preferably 0.01% by mass, in the total solid content of the semiconductor nanoparticles-containing composition.
  • the above is more preferable, 0.05% by mass or more is further preferable, 0.1% by mass or more is particularly preferable, 30% by mass or less is preferable, 20% by mass or less is more preferable, and 10% by mass or less is further preferable. 5% by mass or less is particularly preferable.
  • the fluorescent dye (C) By setting the value to the lower limit or higher, the fluorescent dye (C) sufficiently absorbs the irradiated light, the amount of energy transfer from the fluorescent dye (C) to the semiconductor nanoparticles (A) is increased, and the semiconductor nanoparticles. There is a tendency to increase the emission intensity of (A). Further, by setting the value to the upper limit or less, the concentration quenching of the fluorescent dye (C) is suppressed, and the energy is efficiently transferred from the fluorescent dye (C) to the semiconductor nanoparticles (A), so that the semiconductor nanoparticles (A) can be subjected to energy transfer. By increasing the emission intensity and containing components other than the semiconductor nanoparticles (A) and the fluorescent dye (C), a wavelength conversion layer having sufficient hardness tends to be obtained.
  • the above upper and lower limits can be combined arbitrarily. For example, 0.001 to 30% by mass is preferable, 0.01 to 20% by mass is more preferable, 0.05 to 10 is more preferable, and 0.1 to 5 is particularly preferable
  • the semiconductor nanoparticle-containing composition of the present invention contains the (meth) acrylate compound (D).
  • the wavelength conversion layer, particularly the color filter pixel portion can be cured when the semiconductor nanoparticles-containing composition of the present invention is used for the color filter pixel portion. be.
  • the (meth) acrylate compound (D) may be a monofunctional (meth) acrylate having one (meth) acryloyl group, or may be a polyfunctional (meth) acrylate having a plurality of (meth) acryloyl groups.
  • the monofunctional (meth) clearate is a monofunctional (meth) having a molecular weight of 150 g / mol to 350 g / mol from the viewpoint of excellent fluidity when the semiconductor nanoparticles-containing composition is made into ink and excellent in ejection stability.
  • Acrylate is preferred.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl.
  • ethoxyethoxyethyl (meth) acrylate ethoxyethoxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, (2-Methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylate and benzyl (meth) acrylate are preferable.
  • the polyfunctional (meth) acrylate may be, for example, a bifunctional (meth) acrylate, a trifunctional (meth) acrylate, a tetrafunctional (meth) acrylate, a pentafunctional (meth) acrylate, or a hexafunctional (meth) acrylate.
  • the polyfunctional (meth) acrylate is, for example, a di (meth) acrylate in which two hydroxyl groups of a diol compound are substituted with a (meth) acryloyloxy group, and two or three hydroxyl groups of a triol compound are replaced by a (meth) acryloyloxy group. It may be a substituted di or tri (meth) acrylate.
  • Bifunctional (meth) acrylates are preferable from the viewpoint of excellent fluidity when the semiconductor nanoparticles-containing composition is made into ink and from the viewpoint of excellent ejection stability.
  • the molecular weight of the polyfunctional (meth) acrylate is 150 g / mol or more from the viewpoint of excellent fluidity when the semiconductor nanoparticles-containing composition is made into ink and from the viewpoint of excellent ejection stability. Is preferable, 700 g / mol or less is preferable, and 350 g / mol or less is more preferable. The above upper and lower limits can be combined arbitrarily.
  • the polyfunctional (meth) acrylate preferably has a molecular weight of 150 to 700 g / mol, more preferably 150 to 350 g / mol.
  • bifunctional (meth) acrylate examples include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, and 3-methyl.
  • Substituted di (meth) acrylate Di (meth) in which two hydroxyl groups of a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of neopentyl glycol is substituted with a (meth) acryloyloxy group.
  • Di (meth) acrylate in which the two hydroxyl groups of the diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of acrylate and bisphenol A are substituted with a (meth) acryloyloxy group; 3 mol to 1 mol of trimethylolpropane.
  • Di (meth) acrylate in which the two hydroxyl groups of the resulting diol are substituted with a (meth) acryloyloxy group; can be mentioned.
  • the bifunctional (meth) acrylates include 1,6-hexanediol di (meth) acrylate and 1,8-octanediol di from the viewpoint of excellent dispersibility of semiconductor nanoparticles, ejection stability of inkjet, and strength of cured film.
  • (Meta) acrylate and 1,9-nonanediol di (meth) acrylate are preferable.
  • trifunctional (meth) acrylate for example, trimethylolpropane tri (meth) acrylate, glycerin triacrylate, pentaerythritol tri (meth) acrylate, and 1 mol of trimethylolpropane are added with 3 mol or more of ethylene oxide or propylene oxide.
  • examples thereof include tri (meth) acrylates in which the three hydroxyl groups of the resulting triol are substituted with (meth) acryloyloxy groups.
  • tetrafunctional (meth) acrylate examples include pentaerythritol tetra (meth) acrylate.
  • pentafunctional (meth) acrylate examples include dipentaerythritol penta (meth) acrylate.
  • hexafunctional (meth) acrylate examples include dipentaerythritol hexa (meth) acrylate.
  • the polyfunctional (meth) acrylate may be, for example, a poly (meth) acrylate in which a plurality of hydroxyl groups of dipentaerythritol of dipentaerythritol hexa (meth) acrylate are substituted with a (meth) acryloyloxy group.
  • the (meth) acrylate compound (D) may be a (meth) acrylate having a phosphoric acid group, for example, an ethylene oxide-modified phosphoric acid (meth) acrylate or an ethylene oxide-modified alkyl phosphate (meth) acrylate.
  • the curable component when the curable component is composed of only the (meth) acrylate compound (D) or a main component thereof, the durability (strength, heat resistance, etc.) of the cured product is further enhanced.
  • polyfunctional (meth) acrylate as the (meth) acrylate compound (D).
  • the content ratio of the polyfunctional (meth) acrylate with respect to the entire (meth) acrylate compound (D) is preferably 10% by mass or more, more preferably 20% by mass or more.
  • the upper limit is not particularly limited, but is usually 100% by mass or less. The above upper and lower limits can be combined arbitrarily.
  • the content ratio of the polyfunctional (meth) acrylate with respect to the entire (meth) acrylate compound (D) is preferably 10 to 100% by mass, more preferably 20 to 100% by mass.
  • the (meth) acrylate compound (D) It is also preferable to use a combination of a monofunctional (meth) acrylate and a polyfunctional (meth) acrylate.
  • the content ratio of the polyfunctional (meth) acrylate with respect to the entire (meth) acrylate compound (D) is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the lower limit is not particularly limited, but is usually 0% by mass or more, preferably 0.1% by mass or more.
  • the above upper and lower limits can be combined arbitrarily. For example, 0 to 90% by mass is preferable, and 0.1 to 80% by mass is more preferable.
  • the average molecular weight of the mixed (meth) acrylate compound (D) is a semiconductor nanoparticles-containing composition.
  • the average molecular weight is preferably 150 g / mol or more, and preferably 350 g / mol or less, from the viewpoint of excellent fluidity and ejection stability when the acrylic compound is used as an ink.
  • Average molecular weight of (meth) acrylate compound (D) ⁇ [(molecular weight of each (meth) acrylate) ⁇ (blending ratio of each (meth) acrylate (% by mass)) / 100]
  • the content ratio of the (meth) acrylate compound (D) is, for example, from the viewpoint that an appropriate viscosity can be easily obtained in the coating process as an ink for a wavelength conversion layer, particularly from a viewpoint that an appropriate viscosity can be easily obtained as an ink for an inkjet method, and a semiconductor. From the viewpoint of improving the curability of the nanoparticles-containing composition, from the viewpoint of increasing the emission intensity of the semiconductor nanoparticles (A), and the solvent resistance and abrasion resistance of the pixel portion (cured product of the semiconductor nanoparticles-containing composition).
  • 20% by mass or more more preferably 40% by mass or more, further preferably 50% by mass or more, still more preferably 60% by mass or more in the total solid content of the semiconductor nanoparticles-containing composition.
  • 70% by mass or more is more preferable.
  • 90% by mass or less is preferable, and 80% by mass or less is more preferable.
  • the above upper and lower limits can be combined arbitrarily. For example, 20 to 90% by mass is preferable, 40 to 90% by mass is more preferable, 50 to 90% by mass is further preferable, 60 to 90% by mass is further preferable, and 70 to 80% by mass is particularly preferable.
  • the semiconductor nanoparticle-containing composition of the present invention may contain a polymerization initiator (E).
  • a polymerization initiator By containing the polymerization initiator (E), the (meth) acrylate compound (D) tends to be easily polymerized.
  • the polymerization initiator include a photoradical polymerization initiator (E1), a photocationic polymerization initiator (E2), and a thermal polymerization initiator (E3).
  • Photoradical Polymerization Initiator As the photoradical polymerization initiator, a molecular cleavage type or hydrogen abstraction type photoradical polymerization initiator is suitable.
  • Examples of the molecular cleavage type photoradical polymerization initiator include benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-benzyl-2-dimethyl.
  • Amino-1- (4-morpholinophenyl) -butane-1-one, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, (2,4,6-trimethylbenzoyl) Ethoxyphenylphosphine oxide can be mentioned.
  • Examples of other molecular cleavage type photoradical polymerization initiators include 1-hydroxycyclohexylphenylketone, benzoinethyl ether, benzyldimethylketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-. (4-Isopropylphenyl) -2-hydroxy-2-methylpropane-1-one and 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one may be used in combination.
  • Examples of the hydrogen abstraction type photoradical polymerization initiator include benzophenone, 4-phenylbenzophenone, isophthalphenone, and 4-benzoyl-4'-methyl-diphenylsulfide.
  • a molecular cleavage type photoradical polymerization initiator and a hydrogen abstraction type photoradical polymerization initiator may be used in combination.
  • a commercially available product can also be used as a photoradical polymerization initiator.
  • Examples of commercially available products include acylphosphine oxide compounds such as "Omnirad (registered trademark. The same shall apply hereinafter) TPO-H", “Omnirad TPO-L”, and “Omnirad 819" manufactured by IGM resin, "Omnirad 651".
  • the oxime ester compounds are described in, for example, the compounds described in JP-A-2004-534797 of Japan, the compounds described in JP-A-2000-80068 of Japan, and International Publication No. 2012/45736.
  • examples of the oxime ester compound include N-acetoxy-N- ⁇ 4-acetoxyimino-4- [9-ethyl-6- (o-toluoil) -9H-carbazole-3-yl] butane-2.
  • the content ratio of the photoradical polymerization initiator is the (meth) acrylate compound (D) from the viewpoint of curability of the semiconductor nanoparticles-containing composition.
  • the content ratio of the photoradical polymerization initiator is the (meth) acrylate compound (D) from the viewpoint of curability of the semiconductor nanoparticles-containing composition.
  • 100 parts by mass 0.1 part by mass or more is preferable, 0.5 part by mass or more is more preferable, and 1 part by mass or more is further preferable.
  • 40 parts by mass or less is preferable, and 30 parts by mass or less is more preferable with respect to 100 parts by mass of the (meth) acrylate compound (D).
  • 20 parts by mass or less is more preferable.
  • the content ratio of the photoradical polymerization initiator is preferably 0.1 to 40 parts by mass, more preferably 0.5 to 30 parts by mass, and 1 to 1 to 3 parts by mass with respect to 100 parts by mass of the (meth) acrylate compound (D). 20 parts by mass is more preferable.
  • thermal Polymerization Initiator (E3) examples include 2,2'-azobis (isobutyronitrile), di-tert-butylperoxide, cumenehydroperoxide, 4, 4'-azobis (4-cyanovaleric acid), 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2'-azobis Examples thereof include (2,4-dimethylvaleronitrile) and 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride.
  • the content ratio of the thermal polymerization initiator is 100 mass by mass of the (meth) acrylate compound (D) from the viewpoint of curability of the semiconductor nanoparticles-containing composition.
  • 0.1 part by mass or more is preferable, 0.5 part by mass or more is more preferable, and 1 part by mass or more is further preferable.
  • 40 parts by mass or less is preferable, and 30 parts by mass or less is more preferable with respect to 100 parts by mass of the (meth) acrylate compound (D). , 20 parts by mass or less is more preferable.
  • the content ratio of the thermal polymerization initiator is preferably 0.1 to 40 parts by mass, more preferably 0.5 to 30 parts by mass, and 1 to 20 parts by mass with respect to 100 parts by mass of the (meth) acrylate compound (D). Parts by mass are even more preferred.
  • the semiconductor nanoparticle-containing composition of the present invention may contain light-scattering particles.
  • the light-scattering particles are, for example, optically inert inorganic particles.
  • the light-scattering particles can scatter the light from the light source irradiated to the color filter pixel portion and the light emitted by the semiconductor nanoparticles or the fluorescent dye.
  • Materials constituting the light-scattering particles include, for example, simple metal such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum and gold; silica, barium sulfate, barium carbonate, calcium carbonate, etc.
  • Metal oxides such as talc, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; magnesium carbonate, barium carbonate, Secondary bismuth carbonate, metal carbonates such as calcium carbonate; metal hydroxides such as aluminum hydroxide; composite oxides such as barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, bismuth hyponitrate Metal salts such as.
  • the light-scattering particles are selected from the group consisting of titanium oxide, alumina, zinc oxide, zinc oxide, calcium carbonate, barium sulfate and barium titanate from the viewpoint of excellent ejection stability and the effect of improving external quantum efficiency. It is preferable to contain at least one kind, and it is more preferable to contain at least one kind selected from the group consisting of titanium oxide, zinc oxide, zinc oxide and barium titanate.
  • the shape of the light-scattering particles may be, for example, spherical, filamentous, or indefinite.
  • using particles having less directional particle shape for example, spherical particles, regular tetrahedral particles, etc.
  • it is preferable in that it can be further enhanced and excellent ejection stability can be obtained.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the semiconductor nanoparticles-containing composition is preferably 0.05 ⁇ m or more, preferably 0, from the viewpoint of excellent ejection stability and the effect of improving external quantum efficiency. .07 ⁇ m or more is more preferable, and 0.1 ⁇ m or more is further preferable. Further, the average particle diameter (volume average diameter) of the light-scattering particles in the semiconductor nanoparticles-containing composition is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and 0, from the viewpoint of excellent ejection stability. It is more preferably 3 ⁇ m or less, still more preferably 0.2 ⁇ m or less. The above upper and lower limits can be combined arbitrarily.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the semiconductor nanoparticles-containing composition is preferably 0.05 to 1.0 ⁇ m, more preferably 0.05 to 0.5 ⁇ m, and 0.07. It is more preferably ⁇ 0.3 ⁇ m, and particularly preferably 0.1 to 0.2 ⁇ m.
  • the average particle size (volume average diameter) of the light-scattering particles in the semiconductor nanoparticles-containing composition or the light-scattering particles in the light-scattering particle dispersion is measured by a dynamic light-scattering nanotrack particle size distribution meter. , Obtained by calculating the volume average diameter.
  • the average particle size (volume average diameter) of the light-scattering particles is the particle size of each particle by, for example, a transmission electron microscope or a scanning electron microscope. Is obtained by measuring and calculating the volume average diameter.
  • the content ratio of the light-scattering particles is included in the total solid content of the semiconductor nanoparticles-containing composition from the viewpoint of being more excellent in the effect of improving the external quantum efficiency.
  • 0.1% by mass or more is preferable, 1% by mass or more is more preferable, 5% by mass or more is further preferable, 7% by mass or more is further preferable, 10% by mass or more is particularly preferable, and 12% by mass or more is most preferable. ..
  • the total solid content of the semiconductor nanoparticles-containing composition is preferably 60% by mass or less, more preferably 50% by mass or less, and 40% by mass or less. More preferably, it is more preferably 30% by mass or less, particularly preferably 25% by mass or less, and most preferably 20% by mass or less.
  • the content ratio of the light-scattering particles is preferably 0.1 to 60% by mass, more preferably 1 to 50% by mass, and further preferably 5 to 40% by mass in the total solid content of the semiconductor nanoparticles-containing composition. It is preferable, 7 to 30% by mass is more preferable, 10 to 25% by mass is particularly preferable, and 12 to 20% by mass is particularly preferable.
  • the mass ratio of the content ratio of the light-scattering particles to the content ratio of the semiconductor nanoparticles (A) (light-scattering particles / semiconductor nanoparticles (A)).
  • the mass ratio of the content ratio of the light-scattering particles to the content ratio of the semiconductor nanoparticles (A) (light-scattering particles / semiconductor nanoparticles (A)).
  • ) May be 0.1 or more, 0.2 or more, or 0.5 or more from the viewpoint of excellent effect of improving the external quantum efficiency. It may be 5.0 or less, and may be 2.0 or less, from the viewpoint of being excellent in the effect of improving the external quantum efficiency and being suitable for a known coating method, particularly excellent in continuous ejection property (ejection stability) during inkjet printing. It may be 1.5 or less.
  • the improvement of external quantum efficiency by light-scattering particles is considered to be due to the following mechanism. That is, in the absence of the light-scattering particles, the backlight light only travels almost straight through the pixel portion and is considered to have little chance of being absorbed by the semiconductor nanoparticles (A). On the other hand, when the light-scattering particles are present in the same pixel portion as the semiconductor nanoparticles (A), the backlight light is scattered in the pixel portion in all directions, and the semiconductor nanoparticles (A) can receive the light. Even if the same backlight is used, it is considered that the amount of light absorption in the pixel portion increases.
  • the mass ratio of the content ratio of the light-scattering particles to the content ratio of the semiconductor nanoparticles (A) is preferably 0.1 to 5.0, preferably 0.2. -2.0 is more preferable, and 0.5 to 1.5 is even more preferable.
  • the semiconductor nanoparticles-containing composition of the present invention comprises semiconductor nanoparticles (A), a ligand (B), a fluorescent dye (C), a (meth) acrylate compound (D), and a polymerization initiator ( E) and other components other than the light-scattering particles may be further contained.
  • other components include polymer dispersants, sensitizers, and solvents.
  • the polymer dispersant is a polymer compound having a weight average molecular weight of 750 or more and having a functional group having an adsorptive ability to light-scattering particles, and has a function of dispersing light-scattering particles.
  • the polymer dispersant is adsorbed on the light-scattering particles via a functional group having an adsorption ability for the light-scattering particles, and the light-scattering particles are generated by electrostatic repulsion and / or steric repulsion between the polymer dispersants. Disperse in a composition containing semiconductor nanoparticles.
  • the polymer dispersant is preferably bonded to the surface of the light-scattering particles and adsorbed to the light-scattering particles, but may be bonded to the surface of the semiconductor nanoparticles and adsorbed to the semiconductor nanoparticles. It may be free in the composition containing semiconductor nanoparticles.
  • Examples of the functional group having an adsorptive ability to light-scattering particles include an acidic functional group, a basic functional group and a nonionic functional group.
  • the acidic functional group has a dissociative proton and may be neutralized by a base such as an amine or a hydroxide ion, and the basic functional group is neutralized by an acid such as an organic acid or an inorganic acid. May be.
  • Examples of the acidic functional group include a carboxy group (-COOH), a sulfo group (-SO 3 H), a sulfate group (-OSO 3 H), a phosphorno group (-PO (OH) 2 ), and a phosphoroxy group (-OPO (OH)). 2 ), hydroxyphosphoryl group (-PO (OH)-), sulfanyl group (-SH) and the like.
  • Examples of the basic functional group include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and nitrogen-containing heterocyclic groups such as pyridine, pyrimidine, pyrazine, imidazole, and triazole.
  • nonionic functional group examples include a hydroxy group, an ether group, a thioether group, a sulfinyl group (-SO-), a sulfonyl group ( -SO2- ), a carbonyl group, a formyl group, an ester group, a carbonate ester group and an amide.
  • Examples thereof include a group, a carbamoyl group, a ureido group, a thioamide group, a thioureido group, a sulfamoyl group, a cyano group, an alkenyl group, an alkynyl group, a phosphine oxide group and a phosphine sulfide group.
  • an acidic functional group from the viewpoint of dispersion stability of light-scattering particles, from the viewpoint of less likely to cause the side effect of sedimentation of semiconductor nanoparticles, from the viewpoint of ease of synthesis of a polymer dispersant, and from the viewpoint of functional group stability.
  • a carboxy group, a sulfo group, a phosphonic acid group and a phosphoric acid group are preferably used, and an amino group is preferably used as the basic functional group.
  • a carboxy group, a phosphonic acid group and an amino group are more preferably used, and most preferably an amino group is used.
  • the acid value of the polymer dispersant is preferably 1 to 150 mgKOH / g.
  • the acid value is at least the above lower limit value, sufficient dispersibility of the light scattering particles can be easily obtained, and when the acid value is at least the above upper limit value, the pixel portion (cured product of the semiconductor nanoparticles-containing composition) Storage stability does not easily decrease.
  • the amine value of the polymer dispersant is preferably 1 to 200 mgKOH / g.
  • the amine value is at least the above lower limit value, sufficient dispersibility of the light scattering particles can be easily obtained, and when the amine value is at least the above upper limit value, the pixel portion (cured product of the semiconductor nanoparticles-containing composition) Storage stability does not easily decrease.
  • the polymer dispersant may be a polymer (homopolymer) of a single monomer, or may be a copolymer (copolymer) of a plurality of types of monomers.
  • the polymer dispersant may be either a random copolymer, a block copolymer or a graft copolymer.
  • the polymer dispersant is a graft copolymer, it may be a comb-shaped graft copolymer or a star-shaped graft copolymer.
  • the polymer dispersant is, for example, acrylic resin, polyester resin, polyurethane resin, polyamide resin, polyether, phenol resin, silicone resin, polyurea resin, amino resin, polyamine such as polyethyleneimine and polyallylamine, epoxy resin, and polyimide. You can do it.
  • DISPERBYK registered trademark. The same shall apply hereinafter
  • DISPERBYK-161 "DISPERBYK-162”
  • DISPERBYK-163 "DISPERBYK-164"
  • DISPERBYK-166 manufactured by Big Chemie.
  • PB821 “ Ajispar PB822 ”,“ Ajisper PB881 ”,“ PN411 ”and“ PA111 ”; Evonik's“ TEGO (registered trademark. "TEGO Dispers 670”, “TEGO Dispers 685", “TEGO Dispers 700”, “TEGO Dispers 710” and “TEGO Dispers 760W”; And “DA-725" can be used.
  • polymer dispersant examples include, for example, a cationic monomer containing a basic group and / or an anionic monomer having an acidic group, a monomer having a hydrophobic group, and if necessary, other than the commercially available products as described above.
  • a polymer dispersant synthesized by copolymerizing with a monomer nonionic monomer, a monomer having a hydrophilic group, etc.
  • the cationic monomer, the anionic monomer, the monomer having a hydrophobic group and other monomers for example, the monomers described in paragraphs [0034] to [0036] of Japanese Patent Application Laid-Open No. 2004-250502 can be mentioned. can.
  • polymer dispersant examples include a compound obtained by reacting a polyester compound with a polyalkyleneimine described in Japanese Patent Application Laid-Open No. 54-37082 and Japanese Patent Application Laid-Open No. 61-174939, and Japanese Patent Application Laid-Open No. 9 -A compound in which the amino group of the side chain of polyallylamine described in JP-A-169821 is modified with polyester, a graft polymer containing a polyester-type macromonomer described in JP-A-9-171253, Japan as a copolymerization component, Japan.
  • Preferable examples thereof include the polyester polyol-added polyurethane described in JP-A-60-166318.
  • the weight average molecular weight of the polymer dispersant is preferably 750 or more, more preferably 1000 or more, from the viewpoint of being able to satisfactorily disperse light-scattering particles and further improving the effect of improving external quantum efficiency. 2000 or more is more preferable, and 3000 or more is particularly preferable. Light-scattering particles can be dispersed well, the effect of improving external quantum efficiency can be further improved, and the viscosity suitable for a known coating method, particularly the viscosity of ink for an inkjet method, can be ejected and is stable. From the viewpoint of obtaining a viscosity suitable for ejection, 100,000 or less is preferable, 50,000 or less is more preferable, and 30,000 or less is further preferable.
  • the weight average molecular weight of the polymer dispersant is preferably 750 to 100,000, more preferably 1,000 to 100,000, further preferably 2,000 to 50,000, and particularly preferably 3,000 to 30,000.
  • the content ratio of the polymer dispersant is 0 with respect to 100 parts by mass of the light-scattering particles from the viewpoint of the dispersibility of the light-scattering particles. .5 parts by mass or more is preferable, 2 parts by mass or more is more preferable, and 5 parts by mass or more is further preferable. Further, from the viewpoint of moist heat stability of the pixel portion (cured product of the semiconductor nanoparticles-containing composition), 50 parts by mass or less is preferable, and 30 parts by mass or less is more preferable with respect to 100 parts by mass of the light scattering particles. More preferably, it is by mass or less. The above upper and lower limits can be combined arbitrarily.
  • the content ratio of the polymer dispersant is preferably 0.5 to 50 parts by mass, more preferably 2 to 30 parts by mass, and even more preferably 5 to 10 parts by mass with respect to 100 parts by mass of the light scattering particles.
  • the sensitizer means a component capable of initiating a polymerization reaction by absorbing light having a wavelength longer than that absorbed by the photopolymerization initiator and transferring the absorbed energy to the photopolymerization initiator.
  • a sensitizer for example, h-rays that are relatively unabsorbed by semiconductor nanoparticles tend to be available as wavelengths during curing.
  • amines that do not cause an addition reaction with the (meth) acrylate compound (D) can be used.
  • sensitizer examples include trimethylamine, methyldimethylamine, triethanolamine, p-diethylaminoacetophenone, ethyl p-dimethylaminobenzoate, isoamyl p-dimethylaminobenzoate, N, N-dimethylbenzylamine, 4, Examples thereof include 4'-bis (diethylamino) benzophenone.
  • the semiconductor nanoparticle-containing composition of the present invention may contain a solvent from the viewpoint of coatability and handleability.
  • the solvent include ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol dibutyl ether, diethyl adipate, dibutyl oxalate, dimethyl malonate, diethyl malonate, dimethyl succinate, and diethyl succinate.
  • the boiling point of the solvent is preferably 50 ° C. or higher from the viewpoint of suitability for a known coating method, and particularly preferably 180 ° C. or higher from the viewpoint of continuous ejection stability of ink for an inkjet method.
  • the boiling point of the solvent should be 300 ° C. or lower from the viewpoint of easy removal of the solvent. Is preferable.
  • the above upper and lower limits can be combined arbitrarily.
  • the boiling point of the solvent is preferably 50 to 300 ° C, more preferably 180 to 300 ° C.
  • the content ratio thereof is not particularly limited, but 0.001% by mass or more is preferable, and 0.01% by mass or more is more preferable in the semiconductor nanoparticles-containing composition. , 0.1% by mass or more is further preferable, 1% by mass or more is further preferable, 10% by mass or more is further preferable, 20% by mass or more is still more preferable, and 30% by mass or more is particularly preferable. Further, 90% by mass or less is preferable, 80% by mass or less is more preferable, and 70% by mass or less is further preferable.
  • the viscosity of the composition tends to be reduced, and the suitability for a known coating method, particularly the ejection of an inkjet, tends to be facilitated.
  • the suitability for a known coating method particularly the thickness of the film after discharging and removing the solvent becomes thicker, and a film containing more semiconductor nanoparticles can be formed, thereby emitting light. There is a tendency to obtain a pixel portion having high intensity.
  • the above upper and lower limits can be combined arbitrarily.
  • the content ratio of the solvent is preferably 0.001 to 90% by mass, more preferably 0.01 to 90% by mass, still more preferably 0.1 to 90% by mass in the semiconductor nanoparticles-containing composition. It is even more preferably ⁇ 90% by mass, more preferably 10 to 90% by mass, even more preferably 20 to 80% by mass, and particularly preferably 30 to 70% by mass.
  • the semiconductor nanoparticles-containing composition of the present invention it is also possible to disperse light-scattering particles and semiconductor nanoparticles without a solvent by using a (meth) acrylate compound that functions as a dispersion medium. In this case, there is an advantage that the step of removing the solvent by drying when forming the pixel portion becomes unnecessary.
  • the viscosity of the semiconductor nanoparticle-containing composition of the present invention at 40 ° C. is not particularly limited, but for example, suitability for a known coating method, particularly ejection stability during inkjet printing. From the viewpoint, 2 mPa ⁇ s or more is preferable, 5 mPa ⁇ s or more is more preferable, 7 mPa ⁇ s or more is further preferable, 20 mPa ⁇ s or less is preferable, 15 mPa ⁇ s or less is more preferable, and 12 mPa ⁇ s or less is further preferable. ..
  • the viscosity of the semiconductor nanoparticles-containing composition is measured by an E-type viscometer.
  • the above upper and lower limits can be combined arbitrarily.
  • the viscosity of the semiconductor nanoparticle-containing composition of the present invention at 40 ° C. is preferably 2 to 20 mPa ⁇ s, more preferably 5 to 15 mPa ⁇ s, and even more preferably 7 to 12 mPa ⁇ s.
  • the viscosity of the semiconductor nanoparticle-containing composition of the present invention at 23 ° C. is not particularly limited, but for example, from the viewpoint of suitability for a known coating method, particularly ejection stability during inkjet printing, 5 mPa ⁇ s or more is preferable, and 10 mPa. -S or more is more preferable, 15 mPa ⁇ s or more is further preferable, 40 mPa ⁇ s or less is preferable, 35 mPa ⁇ s or less is more preferable, 30 mPa ⁇ s or less is further preferable, and 25 mPa ⁇ s or less is particularly preferable.
  • the above upper and lower limits can be combined arbitrarily.
  • the viscosity of the semiconductor nanoparticle-containing composition of the present invention at 23 ° C. is preferably 5 to 40 mPa ⁇ s, more preferably 5 to 35 mPa ⁇ s, further preferably 10 to 30 mPa ⁇ s, and 15 to 25 mPa ⁇ s. Especially preferable.
  • the surface tension of the semiconductor nanoparticle-containing composition of the present invention is not particularly limited, but is preferably a surface tension suitable for a known coating method, particularly a surface tension suitable for an inkjet method, and is in the range of 20 to 40 mN / m. Is preferable, and 25 to 35 mN / m is more preferable.
  • the flight bending means that when the semiconductor nanoparticles-containing composition is ejected from the ink ejection holes, the landing position of the semiconductor nanoparticles-containing composition deviates from the target position by 30 ⁇ m or more.
  • the semiconductor nanoparticles-containing composition includes, for example, semiconductor nanoparticles (A), (meth) acrylate compound (D) and a fluorescent dye (C), and if necessary, a ligand.
  • the step of mixing the (B) and the polymerization initiator (E) so that the content of the semiconductor nanoparticles (A) is 5 to 50% by mass in the total solid content of the semiconductor nanoparticles-containing composition is included. It can be manufactured by the method.
  • a semiconductor nanoparticle-containing composition can be obtained by mixing the constituents of the semiconductor nanoparticle-containing composition.
  • the semiconductor nanoparticles-containing composition contains light-scattering particles
  • the semiconductor nanoparticles-containing composition is required to include, for example, the semiconductor nanoparticles (A), the (meth) acrylate compound (D) and the fluorescent dye (C).
  • a step of preparing a semiconductor nanoparticle dispersion containing a ligand (B), and a light scattering particle dispersion containing a light scattering particle and, if necessary, a (meth) acrylate compound (D) are prepared. It can be produced by a method including a step and a step of mixing a semiconductor nanoparticle dispersion and a light scattering particle dispersion.
  • the polymerization initiator (E) When the polymerization initiator (E) is used in this production method, the polymerization initiator (E) is blended so as to be contained in a mixture obtained by mixing a semiconductor nanoparticle dispersion and a light-scattering particle dispersion. Just do it. Therefore, the polymerization initiator (E) may be contained in one or both of the semiconductor nanoparticles dispersion and the light-scattering particle dispersion, and the semiconductor nanoparticles dispersion, the light-scattering particle dispersion, and the polymerization initiator ( When mixed with E), the polymerization initiator (E) may not be contained in either the semiconductor nanoparticle dispersion or the light-scattering particle dispersion.
  • the semiconductor nanoparticles (A) and the light-scattering particles in the (meth) acrylate compound (D) before mixing them with each other the semiconductor nanoparticles (A) and the light-scattering particles are mixed. It can be sufficiently dispersed, and there is a tendency that excellent ejection stability and excellent external quantum efficiency can be easily obtained.
  • the semiconductor nanoparticles dispersion is prepared by mixing the semiconductor nanoparticles (A), the ligand (B) and the fluorescent dye (C) with the (meth) acrylate compound (D). May be prepared.
  • the semiconductor nanoparticles (A) may have the ligand (B) adsorbed on its surface in advance.
  • the mixing process may be performed using an apparatus such as a paint conditioner, a planetary stirrer, a stirrer, an ultrasonic disperser, and a mix rotor.
  • a stirrer an ultrasonic disperser, or a mix rotor from the viewpoint that the dispersibility of the semiconductor nanoparticles (A), the ligand (B) and the fluorescent dye (C) is good and high optical characteristics can be obtained.
  • the light-scattering particle dispersion may be prepared by mixing the light-scattering particles and the (meth) acrylate compound (D) and performing a dispersion treatment.
  • the mixing and dispersion treatment may be performed using the same apparatus as in the step of preparing the semiconductor nanoparticle dispersion. It is preferable to use a bead mill or a paint conditioner from the viewpoint that the dispersibility of the light-scattering particles is good and the average particle size of the light-scattering particles can be easily adjusted to a desired range.
  • the polymer dispersant may be further mixed. That is, the light-scattering particle dispersion may further contain a polymer dispersant.
  • semiconductor nanoparticles A
  • ligand B
  • fluorescent dye C
  • light scattering particles D
  • a polymerization initiator E
  • components other than the polymer dispersant eg, sensitizers, solvents
  • the other components may be contained in the semiconductor nanoparticle dispersion or may be contained in the light-scattering particle dispersion.
  • other components may be mixed with a composition obtained by mixing a semiconductor nanoparticle dispersion and a light-scattering particle dispersion.
  • the wavelength conversion layer of the present invention is a layer obtained by curing the semiconductor nanoparticles-containing composition of the present invention, and is at least semiconductor nanoparticles (A) and (meth) acrylate compound (D). , And a layer containing the fluorescent dye (C) and converting the wavelength of light from the excitation source.
  • the form of the wavelength conversion layer is not particularly limited, and may be, for example, a sheet shape or an arbitrary shape such as a patterned bar shape like the pixel portion of a color filter described later.
  • the color filter of the present invention has a pixel portion obtained by curing the semiconductor nanoparticles-containing composition of the present invention.
  • the details of the color filter of the present invention will be described with reference to the drawings. In the following description, the same reference numerals will be used for the same or equivalent elements, and duplicate description will be omitted.
  • FIG. 1 is a schematic cross-sectional view of the color filter of one embodiment.
  • the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40.
  • the optical conversion layer 30 includes a plurality of pixel units 10 (first pixel unit 10a, second pixel unit 10b, and third pixel unit 10c) and a light-shielding unit 20.
  • the optical conversion layer 30 has a first pixel unit 10a, a second pixel unit 10b, and a third pixel unit 10c as the pixel unit 10.
  • the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c are arranged in a grid pattern so as to repeat in this order.
  • the light-shielding portion 20 is located between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and the third. It is provided between the pixel portion 10c of the above and the first pixel portion 10a. In other words, these adjacent pixel portions are separated from each other by the light-shielding portion 20.
  • the first pixel portion 10a and the second pixel portion 10b each include a cured product of the semiconductor nanoparticles-containing composition of the present invention described above.
  • the cured product contains semiconductor nanoparticles and fluorescent dyes in which a ligand is adsorbed on at least a part of the surface thereof, light-scattering particles, and a cured component.
  • the curing component is a cured product of the (meth) acrylate compound, and specifically, a cured product obtained by polymerization of the (meth) acrylate compound.
  • the first pixel portion 10a the first curing component 13a, the first semiconductor nanoparticles 11a dispersed in the first curing component 13a, the first light scattering particles 12a, and the first Includes the fluorescent dye 14a of.
  • the second pixel portion 10b the second curing component 13b, the second semiconductor nanoparticles 11b and the second light scattering particles 12b dispersed in the second curing component 13b, respectively, and the second Includes 2 fluorescent dyes 14b.
  • the first curing component 13a and the second curing component 13b may be the same or different, and may be the same as or different from the first light scattering particles 12a.
  • the second light-scattering particles 12b may be the same or different, and the first fluorescent dye 14a and the second fluorescent dye 14b may be the same or different.
  • the first semiconductor nanoparticles 11a are red light emitting semiconductor nanoparticles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having a emission peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 10a may be paraphrased as a red pixel portion for converting blue light into red light.
  • the second semiconductor nanoparticles 11b are green light emitting semiconductor nanoparticles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having a emission peak wavelength in the range of 500 to 560 nm.
  • the second pixel portion 10b may be paraphrased as a green pixel portion for converting blue light into green light.
  • the third pixel portion 10c has a transmittance of 30% or more with respect to light having a wavelength in the range of 420 to 480 nm.
  • the third pixel portion 10c functions as a blue pixel portion when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
  • the third pixel portion 10c contains, for example, a cured product of the composition containing the above-mentioned (meth) acrylate compound.
  • the cured product contains a third cured component 13c.
  • the third curing component 13c is a cured product of the (meth) acrylate compound, and is a cured product obtained by polymerization of the (meth) acrylate compound.
  • the third pixel portion 10c contains a third curing component 13c.
  • the composition containing the (meth) acrylate compound is described above as long as the transmittance for light having a wavelength in the range of 420 to 480 nm is 30% or more.
  • the components contained in the semiconductor nanoparticles-containing composition components other than the (meth) acrylate compound may be further contained.
  • the transmittance of the third pixel portion 10c can be measured by a microspectroscopy device.
  • the thickness of the pixel portion is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and further preferably 3 ⁇ m or more, for example. preferable.
  • the thickness of the pixel portion (first pixel portion 10a, second pixel portion 10b, and third pixel portion 10c) is, for example, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 15 ⁇ m or less.
  • the above upper and lower limits can be combined arbitrarily.
  • the thickness of the pixel portion is preferably 1 to 30 ⁇ m, more preferably 2 to 20 ⁇ m, still more preferably 3 to 15 ⁇ m.
  • the light-shielding portion 20 is a so-called black matrix provided for the purpose of separating adjacent pixel portions to prevent color mixing and for the purpose of preventing light leakage from a light source.
  • the material constituting the light-shielding portion 20 is not particularly limited, and for example, a resin composition containing a metal such as chromium and light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in a binder polymer. Can be used as a cured product of.
  • the binder polymer used here includes one or a mixture of one or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, and cellulose, photosensitive resin, and O / W.
  • An emulsion-type resin composition (for example, an emulsion of reactive silicone) can be used.
  • the thickness of the light-shielding portion 20 is preferably, for example, 0.5 ⁇ m to 10 ⁇ m.
  • the base material 40 is a transparent base material having light transmission, and is, for example, a transparent glass substrate such as quartz glass, Pylex (registered trademark) glass, a synthetic quartz plate, a transparent resin film, an optical resin film, or the like.
  • a flexible substrate can be used.
  • a glass substrate made of non-alkali glass that does not contain an alkaline component in the glass.
  • the color filter 100 provided with the above optical conversion layer 30 is preferably used when an excitation light source that emits light having a wavelength in the range of 420 to 480 nm is used.
  • the wavelength range of light emitted by the excitation light source is not limited to the above range.
  • the excited energy of the fluorescent dye (C) is transferred to the semiconductor nanoparticles (A) by Felster-type energy transfer, and the emission intensity of the semiconductor nanoparticles (A) is increased. Any light in the wavelength range that can be absorbed by the fluorescent dye (C) may be used as excitation light.
  • the above-mentioned semiconductor nanoparticles-containing composition is formed in the pixel portion-forming region partitioned by the light-shielding portion 20 on the base material 40. It can be produced by a method of selectively adhering by an inkjet method and curing a semiconductor nanoparticle-containing composition by irradiation with active energy rays.
  • a resin composition containing a metal thin film such as chromium or light-shielding particles in a region serving as a boundary between a plurality of pixel portions on one surface side of the base material 40 for example, a resin composition containing a metal thin film such as chromium or light-shielding particles in a region serving as a boundary between a plurality of pixel portions on one surface side of the base material 40.
  • a method of forming a thin film and patterning the thin film include a method of forming a thin film and patterning the thin film.
  • the metal thin film can be formed by, for example, a sputtering method or a vacuum vapor deposition method, and the thin film of the resin composition containing the light-shielding particles can be formed by, for example, coating or printing.
  • the method for patterning include a photolithography method.
  • Examples of the inkjet method include a bubble jet (registered trademark) method using an electric heat converter as an energy generating element and a piezojet method using a piezoelectric element.
  • the semiconductor nanoparticles-containing composition is cured by irradiation with active energy rays (for example, ultraviolet rays), for example, a mercury lamp, a metal halide lamp, a xenon lamp, or an LED may be used.
  • active energy rays for example, ultraviolet rays
  • the wavelength of the light to be irradiated may be, for example, 200 nm or more, or 440 nm or less.
  • the exposure amount is preferably, for example, 10 to 4000 mJ / cm 2 .
  • a drying treatment is performed to volatilize the solvent.
  • the drying treatment include vacuum drying and heat drying.
  • the drying temperature for volatilizing the solvent may be, for example, 50 to 150 ° C.
  • the drying time may be, for example, 3. It may be up to 30 minutes.
  • the image display device of the present invention has the color filter of the present invention.
  • the image display device include a liquid crystal display device and an image display device including an organic electroluminescent element.
  • the liquid crystal display device include a light source provided with a blue LED and a liquid crystal layer including an electrode for controlling blue light emitted from the light source for each pixel portion.
  • the image display device including the organic electroluminescent element include an image display device in which an organic electroluminescent element that emits blue light is arranged at a position corresponding to each pixel portion of the color filter.
  • Ligand E-1 A compound having a carboxy group and a polyethylene glycol chain having a molecular weight of about 400.
  • the fluorescent dye C-1 was synthesized by the method described below. Under a nitrogen atmosphere, compound 1 represented by the following chemical formula, that is, bromonaphthalic anhydride (1 part by mass) and ethanol (8 parts by mass) are mixed, and 2-ethylhexylamine (0.51 part by mass, 1.1 equivalent) is mixed therein. ) was dropped. This was reacted at reflux temperature for 5 hours and cooled to room temperature over 1 hour. The precipitated solid was collected by filtration and washed with ethanol (3 parts by mass). The solid was dried under reduced pressure to give compound 2 in 87% yield.
  • compound 1 represented by the following chemical formula, that is, bromonaphthalic anhydride (1 part by mass) and ethanol (8 parts by mass) are mixed, and 2-ethylhexylamine (0.51 part by mass, 1.1 equivalent) is mixed therein. ) was dropped. This was reacted at reflux temperature for 5 hours and cooled to room temperature over 1 hour. The precipitated solid was collected by filtration and washed with ethanol
  • the particles were added and stirred with a vortex mixer to precipitate the semiconductor nanoparticles. Further, the precipitate and the supernatant were separated by a centrifugation device, the supernatant was dried, and the amount of the fluorescent dye contained in the residue was 1H-NMR. At this time, if the amount of the fluorescent dye contained in the supernatant was 50% by mass or less, it was judged that a linking action to the semiconductor nanoparticles was generated. When normal heptane was added, it was determined. It was confirmed in advance that the fluorescent dye to be added was dissolved in the mixed solution of butyl acetate and normal heptane so that the fluorescent dye not linked to the semiconductor nanoparticles would not precipitate.
  • Fluorescent dye C-1 88% by mass was precipitated (coordinated to semiconductor nanoparticles) and 12% by mass was contained in the supernatant (not distributed to semiconductor nanoparticles) with respect to the total amount of mixed fluorescent dye C-1. Place).
  • Fluorescent dye C-2 47% by mass was precipitated (coordinated to semiconductor nanoparticles) and 53% by mass was contained in the supernatant (not distributed to semiconductor nanoparticles) with respect to the total amount of mixed fluorescent dye C-1. Place).
  • a container was filled with 22 parts by mass and 20 parts by mass of zirconia beads having a diameter of 0.3 mm and dispersed in a paint shaker for 6 hours. After the dispersion was completed, the beads and the dispersion were separated by a filter to prepare a light-scattering particle dispersion.
  • the average particle diameter (volume average diameter) of the light scattering particles in the light scattering particle dispersion was 0.11 ⁇ m.
  • Example 1 InP / ZnSeS / ZnS semiconductor nanoparticles (maximum emission wavelength in the range of 300 to 780 nm: 630 nm (excitation at wavelength 445 nm) 10 parts by mass, ligand E-1 3.3 parts by mass, (meth) acrylate compound D-1 After adding 50 parts by mass of the (meth) acrylate compound D-1 and 1 part by mass of the fluorescent dye C-1 to the semiconductor nanoparticle dispersion liquid 1 containing 12 parts by mass, 24 parts by mass of the light-scattering particle dispersion liquid is added. Then, the mixture was mixed with a vortex mixer to obtain the desired composition 1.
  • Example 1 and Comparative Examples 1 to 7 were carried out as follows. After each composition was placed in a glass cell having a gap of 4 ⁇ m (S-0088-4-NW manufactured by Sun Trading Co., Ltd.), the glass cell was placed in an integrating sphere, and a laser diode having a wavelength of 445 nm (Audio Technica) was placed. The sample was irradiated with a light source (SU-61C-445-50) manufactured by Spectracorp, and the emission spectrum was measured using a spectroscopic measuring device (Solid Lambda CCD UV-NIR manufactured by Spectracorp).
  • Table 2 shows the relative values of the emission intensity (wavelength 630 nm) of each composition when Comparative Example 1 is 1.00, and the results of the maximum emission wavelength (wavelength 300 to 780 nm) of each composition.
  • Table 3 shows the relative values of the emission intensity (wavelength 630 nm) of each composition when Comparative Example 6 is 1.00, and the results of the maximum emission wavelength (wavelength 300 to 780 nm) of each composition. ..
  • Example 2 To the semiconductor nanoparticle dispersion liquid 1 of Example 1, 48 parts by mass of the (meth) acrylate compound D-1 was added, 0.5 part by mass of the photopolymerization initiator 1 was added, and the antioxidant 1 and the antioxidant 2 were added, respectively. After adding 0.75 parts by mass each and further adding 1 part by mass of the fluorescent dye C-1, 24 parts by mass of the light-scattering particle dispersion was added and mixed with a vortex mixer to obtain the desired composition 9. ..
  • Comparative Example 10 The same procedure as in Comparative Example 9 was carried out except that the fluorescent dye C-2 was used instead of the fluorescent dye C-1, and the desired composition 12 was obtained.
  • Example 2 and Comparative Examples 8 to 14 were carried out as follows. Using each composition, a coating film having a thickness of about 10 ⁇ m was prepared on a glass substrate with a spin coater, and in a nitrogen glove box, an LED light irradiator with a peak wavelength of 405 nm had an irradiation intensity of 4 mJ / cm 2 and an integrated light amount of 120 mJ. By irradiating at / cm 2 , a cured film was obtained for Example 2 and Comparative Examples 8 to 11. For Comparative Examples 12 to 14, the composition did not cure and a cured film could not be obtained.
  • the obtained cured film was placed in an integrating sphere, and the sample was irradiated with a laser diode (SU-61C-445-50 manufactured by Audiotechnica) having a wavelength of 445 nm as a light source, and a spectroscopic measuring device (Solid Lambda manufactured by Spectracorp) was used.
  • the emission spectrum was measured using a CCD UV-NIR).
  • the light in the integrating sphere was guided to the spectroscopic measuring device using an optical fiber.
  • Table 4 shows the relative values of the emission intensity (wavelength 630 nm) of each cured film when Comparative Example 8 is 1.00, and the results of the maximum emission wavelength (wavelength 300 to 780 nm) of each cured film.
  • the maximum emission wavelength in the range of 300 nm to 780 nm is in the range of 500 to 670 nm, the fluorescent dye having a substituent having an action of linking to the semiconductor nanoparticles, and the (meth) acrylate compound.
  • Example 1 contains the semiconductor nanoparticles or the composition containing the fluorescent dye alone (Comparative Examples 1 and 2), or a substituent having an action of linking to the semiconductor nanoparticles.
  • the emission intensity at a wavelength of 630 nm was large.
  • semiconductor nanoparticles having a maximum emission wavelength in the range of 500 to 670 nm in the range of 300 nm to 780 nm, fluorescent dyes having a substituent having an action of linking to the semiconductor nanoparticles, and (meth) acrylate compounds are constant.
  • the cured film containing the above (Example 2) has a cured film containing the semiconductor nanoparticles or the fluorescent dye alone (Comparative Examples 8 and 9) and a substituent having an action of linking to the semiconductor nanoparticles.
  • the emission intensity at a wavelength of 630 nm was higher than that of the cured film using no fluorescent dye (Comparative Examples 10 and 11).
  • the compositions containing chloroform as a solvent did not cure, and a cured film could not be obtained.
  • the reason why the emission intensity of the semiconductor nanoparticles is increased in Examples 1 and 2 is that the excited energy of the fluorescent dye C-1 is transferred to the semiconductor nanoparticles by Felster-type energy transfer. Be done.
  • the following three points can be cited as reasons why Felster-type energy transfer is likely to occur particularly in the fluorescent dye C-1.
  • the sulfanyl group of the fluorescent dye is coordinated to the surface of the semiconductor nanoparticles, and the distance between the fluorescent dye and the semiconductor nanoparticles is close.
  • the fluorescent dye since the fluorescent dye has low solubility in the (meth) acrylate compound, the state in which the fluorescent dye is coordinated with the surface of the semiconductor nanoparticles is stable in the presence of the (meth) acrylate compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Luminescent Compositions (AREA)

Abstract

励起光を効率よく波長変換し、十分な発光強度を示す波長変換層を形成することが可能な半導体ナノ粒子含有組成物を提供する。半導体ナノ粒子(A)、(メタ)アクリレート化合物(D)、及び蛍光色素(C)を含有する半導体ナノ粒子含有組成物であって、前記半導体ナノ粒子(A)は、波長300~780nmの範囲における最大発光波長が500~670nmの範囲内にあり、前記蛍光色素(C)は、前記半導体ナノ粒子(A)へ連結する作用を生じる置換基を有し、前記半導体ナノ粒子含有組成物中の前記(メタ)アクリレート化合物(D)の含有量は、20質量%以上であることを特徴とする。

Description

半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置
 本発明は、半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置に関する。
 本願は、2020年8月31日に日本に出願された特願2020-145534号、及び2020年12月28日に日本に出願された特願2020-218441号に基づき優先権を主張し、その内容をここに援用する。
 液晶表示装置等のディスプレイは、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっているが、近年では、さらなる省電力化や色再現性向上が求められている。
 このような背景から、光利用効率を高め、色再現性を向上するために入射光の波長を変換して発光する量子ドット、量子ロッド、その他の無機蛍光体粒子等の半導体ナノ粒子を発光材料として含んだ波長変換層を利用することが提案されている。
 一般に、このような量子ドット等の半導体ナノ粒子は樹脂等の中に分散されて、例えば波長変換を行う波長変換フィルムとして、又は波長変換型のカラーフィルタ画素部として用いられる。
 従来、液晶表示装置等のディスプレイにおけるカラーフィルタ画素部は、例えば、顔料と、アルカリ可溶性樹脂及び/又はアクリル系単量体とを含有する硬化性レジスト材料を用いて、フォトリソグラフィ法により製造されてきた。
 しかしながら、上記フォトリソグラフィ法によるカラーフィルタの製造方法を応用して波長変換型のカラーフィルタ画素部を形成しようとすると、現像工程において、半導体ナノ粒子を含むレジスト材料の大部分が失われるという欠点があった。そのため、インクジェット法により波長変換型のカラーフィルタ画素部を形成することも検討されている(特許文献1)。
 一方、半導体ナノ粒子の発光効率(量子効率)を高めるため、溶媒中における半導体ナノ粒子及び蛍光色素の併用が検討されている(非特許文献1)。
日本国特開2019-85537号公報
Chem. Phys. Chem.、2010年、11巻、3167頁-3171頁
 本発明者らの検討により、半導体ナノ粒子は励起波長域での吸光度が低いため、半導体ナノ粒子含有組成物を用いて作製される波長変換層をディスプレイに用いる場合に、十分な発光強度が得られないという問題があることが見出された。具体的には、特許文献1に開示されている半導体ナノ粒子含有組成物を用いて形成された波長変換型のカラーフィルタの画素部では、赤色や緑色を含む所望の画素で十分な発光強度が得られないという問題があることが見出された。
 非特許文献1に記載されている、溶媒中における半導体ナノ粒子と蛍光色素と併用系では、発光強度が十分でないという問題があることが見出された。
 本発明は、励起光を効率よく波長変換し、十分な発光強度を示す波長変換層を形成することが可能な半導体ナノ粒子含有組成物、該組成物を硬化させた画素部を有するカラーフィルタ、及び該カラーフィルタを有する画像表示装置を提供することを目的とする。
 本発明者らが鋭意検討を行った結果、特定の半導体ナノ粒子、蛍光色素及び(メタ)アクリレート化合物を併用することで、上記課題を解決しうることを見出し、本発明を完成するに至った。
 本発明の要旨は以下のとおりである。
[1]半導体ナノ粒子(A)、(メタ)アクリレート化合物(D)、及び蛍光色素(C)を含有する半導体ナノ粒子含有組成物であって、
 前記半導体ナノ粒子(A)は、波長300~780nmの範囲における最大発光波長が500~670nmの範囲内にあり、
 前記蛍光色素(C)は、前記半導体ナノ粒子(A)へ連結する作用を生じる置換基を有し、
 前記半導体ナノ粒子含有組成物中の前記(メタ)アクリレート化合物(D)の含有量は、20質量%以上である半導体ナノ粒子含有組成物。
[2]半導体ナノ粒子(A)、(メタ)アクリレート化合物(D)、及び蛍光色素(C)を含有する半導体ナノ粒子含有組成物であって、
 前記半導体ナノ粒子(A)は、波長300~780nmの範囲における最大発光波長が500~670nmの範囲内にあり、
 前記蛍光色素(C)は、前記半導体ナノ粒子(A)へ連結する作用を生じる置換基を有するインクジェット方式用半導体ナノ粒子含有組成物。
[3]前記連結する作用を生じる置換基は、スルファニル基又はその塩、酸基又はその塩、アミノ基又はその塩、リン酸エステル基又はその塩、ホスファントリイル基、あるいはホスホリル基である[1]又は[2]に記載の半導体ナノ粒子含有組成物。
[4]前記酸基又はその塩は、カルボキシ基又はその塩、スルホ基又はその塩、あるいはホスホノ基又はその塩である[3]に記載の半導体ナノ粒子含有組成物。
[5]さらに重合開始剤(E)を含有する[1]~[4]のいずれか1つに記載の半導体ナノ粒子含有組成物。
[6]さらにリガンド(B)を含有する[1]~[5]のいずれか1つに記載の半導体ナノ粒子含有組成物。
[7]さらに光散乱性粒子を含有する[1]~[6]のいずれか1つに記載の半導体ナノ粒子含有組成物。
[8][1]~[7]のいずれか1つに記載の半導体ナノ粒子含有組成物を硬化させた画素部を有するカラーフィルタ。
[9][8]に記載のカラーフィルタを有する画像表示装置。
 本発明によれば、励起光を効率よく波長変換し、十分な発光強度を示す波長変換層を形成することが可能な半導体ナノ粒子含有組成物を提供することができる。さらに、本発明の組成物を硬化させた画素部を有するカラーフィルタ、及び本発明のカラーフィルタを有する画像表示装置を提供することができる。
図1は、本発明のカラーフィルタの模式断面図である。
 以下、本発明を詳細に説明する。以下の記載は本発明の実施形態の一例であり、本発明はその要旨を超えない限り、これらに特定されない。
 本発明において、「(メタ)アクリル」とは、「アクリル及び/又はメタクリル」を意味するものとする。
 「全固形分」とは、半導体ナノ粒子含有組成物における溶剤以外の全成分を意味するものとし、半導体ナノ粒子含有組成物が溶剤を含まない場合には半導体ナノ粒子含有組成物の全成分を意味する。溶剤以外の成分が常温で液体であっても、その成分は溶剤には含めず、全固形分に含める。
 本発明において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。「A及び/又はB」とは、A及びBの一方又は両方を意味し、A、B、又はA及びBを意味する。
 本発明において、重量平均分子量とは、GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算の重量平均分子量(Mw)をさす。
 本発明の半導体ナノ粒子含有組成物は、波長変換層の製造に広く用いることができ、本発明の半導体ナノ粒子含有組成物を用いた波長変換層はディスプレイに用いられることが適している。本発明の半導体ナノ粒子含有組成物を用いた波長変換層が波長変換シートである場合には、波長変換層はフィルムの中に含まれていてもよく、フィルム表面に公知の方法で塗布されていてもよく、フィルムとフィルムの間に存在していてもよい。
 本発明の半導体ナノ粒子含有組成物は、公知慣用のカラーフィルタの製造方法に用いるインクとして適用が可能であるが、比較的高価である半導体ナノ粒子等の材料を無駄に消費せずに、必要な箇所に必要な量を用いて画素部(波長変換層)を形成できる点で、インクジェット方式用に適合するように調製して用いることが好ましい。すなわち、本発明の半導体ナノ粒子含有組成物は、インクジェット方式で画素部を形成する用途に好適である。
[1]半導体ナノ粒子含有組成物
 本発明の半導体ナノ粒子含有組成物は、半導体ナノ粒子(A)、(メタ)アクリレート化合物(D)、及び蛍光色素(C)を含有する半導体ナノ粒子含有組成物であって、前記半導体ナノ粒子(A)は、波長300~780nmの範囲における最大発光波長が500~670nmの範囲内にあり、前記蛍光色素(C)は、前記半導体ナノ粒子(A)へ連結する作用を生じる置換基を有し、前記半導体ナノ粒子含有組成物中の前記(メタ)アクリレート化合物(D)の含有量は、20質量%以上である。
[1-1]半導体ナノ粒子(A)
 本発明の半導体ナノ粒子含有組成物は、波長300~780nmの範囲における最大発光波長(以下、特に断りがない限り「最大発光波長」とは、波長300~780nmの範囲における最大発光波長を意味する。)が500~670nmの範囲内にある半導体ナノ粒子(A)(以下、「半導体ナノ粒子(A)」と称する場合がある。)を含有する。
 半導体ナノ粒子は、励起光を吸収して蛍光又は燐光を発光するナノサイズの粒子であり、例えば、透過型電子顕微鏡又は走査型電子顕微鏡によって測定される最大粒子径が100nm以下である粒子である。
 半導体ナノ粒子は、例えば、所定の波長の光を吸収することにより、吸収した波長とは異なる波長の光(蛍光又は燐光)を発することができる。
 半導体ナノ粒子(A)の最大発光波長は500~670nmの範囲内に存在する。半導体ナノ粒子(A)は赤色光を発する赤色発光性の半導体ナノ粒子(赤色半導体ナノ粒子)であってよく、緑色光を発する緑色発光性の半導体ナノ粒子(緑色半導体ナノ粒子)であってよい。半導体ナノ粒子(A)は、赤色半導体ナノ粒子及び/又は緑色半導体ナノ粒子であることが好ましい。
 半導体ナノ粒子が吸収する光は、特に限定されないが、例えば、400~500nmの範囲の波長の光(青色光)、及び/又は200~400nmの範囲の波長の光(紫外光)であってよい。
 一般的に、半導体ナノ粒子は最大発光波長より短波長の領域に広く吸収を有する。例えば最大発光波長が530nmの場合、530nm付近を裾として300~530nmの波長領域に広く吸収帯を有し、最大発光波長が630nmの場合、630nm付近を裾として300~630nmの波長領域に広く吸収帯を有する。半導体ナノ粒子(A)の最大発光波長は、例えば、分光蛍光光度計を用いて測定される蛍光スペクトル又は燐光スペクトルにおいて確認することができ、励起波長450nm、吸収率20~50%の条件で測定を行うことが好ましい。
 半導体ナノ粒子(A)として赤色半導体ナノ粒子を含む場合、その最大発光波長は605nm以上が好ましく、610nm以上がより好ましく、615nm以上がさらに好ましく、620nm以上がよりさらに好ましく、625nm以上が特に好ましく、665nm以下が好ましく、655nm以下がより好ましく、645nm以下がさらに好ましく、640nm以下がよりさらに好ましく、635nm以下が特に好ましく、630nm以下が最も好ましい。前記下限値以上とすることで赤色の色域が拡大し、ディスプレイとしてより豊かな色彩を表現できる傾向がある。前記上限値以下とすることで、視感度の関係からより明るい赤色を表現できる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、半導体ナノ粒子(A)の最大発光波長は、605~665nmが好ましく、605~655nmがより好ましく、610~645nmがさらに好ましく、615~640nmがよりさらに好ましく、620~635nmがことさら好ましく、625~630nmが特に好ましい。
 半導体ナノ粒子(A)として緑色半導体ナノ粒子を含む場合、その最大発光波長は500nm以上が好ましく、505nm以上がより好ましく、510nm以上がさらに好ましく、515nm以上がよりさらに好ましく、520nm以上が特に好ましく、525nm以上が最も好ましく、560nm以下が好ましく、550nm以下がより好ましく、545nm以下がさらに好ましく、540nm以下がよりさらに好ましく、535nm以下が特に好ましく、530nm以下が最も好ましい。前記下限値以上とすることで緑色の色域を拡大でき、かつ視感度の関係からより明るい緑色を表現できる傾向がある。前記上限値以下とすることで緑色の色域が拡大し、ディスプレイとしてより豊かな色彩を表現できる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、半導体ナノ粒子(A)として緑色半導体ナノ粒子を含む場合、その最大発光波長は、500~560nmが好ましく、505~550nmがより好ましく、510~545nmがさらに好ましく、515~540nmがよりさらに好ましく、520~535nmがことさら好ましく、525~530nmが特に好ましい。
 半導体ナノ粒子が発する光の最大発光波長(発光色)は、井戸型ポテンシャルモデルのシュレディンガー波動方程式の解によれば、半導体ナノ粒子のサイズ(例えば粒子径)に依存するが、半導体ナノ粒子が有するエネルギーギャップにも依存する。そのため、使用する半導体ナノ粒子の構成材料及びサイズを変更することにより、発光色を選択することができる。
 半導体ナノ粒子(A)は、1つの次元の寸法が30nm以下の、例えば、球体、立方体、ロッド、ワイヤー、円盤、マルチポッドの各種形状を有し得る。例えば、長さが20nmで直径が4nmのCdSeのナノロッドが挙げられる。半導体ナノ粒子は、異なる形状の粒子を組み合わせて使用することもできる。球体状の半導体ナノ粒子とロッド状の半導体ナノ粒子の組み合わせが使用され得る。発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができるとの観点から、球体状の半導体ナノ粒子が好ましい。
 半導体ナノ粒子(A)は、第一の半導体材料を含むコアのみからなっていてもよく、第一の半導体材料を含むコアと、コアの少なくとも一部を被覆し、第一の半導体材料とは異なる第二の半導体材料とを含むシェルとを有していてもよい。つまり、半導体ナノ粒子(A)の構造は、コアのみからなる構造(コア構造)であってよく、コア部とシェル部からなる構造(コア/シェル構造)であってもよい。
 半導体ナノ粒子(A)は、第二の半導体材料を含むシェル(第一のシェル)の他に、コア又は第一のシェルの少なくとも一部を被覆し、第一及び第二の半導体材料とは異なる第三の半導体材料を含むシェル(第二のシェル)をさらに有していてもよい。つまり、半導体ナノ粒子(A)の構造は、コア部と第一のシェル部と第二のシェル部とからなる構造(コア/シェル/シェル構造)であってもよい。コア及びシェルのそれぞれは、2種以上の半導体材料を含む混晶(例えば、CdSe+CdS、CuInSe+ZnS、InP+ZnSeS+ZnS等)であってもよい。
 半導体ナノ粒子(A)を構成する半導体材料の種類は特に限定されないが、量子効率が高く、製造が比較的容易であることから、II-VI族半導体、III-V族半導体、I-III-VI族半導体、IV族半導体、及びI-II-IV-VI族半導体からなる群より選ばれる少なくとも1種を含むことが好ましい。
 半導体材料としては、例えば、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;
GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;
SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe2、AgInGaS2、CuGaSe2、CuInS2、CuGaS2、CuInSe2、AgInS2、AgGaSe2、AgGaS2、C及びCu2ZnSnS4が挙げられる。
 発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができる観点から、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS2、AgInSe2、AgInGaS2、AgInTe2、AgGaS2、AgGaSe2、AgGaTe2、CuInS2、CuInSe2、CuInTe2、CuGaS2、CuGaSe2、CuGaTe2、Si、C、Ge及びCu2ZnSnS4からなる群より選ばれる少なくとも1種を含むことが好ましい。
 赤色発光性の半導体ナノ粒子としては、例えば、CdSeのナノ粒子;シェル部がCdSであり、コア部がCdSeであるコア/シェル構造を備えたナノ粒子;シェル部がCdSであり、コア部がZnSeであるコア/シェル構造を備えたナノ粒子;CdSeとZnSとの混晶のナノ粒子;InPのナノ粒子;シェル部がZnSであり、コア部がInPであるコア/シェル構造を備えたナノ粒子;シェル部がZnSとZnSeとの混晶であり、コア部がInPであるコア/シェル構造を備えたナノ粒子;CdSeとCdSとの混晶のナノ粒子;ZnSeとCdSとの混晶のナノ粒子;第一のシェル部がZnSeであり、第二のシェル部がZnSであり、コア部がInPであるコア/シェル/シェル構造を備えたナノ粒子;第一のシェル部がZnSとZnSeとの混晶であり、第二のシェル部がZnSであり、コア部がInPであるコア/シェル/シェル構造を備えたナノ粒子が挙げられる。
 緑色発光性の半導体ナノ粒子としては、例えば、CdSeのナノ粒子;CdSeとZnSとの混晶のナノ粒子;シェル部がZnSであり、コア部がInPであるコア/シェル構造を備えたナノ粒子;シェル部がZnSとZnSeとの混晶であり、コア部がInPであるコア/シェル構造を備えたナノ粒子;第一のシェル部がZnSeであり、第二のシェル部がZnSであり、コア部がInPであるコア/シェル/シェル構造を備えたナノ粒子;第一のシェル部がZnSとZnSeとの混晶であり、第二のシェル部がZnSであり、コア部がInPであるコア/シェル/シェル構造を備えたナノ粒子が挙げられる。
 半導体ナノ粒子は、同一の化学組成で、それ自体の平均粒子径を変えることにより、発光させるべき色を赤色にも緑色にも変えることができる。半導体ナノ粒子は、人体等に対する悪影響が極力低い粒子を用いることが好ましい。カドミウム、セレン等を含有する半導体ナノ粒子を半導体ナノ粒子(A)として用いる場合は、上記元素(カドミウム、セレン等)が極力含まれない半導体ナノ粒子を選択して単独で用いるか、上記元素が極力少なくなるようにその他の半導体ナノ粒子と組み合わせて用いることが好ましい。
 半導体ナノ粒子(A)の形状は特に限定されず、任意の幾何学的形状であってもよく、任意の不規則な形状であってもよい。半導体ナノ粒子の形状は、例えば、球状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状であってもよい。半導体ナノ粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状の粒子)を用いることが、半導体ナノ粒子含有組成物の均一性及び流動性をより高められる点で好ましい。
 半導体ナノ粒子(A)の平均粒子径(体積平均径)は、所望の波長の発光が得られやすい観点、並びに、分散性及び保存安定性に優れる観点から、1nm以上であってよく、1.5nm以上であってよく、2nm以上であってもよい。所望の発光波長が得られやすい観点から、40nm以下であってよく、30nm以下であってよく、20nm以下であってもよい。半導体ナノ粒子の平均粒子径(体積平均径)は、透過型電子顕微鏡又は走査型電子顕微鏡により測定し、体積平均径を算出することにより得られる。上記の上限及び下限は任意に組み合わせることができる。例えば、半導体ナノ粒子(A)の平均粒子径(体積平均径)は、1~40nmが好ましく、1.5~30nmがより好ましく、2~20nmがさらに好ましい。
 半導体ナノ粒子(A)としては、溶剤、重合性化合物等の中にコロイド形態で分散している粒子を用いることができる。溶剤中で分散状態にある半導体ナノ粒子の表面は、後述するリガンド(B)によってパッシベーション(passivation)されていることが好ましい。
 溶剤としては、例えば、シクロヘキサン、ヘキサン、ヘプタン、クロロホルム、トルエン、オクタン、クロロベンゼン、テトラリン、ジフェニルエーテル、プロピレングリコールモノメチルエーテルアセテート、ブチルカルビトールアセテート、又はそれらの混合物が挙げられる。
 半導体ナノ粒子(A)の製造方法は、特に限定されないが、例えば、日本国特表2015-529698号公報、日本国特開2018-109141号公報に記載の方法で製造することができる。
 半導体ナノ粒子(A)としては、市販品を用いることもできる。半導体ナノ粒子の市販品としては、例えば、NN-ラボズ社のインジウムリン/硫化亜鉛、D-ドット、CuInS/ZnS、アルドリッチ社のInP/ZnSが挙げられる。
 半導体ナノ粒子(A)の含有割合は、外部量子効率の向上効果に優れる観点から、半導体ナノ粒子含有組成物の全固形分中に1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上がさらに好ましく、4質量%以上がよりさらに好ましい。塗布性の観点、特にインクジェットヘッドからの吐出安定性により優れる観点から、60質量%以下が好ましく、40質量%以下がより好ましく、20質量%以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、半導体ナノ粒子(A)の含有割合は、半導体ナノ粒子含有組成物の全固形分中に、1~60質量%が好ましく、2~60質量%がより好ましく、3~40質量%がさらに好ましく、4~20質量%が特に好ましい。
 半導体ナノ粒子含有組成物は、半導体ナノ粒子(A)として、2種以上の半導体ナノ粒子を含んでいてもよい。赤色半導体ナノ粒子及び緑色半導体ナノ粒子を両方含んでいてもよいが、赤色半導体ナノ粒子及び緑色半導体ナノ粒子のうちの一方のみを含むことが好ましい。
 半導体ナノ粒子(A)として赤色半導体ナノ粒子を含む場合、緑色半導体ナノ粒子の含有割合は、半導体ナノ粒子中に、10質量%以下が好ましく、0質量%がより好ましい。半導体ナノ粒子(A)として緑色発光性の半導体ナノ粒子を含む場合、赤色発光性の半導体ナノ粒子の含有割合は、半導体ナノ粒子中に、10質量%以下が好ましく、0質量%がより好ましい。
[1-2]リガンド(B)
 本発明の半導体ナノ粒子含有組成物は、リガンド(B)を含んでもよい。
 リガンド(B)は半導体ナノ粒子(A)表面の少なくとも一部を被覆している化合物である。リガンド(B)は半導体ナノ粒子(A)表面に吸着、又は配位結合することで半導体ナノ粒子(A)表面の少なくとも一部を被覆している。
 半導体ナノ粒子は、インクとして使用する場合、溶剤や樹脂との親和性を確保するための官能基(以下、単に「親和性基」ともいう。)と、半導体ナノ粒子への吸着性を確保するための官能基(以下、単に、「吸着基」ともいう。)とを有する化合物で処理されることが好ましく、本発明の半導体ナノ粒子含有組成物はリガンド(B)を含有することが好ましい。
 リガンド(B)としては、特に限定されない。溶剤や(メタ)アクリレート化合物、樹脂等との親和性の観点から、親和性基を有することが好ましい。
 親和性基としては、脂肪族炭化水素基が好ましい。脂肪族炭化水素基は、直鎖型であってもよく分岐構造を有していてもよく、炭素数は4以上が好ましく、8以上がより好ましく、10以上がさらに好ましい。また、300以下が好ましく、40以下がより好ましく、30以下がさらに好ましい。炭素数が4以上であれば、溶剤や(メタ)アクリレート化合物、樹脂との親和性を確保し、半導体ナノ粒子の分散性が向上する傾向がある。炭素数が300以下であれば、半導体ナノ粒子含有組成物の粘度を低減でき、硬化膜の発光強度や硬化膜の強度が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、親和性基の炭素数は、8~300が好ましく、8~40がより好ましく、10~30がさらに好ましい。
 脂肪族炭化水素基は、ポリエチレングリコール鎖等のポリアルキレングリコール鎖を有してもよい。脂肪族炭化水素基は、不飽和結合を有していてもよく、不飽和結合を有していなくてもよい。
 リガンド(B)は、吸着基としては、例えば、ヒドロキシ基、カルボキシ基、アミノ基、スルファニル基、スルホ基、ホスホノオキシ基、ホスホノ基、ホスファントリイル基、ホスホリル基、アルコキシシリル基が挙げられ、半導体ナノ粒子との結合力の観点から、スルファニル基、ホスフィンオキサイド基、カルボキシ基が好ましく、カルボキシ基が特に好ましい。
 リガンド(B)としては、末端に吸着基を有する化合物を用いることができ、芳香環やエーテル基を含むことができ、分子中に吸着基を複数有していてもよい。
 リガンド(B)として、例えば、安息香酸、ビフェニルカルボン酸、ブチル安息香酸、ヘキシル安息香酸、シクロヘキシル安息香酸、ナフタレンカルボン酸、ヘキサン酸、ヘプタン酸、オクタン酸、エチルヘキサン酸、ヘキセン酸、オクテン酸、シトロネル酸、スベリン酸、エチレングリコールビス(4-カルボキシフェニル)エーテル、(2-ブトキシエトキシ)酢酸が挙げられる。
 リガンド(B)としては、溶剤や(メタ)アクリレート化合物、樹脂との親和性の観点から、吸着基及び炭素数8以上、300以下の脂肪族炭化水素基を有する化合物や、吸着基及びポリエチレングリコール鎖等のポリアルキレングリコール鎖を有する化合物であることが好ましく、例えば、ノナン酸、デカン酸、ラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸、トリコサン酸、リグノセリン酸、オレイン酸、エイコサジエン酸、リノレン酸、セバシン酸、(2-オクチルオキシ)酢酸、[2-(2-メトキシエトキシ)エトキシ]酢酸や、下記一般式(b-I)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式(b-I)中、nは0~100の整数を表す。)
 本発明の半導体ナノ粒子含有組成物はリガンド(B)を含有することが好ましい。リガンド(B)は1種を単独で含んでいてもよく、2種以上を含んでいてもよく、前記リガンド(B)以外のリガンド(以下、「リガンド(B1)」と称する場合がある。)をさらに含んでいてもよい。
 リガンド(B1)としては、例えば、有機アミン、硫黄含有有機物、リン含有有機物等の有機物が挙げられる。
 本発明の半導体ナノ粒子含有組成物におけるリガンド(B)の親和性基の分子量は特に限定されない。溶剤や(メタ)アクリレート化合物、樹脂との親和性を確保し、半導体ナノ粒子の分散性を向上させる観点から、50g/mol以上が好ましく、100g/mol以上がより好ましく、200g/mol以上がさらに好ましい。半導体ナノ粒子含有組成物の粘度低減、硬化膜の発光強度向上や強度向上の観点から、10000g/mol以下が好ましく、5000g/mol以下がより好ましく、1000g/mol以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、本発明の半導体ナノ粒子含有組成物におけるリガンド(B)の親和性基の分子量は、50~10000g/molが好ましく、100~5000g/molがより好ましく、200~1000g/molがさらに好ましい。
 本発明の半導体ナノ粒子含有組成物がリガンド(B)を含む場合、本発明の半導体ナノ粒子含有組成物におけるリガンド(B)の含有割合は特に限定されない。溶剤や(メタ)アクリレート化合物、樹脂との親和性を確保し、半導体ナノ粒子の分散性を向上させる観点から、半導体ナノ粒子含有組成物の全固形分中に0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.05質量%以上がさらに好ましく、0.1質量%以上がよりさらに好ましく、0.3質量%以上が特に好ましく、半導体ナノ粒子含有組成物の発光強度向上や膜強度の向上及び粘度低減の観点から、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、本発明の半導体ナノ粒子含有組成物がリガンド(B)を含む場合、本発明の半導体ナノ粒子含有組成物におけるリガンド(B)の含有割合は、0.005~30質量%が好ましく、0.01~30質量%がより好ましく、0.05~30質量%がさらに好ましく、0.1~20質量%がよりさらに好ましく、0.3~10質量%が特に好ましい。
 本発明の半導体ナノ粒子含有組成物がリガンド(B)を含む場合、本発明の半導体ナノ粒子含有組成物における半導体ナノ粒子(A)とリガンド(B)の含有比率は特に限定されない。溶剤や(メタ)アクリレート化合物、樹脂との親和性を確保し、半導体ナノ粒子の分散性を向上させる観点から、半導体ナノ粒子(A)100質量部に対してリガンド(B)は1質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上がさらに好ましく、半導体ナノ粒子含有組成物の発光強度向上や膜強度の向上及び粘度低減の観点から、300質量部以下が好ましく、200質量部以下がより好ましく、100質量部以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、本発明の半導体ナノ粒子含有組成物における半導体ナノ粒子(A)とリガンド(B)の含有比率は、半導体ナノ粒子(A)100質量部に対してリガンド(B)は、1~300質量部が好ましく、5~200質量部がより好ましく、10~100質量部がさらに好ましい。
[1-3]蛍光色素(C)
 本発明の半導体ナノ粒子含有組成物は蛍光色素(C)を含有し、蛍光色素(C)は半導体ナノ粒子(A)へ連結する作用を生じる置換基を有する。
 半導体ナノ粒子(A)へ連結する作用を生じる置換基を有する蛍光色素(C)を半導体ナノ粒子(A)と併用することにより、半導体ナノ粒子(A)の発光効率を向上させることが可能となる。
 半導体ナノ粒子(A)の発光効率をさらに向上させるためには、蛍光色素(C)の発光スペクトルと、最大発光波長が500~670nmの範囲内にある半導体ナノ粒子(A)の吸収スペクトルとの重なりが大きいことが好ましいと考えられる。蛍光色素(C)の発光スペクトルと半導体ナノ粒子(A)の吸収スペクトルとの重なりが大きいことで、蛍光色素(C)の励起されたエネルギーがフェルスター型エネルギー移動により半導体ナノ粒子(A)に移動し、半導体ナノ粒子(A)の発光強度が増大するためと考えられる。
 半導体ナノ粒子(A)の発光効率をさらに向上させるためには、蛍光色素(C)は、半導体ナノ粒子(A)の吸収スペクトルとの重なりが大きい発光スペクトルを有する蛍光色素であることが好ましい。例えば、ナフタルイミド骨格、クマリン骨格、ペリレン骨格、ピレン骨格、アントラセン骨格、ジピロメテン骨格、ベンゾホスホール骨格、ベンゾチアジアゾール骨格、キサンテン骨格、イミノクマリン骨格、若しくはジチエノシロール骨格を有する蛍光色素、又は下記一般式(c-IV)、下記一般式(c-V)、若しくは式(c-VI)で示される構造を有する蛍光色素であることが好ましく、ナフタルイミド骨格を有する蛍光色素、クマリン骨格を有する蛍光色素、ペリレン骨格を有する蛍光色素、式(c-IV)で示される構造を有する蛍光色素、式(c-V)で示される構造を有する蛍光色素、式(c-VI)で示される構造を有する蛍光色素が特に好ましい。
(ナフタルイミド骨格を有する蛍光色素)
 ナフタルイミド骨格を有する蛍光色素としては、各種溶媒や半導体ナノ粒子含有組成物への溶解度が高く、グラム吸光係数が高く、濃度消光をしづらく、蛍光の量子収率が高くなるとの観点から、下記一般式(c-I)で表される蛍光色素(以下、「蛍光色素(C1)」ともいう。)であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(c-I)中、R、R、R、R、R、Rは各々独立に、水素原子、又は任意の置換基を表し、Xは、NR、SR、OR10のいずれかの構造を表す。
 R、R、R、R10は各々独立に、水素原子、又は任意の置換基を表す。
 RとXは連結して環を形成してもよく、XがNRである場合、R、Rが連結して環を形成していてもよい。
 以下、式(c-I)中の符号を説明する。
(R
 式(c-I)中のRにおける任意の置換基としては、置換可能な1価の基であれば特に限定されず、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基が挙げられる。
 Rにおけるアルキル基は、例えば、直鎖状のアルキル基、分岐鎖状のアルキル基、環状のアルキル基、これらを組み合わせたものが挙げられ、立体障害による会合体形成抑制の観点から、分岐鎖状のアルキル基が好ましい。アルキル基中の一部の-CH-は-O-で置換されていてもよい。
 Rにおけるアルキル基の炭素数は特に限定されない。Rにおけるアルキル基の炭素数は、通常1以上、3以上が好ましく、また、20以下が好ましく、16以下がより好ましい。前記下限値以上とすることで半導体ナノ粒子含有組成物への溶解性が向上する傾向がある。前記上限値以下とすることで質量当たりの励起光吸収効率が向上する傾向がある。なお、アルキル基中の-CH-の1つ以上が-O-で置換されている場合には、置換前のアルキル基の炭素数が上記範囲に含まれていることが好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、Rにおけるアルキル基の炭素数は、1~20が好ましく、3~16がより好ましい。
 アルキル基が有していてもよい置換基としては、例えば、ヒドロキシ基、カルボキシ基、アミノ基、スルファニル基、ホスホノ基が挙げられる。相互作用によって半導体ナノ粒子と接近する観点から、スルファニル基が好ましい。
 Rにおけるアリール基は、1価の芳香族炭化水素環基及び1価の芳香族複素環基が挙げられる。
 アリール基の炭素数は特に限定されない。Rにおけるアリール基の炭素数は、3以上が好ましく、6以上がより好ましく、また、20以下が好ましく、12以下がより好ましい。前記下限値以上とすることで半導体ナノ粒子含有組成物への溶解性が向上する傾向がある。前記上限値以下とすることで質量当たりの励起光吸収効率が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、アリール基の炭素数は、3~20が好ましく、6~12がより好ましい。
 芳香族炭化水素環基における芳香族炭化水素環としては、単環であっても縮合環であってもよい。
 芳香族炭化水素環としては、例えば、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環が挙げられる。半導体ナノ粒子含有組成物への溶解性が高い点から、1個の遊離原子価を有するベンゼン環、1個の遊離原子価を有するナフタレン環が好ましく、1個の遊離原子価を有するベンゼン環がより好ましい。
 芳香族複素環基における芳香族複素環としては、単環であっても縮合環であってもよい。
 芳香族複素環としては、例えば、1個の遊離原子価を有する、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環が挙げられる。
 アリール基が有していてもよい置換基としては、例えば、アルキル基が挙げられる。半導体ナノ粒子含有組成物への溶解性の観点から、分岐鎖状のアルキル基、例えばt-ブチル基や2-エチルヘキシル基が好ましい。
 式(c-I)中のRとして、半導体ナノ粒子含有組成物への溶解性向上と蛍光色素(C1)の耐久性向上の観点からは、メチル基、2-エチルヘキシル基、2-[2-(2-メトキシエトキシ)エトキシ]エトキシカルボニル基がより好ましく、2-エチルヘキシル基、o-トリル基、2-[2-(2-メトキシエトキシ)エトキシ]エトキシカルボニル基が特に好ましい。
(R、R、R、R、R
 式(c-I)中のR、R、R、R、Rにおける任意の置換基としては、置換可能な1価の基であれば特に限定されず、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリーロキシ基、ニトロ基、ハロゲン原子、シアノ基、水酸基、アミノ基、カルボキシ基、スルホ基が挙げられる。
 R、R、R、R、Rにおけるアルキル基は、例えば、直鎖状のアルキル基、分岐鎖状のアルキル基、環状のアルキル基、これらを組み合わせたものが挙げられ、立体障害による会合体形成抑制の観点から分岐鎖状のアルキル基が好ましい。アルキル基中の一部の-CH-は-O-で置換されていてもよい。
 R、R、R、R、Rにおけるアルキル基の炭素数は特に限定されない。R、R、R、R、Rにおけるアルキル基の炭素数は、通常1以上、3以上が好ましく、20以下が好ましく、16以下がより好ましい。前記下限値以上とすることで会合の抑制により量子効率が向上する傾向がある。前記上限値以下とすることで質量当たりの励起光吸収効率が向上する傾向がある。アルキル基中の-CH-の1つ以上が-O-で置換されている場合には、置換前のアルキル基の炭素数が上記範囲に含まれていることが好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、R、R、R、R、Rにおけるアルキル基の炭素数は、1~20が好ましく、3~16がより好ましい。
 R、R、R、R、Rにおける置換基を有していてもよいアルキルカルボニル基としては、アルキル基の結合手にカルボニル基を結合した基が挙げられる。
 R、R、R、R、Rにおけるアルコキシ基としては、アルキル基の結合手にO原子を結合した基が挙げられる。
 アルコキシ基としては、例えば、メトキシ基、2-プロピルオキシ基が挙げられる。立体障害による会合体形成抑制の観点から、分岐鎖状のアルコキシ基、例えば2-プロピルオキシ基が好ましい。
 R、R、R、R、Rにおける置換基を有していてもよいアルコキシカルボニル基としては、アルキル基の結合手にオキシカルボニル基を結合した基が挙げられる。
 R、R、R、R、Rにおけるアリール基は、1価の芳香族炭化水素環基及び1価の芳香族複素環基が挙げられる。
 アリール基の炭素数は特に限定されないが、3以上が好ましく、6以上がより好ましく、20以下が好ましく、12以下がより好ましい。前記下限値以上とすることで半導体ナノ粒子含有組成物への溶解性が向上する傾向がある。前記上限値以下とすることで質量当たりの励起光吸収効率が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、アリール基の炭素数は、3~20が好ましく、6~12がより好ましい。
 芳香族炭化水素環基における芳香族炭化水素環としては、単環であっても縮合環であってもよい。
 芳香族炭化水素環としては、例えば、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環が挙げられ、半導体ナノ粒子含有組成物への溶解性が高い点から、1個の遊離原子価を有するベンゼン環、1個の遊離原子価を有するナフタレン環が好ましく、1個の遊離原子価を有するベンゼン環がより好ましい。
 芳香族複素環基における芳香族複素環としては、単環であっても縮合環であってもよい。
 芳香族複素環としては、例えば、1個の遊離原子価を有する、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環が挙げられる。半導体ナノ粒子含有組成物への溶解性が高い点、及び蛍光色素(C1)と半導体ナノ粒子(A)との相互作用増強の観点から、1個の遊離原子価を有する、ピリジン環、フラン環、チオフェン環が好ましい。
 R、R、R、R、Rにおける置換基を有していてもよいアリーロキシ基としては、アリール基の結合手にO原子を結合した基が挙げられる。例えば、フェノキシ基、2-チエニルオキシ基が挙げられる。
 R、R、R、R、Rにおける置換基を有していてもよいアミノ基としては、-NHで表されるアミノ基のほか、上記アルキル基、上記アリール基を置換基として有するアミノ基が挙げられる。例えば、ジメチルアミノ基、ジエチルアミノ基、(2-エチルヘキシル)アミノ基、フェニルアミノ基が挙げられる。
 R、R、R、R、Rにおけるにおけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。蛍光色素(C1)の耐久性向上の観点からフッ素原子、塩素原子が好ましい。
 R、R、R、R、Rとしては、半導体ナノ粒子含有組成物への溶解性の観点から、2-プロピル基、t-ブチル基、o-トリル基であることが好ましい。質量当たりの励起光吸収効率と蛍光色素の安定性の観点で水素原子が望ましい。
(X)
 式(c-I)中のXは、NR、SR、OR10のいずれかの構造を表す。
 例えば、励起光に450nmの光を利用する場合には、吸収波長の観点から、NRが好ましい。
(R、R
 R、Rにおける任意の置換基としては、置換可能な1価の基であれば特に限定されず、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールカルボニル基、置換基を有していてもよいアリーロキシカルボニル基、置換基を有していてもよいアルキルスルホニル基、水酸基が挙げられる。例えば、合成容易性の観点からは、置換基を有していてもよいアルキル基が好ましい。
 XがNRである場合、R、Rが連結して環を形成していてもよい。
(R、R10
 R、R10における任意の置換基としては、置換可能な1価の基であれば特に限定されず、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールカルボニル基、置換基を有していてもよいアリーロキシカルボニル基、置換基を有していてもよいアルキルスルホニル基が挙げられる。
 式(c-I)中のRとXは連結して環を形成してもよい。このように環を形成した場合の式(c-I)の例を以下に示す。
Figure JPOXMLDOC01-appb-C000003
(クマリン骨格を有する蛍光色素)
 クマリン骨格を有する蛍光色素としては、各種溶媒や半導体ナノ粒子含有組成物への溶解度が高く、グラム吸光係数が高く、濃度消光をしづらく、蛍光の量子収率が高くなるとの観点から、式(c-II)で表される蛍光色素(以下、「蛍光色素(C2)」ともいう。)が好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(c-II)中、R、R、R、R、Rは各々独立に、水素原子、又は任意の置換基を表す。
 Rは、水素原子、N(R、又はORを表す。RがN(Rである場合、R同士が連結して環を形成していてもよい。
 Rは、水素原子、又は任意の置換基を表す。
 R、R及びRからなる群から選ばれる2以上が連結して環を形成していてもよい。
 以下、式(c-II)中の符号を説明する。
(R、R、R、R、R
 R、R、R、R、Rは各々独立に、水素原子、又は任意の置換基を表す。
 R、R、R、R、Rにおける任意の置換基としては、置換可能な1価の基であれば特に限定されず、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリーロキシ基、シアノ基、ニトロ基、ハロゲン原子、水酸基、アミノ基、カルボキシ基が挙げられる。
 R、R、R、Rとしては、これらの中でも、励起光の吸収効率の観点から、メチル基、シアノ基、トリフルオロメチル基、ニトロ基、アミノ基、カルボキシ基が好ましく、シアノ基、トリフルオロメチル基がより好ましい。
 Rとしては、蛍光色素(C2)が強い発光スペクトルを示す構造となるとの観点から、下記一般式(c-II-1)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(c-II-1)中、Xは酸素原子、硫黄原子、又はNRを表す。
 Rは、水素原子、又は任意の置換基を表す。
 Rは、水素原子、又はアルキル基を表す。
 RがNRである場合、RとRが連結して環を形成していてもよい。
 *は結合手を表す。
(X)
 式(c-II-1)中、Xは酸素原子、硫黄原子、又はNRを表す。式(c-II-1)で表される基が、クマリン骨格からより電子を求引するものである方が、蛍光強度が大きくなる傾向があるため、電気陰性度が大きい原子を含む基とするとの観点から、酸素原子、又はNRが好ましい。
 Rは、水素原子、又はアルキル基を表す。
 Rにおけるアルキル基としては、例えば、直鎖状のアルキル基、分岐鎖状のアルキル基、環状のアルキル基、これらを組み合わせたアルキル基が挙げられる。蛍光色素(C2)の耐久性が高くなる点から、環状のアルキル基が好ましい。アルキル基中の一部の-CH-は-O-で置換されていてもよい。
(R
 式(c-II-1)中、Rは、水素原子、又は任意の置換基を表す。
 Rにおける任意の置換基としては、置換可能な1価の基であれば特に限定されず、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアリール基、置換基を有していてもよいアリーロキシ基、スルファニル基、置換基を有していてもよいアルキルスルファニル基、置換基を有していてもよいアリールスルファニル基、水酸基、アミノ基が挙げられる。
 励起光の吸収効率の観点から、Rはメチル基が好ましい。
 XがNRである場合、RとRが連結して環を形成していてもよい。例えば、Rである任意の置換基とRである水素原子とが連結して環を形成することができ、この場合のRは単結合となる。
 RとRが連結して環を形成した場合の環は脂肪族環でも芳香族環でもよい。蛍光色素(C2)の耐久性の観点から、RとRが連結して環を形成した場合の環は、芳香族環であることが好ましい。RとRが連結して形成した環の例を以下に示す。
Figure JPOXMLDOC01-appb-C000006
(R
 式(c-II)中、Rは、水素原子、N(R、又はORを表す。RがN(Rである場合、R同士が連結して環を形成していてもよい。
 電子供与性が高く、蛍光強度が大きくなる傾向があるとの観点から、Rは、N(Rが好ましい。
 Rは、水素原子、又は任意の置換基を表す。
 Rにおける任意の置換基としては、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアリールカルボニル基、置換基を有していてもよいアルキルスルホニル基、又は置換基を有していてもよいアリールスルホニル基が挙げられる。
 R、R及びRからなる群から選ばれる2以上が連結して環を形成していてもよい。環を形成した場合の式(c-II)の例を以下に示す。
Figure JPOXMLDOC01-appb-C000007
 蛍光色素(C2)の中でも、高い半導体ナノ粒子含有組成物への溶解性を有するとの観点から、下記一般式(c-II-2)で表される蛍光色素が好ましい。
Figure JPOXMLDOC01-appb-C000008
 式(c-II-2)中、R~Rは式(c-II)と同義である。
 R10、R11は各々独立に、炭素数1~4のアルキル基を表す。
 m、nは各々独立に、0~4の整数を表す。)
(R10、R11
 式(c-II-2)中、R10、R11は各々独立に、炭素数1~4のアルキル基を表す。
 R10、R11におけるアルキル基の炭素数は1~4であれば特に限定されないが、1~3が好ましく、1~2がより好ましい。前記上限値以下とすることで半導体ナノ粒子含有組成物中に存在する蛍光色素の質量に対する励起光の吸収効率が向上する傾向がある。
 炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、イソプロピル基、イソブチル基、ターシャリーブチル基が挙げられる。励起光の吸収効率が高い点から、炭素数1~4のアルキル基は、メチル基、エチル基が好ましく、メチル基がより好ましい。
(m、n)
 式(c-II-2)中、m、nは各々独立に、0~4の整数を表す。
 m、nは、高い半導体ナノ粒子含有組成物への溶解性、半導体ナノ粒子含有組成物中に存在する蛍光色素の質量に対する高い励起光の吸収効率の観点から、2以下の整数であることが好ましい。
(ペリレン骨格を有する蛍光色素)
 ペリレン骨格を有する蛍光色素としては、該蛍光色素と半導体ナノ粒子との相互作用による半導体ナノ粒子の発光強度増大の観点から、下記一般式(c-III)で表される蛍光色素(以下、「蛍光色素(C3)」ともいう。)が好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(c-III)中、R11、R21、R31、R41は各々独立に、水素原子又は任意の置換基を表す。R11、R21、R31、R41のうち1つ以上は、下記一般式(c-III-1)で表される基である。
 R12、R13、R22、R23、R32、R33、R42、R43は各々独立に、水素原子又は任意の置換基を表す。
Figure JPOXMLDOC01-appb-C000010
 式(c-III-1)中、Rは水素原子、又は任意の置換基を表す。*は結合手を表す。
 以下、式(c-III)中の符号を説明する。
(R11、R21、R31、R41
 R11、R21、R31、R41は各々独立に、水素原子又は任意の置換基を表す。R11、R21、R31、R41のうち1つ以上は、式(c-III-1)で表される基である。
Figure JPOXMLDOC01-appb-C000011
 式(c-III-1)中、Rは水素原子、又は任意の置換基を表す。*は結合手を表す。
 Rにおける任意の置換基としては、置換可能な1価の基であれば特に限定されず、例えば、置換基を有していてもよい炭化水素基が挙げられる。炭化水素基中の一部の-CH-は-O-で置換されていてもよく、炭化水素基中の一部の炭素原子はヘテロ原子で置換されていてもよい。炭化水素基としては、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基が挙げられる。
 Rは、R11、R21、R31、R41のいずれかと連結して環を形成していてもよい。この場合のRとしては例えば、カルボニル基(-CO-)、メチレン基(-CH-)、アルキリデンメチレン基(-C(=C(R51)-(ここでR51は各々独立に水素原子又は炭素数2~6の炭化水素基を表す。))が挙げられる。合成容易性の観点からRはカルボニル基(-CO-)が好ましい。
 励起光の変換効率向上の観点から、Rは、2-エチルヘキシル基、(2-(2-スルファニルエトキシ)エトキシ)エチル基が好ましく、半導体ナノ粒子含有組成物への溶解性の観点から、(2-(2-メトキシエトキシ)エトキシ)エチル基が好ましい。
 R11、R21、R31、R41のうち1つ以上は式(c-III-1)で表される基であるが、2つ以上がより好ましく、3つ以上がさらに好ましく、全てが特に好ましい。前記下限値以上とすることで励起光の吸収効率が向上する傾向がある。
 R11、R21、R31、R41における任意の置換基としては、式(c-III-1)で表される基以外の基では、置換可能な1価の基であれば特に限定されず、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアリールカルボニル基、置換基を有していてもよいアルキルスルホニル基、置換基を有していてもよいアミド基、シアノ基、ハロゲン原子が挙げられる。R11とR21が連結して環を形成していてもよく、R31とR41が連結して環を形成していてもよい。
 任意の置換基の中でも励起光の変換効率向上の観点から、2-エチルヘキシル基、(2-(2-スルファニルエトキシ)エトキシ)エチル基が好ましく、半導体ナノ粒子含有組成物への溶解性の観点から、(2-(2-メトキシエトキシ)エトキシ)エチル基が好ましい。
 R11とR21が連結して環を形成していてもよく、R31とR41が連結して環を形成していてもよい。環を形成する場合のR11とR21が連結した基、R31とR41が連結した基としては、例えば、-CO-(NR)-CO-(Rは、水素原子、又は炭素数1~6のアルキル基を表す。)、エチレン基(-CH-CH-)、トリメチレン基(-CH-CH-CH-)、フェニレン基が挙げられ、励起光の吸収効率と合成容易性の観点から-CO-(NR)-CO-が好ましい。
(R12、R13、R22、R23、R32、R33、R42、R43
 式(c-III)中、R12、R13、R22、R23、R32、R33、R42、R43は各々独立に、水素原子又は任意の置換基を表す。
 R12、R13、R22、R23、R32、R33、R42、R43における任意の置換基としては、置換可能な1価の基であれば特に限定されず、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリーロキシ基、置換基を有していてもよいアリールカルボニル基、置換基を有していていてもよいアリーロキシカルボニル基、シアノ基、ハロゲン原子が挙げられる。
 水素原子、又は、半導体ナノ粒子含有組成物への溶解性の観点から、2-エチルヘキシル基、(2-(2-メトキシエトキシ)エトキシ)エチル基が好ましく、合成容易性の観点から水素原子が好ましい。
 半導体ナノ粒子の発光強度増大の観点から、蛍光色素(C)として一般式(c-IV)で示される部分構造を有する蛍光色素(以下、「蛍光色素(C4)」ともいう。)が好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(c-IV)中、XはO原子又はS原子を表す。
 ZはCR又はN原子を表す。
 R、Rは各々独立に、水素原子又は任意の置換基を表す。
 *は結合手を表す。
 以下、式(c-IV)中の符号を説明する。
(X)
 XはO原子又はS原子を表す。
 これらの中でも、発光強度の増大の観点からO原子が好ましく、耐光性の観点からS原子が好ましい。
(Z)
 ZはCR又はN原子を表す。
 Zは、合成容易性の観点から、CRが好ましい。
(R、R
 R、Rは各々独立に、水素原子又は任意の置換基を表す。
 任意の置換基としては、置換可能な1価の基であれば特に限定されず、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリーロキシ基、スルファニル基、置換基を有していてもよいジアルキルホスフィノ基、置換基を有していてもよいアルキルスルファニル基、水酸基、カルボキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン原子が挙げられる。ZがCRの場合には、RとRとが連結して環を形成していてもよい。
 吸収波長と組成物中における溶解性の観点から、R、Rとしては、各々独立に、水素原子、2-エチルヘキシル基、フェニル基、2-[2-(2-ヒドロキシエトキシ)エトキシ]エトキシ基が好ましく、水素原子がより好ましい。
 ZがCRの場合には、RとRとが連結して環を形成していてもよく、環を形成した場合の具体例としては以下が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 蛍光色素(C4)の中でも、発光強度の増大の観点から、下記一般式(c-IV-1)で表される蛍光色素が好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(c-IV-1)中、XはO原子又はS原子を表す。
 ZはCR又はN原子を表す。
 R、Rは各々独立に、水素原子又は任意の置換基を表す。
 a、aは各々独立に、下記一般式(c-IV-2)で表される基である。
Figure JPOXMLDOC01-appb-C000015
 式(c-IV-2)中、b11は、置換基を有していてもよいアリーレン基、置換基を有していてもよい-CH=CH-基、-C≡C-基、置換基を有していてもよい-CH=N-基、置換基を有していてもよい-N=CH-基、-CO-基、又は-N=N-基を表す。
 b12は、単結合、又はb11以外の2価の基を表す。
 xは各々独立に、0~3の整数を表す。xが2以上の整数である場合、複数のb11は同一であっても異なっていてもよい。
 yは各々独立に、1~3の整数を表す。yが2以上の整数である場合、複数のb12は同一であっても異なっていてもよい。
 R11は水素原子又は任意の置換基を表す。
 *結合手を表す。
 式(c-IV-1)で表される蛍光色素である場合、蛍光色素同士の会合体が形成されにくく、蛍光強度の低下(濃度消光)が起きにくくなる傾向がある。
 式(c-IV-1)中のX、Z、R及びRとしては、式(c-IV)中のX、Z、R及びRとして挙げた、水素原子又は任意の置換基を好ましく採用することができる。
(a及びa
 前記式(c-IV-1)中、a及びaは各々独立に、下記一般式(c-IV-2)で表される基である。
 a及びaは、同じ基であってもよく、異なる基であってもよいが、合成容易性の観点から、同じ基であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(c-IV-2)中、b11は、置換基を有していてもよいアリーレン基、置換基を有していてもよい-CH=CH-基、-C≡C-基、置換基を有していてもよい-CH=N-基、置換基を有していてもよい-N=CH-基、-CO-基、又は-N=N-基を表す。
 b12は、単結合、又はb11以外の2価の基を表す。
 xは各々独立に、0~3の整数を表す。xが2以上の整数である場合、複数のb11は同一であっても異なっていてもよい。
 yは各々独立に、1~3の整数を表す。yが2以上の整数である場合、複数のb12は同一であっても異なっていてもよい。
 R11は水素原子又は任意の置換基を表す。
 *結合手を表す。
(b11
 式(c-IV-2)中、b11は、置換基を有していてもよいアリーレン基、置換基を有していてもよい-CH=CH-基、-C≡C-基、置換基を有していてもよい-CH=N-基、置換基を有していてもよい-N=CH-基、-CO-、又は-N=N-基を表す。
 b11が置換基を有していてもよいアリーレン基である場合、結合したアリーレン基は、立体障害によりジアゾール平面からねじれる。そのため蛍光色素同士のスタッキングが阻害され、濃度消光が生じにくくなる傾向があるため好ましい。
 アリーレン基が有していてもよい置換基としては、例えば、アルキル基、アルコキシ基、アルコキシカルボニル基、アリール基、アリーロキシ基、スルファニル基、ジアルキルホスフィノ基、アルキルスルファニル基、水酸基、カルボキシ基、アミノ基、ニトロ基、シアノ基、ハロゲン原子が挙げられる。
 アリーレン基の置換基としては、半導体ナノ粒子へのエネルギー移動効率の観点から、アミノ基、又はスルファニル基であることが好ましい。溶解性の観点から、アリーレン基の置換基としては、水素原子、アルキル基、又はアルコキシ基が好ましく、水素原子、t-ブチル基、又は2-プロピルオキシ基が特に好ましい。
 置換基を有していてもよい-CH=CH-基、置換基を有していてもよい-CH=N-基、又は置換基を有していてもよい-N=CH-基における置換基としては、例えば、アルキル基、アルコキシ基、アシル基、アルコキシカルボニル基、アルキルスルファニル基、アミノ基、シアノ基、スルファニル基、ハロゲン原子が挙げられる。半導体ナノ粒子へのエネルギー移動効率の観点からは、置換基を有していてもよい-CH=CH-基、置換基を有していてもよい-CH=N-基、又は置換基を有していてもよい-N=CH-基における置換基としては、アミノ基、又はスルファニル基が好ましい。溶解性の観点からは、置換基を有していてもよい-CH=CH-基、置換基を有していてもよい-CH=N-基、又は置換基を有していてもよい-N=CH-基における置換基としては、水素原子、アルキル基、又はアルコキシ基が好ましく、水素原子、t-ブチル基、又は2-プロピルオキシ基が特に好ましい。
 b11が置換基を有していてもよいアリーレン基である場合、ジアゾール部分のN原子上の孤立電子対とアリーレン基の水素原子との、又は置換基との立体障害によって分子構造の平面性が低下し、π-πスタッキング等による蛍光色素同士の会合体形成が抑制され、会合体形成による濃度消光が抑制できる傾向があると考えられるため、好ましい。
 b11が、置換基を有していてもよい-CH=CH-基、-C≡C-基、置換基を有していてもよい-CH=N-基、置換基を有していてもよい-N=CH-基、-CO-基、又は-N=N-基の場合には、そもそも蛍光色素自体がジアゾール部分のπ共役を有するのみであるから分子の平面性は小さく、会合体形成による濃度消光は小さい傾向があると考えられるため、好ましい。
 吸収波長の観点から、b11は、2価のベンゼン環基、-CH=CH-基が好ましい。
(b12
 式(c-IV-2)中、b12は、単結合、又はb11以外の2価の基を表す。
 b11以外の2価の基としては特に限定されない。b11以外の2価の基は、例えば、置換基を有していてもよいアルキレン基、置換基を有していてもよいアルキレンオキシ基、置換基を有していてもよいアルキレンアミノ基が挙げられる。
 b12としては、組成物中での溶解性の観点から、2-エチルヘキサンジイル基、-O-CH-CH-O-CH-CH-O-CH-CH-基が好ましく、励起光に対する吸光度向上の観点から、単結合、メチレン基が好ましい。
(x)
 式(c-IV-2)中、xは各々独立に0~3の整数を表す。
 吸収波長の観点から、xは1又は2が好ましく、1がより好ましい。
 a中のxとa中のxのいずれか一方又は両方のxが1~3の整数であることが好ましく、a中のxとa中のxの両方のxが1であることがより好ましい。a中のxとa中のxのいずれか一方又は両方のxを1以上の整数とすることで、励起光の吸収効率が向上する傾向がある。
 xが2以上の整数である場合、複数のb11は同一であっても異なっていてもよい。
(y)
 式(c-IV-2)中、yは各々独立に1~3の整数を表す。
 組成物中での溶解性と励起光に対する吸光度の観点から、yは1又は2が好ましく、特に1がより好ましい。
 yが2以上の整数である場合、複数のb12は同一であっても異なっていてもよい。
(R11
 式(c-IV-2)中、R11は水素原子又は任意の置換基を表す。
 任意の置換基としては、置換可能な1価の基であれば特に限定されず、例えば、置換基を有していてもよいアリール基、置換基を有していてもよいアリーロキシ基、水酸基、カルボキシ基、ホルミル基、スルホ基、置換基を有していてもよいアミノ基、スルファニル基、置換基を有していてもよいアルキルスルファニル基、置換基を有していてもよいジアルキルホスフィノ基、ニトロ基、シアノ基、置換基を有していてもよいトリアルキルシリル基、置換基を有していてもよいジアルキルボリル基、ハロゲン原子が挙げられる。
 半導体ナノ粒子へのエネルギー移動効率の観点から、R11はカルボキシ基、アミノ基、スルファニル基、1個の遊離原子価を有するピリジン環が好ましく、溶解性の観点から、水素原子、トリアルキルシリル基が好ましい。
 半導体ナノ粒子の発光強度増大の観点から、蛍光色素(C)として一般式(c-V)で示される部分構造を有する蛍光色素(以下、「蛍光色素(C5)」ともいう。)も好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(c-V)中、Ar、Ar、Arは各々独立に、置換基を有していてもよいアリール基を表す。
 R、Rは各々独立に、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアリール基を表す。
 以下、式(c-V)中の符号を説明する。
(Ar、Ar、Ar
 Ar、Ar、Arは各々独立に、置換基を有していてもよいアリール基を表す。
 アリール基としては、例えば、Ar、Arでは2価の芳香族炭化水素環基(2個の遊離原子価を有する芳香族炭化水素環)及び2価の芳香族複素環基(2個の遊離原子価を有する芳香族複素環)が挙げられる。Arでは、1価の芳香族炭化水素環基(1個の遊離原子価を有する芳香族炭化水素環)及び1価の芳香族複素環基(1個の遊離原子価を有する芳香族複素環)が挙げられる。
 発光強度の増大の観点から、Arは、2個の遊離原子価を有するベンゼン環、2個の遊離原子価を有するナフタレン環であることが好ましい。発光強度の増大の観点から、Arは、下記一般式(c-V-1)、(c-V-2)、(c-V-3)のいずれかで表される基であることが好ましい。発光強度の増大の観点から、Arは、1個の遊離原子価を有するベンゼン環であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(c-V-1)、(c-V-2)、(c-V-3)中、R、Rは各々独立に、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアリール基を表す。
(R及びR
 式(c-V-1)、(c-V-2)、(c-V-3)中、R、Rは各々独立に、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアリール基を表す。
 アルキル基としては、直鎖状のアルキル基、分岐鎖状のアルキル基、環状のアルキル基、これらを組み合わせたアルキル基が挙げられる。R、Rは、溶解性の観点からは分岐鎖状のアルキル基が好ましい。
 アリール基としては、1価の芳香族炭化水素環基及び1価の芳香族複素環基が挙げられる。
 アリール基の炭素数は特に限定されないが、4以上が好ましく、6以上がより好ましく、また、12以下が好ましく、10以下がより好ましい。前記下限値以上とすることで半導体ナノ粒子へのエネルギー移動効率が向上する傾向があり、また、前記上限値以下とすることで溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、アリール基の炭素数は、4~12が好ましく、6~10がより好ましい。
(R、R
 式(c-V)中、R、Rは各々独立に、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアリール基を表す。
 アルキル基としては、直鎖状のアルキル基、分岐鎖状のアルキル基、環状のアルキル基、これらを組み合わせたアルキル基が挙げられる。立体障害による耐光性の向上の観点からは、R、Rは、分岐鎖状のアルキル基、環状のアルキル基が好ましい。
 アリール基としては、1価の芳香族炭化水素環基及び1価の芳香族複素環基が挙げられる。
 アリール基の炭素数は特に限定されないが、4以上が好ましく、6以上がより好ましく、また、12以下が好ましく、10以下がより好ましい。前記下限値以上とすることで立体障害により耐光性が向上する傾向があり、また、前記上限値以下とすることで溶解性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、アリール基の炭素数は、4~12が好ましく、6~10がより好ましい。
 半導体ナノ粒子の発光強度増大の観点から、蛍光色素(C)として一般式(c-VI)で示される部分構造を有する蛍光色素(以下、「蛍光色素(C6)」ともいう。)が好ましい。
Figure JPOXMLDOC01-appb-C000019
 式(c-VI)中、XはC-*又はNを表す。
 *は結合手を表す。
 R、Rは各々独立に、フッ素原子又はシアノ基を表す。
 以下、式(c-VI)中の符号を説明する。
(R、R
 R、Rは各々独立に、フッ素原子又はシアノ基を表す。
 R、Rとしては、蛍光色素(C6)の耐久性向上の観点から、フッ素原子が好ましい。
(X)
 XはC-*又はNを表し、*は結合手を表す。蛍光色素の耐久性向上の観点及び、蛍光色素(C6)の吸収スペクトルのpHに対する安定性の観点から、XはC-*が好ましく、C-Rがより好ましい。Rは水素原子又は任意の置換基を表す。青色の励起光を用いる場合には、吸収効率向上の観点からも、Xは、C-*が好ましく、C-Rがより好ましい。
(R
 Rにおける任意の置換基としては、置換可能な1価の基であれば特に限定されず、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアルキルカルボニルオキシ基、置換基を有していてもよいアルキルカルボニルアミノ基、置換基を有していてもよいアルキルスルホニル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールカルボニル基、置換基を有していてもよいアリールカルボニルオキシ基、置換基を有していてもよいアリールカルボニルアミノ基、置換基を有していてもよいアリールスルホニル基、置換基を有していてもよいアリーロキシ基、置換基を有していてもよいアリーロキシカルボニル基、置換基を有していてもよいアミノ基、置換基を有していてもよいカルバモイル基、置換基を有していてもよいスルファニル基、置換基を有していてもよいスルホニル基、置換基を有していてもよいシリル基、置換基を有していてもよいボリル基、置換基を有していてもよいホスフィノイル基、カルボキシ基、ホルミル基、スルホ基、シアノ基、ニトロ基、ハロゲン原子、水酸基が挙げられる。
 青色光を励起光とする場合には、励起光の吸収効率向上の観点から、Rは、アルコキシ基、アミノ基(特にアルキルアミノ基)であることが好ましい。
 半導体ナノ粒子含有組成物への溶解性向上と蛍光色素(C6)の耐久性向上の観点からは、Rは、アルキル基、アリール基、アルコキシ基、アミノ基が好ましく、メチル基、2-エチルヘキシル基、フェニル基、2-[2-(2-ヒドロキシエトキシ)エトキシ]エトキシ基、フェノキシ基、2-エチルヘキシルアミノ基がより好ましく、メチル基、フェニル基、2-[2-(2-ヒドロキシエトキシ)エトキシ]エトキシ基が特に好ましい。
 蛍光色素(C6)は、式(c-VI)で表されるものであれば特に限定されない。各種溶媒や半導体ナノ粒子含有組成物への溶解度が高く、グラム吸光係数が高く、濃度消光をしづらく、蛍光の量子収率が高くなるとの観点から、下記一般式(c-VI-1)で表される蛍光色素であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(c-VI-1)中、XはC-R又はNを表す。
 R~Rはそれぞれ独立に水素原子又は任意の置換基を表す。
 RとR又はRが連結して環を形成していてもよい。
 RとR又はRが連結して環を形成していてもよい。
 R、Rは各々独立に、フッ素原子又はシアノ基を表す。
 以下、式(c-VI-1)中の符号を説明する。
(R、R
 R、Rは各々独立に、フッ素原子又はシアノ基を表す。
 R、Rは、蛍光色素の耐久性向上の観点から、フッ素原子が好ましい。
(X、R
 XはC-R又はNを表し、蛍光色素の耐久性向上の観点からは、C-Rが好ましい。Rは水素原子又は任意の置換基を表し、Rにおける任意の置換基としては式(c-VI)において記載した置換基が挙げられ、好ましい置換基も式(c-VI)において記載した置換基と同様である。
(R~R
 R~Rはそれぞれ独立に水素原子又は任意の置換基を表し、R~Rにおける任意の置換基としては、式(c-VI)中、Rにおける任意の置換基として記載した置換基が挙げられる。
 R~Rとしては、半導体ナノ粒子含有組成物への溶解性向上と蛍光色素の耐久性向上の観点から、アルキル基、アリール基、アルコキシカルボニル基、アリーロキシカルボニル基が好ましく、メチル基、2-エチルヘキシル基、フェニル基、2-[2-(2-ヒドロキシエトキシ)エトキシ]エトキシカルボニル基、フェノキシカルボニル基がより好ましく、メチル基、2-エチルヘキシル基、2-[2-(2-ヒドロキシエトキシ)エトキシ]エトキシカルボニル基が特に好ましい。
 RとR又はRが連結して環を形成していてもよく、RとR又はRが連結して環を形成していてもよい。
 環を形成した場合の式(c-VI-1)の例を以下に示す。
Figure JPOXMLDOC01-appb-C000021
 式(c-VI-1)で表される蛍光色素の中でも、蛍光色素の耐久性向上の観点から、式(c-VI-1)においてR及びRがフッ素原子であり、XがC-Rであり、Rが水素原子又は任意の置換基である蛍光色素が好ましい。
 半導体ナノ粒子含有組成物への溶解性向上と蛍光色素の耐久性向上の観点から、蛍光色素(C6)の好ましい構造としては、式(c-VI-1)中、R、Rがフッ素原子であり、XがC-Rであり、Rがアルキル基、アリール基、アルコキシ基、アミノ基であり、R~Rがアルキル基、アリール基、アルコキシカルボニル基、アリーロキシカルボニル基であることが好ましい。
 青色の励起光を用いる場合には、吸収効率向上の観点から、蛍光色素(C6)の好ましい構造としては、式(c-VI-1)中、XがC-Rであり、Rがアルコキシ基、アミノ基(特にアルキルアミノ基)であることが好ましい。
 蛍光色素(C)は、半導体ナノ粒子(A)へ連結する作用を生じる置換基を有する。
 蛍光色素(C)が半導体ナノ粒子(A)へ連結する作用を生じる置換基を有することにより、蛍光色素(C)が半導体ナノ粒子(A)に吸着しやすくなり、波長変換層を形成した場合に、半導体ナノ粒子(A)表面に吸着した蛍光色素(C)の励起エネルギーがフェルスター型エネルギー移動により半導体ナノ粒子(A)に移動し、半導体ナノ粒子(A)の発光効率を向上させることが可能となる。
 半導体ナノ粒子(A)へ連結する作用をより生じやすくさせる観点から、蛍光色素(C)の構造の末端に半導体ナノ粒子(A)へ連結する作用を生じる置換基を有することが好ましい。
 蛍光色素(C)における半導体ナノ粒子(A)へ連結する作用を生じる置換基としては、例えば、スルファニル基又はその塩、酸基又はその塩、アミノ基又はその塩、リン酸エステル基又はその塩、ホスファントリイル基、あるいはホスホリル基が挙げられる。上記アミノ基とは-NHで表される置換基である。
 前記酸基又はその塩としては、半導体ナノ粒子(A)表面への連結力の観点から、カルボキシ基又はその塩、スルホ基又はその塩、あるいはホスホノ基又はその塩が好ましい。
 蛍光色素(C)における半導体ナノ粒子(A)へ連結する作用を生じる置換基は、その連結作用が大きいという観点から、スルファニル基又はその塩、アミノ基又はその塩、カルボキシ基又はその塩、ホスホノ基又はその塩が好ましく、スルファニル基、アミノ基、ホスホノ基がより好ましく、スルファニル基が特に好ましい。
 半導体ナノ粒子(A)へ連結する作用を生じる置換基は、蛍光色素(C)の骨格、構造に結合していればよく、その位置は特に限定されない。
 半導体ナノ粒子(A)へ連結する作用を生じる置換基を有するとは、蛍光色素(C)の骨格、構造に共有結合、イオン結合、配位結合(金属錯体を形成する金属元素と配位子の結合を含む)のような化学結合で結合していることを意味する。
 連結作用を生じているか否かは、例えば、以下の評価基準で判断することができる。
 ポリエチレングリコール鎖を含むリガンドを有する半導体ナノ粒子の酢酸ブチル溶液に蛍光色素を加えて溶解させた後、室温で2時間静置する。その後ノルマルヘプタンを添加し、半導体ナノ粒子を沈殿させる。さらに、遠心分離装置で沈殿と上澄み液を分離した後、上澄み液を乾燥し、残渣に含まれる蛍光色素の量をH-NMRで定量する。この時、上澄み液に含まれる蛍光色素が添加した量の90wt%以下であれば、半導体ナノ粒子への連結作用を生じていると判断してよい。(ノルマルヘプタンを添加した際に、半導体ナノ粒子に連結していない蛍光色素が沈殿しないように、添加する蛍光色素が酢酸ブチルとノルマルヘプタンの混合溶液に溶解することを事前に確認しておく。)
 以下に蛍光色素(C)の具体例、特に、ナフタルイミド骨格を有する蛍光色素、クマリン骨格を有する蛍光色素、ペリレン骨格を有する蛍光色素、式(c-IV)で示される構造を有する蛍光色素、式(c-V)で示される構造を有する蛍光色素、(c-VI)で示される構造を有する蛍光色素の具体例を挙げる。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 蛍光色素(C)の製造方法は特に限定されないが、例えば、日本国特開2003-104976号公報、日本国特開2011-231245号公報、国際公開第2015/111647号、日本国特開2015-006173号公報、Chem.Eur.J.,13,1746-1753,2007、Chem.Rev.,107,p.4891-4932,2007に記載の方法で製造することができる。
 蛍光色素(C)に半導体ナノ粒子へ連結する作用を生じる置換基を導入する方法としては、特に限定されないが、例えば、Chem.Phys.Chem.,11,3167-3171,2010、J.Am.Chem.Soc.,127,3870-3878,2005、日本国特開2017-186564号公報に記載の方法が挙げられる。
 蛍光色素(C)が発する蛍光の最大発光波長は特に限定されないが、450nm以上が好ましく、455nm以上がより好ましく、460nm以上がさらに好ましく、465nm以上が特に好ましく、また、640nm以下が好ましく、635nm以下がより好ましく、630nm以下がさらに好ましく、625nm以下が特に好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、蛍光色素(C)が発する蛍光の最大発光波長は、450~640nmが好ましく、455~635nmがより好ましく、460~630nmがさらに好ましく、465~625nmが特に好ましい。
 前記下限値以上とすることで、励起光源を青色光とした場合に、半導体ナノ粒子が十分に光を吸収できず、励起できなかった半導体ナノ粒子を励起することができ、半導体ナノ粒子の発光強度増大につながる傾向がある。また、前記上限値以下とすることで、半導体ナノ粒子の発光スペクトルと蛍光色素(C)の発光スペクトルを分離できるため、蛍光色素(C)から半導体ナノ粒子へ移動するエネルギーが大きくなり、さらに、ディスプレイに用いる際には、画素部とは別に設けたカラーフィルタによって蛍光色素(C)からの不要な波長領域の発光を吸収することが容易になる傾向がある。例えば、蛍光色素(C)が発する蛍光の最大発光波長が460~630nm付近に存在すると、緑色発光性の半導体ナノ粒子及び赤色発光性の半導体ナノ粒子のいずれの発光強度も増大させることができる傾向があり好ましい。
 最大発光波長の測定方法は特に限定されないが、例えば、蛍光色素(C)の溶液や、蛍光色素(C)を含む膜を用いて、励起光源として波長445nmの光を用いて分光蛍光光度計にて測定した発光スペクトルから読み取ればよい。
 本発明の半導体ナノ粒子含有組成物は、蛍光色素(C)を1種単独で含んでいてもよく、2種以上を含んでいてもよい。本発明の半導体ナノ粒子含有組成物は、蛍光色素(C)以外の色素をさらに含んでいてもよい。
 本発明の半導体ナノ粒子含有組成物における蛍光色素(C)の含有割合は特に限定されないが、半導体ナノ粒子含有組成物の全固形分中に0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.05質量%以上がさらに好ましく、0.1質量%以上が特に好ましく、また、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下が特に好ましい。前記下限値以上とすることで、照射された光を十分に蛍光色素(C)が吸収し、蛍光色素(C)から半導体ナノ粒子(A)へのエネルギー移動の量を増大させ、半導体ナノ粒子(A)の発光強度を増大させる傾向がある。また、前記上限値以下とすることで蛍光色素(C)の濃度消光を抑制し、蛍光色素(C)から半導体ナノ粒子(A)へ効率よくエネルギー移動することで、半導体ナノ粒子(A)の発光強度が増大し、かつ半導体ナノ粒子(A)と蛍光色素(C)以外の成分を含むことにより、十分な硬度の波長変換層が得られる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、0.001~30質量%が好ましく、0.01~20質量%がより好ましく、0.05~10がさらに好ましく、0.1~5が特に好ましい。
[1-4](メタ)アクリレート化合物(D)
 本発明の半導体ナノ粒子含有組成物は、(メタ)アクリレート化合物(D)を含有する。(メタ)アクリレート化合物(D)を含有することで、波長変換層、特に本発明の半導体ナノ粒子含有組成物をカラーフィルタ画素部に用いた場合にカラーフィルタ画素部を硬化させることができる傾向がある。
 (メタ)アクリレート化合物(D)は、(メタ)アクリロイル基を1つ有する単官能(メタ)アクリレートであってよく、(メタ)アクリロイル基を複数有する多官能(メタ)アクリレートであってもよい。
 単官能(メタ)クリレートとしては、半導体ナノ粒子含有組成物をインクにした際の流動性に優れる観点、吐出安定性により優れる観点から、分子量が150g/mol~350g/molの単官能(メタ)アクリレートが好ましい。
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(2-メチル-2-エチル-1、3-ジオキソラン-4-イル)メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、こはく酸モノ(2-アクリロイルオキシエチル)、N-[2-(アクリロイルオキシ)エチル]フタルイミド、N-[2-(アクリロイルオキシ)エチル]テトラヒドロフタルイミドが挙げられる。半導体ナノ粒子の分散性、インクジェットの吐出安定性、硬化膜の強度の観点から、エトキシエトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(2-メチル-2-エチル-1、3-ジオキソラン-4-イル)メチル(メタ)アクリレート、ベンジル(メタ)アクリレートが好ましい。
 多官能(メタ)アクリレートは、例えば、2官能(メタ)アクリレート、3官能(メタ)アクリレート、4官能(メタ)アクリレート、5官能(メタ)アクリレート、6官能(メタ)アクリレートであってよい。多官能(メタ)アクリレートは、例えば、ジオール化合物の2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、トリオール化合物の2つ又は3つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ又はトリ(メタ)アクリレートであってよい。半導体ナノ粒子含有組成物をインクにした際の流動性に優れる観点、吐出安定性により優れる観点から、2官能(メタ)アクリレートが好ましい。
 多官能(メタ)アクリレートとしては、半導体ナノ粒子含有組成物をインクにした際の流動性に優れる観点、吐出安定性により優れる観点から、多官能(メタ)アクリレートとしては、分子量が150g/mol以上が好ましく、700g/mol以下が好ましく、350g/mol以下がより好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、多官能(メタ)アクリレートとしては、分子量が、150~700g/molが好ましく、150~350g/molがより好ましい。
 2官能(メタ)アクリレートとしては、例えば、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールヒドロキシピバリン酸エステルジアクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート;ネオペンチルグリコール1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ビスフェノールA1モルに2モルのエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート;トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるトリオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート;ビスフェノールA1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート;が挙げられる。半導体ナノ粒子の分散性、インクジェットの吐出安定性、硬化膜の強度に優れる観点から、2官能(メタ)アクリレートとしては、1,6-ヘキサンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレートが好ましい。
 3官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるトリオールの3つの水酸基が(メタ)アクリロイルオキシ基によって置換されたトリ(メタ)アクリレートが挙げられる。
 4官能(メタ)アクリレートとしては、例えば、ペンタエリスリトールテトラ(メタ)アクリレートが挙げられる。
 5官能(メタ)アクリレートとしては、例えば、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
 6官能(メタ)アクリレートとしては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレートが挙げられる。
 多官能(メタ)アクリレートは、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレートのジペンタエリスリトールの複数の水酸基が(メタ)アクリロイルオキシ基によって置換されたポリ(メタ)アクリレートでもよい。
 (メタ)アクリレート化合物(D)は、リン酸基を有する(メタ)アクリレート、例えば、エチレンオキサイド変性リン酸(メタ)アクリレート、エチレンオキサイド変性アルキルリン酸(メタ)アクリレートでもよい。
 半導体ナノ粒子含有組成物において、硬化性成分を、(メタ)アクリレート化合物(D)のみ又はそれを主成分として構成する場合には、硬化物の耐久性(強度、耐熱性等)をより高めるという観点からは、(メタ)アクリレート化合物(D)としては、多官能(メタ)アクリレートを用いることが好ましい。この場合、(メタ)アクリレート化合物(D)全体に対する多官能(メタ)アクリレートの含有割合は、10質量%以上が好ましく、20質量%以上がより好ましい。上限値は特に限定されないが、通常100質量%以下である。上記の上限及び下限は任意に組み合わせることができる。例えば、(メタ)アクリレート化合物(D)全体に対する多官能(メタ)アクリレートの含有割合は、10~100質量%が好ましく、20~100質量%がより好ましい。
 インクにした際の流動性に優れる観点、吐出安定性により優れるという観点及びカラーフィルタ製造時における硬化収縮に起因する平滑性の低下を抑制し得るという観点からは、(メタ)アクリレート化合物(D)としては、単官能(メタ)アクリレートと多官能(メタ)アクリレートとを組み合わせて用いることも好ましい。この場合、(メタ)アクリレート化合物(D)全体に対する多官能(メタ)アクリレートの含有割合は、90質量%以下が好ましく、80質量%以下がより好ましい。下限値は特に限定されないが、通常は0質量%以上であり、0.1質量%以上が好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、0~90質量%が好ましく、0.1~80質量%がより好ましい。
 このように2種以上の(メタ)アクリレートを混合して(メタ)アクリレート化合物(D)の成分とする場合、混合した(メタ)アクリレート化合物(D)の平均分子量は、半導体ナノ粒子含有組成物をインクにした際の流動性に優れる観点、吐出安定性により優れる観点から、平均分子量が150g/mol以上が好ましく、350g/mol以下が好ましい。
 複数の(メタ)アクリレートを混合して(メタ)アクリレート化合物(D)の成分とする場合、混合した(メタ)アクリレート化合物(D)の平均分子量は、下記式を用いて算出する。
 (メタ)アクリレート化合物(D)の平均分子量=Σ[(各(メタ)アクリレートの分子量)×(各(メタ)アクリレートの配合割合(質量%))/100]
 (メタ)アクリレート化合物(D)の含有割合は、例えば、波長変換層用インクとして塗布のプロセスで適正な粘度が得られやすい観点、特にインクジェット方式用インクとして適正な粘度が得られやすい観点、半導体ナノ粒子含有組成物の硬化性が良好となる観点、半導体ナノ粒子(A)の発光強度を増大させる観点、並びに、画素部(半導体ナノ粒子含有組成物の硬化物)の耐溶剤性及び磨耗性が向上する観点から、半導体ナノ粒子含有組成物の全固形分中に、20質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましく、60質量%以上がよりさらに好ましく、70質量%以上がことさらに好ましい。より優れた光学特性が得られる観点から、90質量%以下が好ましく、80質量%以下がより好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、20~90質量%が好ましく、40~90質量%がより好ましく、50~90質量%がさらに好ましく、60~90質量%がよりさらに好ましく、70~80質量%が特に好ましい。
[1-5]重合開始剤(E)
 本発明の半導体ナノ粒子含有組成物は、重合開始剤(E)を含有していてもよい。重合開始剤(E)を含有することで、(メタ)アクリレート化合物(D)を重合させやすい傾向がある。
 重合開始剤としては、例えば、光ラジカル重合開始剤(E1)、光カチオン重合開始剤(E2)、熱重合開始剤(E3)が挙げられる。
[1-5-1]光ラジカル重合開始剤(E1)
 光ラジカル重合開始剤としては、分子開裂型又は水素引き抜き型の光ラジカル重合開始剤が好適である。
 分子開裂型の光ラジカル重合開始剤としては、例えば、ベンゾインイソブチルエーテル、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシド、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシドが挙げられる。これら以外の分子開裂型の光ラジカル重合開始剤として、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエチルエーテル、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンを併用してもよい。
 水素引き抜き型の光ラジカル重合開始剤としては、例えば、ベンゾフェノン、4-フェニルベンゾフェノン、イソフタルフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィドが挙げられる。分子開裂型の光ラジカル重合開始剤と水素引き抜き型の光ラジカル重合開始剤とを併用してもよい。
 光ラジカル重合開始剤として市販品を用いることもできる。市販品としては、例えば、IGM resin社製の「Omnirad(登録商標。以下同様。) TPO-H」、「Omnirad TPO-L」、「Omnirad 819」等のアシルフォスフィンオキサイド化合物、「Omnirad 651」、「Omnirad 184」、「Omnirad 1173」、「Omnirad 2959」、「Omnirad 127」、「Omnirad 907」、「Omnirad 369」、「Omnirad 369E」、及び「Omnirad 379EG」等のアルキルフェノン系化合物、「Omnirad MBF」、「Omnirad 754」等の分子内水素引き抜き型化合物、BASFジャパン社製の「Irgacure(登録商標。以下同様。) OXE01」、「Irgacure OXE02」、「Irgacure OXE03」、「Irgacure OXE04」、常州強力電子新材料社製の「TR-PBG-304」、「TR-PBG-305」、ADEKA社製の「NCI-831」、「NCI-930」等のオキシムエステル系化合物が挙げられる。
 オキシムエステル系化合物としてはこれらの他に、例えば、日本国特表2004-534797号公報に記載の化合物、日本国特開2000-80068号公報に記載の化合物、国際公開第2012/45736号に記載の化合物、国際公開第2015/36910号に記載の化合物、日本国特開2006-36750号公報に記載の化合物、日本国特開2008-179611号公報に記載の化合物、国際公開第2009/131189号に記載の化合物、日本国特表2012-526185号公報に記載の化合物、日本国特表2012-519191号公報に記載の化合物、国際公開第2006/18973号に記載の化合物、国際公開第2008/78678号に記載の化合物、日本国特開2011-132215号公報に記載の化合物が挙げられる。感度の観点から、オキシムエステル系化合物としては、N-アセトキシ-N-{4-アセトキシイミノ-4-[9-エチル-6-(o-トルオイル)-9H-カルバゾール-3-イル]ブタン-2-イル}アセトアミド、N-アセトキシ-N-{3-(アセトキシイミノ)-3-[9-エチル-6-(1-ナフトイル)-9H-カルバゾール-3-イル]-1-メチルプロピル}アセトアミド、4-アセトキシイミノ-5-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-5-オキソペンタン酸メチルが好ましい。
 本発明の半導体ナノ粒子含有組成物が光ラジカル重合開始剤を含む場合、光ラジカル重合開始剤の含有割合は、半導体ナノ粒子含有組成物の硬化性の観点から、(メタ)アクリレート化合物(D)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上がさらに好ましい。画素部(半導体ナノ粒子含有組成物の硬化物)の経時安定性の観点から、(メタ)アクリレート化合物(D)100質量部に対して、40質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、光ラジカル重合開始剤の含有割合は、(メタ)アクリレート化合物(D)100質量部に対して、0.1~40質量部が好ましく、0.5~30質量部がより好ましく、1~20質量部がさらに好ましい。
[1-5-2]熱重合開始剤(E3)
 (メタ)アクリレート化合物(D)を硬化させるために用いられる熱重合開始剤としては、例えば、2,2’-アゾビス(イソブチロニトリル)、ジ-tert-ブチルペルオキシド、クメンヒドロペルオキシド、4,4’-アゾビス(4―シアノ吉草酸)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩が挙げられる。
 本発明の半導体ナノ粒子含有組成物が熱重合開始剤を含む場合、熱重合開始剤の含有割合は、半導体ナノ粒子含有組成物の硬化性の観点から、(メタ)アクリレート化合物(D)100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上がさらに好ましい。画素部(半導体ナノ粒子含有組成物の硬化物)の経時安定性の観点から、(メタ)アクリレート化合物(D)100質量部に対して、40質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、熱重合開始剤の含有割合は、(メタ)アクリレート化合物(D)100質量部に対して、0.1~40質量部が好ましく、0.5~30質量部がより好ましく、1~20質量部がさらに好ましい。
[1-6]光散乱性粒子
 本発明の半導体ナノ粒子含有組成物は、光散乱性粒子を含んでいてもよい。
 光散乱性粒子は、例えば、光学的に不活性な無機微粒子である。光散乱性粒子は、カラーフィルタ画素部に照射された光源からの光、及び半導体ナノ粒子や蛍光色素の発光した光を散乱させることができる。
 光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金等の単体金属;シリカ、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛等の金属酸化物;炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウム等の金属炭酸塩;水酸化アルミニウム等の金属水酸化物;ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム等の複合酸化物、次硝酸ビスマス等の金属塩が挙げられる。光散乱性粒子は、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウム及びチタン酸バリウムからなる群より選ばれる少なくとも1種を含むことが好ましく、酸化チタン、酸化ジルコニウム、酸化亜鉛及びチタン酸バリウムからなる群より選ばれる少なくとも1種を含むことがより好ましい。
 光散乱性粒子の形状は、例えば、球状、フィラメント状、不定形状であってよい。光散乱性粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、半導体ナノ粒子含有組成物の均一性、流動性及び光散乱性をより高めることができ、優れた吐出安定性を得ることができる点で好ましい。
 半導体ナノ粒子含有組成物中での光散乱性粒子の平均粒子径(体積平均径)は、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、0.05μm以上が好ましく、0.07μm以上がより好ましく、0.1μm以上がさらに好ましい。また、半導体ナノ粒子含有組成物中での光散乱性粒子の平均粒子径(体積平均径)は、吐出安定性に優れる観点から、1.0μm以下が好ましく、0.5μm以下がより好ましく、0.3μm以下がさらに好ましく、0.2μm以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、半導体ナノ粒子含有組成物中での光散乱性粒子の平均粒子径(体積平均径)は、0.05~1.0μmが好ましく、0.05~0.5μmがより好ましく、0.07~0.3μmがさらに好ましく、0.1~0.2μmが特に好ましい。
 半導体ナノ粒子含有組成物中の光散乱性粒子、若しくは光散乱性粒子分散液中の光散乱性粒子の平均粒子径(体積平均径)は、動的光散乱式ナノトラック粒度分布計により測定し、体積平均径を算出することにより得られる。光散乱性粒子の粒子径を粉体の形態で測定する場合には、光散乱性粒子の平均粒子径(体積平均径)は、例えば透過型電子顕微鏡又は走査型電子顕微鏡により各粒子の粒子径を測定し、体積平均径を算出することにより得られる。
 本発明の半導体ナノ粒子含有組成物が光散乱性粒子を含む場合、光散乱性粒子の含有割合は、外部量子効率の向上効果により優れる観点から、半導体ナノ粒子含有組成物の全固形分中に、0.1質量%以上が好ましく、1質量%以上がより好ましく、5質量%以上がさらに好ましく、7質量%以上がよりさらに好ましく、10質量%以上が特に好ましく、12質量%以上が最も好ましい。吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、半導体ナノ粒子含有組成物の全固形分中に60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましく、30質量%以下よりさらに好ましく、25質量%以下が特に好ましく、20質量%以下が最も好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、光散乱性粒子の含有割合は、半導体ナノ粒子含有組成物の全固形分中に、0.1~60質量%が好ましく、1~50質量%がより好ましく、5~40質量%がさらに好ましく、7~30質量%がよりさらに好ましく、10~25質量%がことさら好ましく、12~20質量%が特に好ましい。
 本発明の半導体ナノ粒子含有組成物が光散乱性粒子を含む場合、半導体ナノ粒子(A)の含有割合に対する光散乱性粒子の含有割合の質量比(光散乱性粒子/半導体ナノ粒子(A))は、外部量子効率の向上効果に優れる観点から、0.1以上であってよく、0.2以上であってもよく、0.5以上であってもよい。外部量子効率の向上効果により優れ、公知の塗布方法への適性、特にインクジェット印刷時の連続吐出性(吐出安定性)に優れる観点から、5.0以下であってよく、2.0以下であってもよく、1.5以下であってもよい。光散乱性粒子による外部量子効率の向上は、次のようなメカニズムによると考えられる。すなわち、光散乱性粒子が存在しない場合、バックライト光は画素部内をほぼ直進して通過するのみであり、半導体ナノ粒子(A)に吸収される機会が少ないと考えられる。一方、光散乱性粒子を半導体ナノ粒子(A)と同一の画素部内に存在させると、その画素部内でバックライト光が全方位に散乱され、それを半導体ナノ粒子(A)が受光できるため、同一のバックライトを用いていても、画素部における光吸収量が増大すると考えられる。結果的に、このようなメカニズムで漏れ光(光源からの光が半導体ナノ粒子に吸収されずに画素部から漏れ出る光)を防ぐことが可能になり、外部量子効率を向上させることができると考えられる。上記の上限及び下限は任意に組み合わせることができる。例えば、半導体ナノ粒子(A)の含有割合に対する光散乱性粒子の含有割合の質量比(光散乱性粒子/半導体ナノ粒子(A))は、0.1~5.0が好ましく、0.2~2.0がより好ましく、0.5~1.5がさらに好ましい。
[1-7]その他の成分
 本発明の半導体ナノ粒子含有組成物は、半導体ナノ粒子(A)、リガンド(B)、蛍光色素(C)、(メタ)アクリレート化合物(D)、重合開始剤(E)、及び光散乱性粒子以外の他の成分をさらに含有していてもよい。他の成分としては、例えば、高分子分散剤、増感剤、溶剤が挙げられる。
[高分子分散剤]
 本発明において、高分子分散剤は、750以上の重量平均分子量を有し、かつ、光散乱性粒子に対し吸着能を有する官能基を有する高分子化合物であり、光散乱性粒子を分散させる機能を有する。高分子分散剤は、光散乱性粒子に対し吸着能を有する官能基を介して光散乱性粒子に吸着し、高分子分散剤同士の静電反発及び/又は立体反発により、光散乱性粒子を半導体ナノ粒子含有組成物中に分散させる。高分子分散剤は、光散乱性粒子の表面と結合して光散乱性粒子に吸着していることが好ましいが、半導体ナノ粒子の表面に結合して半導体ナノ粒子に吸着していてもよく、半導体ナノ粒子含有組成物中に遊離していてもよい。
 光散乱性粒子に対し吸着能を有する官能基としては、酸性官能基、塩基性官能基及び非イオン性官能基が挙げられる。酸性官能基は解離性のプロトンを有しており、アミン、水酸化物イオン等の塩基により中和されていてもよく、塩基性官能基は有機酸、無機酸等の酸により中和されていてもよい。
 酸性官能基としては例えば、カルボキシ基(-COOH)、スルホ基(-SOH)、硫酸基(-OSOH)、ホスホノ基(-PO(OH))、ホスホノオキシ基(-OPO(OH))、ヒドロキシホスホリル基(-PO(OH)-)、スルファニル基(-SH)が挙げられる。
 塩基性官能基としては、例えば、一級、二級及び三級アミノ基、アンモニウム基、イミノ基、並びに、ピリジン、ピリミジン、ピラジン、イミダゾール、トリアゾール等の含窒素ヘテロ環基が挙げられる。
 非イオン性官能基としては、例えば、ヒドロキシ基、エーテル基、チオエーテル基、スルフィニル基(-SO-)、スルホニル基(-SO-)、カルボニル基、ホルミル基、エステル基、炭酸エステル基、アミド基、カルバモイル基、ウレイド基、チオアミド基、チオウレイド基、スルファモイル基、シアノ基、アルケニル基、アルキニル基、ホスフィンオキサイド基、ホスフィンスルフィド基が挙げられる。
 光散乱性粒子の分散安定性の観点、半導体ナノ粒子が沈降するという副作用を起こしにくい観点、高分子分散剤の合成の容易性の観点、及び官能基の安定性の観点から、酸性官能基としては、カルボキシ基、スルホ基、ホスホン酸基及びリン酸基が好ましく用いられ、塩基性官能基としては、アミノ基が好ましく用いられる。カルボキシ基、ホスホン酸基及びアミノ基がより好ましく用いられ、最も好ましくはアミノ基が用いられる。
 高分子分散剤が酸性官能基を有する場合、高分子分散剤の酸価は、好ましくは1~150mgKOH/gである。酸価が前記下限値以上であると、光散乱性粒子の充分な分散性が得られやすく、酸価が前記上限値以下であると、画素部(半導体ナノ粒子含有組成物の硬化物)の保存安定性が低下しにくい。
 高分子分散剤が塩基性官能基を有する場合、高分子分散剤のアミン価は、好ましくは1~200mgKOH/gである。アミン価が前記下限値以上であると、光散乱性粒子の充分な分散性が得られやすく、アミン価が前記上限値以下であると、画素部(半導体ナノ粒子含有組成物の硬化物)の保存安定性が低下しにくい。
 高分子分散剤は、単一のモノマーの重合体(ホモポリマー)であってよく、複数種のモノマーの共重合体(コポリマー)であってもよい。高分子分散剤は、ランダム共重合体、ブロック共重合体又はグラフト共重合体のいずれであってもよい。高分子分散剤がグラフト共重合体である場合、くし形のグラフト共重合体であってよく、星形のグラフト共重合体であってもよい。高分子分散剤は、例えば、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテル、フェノール樹脂、シリコーン樹脂、ポリウレア樹脂、アミノ樹脂、ポリエチレンイミン及びポリアリルアミン等のポリアミン、エポキシ樹脂、ポリイミドであってよい。
 高分子分散剤として、市販品を使用することもできる。市販品としては、味の素ファインテクノ社製のアジスパーPBシリーズ、ビックケミー社製のDISPERBYKシリーズ並びにBYK-シリーズ、BASF社製のEfkaシリーズ等を使用することができる。
 例えば、ビックケミー社製の「DISPERBYK(登録商標。以下同様。)-130」、「DISPERBYK-161」、「DISPERBYK-162」、「DISPERBYK-163」、「DISPERBYK-164」、「DISPERBYK-166」、「DISPERBYK-167」、「DISPERBYK-168」、「DISPERBYK-170」、「DISPERBYK-171」、「DISPERBYK-174」、「DISPERBYK-180」、「DISPERBYK-182」、「DISPERBYK-183」、「DISPERBYK-184」、「DISPERBYK-185」、「DISPERBYK-2000」、「DISPERBYK-2001」、「DISPERBYK-2008」、「DISPERBYK-2009」、「DISPERBYK-2020」、「DISPERBYK-2022」、「DISPERBYK-2025」、「DISPERBYK-2050」、「DISPERBYK-2070」、「DISPERBYK-2096」、「DISPERBYK-2150」、「DISPERBYK-2155」、「DISPERBYK-2163」、「DISPERBYK-2164」、「BYK-LPN21116」及び「BYK-LPN6919」;BASF社製の「EFKA(登録商標。以下同様。)4010」、「EFKA4015」、「EFKA4046」、「EFKA4047」、「EFKA4061」、「EFKA4080」、「EFKA4300」、「EFKA4310」、「EFKA4320」、「EFKA4330」、「EFKA4340」、「EFKA4560」、「EFKA4585」、「EFKA5207」、「EFKA1501」、「EFKA1502」、「EFKA1503」及び「EFKA PX-4701」;ルーブリゾール社製の「ソルスパース(登録商標。以下同様。)3000」、「ソルスパース9000」、「ソルスパース13240」、「ソルスパース13650」、「ソルスパース13940」、「ソルスパース11200」、「ソルスパース13940」、「ソルスパース16000」、「ソルスパース17000」、「ソルスパース18000」、「ソルスパース20000」、「ソルスパース21000」、「ソルスパース24000」、「ソルスパース26000」、「ソルスパース27000」、「ソルスパース28000」、「ソルスパース32000」、「ソルスパース32500」、「ソルスパース32550」、「ソルスパース32600」、「ソルスパース33000」、「ソルスパース34750」、「ソルスパース35100」、「ソルスパース35200」、「ソルスパース36000」、「ソルスパース37500」、「ソルスパース38500」、「ソルスパース39000」、「ソルスパース41000」、「ソルスパース54000」、「ソルスパース71000」及び「ソルスパース76500」;味の素ファインテクノ社製の「アジスパー(登録商標。以下同様。)PB821」、「アジスパーPB822」、「アジスパーPB881」、「PN411」及び「PA111」;エボニック社製の「TEGO(登録商標。以下同様。) Dispers650」、「TEGO Dispers660C」、「TEGO Dispers662C」、「TEGO Dispers670」、「TEGO Dispers685」、「TEGO Dispers700」、「TEGO Dispers710」及び「TEGO Dispers760W」;楠本化成社製の「ディスパロン(登録商標。以下同様。)DA―703―50」、「DA-705」及び「DA-725」を用いることができる。
 高分子分散剤としては、上記のような市販品以外にも、例えば、塩基性基を含有するカチオン性モノマー及び/又は酸性基を有するアニオン性モノマーと、疎水基を有するモノマーと、必要により他のモノマー(ノニオン性モノマー、親水基を有するモノマー等)とを共重合させて合成した高分子分散剤を用いることができる。カチオン性モノマー、アニオン性モノマー、疎水基を有するモノマー及び他のモノマーの詳細については、例えば、日本国特開2004-250502号公報の段落[0034]~[0036]に記載のモノマーを挙げることができる。
 高分子分散剤としては、例えば、日本国特開昭54-37082号公報、日本国特開昭61-174939号公報に記載のポリアルキレンイミンとポリエステル化合物を反応させた化合物、日本国特開平9-169821号公報に記載のポリアリルアミンの側鎖のアミノ基をポリエステルで修飾した化合物、日本国特開平9-171253号公報に記載のポリエステル型マクロモノマーを共重合成分とするグラフト重合体、日本国特開昭60-166318号公報に記載のポリエステルポリオール付加ポリウレタンが好適に挙げられる。
 高分子分散剤の重量平均分子量は、光散乱性粒子を良好に分散することができ、外部量子効率の向上効果をより向上させることができる観点から、750以上が好ましく、1000以上がより好ましく、2000以上がさらに好ましく、3000以上が特に好ましい。光散乱性粒子を良好に分散することができ、外部量子効率の向上効果をより向上させることができ、また、公知の塗布方法に適した粘度、特にインクジェット方式用インクの粘度を吐出可能で安定吐出に適する粘度とする観点から、100000以下が好ましく、50000以下がより好ましく、30000以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、高分子分散剤の重量平均分子量は、750~100000が好ましく、1000~100000がより好ましく、2000~50000がさらに好ましく、3000~30000が特に好ましい。
 本発明の半導体ナノ粒子含有組成物が高分子分散剤を含む場合、高分子分散剤の含有割合は、光散乱性粒子の分散性の観点から、光散乱性粒子100質量部に対して、0.5質量部以上が好ましく、2質量部以上がより好ましく、5質量部以上がさらに好ましい。また、画素部(半導体ナノ粒子含有組成物の硬化物)の湿熱安定性の観点から、光散乱性粒子100質量部に対して、50質量部以下が好ましく、30質量部以下がより好ましく、10質量部以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、高分子分散剤の含有割合は、光散乱性粒子100質量部に対して、0.5~50質量部が好ましく、2~30質量部がより好ましく、5~10質量部がさらに好ましい。
[増感剤]
 増感剤は、光重合開始剤が吸収する光より長波長の光を吸収し、吸収したエネルギーを光重合開始剤に移動させることによって重合反応を開始させることができる成分を意味する。増感剤を含有することで、例えば、半導体ナノ粒子が比較的吸収しないh線を硬化時の波長として利用できる傾向がある。
 増感剤としては、(メタ)アクリレート化合物(D)と付加反応を起こさないアミン類を用いることができる。増感剤としては、例えば、トリメチルアミン、メチルジメタノールアミン、トリエタノールアミン、p-ジエチルアミノアセトフェノン、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸イソアミル、N,N-ジメチルベンジルアミン、4,4’-ビス(ジエチルアミノ)ベンゾフェノンが挙げられる。
[溶剤]
 本発明の半導体ナノ粒子含有組成物は、塗布性や取扱性の観点から溶剤を含んでいてもよい。
 溶剤としては、例えば、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジブチルエーテル、アジピン酸ジエチル、シュウ酸ジブチル、マロン酸ジメチル、マロン酸ジエチル、コハク酸ジメチル、コハク酸ジエチル、1,4-ブタンジオールジアセテート、グリセリルトリアセテートが挙げられる。
 溶剤の沸点は、公知の塗布方法への適性の観点から50℃以上が好ましく、特にインクジェット方式用インクの連続吐出安定性の観点から、180℃以上であることが好ましい。画素部の形成時には、半導体ナノ粒子含有組成物の硬化前に半導体ナノ粒子含有組成物から溶剤を除去する必要があるため、溶剤を除去しやすい観点から、溶剤の沸点は300℃以下であることが好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、溶剤の沸点は、50~300℃が好ましく、180~300℃がより好ましい。
 本発明の半導体ナノ粒子含有組成物が溶剤を含む場合、その含有割合は特に限定されないが、半導体ナノ粒子含有組成物中に0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.1質量%以上がさらに好ましく、1質量%以上がよりさらに好ましく、10質量%以上がことさらに好ましく、20質量%以上がなおさらに好ましく、30質量%以上が特に好ましい。また、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。前記下限値以上とすることで、組成物の粘度を低減し、公知の塗布方法への適性、特にインクジェットの吐出が容易になる傾向がある。また、前記上限値以下とすることで、公知の塗布方法への適性、特に吐出した後、溶剤を除去後の膜の厚みが厚くなり、より多くの半導体ナノ粒子を含む膜が形成できることで発光強度の大きい画素部を得ることができる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、溶剤の含有割合は、半導体ナノ粒子含有組成物中に、0.001~90質量%が好ましく、0.01~90質量%がより好ましく、0.1~90質量%がさらに好ましく、1~90質量%がよりさらに好ましく、10~90質量%がことさら好ましく、20~80質量%がよりことさら好ましく、30~70質量%が特に好ましい。
 本発明の半導体ナノ粒子含有組成物では、分散媒として機能する(メタ)アクリレート化合物を用いることで、無溶剤で光散乱性粒子及び半導体ナノ粒子を分散させることも可能である。この場合、画素部を形成する際に溶剤を乾燥により除去する工程が不要となる利点を有する。
[2]半導体ナノ粒子含有組成物の物性
 本発明の半導体ナノ粒子含有組成物の40℃における粘度は特に限定されないが、例えば、公知の塗布方法への適性、特にインクジェット印刷時の吐出安定性の観点から、2mPa・s以上が好ましく、5mPa・s以上がより好ましく、7mPa・s以上がさらに好ましく、また、20mPa・s以下が好ましく、15mPa・s以下がより好ましく、12mPa・s以下がさらに好ましい。半導体ナノ粒子含有組成物の粘度は、E型粘度計によって測定される。上記の上限及び下限は任意に組み合わせることができる。例えば、本発明の半導体ナノ粒子含有組成物の40℃における粘度は、2~20mPa・sが好ましく、5~15mPa・sがより好ましく、7~12mPa・sがさらに好ましい。
 本発明の半導体ナノ粒子含有組成物の23℃における粘度は特に限定されないが、例えば、公知の塗布方法への適性、特にインクジェット印刷時の吐出安定性の観点から、5mPa・s以上が好ましく、10mPa・s以上がより好ましく、15mPa・s以上がさらに好ましく、また、40mPa・s以下が好ましく、35mPa・s以下がより好ましく、30mPa・s以下がさらに好ましく、25mPa・s以下が特に好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、本発明の半導体ナノ粒子含有組成物の23℃における粘度は、5~40mPa・sが好ましく、5~35mPa・sがより好ましく、10~30mPa・sがさらに好ましく、15~25mPa・sが特に好ましい。
 本発明の半導体ナノ粒子含有組成物の表面張力は特に限定されないが、公知の塗布方法への適性、特にインクジェット方式に適した表面張力であることが好ましく、20~40mN/mの範囲であることが好ましく、25~35mN/mであることがより好ましい。表面張力を前記範囲内とすることで飛行曲がりの発生を抑制することができる。飛行曲がりとは、半導体ナノ粒子含有組成物をインク吐出孔から吐出させたとき、半導体ナノ粒子含有組成物の着弾位置が目標位置に対して30μm以上のずれを生じることをいう。
[3]半導体ナノ粒子含有組成物の製造方法
 半導体ナノ粒子含有組成物は、例えば、半導体ナノ粒子(A)、(メタ)アクリレート化合物(D)及び蛍光色素(C)と、必要に応じてリガンド(B)と重合開始剤(E)とを、半導体ナノ粒子(A)の含有量が、半導体ナノ粒子含有組成物の全固形分中に5~50質量%となるように混合する工程を含む方法で製造することができる。例えば、半導体ナノ粒子含有組成物の構成成分を混合することで半導体ナノ粒子含有組成物が得られる。
 半導体ナノ粒子含有組成物が光散乱性粒子を含む場合、半導体ナノ粒子含有組成物は、例えば、半導体ナノ粒子(A)、(メタ)アクリレート化合物(D)及び蛍光色素(C)と、必要に応じてリガンド(B)とを含む半導体ナノ粒子分散体を用意する工程と、光散乱性粒子と、必要に応じて(メタ)アクリレート化合物(D)とを含む光散乱性粒子分散体を用意する工程と、半導体ナノ粒子分散体と光散乱性粒子分散体とを混合する工程とを含む方法で製造することができる。この製造方法において重合開始剤(E)が用いられる場合、重合開始剤(E)は、半導体ナノ粒子分散体と光散乱性粒子分散体とを混合して得られる混合物に含まれるように配合されればよい。したがって、重合開始剤(E)は、半導体ナノ粒子分散体及び光散乱性粒子分散体の一方又は両方に含まれていてよく、半導体ナノ粒子分散体と光散乱性粒子分散体と重合開始剤(E)とを混合する場合には、重合開始剤(E)は半導体ナノ粒子分散体及び光散乱性粒子分散体のいずれにも含まれていなくてよい。
 この製造方法によれば、半導体ナノ粒子(A)及び光散乱性粒子を互いに混合する前に(メタ)アクリレート化合物(D)中に分散させるため、半導体ナノ粒子(A)及び光散乱性粒子を充分に分散させることができ、優れた吐出安定性及び優れた外部量子効率を容易に得ることができる傾向がある。
 半導体ナノ粒子分散体を用意する工程では、半導体ナノ粒子(A)、リガンド(B)及び蛍光色素(C)と、(メタ)アクリレート化合物(D)とを混合することにより半導体ナノ粒子分散体を調製してもよい。半導体ナノ粒子(A)は予め、その表面にリガンド(B)を吸着させていてもよい。混合処理はペイントコンディショナー、遊星式撹拌機、スターラー、超音波分散装置、ミックスローター等の装置を用いて行ってもよい。半導体ナノ粒子(A)、リガンド(B)及び蛍光色素(C)の分散性が良好となり、高い光学特性を得られる観点からスターラー、超音波分散装置、ミックスローターを用いることが好ましい。
 光散乱性粒子分散体を用意する工程では、光散乱性粒子と、(メタ)アクリレート化合物(D)とを混合し、分散処理を行うことにより光散乱性粒子分散体を調製してもよい。混合及び分散処理は、半導体ナノ粒子分散体を用意する工程と同じ装置を用いて行ってもよい。光散乱性粒子の分散性が良好となり、光散乱性粒子の平均粒子径を所望の範囲に調整しやすい観点から、ビーズミル又はペイントコンディショナーを用いることが好ましい。
 光散乱性粒子分散体を用意する工程では、高分子分散剤をさらに混合させてもよい。すなわち、光散乱性粒子分散体は、高分子分散剤をさらに含んでいてもよい。半導体ナノ粒子(A)と光散乱性粒子とを混合する前に光散乱性粒子と高分子分散剤とを混合することにより、光散乱性粒子をより充分に分散させることができる。そのため、優れた吐出安定性及び優れた外部量子効率をより一層容易に得ることができる。
 この製造方法では、半導体ナノ粒子(A)、リガンド(B)、蛍光色素(C)、光散乱性粒子、(メタ)アクリレート化合物(D)、及び必要に応じて用いられる重合開始剤(E)、及び高分子分散剤以外の他の成分(例えば、増感剤、溶剤)をさらに用いてもよい。この場合、他の成分は、半導体ナノ粒子分散体に含有させてもよく、光散乱性粒子分散体に含有させてもよい。また、他の成分を、半導体ナノ粒子分散体と光散乱性粒子分散体とを混合して得られる組成物に混合してもよい。
[4]波長変換層
 本発明の波長変換層は、本発明の半導体ナノ粒子含有組成物を硬化させて得られる層であって、少なくとも半導体ナノ粒子(A)、(メタ)アクリレート化合物(D)、及び蛍光色素(C)を含有し、励起源からの光の波長を変換する層である。波長変換層の形態は特に限定されるものではなく、例えばシート状であってもよく、後述するカラーフィルタの画素部のようにパターニングされたバー状等の任意の形状であってもよい。
[5]光変換層及びカラーフィルタ
 本発明のカラーフィルタは、本発明の半導体ナノ粒子含有組成物を硬化させた画素部を有する。本発明のカラーフィルタの詳細について、図面を参照しつつ説明する。以下の説明において、同一又は相当要素には同一符号を用い、重複する説明は省略する。
 図1は、一実施形態のカラーフィルタの模式断面図である。図1に示すように、カラーフィルタ100は、基材40と、基材40上に設けられた光変換層30と、を備える。光変換層30は、複数の画素部10(第1の画素部10a、第2の画素部10b、及び第3の画素部10c)と、遮光部20とを備えている。
 光変換層30は、画素部10として、第1の画素部10aと、第2の画素部10bと、第3の画素部10cとを有している。第1の画素部10aと、第2の画素部10bと、第3の画素部10cとは、この順に繰り返すように格子状に配列されている。遮光部20は、隣り合う画素部の間、すなわち、第1の画素部10aと第2の画素部10bとの間、第2の画素部10bと第3の画素部10cとの間、第3の画素部10cと第1の画素部10aとの間に設けられている。言い換えれば、これらの隣り合う画素部同士は、遮光部20によって離間されている。
 第1の画素部10a及び第2の画素部10bは、それぞれ上述した本発明の半導体ナノ粒子含有組成物の硬化物を含む。硬化物は、その表面の少なくとも一部にリガンドが吸着した半導体ナノ粒子及び蛍光色素と、光散乱性粒子と、硬化成分とを含有する。硬化成分は、(メタ)アクリレート化合物の硬化物であり、具体的には、(メタ)アクリレート化合物の重合によって得られる硬化物である。すなわち、第1の画素部10aは、第1の硬化成分13aと、第1の硬化成分13a中にそれぞれ分散された第1の半導体ナノ粒子11a、第1の光散乱性粒子12a、及び第1の蛍光色素14aとを含む。同様に、第2の画素部10bは、第2の硬化成分13bと、第2の硬化成分13b中にそれぞれ分散された第2の半導体ナノ粒子11b及び第2の光散乱性粒子12b、及び第2の蛍光色素14bとを含む。第1の画素部10a及び第2の画素部10bにおいて、第1の硬化成分13aと第2の硬化成分13bとは同一であっても異なっていてもよく、第1の光散乱性粒子12aと第2の光散乱性粒子12bとは同一であっても異なっていてもよく、第1の蛍光色素14aと第2の蛍光色素14bとは同一であっても異なっていてもよい。
 第1の半導体ナノ粒子11aは、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する、赤色発光性の半導体ナノ粒子である。すなわち、第1の画素部10aは、青色光を赤色光に変換するための赤色画素部と言い換えてよい。第2の半導体ナノ粒子11bは、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する、緑色発光性の半導体ナノ粒子である。第2の画素部10bは、青色光を緑色光に変換するための緑色画素部と言い換えてよい。
 第3の画素部10cは、420~480nmの範囲の波長の光に対し30%以上の透過率を有する。第3の画素部10cは、420~480nmの範囲の波長の光を発する光源を用いる場合に、青色画素部として機能する。第3の画素部10cは、例えば、上述の(メタ)アクリレート化合物を含有する組成物の硬化物を含む。硬化物は、第3の硬化成分13cを含有する。第3の硬化成分13cは、(メタ)アクリレート化合物の硬化物であり、(メタ)アクリレート化合物の重合によって得られる硬化物である。第3の画素部10cは、第3の硬化成分13cを含む。第3の画素部10cが上述の硬化物を含む場合、(メタ)アクリレート化合物を含有する組成物は、420~480nmの範囲の波長の光に対する透過率が30%以上となる限りにおいて、上述の半導体ナノ粒子含有組成物に含有される成分のうち、(メタ)アクリレート化合物以外の成分をさらに含有していてもよい。第3の画素部10cの透過率は、顕微分光装置により測定することができる。
 画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは特に限定されないが、例えば、1μm以上が好ましく、2μm以上がより好ましく、3μm以上がさらに好ましい。画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、30μm以下が好ましく、20μm以下がより好ましく、15μm以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは1~30μmが好ましく、2~20μmがより好ましく、3~15μmがさらに好ましい。
 遮光部20は、隣り合う画素部を離間して混色を防ぐ目的及び光源からの光漏れを防ぐ目的で設けられる、いわゆるブラックマトリックスである。遮光部20を構成する材料は、特に限定されず、例えば、クロム等の金属の他、バインダーポリマーにカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させた樹脂組成物の硬化物等を用いることができる。ここで用いられるバインダーポリマーとしては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の樹脂を1種又は2種以上混合したもの、感光性樹脂、O/Wエマルジョン型の樹脂組成物(例えば、反応性シリコーンをエマルジョン化したもの)を用いることができる。遮光部20の厚さは、例えば、0.5μm~10μmが好ましい。
 基材40は、光透過性を有する透明基材であり、例えば、石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の透明なガラス基板、透明樹脂フィルム、光学用樹脂フィルム等の透明なフレキシブル基材を用いることができる。これらの中でも、ガラス中にアルカリ成分を含まない無アルカリガラスからなるガラス基板を用いることが好ましい。例えば、コーニング社製の「7059ガラス」、「1737ガラス」、「イーグル200」及び「イーグルXG」、AGC社製の「AN100」、日本電気硝子社製の「OA-10G」及び「OA-11」が挙げられる。これらは、熱膨脹率の小さい素材であり寸法安定性及び高温加熱処理における作業性に優れる。
 以上の光変換層30を備えるカラーフィルタ100は、420~480nmの範囲の波長の光を発する励起光源を用いる場合に好適に用いられる。
 励起光源の発する光の波長領域は上記範囲には限られない。本発明の光変換層では、蛍光色素(C)の励起されたエネルギーがフェルスター型エネルギー移動により半導体ナノ粒子(A)に移動し、半導体ナノ粒子(A)の発光強度が増大すると考えられるため、蛍光色素(C)が吸収できる波長領域の光であれば、励起光として使用できる可能性がある。
 カラーフィルタ100は、例えば、基材40上に遮光部20をパターン状に形成した後、基材40上の遮光部20によって区画された画素部形成領域に、上述した半導体ナノ粒子含有組成物をインクジェット方式により選択的に付着させ、活性エネルギー線の照射により半導体ナノ粒子含有組成物を硬化させる方法により製造することができる。
 遮光部20を形成させる方法としては、例えば、基材40の一面側の複数の画素部間の境界となる領域に、クロム等の金属薄膜、又は、遮光性粒子を含有させた樹脂組成物の薄膜を形成し、この薄膜をパターニングする方法が挙げられる。金属薄膜は、例えば、スパッタリング法、真空蒸着法により形成することができ、遮光性粒子を含有させた樹脂組成物の薄膜は、例えば、塗布、印刷により形成することができる。パターニングを行う方法としては、例えば、フォトリソグラフィ法が挙げられる。
 インクジェット方式としては、例えば、エネルギー発生素子として電気熱変換体を用いたバブルジェット(登録商標)方式、圧電素子を用いたピエゾジェット方式が挙げられる。
 半導体ナノ粒子含有組成物の硬化を活性エネルギー線(例えば紫外線)の照射により行う場合、例えば、水銀ランプ、メタルハライドランプ、キセノンランプ、LEDを用いてもよい。照射する光の波長は、例えば、200nm以上であってもよく、440nm以下であってもよい。露光量は、例えば、10~4000mJ/cmが好ましい。
 半導体ナノ粒子含有組成物が溶剤を含む場合、溶剤を揮発させるための乾燥処理を行う。乾燥処理としては、例えば、減圧乾燥、加熱乾燥が挙げられるが、加熱乾燥の場合、溶剤を揮発させるための乾燥温度は、例えば、50~150℃であってよく、乾燥時間は、例えば、3~30分であってよい。
[6]画像表示装置
 本発明の画像表示装置は、本発明のカラーフィルタを有する。
 画像表示装置としては、例えば、液晶表示装置、有機電界発光素子を含む画像表示装置が挙げられる。
 液晶表示装置としては、例えば、青色LEDを備えた光源と、光源から発せられた青色光を画素部ごとに制御する電極を備えた液晶層を含むものが挙げられる。
 有機電界発光素子を含む画像表示装置としては、例えば、カラーフィルタの各画素部に対応する位置に青色発光の有機電界発光素子を配置したものが挙げられる。
 以下に本発明を実施例により具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
(メタ)アクリレート化合物D-1:1,6-ヘキサンジオールジアクリレート(HDDA)
光重合開始剤1:Omnirad TPO(IGM Resins社製)
酸化防止剤1:Irganox1010(BASF社製)
酸化防止剤2:Triphenyl phosphite(TPP)
<リガンドの構造>
 実施例及び比較例で用いたリガンドE-1の構造を以下に示す。
リガンドE-1:カルボキシ基及び分子量400程度のポリエチレングリコール鎖を有する化合物。
<蛍光色素の構造>
 実施例及び比較例で用いた蛍光色素C-1、C-2の構造を以下に示す。
Figure JPOXMLDOC01-appb-T000031
 蛍光色素C-1は、以下に記載の方法で合成した。
 窒素雰囲気下、下記化学式で示される化合物1、即ちブロモナフタル酸無水物(1質量部)とエタノール(8質量部)を混合し、そこに2-エチルヘキシルアミン(0.51質量部、1.1当量)を滴下した。これを還流温度にて5時間反応させ、室温まで1時間かけて冷却した。析出した固体を濾取し、エタノール(3質量部)で洗浄した。この固体を減圧乾燥機にて乾燥させ、87%の収率で化合物2を得た。
Figure JPOXMLDOC01-appb-C000032
 次に、窒素雰囲気下、化合物2(1質量部)と2-メトキシエタノール(9.6質量部)を混合し、ここに2-(メチルアミノ)エタノール(0.23質量部、1.2当量)、トリエチルアミン(0.31質量部、1.2当量)を加え、22時間還流撹拌した。室温へ冷却後、トルエン(17.3質量部)と精製水(10質量部)で分液し、無水芒硝で乾燥、濾過し、濾液を濃縮した。得られた粘体をシリカゲルカラムクロマトグラフィーで精製し、下記化学式で示される化合物3を収率67%で得た。
Figure JPOXMLDOC01-appb-C000033
 次に、窒素雰囲気下、化合物3(1質量部)とジクロロメタン(13.3質量部)とトリエチルアミン(0.48質量部、2当量)を混合し、氷冷した。ここに4-(ジメチルアミノ)ピリジン(0.0014質量部、0.05当量)を加え、次いで塩化パラトルエンスルホニル(0.55質量部、1.2当量)を投入した。室温へ戻して3時間撹拌後、精製水で分液洗浄した。無水芒硝で乾燥、濾過し、濾液を濃縮した。得られた粘体をシリカゲルカラムクロマトグラフィーで精製し、下記化学式で示される化合物4を収率75%で得た。
Figure JPOXMLDOC01-appb-C000034
 次に、窒素雰囲気下、化合物4(1質量部)とN,N-ジメチルホルムアミド(10質量部)を混合し、ここにチオ酢酸S-カリウム(0.22質量部、1当量)を加え、室温で15時間撹拌した。反応液にジクロロメタン(50質量部)を加え、精製水(10質量部)で二度分液洗浄し、次いで食塩水(10質量部)で分液洗浄した。無水芒硝で乾燥、濾過し、濾液を濃縮した。得られた粘体をシリカゲルカラムクロマトグラフィーで精製し、下記化学式で示される化合物5を収率89%で得た。
Figure JPOXMLDOC01-appb-C000035
 次に、窒素雰囲気下、化合物5(1質量部)とN,N-ジメチルアセトアミド(16質量部)を混合し、ここに(±)ジチオトレイトール(1質量部、3当量)と炭酸水素ナトリウム(0.06質量部、0.3当量)を加え、室温にて7時間撹拌した。反応液にトルエン(70質量部)を加え、精製水(20質量部)で二度分液洗浄した。無水芒硝乾燥、濾過し、濾液を濃縮した。得られた粘体をシリカゲルカラムクロマトグラフィーで精製し、目的物である蛍光色素C-1(黄色の固体)を収率75%で得た。
Figure JPOXMLDOC01-appb-C000036
 蛍光色素C-2として「Solvent Yellow 43」を用いた。
<半導体ナノ粒子への蛍光色素の連結作用>
 連結作用を生じているか否かは、以下の評価基準で判断した。
 InP/ZnSeS/ZnS半導体ナノ粒子(波長300~780nmの範囲における最大発光波長:630nm(波長445nm励起)11.4質量部、リガンドE-1を3.2質量部、酢酸ブチルを22.4質量部含む半導体ナノ粒子分散液に、酢酸ブチル74.0質量部、及び蛍光色素を0.5質量部加えて溶解させた後、室温で2時間静置し、その後ノルマルヘプタンを116.0質量部添加し、ボルテックスミキサーで撹拌して半導体ナノ粒子を沈殿させた。さらに、遠心分離装置で沈殿と上澄み液を分離した後、上澄み液を乾燥し、残渣に含まれる蛍光色素の量を1H-NMRで定量した。この時、上澄み液に含まれる蛍光色素が添加した量の50質量%以下であれば、半導体ナノ粒子への連結作用を生じていると判断した。なお、ノルマルヘプタンを添加した際に、半導体ナノ粒子に連結していない蛍光色素が沈殿しないように、添加する蛍光色素が酢酸ブチルとノルマルヘプタンの混合溶液に溶解することを事前に確認した。
<評価結果>
 蛍光色素C-1:混合した蛍光色素C-1全量に対し、88質量%が沈殿(半導体ナノ粒子に配位)し、12質量%が上澄み液に含まれていた(半導体ナノ粒子に未配位)。
 蛍光色素C-2:混合した蛍光色素C-1全量に対し、47質量%が沈殿(半導体ナノ粒子に配位)し、53質量%が上澄み液に含まれていた(半導体ナノ粒子に未配位)。
<光散乱性粒子分散液の調製>
 酸化チタンとしてPT-401M(石原産業社製、平均粒子径0.07μm)2.52質量部、分散剤としてDISPERBYK-111(ビックケミー社製)0.25質量部、溶媒としてテトラヒドロフルフリルアクリレート7.22質量部、直径0.3mmのジルコニアビーズ20質量部を容器に充填し、ペイントシェーカーにて6時間分散させた。分散終了後、フィルターによりビーズと分散液とを分離して、光散乱性粒子分散液を調製した。動的光散乱式ナノトラック粒度分布計を用いて測定した結果、光散乱性粒子分散液における光散乱性粒子の平均粒子径(体積平均径)は0.11μmだった。
[実施例1]
 InP/ZnSeS/ZnS半導体ナノ粒子(波長300~780nmの範囲における最大発光波長:630nm(波長445nm励起)10質量部、リガンドE-1を3.3質量部、(メタ)アクリレート化合物D-1を12質量部含む半導体ナノ粒子分散液1に、(メタ)アクリレート化合物D-1を50質量部、及び蛍光色素C-1を1質量部加えた後、光散乱性粒子分散液を24質量部加えて、ボルテックスミキサーにて混合し、目的の組成物1を得た。
[比較例1]
 実施例1の半導体ナノ粒子分散液1に、(メタ)アクリレート化合物D-1を51質量部加えた後、光散乱性粒子分散液を24質量部加えて、ボルテックスミキサーにて混合し、目的の組成物2を得た。
[比較例2]
 (メタ)アクリレート化合物D-1が75質量部に対して蛍光色素C-1を1質量部加えた後、光散乱性粒子分散液を24質量部加えて、ボルテックスミキサーにて混合し、目的の組成物3を得た。
[比較例3]
 蛍光色素C-1の代わりに蛍光色素C-2を用いたこと以外は、比較例2と同様に実施し、目的の組成物4を得た。
[比較例4]
 蛍光色素C-1の代わりに蛍光色素C-2を用いたこと以外は、実施例1と同様に実施し、目的の組成物5を得た。
[比較例5]
 実施例1の半導体ナノ粒子分散液1に、クロロホルム(CHCl)を50質量部、及び蛍光色素C-1を1質量部加えた後、光散乱性粒子分散液を24質量部加えて、ボルテックスミキサーにて混合し、目的の組成物6を得た。
[比較例6]
 実施例1の半導体ナノ粒子分散液1に、クロロホルムを51質量部、及び光散乱性粒子分散液を24質量部加えて、ボルテックスミキサーにて混合し、目的の組成物7を得た。
[比較例7]
 (メタ)アクリレート化合物D-1の代わりにクロロホルムを用いたこと以外は比較例2と同様に実施し、目的の組成物8を得た。
<溶液の発光スペクトルの測定>
 実施例1及び比較例1~7の発光スペクトル測定は以下のように実施した。
 4μmのギャップを有するガラスセル(サントレーディング社製 S-0088-4-N-W)に各組成物を入れた後、該ガラスセルを積分球内に設置し、波長445nmのレーザーダイオード(オーディオテクニカ社製 SU-61C-445-50)を光源としてサンプルに照射し、分光測定装置(スペクトラコープ社製、Solid Lambda CCD UV-NIR)を用いて、発光スペクトルを測定した。積分球内の光は、光ファイバーを用いて分光測定装置に導いた。表2に比較例1を1.00とした場合の各組成物の発光強度(波長630nm)の相対値と、各組成物の最大発光波長(波長300~780nmの範囲内)の結果を示す。また表3に比較例6を1.00とした場合の各組成物の発光強度(波長630nm)の相対値と、各組成物の最大発光波長(波長300~780nmの範囲内)の結果を示す。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
[実施例2]
 実施例1の半導体ナノ粒子分散液1に、(メタ)アクリレート化合物D-1を48質量部加え、光重合開始剤1を0.5質量部加え、酸化防止剤1と酸化防止剤2をそれぞれ0.75質量部ずつ加え、さらに蛍光色素C-1を1質量部加えた後、光散乱性粒子分散液を24質量部加えて、ボルテックスミキサーにて混合し、目的の組成物9を得た。
[比較例8]
 実施例1の半導体ナノ粒子分散液1に、(メタ)アクリレート化合物D-1を49質量部加え、光重合開始剤1を0.5質量部加え、酸化防止剤1と酸化防止剤2をそれぞれ0.75質量部ずつ加えた後、光散乱性粒子分散液を24質量部加えて、ボルテックスミキサーにて混合し、目的の組成物10を得た。
[比較例9]
 (メタ)アクリレート化合物D-1が73質量部に対して、光重合開始剤1を0.5質量部加え、酸化防止剤1と酸化防止剤2をそれぞれ0.75質量部ずつ加え、さらに蛍光色素C-1を1質量部加えた後、光散乱性粒子分散液を24質量部加えて、ボルテックスミキサーにて混合し、目的の組成物11を得た。
[比較例10]
 蛍光色素C-1の代わりに蛍光色素C-2を用いたこと以外は、比較例9と同様に実施し、目的の組成物12を得た。
[比較例11]
 蛍光色素C-1の代わりに蛍光色素C-2を用いたこと以外は、実施例2と同様に実施し、目的の組成物13を得た。
[比較例12]
 実施例1の半導体ナノ粒子分散液1に、クロロホルムを48質量部加え、光重合開始剤1を0.5質量部加え、酸化防止剤1と酸化防止剤2をそれぞれ0.75質量部ずつ加え、さらに蛍光色素C-1を1質量部加えた後、光散乱性粒子分散液を24質量部加えて、ボルテックスミキサーにて混合し、目的の組成物14を得た。
[比較例13]
 実施例1の半導体ナノ粒子分散液1に、クロロホルムを49質量部加え、光重合開始剤1を0.5質量部加え、酸化防止剤1と酸化防止剤2をそれぞれ0.75質量部ずつ加えた後、光散乱性粒子分散液を24質量部加えて、ボルテックスミキサーにて混合し、目的の組成物15を得た。
[比較例14]
 クロロホルム73質量部に、光重合開始剤1を0.5質量部加え、酸化防止剤1と酸化防止剤2をそれぞれ0.75質量部ずつ加え、さらに蛍光色素C-1を1質量部加えた後、光散乱性粒子分散液を24質量部加えて、ボルテックスミキサーにて混合し、目的の組成物16を得た。
<硬化膜の発光スペクトルの測定>
 実施例2及び比較例8~14の発光スペクトル測定は以下のように実施した。
 各組成物を用いてスピンコータにてガラス基板上に約10μm厚の塗布膜を作成し、窒素グローブボックス中で、ピーク波長405nmのLED光照射装置にて、照射強度4mJ/cm、積算光量120mJ/cmで照射することで、実施例2及び比較例8~11については硬化膜を得た。比較例12~14については組成物が硬化せず、硬化膜を得ることができなかった。
 得られた硬化膜を積分球内に設置し、波長445nmのレーザーダイオード(オーディオテクニカ社製 SU-61C-445-50)を光源としてサンプルに照射し、分光測定装置(スペクトラコープ社製、Solid Lambda CCD UV-NIR)を用いて、発光スペクトルを測定した。積分球内の光は、光ファイバーを用いて分光測定装置に導いた。表4に比較例8を1.00とした場合の各硬化膜の発光強度(波長630nm)の相対値と、各硬化膜の最大発光波長(波長300~780nmの範囲内)の結果を示す。
Figure JPOXMLDOC01-appb-T000039
 表2~3より、300nm~780nmの範囲における最大発光波長が500~670nmの範囲内である半導体ナノ粒子と、半導体ナノ粒子へ連結する作用を有する置換基を有する蛍光色素及び(メタ)アクリレート化合物を一定以上含有する組成物(実施例1)は、該半導体ナノ粒子又は該蛍光色素を単独で含有する組成物(比較例1、2)や、半導体ナノ粒子へ連結する作用を有する置換基を有さない蛍光色素を用いた組成物(比較例3、4)、及び溶媒としてクロロホルムを含む組成物(比較例5~7)と比較して、波長630nmにおける発光強度が大きかった。
 表4より、300nm~780nmの範囲における最大発光波長が500~670nmの範囲内である半導体ナノ粒子と、半導体ナノ粒子へ連結する作用を有する置換基を有する蛍光色素及び(メタ)アクリレート化合物を一定以上含有する硬化膜(実施例2)は、該半導体ナノ粒子又は該蛍光色素を単独で含有する硬化膜(比較例8、9)や、半導体ナノ粒子へ連結する作用を有する置換基を有さない蛍光色素を用いた硬化膜(比較例10、11)と比較して、波長630nmにおける発光強度が大きかった。
 また、溶媒としてクロロホルムを含む組成物(比較例12~14)は硬化せず、硬化膜が得られなかった。
 実施例1、2にて半導体ナノ粒子の発光強度が増大している理由として、当該蛍光色素C-1の励起されたエネルギーがフェルスター型エネルギー移動により半導体ナノ粒子に移動していることが挙げられる。また、特に蛍光色素C-1において、フェルスター型エネルギー移動が起こりやすい理由として以下の3点が挙げられる。
 1つ目に、蛍光色素の発光スペクトルと、最大発光波長が500~670nmの半導体ナノ粒子の吸収スペクトルとの重なりが大きいこと。
 2つ目に、蛍光色素のスルファニル基が半導体ナノ粒子表面へ配位し、蛍光色素と半導体ナノ粒子の距離が接近していること。
 3つ目に、蛍光色素は(メタ)アクリレート化合物への溶解性が低いため、(メタ)アクリレート化合物存在下では、蛍光色素が半導体ナノ粒子表面に配位した状態が安定であること。

Claims (9)

  1.  半導体ナノ粒子(A)、(メタ)アクリレート化合物(D)、及び蛍光色素(C)を含有する半導体ナノ粒子含有組成物であって、
     前記半導体ナノ粒子(A)は、波長300~780nmの範囲における最大発光波長が500~670nmの範囲内にあり、
     前記蛍光色素(C)は、前記半導体ナノ粒子(A)へ連結する作用を生じる置換基を有し、
     前記半導体ナノ粒子含有組成物中の前記(メタ)アクリレート化合物(D)の含有量は、20質量%以上である半導体ナノ粒子含有組成物。
  2.  半導体ナノ粒子(A)、(メタ)アクリレート化合物(D)、及び蛍光色素(C)を含有する半導体ナノ粒子含有組成物であって、
     前記半導体ナノ粒子(A)は、波長300~780nmの範囲における最大発光波長が500~670nmの範囲内にあり、
     前記蛍光色素(C)は、前記半導体ナノ粒子(A)へ連結する作用を生じる置換基を有するインクジェット方式用半導体ナノ粒子含有組成物。
  3.  前記連結する作用を生じる置換基は、スルファニル基又はその塩、酸基又はその塩、アミノ基又はその塩、リン酸エステル基又はその塩、ホスファントリイル基、あるいはホスホリル基である請求項1又は2に記載の半導体ナノ粒子含有組成物。
  4.  前記酸基又はその塩は、カルボキシ基又はその塩、スルホ基又はその塩、あるいはホスホノ基又はその塩である請求項3に記載の半導体ナノ粒子含有組成物。
  5.  さらに重合開始剤(E)を含有する請求項1~4のいずれか1項に記載の半導体ナノ粒子含有組成物。
  6.  さらにリガンド(B)を含有する請求項1~5のいずれか1項に記載の半導体ナノ粒子含有組成物。
  7.  さらに光散乱性粒子を含有する請求項1~6のいずれか1項に記載の半導体ナノ粒子含有組成物。
  8.  請求項1~7のいずれか1項に記載の半導体ナノ粒子含有組成物を硬化させた画素部を有するカラーフィルタ。
  9.  請求項8に記載のカラーフィルタを有する画像表示装置。
PCT/JP2021/029131 2020-08-31 2021-08-05 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置 WO2022044761A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022545608A JPWO2022044761A1 (ja) 2020-08-31 2021-08-05

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-145534 2020-08-31
JP2020145534 2020-08-31
JP2020218441 2020-12-28
JP2020-218441 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022044761A1 true WO2022044761A1 (ja) 2022-03-03

Family

ID=80352221

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/029131 WO2022044761A1 (ja) 2020-08-31 2021-08-05 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置
PCT/JP2021/029126 WO2022044759A1 (ja) 2020-08-31 2021-08-05 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029126 WO2022044759A1 (ja) 2020-08-31 2021-08-05 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置

Country Status (3)

Country Link
JP (2) JPWO2022044761A1 (ja)
TW (2) TW202216959A (ja)
WO (2) WO2022044761A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029475A1 (ja) * 2022-08-05 2024-02-08 日産化学株式会社 波長変換膜形成用組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050603A (ja) * 2006-08-21 2008-03-06 Samsung Electronics Co Ltd 複合発光材料およびこれを含む発光素子
JP2018507264A (ja) * 2014-12-19 2018-03-15 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 改質量子ドット及びその製造方法、着色剤、感光性樹脂組成物、カラーフィルタと表示装置
WO2018101348A1 (ja) * 2016-11-30 2018-06-07 富士フイルム株式会社 波長変換部材およびバックライトユニット
WO2018186300A1 (ja) * 2017-04-04 2018-10-11 富士フイルム株式会社 蛍光体含有フィルムおよびバックライトユニット
JP2019174562A (ja) * 2018-03-27 2019-10-10 日立化成株式会社 波長変換部材、バックライトユニット及び画像表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102508995B1 (ko) * 2015-10-21 2023-03-10 삼성전자주식회사 감광성 조성물 및 이로부터 제조된 양자점-폴리머 복합체 패턴
KR20240119186A (ko) * 2018-09-27 2024-08-06 카티바, 인크. 양자점 컬러 필터 잉크 조성물 및 이를 이용하는 장치
JP7371432B2 (ja) * 2018-10-12 2023-10-31 東洋インキScホールディングス株式会社 インク組成物、該組成物を用いてなる積層体、光波長変換層、光波長変換部材及びカラーフィルタ
JP2020166131A (ja) * 2019-03-29 2020-10-08 山陽色素株式会社 量子ドット分散体及び量子ドット分散体を含む塗膜形成用組成物
CN115052953A (zh) * 2020-02-10 2022-09-13 三菱化学株式会社 含半导体纳米粒子的组合物、彩色滤光片及图像显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050603A (ja) * 2006-08-21 2008-03-06 Samsung Electronics Co Ltd 複合発光材料およびこれを含む発光素子
JP2018507264A (ja) * 2014-12-19 2018-03-15 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 改質量子ドット及びその製造方法、着色剤、感光性樹脂組成物、カラーフィルタと表示装置
WO2018101348A1 (ja) * 2016-11-30 2018-06-07 富士フイルム株式会社 波長変換部材およびバックライトユニット
WO2018186300A1 (ja) * 2017-04-04 2018-10-11 富士フイルム株式会社 蛍光体含有フィルムおよびバックライトユニット
JP2019174562A (ja) * 2018-03-27 2019-10-10 日立化成株式会社 波長変換部材、バックライトユニット及び画像表示装置

Also Published As

Publication number Publication date
WO2022044759A1 (ja) 2022-03-03
JPWO2022044759A1 (ja) 2022-03-03
JPWO2022044761A1 (ja) 2022-03-03
TW202212534A (zh) 2022-04-01
TW202216959A (zh) 2022-05-01

Similar Documents

Publication Publication Date Title
JP6973500B2 (ja) インク組成物及びその製造方法、並びに光変換層及びカラーフィルタ
JP6927305B2 (ja) インク組成物及びその製造方法、光変換層並びにカラーフィルタ
JP7326839B2 (ja) インク組成物、光変換層及びカラーフィルタ
JP7024383B2 (ja) インク組成物、光変換層及びカラーフィルタ
JP7024336B2 (ja) インク組成物、光変換層及びカラーフィルタ
JP6838691B2 (ja) インク組成物、光変換層、及びカラーフィルタ
JP7087797B2 (ja) インク組成物、光変換層及びカラーフィルタ
JP2022527600A (ja) 組成物
WO2022044761A1 (ja) 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置
US20220411692A1 (en) Composition containing semiconductor nanoparticles, color filter, and image display device
JP2021165837A (ja) 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置
JP2020186335A (ja) 硬化性インク組成物、光変換層及びカラーフィルタ
JP2023036307A (ja) 発光性ナノ粒子複合体、インク組成物、光変換層およびカラーフィルタ
JP2021152651A (ja) 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置
JP7243073B2 (ja) インク組成物及びその硬化物、光変換層、並びにカラーフィルタ
JP2021128338A (ja) 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置
JP2023119216A (ja) 半導体ナノ粒子含有組成物、硬化物、カラーフィルタ、及び画像表示装置
JP2021152652A (ja) 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置
JP7238445B2 (ja) インク組成物、光変換層、カラーフィルタ及び発光性画素部の形成方法
JP2022000687A (ja) 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置
JP2023146499A (ja) 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置
JP6981082B2 (ja) インク組成物及びその製造方法、光変換層並びにカラーフィルタ
JP7020014B2 (ja) インク組成物、光変換層及びカラーフィルタ
JP2023132985A (ja) 半導体ナノ粒子含有組成物、硬化物、カラーフィルタ及び画像表示装置
JP2024049408A (ja) カラーフィルタ用インクジェットインク組成物、硬化物、光変換層、及びカラーフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545608

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861189

Country of ref document: EP

Kind code of ref document: A1